Parent Directory
|
Revision Log
UTF16 fixes: iterated character parsing, named references
1 | /************************************************* |
2 | * Perl-Compatible Regular Expressions * |
3 | *************************************************/ |
4 | |
5 | /* PCRE is a library of functions to support regular expressions whose syntax |
6 | and semantics are as close as possible to those of the Perl 5 language. |
7 | |
8 | Written by Philip Hazel |
9 | Copyright (c) 1997-2011 University of Cambridge |
10 | |
11 | ----------------------------------------------------------------------------- |
12 | Redistribution and use in source and binary forms, with or without |
13 | modification, are permitted provided that the following conditions are met: |
14 | |
15 | * Redistributions of source code must retain the above copyright notice, |
16 | this list of conditions and the following disclaimer. |
17 | |
18 | * Redistributions in binary form must reproduce the above copyright |
19 | notice, this list of conditions and the following disclaimer in the |
20 | documentation and/or other materials provided with the distribution. |
21 | |
22 | * Neither the name of the University of Cambridge nor the names of its |
23 | contributors may be used to endorse or promote products derived from |
24 | this software without specific prior written permission. |
25 | |
26 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
27 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
28 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
29 | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
30 | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
31 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
32 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
33 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
34 | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
35 | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
36 | POSSIBILITY OF SUCH DAMAGE. |
37 | ----------------------------------------------------------------------------- |
38 | */ |
39 | |
40 | |
41 | /* This module contains the external function pcre_compile(), along with |
42 | supporting internal functions that are not used by other modules. */ |
43 | |
44 | |
45 | #ifdef HAVE_CONFIG_H |
46 | #include "config.h" |
47 | #endif |
48 | |
49 | #define NLBLOCK cd /* Block containing newline information */ |
50 | #define PSSTART start_pattern /* Field containing processed string start */ |
51 | #define PSEND end_pattern /* Field containing processed string end */ |
52 | |
53 | #include "pcre_internal.h" |
54 | |
55 | |
56 | /* When PCRE_DEBUG is defined, we need the pcre_printint() function, which is |
57 | also used by pcretest. PCRE_DEBUG is not defined when building a production |
58 | library. */ |
59 | |
60 | #ifdef PCRE_DEBUG |
61 | #include "pcre_printint.src" |
62 | #endif |
63 | |
64 | |
65 | /* Macro for setting individual bits in class bitmaps. */ |
66 | |
67 | #define SETBIT(a,b) a[b/8] |= (1 << (b%8)) |
68 | |
69 | /* Maximum length value to check against when making sure that the integer that |
70 | holds the compiled pattern length does not overflow. We make it a bit less than |
71 | INT_MAX to allow for adding in group terminating bytes, so that we don't have |
72 | to check them every time. */ |
73 | |
74 | #define OFLOW_MAX (INT_MAX - 20) |
75 | |
76 | |
77 | /************************************************* |
78 | * Code parameters and static tables * |
79 | *************************************************/ |
80 | |
81 | /* This value specifies the size of stack workspace that is used during the |
82 | first pre-compile phase that determines how much memory is required. The regex |
83 | is partly compiled into this space, but the compiled parts are discarded as |
84 | soon as they can be, so that hopefully there will never be an overrun. The code |
85 | does, however, check for an overrun. The largest amount I've seen used is 218, |
86 | so this number is very generous. |
87 | |
88 | The same workspace is used during the second, actual compile phase for |
89 | remembering forward references to groups so that they can be filled in at the |
90 | end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE |
91 | is 4 there is plenty of room. */ |
92 | |
93 | #define COMPILE_WORK_SIZE (4096) |
94 | |
95 | /* The overrun tests check for a slightly smaller size so that they detect the |
96 | overrun before it actually does run off the end of the data block. */ |
97 | |
98 | #define WORK_SIZE_CHECK (COMPILE_WORK_SIZE - 100) |
99 | |
100 | /* Private flags added to firstchar and reqchar. */ |
101 | |
102 | #define REQ_CASELESS 0x10000000l /* Indicates caselessness */ |
103 | #define REQ_VARY 0x20000000l /* Reqchar followed non-literal item */ |
104 | |
105 | /* Repeated character flags. */ |
106 | |
107 | #define UTF_LENGTH 0x10000000l /* The char contains its length. */ |
108 | |
109 | /* Table for handling escaped characters in the range '0'-'z'. Positive returns |
110 | are simple data values; negative values are for special things like \d and so |
111 | on. Zero means further processing is needed (for things like \x), or the escape |
112 | is invalid. */ |
113 | |
114 | #ifndef EBCDIC |
115 | |
116 | /* This is the "normal" table for ASCII systems or for EBCDIC systems running |
117 | in UTF-8 mode. */ |
118 | |
119 | static const short int escapes[] = { |
120 | 0, 0, |
121 | 0, 0, |
122 | 0, 0, |
123 | 0, 0, |
124 | 0, 0, |
125 | CHAR_COLON, CHAR_SEMICOLON, |
126 | CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN, |
127 | CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK, |
128 | CHAR_COMMERCIAL_AT, -ESC_A, |
129 | -ESC_B, -ESC_C, |
130 | -ESC_D, -ESC_E, |
131 | 0, -ESC_G, |
132 | -ESC_H, 0, |
133 | 0, -ESC_K, |
134 | 0, 0, |
135 | -ESC_N, 0, |
136 | -ESC_P, -ESC_Q, |
137 | -ESC_R, -ESC_S, |
138 | 0, 0, |
139 | -ESC_V, -ESC_W, |
140 | -ESC_X, 0, |
141 | -ESC_Z, CHAR_LEFT_SQUARE_BRACKET, |
142 | CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET, |
143 | CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE, |
144 | CHAR_GRAVE_ACCENT, 7, |
145 | -ESC_b, 0, |
146 | -ESC_d, ESC_e, |
147 | ESC_f, 0, |
148 | -ESC_h, 0, |
149 | 0, -ESC_k, |
150 | 0, 0, |
151 | ESC_n, 0, |
152 | -ESC_p, 0, |
153 | ESC_r, -ESC_s, |
154 | ESC_tee, 0, |
155 | -ESC_v, -ESC_w, |
156 | 0, 0, |
157 | -ESC_z |
158 | }; |
159 | |
160 | #else |
161 | |
162 | /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */ |
163 | |
164 | static const short int escapes[] = { |
165 | /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|', |
166 | /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0, |
167 | /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~', |
168 | /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0, |
169 | /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?', |
170 | /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0, |
171 | /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"', |
172 | /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, |
173 | /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0, |
174 | /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p, |
175 | /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0, |
176 | /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0, |
177 | /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0, |
178 | /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
179 | /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-', |
180 | /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G, |
181 | /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0, |
182 | /* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P, |
183 | /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0, |
184 | /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X, |
185 | /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0, |
186 | /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
187 | /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0 |
188 | }; |
189 | #endif |
190 | |
191 | |
192 | /* Table of special "verbs" like (*PRUNE). This is a short table, so it is |
193 | searched linearly. Put all the names into a single string, in order to reduce |
194 | the number of relocations when a shared library is dynamically linked. The |
195 | string is built from string macros so that it works in UTF-8 mode on EBCDIC |
196 | platforms. */ |
197 | |
198 | typedef struct verbitem { |
199 | int len; /* Length of verb name */ |
200 | int op; /* Op when no arg, or -1 if arg mandatory */ |
201 | int op_arg; /* Op when arg present, or -1 if not allowed */ |
