/[pcre]/code/trunk/pcre_compile.c
ViewVC logotype

Contents of /code/trunk/pcre_compile.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 166 - (show annotations)
Wed May 9 14:48:28 2007 UTC (8 years ago) by ph10
File MIME type: text/plain
File size: 173631 byte(s)
Error occurred while calculating annotation data.
Add (?-n) and (?+n) relative references.
1 /*************************************************
2 * Perl-Compatible Regular Expressions *
3 *************************************************/
4
5 /* PCRE is a library of functions to support regular expressions whose syntax
6 and semantics are as close as possible to those of the Perl 5 language.
7
8 Written by Philip Hazel
9 Copyright (c) 1997-2007 University of Cambridge
10
11 -----------------------------------------------------------------------------
12 Redistribution and use in source and binary forms, with or without
13 modification, are permitted provided that the following conditions are met:
14
15 * Redistributions of source code must retain the above copyright notice,
16 this list of conditions and the following disclaimer.
17
18 * Redistributions in binary form must reproduce the above copyright
19 notice, this list of conditions and the following disclaimer in the
20 documentation and/or other materials provided with the distribution.
21
22 * Neither the name of the University of Cambridge nor the names of its
23 contributors may be used to endorse or promote products derived from
24 this software without specific prior written permission.
25
26 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
27 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
30 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 POSSIBILITY OF SUCH DAMAGE.
37 -----------------------------------------------------------------------------
38 */
39
40
41 /* This module contains the external function pcre_compile(), along with
42 supporting internal functions that are not used by other modules. */
43
44
45 #define NLBLOCK cd /* Block containing newline information */
46 #define PSSTART start_pattern /* Field containing processed string start */
47 #define PSEND end_pattern /* Field containing processed string end */
48
49
50 #include "pcre_internal.h"
51
52
53 /* When DEBUG is defined, we need the pcre_printint() function, which is also
54 used by pcretest. DEBUG is not defined when building a production library. */
55
56 #ifdef DEBUG
57 #include "pcre_printint.src"
58 #endif
59
60
61 /*************************************************
62 * Code parameters and static tables *
63 *************************************************/
64
65 /* This value specifies the size of stack workspace that is used during the
66 first pre-compile phase that determines how much memory is required. The regex
67 is partly compiled into this space, but the compiled parts are discarded as
68 soon as they can be, so that hopefully there will never be an overrun. The code
69 does, however, check for an overrun. The largest amount I've seen used is 218,
70 so this number is very generous.
71
72 The same workspace is used during the second, actual compile phase for
73 remembering forward references to groups so that they can be filled in at the
74 end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE
75 is 4 there is plenty of room. */
76
77 #define COMPILE_WORK_SIZE (4096)
78
79
80 /* Table for handling escaped characters in the range '0'-'z'. Positive returns
81 are simple data values; negative values are for special things like \d and so
82 on. Zero means further processing is needed (for things like \x), or the escape
83 is invalid. */
84
85 #ifndef EBCDIC /* This is the "normal" table for ASCII systems */
86 static const short int escapes[] = {
87 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 7 */
88 0, 0, ':', ';', '<', '=', '>', '?', /* 8 - ? */
89 '@', -ESC_A, -ESC_B, -ESC_C, -ESC_D, -ESC_E, 0, -ESC_G, /* @ - G */
90 0, 0, 0, 0, 0, 0, 0, 0, /* H - O */
91 -ESC_P, -ESC_Q, -ESC_R, -ESC_S, 0, 0, 0, -ESC_W, /* P - W */
92 -ESC_X, 0, -ESC_Z, '[', '\\', ']', '^', '_', /* X - _ */
93 '`', 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, /* ` - g */
94 0, 0, 0, -ESC_k, 0, 0, ESC_n, 0, /* h - o */
95 -ESC_p, 0, ESC_r, -ESC_s, ESC_tee, 0, 0, -ESC_w, /* p - w */
96 0, 0, -ESC_z /* x - z */
97 };
98
99 #else /* This is the "abnormal" table for EBCDIC systems */
100 static const short int escapes[] = {
101 /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|',
102 /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0,
103 /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~',
104 /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0,
105 /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?',
106 /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0,
107 /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"',
108 /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0,
109 /* 88 */ 0, 0, 0, '{', 0, 0, 0, 0,
110 /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p,
111 /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0,
112 /* A0 */ 0, '~', -ESC_s, ESC_tee, 0, 0, -ESC_w, 0,
113 /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0,
114 /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0,
115 /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-',
116 /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G,
117 /* C8 */ 0, 0, 0, 0, 0, 0, 0, 0,
118 /* D0 */ '}', 0, 0, 0, 0, 0, 0, -ESC_P,
119 /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0,
120 /* E0 */ '\\', 0, -ESC_S, 0, 0, 0, -ESC_W, -ESC_X,
121 /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0,
122 /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0,
123 /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0
124 };
125 #endif
126
127
128 /* Tables of names of POSIX character classes and their lengths. The list is
129 terminated by a zero length entry. The first three must be alpha, lower, upper,
130 as this is assumed for handling case independence. */
131
132 static const char *const posix_names[] = {
133 "alpha", "lower", "upper",
134 "alnum", "ascii", "blank", "cntrl", "digit", "graph",
135 "print", "punct", "space", "word", "xdigit" };
136
137 static const uschar posix_name_lengths[] = {
138 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 };
139
140 /* Table of class bit maps for each POSIX class. Each class is formed from a
141 base map, with an optional addition or removal of another map. Then, for some
142 classes, there is some additional tweaking: for [:blank:] the vertical space
143 characters are removed, and for [:alpha:] and [:alnum:] the underscore
144 character is removed. The triples in the table consist of the base map offset,
145 second map offset or -1 if no second map, and a non-negative value for map
146 addition or a negative value for map subtraction (if there are two maps). The
147 absolute value of the third field has these meanings: 0 => no tweaking, 1 =>
148 remove vertical space characters, 2 => remove underscore. */
149
150 static const int posix_class_maps[] = {
151 cbit_word, cbit_digit, -2, /* alpha */
152 cbit_lower, -1, 0, /* lower */
153 cbit_upper, -1, 0, /* upper */
154 cbit_word, -1, 2, /* alnum - word without underscore */
155 cbit_print, cbit_cntrl, 0, /* ascii */
156 cbit_space, -1, 1, /* blank - a GNU extension */
157 cbit_cntrl, -1, 0, /* cntrl */
158 cbit_digit, -1, 0, /* digit */
159 cbit_graph, -1, 0, /* graph */
160 cbit_print, -1, 0, /* print */
161 cbit_punct, -1, 0, /* punct */
162 cbit_space, -1, 0, /* space */
163 cbit_word, -1, 0, /* word - a Perl extension */
164 cbit_xdigit,-1, 0 /* xdigit */
165 };
166
167
168 #define STRING(a) # a
169 #define XSTRING(s) STRING(s)
170
171 /* The texts of compile-time error messages. These are "char *" because they
172 are passed to the outside world. Do not ever re-use any error number, because
173 they are documented. Always add a new error instead. Messages marked DEAD below
174 are no longer used. */
175
176 static const char *error_texts[] = {
177 "no error",
178 "\\ at end of pattern",
179 "\\c at end of pattern",
180 "unrecognized character follows \\",
181 "numbers out of order in {} quantifier",
182 /* 5 */
183 "number too big in {} quantifier",
184 "missing terminating ] for character class",
185 "invalid escape sequence in character class",
186 "range out of order in character class",
187 "nothing to repeat",
188 /* 10 */
189 "operand of unlimited repeat could match the empty string", /** DEAD **/
190 "internal error: unexpected repeat",
191 "unrecognized character after (?",
192 "POSIX named classes are supported only within a class",
193 "missing )",
194 /* 15 */
195 "reference to non-existent subpattern",
196 "erroffset passed as NULL",
197 "unknown option bit(s) set",
198 "missing ) after comment",
199 "parentheses nested too deeply", /** DEAD **/
200 /* 20 */
201 "regular expression too large",
202 "failed to get memory",
203 "unmatched parentheses",
204 "internal error: code overflow",
205 "unrecognized character after (?<",
206 /* 25 */
207 "lookbehind assertion is not fixed length",
208 "malformed number or name after (?(",
209 "conditional group contains more than two branches",
210 "assertion expected after (?(",
211 "(?R or (?[+-]digits must be followed by )",
212 /* 30 */
213 "unknown POSIX class name",
214 "POSIX collating elements are not supported",
215 "this version of PCRE is not compiled with PCRE_UTF8 support",
216 "spare error", /** DEAD **/
217 "character value in \\x{...} sequence is too large",
218 /* 35 */
219 "invalid condition (?(0)",
220 "\\C not allowed in lookbehind assertion",
221 "PCRE does not support \\L, \\l, \\N, \\U, or \\u",
222 "number after (?C is > 255",
223 "closing ) for (?C expected",
224 /* 40 */
225 "recursive call could loop indefinitely",
226 "unrecognized character after (?P",
227 "syntax error in subpattern name (missing terminator)",
228 "two named subpatterns have the same name",
229 "invalid UTF-8 string",
230 /* 45 */
231 "support for \\P, \\p, and \\X has not been compiled",
232 "malformed \\P or \\p sequence",
233 "unknown property name after \\P or \\p",
234 "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)",
235 "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")",
236 /* 50 */
237 "repeated subpattern is too long",
238 "octal value is greater than \\377 (not in UTF-8 mode)",
239 "internal error: overran compiling workspace",
240 "internal error: previously-checked referenced subpattern not found",
241 "DEFINE group contains more than one branch",
242 /* 55 */
243 "repeating a DEFINE group is not allowed",
244 "inconsistent NEWLINE options",
245 "\\g is not followed by an (optionally braced) non-zero number",
246 "(?+ or (?- must be followed by a non-zero number"
247 };
248
249
250 /* Table to identify digits and hex digits. This is used when compiling
251 patterns. Note that the tables in chartables are dependent on the locale, and
252 may mark arbitrary characters as digits - but the PCRE compiling code expects
253 to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have
254 a private table here. It costs 256 bytes, but it is a lot faster than doing
255 character value tests (at least in some simple cases I timed), and in some
256 applications one wants PCRE to compile efficiently as well as match
257 efficiently.
258
259 For convenience, we use the same bit definitions as in chartables:
260
261 0x04 decimal digit
262 0x08 hexadecimal digit
263
264 Then we can use ctype_digit and ctype_xdigit in the code. */
265
266 #ifndef EBCDIC /* This is the "normal" case, for ASCII systems */
267 static const unsigned char digitab[] =
268 {
269 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */
270 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
271 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */
272 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
273 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */
274 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */
275 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */
276 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */
277 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */
278 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */
279 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */
280 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */
281 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */
282 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */
283 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */
284 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */
285 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */
286 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */
287 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */
288 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */
289 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */
290 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */
291 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */
292 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
293 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */
294 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */
295 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */
296 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */
297 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */
298 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */
299 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */
300 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */
301
302 #else /* This is the "abnormal" case, for EBCDIC systems */
303 static const unsigned char digitab[] =
304 {
305 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */
306 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
307 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */
308 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
309 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */
310 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
311 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */
312 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
313 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */
314 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */
315 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */
316 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */
317 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */
318 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */
319 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */
320 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
321 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */
322 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
323 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */
324 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
325 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */
326 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
327 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */
328 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
329 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */
330 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
331 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */
332 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
333 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */
334 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
335 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */
336 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
337
338 static const unsigned char ebcdic_chartab[] = { /* chartable partial dup */
339 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */
340 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */
341 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */
342 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
343 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */
344 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
345 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */
346 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
347 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */
348 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */
349 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */
350 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */
351 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */
352 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */
353 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */
354 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
355 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */
356 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
357 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */
358 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
359 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */
360 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
361 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */
362 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
363 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */
364 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
365 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */
366 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
367 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */
368 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
369 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */
370 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
371 #endif
372
373
374 /* Definition to allow mutual recursion */
375
376 static BOOL
377 compile_regex(int, int, uschar **, const uschar **, int *, BOOL, int, int *,
378 int *, branch_chain *, compile_data *, int *);
379
380
381
382 /*************************************************
383 * Handle escapes *
384 *************************************************/
385
386 /* This function is called when a \ has been encountered. It either returns a
387 positive value for a simple escape such as \n, or a negative value which
388 encodes one of the more complicated things such as \d. A backreference to group
389 n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When
390 UTF-8 is enabled, a positive value greater than 255 may be returned. On entry,
391 ptr is pointing at the \. On exit, it is on the final character of the escape
392 sequence.
393
394 Arguments:
395 ptrptr points to the pattern position pointer
396 errorcodeptr points to the errorcode variable
397 bracount number of previous extracting brackets
398 options the options bits
399 isclass TRUE if inside a character class
400
401 Returns: zero or positive => a data character
402 negative => a special escape sequence
403 on error, errorptr is set
404 */
405
406 static int
407 check_escape(const uschar **ptrptr, int *errorcodeptr, int bracount,
408 int options, BOOL isclass)
409 {
410 BOOL utf8 = (options & PCRE_UTF8) != 0;
411 const uschar *ptr = *ptrptr + 1;
412 int c, i;
413
414 GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */
415 ptr--; /* Set pointer back to the last byte */
416
417 /* If backslash is at the end of the pattern, it's an error. */
418
419 if (c == 0) *errorcodeptr = ERR1;
420
421 /* Non-alphamerics are literals. For digits or letters, do an initial lookup in
422 a table. A non-zero result is something that can be returned immediately.
423 Otherwise further processing may be required. */
424
425 #ifndef EBCDIC /* ASCII coding */
426 else if (c < '0' || c > 'z') {} /* Not alphameric */
427 else if ((i = escapes[c - '0']) != 0) c = i;
428
429 #else /* EBCDIC coding */
430 else if (c < 'a' || (ebcdic_chartab[c] & 0x0E) == 0) {} /* Not alphameric */
431 else if ((i = escapes[c - 0x48]) != 0) c = i;
432 #endif
433
434 /* Escapes that need further processing, or are illegal. */
435
436 else
437 {
438 const uschar *oldptr;
439 BOOL braced, negated;
440
441 switch (c)
442 {
443 /* A number of Perl escapes are not handled by PCRE. We give an explicit
444 error. */
445
446 case 'l':
447 case 'L':
448 case 'N':
449 case 'u':
450 case 'U':
451 *errorcodeptr = ERR37;
452 break;
453
454 /* \g must be followed by a number, either plain or braced. If positive, it
455 is an absolute backreference. If negative, it is a relative backreference.
456 This is a Perl 5.10 feature. */
457
458 case 'g':
459 if (ptr[1] == '{')
460 {
461 braced = TRUE;
462 ptr++;
463 }
464 else braced = FALSE;
465
466 if (ptr[1] == '-')
467 {
468 negated = TRUE;
469 ptr++;
470 }
471 else negated = FALSE;
472
473 c = 0;
474 while ((digitab[ptr[1]] & ctype_digit) != 0)
475 c = c * 10 + *(++ptr) - '0';
476
477 if (c == 0 || (braced && *(++ptr) != '}'))
478 {
479 *errorcodeptr = ERR57;
480 return 0;
481 }
482
483 if (negated)
484 {
485 if (c > bracount)
486 {
487 *errorcodeptr = ERR15;
488 return 0;
489 }
490 c = bracount - (c - 1);
491 }
492
493 c = -(ESC_REF + c);
494 break;
495
496 /* The handling of escape sequences consisting of a string of digits
497 starting with one that is not zero is not straightforward. By experiment,
498 the way Perl works seems to be as follows:
499
500 Outside a character class, the digits are read as a decimal number. If the
501 number is less than 10, or if there are that many previous extracting
502 left brackets, then it is a back reference. Otherwise, up to three octal
503 digits are read to form an escaped byte. Thus \123 is likely to be octal
504 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal
505 value is greater than 377, the least significant 8 bits are taken. Inside a
506 character class, \ followed by a digit is always an octal number. */
507
508 case '1': case '2': case '3': case '4': case '5':
509 case '6': case '7': case '8': case '9':
510
511 if (!isclass)
512 {
513 oldptr = ptr;
514 c -= '0';
515 while ((digitab[ptr[1]] & ctype_digit) != 0)
516 c = c * 10 + *(++ptr) - '0';
517 if (c < 10 || c <= bracount)
518 {
519 c = -(ESC_REF + c);
520 break;
521 }
522 ptr = oldptr; /* Put the pointer back and fall through */
523 }
524
525 /* Handle an octal number following \. If the first digit is 8 or 9, Perl
526 generates a binary zero byte and treats the digit as a following literal.
527 Thus we have to pull back the pointer by one. */
528
529 if ((c = *ptr) >= '8')
530 {
531 ptr--;
532 c = 0;
533 break;
534 }
535
536 /* \0 always starts an octal number, but we may drop through to here with a
537 larger first octal digit. The original code used just to take the least
538 significant 8 bits of octal numbers (I think this is what early Perls used
539 to do). Nowadays we allow for larger numbers in UTF-8 mode, but no more
540 than 3 octal digits. */
541
542 case '0':
543 c -= '0';
544 while(i++ < 2 && ptr[1] >= '0' && ptr[1] <= '7')
545 c = c * 8 + *(++ptr) - '0';
546 if (!utf8 && c > 255) *errorcodeptr = ERR51;
547 break;
548
549 /* \x is complicated. \x{ddd} is a character number which can be greater
550 than 0xff in utf8 mode, but only if the ddd are hex digits. If not, { is
551 treated as a data character. */
552
553 case 'x':
554 if (ptr[1] == '{')
555 {
556 const uschar *pt = ptr + 2;
557 int count = 0;
558
559 c = 0;
560 while ((digitab[*pt] & ctype_xdigit) != 0)
561 {
562 register int cc = *pt++;
563 if (c == 0 && cc == '0') continue; /* Leading zeroes */
564 count++;
565
566 #ifndef EBCDIC /* ASCII coding */
567 if (cc >= 'a') cc -= 32; /* Convert to upper case */
568 c = (c << 4) + cc - ((cc < 'A')? '0' : ('A' - 10));
569 #else /* EBCDIC coding */
570 if (cc >= 'a' && cc <= 'z') cc += 64; /* Convert to upper case */
571 c = (c << 4) + cc - ((cc >= '0')? '0' : ('A' - 10));
572 #endif
573 }
574
575 if (*pt == '}')
576 {
577 if (c < 0 || count > (utf8? 8 : 2)) *errorcodeptr = ERR34;
578 ptr = pt;
579 break;
580 }
581
582 /* If the sequence of hex digits does not end with '}', then we don't
583 recognize this construct; fall through to the normal \x handling. */
584 }
585
586 /* Read just a single-byte hex-defined char */
587
588 c = 0;
589 while (i++ < 2 && (digitab[ptr[1]] & ctype_xdigit) != 0)
590 {
591 int cc; /* Some compilers don't like ++ */
592 cc = *(++ptr); /* in initializers */
593 #ifndef EBCDIC /* ASCII coding */
594 if (cc >= 'a') cc -= 32; /* Convert to upper case */
595 c = c * 16 + cc - ((cc < 'A')? '0' : ('A' - 10));
596 #else /* EBCDIC coding */
597 if (cc <= 'z') cc += 64; /* Convert to upper case */
598 c = c * 16 + cc - ((cc >= '0')? '0' : ('A' - 10));
599 #endif
600 }
601 break;
602
603 /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped.
604 This coding is ASCII-specific, but then the whole concept of \cx is
605 ASCII-specific. (However, an EBCDIC equivalent has now been added.) */
606
607 case 'c':
608 c = *(++ptr);
609 if (c == 0)
610 {
611 *errorcodeptr = ERR2;
612 return 0;
613 }
614
615 #ifndef EBCDIC /* ASCII coding */
616 if (c >= 'a' && c <= 'z') c -= 32;
617 c ^= 0x40;
618 #else /* EBCDIC coding */
619 if (c >= 'a' && c <= 'z') c += 64;
620 c ^= 0xC0;
621 #endif
622 break;
623
624 /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any
625 other alphameric following \ is an error if PCRE_EXTRA was set; otherwise,
626 for Perl compatibility, it is a literal. This code looks a bit odd, but
627 there used to be some cases other than the default, and there may be again
628 in future, so I haven't "optimized" it. */
629
630 default:
631 if ((options & PCRE_EXTRA) != 0) switch(c)
632 {
633 default:
634 *errorcodeptr = ERR3;
635 break;
636 }
637 break;
638 }
639 }
640
641 *ptrptr = ptr;
642 return c;
643 }
644
645
646
647 #ifdef SUPPORT_UCP
648 /*************************************************
649 * Handle \P and \p *
650 *************************************************/
651
652 /* This function is called after \P or \p has been encountered, provided that
653 PCRE is compiled with support for Unicode properties. On entry, ptrptr is
654 pointing at the P or p. On exit, it is pointing at the final character of the
655 escape sequence.
656
657 Argument:
658 ptrptr points to the pattern position pointer
659 negptr points to a boolean that is set TRUE for negation else FALSE
660 dptr points to an int that is set to the detailed property value
661 errorcodeptr points to the error code variable
662
663 Returns: type value from ucp_type_table, or -1 for an invalid type
664 */
665
666 static int
667 get_ucp(const uschar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr)
668 {
669 int c, i, bot, top;
670 const uschar *ptr = *ptrptr;
671 char name[32];
672
673 c = *(++ptr);
674 if (c == 0) goto ERROR_RETURN;
675
676 *negptr = FALSE;
677
678 /* \P or \p can be followed by a name in {}, optionally preceded by ^ for
679 negation. */
680
681 if (c == '{')
682 {
683 if (ptr[1] == '^')
684 {
685 *negptr = TRUE;
686 ptr++;
687 }
688 for (i = 0; i < sizeof(name) - 1; i++)
689 {
690 c = *(++ptr);
691 if (c == 0) goto ERROR_RETURN;
692 if (c == '}') break;
693 name[i] = c;
694 }
695 if (c !='}') goto ERROR_RETURN;
696 name[i] = 0;
697 }
698
699 /* Otherwise there is just one following character */
700
701 else
702 {
703 name[0] = c;
704 name[1] = 0;
705 }
706
707 *ptrptr = ptr;
708
709 /* Search for a recognized property name using binary chop */
710
711 bot = 0;
712 top = _pcre_utt_size;
713
714 while (bot < top)
715 {
716 i = (bot + top) >> 1;
717 c = strcmp(name, _pcre_utt[i].name);
718 if (c == 0)
719 {
720 *dptr = _pcre_utt[i].value;
721 return _pcre_utt[i].type;
722 }
723 if (c > 0) bot = i + 1; else top = i;
724 }
725
726 *errorcodeptr = ERR47;
727 *ptrptr = ptr;
728 return -1;
729
730 ERROR_RETURN:
731 *errorcodeptr = ERR46;
732 *ptrptr = ptr;
733 return -1;
734 }
735 #endif
736
737
738
739
740 /*************************************************
741 * Check for counted repeat *
742 *************************************************/
743
744 /* This function is called when a '{' is encountered in a place where it might
745 start a quantifier. It looks ahead to see if it really is a quantifier or not.