202 | } verbitem; |
203 | |
204 | static const char verbnames[] = |
205 | "\0" /* Empty name is a shorthand for MARK */ |
206 | STRING_MARK0 |
207 | STRING_ACCEPT0 |
208 | STRING_COMMIT0 |
209 | STRING_F0 |
210 | STRING_FAIL0 |
211 | STRING_PRUNE0 |
212 | STRING_SKIP0 |
213 | STRING_THEN; |
214 | |
215 | static const verbitem verbs[] = { |
216 | { 0, -1, OP_MARK }, |
217 | { 4, -1, OP_MARK }, |
218 | { 6, OP_ACCEPT, -1 }, |
219 | { 6, OP_COMMIT, -1 }, |
220 | { 1, OP_FAIL, -1 }, |
221 | { 4, OP_FAIL, -1 }, |
222 | { 5, OP_PRUNE, OP_PRUNE_ARG }, |
223 | { 4, OP_SKIP, OP_SKIP_ARG }, |
224 | { 4, OP_THEN, OP_THEN_ARG } |
225 | }; |
226 | |
227 | static const int verbcount = sizeof(verbs)/sizeof(verbitem); |
228 | |
229 | |
230 | /* Tables of names of POSIX character classes and their lengths. The names are |
231 | now all in a single string, to reduce the number of relocations when a shared |
232 | library is dynamically loaded. The list of lengths is terminated by a zero |
233 | length entry. The first three must be alpha, lower, upper, as this is assumed |
234 | for handling case independence. */ |
235 | |
236 | static const char posix_names[] = |
237 | STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0 |
238 | STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0 |
239 | STRING_graph0 STRING_print0 STRING_punct0 STRING_space0 |
240 | STRING_word0 STRING_xdigit; |
241 | |
242 | static const pcre_uint8 posix_name_lengths[] = { |
243 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 }; |
244 | |
245 | /* Table of class bit maps for each POSIX class. Each class is formed from a |
246 | base map, with an optional addition or removal of another map. Then, for some |
247 | classes, there is some additional tweaking: for [:blank:] the vertical space |
248 | characters are removed, and for [:alpha:] and [:alnum:] the underscore |
249 | character is removed. The triples in the table consist of the base map offset, |
250 | second map offset or -1 if no second map, and a non-negative value for map |
251 | addition or a negative value for map subtraction (if there are two maps). The |
252 | absolute value of the third field has these meanings: 0 => no tweaking, 1 => |
253 | remove vertical space characters, 2 => remove underscore. */ |
254 | |
255 | static const int posix_class_maps[] = { |
256 | cbit_word, cbit_digit, -2, /* alpha */ |
257 | cbit_lower, -1, 0, /* lower */ |
258 | cbit_upper, -1, 0, /* upper */ |
259 | cbit_word, -1, 2, /* alnum - word without underscore */ |
260 | cbit_print, cbit_cntrl, 0, /* ascii */ |
261 | cbit_space, -1, 1, /* blank - a GNU extension */ |
262 | cbit_cntrl, -1, 0, /* cntrl */ |
263 | cbit_digit, -1, 0, /* digit */ |
264 | cbit_graph, -1, 0, /* graph */ |
265 | cbit_print, -1, 0, /* print */ |
266 | cbit_punct, -1, 0, /* punct */ |
267 | cbit_space, -1, 0, /* space */ |
268 | cbit_word, -1, 0, /* word - a Perl extension */ |
269 | cbit_xdigit,-1, 0 /* xdigit */ |
270 | }; |
271 | |
272 | /* Table of substitutes for \d etc when PCRE_UCP is set. The POSIX class |
273 | substitutes must be in the order of the names, defined above, and there are |
274 | both positive and negative cases. NULL means no substitute. */ |
275 | |
276 | #ifdef SUPPORT_UCP |
277 | static const pcre_uchar string_PNd[] = { |
278 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
279 | CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
280 | static const pcre_uchar string_pNd[] = { |
281 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
282 | CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
283 | static const pcre_uchar string_PXsp[] = { |
284 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
285 | CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
286 | static const pcre_uchar string_pXsp[] = { |
287 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
288 | CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
289 | static const pcre_uchar string_PXwd[] = { |
290 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
291 | CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
292 | static const pcre_uchar string_pXwd[] = { |
293 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
294 | CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
295 | |
296 | static const pcre_uchar *substitutes[] = { |
297 | string_PNd, /* \D */ |
298 | string_pNd, /* \d */ |
299 | string_PXsp, /* \S */ /* NOTE: Xsp is Perl space */ |
300 | string_pXsp, /* \s */ |
301 | string_PXwd, /* \W */ |
302 | string_pXwd /* \w */ |
303 | }; |
304 | |
305 | static const pcre_uchar string_pL[] = { |
306 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
307 | CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
308 | static const pcre_uchar string_pLl[] = { |
309 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
310 | CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
311 | static const pcre_uchar string_pLu[] = { |
312 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
313 | CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
314 | static const pcre_uchar string_pXan[] = { |
315 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
316 | CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
317 | static const pcre_uchar string_h[] = { |
318 | CHAR_BACKSLASH, CHAR_h, '\0' }; |
319 | static const pcre_uchar string_pXps[] = { |
320 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
321 | CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
322 | static const pcre_uchar string_PL[] = { |
323 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
324 | CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
325 | static const pcre_uchar string_PLl[] = { |
326 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
327 | CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
328 | static const pcre_uchar string_PLu[] = { |
329 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
330 | CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
331 | static const pcre_uchar string_PXan[] = { |
332 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
333 | CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
334 | static const pcre_uchar string_H[] = { |
335 | CHAR_BACKSLASH, CHAR_H, '\0' }; |
336 | static const pcre_uchar string_PXps[] = { |
337 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
338 | CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
339 | |
340 | static const pcre_uchar *posix_substitutes[] = { |
341 | string_pL, /* alpha */ |
342 | string_pLl, /* lower */ |
343 | string_pLu, /* upper */ |
344 | string_pXan, /* alnum */ |
345 | NULL, /* ascii */ |
346 | string_h, /* blank */ |
347 | NULL, /* cntrl */ |
348 | string_pNd, /* digit */ |
349 | NULL, /* graph */ |
350 | NULL, /* print */ |
351 | NULL, /* punct */ |
352 | string_pXps, /* space */ /* NOTE: Xps is POSIX space */ |
353 | string_pXwd, /* word */ |
354 | NULL, /* xdigit */ |
355 | /* Negated cases */ |
356 | string_PL, /* ^alpha */ |
357 | string_PLl, /* ^lower */ |
358 | string_PLu, /* ^upper */ |
359 | string_PXan, /* ^alnum */ |
360 | NULL, /* ^ascii */ |
361 | string_H, /* ^blank */ |
362 | NULL, /* ^cntrl */ |
363 | string_PNd, /* ^digit */ |
364 | NULL, /* ^graph */ |
365 | NULL, /* ^print */ |
366 | NULL, /* ^punct */ |
367 | string_PXps, /* ^space */ /* NOTE: Xps is POSIX space */ |
368 | string_PXwd, /* ^word */ |
369 | NULL /* ^xdigit */ |
370 | }; |
371 | #define POSIX_SUBSIZE (sizeof(posix_substitutes) / sizeof(pcre_uchar *)) |
372 | #endif |
373 | |
374 | #define STRING(a) # a |
375 | #define XSTRING(s) STRING(s) |
376 | |
377 | /* The texts of compile-time error messages. These are "char *" because they |
378 | are passed to the outside world. Do not ever re-use any error number, because |
379 | they are documented. Always add a new error instead. Messages marked DEAD below |
380 | are no longer used. This used to be a table of strings, but in order to reduce |
381 | the number of relocations needed when a shared library is loaded dynamically, |
382 | it is now one long string. We cannot use a table of offsets, because the |
383 | lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we |
384 | simply count through to the one we want - this isn't a performance issue |
385 | because these strings are used only when there is a compilation error. |
386 | |
387 | Each substring ends with \0 to insert a null character. This includes the final |
388 | substring, so that the whole string ends with \0\0, which can be detected when |
389 | counting through. */ |
390 | |
391 | static const char error_texts[] = |
392 | "no error\0" |
393 | "\\ at end of pattern\0" |
394 | "\\c at end of pattern\0" |
395 | "unrecognized character follows \\\0" |
396 | "numbers out of order in {} quantifier\0" |
397 | /* 5 */ |
398 | "number too big in {} quantifier\0" |
399 | "missing terminating ] for character class\0" |
400 | "invalid escape sequence in character class\0" |
401 | "range out of order in character class\0" |
402 | "nothing to repeat\0" |
403 | /* 10 */ |
404 | "operand of unlimited repeat could match the empty string\0" /** DEAD **/ |
405 | "internal error: unexpected repeat\0" |
406 | "unrecognized character after (? or (?-\0" |
407 | "POSIX named classes are supported only within a class\0" |
408 | "missing )\0" |
409 | /* 15 */ |
410 | "reference to non-existent subpattern\0" |
411 | "erroffset passed as NULL\0" |
412 | "unknown option bit(s) set\0" |
413 | "missing ) after comment\0" |
414 | "parentheses nested too deeply\0" /** DEAD **/ |
415 | /* 20 */ |
416 | "regular expression is too large\0" |
417 | "failed to get memory\0" |
418 | "unmatched parentheses\0" |
419 | "internal error: code overflow\0" |
420 | "unrecognized character after (?<\0" |
421 | /* 25 */ |
422 | "lookbehind assertion is not fixed length\0" |
423 | "malformed number or name after (?(\0" |
424 | "conditional group contains more than two branches\0" |
425 | "assertion expected after (?(\0" |
426 | "(?R or (?[+-]digits must be followed by )\0" |
427 | /* 30 */ |
428 | "unknown POSIX class name\0" |
429 | "POSIX collating elements are not supported\0" |
430 | "this version of PCRE is not compiled with PCRE_UTF8 support\0" |
431 | "spare error\0" /** DEAD **/ |
432 | "character value in \\x{...} sequence is too large\0" |
433 | /* 35 */ |
434 | "invalid condition (?(0)\0" |
435 | "\\C not allowed in lookbehind assertion\0" |
436 | "PCRE does not support \\L, \\l, \\N{name}, \\U, or \\u\0" |
437 | "number after (?C is > 255\0" |
438 | "closing ) for (?C expected\0" |
439 | /* 40 */ |
440 | "recursive call could loop indefinitely\0" |
441 | "unrecognized character after (?P\0" |
442 | "syntax error in subpattern name (missing terminator)\0" |
443 | "two named subpatterns have the same name\0" |
444 | "invalid UTF-8 string\0" |
445 | /* 45 */ |
446 | "support for \\P, \\p, and \\X has not been compiled\0" |
447 | "malformed \\P or \\p sequence\0" |
448 | "unknown property name after \\P or \\p\0" |
449 | "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0" |
450 | "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0" |
451 | /* 50 */ |
452 | "repeated subpattern is too long\0" /** DEAD **/ |
453 | "octal value is greater than \\377 (not in UTF-8 mode)\0" |
454 | "internal error: overran compiling workspace\0" |
455 | "internal error: previously-checked referenced subpattern not found\0" |
456 | "DEFINE group contains more than one branch\0" |
457 | /* 55 */ |
458 | "repeating a DEFINE group is not allowed\0" /** DEAD **/ |
459 | "inconsistent NEWLINE options\0" |
460 | "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0" |
461 | "a numbered reference must not be zero\0" |
462 | "an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0" |
463 | /* 60 */ |
464 | "(*VERB) not recognized\0" |
465 | "number is too big\0" |
466 | "subpattern name expected\0" |
467 | "digit expected after (?+\0" |
468 | "] is an invalid data character in JavaScript compatibility mode\0" |
469 | /* 65 */ |
470 | "different names for subpatterns of the same number are not allowed\0" |
471 | "(*MARK) must have an argument\0" |
472 | "this version of PCRE is not compiled with PCRE_UCP support\0" |
473 | "\\c must be followed by an ASCII character\0" |
474 | "\\k is not followed by a braced, angle-bracketed, or quoted name\0" |
475 | /* 70 */ |
476 | "internal error: unknown opcode in find_fixedlength()\0" |
477 | "Not allowed UTF-8 / UTF-16 code point (>= 0xd800 && <= 0xdfff)\0" |
478 | ; |
479 | |
480 | /* Table to identify digits and hex digits. This is used when compiling |
481 | patterns. Note that the tables in chartables are dependent on the locale, and |
482 | may mark arbitrary characters as digits - but the PCRE compiling code expects |
483 | to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have |
484 | a private table here. It costs 256 bytes, but it is a lot faster than doing |
485 | character value tests (at least in some simple cases I timed), and in some |
486 | applications one wants PCRE to compile efficiently as well as match |
487 | efficiently. |
488 | |
489 | For convenience, we use the same bit definitions as in chartables: |
490 | |
491 | 0x04 decimal digit |
492 | 0x08 hexadecimal digit |
493 | |
494 | Then we can use ctype_digit and ctype_xdigit in the code. */ |
495 | |
496 | /* Using a simple comparison for decimal numbers rather than a memory read |
497 | is much faster, and the resulting code is simpler (the compiler turns it |
498 | into a subtraction and unsigned comparison). */ |
499 | |
500 | #define IS_DIGIT(x) ((x) >= CHAR_0 && (x) <= CHAR_9) |
501 | |
502 | #ifndef EBCDIC |
503 | |
504 | /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in |
505 | UTF-8 mode. */ |
506 | |
507 | static const pcre_uint8 digitab[] = |
508 | { |
509 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */ |
510 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
511 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */ |
512 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
513 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */ |
514 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */ |
515 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */ |
516 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */ |
517 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */ |
518 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */ |
519 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */ |
520 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */ |
521 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */ |
522 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */ |
523 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */ |
524 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */ |
525 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */ |
526 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */ |
527 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */ |
528 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */ |
529 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */ |
530 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */ |
531 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */ |
532 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
533 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */ |
534 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */ |
535 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */ |
536 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */ |
537 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */ |
538 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */ |
539 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */ |
540 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */ |
541 | |
542 | #else |
543 | |
544 | /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */ |
545 | |
546 | static const pcre_uint8 digitab[] = |
547 | { |
548 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */ |
549 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
550 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */ |
551 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
552 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */ |
553 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
554 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */ |
555 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
556 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */ |
557 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */ |
558 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */ |
559 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */ |
560 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */ |
561 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */ |
562 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */ |
563 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
564 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */ |
565 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
566 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */ |
567 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
568 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */ |
569 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
570 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */ |
571 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
572 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */ |
573 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
574 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */ |
575 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
576 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */ |
577 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
578 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */ |
579 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
580 | |
581 | static const pcre_uint8 ebcdic_chartab[] = { /* chartable partial dup */ |
582 | 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */ |
583 | 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */ |
584 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */ |
585 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
586 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */ |
587 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
588 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */ |
589 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
590 | 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */ |
591 | 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */ |
592 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */ |
593 | 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */ |
594 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */ |
595 | 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */ |
596 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */ |
597 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
598 | 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */ |
599 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
600 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */ |
601 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
602 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */ |
603 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
604 | 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */ |
605 | 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
606 | 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */ |
607 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
608 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */ |
609 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
610 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */ |
611 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
612 | 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */ |
613 | 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
614 | #endif |
615 | |
616 | |
617 | /* Definition to allow mutual recursion */ |
618 | |
619 | static BOOL |
620 | compile_regex(int, pcre_uchar **, const pcre_uchar **, int *, BOOL, BOOL, int, int, |
621 | int *, int *, branch_chain *, compile_data *, int *); |
622 | |
623 | |
624 | |
625 | /************************************************* |
626 | * Find an error text * |
627 | *************************************************/ |
628 | |
629 | /* The error texts are now all in one long string, to save on relocations. As |
630 | some of the text is of unknown length, we can't use a table of offsets. |
631 | Instead, just count through the strings. This is not a performance issue |
632 | because it happens only when there has been a compilation error. |
633 | |
634 | Argument: the error number |
635 | Returns: pointer to the error string |
636 | */ |
637 | |
638 | static const char * |
639 | find_error_text(int n) |
640 | { |
641 | const char *s = error_texts; |
642 | for (; n > 0; n--) |
643 | { |
644 | while (*s++ != 0) {}; |
645 | if (*s == 0) return "Error text not found (please report)"; |
646 | } |
647 | return s; |
648 | } |
649 | |
650 | |
651 | /************************************************* |
652 | * Check for counted repeat * |
653 | *************************************************/ |
654 | |
655 | /* This function is called when a '{' is encountered in a place where it might |
656 | start a quantifier. It looks ahead to see if it really is a quantifier or not. |
657 | It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd} |
658 | where the ddds are digits. |
659 | |
660 | Arguments: |
661 | p pointer to the first char after '{' |
662 | |
663 | Returns: TRUE or FALSE |
664 | */ |
665 | |
666 | static BOOL |
667 | is_counted_repeat(const pcre_uchar *p) |
668 | { |
669 | if (!IS_DIGIT(*p)) return FALSE; |
670 | p++; |
671 | while (IS_DIGIT(*p)) p++; |
672 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
673 | |
674 | if (*p++ != CHAR_COMMA) return FALSE; |
675 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
676 | |
677 | if (!IS_DIGIT(*p)) return FALSE; |
678 | p++; |
679 | while (IS_DIGIT(*p)) p++; |
680 | |
681 | return (*p == CHAR_RIGHT_CURLY_BRACKET); |
682 | } |
683 | |
684 | |
685 | |
686 | /************************************************* |
687 | * Handle escapes * |
688 | *************************************************/ |
689 | |
690 | /* This function is called when a \ has been encountered. It either returns a |
691 | positive value for a simple escape such as \n, or a negative value which |
692 | encodes one of the more complicated things such as \d. A backreference to group |
693 | n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When |
694 | UTF-8 is enabled, a positive value greater than 255 may be returned. On entry, |
695 | ptr is pointing at the \. On exit, it is on the final character of the escape |
696 | sequence. |
697 | |
698 | Arguments: |
699 | ptrptr points to the pattern position pointer |
700 | errorcodeptr points to the errorcode variable |
701 | bracount number of previous extracting brackets |
702 | options the options bits |
703 | isclass TRUE if inside a character class |
704 | |
705 | Returns: zero or positive => a data character |
706 | negative => a special escape sequence |
707 | on error, errorcodeptr is set |
708 | */ |
709 | |
710 | static int |
711 | check_escape(const pcre_uchar **ptrptr, int *errorcodeptr, int bracount, |
712 | int options, BOOL isclass) |
713 | { |
714 | /* PCRE_UTF16 has the same value as PCRE_UTF8. */ |
715 | BOOL utf = (options & PCRE_UTF8) != 0; |
716 | const pcre_uchar *ptr = *ptrptr + 1; |
717 | pcre_int32 c; |
718 | int i; |
719 | |
720 | GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */ |
721 | ptr--; /* Set pointer back to the last byte */ |
722 | |
723 | /* If backslash is at the end of the pattern, it's an error. */ |
724 | |
725 | if (c == 0) *errorcodeptr = ERR1; |
726 | |
727 | /* Non-alphanumerics are literals. For digits or letters, do an initial lookup |
728 | in a table. A non-zero result is something that can be returned immediately. |
729 | Otherwise further processing may be required. */ |
730 | |
731 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
732 | /* Not alphanumeric */ |
733 | else if (c < CHAR_0 || c > CHAR_z) {} |
734 | else if ((i = escapes[c - CHAR_0]) != 0) c = i; |
735 | |
736 | #else /* EBCDIC coding */ |
737 | /* Not alphanumeric */ |
738 | else if (c < 'a' || (!MAX_255(c) || (ebcdic_chartab[c] & 0x0E) == 0)) {} |
739 | else if ((i = escapes[c - 0x48]) != 0) c = i; |
740 | #endif |
741 | |
742 | /* Escapes that need further processing, or are illegal. */ |
743 | |
744 | else |
745 | { |
746 | const pcre_uchar *oldptr; |
747 | BOOL braced, negated; |
748 | |
749 | switch (c) |
750 | { |
751 | /* A number of Perl escapes are not handled by PCRE. We give an explicit |
752 | error. */ |
753 | |
754 | case CHAR_l: |
755 | case CHAR_L: |
756 | *errorcodeptr = ERR37; |
757 | break; |
758 | |
759 | case CHAR_u: |
760 | if ((options & PCRE_JAVASCRIPT_COMPAT) != 0) |
761 | { |
762 | /* In JavaScript, \u must be followed by four hexadecimal numbers. |
763 | Otherwise it is a lowercase u letter. */ |
764 | if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0 |
765 | && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0 |
766 | && MAX_255(ptr[3]) && (digitab[ptr[3]] & ctype_xdigit) != 0 |
767 | && MAX_255(ptr[4]) && (digitab[ptr[4]] & ctype_xdigit) != 0) |
768 | { |
769 | c = 0; |
770 | for (i = 0; i < 4; ++i) |
771 | { |
772 | register int cc = *(++ptr); |
773 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
774 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
775 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
776 | #else /* EBCDIC coding */ |
777 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
778 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
779 | #endif |
780 | } |
781 | } |
782 | } |
783 | else |
784 | *errorcodeptr = ERR37; |
785 | break; |
786 | |
787 | case CHAR_U: |