746 It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd}
747 where the ddds are digits.
748
749 Arguments:
750 p pointer to the first char after '{'
751
752 Returns: TRUE or FALSE
753 */
754
755 static BOOL
756 is_counted_repeat(const uschar *p)
757 {
758 if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
759 while ((digitab[*p] & ctype_digit) != 0) p++;
760 if (*p == '}') return TRUE;
761
762 if (*p++ != ',') return FALSE;
763 if (*p == '}') return TRUE;
764
765 if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
766 while ((digitab[*p] & ctype_digit) != 0) p++;
767
768 return (*p == '}');
769 }
770
771
772
773 /*************************************************
774 * Read repeat counts *
775 *************************************************/
776
777 /* Read an item of the form {n,m} and return the values. This is called only
778 after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
779 so the syntax is guaranteed to be correct, but we need to check the values.
780
781 Arguments:
782 p pointer to first char after '{'
783 minp pointer to int for min
784 maxp pointer to int for max
785 returned as -1 if no max
786 errorcodeptr points to error code variable
787
788 Returns: pointer to '}' on success;
789 current ptr on error, with errorcodeptr set non-zero
790 */
791
792 static const uschar *
793 read_repeat_counts(const uschar *p, int *minp, int *maxp, int *errorcodeptr)
794 {
795 int min = 0;
796 int max = -1;
797
798 /* Read the minimum value and do a paranoid check: a negative value indicates
799 an integer overflow. */
800
801 while ((digitab[*p] & ctype_digit) != 0) min = min * 10 + *p++ - '0';
802 if (min < 0 || min > 65535)
803 {
804 *errorcodeptr = ERR5;
805 return p;
806 }
807
808 /* Read the maximum value if there is one, and again do a paranoid on its size.
809 Also, max must not be less than min. */
810
811 if (*p == '}') max = min; else
812 {
813 if (*(++p) != '}')
814 {
815 max = 0;
816 while((digitab[*p] & ctype_digit) != 0) max = max * 10 + *p++ - '0';
817 if (max < 0 || max > 65535)
818 {
819 *errorcodeptr = ERR5;
820 return p;
821 }
822 if (max < min)
823 {
824 *errorcodeptr = ERR4;
825 return p;
826 }
827 }
828 }
829
830 /* Fill in the required variables, and pass back the pointer to the terminating
831 '}'. */
832
833 *minp = min;
834 *maxp = max;
835 return p;
836 }
837
838
839
840 /*************************************************
841 * Find forward referenced subpattern *
842 *************************************************/
843
844 /* This function scans along a pattern's text looking for capturing
845 subpatterns, and counting them. If it finds a named pattern that matches the
846 name it is given, it returns its number. Alternatively, if the name is NULL, it
847 returns when it reaches a given numbered subpattern. This is used for forward
848 references to subpatterns. We know that if (?P< is encountered, the name will
849 be terminated by '>' because that is checked in the first pass.
850
851 Arguments:
852 ptr current position in the pattern
853 count current count of capturing parens so far encountered
854 name name to seek, or NULL if seeking a numbered subpattern
855 lorn name length, or subpattern number if name is NULL
856 xmode TRUE if we are in /x mode
857
858 Returns: the number of the named subpattern, or -1 if not found
859 */
860
861 static int
862 find_parens(const uschar *ptr, int count, const uschar *name, int lorn,
863 BOOL xmode)
864 {
865 const uschar *thisname;
866
867 for (; *ptr != 0; ptr++)
868 {
869 int term;
870
871 /* Skip over backslashed characters and also entire \Q...\E */
872
873 if (*ptr == '\\')
874 {
875 if (*(++ptr) == 0) return -1;
876 if (*ptr == 'Q') for (;;)
877 {
878 while (*(++ptr) != 0 && *ptr != '\\');
879 if (*ptr == 0) return -1;
880 if (*(++ptr) == 'E') break;
881 }
882 continue;
883 }
884
885 /* Skip over character classes */
886
887 if (*ptr == '[')
888 {
889 while (*(++ptr) != ']')
890 {
891 if (*ptr == '\\')
892 {
893 if (*(++ptr) == 0) return -1;
894 if (*ptr == 'Q') for (;;)
895 {
896 while (*(++ptr) != 0 && *ptr != '\\');
897 if (*ptr == 0) return -1;
898 if (*(++ptr) == 'E') break;
899 }
900 continue;
901 }
902 }
903 continue;
904 }
905
906 /* Skip comments in /x mode */
907
908 if (xmode && *ptr == '#')
909 {
910 while (*(++ptr) != 0 && *ptr != '\n');
911 if (*ptr == 0) return -1;
912 continue;
913 }
914
915 /* An opening parens must now be a real metacharacter */
916
917 if (*ptr != '(') continue;
918 if (ptr[1] != '?')
919 {
920 count++;
921 if (name == NULL && count == lorn) return count;
922 continue;
923 }
924
925 ptr += 2;
926 if (*ptr == 'P') ptr++; /* Allow optional P */
927
928 /* We have to disambiguate (?<! and (?<= from (?<name> */
929
930 if ((*ptr != '<' || ptr[1] == '!' || ptr[1] == '=') &&
931 *ptr != '\'')
932 continue;
933
934 count++;
935
936 if (name == NULL && count == lorn) return count;
937 term = *ptr++;
938 if (term == '<') term = '>';
939 thisname = ptr;
940 while (*ptr != term) ptr++;
941 if (name != NULL && lorn == ptr - thisname &&
942 strncmp((const char *)name, (const char *)thisname, lorn) == 0)
943 return count;
944 }
945
946 return -1;
947 }
948
949
950
951 /*************************************************
952 * Find first significant op code *
953 *************************************************/
954
955 /* This is called by several functions that scan a compiled expression looking
956 for a fixed first character, or an anchoring op code etc. It skips over things
957 that do not influence this. For some calls, a change of option is important.
958 For some calls, it makes sense to skip negative forward and all backward
959 assertions, and also the \b assertion; for others it does not.
960
961 Arguments:
962 code pointer to the start of the group
963 options pointer to external options
964 optbit the option bit whose changing is significant, or
965 zero if none are
966 skipassert TRUE if certain assertions are to be skipped
967
968 Returns: pointer to the first significant opcode
969 */
970
971 static const uschar*
972 first_significant_code(const uschar *code, int *options, int optbit,
973 BOOL skipassert)
974 {
975 for (;;)
976 {
977 switch ((int)*code)
978 {
979 case OP_OPT:
980 if (optbit > 0 && ((int)code[1] & optbit) != (*options & optbit))
981 *options = (int)code[1];
982 code += 2;
983 break;
984
985 case OP_ASSERT_NOT:
986 case OP_ASSERTBACK:
987 case OP_ASSERTBACK_NOT:
988 if (!skipassert) return code;
989 do code += GET(code, 1); while (*code == OP_ALT);
990 code += _pcre_OP_lengths[*code];
991 break;
992
993 case OP_WORD_BOUNDARY:
994 case OP_NOT_WORD_BOUNDARY:
995 if (!skipassert) return code;
996 /* Fall through */
997
998 case OP_CALLOUT:
999 case OP_CREF:
1000 case OP_RREF:
1001 case OP_DEF:
1002 code += _pcre_OP_lengths[*code];
1003 break;
1004
1005 default:
1006 return code;
1007 }
1008 }
1009 /* Control never reaches here */
1010 }
1011
1012
1013
1014
1015 /*************************************************
1016 * Find the fixed length of a pattern *
1017 *************************************************/
1018
1019 /* Scan a pattern and compute the fixed length of subject that will match it,
1020 if the length is fixed. This is needed for dealing with backward assertions.
1021 In UTF8 mode, the result is in characters rather than bytes.
1022
1023 Arguments:
1024 code points to the start of the pattern (the bracket)
1025 options the compiling options
1026
1027 Returns: the fixed length, or -1 if there is no fixed length,
1028 or -2 if \C was encountered
1029 */
1030
1031 static int
1032 find_fixedlength(uschar *code, int options)
1033 {
1034 int length = -1;
1035
1036 register int branchlength = 0;
1037 register uschar *cc = code + 1 + LINK_SIZE;
1038
1039 /* Scan along the opcodes for this branch. If we get to the end of the
1040 branch, check the length against that of the other branches. */
1041
1042 for (;;)
1043 {
1044 int d;
1045 register int op = *cc;
1046
1047 switch (op)
1048 {
1049 case OP_CBRA:
1050 case OP_BRA:
1051 case OP_ONCE:
1052 case OP_COND:
1053 d = find_fixedlength(cc + ((op == OP_CBRA)? 2:0), options);
1054 if (d < 0) return d;
1055 branchlength += d;
1056 do cc += GET(cc, 1); while (*cc == OP_ALT);
1057 cc += 1 + LINK_SIZE;
1058 break;
1059
1060 /* Reached end of a branch; if it's a ket it is the end of a nested
1061 call. If it's ALT it is an alternation in a nested call. If it is
1062 END it's the end of the outer call. All can be handled by the same code. */
1063
1064 case OP_ALT:
1065 case OP_KET:
1066 case OP_KETRMAX:
1067 case OP_KETRMIN:
1068 case OP_END:
1069 if (length < 0) length = branchlength;
1070 else if (length != branchlength) return -1;
1071 if (*cc != OP_ALT) return length;
1072 cc += 1 + LINK_SIZE;
1073 branchlength = 0;
1074 break;
1075
1076 /* Skip over assertive subpatterns */
1077
1078 case OP_ASSERT:
1079 case OP_ASSERT_NOT:
1080 case OP_ASSERTBACK:
1081 case OP_ASSERTBACK_NOT:
1082 do cc += GET(cc, 1); while (*cc == OP_ALT);
1083 /* Fall through */
1084
1085 /* Skip over things that don't match chars */
1086
1087 case OP_REVERSE:
1088 case OP_CREF:
1089 case OP_RREF:
1090 case OP_DEF:
1091 case OP_OPT:
1092 case OP_CALLOUT:
1093 case OP_SOD:
1094 case OP_SOM:
1095 case OP_EOD:
1096 case OP_EODN:
1097 case OP_CIRC:
1098 case OP_DOLL:
1099 case OP_NOT_WORD_BOUNDARY:
1100 case OP_WORD_BOUNDARY:
1101 cc += _pcre_OP_lengths[*cc];
1102 break;
1103
1104 /* Handle literal characters */
1105
1106 case OP_CHAR:
1107 case OP_CHARNC:
1108 case OP_NOT:
1109 branchlength++;
1110 cc += 2;
1111 #ifdef SUPPORT_UTF8
1112 if ((options & PCRE_UTF8) != 0)
1113 {
1114 while ((*cc & 0xc0) == 0x80) cc++;
1115 }
1116 #endif
1117 break;
1118
1119 /* Handle exact repetitions. The count is already in characters, but we
1120 need to skip over a multibyte character in UTF8 mode. */
1121
1122 case OP_EXACT:
1123 branchlength += GET2(cc,1);
1124 cc += 4;
1125 #ifdef SUPPORT_UTF8
1126 if ((options & PCRE_UTF8) != 0)
1127 {
1128 while((*cc & 0x80) == 0x80) cc++;
1129 }
1130 #endif
1131 break;
1132
1133 case OP_TYPEEXACT:
1134 branchlength += GET2(cc,1);
1135 cc += 4;
1136 break;
1137
1138 /* Handle single-char matchers */
1139
1140 case OP_PROP:
1141 case OP_NOTPROP:
1142 cc += 2;
1143 /* Fall through */
1144
1145 case OP_NOT_DIGIT:
1146 case OP_DIGIT:
1147 case OP_NOT_WHITESPACE:
1148 case OP_WHITESPACE:
1149 case OP_NOT_WORDCHAR:
1150 case OP_WORDCHAR:
1151 case OP_ANY:
1152 branchlength++;
1153 cc++;
1154 break;
1155
1156 /* The single-byte matcher isn't allowed */
1157
1158 case OP_ANYBYTE:
1159 return -2;
1160
1161 /* Check a class for variable quantification */
1162
1163 #ifdef SUPPORT_UTF8
1164 case OP_XCLASS:
1165 cc += GET(cc, 1) - 33;
1166 /* Fall through */
1167 #endif
1168
1169 case OP_CLASS:
1170 case OP_NCLASS:
1171 cc += 33;
1172
1173 switch (*cc)
1174 {
1175 case OP_CRSTAR:
1176 case OP_CRMINSTAR:
1177 case OP_CRQUERY:
1178 case OP_CRMINQUERY:
1179 return -1;
1180
1181 case OP_CRRANGE:
1182 case OP_CRMINRANGE:
1183 if (GET2(cc,1) != GET2(cc,3)) return -1;
1184 branchlength += GET2(cc,1);
1185 cc += 5;
1186 break;
1187
1188 default:
1189 branchlength++;
1190 }
1191 break;
1192
1193 /* Anything else is variable length */
1194
1195 default:
1196 return -1;
1197 }
1198 }
1199 /* Control never gets here */
1200 }
1201
1202
1203
1204
1205 /*************************************************
1206 * Scan compiled regex for numbered bracket *
1207 *************************************************/
1208
1209 /* This little function scans through a compiled pattern until it finds a
1210 capturing bracket with the given number.
1211
1212 Arguments:
1213 code points to start of expression
1214 utf8 TRUE in UTF-8 mode
1215 number the required bracket number
1216
1217 Returns: pointer to the opcode for the bracket, or NULL if not found
1218 */
1219
1220 static const uschar *
1221 find_bracket(const uschar *code, BOOL utf8, int number)
1222 {
1223 for (;;)
1224 {
1225 register int c = *code;
1226 if (c == OP_END) return NULL;
1227
1228 /* XCLASS is used for classes that cannot be represented just by a bit
1229 map. This includes negated single high-valued characters. The length in
1230 the table is zero; the actual length is stored in the compiled code. */
1231
1232 if (c == OP_XCLASS) code += GET(code, 1);
1233
1234 /* Handle capturing bracket */
1235
1236 else if (c == OP_CBRA)
1237 {
1238 int n = GET2(code, 1+LINK_SIZE);
1239 if (n == number) return (uschar *)code;
1240 code += _pcre_OP_lengths[c];
1241 }
1242
1243 /* In UTF-8 mode, opcodes that are followed by a character may be followed by
1244 a multi-byte character. The length in the table is a minimum, so we have to
1245 arrange to skip the extra bytes. */
1246
1247 else
1248 {
1249 code += _pcre_OP_lengths[c];
1250 #ifdef SUPPORT_UTF8
1251 if (utf8) switch(c)
1252 {
1253 case OP_CHAR:
1254 case OP_CHARNC:
1255 case OP_EXACT:
1256 case OP_UPTO:
1257 case OP_MINUPTO:
1258 case OP_POSUPTO:
1259 case OP_STAR:
1260 case OP_MINSTAR:
1261 case OP_POSSTAR:
1262 case OP_PLUS:
1263 case OP_MINPLUS:
1264 case OP_POSPLUS:
1265 case OP_QUERY:
1266 case OP_MINQUERY:
1267 case OP_POSQUERY:
1268 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
1269 break;
1270 }
1271 #endif
1272 }
1273 }
1274 }
1275
1276
1277
1278 /*************************************************
1279 * Scan compiled regex for recursion reference *
1280 *************************************************/
1281
1282 /* This little function scans through a compiled pattern until it finds an
1283 instance of OP_RECURSE.
1284
1285 Arguments:
1286 code points to start of expression
1287 utf8 TRUE in UTF-8 mode
1288
1289 Returns: pointer to the opcode for OP_RECURSE, or NULL if not found
1290 */
1291
1292 static const uschar *
1293 find_recurse(const uschar *code, BOOL utf8)
1294 {
1295 for (;;)
1296 {
1297 register int c = *code;
1298 if (c == OP_END) return NULL;
1299 if (c == OP_RECURSE) return code;
1300
1301 /* XCLASS is used for classes that cannot be represented just by a bit
1302 map. This includes negated single high-valued characters. The length in
1303 the table is zero; the actual length is stored in the compiled code. */
1304
1305 if (c == OP_XCLASS) code += GET(code, 1);
1306
1307 /* Otherwise, we get the item's length from the table. In UTF-8 mode, opcodes
1308 that are followed by a character may be followed by a multi-byte character.
1309 The length in the table is a minimum, so we have to arrange to skip the extra
1310 bytes. */
1311
1312 else
1313 {
1314 code += _pcre_OP_lengths[c];
1315 #ifdef SUPPORT_UTF8
1316 if (utf8) switch(c)
1317 {
1318 case OP_CHAR:
1319 case OP_CHARNC:
1320 case OP_EXACT:
1321 case OP_UPTO:
1322 case OP_MINUPTO:
1323 case OP_POSUPTO:
1324 case OP_STAR:
1325 case OP_MINSTAR:
1326 case OP_POSSTAR:
1327 case OP_PLUS:
1328 case OP_MINPLUS:
1329 case OP_POSPLUS:
1330 case OP_QUERY:
1331 case OP_MINQUERY:
1332 case OP_POSQUERY:
1333 if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
1334 break;
1335 }
1336 #endif
1337 }
1338 }
1339 }
1340
1341
1342
1343 /*************************************************
1344 * Scan compiled branch for non-emptiness *
1345 *************************************************/
1346
1347 /* This function scans through a branch of a compiled pattern to see whether it
1348 can match the empty string or not. It is called from could_be_empty()
1349 below and from compile_branch() when checking for an unlimited repeat of a
1350 group that can match nothing. Note that first_significant_code() skips over
1351 assertions. If we hit an unclosed bracket, we return "empty" - this means we've
1352 struck an inner bracket whose current branch will already have been scanned.
1353
1354 Arguments:
1355 code points to start of search
1356 endcode points to where to stop
1357 utf8 TRUE if in UTF8 mode
1358
1359 Returns: TRUE if what is matched could be empty
1360 */
1361
1362 static BOOL
1363 could_be_empty_branch(const uschar *code, const uschar *endcode, BOOL utf8)
1364 {
1365 register int c;
1366 for (code = first_significant_code(code + _pcre_OP_lengths[*code], NULL, 0, TRUE);
1367 code < endcode;
1368 code = first_significant_code(code + _pcre_OP_lengths[c], NULL, 0, TRUE))
1369 {
1370 const uschar *ccode;
1371
1372 c = *code;
1373
1374 if (c == OP_BRA || c == OP_CBRA || c == OP_ONCE)
1375 {
1376 BOOL empty_branch;
1377 if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */
1378
1379 /* Scan a closed bracket */
1380
1381 empty_branch = FALSE;
1382 do
1383 {
1384 if (!empty_branch && could_be_empty_branch(code, endcode, utf8))
1385 empty_branch = TRUE;
1386 code += GET(code, 1);
1387 }
1388 while (*code == OP_ALT);
1389 if (!empty_branch) return FALSE; /* All branches are non-empty */
1390
1391 /* Move past the KET and fudge things so that the increment in the "for"
1392 above has no effect. */
1393
1394 c = OP_END;
1395 code += 1 + LINK_SIZE - _pcre_OP_lengths[c];
1396 continue;
1397 }
1398
1399 /* Handle the other opcodes */
1400
1401 switch (c)
1402 {
1403 /* Check for quantifiers after a class */
1404
1405 #ifdef SUPPORT_UTF8
1406 case OP_XCLASS:
1407 ccode = code + GET(code, 1);
1408 goto CHECK_CLASS_REPEAT;
1409 #endif
1410
1411 case OP_CLASS:
1412 case OP_NCLASS:
1413 ccode = code + 33;
1414
1415 #ifdef SUPPORT_UTF8
1416 CHECK_CLASS_REPEAT:
1417 #endif
1418
1419 switch (*ccode)
1420 {
1421 case OP_CRSTAR: /* These could be empty; continue */
1422 case OP_CRMINSTAR:
1423 case OP_CRQUERY:
1424 case OP_CRMINQUERY:
1425 break;
1426
1427 default: /* Non-repeat => class must match */
1428 case OP_CRPLUS: /* These repeats aren't empty */
1429 case OP_CRMINPLUS:
1430 return FALSE;
1431
1432 case OP_CRRANGE:
1433 case OP_CRMINRANGE:
1434 if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */
1435 break;
1436 }
1437 break;
1438
1439 /* Opcodes that must match a character */
1440
1441 case OP_PROP:
1442 case OP_NOTPROP:
1443 case OP_EXTUNI:
1444 case OP_NOT_DIGIT:
1445 case OP_DIGIT:
1446 case OP_NOT_WHITESPACE:
1447 case OP_WHITESPACE:
1448 case OP_NOT_WORDCHAR:
1449 case OP_WORDCHAR:
1450 case OP_ANY:
1451 case OP_ANYBYTE:
1452 case OP_CHAR:
1453 case OP_CHARNC:
1454 case OP_NOT:
1455 case OP_PLUS:
1456 case OP_MINPLUS:
1457 case OP_POSPLUS:
1458 case OP_EXACT:
1459 case OP_NOTPLUS:
1460 case OP_NOTMINPLUS:
1461 case OP_NOTPOSPLUS:
1462 case OP_NOTEXACT:
1463 case OP_TYPEPLUS:
1464 case OP_TYPEMINPLUS:
1465 case OP_TYPEPOSPLUS:
1466 case OP_TYPEEXACT:
1467 return FALSE;
1468
1469 /* End of branch */
1470
1471 case OP_KET:
1472 case OP_KETRMAX:
1473 case OP_KETRMIN:
1474 case OP_ALT:
1475 return TRUE;
1476
1477 /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO,
1478 MINUPTO, and POSUPTO may be followed by a multibyte character */
1479
1480 #ifdef SUPPORT_UTF8
1481 case OP_STAR:
1482 case OP_MINSTAR:
1483 case OP_POSSTAR:
1484 case OP_QUERY:
1485 case OP_MINQUERY:
1486 case OP_POSQUERY:
1487 case OP_UPTO:
1488 case OP_MINUPTO:
1489 case OP_POSUPTO:
1490 if (utf8) while ((code[2] & 0xc0) == 0x80) code++;
1491 break;
1492 #endif
1493 }
1494 }
1495
1496 return TRUE;
1497 }
1498
1499
1500
1501 /*************************************************
1502 * Scan compiled regex for non-emptiness *
1503 *************************************************/
1504
1505 /* This function is called to check for left recursive calls. We want to check
1506 the current branch of the current pattern to see if it could match the empty
1507 string. If it could, we must look outwards for branches at other levels,
1508 stopping when we pass beyond the bracket which is the subject of the recursion.
1509
1510 Arguments:
1511 code points to start of the recursion
1512 endcode points to where to stop (current RECURSE item)
1513 bcptr points to the chain of current (unclosed) branch starts
1514 utf8 TRUE if in UTF-8 mode
1515
1516 Returns: TRUE if what is matched could be empty
1517 */
1518
1519 static BOOL
1520 could_be_empty(const uschar *code, const uschar *endcode, branch_chain *bcptr,
1521 BOOL utf8)
1522 {
1523 while (bcptr != NULL && bcptr->current >= code)
1524 {
1525 if (!could_be_empty_branch(bcptr->current, endcode, utf8)) return FALSE;
1526 bcptr = bcptr->outer;
1527 }
1528 return TRUE;
1529 }
1530
1531
1532
1533 /*************************************************
1534 * Check for POSIX class syntax *
1535 *************************************************/
1536
1537 /* This function is called when the sequence "[:" or "[." or "[=" is
1538 encountered in a character class. It checks whether this is followed by an
1539 optional ^ and then a sequence of letters, terminated by a matching ":]" or
1540 ".]" or "=]".
1541
1542 Argument:
1543 ptr pointer to the initial [
1544 endptr where to return the end pointer
1545 cd pointer to compile data
1546
1547 Returns: TRUE or FALSE
1548 */
1549
1550 static BOOL
1551 check_posix_syntax(const uschar *ptr, const uschar **endptr, compile_data *cd)
1552 {
1553 int terminator; /* Don't combine these lines; the Solaris cc */
1554 terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */
1555 if (*(++ptr) == '^') ptr++;
1556 while ((cd->ctypes[*ptr] & ctype_letter) != 0) ptr++;
1557 if (*ptr == terminator && ptr[1] == ']')
1558 {
1559 *endptr = ptr;
1560 return TRUE;
1561 }
1562 return FALSE;
1563 }
1564
1565
1566
1567
1568 /*************************************************
1569 * Check POSIX class name *
1570 *************************************************/
1571
1572 /* This function is called to check the name given in a POSIX-style class entry
1573 such as [:alnum:].
1574
1575 Arguments:
1576 ptr points to the first letter
1577 len the length of the name
1578
1579 Returns: a value representing the name, or -1 if unknown
1580 */
1581
1582 static int
1583 check_posix_name(const uschar *ptr, int len)
1584 {
1585 register int yield = 0;
1586 while (posix_name_lengths[yield] != 0)
1587 {
1588 if (len == posix_name_lengths[yield] &&
1589 strncmp((const char *)ptr, posix_names[yield], len) == 0) return yield;
1590 yield++;
1591 }
1592 return -1;
1593 }
1594
1595
1596 /*************************************************
1597 * Adjust OP_RECURSE items in repeated group *
1598 *************************************************/
1599
1600 /* OP_RECURSE items contain an offset from the start of the regex to the group
1601 that is referenced. This means that groups can be replicated for fixed
1602 repetition simply by copying (because the recursion is allowed to refer to
1603 earlier groups that are outside the current group). However, when a group is
1604 optional (i.e. the minimum quantifier is zero), OP_BRAZERO is inserted before
1605 it, after it has been compiled. This means that any OP_RECURSE items within it
1606 that refer to the group itself or any contained groups have to have their
1607 offsets adjusted. That one of the jobs of this function. Before it is called,
1608 the partially compiled regex must be temporarily terminated with OP_END.
1609
1610 This function has been extended with the possibility of forward references for
1611 recursions and subroutine calls. It must also check the list of such references
1612 for the group we are dealing with. If it finds that one of the recursions in
1613 the current group is on this list, it adjusts the offset in the list, not the
1614 value in the reference (which is a group number).
1615
1616 Arguments:
1617 group points to the start of the group
1618 adjust the amount by which the group is to be moved
1619 utf8 TRUE in UTF-8 mode
1620 cd contains pointers to tables etc.
1621 save_hwm the hwm forward reference pointer at the start of the group
1622
1623 Returns: nothing
1624 */
1625
1626 static void
1627 adjust_recurse(uschar *group, int adjust, BOOL utf8, compile_data *cd,
1628 uschar *save_hwm)
1629 {
1630 uschar *ptr = group;
1631 while ((ptr = (uschar *)find_recurse(ptr, utf8)) != NULL)
1632 {
1633 int offset;
1634 uschar *hc;
1635
1636 /* See if this recursion is on the forward reference list. If so, adjust the
1637 reference. */
1638
1639 for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE)
1640 {
1641 offset = GET(hc, 0);
1642 if (cd->start_code + offset == ptr + 1)
1643 {
1644 PUT(hc, 0, offset + adjust);
1645 break;
1646 }
1647 }
1648
1649 /* Otherwise, adjust the recursion offset if it's after the start of this
1650 group. */
1651
1652 if (hc >= cd->hwm)
1653 {
1654 offset = GET(ptr, 1);
1655 if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust);
1656 }
1657
1658 ptr += 1 + LINK_SIZE;
1659 }
1660 }
1661
1662
1663
1664 /*************************************************
1665 * Insert an automatic callout point *
1666 *************************************************/
1667
1668 /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert
1669 callout points before each pattern item.
1670
1671 Arguments:
1672 code current code pointer
1673 ptr current pattern pointer
1674 cd pointers to tables etc
1675
1676 Returns: new code pointer
1677 */
1678
1679 static uschar *
1680 auto_callout(uschar *code, const uschar *ptr, compile_data *cd)
1681 {
1682 *code++ = OP_CALLOUT;
1683 *code++ = 255;
1684 PUT(code, 0, ptr - cd->start_pattern); /* Pattern offset */
1685 PUT(code, LINK_SIZE, 0); /* Default length */
1686 return code + 2*LINK_SIZE;
1687 }
1688
1689
1690
1691 /*************************************************
1692 * Complete a callout item *
1693 *************************************************/
1694
1695 /* A callout item contains the length of the next item in the pattern, which
1696 we can't fill in till after we have reached the relevant point. This is used
1697 for both automatic and manual callouts.
1698
1699 Arguments:
1700 previous_callout points to previous callout item
1701 ptr current pattern pointer
1702 cd pointers to tables etc
1703
1704 Returns: nothing
1705 */
1706
1707 static void
1708 complete_callout(uschar *previous_callout, const uschar *ptr, compile_data *cd)
1709 {
1710 int length = ptr - cd->start_pattern - GET(previous_callout, 2);
1711 PUT(previous_callout, 2 + LINK_SIZE, length);
1712 }
1713
1714
1715
1716 #ifdef SUPPORT_UCP
1717 /*************************************************
1718 * Get othercase range *
1719 *************************************************/
1720
1721 /* This function is passed the start and end of a class range, in UTF-8 mode
1722 with UCP support. It searches up the characters, looking for internal ranges of
1723 characters in the "other" case. Each call returns the next one, updating the
1724 start address.
1725
1726 Arguments:
1727 cptr points to starting character value; updated
1728 d end value
1729 ocptr where to put start of othercase range
1730 odptr where to put end of othercase range
1731
1732 Yield: TRUE when range returned; FALSE when no more
1733 */
1734
1735 static BOOL
1736 get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr,
1737 unsigned int *odptr)
1738 {
1739 unsigned int c, othercase, next;
1740
1741 for (c = *cptr; c <= d; c++)
1742 { if ((othercase = _pcre_ucp_othercase(c)) != NOTACHAR) break; }
1743
1744 if (c > d) return FALSE;
1745
1746 *ocptr = othercase;
1747 next = othercase + 1;
1748
1749 for (++c; c <= d; c++)
1750 {
1751 if (_pcre_ucp_othercase(c) != next) break;
1752 next++;
1753 }
1754
1755 *odptr = next - 1;
1756 *cptr = c;
1757
1758 return TRUE;
1759 }
1760 #endif /* SUPPORT_UCP */
1761
1762
1763
1764 /*************************************************
1765 * Check if auto-possessifying is possible *
1766 *************************************************/
1767
1768 /* This function is called for unlimited repeats of certain items, to see
1769 whether the next thing could possibly match the repeated item. If not, it makes
1770 sense to automatically possessify the repeated item.
1771
1772 Arguments:
1773 op_code the repeated op code
1774 this data for this item, depends on the opcode
1775 utf8 TRUE in UTF-8 mode
1776 utf8_char used for utf8 character bytes, NULL if not relevant
1777 ptr next character in pattern
1778 options options bits
1779 cd contains pointers to tables etc.
1780
1781 Returns: TRUE if possessifying is wanted
1782 */
1783
1784 static BOOL
1785 check_auto_possessive(int op_code, int item, BOOL utf8, uschar *utf8_char,
1786 const uschar *ptr, int options, compile_data *cd)
1787 {
1788 int next;
1789
1790 /* Skip whitespace and comments in extended mode */
1791
1792 if ((options & PCRE_EXTENDED) != 0)
1793 {
1794 for (;;)
1795 {
1796 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
1797 if (*ptr == '#')
1798 {
1799 while (*(++ptr) != 0)
1800 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
1801 }
1802 else break;
1803 }
1804 }
1805
1806 /* If the next item is one that we can handle, get its value. A non-negative
1807 value is a character, a negative value is an escape value. */
1808
1809 if (*ptr == '\\')
1810 {
1811 int temperrorcode = 0;
1812 next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE);
1813 if (temperrorcode != 0) return FALSE;
1814 ptr++; /* Point after the escape sequence */
1815 }
1816
1817 else if ((cd->ctypes[*ptr] & ctype_meta) == 0)
1818 {
1819 #ifdef SUPPORT_UTF8
1820 if (utf8) { GETCHARINC(next, ptr); } else
1821 #endif
1822 next = *ptr++;
1823 }
1824
1825 else return FALSE;
1826
1827 /* Skip whitespace and comments in extended mode */
1828
1829 if ((options & PCRE_EXTENDED) != 0)
1830 {
1831 for (;;)
1832 {
1833 while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
1834 if (*ptr == '#')
1835 {
1836 while (*(++ptr) != 0)
1837 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
1838 }
1839 else break;
1840 }
1841 }
1842
1843 /* If the next thing is itself optional, we have to give up. */
1844
1845 if (*ptr == '*' || *ptr == '?' || strncmp((char *)ptr, "{0,", 3) == 0)
1846 return FALSE;
1847
1848 /* Now compare the next item with the previous opcode. If the previous is a
1849 positive single character match, "item" either contains the character or, if
1850 "item" is greater than 127 in utf8 mode, the character's bytes are in
1851 utf8_char. */
1852
1853
1854 /* Handle cases when the next item is a character. */
1855
1856 if (next >= 0) switch(op_code)
1857 {
1858 case OP_CHAR:
1859 #ifdef SUPPORT_UTF8
1860 if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
1861 #endif
1862 return item != next;
1863
1864 /* For CHARNC (caseless character) we must check the other case. If we have
1865 Unicode property support, we can use it to test the other case of
1866 high-valued characters. */
1867
1868 case OP_CHARNC:
1869 #ifdef SUPPORT_UTF8
1870 if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
1871 #endif
1872 if (item == next) return FALSE;
1873 #ifdef SUPPORT_UTF8
1874 if (utf8)
1875 {
1876 unsigned int othercase;
1877 if (next < 128) othercase = cd->fcc[next]; else
1878 #ifdef SUPPORT_UCP
1879 othercase = _pcre_ucp_othercase((unsigned int)next);
1880 #else
1881 othercase = NOTACHAR;
1882 #endif
1883 return (unsigned int)item != othercase;
1884 }
1885 else
1886 #endif /* SUPPORT_UTF8 */
1887 return (item != cd->fcc[next]); /* Non-UTF-8 mode */
1888
1889 /* For OP_NOT, "item" must be a single-byte character. */
1890
1891 case OP_NOT:
1892 if (next < 0) return FALSE; /* Not a character */
1893 if (item == next) return TRUE;
1894 if ((options & PCRE_CASELESS) == 0) return FALSE;
1895 #ifdef SUPPORT_UTF8
1896 if (utf8)
1897 {
1898 unsigned int othercase;
1899 if (next < 128) othercase = cd->fcc[next]; else
1900 #ifdef SUPPORT_UCP
1901 othercase = _pcre_ucp_othercase(next);
1902 #else
1903 othercase = NOTACHAR;
1904 #endif
1905 return (unsigned int)item == othercase;
1906 }
1907 else
1908 #endif /* SUPPORT_UTF8 */
1909 return (item == cd->fcc[next]); /* Non-UTF-8 mode */
1910
1911 case OP_DIGIT:
1912 return next > 127 || (cd->ctypes[next] & ctype_digit) == 0;
1913
1914 case OP_NOT_DIGIT:
1915 return next <= 127 && (cd->ctypes[next] & ctype_digit) != 0;
1916
1917 case OP_WHITESPACE:
1918 return next > 127 || (cd->ctypes[next] & ctype_space) == 0;
1919
1920 case OP_NOT_WHITESPACE:
1921 return next <= 127 && (cd->ctypes[next] & ctype_space) != 0;
1922
1923 case OP_WORDCHAR:
1924 return next > 127 || (cd->ctypes[next] & ctype_word) == 0;
1925
1926 case OP_NOT_WORDCHAR:
1927 return next <= 127 && (cd->ctypes[next] & ctype_word) != 0;
1928
1929 default:
1930 return FALSE;
1931 }
1932
1933
1934 /* Handle the case when the next item is \d, \s, etc. */
1935
1936 switch(op_code)
1937 {
1938 case OP_CHAR:
1939 case OP_CHARNC:
1940 #ifdef SUPPORT_UTF8
1941 if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
1942 #endif
1943 switch(-next)
1944 {
1945 case ESC_d:
1946 return item > 127 || (cd->ctypes[item] & ctype_digit) == 0;
1947
1948 case ESC_D:
1949 return item <= 127 && (cd->ctypes[item] & ctype_digit) != 0;
1950
1951 case ESC_s:
1952 return item > 127 || (cd->ctypes[item] & ctype_space) == 0;
1953
1954 case ESC_S:
1955 return item <= 127 && (cd->ctypes[item] & ctype_space) != 0;
1956
1957 case ESC_w:
1958 return item > 127 || (cd->ctypes[item] & ctype_word) == 0;
1959
1960 case ESC_W:
1961 return item <= 127 && (cd->ctypes[item] & ctype_word) != 0;
1962
1963 default:
1964 return FALSE;
1965 }
1966
1967 case OP_DIGIT:
1968 return next == -ESC_D || next == -ESC_s || next == -ESC_W;
1969
1970 case OP_NOT_DIGIT:
1971 return next == -ESC_d;
1972
1973 case OP_WHITESPACE:
1974 return next == -ESC_S || next == -ESC_d || next == -ESC_w;
1975
1976 case OP_NOT_WHITESPACE:
1977 return next == -ESC_s;
1978
1979 case OP_WORDCHAR:
1980 return next == -ESC_W || next == -ESC_s;
1981
1982 case OP_NOT_WORDCHAR:
1983 return next == -ESC_w || next == -ESC_d;
1984
1985 default:
1986 return FALSE;
1987 }
1988
1989 /* Control does not reach here */
1990 }
1991
1992
1993
1994 /*************************************************
1995 * Compile one branch *
1996 *************************************************/
1997
1998 /* Scan the pattern, compiling it into the a vector. If the options are
1999 changed during the branch, the pointer is used to change the external options
2000 bits. This function is used during the pre-compile phase when we are trying
2001 to find out the amount of memory needed, as well as during the real compile
2002 phase. The value of lengthptr distinguishes the two phases.
2003
2004 Arguments:
2005 optionsptr pointer to the option bits
2006 codeptr points to the pointer to the current code point
2007 ptrptr points to the current pattern pointer
2008 errorcodeptr points to error code variable
2009 firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE)
2010 reqbyteptr set to the last literal character required, else < 0
2011 bcptr points to current branch chain
2012 cd contains pointers to tables etc.
2013 lengthptr NULL during the real compile phase
2014 points to length accumulator during pre-compile phase
2015
2016 Returns: TRUE on success
2017 FALSE, with *errorcodeptr set non-zero on error
2018 */
2019
2020 static BOOL
2021 compile_branch(int *optionsptr, uschar **codeptr, const uschar **ptrptr,
2022 int *errorcodeptr, int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr,
2023 compile_data *cd, int *lengthptr)
2024 {
2025 int repeat_type, op_type;
2026 int repeat_min = 0, repeat_max = 0; /* To please picky compilers */
2027 int bravalue = 0;
2028 int greedy_default, greedy_non_default;
2029 int firstbyte, reqbyte;
2030 int zeroreqbyte, zerofirstbyte;
2031 int req_caseopt, reqvary, tempreqvary;
2032 int options = *optionsptr;
2033 int after_manual_callout = 0;
2034 int length_prevgroup = 0;
2035 register int c;
2036 register uschar *code = *codeptr;
2037 uschar *last_code = code;
2038 uschar *orig_code = code;
2039 uschar *tempcode;
2040 BOOL inescq = FALSE;
2041 BOOL groupsetfirstbyte = FALSE;
2042 const uschar *ptr = *ptrptr;
2043 const uschar *tempptr;
2044 uschar *previous = NULL;
2045 uschar *previous_callout = NULL;
2046 uschar *save_hwm = NULL;
2047 uschar classbits[32];
2048
2049 #ifdef SUPPORT_UTF8
2050 BOOL class_utf8;
2051 BOOL utf8 = (options & PCRE_UTF8) != 0;
2052 uschar *class_utf8data;
2053 uschar utf8_char[6];
2054 #else
2055 BOOL utf8 = FALSE;
2056 uschar *utf8_char = NULL;
2057 #endif
2058
2059 #ifdef DEBUG
2060 if (lengthptr != NULL) DPRINTF((">> start branch\n"));
2061 #endif
2062
2063 /* Set up the default and non-default settings for greediness */
2064
2065 greedy_default = ((options & PCRE_UNGREEDY) != 0);
2066 greedy_non_default = greedy_default ^ 1;
2067
2068 /* Initialize no first byte, no required byte. REQ_UNSET means "no char
2069 matching encountered yet". It gets changed to REQ_NONE if we hit something that
2070 matches a non-fixed char first char; reqbyte just remains unset if we never
2071 find one.
2072
2073 When we hit a repeat whose minimum is zero, we may have to adjust these values
2074 to take the zero repeat into account. This is implemented by setting them to
2075 zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual
2076 item types that can be repeated set these backoff variables appropriately. */
2077
2078 firstbyte = reqbyte = zerofirstbyte = zeroreqbyte = REQ_UNSET;
2079
2080 /* The variable req_caseopt contains either the REQ_CASELESS value or zero,
2081 according to the current setting of the caseless flag. REQ_CASELESS is a bit
2082 value > 255. It is added into the firstbyte or reqbyte variables to record the
2083 case status of the value. This is used only for ASCII characters. */
2084
2085 req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
2086
2087 /* Switch on next character until the end of the branch */
2088
2089 for (;; ptr++)
2090 {
2091 BOOL negate_class;
2092 BOOL possessive_quantifier;
2093 BOOL is_quantifier;
2094 BOOL is_recurse;
2095 int class_charcount;
2096 int class_lastchar;
2097 int newoptions;
2098 int recno;
2099 int skipbytes;
2100 int subreqbyte;
2101 int subfirstbyte;
2102 int terminator;
2103 int mclength;
2104 uschar mcbuffer[8];
2105
2106 /* Get next byte in the pattern */
2107
2108 c = *ptr;
2109
2110 /* If we are in the pre-compile phase, accumulate the length used for the
2111 previous cycle of this loop. */
2112
2113 if (lengthptr != NULL)
2114 {
2115 #ifdef DEBUG
2116 if (code > cd->hwm) cd->hwm = code; /* High water info */
2117 #endif
2118 if (code > cd->start_workspace + COMPILE_WORK_SIZE) /* Check for overrun */
2119 {
2120 *errorcodeptr = ERR52;
2121 goto FAILED;
2122 }
2123
2124 /* There is at least one situation where code goes backwards: this is the
2125 case of a zero quantifier after a class (e.g. [ab]{0}). At compile time,
2126 the class is simply eliminated. However, it is created first, so we have to
2127 allow memory for it. Therefore, don't ever reduce the length at this point.
2128 */
2129
2130 if (code < last_code) code = last_code;
2131 *lengthptr += code - last_code;
2132 DPRINTF(("length=%d added %d c=%c\n", *lengthptr, code - last_code, c));
2133
2134 /* If "previous" is set and it is not at the start of the work space, move
2135 it back to there, in order to avoid filling up the work space. Otherwise,
2136 if "previous" is NULL, reset the current code pointer to the start. */
2137
2138 if (previous != NULL)
2139 {
2140 if (previous > orig_code)
2141 {
2142 memmove(orig_code, previous, code - previous);
2143 code -= previous - orig_code;
2144 previous = orig_code;
2145 }
2146 }
2147 else code = orig_code;
2148
2149 /* Remember where this code item starts so we can pick up the length
2150 next time round. */
2151
2152 last_code = code;
2153 }
2154
2155 /* In the real compile phase, just check the workspace used by the forward
2156 reference list. */
2157
2158 else if (cd->hwm > cd->start_workspace + COMPILE_WORK_SIZE)
2159 {
2160 *errorcodeptr = ERR52;
2161 goto FAILED;
2162 }
2163
2164 /* If in \Q...\E, check for the end; if not, we have a literal */
2165
2166 if (inescq && c != 0)
2167 {
2168 if (c == '\\' && ptr[1] == 'E')
2169 {
2170 inescq = FALSE;
2171 ptr++;
2172 continue;
2173 }
2174 else
2175 {
2176 if (previous_callout != NULL)
2177 {
2178 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
2179 complete_callout(previous_callout, ptr, cd);
2180 previous_callout = NULL;
2181 }
2182 if ((options & PCRE_AUTO_CALLOUT) != 0)
2183 {
2184 previous_callout = code;
2185 code = auto_callout(code, ptr, cd);
2186 }
2187 goto NORMAL_CHAR;
2188 }
2189 }
2190
2191 /* Fill in length of a previous callout, except when the next thing is
2192 a quantifier. */
2193
2194 is_quantifier = c == '*' || c == '+' || c == '?' ||
2195 (c == '{' && is_counted_repeat(ptr+1));
2196
2197 if (!is_quantifier && previous_callout != NULL &&
2198 after_manual_callout-- <= 0)
2199 {
2200 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
2201 complete_callout(previous_callout, ptr, cd);
2202 previous_callout = NULL;
2203 }
2204
2205 /* In extended mode, skip white space and comments */
2206
2207 if ((options & PCRE_EXTENDED) != 0)
2208 {
2209 if ((cd->ctypes[c] & ctype_space) != 0) continue;
2210 if (c == '#')
2211 {
2212 while (*(++ptr) != 0)
2213 {
2214 if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
2215 }
2216 if (*ptr != 0) continue;
2217
2218 /* Else fall through to handle end of string */
2219 c = 0;
2220 }
2221 }
2222
2223 /* No auto callout for quantifiers. */
2224
2225 if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier)
2226 {
2227 previous_callout = code;
2228 code = auto_callout(code, ptr, cd);
2229 }
2230
2231 switch(c)
2232 {
2233 /* ===================================================================*/
2234 case 0: /* The branch terminates at string end */
2235 case '|': /* or | or ) */
2236 case ')':
2237 *firstbyteptr = firstbyte;
2238 *reqbyteptr = reqbyte;
2239 *codeptr = code;
2240 *ptrptr = ptr;
2241 if (lengthptr != NULL)
2242 {
2243 *lengthptr += code - last_code; /* To include callout length */
2244 DPRINTF((">> end branch\n"));
2245 }
2246 return TRUE;
2247
2248
2249 /* ===================================================================*/
2250 /* Handle single-character metacharacters. In multiline mode, ^ disables
2251 the setting of any following char as a first character. */
2252
2253 case '^':
2254 if ((options & PCRE_MULTILINE) != 0)
2255 {
2256 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
2257 }
2258 previous = NULL;
2259 *code++ = OP_CIRC;
2260 break;
2261
2262 case '$':
2263 previous = NULL;
2264 *code++ = OP_DOLL;
2265 break;
2266
2267 /* There can never be a first char if '.' is first, whatever happens about
2268 repeats. The value of reqbyte doesn't change either. */
2269
2270 case '.':
2271 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
2272 zerofirstbyte = firstbyte;
2273 zeroreqbyte = reqbyte;
2274 previous = code;
2275 *code++ = OP_ANY;
2276 break;
2277
2278
2279 /* ===================================================================*/
2280 /* Character classes. If the included characters are all < 256, we build a
2281 32-byte bitmap of the permitted characters, except in the special case
2282 where there is only one such character. For negated classes, we build the
2283 map as usual, then invert it at the end. However, we use a different opcode
2284 so that data characters > 255 can be handled correctly.