788 | /* In JavaScript, \U is an uppercase U letter. */ |
789 | if ((options & PCRE_JAVASCRIPT_COMPAT) == 0) *errorcodeptr = ERR37; |
790 | break; |
791 | |
792 | /* In a character class, \g is just a literal "g". Outside a character |
793 | class, \g must be followed by one of a number of specific things: |
794 | |
795 | (1) A number, either plain or braced. If positive, it is an absolute |
796 | backreference. If negative, it is a relative backreference. This is a Perl |
797 | 5.10 feature. |
798 | |
799 | (2) Perl 5.10 also supports \g{name} as a reference to a named group. This |
800 | is part of Perl's movement towards a unified syntax for back references. As |
801 | this is synonymous with \k{name}, we fudge it up by pretending it really |
802 | was \k. |
803 | |
804 | (3) For Oniguruma compatibility we also support \g followed by a name or a |
805 | number either in angle brackets or in single quotes. However, these are |
806 | (possibly recursive) subroutine calls, _not_ backreferences. Just return |
807 | the -ESC_g code (cf \k). */ |
808 | |
809 | case CHAR_g: |
810 | if (isclass) break; |
811 | if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE) |
812 | { |
813 | c = -ESC_g; |
814 | break; |
815 | } |
816 | |
817 | /* Handle the Perl-compatible cases */ |
818 | |
819 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
820 | { |
821 | const pcre_uchar *p; |
822 | for (p = ptr+2; *p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET; p++) |
823 | if (*p != CHAR_MINUS && !IS_DIGIT(*p)) break; |
824 | if (*p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET) |
825 | { |
826 | c = -ESC_k; |
827 | break; |
828 | } |
829 | braced = TRUE; |
830 | ptr++; |
831 | } |
832 | else braced = FALSE; |
833 | |
834 | if (ptr[1] == CHAR_MINUS) |
835 | { |
836 | negated = TRUE; |
837 | ptr++; |
838 | } |
839 | else negated = FALSE; |
840 | |
841 | /* The integer range is limited by the machine's int representation. */ |
842 | c = 0; |
843 | while (IS_DIGIT(ptr[1])) |
844 | { |
845 | if (((unsigned int)c) > INT_MAX / 10) /* Integer overflow */ |
846 | { |
847 | c = -1; |
848 | break; |
849 | } |
850 | c = c * 10 + *(++ptr) - CHAR_0; |
851 | } |
852 | if (((unsigned int)c) > INT_MAX) /* Integer overflow */ |
853 | { |
854 | while (IS_DIGIT(ptr[1])) |
855 | ptr++; |
856 | *errorcodeptr = ERR61; |
857 | break; |
858 | } |
859 | |
860 | if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET) |
861 | { |
862 | *errorcodeptr = ERR57; |
863 | break; |
864 | } |
865 | |
866 | if (c == 0) |
867 | { |
868 | *errorcodeptr = ERR58; |
869 | break; |
870 | } |
871 | |
872 | if (negated) |
873 | { |
874 | if (c > bracount) |
875 | { |
876 | *errorcodeptr = ERR15; |
877 | break; |
878 | } |
879 | c = bracount - (c - 1); |
880 | } |
881 | |
882 | c = -(ESC_REF + c); |
883 | break; |
884 | |
885 | /* The handling of escape sequences consisting of a string of digits |
886 | starting with one that is not zero is not straightforward. By experiment, |
887 | the way Perl works seems to be as follows: |
888 | |
889 | Outside a character class, the digits are read as a decimal number. If the |
890 | number is less than 10, or if there are that many previous extracting |
891 | left brackets, then it is a back reference. Otherwise, up to three octal |
892 | digits are read to form an escaped byte. Thus \123 is likely to be octal |
893 | 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal |
894 | value is greater than 377, the least significant 8 bits are taken. Inside a |
895 | character class, \ followed by a digit is always an octal number. */ |
896 | |
897 | case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5: |
898 | case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
899 | |
900 | if (!isclass) |
901 | { |
902 | oldptr = ptr; |
903 | /* The integer range is limited by the machine's int representation. */ |
904 | c -= CHAR_0; |
905 | while (IS_DIGIT(ptr[1])) |
906 | { |
907 | if (((unsigned int)c) > INT_MAX / 10) /* Integer overflow */ |
908 | { |
909 | c = -1; |
910 | break; |
911 | } |
912 | c = c * 10 + *(++ptr) - CHAR_0; |
913 | } |
914 | if (((unsigned int)c) > INT_MAX) /* Integer overflow */ |
915 | { |
916 | while (IS_DIGIT(ptr[1])) |
917 | ptr++; |
918 | *errorcodeptr = ERR61; |
919 | break; |
920 | } |
921 | if (c < 10 || c <= bracount) |
922 | { |
923 | c = -(ESC_REF + c); |
924 | break; |
925 | } |
926 | ptr = oldptr; /* Put the pointer back and fall through */ |
927 | } |
928 | |
929 | /* Handle an octal number following \. If the first digit is 8 or 9, Perl |
930 | generates a binary zero byte and treats the digit as a following literal. |
931 | Thus we have to pull back the pointer by one. */ |
932 | |
933 | if ((c = *ptr) >= CHAR_8) |
934 | { |
935 | ptr--; |
936 | c = 0; |
937 | break; |
938 | } |
939 | |
940 | /* \0 always starts an octal number, but we may drop through to here with a |
941 | larger first octal digit. The original code used just to take the least |
942 | significant 8 bits of octal numbers (I think this is what early Perls used |
943 | to do). Nowadays we allow for larger numbers in UTF-8 mode, but no more |
944 | than 3 octal digits. */ |
945 | |
946 | case CHAR_0: |
947 | c -= CHAR_0; |
948 | while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7) |
949 | c = c * 8 + *(++ptr) - CHAR_0; |
950 | if (!utf && c > 0xff) *errorcodeptr = ERR51; |
951 | break; |
952 | |
953 | /* \x is complicated. \x{ddd} is a character number which can be greater |
954 | than 0xff in utf or non-8bit mode, but only if the ddd are hex digits. |
955 | If not, { is treated as a data character. */ |
956 | |
957 | case CHAR_x: |
958 | if ((options & PCRE_JAVASCRIPT_COMPAT) != 0) |
959 | { |
960 | /* In JavaScript, \x must be followed by two hexadecimal numbers. |
961 | Otherwise it is a lowercase x letter. */ |
962 | if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0 |
963 | && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0) |
964 | { |
965 | c = 0; |
966 | for (i = 0; i < 2; ++i) |
967 | { |
968 | register int cc = *(++ptr); |
969 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
970 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
971 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
972 | #else /* EBCDIC coding */ |
973 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
974 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
975 | #endif |
976 | } |
977 | } |
978 | break; |
979 | } |
980 | |
981 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
982 | { |
983 | const pcre_uchar *pt = ptr + 2; |
984 | |
985 | c = 0; |
986 | while (MAX_255(*pt) && (digitab[*pt] & ctype_xdigit) != 0) |
987 | { |
988 | register int cc = *pt++; |
989 | if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */ |
990 | |
991 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
992 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
993 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
994 | #else /* EBCDIC coding */ |
995 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
996 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
997 | #endif |
998 | |
999 | #ifdef COMPILE_PCRE8 |
1000 | if (c > (utf ? 0x10ffff : 0xff)) { c = -1; break; } |
1001 | #else |
1002 | #ifdef COMPILE_PCRE16 |
1003 | if (c > (utf ? 0x10ffff : 0xffff)) { c = -1; break; } |
1004 | #endif |
1005 | #endif |
1006 | } |
1007 | |
1008 | if (c < 0) |
1009 | { |
1010 | while (MAX_255(*pt) && (digitab[*pt] & ctype_xdigit) != 0) pt++; |
1011 | *errorcodeptr = ERR34; |
1012 | } |
1013 | |
1014 | if (*pt == CHAR_RIGHT_CURLY_BRACKET) |
1015 | { |
1016 | if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR71; |
1017 | ptr = pt; |
1018 | break; |
1019 | } |
1020 | |
1021 | /* If the sequence of hex digits does not end with '}', then we don't |
1022 | recognize this construct; fall through to the normal \x handling. */ |
1023 | } |
1024 | |
1025 | /* Read just a single-byte hex-defined char */ |
1026 | |
1027 | c = 0; |
1028 | while (i++ < 2 && MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0) |
1029 | { |
1030 | int cc; /* Some compilers don't like */ |
1031 | cc = *(++ptr); /* ++ in initializers */ |
1032 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1033 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
1034 | c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
1035 | #else /* EBCDIC coding */ |
1036 | if (cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
1037 | c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
1038 | #endif |
1039 | } |
1040 | break; |
1041 | |
1042 | /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped. |