2285
2286 If the class contains characters outside the 0-255 range, a different
2287 opcode is compiled. It may optionally have a bit map for characters < 256,
2288 but those above are are explicitly listed afterwards. A flag byte tells
2289 whether the bitmap is present, and whether this is a negated class or not.
2290 */
2291
2292 case '[':
2293 previous = code;
2294
2295 /* PCRE supports POSIX class stuff inside a class. Perl gives an error if
2296 they are encountered at the top level, so we'll do that too. */
2297
2298 if ((ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') &&
2299 check_posix_syntax(ptr, &tempptr, cd))
2300 {
2301 *errorcodeptr = (ptr[1] == ':')? ERR13 : ERR31;
2302 goto FAILED;
2303 }
2304
2305 /* If the first character is '^', set the negation flag and skip it. */
2306
2307 if ((c = *(++ptr)) == '^')
2308 {
2309 negate_class = TRUE;
2310 c = *(++ptr);
2311 }
2312 else
2313 {
2314 negate_class = FALSE;
2315 }
2316
2317 /* Keep a count of chars with values < 256 so that we can optimize the case
2318 of just a single character (as long as it's < 256). However, For higher
2319 valued UTF-8 characters, we don't yet do any optimization. */
2320
2321 class_charcount = 0;
2322 class_lastchar = -1;
2323
2324 /* Initialize the 32-char bit map to all zeros. We build the map in a
2325 temporary bit of memory, in case the class contains only 1 character (less
2326 than 256), because in that case the compiled code doesn't use the bit map.
2327 */
2328
2329 memset(classbits, 0, 32 * sizeof(uschar));
2330
2331 #ifdef SUPPORT_UTF8
2332 class_utf8 = FALSE; /* No chars >= 256 */
2333 class_utf8data = code + LINK_SIZE + 2; /* For UTF-8 items */
2334 #endif
2335
2336 /* Process characters until ] is reached. By writing this as a "do" it
2337 means that an initial ] is taken as a data character. At the start of the
2338 loop, c contains the first byte of the character. */
2339
2340 if (c != 0) do
2341 {
2342 const uschar *oldptr;
2343
2344 #ifdef SUPPORT_UTF8
2345 if (utf8 && c > 127)
2346 { /* Braces are required because the */
2347 GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */
2348 }
2349 #endif
2350
2351 /* Inside \Q...\E everything is literal except \E */
2352
2353 if (inescq)
2354 {
2355 if (c == '\\' && ptr[1] == 'E') /* If we are at \E */
2356 {
2357 inescq = FALSE; /* Reset literal state */
2358 ptr++; /* Skip the 'E' */
2359 continue; /* Carry on with next */
2360 }
2361 goto CHECK_RANGE; /* Could be range if \E follows */
2362 }
2363
2364 /* Handle POSIX class names. Perl allows a negation extension of the
2365 form [:^name:]. A square bracket that doesn't match the syntax is
2366 treated as a literal. We also recognize the POSIX constructions
2367 [.ch.] and [=ch=] ("collating elements") and fault them, as Perl
2368 5.6 and 5.8 do. */
2369
2370 if (c == '[' &&
2371 (ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') &&
2372 check_posix_syntax(ptr, &tempptr, cd))
2373 {
2374 BOOL local_negate = FALSE;
2375 int posix_class, taboffset, tabopt;
2376 register const uschar *cbits = cd->cbits;
2377 uschar pbits[32];
2378
2379 if (ptr[1] != ':')
2380 {
2381 *errorcodeptr = ERR31;
2382 goto FAILED;
2383 }
2384
2385 ptr += 2;
2386 if (*ptr == '^')
2387 {
2388 local_negate = TRUE;
2389 ptr++;
2390 }
2391
2392 posix_class = check_posix_name(ptr, tempptr - ptr);
2393 if (posix_class < 0)
2394 {
2395 *errorcodeptr = ERR30;
2396 goto FAILED;
2397 }
2398
2399 /* If matching is caseless, upper and lower are converted to
2400 alpha. This relies on the fact that the class table starts with
2401 alpha, lower, upper as the first 3 entries. */
2402
2403 if ((options & PCRE_CASELESS) != 0 && posix_class <= 2)
2404 posix_class = 0;
2405
2406 /* We build the bit map for the POSIX class in a chunk of local store
2407 because we may be adding and subtracting from it, and we don't want to
2408 subtract bits that may be in the main map already. At the end we or the
2409 result into the bit map that is being built. */
2410
2411 posix_class *= 3;
2412
2413 /* Copy in the first table (always present) */
2414
2415 memcpy(pbits, cbits + posix_class_maps[posix_class],
2416 32 * sizeof(uschar));
2417
2418 /* If there is a second table, add or remove it as required. */
2419
2420 taboffset = posix_class_maps[posix_class + 1];
2421 tabopt = posix_class_maps[posix_class + 2];
2422
2423 if (taboffset >= 0)
2424 {
2425 if (tabopt >= 0)
2426 for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset];
2427 else
2428 for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset];
2429 }
2430
2431 /* Not see if we need to remove any special characters. An option
2432 value of 1 removes vertical space and 2 removes underscore. */
2433
2434 if (tabopt < 0) tabopt = -tabopt;
2435 if (tabopt == 1) pbits[1] &= ~0x3c;
2436 else if (tabopt == 2) pbits[11] &= 0x7f;
2437
2438 /* Add the POSIX table or its complement into the main table that is
2439 being built and we are done. */
2440
2441 if (local_negate)
2442 for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c];
2443 else
2444 for (c = 0; c < 32; c++) classbits[c] |= pbits[c];
2445
2446 ptr = tempptr + 1;
2447 class_charcount = 10; /* Set > 1; assumes more than 1 per class */
2448 continue; /* End of POSIX syntax handling */
2449 }
2450
2451 /* Backslash may introduce a single character, or it may introduce one
2452 of the specials, which just set a flag. The sequence \b is a special
2453 case. Inside a class (and only there) it is treated as backspace.
2454 Elsewhere it marks a word boundary. Other escapes have preset maps ready
2455 to or into the one we are building. We assume they have more than one
2456 character in them, so set class_charcount bigger than one. */
2457
2458 if (c == '\\')
2459 {
2460 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
2461 if (*errorcodeptr != 0) goto FAILED;
2462
2463 if (-c == ESC_b) c = '\b'; /* \b is backslash in a class */
2464 else if (-c == ESC_X) c = 'X'; /* \X is literal X in a class */
2465 else if (-c == ESC_R) c = 'R'; /* \R is literal R in a class */
2466 else if (-c == ESC_Q) /* Handle start of quoted string */
2467 {
2468 if (ptr[1] == '\\' && ptr[2] == 'E')
2469 {
2470 ptr += 2; /* avoid empty string */
2471 }
2472 else inescq = TRUE;
2473 continue;
2474 }
2475
2476 if (c < 0)
2477 {
2478 register const uschar *cbits = cd->cbits;
2479 class_charcount += 2; /* Greater than 1 is what matters */
2480
2481 /* Save time by not doing this in the pre-compile phase. */
2482
2483 if (lengthptr == NULL) switch (-c)
2484 {
2485 case ESC_d:
2486 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit];
2487 continue;
2488
2489 case ESC_D:
2490 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit];
2491 continue;
2492
2493 case ESC_w:
2494 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word];
2495 continue;
2496
2497 case ESC_W:
2498 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word];
2499 continue;
2500
2501 case ESC_s:
2502 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_space];
2503 classbits[1] &= ~0x08; /* Perl 5.004 onwards omits VT from \s */
2504 continue;
2505
2506 case ESC_S:
2507 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space];
2508 classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */
2509 continue;
2510
2511 case ESC_E: /* Perl ignores an orphan \E */
2512 continue;
2513
2514 default: /* Not recognized; fall through */
2515 break; /* Need "default" setting to stop compiler warning. */
2516 }
2517
2518 /* In the pre-compile phase, just do the recognition. */
2519
2520 else if (c == -ESC_d || c == -ESC_D || c == -ESC_w ||
2521 c == -ESC_W || c == -ESC_s || c == -ESC_S) continue;
2522
2523 /* We need to deal with \P and \p in both phases. */
2524
2525 #ifdef SUPPORT_UCP
2526 if (-c == ESC_p || -c == ESC_P)
2527 {
2528 BOOL negated;
2529 int pdata;
2530 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
2531 if (ptype < 0) goto FAILED;
2532 class_utf8 = TRUE;
2533 *class_utf8data++ = ((-c == ESC_p) != negated)?
2534 XCL_PROP : XCL_NOTPROP;
2535 *class_utf8data++ = ptype;
2536 *class_utf8data++ = pdata;
2537 class_charcount -= 2; /* Not a < 256 character */
2538 continue;
2539 }
2540 #endif
2541 /* Unrecognized escapes are faulted if PCRE is running in its
2542 strict mode. By default, for compatibility with Perl, they are
2543 treated as literals. */
2544
2545 if ((options & PCRE_EXTRA) != 0)
2546 {
2547 *errorcodeptr = ERR7;
2548 goto FAILED;
2549 }
2550
2551 class_charcount -= 2; /* Undo the default count from above */
2552 c = *ptr; /* Get the final character and fall through */
2553 }
2554
2555 /* Fall through if we have a single character (c >= 0). This may be
2556 greater than 256 in UTF-8 mode. */
2557
2558 } /* End of backslash handling */
2559
2560 /* A single character may be followed by '-' to form a range. However,
2561 Perl does not permit ']' to be the end of the range. A '-' character
2562 at the end is treated as a literal. Perl ignores orphaned \E sequences
2563 entirely. The code for handling \Q and \E is messy. */
2564
2565 CHECK_RANGE:
2566 while (ptr[1] == '\\' && ptr[2] == 'E')
2567 {
2568 inescq = FALSE;
2569 ptr += 2;
2570 }
2571
2572 oldptr = ptr;
2573
2574 if (!inescq && ptr[1] == '-')
2575 {
2576 int d;
2577 ptr += 2;
2578 while (*ptr == '\\' && ptr[1] == 'E') ptr += 2;
2579
2580 /* If we hit \Q (not followed by \E) at this point, go into escaped
2581 mode. */
2582
2583 while (*ptr == '\\' && ptr[1] == 'Q')
2584 {
2585 ptr += 2;
2586 if (*ptr == '\\' && ptr[1] == 'E') { ptr += 2; continue; }
2587 inescq = TRUE;
2588 break;
2589 }
2590
2591 if (*ptr == 0 || (!inescq && *ptr == ']'))
2592 {
2593 ptr = oldptr;
2594 goto LONE_SINGLE_CHARACTER;
2595 }
2596
2597 #ifdef SUPPORT_UTF8
2598 if (utf8)
2599 { /* Braces are required because the */
2600 GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */
2601 }
2602 else
2603 #endif
2604 d = *ptr; /* Not UTF-8 mode */
2605
2606 /* The second part of a range can be a single-character escape, but
2607 not any of the other escapes. Perl 5.6 treats a hyphen as a literal
2608 in such circumstances. */
2609
2610 if (!inescq && d == '\\')
2611 {
2612 d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
2613 if (*errorcodeptr != 0) goto FAILED;
2614
2615 /* \b is backslash; \X is literal X; \R is literal R; any other
2616 special means the '-' was literal */
2617
2618 if (d < 0)
2619 {
2620 if (d == -ESC_b) d = '\b';
2621 else if (d == -ESC_X) d = 'X';
2622 else if (d == -ESC_R) d = 'R'; else
2623 {
2624 ptr = oldptr;
2625 goto LONE_SINGLE_CHARACTER; /* A few lines below */
2626 }
2627 }
2628 }
2629
2630 /* Check that the two values are in the correct order. Optimize
2631 one-character ranges */
2632
2633 if (d < c)
2634 {
2635 *errorcodeptr = ERR8;
2636 goto FAILED;
2637 }
2638
2639 if (d == c) goto LONE_SINGLE_CHARACTER; /* A few lines below */
2640
2641 /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless
2642 matching, we have to use an XCLASS with extra data items. Caseless
2643 matching for characters > 127 is available only if UCP support is
2644 available. */
2645
2646 #ifdef SUPPORT_UTF8
2647 if (utf8 && (d > 255 || ((options & PCRE_CASELESS) != 0 && d > 127)))
2648 {
2649 class_utf8 = TRUE;
2650
2651 /* With UCP support, we can find the other case equivalents of
2652 the relevant characters. There may be several ranges. Optimize how
2653 they fit with the basic range. */
2654
2655 #ifdef SUPPORT_UCP
2656 if ((options & PCRE_CASELESS) != 0)
2657 {
2658 unsigned int occ, ocd;
2659 unsigned int cc = c;
2660 unsigned int origd = d;
2661 while (get_othercase_range(&cc, origd, &occ, &ocd))
2662 {
2663 if (occ >= c && ocd <= d) continue; /* Skip embedded ranges */
2664
2665 if (occ < c && ocd >= c - 1) /* Extend the basic range */
2666 { /* if there is overlap, */
2667 c = occ; /* noting that if occ < c */
2668 continue; /* we can't have ocd > d */
2669 } /* because a subrange is */
2670 if (ocd > d && occ <= d + 1) /* always shorter than */
2671 { /* the basic range. */
2672 d = ocd;
2673 continue;
2674 }
2675
2676 if (occ == ocd)
2677 {
2678 *class_utf8data++ = XCL_SINGLE;
2679 }
2680 else
2681 {
2682 *class_utf8data++ = XCL_RANGE;
2683 class_utf8data += _pcre_ord2utf8(occ, class_utf8data);
2684 }
2685 class_utf8data += _pcre_ord2utf8(ocd, class_utf8data);
2686 }
2687 }
2688 #endif /* SUPPORT_UCP */
2689
2690 /* Now record the original range, possibly modified for UCP caseless
2691 overlapping ranges. */
2692
2693 *class_utf8data++ = XCL_RANGE;
2694 class_utf8data += _pcre_ord2utf8(c, class_utf8data);
2695 class_utf8data += _pcre_ord2utf8(d, class_utf8data);
2696
2697 /* With UCP support, we are done. Without UCP support, there is no
2698 caseless matching for UTF-8 characters > 127; we can use the bit map
2699 for the smaller ones. */
2700
2701 #ifdef SUPPORT_UCP
2702 continue; /* With next character in the class */
2703 #else
2704 if ((options & PCRE_CASELESS) == 0 || c > 127) continue;
2705
2706 /* Adjust upper limit and fall through to set up the map */
2707
2708 d = 127;
2709
2710 #endif /* SUPPORT_UCP */
2711 }
2712 #endif /* SUPPORT_UTF8 */
2713
2714 /* We use the bit map for all cases when not in UTF-8 mode; else
2715 ranges that lie entirely within 0-127 when there is UCP support; else
2716 for partial ranges without UCP support. */
2717
2718 class_charcount += d - c + 1;
2719 class_lastchar = d;
2720
2721 /* We can save a bit of time by skipping this in the pre-compile. */
2722
2723 if (lengthptr == NULL) for (; c <= d; c++)
2724 {
2725 classbits[c/8] |= (1 << (c&7));
2726 if ((options & PCRE_CASELESS) != 0)
2727 {
2728 int uc = cd->fcc[c]; /* flip case */
2729 classbits[uc/8] |= (1 << (uc&7));
2730 }
2731 }
2732
2733 continue; /* Go get the next char in the class */
2734 }
2735
2736 /* Handle a lone single character - we can get here for a normal
2737 non-escape char, or after \ that introduces a single character or for an
2738 apparent range that isn't. */
2739
2740 LONE_SINGLE_CHARACTER:
2741
2742 /* Handle a character that cannot go in the bit map */
2743
2744 #ifdef SUPPORT_UTF8
2745 if (utf8 && (c > 255 || ((options & PCRE_CASELESS) != 0 && c > 127)))
2746 {
2747 class_utf8 = TRUE;
2748 *class_utf8data++ = XCL_SINGLE;
2749 class_utf8data += _pcre_ord2utf8(c, class_utf8data);
2750
2751 #ifdef SUPPORT_UCP
2752 if ((options & PCRE_CASELESS) != 0)
2753 {
2754 unsigned int othercase;
2755 if ((othercase = _pcre_ucp_othercase(c)) != NOTACHAR)
2756 {
2757 *class_utf8data++ = XCL_SINGLE;
2758 class_utf8data += _pcre_ord2utf8(othercase, class_utf8data);
2759 }
2760 }
2761 #endif /* SUPPORT_UCP */
2762
2763 }
2764 else
2765 #endif /* SUPPORT_UTF8 */
2766
2767 /* Handle a single-byte character */
2768 {
2769 classbits[c/8] |= (1 << (c&7));
2770 if ((options & PCRE_CASELESS) != 0)
2771 {
2772 c = cd->fcc[c]; /* flip case */
2773 classbits[c/8] |= (1 << (c&7));
2774 }
2775 class_charcount++;
2776 class_lastchar = c;
2777 }
2778 }
2779
2780 /* Loop until ']' reached. This "while" is the end of the "do" above. */
2781
2782 while ((c = *(++ptr)) != 0 && (c != ']' || inescq));
2783
2784 if (c == 0) /* Missing terminating ']' */
2785 {
2786 *errorcodeptr = ERR6;
2787 goto FAILED;
2788 }
2789
2790 /* If class_charcount is 1, we saw precisely one character whose value is
2791 less than 256. In non-UTF-8 mode we can always optimize. In UTF-8 mode, we
2792 can optimize the negative case only if there were no characters >= 128
2793 because OP_NOT and the related opcodes like OP_NOTSTAR operate on
2794 single-bytes only. This is an historical hangover. Maybe one day we can
2795 tidy these opcodes to handle multi-byte characters.
2796
2797 The optimization throws away the bit map. We turn the item into a
2798 1-character OP_CHAR[NC] if it's positive, or OP_NOT if it's negative. Note
2799 that OP_NOT does not support multibyte characters. In the positive case, it
2800 can cause firstbyte to be set. Otherwise, there can be no first char if
2801 this item is first, whatever repeat count may follow. In the case of
2802 reqbyte, save the previous value for reinstating. */
2803
2804 #ifdef SUPPORT_UTF8
2805 if (class_charcount == 1 &&
2806 (!utf8 ||
2807 (!class_utf8 && (!negate_class || class_lastchar < 128))))
2808
2809 #else
2810 if (class_charcount == 1)
2811 #endif
2812 {
2813 zeroreqbyte = reqbyte;
2814
2815 /* The OP_NOT opcode works on one-byte characters only. */
2816
2817 if (negate_class)
2818 {
2819 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
2820 zerofirstbyte = firstbyte;
2821 *code++ = OP_NOT;
2822 *code++ = class_lastchar;
2823 break;
2824 }
2825
2826 /* For a single, positive character, get the value into mcbuffer, and
2827 then we can handle this with the normal one-character code. */
2828
2829 #ifdef SUPPORT_UTF8
2830 if (utf8 && class_lastchar > 127)
2831 mclength = _pcre_ord2utf8(class_lastchar, mcbuffer);
2832 else
2833 #endif
2834 {
2835 mcbuffer[0] = class_lastchar;
2836 mclength = 1;
2837 }
2838 goto ONE_CHAR;
2839 } /* End of 1-char optimization */
2840
2841 /* The general case - not the one-char optimization. If this is the first
2842 thing in the branch, there can be no first char setting, whatever the
2843 repeat count. Any reqbyte setting must remain unchanged after any kind of
2844 repeat. */
2845
2846 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
2847 zerofirstbyte = firstbyte;
2848 zeroreqbyte = reqbyte;
2849
2850 /* If there are characters with values > 255, we have to compile an
2851 extended class, with its own opcode. If there are no characters < 256,
2852 we can omit the bitmap in the actual compiled code. */
2853
2854 #ifdef SUPPORT_UTF8
2855 if (class_utf8)
2856 {
2857 *class_utf8data++ = XCL_END; /* Marks the end of extra data */
2858 *code++ = OP_XCLASS;
2859 code += LINK_SIZE;
2860 *code = negate_class? XCL_NOT : 0;
2861
2862 /* If the map is required, move up the extra data to make room for it;
2863 otherwise just move the code pointer to the end of the extra data. */
2864
2865 if (class_charcount > 0)
2866 {
2867 *code++ |= XCL_MAP;
2868 memmove(code + 32, code, class_utf8data - code);
2869 memcpy(code, classbits, 32);
2870 code = class_utf8data + 32;
2871 }
2872 else code = class_utf8data;
2873
2874 /* Now fill in the complete length of the item */
2875
2876 PUT(previous, 1, code - previous);
2877 break; /* End of class handling */
2878 }
2879 #endif
2880
2881 /* If there are no characters > 255, negate the 32-byte map if necessary,
2882 and copy it into the code vector. If this is the first thing in the branch,
2883 there can be no first char setting, whatever the repeat count. Any reqbyte
2884 setting must remain unchanged after any kind of repeat. */
2885
2886 if (negate_class)
2887 {
2888 *code++ = OP_NCLASS;
2889 if (lengthptr == NULL) /* Save time in the pre-compile phase */
2890 for (c = 0; c < 32; c++) code[c] = ~classbits[c];
2891 }
2892 else
2893 {
2894 *code++ = OP_CLASS;
2895 memcpy(code, classbits, 32);
2896 }
2897 code += 32;
2898 break;
2899
2900
2901 /* ===================================================================*/
2902 /* Various kinds of repeat; '{' is not necessarily a quantifier, but this
2903 has been tested above. */
2904
2905 case '{':
2906 if (!is_quantifier) goto NORMAL_CHAR;
2907 ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr);
2908 if (*errorcodeptr != 0) goto FAILED;
2909 goto REPEAT;
2910
2911 case '*':
2912 repeat_min = 0;
2913 repeat_max = -1;
2914 goto REPEAT;
2915
2916 case '+':
2917 repeat_min = 1;
2918 repeat_max = -1;
2919 goto REPEAT;
2920
2921 case '?':
2922 repeat_min = 0;
2923 repeat_max = 1;
2924
2925 REPEAT:
2926 if (previous == NULL)
2927 {
2928 *errorcodeptr = ERR9;
2929 goto FAILED;
2930 }
2931
2932 if (repeat_min == 0)
2933 {
2934 firstbyte = zerofirstbyte; /* Adjust for zero repeat */
2935 reqbyte = zeroreqbyte; /* Ditto */
2936 }
2937
2938 /* Remember whether this is a variable length repeat */
2939
2940 reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY;
2941
2942 op_type = 0; /* Default single-char op codes */
2943 possessive_quantifier = FALSE; /* Default not possessive quantifier */
2944
2945 /* Save start of previous item, in case we have to move it up to make space
2946 for an inserted OP_ONCE for the additional '+' extension. */
2947
2948 tempcode = previous;
2949
2950 /* If the next character is '+', we have a possessive quantifier. This
2951 implies greediness, whatever the setting of the PCRE_UNGREEDY option.
2952 If the next character is '?' this is a minimizing repeat, by default,
2953 but if PCRE_UNGREEDY is set, it works the other way round. We change the
2954 repeat type to the non-default. */
2955
2956 if (ptr[1] == '+')
2957 {
2958 repeat_type = 0; /* Force greedy */
2959 possessive_quantifier = TRUE;
2960 ptr++;
2961 }
2962 else if (ptr[1] == '?')
2963 {
2964 repeat_type = greedy_non_default;
2965 ptr++;
2966 }
2967 else repeat_type = greedy_default;
2968
2969 /* If previous was a character match, abolish the item and generate a
2970 repeat item instead. If a char item has a minumum of more than one, ensure
2971 that it is set in reqbyte - it might not be if a sequence such as x{3} is
2972 the first thing in a branch because the x will have gone into firstbyte
2973 instead. */
2974
2975 if (*previous == OP_CHAR || *previous == OP_CHARNC)
2976 {
2977 /* Deal with UTF-8 characters that take up more than one byte. It's
2978 easier to write this out separately than try to macrify it. Use c to
2979 hold the length of the character in bytes, plus 0x80 to flag that it's a
2980 length rather than a small character. */
2981
2982 #ifdef SUPPORT_UTF8
2983 if (utf8 && (code[-1] & 0x80) != 0)
2984 {
2985 uschar *lastchar = code - 1;
2986 while((*lastchar & 0xc0) == 0x80) lastchar--;
2987 c = code - lastchar; /* Length of UTF-8 character */
2988 memcpy(utf8_char, lastchar, c); /* Save the char */
2989 c |= 0x80; /* Flag c as a length */
2990 }
2991 else
2992 #endif
2993
2994 /* Handle the case of a single byte - either with no UTF8 support, or
2995 with UTF-8 disabled, or for a UTF-8 character < 128. */
2996
2997 {
2998 c = code[-1];
2999 if (repeat_min > 1) reqbyte = c | req_caseopt | cd->req_varyopt;
3000 }
3001
3002 /* If the repetition is unlimited, it pays to see if the next thing on
3003 the line is something that cannot possibly match this character. If so,
3004 automatically possessifying this item gains some performance in the case
3005 where the match fails. */
3006
3007 if (!possessive_quantifier &&
3008 repeat_max < 0 &&
3009 check_auto_possessive(*previous, c, utf8, utf8_char, ptr + 1,
3010 options, cd))
3011 {
3012 repeat_type = 0; /* Force greedy */
3013 possessive_quantifier = TRUE;
3014 }
3015
3016 goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
3017 }
3018
3019 /* If previous was a single negated character ([^a] or similar), we use
3020 one of the special opcodes, replacing it. The code is shared with single-
3021 character repeats by setting opt_type to add a suitable offset into
3022 repeat_type. We can also test for auto-possessification. OP_NOT is
3023 currently used only for single-byte chars. */
3024
3025 else if (*previous == OP_NOT)
3026 {
3027 op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */
3028 c = previous[1];
3029 if (!possessive_quantifier &&
3030 repeat_max < 0 &&
3031 check_auto_possessive(OP_NOT, c, utf8, NULL, ptr + 1, options, cd))
3032 {
3033 repeat_type = 0; /* Force greedy */
3034 possessive_quantifier = TRUE;
3035 }
3036 goto OUTPUT_SINGLE_REPEAT;
3037 }
3038
3039 /* If previous was a character type match (\d or similar), abolish it and
3040 create a suitable repeat item. The code is shared with single-character
3041 repeats by setting op_type to add a suitable offset into repeat_type. Note
3042 the the Unicode property types will be present only when SUPPORT_UCP is
3043 defined, but we don't wrap the little bits of code here because it just
3044 makes it horribly messy. */
3045
3046 else if (*previous < OP_EODN)
3047 {
3048 uschar *oldcode;
3049 int prop_type, prop_value;
3050 op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
3051 c = *previous;
3052
3053 if (!possessive_quantifier &&
3054 repeat_max < 0 &&
3055 check_auto_possessive(c, 0, utf8, NULL, ptr + 1, options, cd))
3056 {
3057 repeat_type = 0; /* Force greedy */
3058 possessive_quantifier = TRUE;
3059 }
3060
3061 OUTPUT_SINGLE_REPEAT:
3062 if (*previous == OP_PROP || *previous == OP_NOTPROP)
3063 {
3064 prop_type = previous[1];
3065 prop_value = previous[2];
3066 }
3067 else prop_type = prop_value = -1;
3068
3069 oldcode = code;
3070 code = previous; /* Usually overwrite previous item */
3071
3072 /* If the maximum is zero then the minimum must also be zero; Perl allows
3073 this case, so we do too - by simply omitting the item altogether. */
3074
3075 if (repeat_max == 0) goto END_REPEAT;
3076
3077 /* All real repeats make it impossible to handle partial matching (maybe
3078 one day we will be able to remove this restriction). */
3079
3080 if (repeat_max != 1) cd->nopartial = TRUE;
3081
3082 /* Combine the op_type with the repeat_type */
3083
3084 repeat_type += op_type;
3085
3086 /* A minimum of zero is handled either as the special case * or ?, or as
3087 an UPTO, with the maximum given. */
3088
3089 if (repeat_min == 0)
3090 {
3091 if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
3092 else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
3093 else
3094 {
3095 *code++ = OP_UPTO + repeat_type;
3096 PUT2INC(code, 0, repeat_max);
3097 }
3098 }
3099
3100 /* A repeat minimum of 1 is optimized into some special cases. If the
3101 maximum is unlimited, we use OP_PLUS. Otherwise, the original item is
3102 left in place and, if the maximum is greater than 1, we use OP_UPTO with
3103 one less than the maximum. */
3104
3105 else if (repeat_min == 1)
3106 {
3107 if (repeat_max == -1)
3108 *code++ = OP_PLUS + repeat_type;
3109 else
3110 {
3111 code = oldcode; /* leave previous item in place */
3112 if (repeat_max == 1) goto END_REPEAT;
3113 *code++ = OP_UPTO + repeat_type;
3114 PUT2INC(code, 0, repeat_max - 1);
3115 }
3116 }
3117
3118 /* The case {n,n} is just an EXACT, while the general case {n,m} is
3119 handled as an EXACT followed by an UPTO. */
3120
3121 else
3122 {
3123 *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
3124 PUT2INC(code, 0, repeat_min);
3125
3126 /* If the maximum is unlimited, insert an OP_STAR. Before doing so,
3127 we have to insert the character for the previous code. For a repeated
3128 Unicode property match, there are two extra bytes that define the
3129 required property. In UTF-8 mode, long characters have their length in
3130 c, with the 0x80 bit as a flag. */
3131
3132 if (repeat_max < 0)
3133 {
3134 #ifdef SUPPORT_UTF8
3135 if (utf8 && c >= 128)
3136 {
3137 memcpy(code, utf8_char, c & 7);
3138 code += c & 7;
3139 }
3140 else
3141 #endif
3142 {
3143 *code++ = c;
3144 if (prop_type >= 0)
3145 {
3146 *code++ = prop_type;
3147 *code++ = prop_value;
3148 }
3149 }
3150 *code++ = OP_STAR + repeat_type;
3151 }
3152
3153 /* Else insert an UPTO if the max is greater than the min, again
3154 preceded by the character, for the previously inserted code. If the
3155 UPTO is just for 1 instance, we can use QUERY instead. */
3156
3157 else if (repeat_max != repeat_min)
3158 {
3159 #ifdef SUPPORT_UTF8
3160 if (utf8 && c >= 128)
3161 {
3162 memcpy(code, utf8_char, c & 7);
3163 code += c & 7;
3164 }
3165 else
3166 #endif
3167 *code++ = c;
3168 if (prop_type >= 0)
3169 {
3170 *code++ = prop_type;
3171 *code++ = prop_value;
3172 }
3173 repeat_max -= repeat_min;
3174
3175 if (repeat_max == 1)
3176 {
3177 *code++ = OP_QUERY + repeat_type;
3178 }
3179 else
3180 {
3181 *code++ = OP_UPTO + repeat_type;
3182 PUT2INC(code, 0, repeat_max);
3183 }
3184 }
3185 }
3186
3187 /* The character or character type itself comes last in all cases. */
3188
3189 #ifdef SUPPORT_UTF8
3190 if (utf8 && c >= 128)
3191 {
3192 memcpy(code, utf8_char, c & 7);
3193 code += c & 7;
3194 }
3195 else
3196 #endif
3197 *code++ = c;
3198
3199 /* For a repeated Unicode property match, there are two extra bytes that
3200 define the required property. */
3201
3202 #ifdef SUPPORT_UCP
3203 if (prop_type >= 0)
3204 {
3205 *code++ = prop_type;
3206 *code++ = prop_value;
3207 }
3208 #endif
3209 }
3210
3211 /* If previous was a character class or a back reference, we put the repeat
3212 stuff after it, but just skip the item if the repeat was {0,0}. */
3213
3214 else if (*previous == OP_CLASS ||
3215 *previous == OP_NCLASS ||
3216 #ifdef SUPPORT_UTF8
3217 *previous == OP_XCLASS ||
3218 #endif
3219 *previous == OP_REF)
3220 {
3221 if (repeat_max == 0)
3222 {
3223 code = previous;
3224 goto END_REPEAT;
3225 }
3226
3227 /* All real repeats make it impossible to handle partial matching (maybe
3228 one day we will be able to remove this restriction). */
3229
3230 if (repeat_max != 1) cd->nopartial = TRUE;
3231
3232 if (repeat_min == 0 && repeat_max == -1)
3233 *code++ = OP_CRSTAR + repeat_type;
3234 else if (repeat_min == 1 && repeat_max == -1)
3235 *code++ = OP_CRPLUS + repeat_type;
3236 else if (repeat_min == 0 && repeat_max == 1)
3237 *code++ = OP_CRQUERY + repeat_type;
3238 else
3239 {
3240 *code++ = OP_CRRANGE + repeat_type;
3241 PUT2INC(code, 0, repeat_min);
3242 if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
3243 PUT2INC(code, 0, repeat_max);
3244 }
3245 }
3246
3247 /* If previous was a bracket group, we may have to replicate it in certain
3248 cases. */
3249
3250 else if (*previous == OP_BRA || *previous == OP_CBRA ||
3251 *previous == OP_ONCE || *previous == OP_COND)
3252 {
3253 register int i;
3254 int ketoffset = 0;
3255 int len = code - previous;
3256 uschar *bralink = NULL;
3257
3258 /* Repeating a DEFINE group is pointless */
3259
3260 if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF)
3261 {
3262 *errorcodeptr = ERR55;
3263 goto FAILED;
3264 }
3265
3266 /* This is a paranoid check to stop integer overflow later on */
3267
3268 if (len > MAX_DUPLENGTH)
3269 {
3270 *errorcodeptr = ERR50;
3271 goto FAILED;
3272 }
3273
3274 /* If the maximum repeat count is unlimited, find the end of the bracket
3275 by scanning through from the start, and compute the offset back to it
3276 from the current code pointer. There may be an OP_OPT setting following
3277 the final KET, so we can't find the end just by going back from the code
3278 pointer. */
3279
3280 if (repeat_max == -1)
3281 {
3282 register uschar *ket = previous;
3283 do ket += GET(ket, 1); while (*ket != OP_KET);
3284 ketoffset = code - ket;
3285 }
3286
3287 /* The case of a zero minimum is special because of the need to stick
3288 OP_BRAZERO in front of it, and because the group appears once in the
3289 data, whereas in other cases it appears the minimum number of times. For
3290 this reason, it is simplest to treat this case separately, as otherwise
3291 the code gets far too messy. There are several special subcases when the
3292 minimum is zero. */
3293
3294 if (repeat_min == 0)
3295 {
3296 /* If the maximum is also zero, we just omit the group from the output
3297 altogether. */
3298
3299 if (repeat_max == 0)
3300 {
3301 code = previous;
3302 goto END_REPEAT;
3303 }
3304
3305 /* If the maximum is 1 or unlimited, we just have to stick in the
3306 BRAZERO and do no more at this point. However, we do need to adjust
3307 any OP_RECURSE calls inside the group that refer to the group itself or
3308 any internal or forward referenced group, because the offset is from
3309 the start of the whole regex. Temporarily terminate the pattern while
3310 doing this. */
3311
3312 if (repeat_max <= 1)
3313 {
3314 *code = OP_END;
3315 adjust_recurse(previous, 1, utf8, cd, save_hwm);
3316 memmove(previous+1, previous, len);
3317 code++;
3318 *previous++ = OP_BRAZERO + repeat_type;
3319 }
3320
3321 /* If the maximum is greater than 1 and limited, we have to replicate
3322 in a nested fashion, sticking OP_BRAZERO before each set of brackets.
3323 The first one has to be handled carefully because it's the original
3324 copy, which has to be moved up. The remainder can be handled by code
3325 that is common with the non-zero minimum case below. We have to
3326 adjust the value or repeat_max, since one less copy is required. Once
3327 again, we may have to adjust any OP_RECURSE calls inside the group. */
3328
3329 else
3330 {
3331 int offset;
3332 *code = OP_END;
3333 adjust_recurse(previous, 2 + LINK_SIZE, utf8, cd, save_hwm);
3334 memmove(previous + 2 + LINK_SIZE, previous, len);
3335 code += 2 + LINK_SIZE;
3336 *previous++ = OP_BRAZERO + repeat_type;
3337 *previous++ = OP_BRA;
3338
3339 /* We chain together the bracket offset fields that have to be
3340 filled in later when the ends of the brackets are reached. */
3341
3342 offset = (bralink == NULL)? 0 : previous - bralink;
3343 bralink = previous;
3344 PUTINC(previous, 0, offset);
3345 }
3346
3347 repeat_max--;
3348 }
3349
3350 /* If the minimum is greater than zero, replicate the group as many
3351 times as necessary, and adjust the maximum to the number of subsequent
3352 copies that we need. If we set a first char from the group, and didn't
3353 set a required char, copy the latter from the former. If there are any
3354 forward reference subroutine calls in the group, there will be entries on
3355 the workspace list; replicate these with an appropriate increment. */
3356
3357 else
3358 {
3359 if (repeat_min > 1)
3360 {
3361 /* In the pre-compile phase, we don't actually do the replication. We
3362 just adjust the length as if we had. */
3363
3364 if (lengthptr != NULL)
3365 *lengthptr += (repeat_min - 1)*length_prevgroup;
3366
3367 /* This is compiling for real */
3368
3369 else
3370 {
3371 if (groupsetfirstbyte && reqbyte < 0) reqbyte = firstbyte;
3372 for (i = 1; i < repeat_min; i++)
3373 {
3374 uschar *hc;
3375 uschar *this_hwm = cd->hwm;
3376 memcpy(code, previous, len);
3377 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
3378 {
3379 PUT(cd->hwm, 0, GET(hc, 0) + len);
3380 cd->hwm += LINK_SIZE;
3381 }
3382 save_hwm = this_hwm;
3383 code += len;
3384 }
3385 }
3386 }
3387
3388 if (repeat_max > 0) repeat_max -= repeat_min;
3389 }
3390
3391 /* This code is common to both the zero and non-zero minimum cases. If
3392 the maximum is limited, it replicates the group in a nested fashion,
3393 remembering the bracket starts on a stack. In the case of a zero minimum,
3394 the first one was set up above. In all cases the repeat_max now specifies
3395 the number of additional copies needed. Again, we must remember to
3396 replicate entries on the forward reference list. */
3397
3398 if (repeat_max >= 0)
3399 {
3400 /* In the pre-compile phase, we don't actually do the replication. We
3401 just adjust the length as if we had. For each repetition we must add 1
3402 to the length for BRAZERO and for all but the last repetition we must
3403 add 2 + 2*LINKSIZE to allow for the nesting that occurs. */
3404
3405 if (lengthptr != NULL && repeat_max > 0)
3406 *lengthptr += repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) -
3407 2 - 2*LINK_SIZE; /* Last one doesn't nest */
3408
3409 /* This is compiling for real */
3410
3411 else for (i = repeat_max - 1; i >= 0; i--)
3412 {
3413 uschar *hc;
3414 uschar *this_hwm = cd->hwm;
3415
3416 *code++ = OP_BRAZERO + repeat_type;
3417
3418 /* All but the final copy start a new nesting, maintaining the
3419 chain of brackets outstanding. */
3420
3421 if (i != 0)
3422 {
3423 int offset;
3424 *code++ = OP_BRA;
3425 offset = (bralink == NULL)? 0 : code - bralink;
3426 bralink = code;
3427 PUTINC(code, 0, offset);
3428 }
3429
3430 memcpy(code, previous, len);
3431 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
3432 {
3433 PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1));
3434 cd->hwm += LINK_SIZE;
3435 }
3436 save_hwm = this_hwm;
3437 code += len;
3438 }
3439
3440 /* Now chain through the pending brackets, and fill in their length
3441 fields (which are holding the chain links pro tem). */
3442
3443 while (bralink != NULL)
3444 {
3445 int oldlinkoffset;
3446 int offset = code - bralink + 1;
3447 uschar *bra = code - offset;
3448 oldlinkoffset = GET(bra, 1);
3449 bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset;
3450 *code++ = OP_KET;
3451 PUTINC(code, 0, offset);
3452 PUT(bra, 1, offset);
3453 }
3454 }
3455
3456 /* If the maximum is unlimited, set a repeater in the final copy. We
3457 can't just offset backwards from the current code point, because we
3458 don't know if there's been an options resetting after the ket. The
3459 correct offset was computed above.
3460
3461 Then, when we are doing the actual compile phase, check to see whether
3462 this group is a non-atomic one that could match an empty string. If so,
3463 convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so
3464 that runtime checking can be done. [This check is also applied to
3465 atomic groups at runtime, but in a different way.] */
3466
3467 else
3468 {
3469 uschar *ketcode = code - ketoffset;
3470 uschar *bracode = ketcode - GET(ketcode, 1);
3471 *ketcode = OP_KETRMAX + repeat_type;
3472 if (lengthptr == NULL && *bracode != OP_ONCE)
3473 {
3474 uschar *scode = bracode;
3475 do
3476 {
3477 if (could_be_empty_branch(scode, ketcode, utf8))
3478 {
3479 *bracode += OP_SBRA - OP_BRA;
3480 break;
3481 }
3482 scode += GET(scode, 1);
3483 }
3484 while (*scode == OP_ALT);
3485 }
3486 }
3487 }
3488
3489 /* Else there's some kind of shambles */
3490
3491 else
3492 {
3493 *errorcodeptr = ERR11;
3494 goto FAILED;
3495 }
3496
3497 /* If the character following a repeat is '+', or if certain optimization
3498 tests above succeeded, possessive_quantifier is TRUE. For some of the
3499 simpler opcodes, there is an special alternative opcode for this. For
3500 anything else, we wrap the entire repeated item inside OP_ONCE brackets.
3501 The '+' notation is just syntactic sugar, taken from Sun's Java package,
3502 but the special opcodes can optimize it a bit. The repeated item starts at
3503 tempcode, not at previous, which might be the first part of a string whose
3504 (former) last char we repeated.
3505
3506 Possessifying an 'exact' quantifier has no effect, so we can ignore it. But
3507 an 'upto' may follow. We skip over an 'exact' item, and then test the
3508 length of what remains before proceeding. */
3509
3510 if (possessive_quantifier)
3511 {
3512 int len;
3513 if (*tempcode == OP_EXACT || *tempcode == OP_TYPEEXACT ||
3514 *tempcode == OP_NOTEXACT)
3515 tempcode += _pcre_OP_lengths[*tempcode];
3516 len = code - tempcode;
3517 if (len > 0) switch (*tempcode)
3518 {
3519 case OP_STAR: *tempcode = OP_POSSTAR; break;
3520 case OP_PLUS: *tempcode = OP_POSPLUS; break;
3521 case OP_QUERY: *tempcode = OP_POSQUERY; break;
3522 case OP_UPTO: *tempcode = OP_POSUPTO; break;
3523
3524 case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break;
3525 case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break;
3526 case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break;
3527 case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break;
3528
3529 case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break;
3530 case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break;
3531 case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break;
3532 case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break;
3533
3534 default:
3535 memmove(tempcode + 1+LINK_SIZE, tempcode, len);
3536 code += 1 + LINK_SIZE;
3537 len += 1 + LINK_SIZE;
3538 tempcode[0] = OP_ONCE;
3539 *code++ = OP_KET;
3540 PUTINC(code, 0, len);
3541 PUT(tempcode, 1, len);
3542 break;
3543 }
3544 }
3545
3546 /* In all case we no longer have a previous item. We also set the
3547 "follows varying string" flag for subsequently encountered reqbytes if
3548 it isn't already set and we have just passed a varying length item. */
3549
3550 END_REPEAT:
3551 previous = NULL;
3552 cd->req_varyopt |= reqvary;
3553 break;
3554
3555
3556 /* ===================================================================*/
3557 /* Start of nested parenthesized sub-expression, or comment or lookahead or
3558 lookbehind or option setting or condition or all the other extended
3559 parenthesis forms. First deal with the specials; all are introduced by ?,
3560 and the appearance of any of them means that this is not a capturing
3561 group. */
3562
3563 case '(':
3564 newoptions = options;
3565 skipbytes = 0;
3566 bravalue = OP_CBRA;
3567 save_hwm = cd->hwm;
3568
3569 if (*(++ptr) == '?')