1043 | An error is given if the byte following \c is not an ASCII character. This |
1044 | coding is ASCII-specific, but then the whole concept of \cx is |
1045 | ASCII-specific. (However, an EBCDIC equivalent has now been added.) */ |
1046 | |
1047 | case CHAR_c: |
1048 | c = *(++ptr); |
1049 | if (c == 0) |
1050 | { |
1051 | *errorcodeptr = ERR2; |
1052 | break; |
1053 | } |
1054 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1055 | if (c > 127) /* Excludes all non-ASCII in either mode */ |
1056 | { |
1057 | *errorcodeptr = ERR68; |
1058 | break; |
1059 | } |
1060 | if (c >= CHAR_a && c <= CHAR_z) c -= 32; |
1061 | c ^= 0x40; |
1062 | #else /* EBCDIC coding */ |
1063 | if (c >= CHAR_a && c <= CHAR_z) c += 64; |
1064 | c ^= 0xC0; |
1065 | #endif |
1066 | break; |
1067 | |
1068 | /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any |
1069 | other alphanumeric following \ is an error if PCRE_EXTRA was set; |
1070 | otherwise, for Perl compatibility, it is a literal. This code looks a bit |
1071 | odd, but there used to be some cases other than the default, and there may |
1072 | be again in future, so I haven't "optimized" it. */ |
1073 | |
1074 | default: |
1075 | if ((options & PCRE_EXTRA) != 0) switch(c) |
1076 | { |
1077 | default: |
1078 | *errorcodeptr = ERR3; |
1079 | break; |
1080 | } |
1081 | break; |
1082 | } |
1083 | } |
1084 | |
1085 | /* Perl supports \N{name} for character names, as well as plain \N for "not |
1086 | newline". PCRE does not support \N{name}. However, it does support |
1087 | quantification such as \N{2,3}. */ |
1088 | |
1089 | if (c == -ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET && |
1090 | !is_counted_repeat(ptr+2)) |
1091 | *errorcodeptr = ERR37; |
1092 | |
1093 | /* If PCRE_UCP is set, we change the values for \d etc. */ |
1094 | |
1095 | if ((options & PCRE_UCP) != 0 && c <= -ESC_D && c >= -ESC_w) |
1096 | c -= (ESC_DU - ESC_D); |
1097 | |
1098 | /* Set the pointer to the final character before returning. */ |
1099 | |
1100 | *ptrptr = ptr; |
1101 | return c; |
1102 | } |
1103 | |
1104 | |
1105 | |
1106 | #ifdef SUPPORT_UCP |
1107 | /************************************************* |
1108 | * Handle \P and \p * |
1109 | *************************************************/ |
1110 | |
1111 | /* This function is called after \P or \p has been encountered, provided that |
1112 | PCRE is compiled with support for Unicode properties. On entry, ptrptr is |
1113 | pointing at the P or p. On exit, it is pointing at the final character of the |
1114 | escape sequence. |
1115 | |
1116 | Argument: |
1117 | ptrptr points to the pattern position pointer |
1118 | negptr points to a boolean that is set TRUE for negation else FALSE |
1119 | dptr points to an int that is set to the detailed property value |
1120 | errorcodeptr points to the error code variable |
1121 | |
1122 | Returns: type value from ucp_type_table, or -1 for an invalid type |
1123 | */ |
1124 | |
1125 | static int |
1126 | get_ucp(const pcre_uchar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr) |
1127 | { |
1128 | int c, i, bot, top; |
1129 | const pcre_uchar *ptr = *ptrptr; |
1130 | pcre_uchar name[32]; |
1131 | |
1132 | c = *(++ptr); |
1133 | if (c == 0) goto ERROR_RETURN; |
1134 | |
1135 | *negptr = FALSE; |
1136 | |
1137 | /* \P or \p can be followed by a name in {}, optionally preceded by ^ for |
1138 | negation. */ |
1139 | |
1140 | if (c == CHAR_LEFT_CURLY_BRACKET) |
1141 | { |
1142 | if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
1143 | { |
1144 | *negptr = TRUE; |
1145 | ptr++; |
1146 | } |
1147 | for (i = 0; i < (int)sizeof(name) - 1; i++) |
1148 | { |
1149 | c = *(++ptr); |
1150 | if (c == 0) goto ERROR_RETURN; |
1151 | if (c == CHAR_RIGHT_CURLY_BRACKET) break; |
1152 | name[i] = c; |
1153 | } |
1154 | if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN; |
1155 | name[i] = 0; |
1156 | } |
1157 | |
1158 | /* Otherwise there is just one following character */ |
1159 | |
1160 | else |
1161 | { |
1162 | name[0] = c; |
1163 | name[1] = 0; |
1164 | } |
1165 | |
1166 | *ptrptr = ptr; |
1167 | |
1168 | /* Search for a recognized property name using binary chop */ |
1169 | |
1170 | bot = 0; |
1171 | top = PRIV(utt_size); |
1172 | |
1173 | while (bot < top) |
1174 | { |
1175 | i = (bot + top) >> 1; |
1176 | c = STRCMP_UC_C8(name, PRIV(utt_names) + PRIV(utt)[i].name_offset); |
1177 | if (c == 0) |
1178 | { |
1179 | *dptr = PRIV(utt)[i].value; |
1180 | return PRIV(utt)[i].type; |
1181 | } |
1182 | if (c > 0) bot = i + 1; else top = i; |
1183 | } |
1184 | |
1185 | *errorcodeptr = ERR47; |
1186 | *ptrptr = ptr; |
1187 | return -1; |
1188 | |
1189 | ERROR_RETURN: |
1190 | *errorcodeptr = ERR46; |
1191 | *ptrptr = ptr; |
1192 | return -1; |
1193 | } |
1194 | #endif |
1195 | |
1196 | |
1197 | |
1198 | |
1199 | /************************************************* |
1200 | * Read repeat counts * |
1201 | *************************************************/ |
1202 | |
1203 | /* Read an item of the form {n,m} and return the values. This is called only |
1204 | after is_counted_repeat() has confirmed that a repeat-count quantifier exists, |
1205 | so the syntax is guaranteed to be correct, but we need to check the values. |
1206 | |
1207 | Arguments: |
1208 | p pointer to first char after '{' |
1209 | minp pointer to int for min |
1210 | maxp pointer to int for max |
1211 | returned as -1 if no max |
1212 | errorcodeptr points to error code variable |
1213 | |
1214 | Returns: pointer to '}' on success; |
1215 | current ptr on error, with errorcodeptr set non-zero |
1216 | */ |
1217 | |
1218 | static const pcre_uchar * |
1219 | read_repeat_counts(const pcre_uchar *p, int *minp, int *maxp, int *errorcodeptr) |
1220 | { |
1221 | int min = 0; |
1222 | int max = -1; |
1223 | |
1224 | /* Read the minimum value and do a paranoid check: a negative value indicates |
1225 | an integer overflow. */ |
1226 | |
1227 | while (IS_DIGIT(*p)) min = min * 10 + *p++ - CHAR_0; |
1228 | if (min < 0 || min > 65535) |
1229 | { |
1230 | *errorcodeptr = ERR5; |
1231 | return p; |
1232 | } |
1233 | |
1234 | /* Read the maximum value if there is one, and again do a paranoid on its size. |
1235 | Also, max must not be less than min. */ |
1236 | |
1237 | if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else |
1238 | { |
1239 | if (*(++p) != CHAR_RIGHT_CURLY_BRACKET) |
1240 | { |
1241 | max = 0; |
1242 | while(IS_DIGIT(*p)) max = max * 10 + *p++ - CHAR_0; |
1243 | if (max < 0 || max > 65535) |
1244 | { |
1245 | *errorcodeptr = ERR5; |
1246 | return p; |
1247 | } |
1248 | if (max < min) |
1249 | { |
1250 | *errorcodeptr = ERR4; |
1251 | return p; |
1252 | } |
1253 | } |
1254 | } |
1255 | |
1256 | /* Fill in the required variables, and pass back the pointer to the terminating |
1257 | '}'. */ |
1258 | |
1259 | *minp = min; |
1260 | *maxp = max; |
1261 | return p; |
1262 | } |
1263 | |
1264 | |
1265 | |
1266 | /************************************************* |
1267 | * Subroutine for finding forward reference * |
1268 | *************************************************/ |
1269 | |
1270 | /* This recursive function is called only from find_parens() below. The |
1271 | top-level call starts at the beginning of the pattern. All other calls must |
1272 | start at a parenthesis. It scans along a pattern's text looking for capturing |
1273 | subpatterns, and counting them. If it finds a named pattern that matches the |
1274 | name it is given, it returns its number. Alternatively, if the name is NULL, it |
1275 | returns when it reaches a given numbered subpattern. Recursion is used to keep |
1276 | track of subpatterns that reset the capturing group numbers - the (?| feature. |
1277 | |
1278 | This function was originally called only from the second pass, in which we know |
1279 | that if (?< or (?' or (?P< is encountered, the name will be correctly |
1280 | terminated because that is checked in the first pass. There is now one call to |
1281 | this function in the first pass, to check for a recursive back reference by |
1282 | name (so that we can make the whole group atomic). In this case, we need check |
1283 | only up to the current position in the pattern, and that is still OK because |
1284 | and previous occurrences will have been checked. To make this work, the test |
1285 | for "end of pattern" is a check against cd->end_pattern in the main loop, |
1286 | instead of looking for a binary zero. This means that the special first-pass |
1287 | call can adjust cd->end_pattern temporarily. (Checks for binary zero while |
1288 | processing items within the loop are OK, because afterwards the main loop will |
1289 | terminate.) |