3570 {
3571 int i, set, unset, namelen;
3572 int *optset;
3573 const uschar *name;
3574 uschar *slot;
3575
3576 switch (*(++ptr))
3577 {
3578 case '#': /* Comment; skip to ket */
3579 ptr++;
3580 while (*ptr != 0 && *ptr != ')') ptr++;
3581 if (*ptr == 0)
3582 {
3583 *errorcodeptr = ERR18;
3584 goto FAILED;
3585 }
3586 continue;
3587
3588
3589 /* ------------------------------------------------------------ */
3590 case ':': /* Non-capturing bracket */
3591 bravalue = OP_BRA;
3592 ptr++;
3593 break;
3594
3595
3596 /* ------------------------------------------------------------ */
3597 case '(':
3598 bravalue = OP_COND; /* Conditional group */
3599
3600 /* A condition can be an assertion, a number (referring to a numbered
3601 group), a name (referring to a named group), or 'R', referring to
3602 recursion. R<digits> and R&name are also permitted for recursion tests.
3603
3604 There are several syntaxes for testing a named group: (?(name)) is used
3605 by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')).
3606
3607 There are two unfortunate ambiguities, caused by history. (a) 'R' can
3608 be the recursive thing or the name 'R' (and similarly for 'R' followed
3609 by digits), and (b) a number could be a name that consists of digits.
3610 In both cases, we look for a name first; if not found, we try the other
3611 cases. */
3612
3613 /* For conditions that are assertions, check the syntax, and then exit
3614 the switch. This will take control down to where bracketed groups,
3615 including assertions, are processed. */
3616
3617 if (ptr[1] == '?' && (ptr[2] == '=' || ptr[2] == '!' || ptr[2] == '<'))
3618 break;
3619
3620 /* Most other conditions use OP_CREF (a couple change to OP_RREF
3621 below), and all need to skip 3 bytes at the start of the group. */
3622
3623 code[1+LINK_SIZE] = OP_CREF;
3624 skipbytes = 3;
3625
3626 /* Check for a test for recursion in a named group. */
3627
3628 if (ptr[1] == 'R' && ptr[2] == '&')
3629 {
3630 terminator = -1;
3631 ptr += 2;
3632 code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */
3633 }
3634
3635 /* Check for a test for a named group's having been set, using the Perl
3636 syntax (?(<name>) or (?('name') */
3637
3638 else if (ptr[1] == '<')
3639 {
3640 terminator = '>';
3641 ptr++;
3642 }
3643 else if (ptr[1] == '\'')
3644 {
3645 terminator = '\'';
3646 ptr++;
3647 }
3648 else terminator = 0;
3649
3650 /* We now expect to read a name; any thing else is an error */
3651
3652 if ((cd->ctypes[ptr[1]] & ctype_word) == 0)
3653 {
3654 ptr += 1; /* To get the right offset */
3655 *errorcodeptr = ERR28;
3656 goto FAILED;
3657 }
3658
3659 /* Read the name, but also get it as a number if it's all digits */
3660
3661 recno = 0;
3662 name = ++ptr;
3663 while ((cd->ctypes[*ptr] & ctype_word) != 0)
3664 {
3665 if (recno >= 0)
3666 recno = ((digitab[*ptr] & ctype_digit) != 0)?
3667 recno * 10 + *ptr - '0' : -1;
3668 ptr++;
3669 }
3670 namelen = ptr - name;
3671
3672 if ((terminator > 0 && *ptr++ != terminator) || *ptr++ != ')')
3673 {
3674 ptr--; /* Error offset */
3675 *errorcodeptr = ERR26;
3676 goto FAILED;
3677 }
3678
3679 /* Do no further checking in the pre-compile phase. */
3680
3681 if (lengthptr != NULL) break;
3682
3683 /* In the real compile we do the work of looking for the actual
3684 reference. */
3685
3686 slot = cd->name_table;
3687 for (i = 0; i < cd->names_found; i++)
3688 {
3689 if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break;
3690 slot += cd->name_entry_size;
3691 }
3692
3693 /* Found a previous named subpattern */
3694
3695 if (i < cd->names_found)
3696 {
3697 recno = GET2(slot, 0);
3698 PUT2(code, 2+LINK_SIZE, recno);
3699 }
3700
3701 /* Search the pattern for a forward reference */
3702
3703 else if ((i = find_parens(ptr, cd->bracount, name, namelen,
3704 (options & PCRE_EXTENDED) != 0)) > 0)
3705 {
3706 PUT2(code, 2+LINK_SIZE, i);
3707 }
3708
3709 /* If terminator == 0 it means that the name followed directly after
3710 the opening parenthesis [e.g. (?(abc)...] and in this case there are
3711 some further alternatives to try. For the cases where terminator != 0
3712 [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have
3713 now checked all the possibilities, so give an error. */
3714
3715 else if (terminator != 0)
3716 {
3717 *errorcodeptr = ERR15;
3718 goto FAILED;
3719 }
3720
3721 /* Check for (?(R) for recursion. Allow digits after R to specify a
3722 specific group number. */
3723
3724 else if (*name == 'R')
3725 {
3726 recno = 0;
3727 for (i = 1; i < namelen; i++)
3728 {
3729 if ((digitab[name[i]] & ctype_digit) == 0)
3730 {
3731 *errorcodeptr = ERR15;
3732 goto FAILED;
3733 }
3734 recno = recno * 10 + name[i] - '0';
3735 }
3736 if (recno == 0) recno = RREF_ANY;
3737 code[1+LINK_SIZE] = OP_RREF; /* Change test type */
3738 PUT2(code, 2+LINK_SIZE, recno);
3739 }
3740
3741 /* Similarly, check for the (?(DEFINE) "condition", which is always
3742 false. */
3743
3744 else if (namelen == 6 && strncmp((char *)name, "DEFINE", 6) == 0)
3745 {
3746 code[1+LINK_SIZE] = OP_DEF;
3747 skipbytes = 1;
3748 }
3749
3750 /* Check for the "name" actually being a subpattern number. */
3751
3752 else if (recno > 0)
3753 {
3754 PUT2(code, 2+LINK_SIZE, recno);
3755 }
3756
3757 /* Either an unidentified subpattern, or a reference to (?(0) */
3758
3759 else
3760 {
3761 *errorcodeptr = (recno == 0)? ERR35: ERR15;
3762 goto FAILED;
3763 }
3764 break;
3765
3766
3767 /* ------------------------------------------------------------ */
3768 case '=': /* Positive lookahead */
3769 bravalue = OP_ASSERT;
3770 ptr++;
3771 break;
3772
3773
3774 /* ------------------------------------------------------------ */
3775 case '!': /* Negative lookahead */
3776 bravalue = OP_ASSERT_NOT;
3777 ptr++;
3778 break;
3779
3780
3781 /* ------------------------------------------------------------ */
3782 case '<': /* Lookbehind or named define */
3783 switch (ptr[1])
3784 {
3785 case '=': /* Positive lookbehind */
3786 bravalue = OP_ASSERTBACK;
3787 ptr += 2;
3788 break;
3789
3790 case '!': /* Negative lookbehind */
3791 bravalue = OP_ASSERTBACK_NOT;
3792 ptr += 2;
3793 break;
3794
3795 default: /* Could be name define, else bad */
3796 if ((cd->ctypes[ptr[1]] & ctype_word) != 0) goto DEFINE_NAME;
3797 ptr++; /* Correct offset for error */
3798 *errorcodeptr = ERR24;
3799 goto FAILED;
3800 }
3801 break;
3802
3803
3804 /* ------------------------------------------------------------ */
3805 case '>': /* One-time brackets */
3806 bravalue = OP_ONCE;
3807 ptr++;
3808 break;
3809
3810
3811 /* ------------------------------------------------------------ */
3812 case 'C': /* Callout - may be followed by digits; */
3813 previous_callout = code; /* Save for later completion */
3814 after_manual_callout = 1; /* Skip one item before completing */
3815 *code++ = OP_CALLOUT;
3816 {
3817 int n = 0;
3818 while ((digitab[*(++ptr)] & ctype_digit) != 0)
3819 n = n * 10 + *ptr - '0';
3820 if (*ptr != ')')
3821 {
3822 *errorcodeptr = ERR39;
3823 goto FAILED;
3824 }
3825 if (n > 255)
3826 {
3827 *errorcodeptr = ERR38;
3828 goto FAILED;
3829 }
3830 *code++ = n;
3831 PUT(code, 0, ptr - cd->start_pattern + 1); /* Pattern offset */
3832 PUT(code, LINK_SIZE, 0); /* Default length */
3833 code += 2 * LINK_SIZE;
3834 }
3835 previous = NULL;
3836 continue;
3837
3838
3839 /* ------------------------------------------------------------ */
3840 case 'P': /* Python-style named subpattern handling */
3841 if (*(++ptr) == '=' || *ptr == '>') /* Reference or recursion */
3842 {
3843 is_recurse = *ptr == '>';
3844 terminator = ')';
3845 goto NAMED_REF_OR_RECURSE;
3846 }
3847 else if (*ptr != '<') /* Test for Python-style definition */
3848 {
3849 *errorcodeptr = ERR41;
3850 goto FAILED;
3851 }
3852 /* Fall through to handle (?P< as (?< is handled */
3853
3854
3855 /* ------------------------------------------------------------ */
3856 DEFINE_NAME: /* Come here from (?< handling */
3857 case '\'':
3858 {
3859 terminator = (*ptr == '<')? '>' : '\'';
3860 name = ++ptr;
3861
3862 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
3863 namelen = ptr - name;
3864
3865 /* In the pre-compile phase, just do a syntax check. */
3866
3867 if (lengthptr != NULL)
3868 {
3869 if (*ptr != terminator)
3870 {
3871 *errorcodeptr = ERR42;
3872 goto FAILED;
3873 }
3874 if (cd->names_found >= MAX_NAME_COUNT)
3875 {
3876 *errorcodeptr = ERR49;
3877 goto FAILED;
3878 }
3879 if (namelen + 3 > cd->name_entry_size)
3880 {
3881 cd->name_entry_size = namelen + 3;
3882 if (namelen > MAX_NAME_SIZE)
3883 {
3884 *errorcodeptr = ERR48;
3885 goto FAILED;
3886 }
3887 }
3888 }
3889
3890 /* In the real compile, create the entry in the table */
3891
3892 else
3893 {
3894 slot = cd->name_table;
3895 for (i = 0; i < cd->names_found; i++)
3896 {
3897 int crc = memcmp(name, slot+2, namelen);
3898 if (crc == 0)
3899 {
3900 if (slot[2+namelen] == 0)
3901 {
3902 if ((options & PCRE_DUPNAMES) == 0)
3903 {
3904 *errorcodeptr = ERR43;
3905 goto FAILED;
3906 }
3907 }
3908 else crc = -1; /* Current name is substring */
3909 }
3910 if (crc < 0)
3911 {
3912 memmove(slot + cd->name_entry_size, slot,
3913 (cd->names_found - i) * cd->name_entry_size);
3914 break;
3915 }
3916 slot += cd->name_entry_size;
3917 }
3918
3919 PUT2(slot, 0, cd->bracount + 1);
3920 memcpy(slot + 2, name, namelen);
3921 slot[2+namelen] = 0;
3922 }
3923 }
3924
3925 /* In both cases, count the number of names we've encountered. */
3926
3927 ptr++; /* Move past > or ' */
3928 cd->names_found++;
3929 goto NUMBERED_GROUP;
3930
3931
3932 /* ------------------------------------------------------------ */
3933 case '&': /* Perl recursion/subroutine syntax */
3934 terminator = ')';
3935 is_recurse = TRUE;
3936 /* Fall through */
3937
3938 /* We come here from the Python syntax above that handles both
3939 references (?P=name) and recursion (?P>name), as well as falling
3940 through from the Perl recursion syntax (?&name). */
3941
3942 NAMED_REF_OR_RECURSE:
3943 name = ++ptr;
3944 while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
3945 namelen = ptr - name;
3946
3947 /* In the pre-compile phase, do a syntax check and set a dummy
3948 reference number. */
3949
3950 if (lengthptr != NULL)
3951 {
3952 if (*ptr != terminator)
3953 {
3954 *errorcodeptr = ERR42;
3955 goto FAILED;
3956 }
3957 if (namelen > MAX_NAME_SIZE)
3958 {
3959 *errorcodeptr = ERR48;
3960 goto FAILED;
3961 }
3962 recno = 0;
3963 }
3964
3965 /* In the real compile, seek the name in the table */
3966
3967 else
3968 {
3969 slot = cd->name_table;
3970 for (i = 0; i < cd->names_found; i++)
3971 {
3972 if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break;
3973 slot += cd->name_entry_size;
3974 }
3975
3976 if (i < cd->names_found) /* Back reference */
3977 {
3978 recno = GET2(slot, 0);
3979 }
3980 else if ((recno = /* Forward back reference */
3981 find_parens(ptr, cd->bracount, name, namelen,
3982 (options & PCRE_EXTENDED) != 0)) <= 0)
3983 {
3984 *errorcodeptr = ERR15;
3985 goto FAILED;
3986 }
3987 }
3988
3989 /* In both phases, we can now go to the code than handles numerical
3990 recursion or backreferences. */
3991
3992 if (is_recurse) goto HANDLE_RECURSION;
3993 else goto HANDLE_REFERENCE;
3994
3995
3996 /* ------------------------------------------------------------ */
3997 case 'R': /* Recursion */
3998 ptr++; /* Same as (?0) */
3999 /* Fall through */
4000
4001
4002 /* ------------------------------------------------------------ */
4003 case '-': case '+':
4004 case '0': case '1': case '2': case '3': case '4': /* Recursion or */
4005 case '5': case '6': case '7': case '8': case '9': /* subroutine */
4006 {
4007 const uschar *called;
4008 int sign = *ptr;
4009
4010 if (sign == '+') ptr++;
4011 else if (sign == '-')
4012 {
4013 if ((digitab[ptr[1]] & ctype_digit) == 0)
4014 goto OTHER_CHAR_AFTER_QUERY;
4015 ptr++;
4016 }
4017
4018 recno = 0;
4019 while((digitab[*ptr] & ctype_digit) != 0)
4020 recno = recno * 10 + *ptr++ - '0';
4021
4022 if (*ptr != ')')
4023 {
4024 *errorcodeptr = ERR29;
4025 goto FAILED;
4026 }
4027
4028 if (sign == '-')
4029 {
4030 if (recno == 0)
4031 {
4032 *errorcodeptr = ERR58;
4033 goto FAILED;
4034 }
4035 recno = cd->bracount - recno + 1;
4036 if (recno <= 0)
4037 {
4038 *errorcodeptr = ERR15;
4039 goto FAILED;
4040 }
4041 }
4042 else if (sign == '+')
4043 {
4044 if (recno == 0)
4045 {
4046 *errorcodeptr = ERR58;
4047 goto FAILED;
4048 }
4049 recno += cd->bracount;
4050 }
4051
4052 /* Come here from code above that handles a named recursion */
4053
4054 HANDLE_RECURSION:
4055
4056 previous = code;
4057 called = cd->start_code;
4058
4059 /* When we are actually compiling, find the bracket that is being
4060 referenced. Temporarily end the regex in case it doesn't exist before
4061 this point. If we end up with a forward reference, first check that
4062 the bracket does occur later so we can give the error (and position)
4063 now. Then remember this forward reference in the workspace so it can
4064 be filled in at the end. */
4065
4066 if (lengthptr == NULL)
4067 {
4068 *code = OP_END;
4069 if (recno != 0) called = find_bracket(cd->start_code, utf8, recno);
4070
4071 /* Forward reference */
4072
4073 if (called == NULL)
4074 {
4075 if (find_parens(ptr, cd->bracount, NULL, recno,
4076 (options & PCRE_EXTENDED) != 0) < 0)
4077 {
4078 *errorcodeptr = ERR15;
4079 goto FAILED;
4080 }
4081 called = cd->start_code + recno;
4082 PUTINC(cd->hwm, 0, code + 2 + LINK_SIZE - cd->start_code);
4083 }
4084
4085 /* If not a forward reference, and the subpattern is still open,
4086 this is a recursive call. We check to see if this is a left
4087 recursion that could loop for ever, and diagnose that case. */
4088
4089 else if (GET(called, 1) == 0 &&
4090 could_be_empty(called, code, bcptr, utf8))
4091 {
4092 *errorcodeptr = ERR40;
4093 goto FAILED;
4094 }
4095 }
4096
4097 /* Insert the recursion/subroutine item, automatically wrapped inside
4098 "once" brackets. Set up a "previous group" length so that a
4099 subsequent quantifier will work. */
4100
4101 *code = OP_ONCE;
4102 PUT(code, 1, 2 + 2*LINK_SIZE);
4103 code += 1 + LINK_SIZE;
4104
4105 *code = OP_RECURSE;
4106 PUT(code, 1, called - cd->start_code);
4107 code += 1 + LINK_SIZE;
4108
4109 *code = OP_KET;
4110 PUT(code, 1, 2 + 2*LINK_SIZE);
4111 code += 1 + LINK_SIZE;
4112
4113 length_prevgroup = 3 + 3*LINK_SIZE;
4114 }
4115
4116 /* Can't determine a first byte now */
4117
4118 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
4119 continue;
4120
4121
4122 /* ------------------------------------------------------------ */
4123 default: /* Other characters: check option setting */
4124 OTHER_CHAR_AFTER_QUERY:
4125 set = unset = 0;
4126 optset = &set;
4127
4128 while (*ptr != ')' && *ptr != ':')
4129 {
4130 switch (*ptr++)
4131 {
4132 case '-': optset = &unset; break;
4133
4134 case 'J': /* Record that it changed in the external options */
4135 *optset |= PCRE_DUPNAMES;
4136 cd->external_options |= PCRE_JCHANGED;
4137 break;
4138
4139 case 'i': *optset |= PCRE_CASELESS; break;
4140 case 'm': *optset |= PCRE_MULTILINE; break;
4141 case 's': *optset |= PCRE_DOTALL; break;
4142 case 'x': *optset |= PCRE_EXTENDED; break;
4143 case 'U': *optset |= PCRE_UNGREEDY; break;
4144 case 'X': *optset |= PCRE_EXTRA; break;
4145
4146 default: *errorcodeptr = ERR12;
4147 ptr--; /* Correct the offset */
4148 goto FAILED;
4149 }
4150 }
4151
4152 /* Set up the changed option bits, but don't change anything yet. */
4153
4154 newoptions = (options | set) & (~unset);
4155
4156 /* If the options ended with ')' this is not the start of a nested
4157 group with option changes, so the options change at this level. If this
4158 item is right at the start of the pattern, the options can be
4159 abstracted and made external in the pre-compile phase, and ignored in
4160 the compile phase. This can be helpful when matching -- for instance in
4161 caseless checking of required bytes.
4162
4163 If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are
4164 definitely *not* at the start of the pattern because something has been
4165 compiled. In the pre-compile phase, however, the code pointer can have
4166 that value after the start, because it gets reset as code is discarded
4167 during the pre-compile. However, this can happen only at top level - if
4168 we are within parentheses, the starting BRA will still be present. At
4169 any parenthesis level, the length value can be used to test if anything
4170 has been compiled at that level. Thus, a test for both these conditions
4171 is necessary to ensure we correctly detect the start of the pattern in
4172 both phases.
4173
4174 If we are not at the pattern start, compile code to change the ims
4175 options if this setting actually changes any of them. We also pass the
4176 new setting back so that it can be put at the start of any following
4177 branches, and when this group ends (if we are in a group), a resetting
4178 item can be compiled. */
4179
4180 if (*ptr == ')')
4181 {
4182 if (code == cd->start_code + 1 + LINK_SIZE &&
4183 (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE))
4184 {
4185 cd->external_options = newoptions;
4186 options = newoptions;
4187 }
4188 else
4189 {
4190 if ((options & PCRE_IMS) != (newoptions & PCRE_IMS))
4191 {
4192 *code++ = OP_OPT;
4193 *code++ = newoptions & PCRE_IMS;
4194 }
4195
4196 /* Change options at this level, and pass them back for use
4197 in subsequent branches. Reset the greedy defaults and the case
4198 value for firstbyte and reqbyte. */
4199
4200 *optionsptr = options = newoptions;
4201 greedy_default = ((newoptions & PCRE_UNGREEDY) != 0);
4202 greedy_non_default = greedy_default ^ 1;
4203 req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
4204 }
4205
4206 previous = NULL; /* This item can't be repeated */
4207 continue; /* It is complete */
4208 }
4209
4210 /* If the options ended with ':' we are heading into a nested group
4211 with possible change of options. Such groups are non-capturing and are
4212 not assertions of any kind. All we need to do is skip over the ':';
4213 the newoptions value is handled below. */
4214
4215 bravalue = OP_BRA;
4216 ptr++;
4217 } /* End of switch for character following (? */
4218 } /* End of (? handling */
4219
4220 /* Opening parenthesis not followed by '?'. If PCRE_NO_AUTO_CAPTURE is set,
4221 all unadorned brackets become non-capturing and behave like (?:...)