1290 | |
1291 | Arguments: |
1292 | ptrptr address of the current character pointer (updated) |
1293 | cd compile background data |
1294 | name name to seek, or NULL if seeking a numbered subpattern |
1295 | lorn name length, or subpattern number if name is NULL |
1296 | xmode TRUE if we are in /x mode |
1297 | utf TRUE if we are in UTF-8 / UTF-16 mode |
1298 | count pointer to the current capturing subpattern number (updated) |
1299 | |
1300 | Returns: the number of the named subpattern, or -1 if not found |
1301 | */ |
1302 | |
1303 | static int |
1304 | find_parens_sub(pcre_uchar **ptrptr, compile_data *cd, const pcre_uchar *name, int lorn, |
1305 | BOOL xmode, BOOL utf, int *count) |
1306 | { |
1307 | pcre_uchar *ptr = *ptrptr; |
1308 | int start_count = *count; |
1309 | int hwm_count = start_count; |
1310 | BOOL dup_parens = FALSE; |
1311 | |
1312 | /* If the first character is a parenthesis, check on the type of group we are |
1313 | dealing with. The very first call may not start with a parenthesis. */ |
1314 | |
1315 | if (ptr[0] == CHAR_LEFT_PARENTHESIS) |
1316 | { |
1317 | /* Handle specials such as (*SKIP) or (*UTF8) etc. */ |
1318 | |
1319 | if (ptr[1] == CHAR_ASTERISK) ptr += 2; |
1320 | |
1321 | /* Handle a normal, unnamed capturing parenthesis. */ |
1322 | |
1323 | else if (ptr[1] != CHAR_QUESTION_MARK) |
1324 | { |
1325 | *count += 1; |
1326 | if (name == NULL && *count == lorn) return *count; |
1327 | ptr++; |
1328 | } |
1329 | |
1330 | /* All cases now have (? at the start. Remember when we are in a group |
1331 | where the parenthesis numbers are duplicated. */ |
1332 | |
1333 | else if (ptr[2] == CHAR_VERTICAL_LINE) |
1334 | { |
1335 | ptr += 3; |
1336 | dup_parens = TRUE; |
1337 | } |
1338 | |
1339 | /* Handle comments; all characters are allowed until a ket is reached. */ |
1340 | |
1341 | else if (ptr[2] == CHAR_NUMBER_SIGN) |
1342 | { |
1343 | for (ptr += 3; *ptr != 0; ptr++) if (*ptr == CHAR_RIGHT_PARENTHESIS) break; |
1344 | goto FAIL_EXIT; |
1345 | } |
1346 | |
1347 | /* Handle a condition. If it is an assertion, just carry on so that it |
1348 | is processed as normal. If not, skip to the closing parenthesis of the |
1349 | condition (there can't be any nested parens). */ |
1350 | |
1351 | else if (ptr[2] == CHAR_LEFT_PARENTHESIS) |
1352 | { |
1353 | ptr += 2; |
1354 | if (ptr[1] != CHAR_QUESTION_MARK) |
1355 | { |
1356 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
1357 | if (*ptr != 0) ptr++; |
1358 | } |
1359 | } |
1360 | |
1361 | /* Start with (? but not a condition. */ |
1362 | |
1363 | else |
1364 | { |
1365 | ptr += 2; |
1366 | if (*ptr == CHAR_P) ptr++; /* Allow optional P */ |
1367 | |
1368 | /* We have to disambiguate (?<! and (?<= from (?<name> for named groups */ |
1369 | |
1370 | if ((*ptr == CHAR_LESS_THAN_SIGN && ptr[1] != CHAR_EXCLAMATION_MARK && |
1371 | ptr[1] != CHAR_EQUALS_SIGN) || *ptr == CHAR_APOSTROPHE) |
1372 | { |
1373 | int term; |
1374 | const pcre_uchar *thisname; |
1375 | *count += 1; |
1376 | if (name == NULL && *count == lorn) return *count; |
1377 | term = *ptr++; |
1378 | if (term == CHAR_LESS_THAN_SIGN) term = CHAR_GREATER_THAN_SIGN; |
1379 | thisname = ptr; |
1380 | while (*ptr != term) ptr++; |
1381 | if (name != NULL && lorn == ptr - thisname && |
1382 | STRNCMP_UC_UC(name, thisname, lorn) == 0) |
1383 | return *count; |
1384 | term++; |
1385 | } |
1386 | } |
1387 | } |
1388 | |
1389 | /* Past any initial parenthesis handling, scan for parentheses or vertical |
1390 | bars. Stop if we get to cd->end_pattern. Note that this is important for the |
1391 | first-pass call when this value is temporarily adjusted to stop at the current |
1392 | position. So DO NOT change this to a test for binary zero. */ |
1393 | |
1394 | for (; ptr < cd->end_pattern; ptr++) |
1395 | { |
1396 | /* Skip over backslashed characters and also entire \Q...\E */ |
1397 | |
1398 | if (*ptr == CHAR_BACKSLASH) |
1399 | { |
1400 | if (*(++ptr) == 0) goto FAIL_EXIT; |
1401 | if (*ptr == CHAR_Q) for (;;) |
1402 | { |
1403 | while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {}; |
1404 | if (*ptr == 0) goto FAIL_EXIT; |
1405 | if (*(++ptr) == CHAR_E) break; |
1406 | } |
1407 | continue; |
1408 | } |
1409 | |
1410 | /* Skip over character classes; this logic must be similar to the way they |
1411 | are handled for real. If the first character is '^', skip it. Also, if the |
1412 | first few characters (either before or after ^) are \Q\E or \E we skip them |
1413 | too. This makes for compatibility with Perl. Note the use of STR macros to |
1414 | encode "Q\\E" so that it works in UTF-8 on EBCDIC platforms. */ |
1415 | |
1416 | if (*ptr == CHAR_LEFT_SQUARE_BRACKET) |
1417 | { |
1418 | BOOL negate_class = FALSE; |
1419 | for (;;) |
1420 | { |
1421 | if (ptr[1] == CHAR_BACKSLASH) |
1422 | { |
1423 | if (ptr[2] == CHAR_E) |
1424 | ptr+= 2; |
1425 | else if (STRNCMP_UC_C8(ptr + 2, |
1426 | STR_Q STR_BACKSLASH STR_E, 3) == 0) |
1427 | ptr += 4; |
1428 | else |
1429 | break; |
1430 | } |
1431 | else if (!negate_class && ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
1432 | { |
1433 | negate_class = TRUE; |
1434 | ptr++; |
1435 | } |
1436 | else break; |
1437 | } |
1438 | |
1439 | /* If the next character is ']', it is a data character that must be |
1440 | skipped, except in JavaScript compatibility mode. */ |
1441 | |
1442 | if (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET && |
1443 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) == 0) |
1444 | ptr++; |
1445 | |
1446 | while (*(++ptr) != CHAR_RIGHT_SQUARE_BRACKET) |
1447 | { |
1448 | if (*ptr == 0) return -1; |
1449 | if (*ptr == CHAR_BACKSLASH) |
1450 | { |
1451 | if (*(++ptr) == 0) goto FAIL_EXIT; |
1452 | if (*ptr == CHAR_Q) for (;;) |
1453 | { |
1454 | while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {}; |
1455 | if (*ptr == 0) goto FAIL_EXIT; |
1456 | if (*(++ptr) == CHAR_E) break; |
1457 | } |
1458 | continue; |
1459 | } |
1460 | } |
1461 | continue; |
1462 | } |
1463 | |
1464 | /* Skip comments in /x mode */ |
1465 | |
1466 | if (xmode && *ptr == CHAR_NUMBER_SIGN) |
1467 | { |
1468 | ptr++; |
1469 | while (*ptr != 0) |
1470 | { |
1471 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; } |
1472 | ptr++; |
1473 | #ifdef SUPPORT_UTF |
1474 | if (utf) FORWARDCHAR(ptr); |
1475 | #endif |
1476 | } |
1477 | if (*ptr == 0) goto FAIL_EXIT; |
1478 | continue; |
1479 | } |
1480 | |
1481 | /* Check for the special metacharacters */ |
1482 | |
1483 | if (*ptr == CHAR_LEFT_PARENTHESIS) |
1484 | { |
1485 | int rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf, count); |
1486 | if (rc > 0) return rc; |
1487 | if (*ptr == 0) goto FAIL_EXIT; |
1488 | } |
1489 | |
1490 | else if (*ptr == CHAR_RIGHT_PARENTHESIS) |
1491 | { |
1492 | if (dup_parens && *count < hwm_count) *count = hwm_count; |
1493 | goto FAIL_EXIT; |
1494 | } |
1495 | |
1496 | else if (*ptr == CHAR_VERTICAL_LINE && dup_parens) |
1497 | { |
1498 | if (*count > hwm_count) hwm_count = *count; |
1499 | *count = start_count; |
1500 | } |
1501 | } |
1502 | |
1503 | FAIL_EXIT: |
1504 | *ptrptr = ptr; |
1505 | return -1; |
1506 | } |
1507 | |
1508 | |
1509 | |
1510 | |
1511 | /************************************************* |
1512 | * Find forward referenced subpattern * |
1513 | *************************************************/ |
1514 | |
1515 | /* This function scans along a pattern's text looking for capturing |
1516 | subpatterns, and counting them. If it finds a named pattern that matches the |
1517 | name it is given, it returns its number. Alternatively, if the name is NULL, it |
1518 | returns when it reaches a given numbered subpattern. This is used for forward |
1519 | references to subpatterns. We used to be able to start this scan from the |
1520 | current compiling point, using the current count value from cd->bracount, and |
1521 | do it all in a single loop, but the addition of the possibility of duplicate |
1522 | subpattern numbers means that we have to scan from the very start, in order to |
1523 | take account of such duplicates, and to use a recursive function to keep track |
1524 | of the different types of group. |
1525 | |
1526 | Arguments: |
1527 | cd compile background data |
1528 | name name to seek, or NULL if seeking a numbered subpattern |
1529 | lorn name length, or subpattern number if name is NULL |
1530 | xmode TRUE if we are in /x mode |
1531 | utf TRUE if we are in UTF-8 / UTF-16 mode |
1532 | |
1533 | Returns: the number of the found subpattern, or -1 if not found |
1534 | */ |
1535 | |
1536 | static int |
1537 | find_parens(compile_data *cd, const pcre_uchar *name, int lorn, BOOL xmode, |