4222 brackets. */
4223
4224 else if ((options & PCRE_NO_AUTO_CAPTURE) != 0)
4225 {
4226 bravalue = OP_BRA;
4227 }
4228
4229 /* Else we have a capturing group. */
4230
4231 else
4232 {
4233 NUMBERED_GROUP:
4234 cd->bracount += 1;
4235 PUT2(code, 1+LINK_SIZE, cd->bracount);
4236 skipbytes = 2;
4237 }
4238
4239 /* Process nested bracketed regex. Assertions may not be repeated, but
4240 other kinds can be. All their opcodes are >= OP_ONCE. We copy code into a
4241 non-register variable in order to be able to pass its address because some
4242 compilers complain otherwise. Pass in a new setting for the ims options if
4243 they have changed. */
4244
4245 previous = (bravalue >= OP_ONCE)? code : NULL;
4246 *code = bravalue;
4247 tempcode = code;
4248 tempreqvary = cd->req_varyopt; /* Save value before bracket */
4249 length_prevgroup = 0; /* Initialize for pre-compile phase */
4250
4251 if (!compile_regex(
4252 newoptions, /* The complete new option state */
4253 options & PCRE_IMS, /* The previous ims option state */
4254 &tempcode, /* Where to put code (updated) */
4255 &ptr, /* Input pointer (updated) */
4256 errorcodeptr, /* Where to put an error message */
4257 (bravalue == OP_ASSERTBACK ||
4258 bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */
4259 skipbytes, /* Skip over bracket number */
4260 &subfirstbyte, /* For possible first char */
4261 &subreqbyte, /* For possible last char */
4262 bcptr, /* Current branch chain */
4263 cd, /* Tables block */
4264 (lengthptr == NULL)? NULL : /* Actual compile phase */
4265 &length_prevgroup /* Pre-compile phase */
4266 ))
4267 goto FAILED;
4268
4269 /* At the end of compiling, code is still pointing to the start of the
4270 group, while tempcode has been updated to point past the end of the group
4271 and any option resetting that may follow it. The pattern pointer (ptr)
4272 is on the bracket. */
4273
4274 /* If this is a conditional bracket, check that there are no more than
4275 two branches in the group, or just one if it's a DEFINE group. */
4276
4277 if (bravalue == OP_COND)
4278 {
4279 uschar *tc = code;
4280 int condcount = 0;
4281
4282 do {
4283 condcount++;
4284 tc += GET(tc,1);
4285 }
4286 while (*tc != OP_KET);
4287
4288 /* A DEFINE group is never obeyed inline (the "condition" is always
4289 false). It must have only one branch. */
4290
4291 if (code[LINK_SIZE+1] == OP_DEF)
4292 {
4293 if (condcount > 1)
4294 {
4295 *errorcodeptr = ERR54;
4296 goto FAILED;
4297 }
4298 bravalue = OP_DEF; /* Just a flag to suppress char handling below */
4299 }
4300
4301 /* A "normal" conditional group. If there is just one branch, we must not
4302 make use of its firstbyte or reqbyte, because this is equivalent to an
4303 empty second branch. */
4304
4305 else
4306 {
4307 if (condcount > 2)
4308 {
4309 *errorcodeptr = ERR27;
4310 goto FAILED;
4311 }
4312 if (condcount == 1) subfirstbyte = subreqbyte = REQ_NONE;
4313 }
4314 }
4315
4316 /* Error if hit end of pattern */
4317
4318 if (*ptr != ')')
4319 {
4320 *errorcodeptr = ERR14;
4321 goto FAILED;
4322 }
4323
4324 /* In the pre-compile phase, update the length by the length of the nested
4325 group, less the brackets at either end. Then reduce the compiled code to
4326 just the brackets so that it doesn't use much memory if it is duplicated by
4327 a quantifier. */
4328
4329 if (lengthptr != NULL)
4330 {
4331 *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE;
4332 code++;
4333 PUTINC(code, 0, 1 + LINK_SIZE);
4334 *code++ = OP_KET;
4335 PUTINC(code, 0, 1 + LINK_SIZE);
4336 }
4337
4338 /* Otherwise update the main code pointer to the end of the group. */
4339
4340 else code = tempcode;
4341
4342 /* For a DEFINE group, required and first character settings are not
4343 relevant. */
4344
4345 if (bravalue == OP_DEF) break;
4346
4347 /* Handle updating of the required and first characters for other types of
4348 group. Update for normal brackets of all kinds, and conditions with two
4349 branches (see code above). If the bracket is followed by a quantifier with
4350 zero repeat, we have to back off. Hence the definition of zeroreqbyte and
4351 zerofirstbyte outside the main loop so that they can be accessed for the
4352 back off. */
4353
4354 zeroreqbyte = reqbyte;
4355 zerofirstbyte = firstbyte;
4356 groupsetfirstbyte = FALSE;
4357
4358 if (bravalue >= OP_ONCE)
4359 {
4360 /* If we have not yet set a firstbyte in this branch, take it from the
4361 subpattern, remembering that it was set here so that a repeat of more
4362 than one can replicate it as reqbyte if necessary. If the subpattern has
4363 no firstbyte, set "none" for the whole branch. In both cases, a zero
4364 repeat forces firstbyte to "none". */
4365
4366 if (firstbyte == REQ_UNSET)
4367 {
4368 if (subfirstbyte >= 0)
4369 {
4370 firstbyte = subfirstbyte;
4371 groupsetfirstbyte = TRUE;
4372 }
4373 else firstbyte = REQ_NONE;
4374 zerofirstbyte = REQ_NONE;
4375 }
4376
4377 /* If firstbyte was previously set, convert the subpattern's firstbyte
4378 into reqbyte if there wasn't one, using the vary flag that was in
4379 existence beforehand. */
4380
4381 else if (subfirstbyte >= 0 && subreqbyte < 0)
4382 subreqbyte = subfirstbyte | tempreqvary;
4383
4384 /* If the subpattern set a required byte (or set a first byte that isn't
4385 really the first byte - see above), set it. */
4386
4387 if (subreqbyte >= 0) reqbyte = subreqbyte;
4388 }
4389
4390 /* For a forward assertion, we take the reqbyte, if set. This can be
4391 helpful if the pattern that follows the assertion doesn't set a different
4392 char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte
4393 for an assertion, however because it leads to incorrect effect for patterns
4394 such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead
4395 of a firstbyte. This is overcome by a scan at the end if there's no
4396 firstbyte, looking for an asserted first char. */
4397
4398 else if (bravalue == OP_ASSERT && subreqbyte >= 0) reqbyte = subreqbyte;
4399 break; /* End of processing '(' */
4400
4401
4402 /* ===================================================================*/
4403 /* Handle metasequences introduced by \. For ones like \d, the ESC_ values
4404 are arranged to be the negation of the corresponding OP_values. For the
4405 back references, the values are ESC_REF plus the reference number. Only
4406 back references and those types that consume a character may be repeated.
4407 We can test for values between ESC_b and ESC_Z for the latter; this may
4408 have to change if any new ones are ever created. */
4409
4410 case '\\':
4411 tempptr = ptr;
4412 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, FALSE);
4413 if (*errorcodeptr != 0) goto FAILED;
4414
4415 if (c < 0)
4416 {
4417 if (-c == ESC_Q) /* Handle start of quoted string */
4418 {
4419 if (ptr[1] == '\\' && ptr[2] == 'E') ptr += 2; /* avoid empty string */
4420 else inescq = TRUE;
4421 continue;
4422 }
4423
4424 if (-c == ESC_E) continue; /* Perl ignores an orphan \E */
4425
4426 /* For metasequences that actually match a character, we disable the
4427 setting of a first character if it hasn't already been set. */
4428
4429 if (firstbyte == REQ_UNSET && -c > ESC_b && -c < ESC_Z)
4430 firstbyte = REQ_NONE;
4431
4432 /* Set values to reset to if this is followed by a zero repeat. */
4433
4434 zerofirstbyte = firstbyte;
4435 zeroreqbyte = reqbyte;
4436
4437 /* \k<name> or \k'name' is a back reference by name (Perl syntax) */
4438
4439 if (-c == ESC_k && (ptr[1] == '<' || ptr[1] == '\''))
4440 {
4441 is_recurse = FALSE;
4442 terminator = (*(++ptr) == '<')? '>' : '\'';
4443 goto NAMED_REF_OR_RECURSE;
4444 }
4445
4446 /* Back references are handled specially; must disable firstbyte if
4447 not set to cope with cases like (?=(\w+))\1: which would otherwise set
4448 ':' later. */
4449
4450 if (-c >= ESC_REF)
4451 {
4452 recno = -c - ESC_REF;
4453
4454 HANDLE_REFERENCE: /* Come here from named backref handling */
4455 if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
4456 previous = code;
4457 *code++ = OP_REF;
4458 PUT2INC(code, 0, recno);
4459 cd->backref_map |= (recno < 32)? (1 << recno) : 1;
4460 if (recno > cd->top_backref) cd->top_backref = recno;
4461 }
4462
4463 /* So are Unicode property matches, if supported. */
4464
4465 #ifdef SUPPORT_UCP
4466 else if (-c == ESC_P || -c == ESC_p)
4467 {
4468 BOOL negated;
4469 int pdata;
4470 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
4471 if (ptype < 0) goto FAILED;
4472 previous = code;
4473 *code++ = ((-c == ESC_p) != negated)? OP_PROP : OP_NOTPROP;
4474 *code++ = ptype;
4475 *code++ = pdata;
4476 }
4477 #else
4478
4479 /* If Unicode properties are not supported, \X, \P, and \p are not
4480 allowed. */
4481
4482 else if (-c == ESC_X || -c == ESC_P || -c == ESC_p)
4483 {
4484 *errorcodeptr = ERR45;
4485 goto FAILED;
4486 }
4487 #endif
4488
4489 /* For the rest (including \X when Unicode properties are supported), we
4490 can obtain the OP value by negating the escape value. */
4491
4492 else
4493 {
4494 previous = (-c > ESC_b && -c < ESC_Z)? code : NULL;
4495 *code++ = -c;
4496 }
4497 continue;
4498 }
4499
4500 /* We have a data character whose value is in c. In UTF-8 mode it may have
4501 a value > 127. We set its representation in the length/buffer, and then
4502 handle it as a data character. */
4503
4504 #ifdef SUPPORT_UTF8
4505 if (utf8 && c > 127)
4506 mclength = _pcre_ord2utf8(c, mcbuffer);
4507 else
4508 #endif
4509
4510 {
4511 mcbuffer[0] = c;
4512 mclength = 1;
4513 }
4514 goto ONE_CHAR;
4515
4516
4517 /* ===================================================================*/
4518 /* Handle a literal character. It is guaranteed not to be whitespace or #
4519 when the extended flag is set. If we are in UTF-8 mode, it may be a
4520 multi-byte literal character. */
4521
4522 default:
4523 NORMAL_CHAR:
4524 mclength = 1;
4525 mcbuffer[0] = c;
4526
4527 #ifdef SUPPORT_UTF8
4528 if (utf8 && c >= 0xc0)
4529 {
4530 while ((ptr[1] & 0xc0) == 0x80)
4531 mcbuffer[mclength++] = *(++ptr);
4532 }
4533 #endif
4534
4535 /* At this point we have the character's bytes in mcbuffer, and the length
4536 in mclength. When not in UTF-8 mode, the length is always 1. */
4537
4538 ONE_CHAR:
4539 previous = code;
4540 *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARNC : OP_CHAR;
4541 for (c = 0; c < mclength; c++) *code++ = mcbuffer[c];
4542
4543 /* Set the first and required bytes appropriately. If no previous first
4544 byte, set it from this character, but revert to none on a zero repeat.
4545 Otherwise, leave the firstbyte value alone, and don't change it on a zero
4546 repeat. */
4547
4548 if (firstbyte == REQ_UNSET)
4549 {
4550 zerofirstbyte = REQ_NONE;
4551 zeroreqbyte = reqbyte;
4552
4553 /* If the character is more than one byte long, we can set firstbyte
4554 only if it is not to be matched caselessly. */
4555
4556 if (mclength == 1 || req_caseopt == 0)
4557 {
4558 firstbyte = mcbuffer[0] | req_caseopt;
4559 if (mclength != 1) reqbyte = code[-1] | cd->req_varyopt;
4560 }
4561 else firstbyte = reqbyte = REQ_NONE;
4562 }
4563
4564 /* firstbyte was previously set; we can set reqbyte only the length is
4565 1 or the matching is caseful. */
4566
4567 else
4568 {
4569 zerofirstbyte = firstbyte;
4570 zeroreqbyte = reqbyte;
4571 if (mclength == 1 || req_caseopt == 0)
4572 reqbyte = code[-1] | req_caseopt | cd->req_varyopt;
4573 }
4574
4575 break; /* End of literal character handling */
4576 }
4577 } /* end of big loop */
4578
4579
4580 /* Control never reaches here by falling through, only by a goto for all the
4581 error states. Pass back the position in the pattern so that it can be displayed
4582 to the user for diagnosing the error. */
4583
4584 FAILED:
4585 *ptrptr = ptr;
4586 return FALSE;
4587 }
4588
4589
4590
4591
4592 /*************************************************
4593 * Compile sequence of alternatives *
4594 *************************************************/
4595
4596 /* On entry, ptr is pointing past the bracket character, but on return it
4597 points to the closing bracket, or vertical bar, or end of string. The code
4598 variable is pointing at the byte into which the BRA operator has been stored.
4599 If the ims options are changed at the start (for a (?ims: group) or during any
4600 branch, we need to insert an OP_OPT item at the start of every following branch
4601 to ensure they get set correctly at run time, and also pass the new options
4602 into every subsequent branch compile.
4603
4604 This function is used during the pre-compile phase when we are trying to find
4605 out the amount of memory needed, as well as during the real compile phase. The
4606 value of lengthptr distinguishes the two phases.
4607
4608 Argument:
4609 options option bits, including any changes for this subpattern
4610 oldims previous settings of ims option bits
4611 codeptr -> the address of the current code pointer
4612 ptrptr -> the address of the current pattern pointer
4613 errorcodeptr -> pointer to error code variable
4614 lookbehind TRUE if this is a lookbehind assertion
4615 skipbytes skip this many bytes at start (for brackets and OP_COND)
4616 firstbyteptr place to put the first required character, or a negative number
4617 reqbyteptr place to put the last required character, or a negative number
4618 bcptr pointer to the chain of currently open branches
4619 cd points to the data block with tables pointers etc.
4620 lengthptr NULL during the real compile phase
4621 points to length accumulator during pre-compile phase
4622
4623 Returns: TRUE on success
4624 */
4625
4626 static BOOL
4627 compile_regex(int options, int oldims, uschar **codeptr, const uschar **ptrptr,
4628 int *errorcodeptr, BOOL lookbehind, int skipbytes, int *firstbyteptr,
4629 int *reqbyteptr, branch_chain *bcptr, compile_data *cd, int *lengthptr)
4630 {
4631 const uschar *ptr = *ptrptr;
4632 uschar *code = *codeptr;
4633 uschar *last_branch = code;
4634 uschar *start_bracket = code;
4635 uschar *reverse_count = NULL;
4636 int firstbyte, reqbyte;
4637 int branchfirstbyte, branchreqbyte;
4638 int length;
4639 branch_chain bc;
4640
4641 bc.outer = bcptr;
4642 bc.current = code;
4643
4644 firstbyte = reqbyte = REQ_UNSET;
4645
4646 /* Accumulate the length for use in the pre-compile phase. Start with the
4647 length of the BRA and KET and any extra bytes that are required at the
4648 beginning. We accumulate in a local variable to save frequent testing of
4649 lenthptr for NULL. We cannot do this by looking at the value of code at the
4650 start and end of each alternative, because compiled items are discarded during
4651 the pre-compile phase so that the work space is not exceeded. */
4652
4653 length = 2 + 2*LINK_SIZE + skipbytes;
4654
4655 /* WARNING: If the above line is changed for any reason, you must also change
4656 the code that abstracts option settings at the start of the pattern and makes
4657 them global. It tests the value of length for (2 + 2*LINK_SIZE) in the
4658 pre-compile phase to find out whether anything has yet been compiled or not. */
4659
4660 /* Offset is set zero to mark that this bracket is still open */
4661
4662 PUT(code, 1, 0);
4663 code += 1 + LINK_SIZE + skipbytes;
4664
4665 /* Loop for each alternative branch */
4666
4667 for (;;)
4668 {
4669 /* Handle a change of ims options at the start of the branch */
4670
4671 if ((options & PCRE_IMS) != oldims)
4672 {
4673 *code++ = OP_OPT;
4674 *code++ = options & PCRE_IMS;
4675 length += 2;
4676 }
4677
4678 /* Set up dummy OP_REVERSE if lookbehind assertion */
4679
4680 if (lookbehind)
4681 {
4682 *code++ = OP_REVERSE;
4683 reverse_count = code;
4684 PUTINC(code, 0, 0);
4685 length += 1 + LINK_SIZE;
4686 }
4687
4688 /* Now compile the branch; in the pre-compile phase its length gets added
4689 into the length. */
4690
4691 if (!compile_branch(&options, &code, &ptr, errorcodeptr, &branchfirstbyte,
4692 &branchreqbyte, &bc, cd, (lengthptr == NULL)? NULL : &length))
4693 {
4694 *ptrptr = ptr;
4695 return FALSE;
4696 }
4697
4698 /* In the real compile phase, there is some post-processing to be done. */
4699
4700 if (lengthptr == NULL)
4701 {
4702 /* If this is the first branch, the firstbyte and reqbyte values for the
4703 branch become the values for the regex. */
4704
4705 if (*last_branch != OP_ALT)
4706 {
4707 firstbyte = branchfirstbyte;
4708 reqbyte = branchreqbyte;
4709 }
4710
4711 /* If this is not the first branch, the first char and reqbyte have to
4712 match the values from all the previous branches, except that if the
4713 previous value for reqbyte didn't have REQ_VARY set, it can still match,
4714 and we set REQ_VARY for the regex. */
4715
4716 else
4717 {
4718 /* If we previously had a firstbyte, but it doesn't match the new branch,
4719 we have to abandon the firstbyte for the regex, but if there was
4720 previously no reqbyte, it takes on the value of the old firstbyte. */
4721
4722 if (firstbyte >= 0 && firstbyte != branchfirstbyte)
4723 {
4724 if (reqbyte < 0) reqbyte = firstbyte;
4725 firstbyte = REQ_NONE;
4726 }
4727
4728 /* If we (now or from before) have no firstbyte, a firstbyte from the
4729 branch becomes a reqbyte if there isn't a branch reqbyte. */
4730
4731 if (firstbyte < 0 && branchfirstbyte >= 0 && branchreqbyte < 0)
4732 branchreqbyte = branchfirstbyte;
4733
4734 /* Now ensure that the reqbytes match */
4735
4736 if ((reqbyte & ~REQ_VARY) != (branchreqbyte & ~REQ_VARY))
4737 reqbyte = REQ_NONE;
4738 else reqbyte |= branchreqbyte; /* To "or" REQ_VARY */
4739 }
4740
4741 /* If lookbehind, check that this branch matches a fixed-length string, and
4742 put the length into the OP_REVERSE item. Temporarily mark the end of the
4743 branch with OP_END. */
4744
4745 if (lookbehind)
4746 {
4747 int fixed_length;
4748 *code = OP_END;
4749 fixed_length = find_fixedlength(last_branch, options);
4750 DPRINTF(("fixed length = %d\n", fixed_length));
4751 if (fixed_length < 0)
4752 {
4753 *errorcodeptr = (fixed_length == -2)? ERR36 : ERR25;
4754 *ptrptr = ptr;
4755 return FALSE;
4756 }
4757 PUT(reverse_count, 0, fixed_length);
4758 }
4759 }
4760
4761 /* Reached end of expression, either ')' or end of pattern. Go back through
4762 the alternative branches and reverse the chain of offsets, with the field in
4763 the BRA item now becoming an offset to the first alternative. If there are
4764 no alternatives, it points to the end of the group. The length in the
4765 terminating ket is always the length of the whole bracketed item. If any of
4766 the ims options were changed inside the group, compile a resetting op-code
4767 following, except at the very end of the pattern. Return leaving the pointer
4768 at the terminating char. */
4769
4770 if (*ptr != '|')
4771 {
4772 int branch_length = code - last_branch;
4773 do
4774 {
4775 int prev_length = GET(last_branch, 1);
4776 PUT(last_branch, 1, branch_length);
4777 branch_length = prev_length;
4778 last_branch -= branch_length;
4779 }
4780 while (branch_length > 0);
4781
4782 /* Fill in the ket */
4783
4784 *code = OP_KET;
4785 PUT(code, 1, code - start_bracket);
4786 code += 1 + LINK_SIZE;
4787
4788 /* Resetting option if needed */
4789
4790 if ((options & PCRE_IMS) != oldims && *ptr == ')')
4791 {
4792 *code++ = OP_OPT;
4793 *code++ = oldims;
4794 length += 2;
4795 }
4796
4797 /* Set values to pass back */
4798
4799 *codeptr = code;
4800 *ptrptr = ptr;
4801 *firstbyteptr = firstbyte;
4802 *reqbyteptr = reqbyte;
4803 if (lengthptr != NULL) *lengthptr += length;
4804 return TRUE;
4805 }
4806
4807 /* Another branch follows; insert an "or" node. Its length field points back
4808 to the previous branch while the bracket remains open. At the end the chain
4809 is reversed. It's done like this so that the start of the bracket has a
4810 zero offset until it is closed, making it possible to detect recursion. */
4811
4812 *code = OP_ALT;
4813 PUT(code, 1, code - last_branch);
4814 bc.current = last_branch = code;
4815 code += 1 + LINK_SIZE;
4816 ptr++;
4817 length += 1 + LINK_SIZE;
4818 }
4819 /* Control never reaches here */
4820 }
4821
4822
4823
4824
4825 /*************************************************
4826 * Check for anchored expression *
4827 *************************************************/
4828
4829 /* Try to find out if this is an anchored regular expression. Consider each
4830 alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket
4831 all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then
4832 it's anchored. However, if this is a multiline pattern, then only OP_SOD
4833 counts, since OP_CIRC can match in the middle.
4834
4835 We can also consider a regex to be anchored if OP_SOM starts all its branches.
4836 This is the code for \G, which means "match at start of match position, taking
4837 into account the match offset".
4838
4839 A branch is also implicitly anchored if it starts with .* and DOTALL is set,
4840 because that will try the rest of the pattern at all possible matching points,
4841 so there is no point trying again.... er ....
4842
4843 .... except when the .* appears inside capturing parentheses, and there is a
4844 subsequent back reference to those parentheses. We haven't enough information
4845 to catch that case precisely.
4846
4847 At first, the best we could do was to detect when .* was in capturing brackets
4848 and the highest back reference was greater than or equal to that level.
4849 However, by keeping a bitmap of the first 31 back references, we can catch some
4850 of the more common cases more precisely.
4851
4852 Arguments:
4853 code points to start of expression (the bracket)
4854 options points to the options setting
4855 bracket_map a bitmap of which brackets we are inside while testing; this
4856 handles up to substring 31; after that we just have to take
4857 the less precise approach
4858 backref_map the back reference bitmap
4859
4860 Returns: TRUE or FALSE
4861 */
4862
4863 static BOOL
4864 is_anchored(register const uschar *code, int *options, unsigned int bracket_map,
4865 unsigned int backref_map)
4866 {
4867 do {
4868 const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],
4869 options, PCRE_MULTILINE, FALSE);
4870 register int op = *scode;
4871
4872 /* Non-capturing brackets */
4873
4874 if (op == OP_BRA)
4875 {
4876 if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE;
4877 }
4878
4879 /* Capturing brackets */
4880
4881 else if (op == OP_CBRA)
4882 {
4883 int n = GET2(scode, 1+LINK_SIZE);
4884 int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
4885 if (!is_anchored(scode, options, new_map, backref_map)) return FALSE;
4886 }
4887
4888 /* Other brackets */
4889
4890 else if (op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
4891 {
4892 if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE;
4893 }
4894
4895 /* .* is not anchored unless DOTALL is set and it isn't in brackets that
4896 are or may be referenced. */
4897
4898 else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR ||
4899 op == OP_TYPEPOSSTAR) &&
4900 (*options & PCRE_DOTALL) != 0)
4901 {
4902 if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE;
4903 }
4904
4905 /* Check for explicit anchoring */
4906
4907 else if (op != OP_SOD && op != OP_SOM &&
4908 ((*options & PCRE_MULTILINE) != 0 || op != OP_CIRC))
4909 return FALSE;
4910 code += GET(code, 1);
4911 }
4912 while (*code == OP_ALT); /* Loop for each alternative */
4913 return TRUE;
4914 }
4915
4916
4917
4918 /*************************************************
4919 * Check for starting with ^ or .* *
4920 *************************************************/
4921
4922 /* This is called to find out if every branch starts with ^ or .* so that
4923 "first char" processing can be done to speed things up in multiline
4924 matching and for non-DOTALL patterns that start with .* (which must start at
4925 the beginning or after \n). As in the case of is_anchored() (see above), we
4926 have to take account of back references to capturing brackets that contain .*
4927 because in that case we can't make the assumption.
4928
4929 Arguments:
4930 code points to start of expression (the bracket)
4931 bracket_map a bitmap of which brackets we are inside while testing; this
4932 handles up to substring 31; after that we just have to take
4933 the less precise approach
4934 backref_map the back reference bitmap
4935
4936 Returns: TRUE or FALSE
4937 */
4938
4939 static BOOL
4940 is_startline(const uschar *code, unsigned int bracket_map,
4941 unsigned int backref_map)
4942 {
4943 do {
4944 const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],
4945 NULL, 0, FALSE);
4946 register int op = *scode;
4947
4948 /* Non-capturing brackets */
4949
4950 if (op == OP_BRA)
4951 {
4952 if (!is_startline(scode, bracket_map, backref_map)) return FALSE;
4953 }
4954
4955 /* Capturing brackets */
4956
4957 else if (op == OP_CBRA)
4958 {
4959 int n = GET2(scode, 1+LINK_SIZE);
4960 int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
4961 if (!is_startline(scode, new_map, backref_map)) return FALSE;
4962 }
4963
4964 /* Other brackets */
4965
4966 else if (op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
4967 { if (!is_startline(scode, bracket_map, backref_map)) return FALSE; }
4968
4969 /* .* means "start at start or after \n" if it isn't in brackets that
4970 may be referenced. */
4971
4972 else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR || op == OP_TYPEPOSSTAR)
4973 {
4974 if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE;
4975 }
4976
4977 /* Check for explicit circumflex */
4978
4979 else if (op != OP_CIRC) return FALSE;
4980
4981 /* Move on to the next alternative */
4982
4983 code += GET(code, 1);
4984 }
4985 while (*code == OP_ALT); /* Loop for each alternative */
4986 return TRUE;
4987 }
4988
4989
4990
4991 /*************************************************
4992 * Check for asserted fixed first char *
4993 *************************************************/
4994
4995 /* During compilation, the "first char" settings from forward assertions are
4996 discarded, because they can cause conflicts with actual literals that follow.
4997 However, if we end up without a first char setting for an unanchored pattern,
4998 it is worth scanning the regex to see if there is an initial asserted first
4999 char. If all branches start with the same asserted char, or with a bracket all
5000 of whose alternatives start with the same asserted char (recurse ad lib), then
5001 we return that char, otherwise -1.
5002
5003 Arguments:
5004 code points to start of expression (the bracket)
5005 options pointer to the options (used to check casing changes)
5006 inassert TRUE if in an assertion
5007
5008 Returns: -1 or the fixed first char
5009 */
5010
5011 static int
5012 find_firstassertedchar(const uschar *code, int *options, BOOL inassert)
5013 {
5014 register int c = -1;
5015 do {
5016 int d;
5017 const uschar *scode =
5018 first_significant_code(code + 1+LINK_SIZE, options, PCRE_CASELESS, TRUE);
5019 register int op = *scode;
5020
5021 switch(op)
5022 {
5023 default:
5024 return -1;
5025
5026 case OP_BRA:
5027 case OP_CBRA:
5028 case OP_ASSERT:
5029 case OP_ONCE:
5030 case OP_COND:
5031 if ((d = find_firstassertedchar(scode, options, op == OP_ASSERT)) < 0)
5032 return -1;
5033 if (c < 0) c = d; else if (c != d) return -1;
5034 break;
5035
5036 case OP_EXACT: /* Fall through */
5037 scode += 2;
5038
5039 case OP_CHAR:
5040 case OP_CHARNC:
5041 case OP_PLUS:
5042 case OP_MINPLUS:
5043 case OP_POSPLUS:
5044 if (!inassert) return -1;
5045 if (c < 0)
5046 {
5047 c = scode[1];
5048 if ((*options & PCRE_CASELESS) != 0) c |= REQ_CASELESS;
5049 }
5050 else if (c != scode[1]) return -1;
5051 break;
5052 }
5053
5054 code += GET(code, 1);
5055 }
5056 while (*code == OP_ALT);
5057 return c;
5058 }
5059
5060
5061
5062 /*************************************************
5063 * Compile a Regular Expression *
5064 *************************************************/
5065
5066 /* This function takes a string and returns a pointer to a block of store
5067 holding a compiled version of the expression. The original API for this
5068 function had no error code return variable; it is retained for backwards
5069 compatibility. The new function is given a new name.
5070
5071 Arguments:
5072 pattern the regular expression
5073 options various option bits
5074 errorcodeptr pointer to error code variable (pcre_compile2() only)
5075 can be NULL if you don't want a code value
5076 errorptr pointer to pointer to error text
5077 erroroffset ptr offset in pattern where error was detected
5078 tables pointer to character tables or NULL
5079
5080 Returns: pointer to compiled data block, or NULL on error,
5081 with errorptr and erroroffset set
5082 */
5083
5084 PCRE_EXP_DEFN pcre *
5085 pcre_compile(const char *pattern, int options, const char **errorptr,
5086 int *erroroffset, const unsigned char *tables)
5087 {
5088 return pcre_compile2(pattern, options, NULL, errorptr, erroroffset, tables);
5089 }
5090
5091
5092 PCRE_EXP_DEFN pcre *
5093 pcre_compile2(const char *pattern, int options, int *errorcodeptr,
5094 const char **errorptr, int *erroroffset, const unsigned char *tables)
5095 {
5096 real_pcre *re;
5097 int length = 1; /* For final END opcode */
5098 int firstbyte, reqbyte, newline;
5099 int errorcode = 0;
5100 #ifdef SUPPORT_UTF8
5101 BOOL utf8;
5102 #endif
5103 size_t size;
5104 uschar *code;
5105 const uschar *codestart;
5106 const uschar *ptr;
5107 compile_data compile_block;
5108 compile_data *cd = &compile_block;
5109
5110 /* This space is used for "compiling" into during the first phase, when we are
5111 computing the amount of memory that is needed. Compiled items are thrown away
5112 as soon as possible, so that a fairly large buffer should be sufficient for
5113 this purpose. The same space is used in the second phase for remembering where
5114 to fill in forward references to subpatterns. */
5115
5116 uschar cworkspace[COMPILE_WORK_SIZE];
5117
5118
5119 /* Set this early so that early errors get offset 0. */
5120
5121 ptr = (const uschar *)pattern;
5122
5123 /* We can't pass back an error message if errorptr is NULL; I guess the best we
5124 can do is just return NULL, but we can set a code value if there is a code
5125 pointer. */
5126
5127 if (errorptr == NULL)
5128 {
5129 if (errorcodeptr != NULL) *errorcodeptr = 99;
5130 return NULL;
5131 }
5132
5133 *errorptr = NULL;
5134 if (errorcodeptr != NULL) *errorcodeptr = ERR0;
5135
5136 /* However, we can give a message for this error */
5137
5138 if (erroroffset == NULL)
5139 {
5140 errorcode = ERR16;
5141 goto PCRE_EARLY_ERROR_RETURN2;
5142 }
5143
5144 *erroroffset = 0;
5145
5146 /* Can't support UTF8 unless PCRE has been compiled to include the code. */
5147
5148 #ifdef SUPPORT_UTF8
5149 utf8 = (options & PCRE_UTF8) != 0;
5150 if (utf8 && (options & PCRE_NO_UTF8_CHECK) == 0 &&
5151 (*erroroffset = _pcre_valid_utf8((uschar *)pattern, -1)) >= 0)
5152 {
5153 errorcode = ERR44;
5154 goto PCRE_EARLY_ERROR_RETURN2;
5155 }
5156 #else
5157 if ((options & PCRE_UTF8) != 0)
5158 {
5159 errorcode = ERR32;
5160 goto PCRE_EARLY_ERROR_RETURN;
5161 }
5162 #endif
5163
5164 if ((options & ~PUBLIC_OPTIONS) != 0)
5165 {
5166 errorcode = ERR17;
5167 goto PCRE_EARLY_ERROR_RETURN;
5168 }
5169
5170 /* Set up pointers to the individual character tables */
5171
5172 if (tables == NULL) tables = _pcre_default_tables;
5173 cd->lcc = tables + lcc_offset;
5174 cd->fcc = tables + fcc_offset;
5175 cd->cbits = tables + cbits_offset;
5176 cd->ctypes = tables + ctypes_offset;
5177
5178 /* Handle different types of newline. The three bits give seven cases. The
5179 current code allows for fixed one- or two-byte sequences, plus "any" and
5180 "anycrlf". */
5181
5182 switch (options & (PCRE_NEWLINE_CRLF | PCRE_NEWLINE_ANY))
5183 {
5184 case 0: newline = NEWLINE; break; /* Compile-time default */
5185 case PCRE_NEWLINE_CR: newline = '\r'; break;
5186 case PCRE_NEWLINE_LF: newline = '\n'; break;
5187 case PCRE_NEWLINE_CR+
5188 PCRE_NEWLINE_LF: newline = ('\r' << 8) | '\n'; break;
5189 case PCRE_NEWLINE_ANY: newline = -1; break;
5190 case PCRE_NEWLINE_ANYCRLF: newline = -2; break;
5191 default: errorcode = ERR56; goto PCRE_EARLY_ERROR_RETURN;
5192 }
5193
5194 if (newline == -2)
5195 {
5196 cd->nltype = NLTYPE_ANYCRLF;
5197 }
5198 else if (newline < 0)
5199 {
5200 cd->nltype = NLTYPE_ANY;
5201 }
5202 else
5203 {
5204 cd->nltype = NLTYPE_FIXED;
5205 if (newline > 255)
5206 {
5207 cd->nllen = 2;
5208 cd->nl[0] = (newline >> 8) & 255;
5209 cd->nl[1] = newline & 255;
5210 }
5211 else
5212 {
5213 cd->nllen = 1;
5214 cd->nl[0] = newline;
5215 }
5216 }
5217
5218 /* Maximum back reference and backref bitmap. The bitmap records up to 31 back
5219 references to help in deciding whether (.*) can be treated as anchored or not.
5220 */
5221
5222 cd->top_backref = 0;
5223 cd->backref_map = 0;
5224
5225 /* Reflect pattern for debugging output */
5226
5227 DPRINTF(("------------------------------------------------------------------\n"));
5228 DPRINTF(("%s\n", pattern));
5229
5230 /* Pretend to compile the pattern while actually just accumulating the length
5231 of memory required. This behaviour is triggered by passing a non-NULL final
5232 argument to compile_regex(). We pass a block of workspace (cworkspace) for it
5233 to compile parts of the pattern into; the compiled code is discarded when it is
5234 no longer needed, so hopefully this workspace will never overflow, though there
5235 is a test for its doing so. */
5236
5237 cd->bracount = 0;
5238 cd->names_found = 0;
5239 cd->name_entry_size = 0;
5240 cd->name_table = NULL;
5241 cd->start_workspace = cworkspace;
5242 cd->start_code = cworkspace;
5243 cd->hwm = cworkspace;
5244 cd->start_pattern = (const uschar *)pattern;
5245 cd->end_pattern = (const uschar *)(pattern + strlen(pattern));
5246 cd->req_varyopt = 0;
5247 cd->nopartial = FALSE;
5248 cd->external_options = options;
5249
5250 /* Now do the pre-compile. On error, errorcode will be set non-zero, so we
5251 don't need to look at the result of the function here. The initial options have
5252 been put into the cd block so that they can be changed if an option setting is
5253 found within the regex right at the beginning. Bringing initial option settings
5254 outside can help speed up starting point checks. */
5255
5256 code = cworkspace;
5257 *code = OP_BRA;
5258 (void)compile_regex(cd->external_options, cd->external_options & PCRE_IMS,
5259 &code, &ptr, &errorcode, FALSE, 0, &firstbyte, &reqbyte, NULL, cd, &length);
5260 if (errorcode != 0) goto PCRE_EARLY_ERROR_RETURN;
5261
5262 DPRINTF(("end pre-compile: length=%d workspace=%d\n", length,
5263 cd->hwm - cworkspace));
5264
5265 if (length > MAX_PATTERN_SIZE)
5266 {
5267 errorcode = ERR20;
5268 goto PCRE_EARLY_ERROR_RETURN;
5269 }
5270
5271 /* Compute the size of data block needed and get it, either from malloc or
5272 externally provided function. Integer overflow should no longer be possible
5273 because nowadays we limit the maximum value of cd->names_found and
5274 cd->name_entry_size. */
5275
5276 size = length + sizeof(real_pcre) + cd->names_found * (cd->name_entry_size + 3);
5277 re = (real_pcre *)(pcre_malloc)(size);
5278
5279 if (re == NULL)
5280 {
5281 errorcode = ERR21;
5282 goto PCRE_EARLY_ERROR_RETURN;
5283 }
5284
5285 /* Put in the magic number, and save the sizes, initial options, and character
5286 table pointer. NULL is used for the default character tables. The nullpad field
5287 is at the end; it's there to help in the case when a regex compiled on a system
5288 with 4-byte pointers is run on another with 8-byte pointers. */
5289
5290 re->magic_number = MAGIC_NUMBER;
5291 re->size = size;
5292 re->options = cd->external_options;
5293 re->dummy1 = 0;
5294 re->first_byte = 0;
5295 re->req_byte = 0;
5296 re->name_table_offset = sizeof(real_pcre);
5297 re->name_entry_size = cd->name_entry_size;
5298 re->name_count = cd->names_found;
5299 re->ref_count = 0;
5300 re->tables = (tables == _pcre_default_tables)? NULL : tables;
5301 re->nullpad = NULL;
5302
5303 /* The starting points of the name/number translation table and of the code are
5304 passed around in the compile data block. The start/end pattern and initial
5305 options are already set from the pre-compile phase, as is the name_entry_size
5306 field. Reset the bracket count and the names_found field. Also reset the hwm
5307 field; this time it's used for remembering forward references to subpatterns.
5308 */
5309
5310 cd->bracount = 0;
5311 cd->names_found = 0;
5312 cd->name_table = (uschar *)re + re->name_table_offset;
5313 codestart = cd->name_table + re->name_entry_size * re->name_count;
5314 cd->start_code = codestart;
5315 cd->hwm = cworkspace;
5316 cd->req_varyopt = 0;
5317 cd->nopartial = FALSE;
5318
5319 /* Set up a starting, non-extracting bracket, then compile the expression. On
5320 error, errorcode will be set non-zero, so we don't need to look at the result
5321 of the function here. */
5322
5323 ptr = (const uschar *)pattern;
5324 code = (uschar *)codestart;
5325 *code = OP_BRA;
5326 (void)compile_regex(re->options, re->options & PCRE_IMS, &code, &ptr,
5327 &errorcode, FALSE, 0, &firstbyte, &reqbyte, NULL, cd, NULL);
5328 re->top_bracket = cd->bracount;
5329 re->top_backref = cd->top_backref;
5330
5331 if (cd->nopartial) re->options |= PCRE_NOPARTIAL;
5332
5333 /* If not reached end of pattern on success, there's an excess bracket. */
5334
5335 if (errorcode == 0 && *ptr != 0) errorcode = ERR22;
5336
5337 /* Fill in the terminating state and check for disastrous overflow, but
5338 if debugging, leave the test till after things are printed out. */
5339
5340 *code++ = OP_END;
5341
5342 #ifndef DEBUG
5343 if (code - codestart > length) errorcode = ERR23;
5344 #endif
5345
5346 /* Fill in any forward references that are required. */
5347
5348 while (errorcode == 0 && cd->hwm > cworkspace)
5349 {
5350 int offset, recno;
5351 const uschar *groupptr;
5352 cd->hwm -= LINK_SIZE;
5353 offset = GET(cd->hwm, 0);
5354 recno = GET(codestart, offset);
5355 groupptr = find_bracket(codestart, (re->options & PCRE_UTF8) != 0, recno);
5356 if (groupptr == NULL) errorcode = ERR53;
5357 else PUT(((uschar *)codestart), offset, groupptr - codestart);
5358 }
5359
5360 /* Give an error if there's back reference to a non-existent capturing
5361 subpattern. */
5362
5363 if (errorcode == 0 && re->top_backref > re->top_bracket) errorcode = ERR15;
5364
5365 /* Failed to compile, or error while post-processing */
5366
5367 if (errorcode != 0)
5368 {
5369 (pcre_free)(re);
5370 PCRE_EARLY_ERROR_RETURN:
5371 *erroroffset = ptr - (const uschar *)pattern;
5372 PCRE_EARLY_ERROR_RETURN2:
5373 *errorptr = error_texts[errorcode];
5374 if (errorcodeptr != NULL) *errorcodeptr = errorcode;
5375 return NULL;
5376 }
5377
5378 /* If the anchored option was not passed, set the flag if we can determine that
5379 the pattern is anchored by virtue of ^ characters or \A or anything else (such
5380 as starting with .* when DOTALL is set).
5381
5382 Otherwise, if we know what the first byte has to be, save it, because that
5383 speeds up unanchored matches no end. If not, see if we can set the
5384 PCRE_STARTLINE flag. This is helpful for multiline matches when all branches
5385 start with ^. and also when all branches start with .* for non-DOTALL matches.
5386 */
5387
5388 if ((re->options & PCRE_ANCHORED) == 0)
5389 {
5390 int temp_options = re->options; /* May get changed during these scans */
5391 if (is_anchored(codestart, &temp_options, 0, cd->backref_map))
5392 re->options |= PCRE_ANCHORED;
5393 else
5394 {
5395 if (firstbyte < 0)
5396 firstbyte = find_firstassertedchar(codestart, &temp_options, FALSE);
5397 if (firstbyte >= 0) /* Remove caseless flag for non-caseable chars */
5398 {
5399 int ch = firstbyte & 255;
5400 re->first_byte = ((firstbyte & REQ_CASELESS) != 0 &&
5401 cd->fcc[ch] == ch)? ch : firstbyte;
5402 re->options |= PCRE_FIRSTSET;
5403 }
5404 else if (is_startline(codestart, 0, cd->backref_map))
5405 re->options |= PCRE_STARTLINE;
5406 }
5407 }
5408
5409 /* For an anchored pattern, we use the "required byte" only if it follows a
5410 variable length item in the regex. Remove the caseless flag for non-caseable
5411 bytes. */
5412
5413 if (reqbyte >= 0 &&
5414 ((re->options & PCRE_ANCHORED) == 0 || (reqbyte & REQ_VARY) != 0))
5415 {
5416 int ch = reqbyte & 255;
5417 re->req_byte = ((reqbyte & REQ_CASELESS) != 0 &&
5418 cd->fcc[ch] == ch)? (reqbyte & ~REQ_CASELESS) : reqbyte;
5419 re->options |= PCRE_REQCHSET;
5420 }
5421
5422 /* Print out the compiled data if debugging is enabled. This is never the
5423 case when building a production library. */
5424
5425 #ifdef DEBUG
5426
5427 printf("Length = %d top_bracket = %d top_backref = %d\n",
5428 length, re->top_bracket, re->top_backref);
5429
5430 if (re->options != 0)
5431 {
5432 printf("%s%s%s%s%s%s%s%s%s\n",
5433 ((re->options & PCRE_NOPARTIAL) != 0)? "nopartial " : "",
5434 ((re->options & PCRE_ANCHORED) != 0)? "anchored " : "",
5435 ((re->options & PCRE_CASELESS) != 0)? "caseless " : "",
5436 ((re->options & PCRE_EXTENDED) != 0)? "extended " : "",
5437 ((re->options & PCRE_MULTILINE) != 0)? "multiline " : "",
5438 ((re->options & PCRE_DOTALL) != 0)? "dotall " : "",
5439 ((re->options & PCRE_DOLLAR_ENDONLY) != 0)? "endonly " : "",
5440 ((re->options & PCRE_EXTRA) != 0)? "extra " : "",
5441 ((re->options & PCRE_UNGREEDY) != 0)? "ungreedy " : "");
5442 }
5443
5444 if ((re->options & PCRE_FIRSTSET) != 0)
5445 {
5446 int ch = re->first_byte & 255;
5447 const char *caseless = ((re->first_byte & REQ_CASELESS) == 0)?
5448 "" : " (caseless)";
5449 if (isprint(ch)) printf("First char = %c%s\n", ch, caseless);
5450 else printf("First char = \\x%02x%s\n", ch, caseless);
5451 }
5452
5453 if ((re->options & PCRE_REQCHSET) != 0)
5454 {
5455 int ch = re->req_byte & 255;
5456 const char *caseless = ((re->req_byte & REQ_CASELESS) == 0)?
5457 "" : " (caseless)";
5458 if (isprint(ch)) printf("Req char = %c%s\n", ch, caseless);
5459 else printf("Req char = \\x%02x%s\n", ch, caseless);
5460 }
5461
5462 pcre_printint(re, stdout, TRUE);
5463
5464 /* This check is done here in the debugging case so that the code that
5465 was compiled can be seen. */
5466
5467 if (code - codestart > length)
5468 {
5469 (pcre_free)(re);
5470 *errorptr = error_texts[ERR23];
5471 *erroroffset = ptr - (uschar *)pattern;
5472 if (errorcodeptr != NULL) *errorcodeptr = ERR23;
5473 return NULL;
5474 }
5475 #endif /* DEBUG */
5476
5477 return (pcre *)re;
5478 }
5479
5480 /* End of pcre_compile.c */

Properties

Name Value
svn:eol-style native
svn:keywords "Author Date Id Revision Url"

  ViewVC Help
Powered by ViewVC 1.1.5