1538 | BOOL utf) |
1539 | { |
1540 | pcre_uchar *ptr = (pcre_uchar *)cd->start_pattern; |
1541 | int count = 0; |
1542 | int rc; |
1543 | |
1544 | /* If the pattern does not start with an opening parenthesis, the first call |
1545 | to find_parens_sub() will scan right to the end (if necessary). However, if it |
1546 | does start with a parenthesis, find_parens_sub() will return when it hits the |
1547 | matching closing parens. That is why we have to have a loop. */ |
1548 | |
1549 | for (;;) |
1550 | { |
1551 | rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf, &count); |
1552 | if (rc > 0 || *ptr++ == 0) break; |
1553 | } |
1554 | |
1555 | return rc; |
1556 | } |
1557 | |
1558 | |
1559 | |
1560 | |
1561 | /************************************************* |
1562 | * Find first significant op code * |
1563 | *************************************************/ |
1564 | |
1565 | /* This is called by several functions that scan a compiled expression looking |
1566 | for a fixed first character, or an anchoring op code etc. It skips over things |
1567 | that do not influence this. For some calls, it makes sense to skip negative |
1568 | forward and all backward assertions, and also the \b assertion; for others it |
1569 | does not. |
1570 | |
1571 | Arguments: |
1572 | code pointer to the start of the group |
1573 | skipassert TRUE if certain assertions are to be skipped |
1574 | |
1575 | Returns: pointer to the first significant opcode |
1576 | */ |
1577 | |
1578 | static const pcre_uchar* |
1579 | first_significant_code(const pcre_uchar *code, BOOL skipassert) |
1580 | { |
1581 | for (;;) |
1582 | { |
1583 | switch ((int)*code) |
1584 | { |
1585 | case OP_ASSERT_NOT: |
1586 | case OP_ASSERTBACK: |
1587 | case OP_ASSERTBACK_NOT: |
1588 | if (!skipassert) return code; |
1589 | do code += GET(code, 1); while (*code == OP_ALT); |
1590 | code += PRIV(OP_lengths)[*code]; |
1591 | break; |
1592 | |
1593 | case OP_WORD_BOUNDARY: |
1594 | case OP_NOT_WORD_BOUNDARY: |
1595 | if (!skipassert) return code; |
1596 | /* Fall through */ |
1597 | |
1598 | case OP_CALLOUT: |
1599 | case OP_CREF: |
1600 | case OP_NCREF: |
1601 | case OP_RREF: |
1602 | case OP_NRREF: |
1603 | case OP_DEF: |
1604 | code += PRIV(OP_lengths)[*code]; |
1605 | break; |
1606 | |
1607 | default: |
1608 | return code; |
1609 | } |
1610 | } |
1611 | /* Control never reaches here */ |
1612 | } |
1613 | |
1614 | |
1615 | |
1616 | |
1617 | /************************************************* |
1618 | * Find the fixed length of a branch * |
1619 | *************************************************/ |
1620 | |
1621 | /* Scan a branch and compute the fixed length of subject that will match it, |
1622 | if the length is fixed. This is needed for dealing with backward assertions. |
1623 | In UTF8 mode, the result is in characters rather than bytes. The branch is |
1624 | temporarily terminated with OP_END when this function is called. |
1625 | |
1626 | This function is called when a backward assertion is encountered, so that if it |
1627 | fails, the error message can point to the correct place in the pattern. |
1628 | However, we cannot do this when the assertion contains subroutine calls, |
1629 | because they can be forward references. We solve this by remembering this case |
1630 | and doing the check at the end; a flag specifies which mode we are running in. |
1631 | |
1632 | Arguments: |
1633 | code points to the start of the pattern (the bracket) |
1634 | utf TRUE in UTF-8 / UTF-16 mode |
1635 | atend TRUE if called when the pattern is complete |
1636 | cd the "compile data" structure |
1637 | |
1638 | Returns: the fixed length, |
1639 | or -1 if there is no fixed length, |
1640 | or -2 if \C was encountered (in UTF-8 mode only) |
1641 | or -3 if an OP_RECURSE item was encountered and atend is FALSE |
1642 | or -4 if an unknown opcode was encountered (internal error) |
1643 | */ |
1644 | |
1645 | static int |
1646 | find_fixedlength(pcre_uchar *code, BOOL utf, BOOL atend, compile_data *cd) |
1647 | { |
1648 | int length = -1; |
1649 | |
1650 | register int branchlength = 0; |
1651 | register pcre_uchar *cc = code + 1 + LINK_SIZE; |
1652 | |
1653 | /* Scan along the opcodes for this branch. If we get to the end of the |
1654 | branch, check the length against that of the other branches. */ |
1655 | |
1656 | for (;;) |
1657 | { |
1658 | int d; |
1659 | pcre_uchar *ce, *cs; |
1660 | register int op = *cc; |
1661 | switch (op) |
1662 | { |
1663 | /* We only need to continue for OP_CBRA (normal capturing bracket) and |
1664 | OP_BRA (normal non-capturing bracket) because the other variants of these |
1665 | opcodes are all concerned with unlimited repeated groups, which of course |
1666 | are not of fixed length. */ |
1667 | |
1668 | case OP_CBRA: |
1669 | case OP_BRA: |
1670 | case OP_ONCE: |
1671 | case OP_ONCE_NC: |
1672 | case OP_COND: |
1673 | d = find_fixedlength(cc + ((op == OP_CBRA)? IMM2_SIZE : 0), utf, atend, cd); |
1674 | if (d < 0) return d; |
1675 | branchlength += d; |
1676 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1677 | cc += 1 + LINK_SIZE; |
1678 | break; |
1679 | |
1680 | /* Reached end of a branch; if it's a ket it is the end of a nested call. |
1681 | If it's ALT it is an alternation in a nested call. An ACCEPT is effectively |
1682 | an ALT. If it is END it's the end of the outer call. All can be handled by |
1683 | the same code. Note that we must not include the OP_KETRxxx opcodes here, |
1684 | because they all imply an unlimited repeat. */ |
1685 | |
1686 | case OP_ALT: |
1687 | case OP_KET: |
1688 | case OP_END: |
1689 | case OP_ACCEPT: |
1690 | case OP_ASSERT_ACCEPT: |
1691 | if (length < 0) length = branchlength; |
1692 | else if (length != branchlength) return -1; |
1693 | if (*cc != OP_ALT) return length; |
1694 | cc += 1 + LINK_SIZE; |
1695 | branchlength = 0; |
1696 | break; |
1697 | |
1698 | /* A true recursion implies not fixed length, but a subroutine call may |
1699 | be OK. If the subroutine is a forward reference, we can't deal with |
1700 | it until the end of the pattern, so return -3. */ |
1701 | |
1702 | case OP_RECURSE: |
1703 | if (!atend) return -3; |
1704 | cs = ce = (pcre_uchar *)cd->start_code + GET(cc, 1); /* Start subpattern */ |
1705 | do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */ |
1706 | if (cc > cs && cc < ce) return -1; /* Recursion */ |
1707 | d = find_fixedlength(cs + 2, utf, atend, cd); |
1708 | if (d < 0) return d; |
1709 | branchlength += d; |
1710 | cc += 1 + LINK_SIZE; |
1711 | break; |
1712 | |
1713 | /* Skip over assertive subpatterns */ |
1714 | |
1715 | case OP_ASSERT: |
1716 | case OP_ASSERT_NOT: |
1717 | case OP_ASSERTBACK: |
1718 | case OP_ASSERTBACK_NOT: |
1719 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1720 | /* Fall through */ |
1721 | |
1722 | /* Skip over things that don't match chars */ |
1723 | |
1724 | case OP_MARK: |
1725 | case OP_PRUNE_ARG: |
1726 | case OP_SKIP_ARG: |
1727 | case OP_THEN_ARG: |
1728 | cc += cc[1] + PRIV(OP_lengths)[*cc]; |
1729 | break; |
1730 | |
1731 | case OP_CALLOUT: |
1732 | case OP_CIRC: |
1733 | case OP_CIRCM: |
1734 | case OP_CLOSE: |
1735 | case OP_COMMIT: |
1736 | case OP_CREF: |
1737 | case OP_DEF: |
1738 | case OP_DOLL: |
1739 | case OP_DOLLM: |
1740 | case OP_EOD: |
1741 | case OP_EODN: |
1742 | case OP_FAIL: |
1743 | case OP_NCREF: |
1744 | case OP_NRREF: |
1745 | case OP_NOT_WORD_BOUNDARY: |
1746 | case OP_PRUNE: |
1747 | case OP_REVERSE: |
1748 | case OP_RREF: |
1749 | case OP_SET_SOM: |
1750 | case OP_SKIP: |
1751 | case OP_SOD: |
1752 | case OP_SOM: |
1753 | case OP_THEN: |
1754 | case OP_WORD_BOUNDARY: |
1755 | cc += PRIV(OP_lengths)[*cc]; |
1756 | break; |
1757 | |
1758 | /* Handle literal characters */ |
1759 | |
1760 | case OP_CHAR: |
1761 | case OP_CHARI: |
1762 | case OP_NOT: |
1763 | case OP_NOTI: |
1764 | branchlength++; |
1765 | cc += 2; |
1766 | #ifdef SUPPORT_UTF |
1767 | if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]); |
1768 | #endif |
1769 | break; |
1770 | |
1771 | /* Handle exact repetitions. The count is already in characters, but we |
1772 | need to skip over a multibyte character in UTF8 mode. */ |
1773 | |
1774 | case OP_EXACT: |
1775 | case OP_EXACTI: |
1776 | case OP_NOTEXACT: |
1777 | case OP_NOTEXACTI: |
1778 | branchlength += GET2(cc,1); |
1779 | cc += 2 + IMM2_SIZE; |
1780 | #ifdef SUPPORT_UTF |
1781 | if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]); |
1782 | #endif |
1783 | break; |
1784 | |
1785 | case OP_TYPEEXACT: |
1786 | branchlength += GET2(cc,1); |
1787 | if (cc[1 + IMM2_SIZE] == OP_PROP || cc[1 + IMM2_SIZE] == OP_NOTPROP) cc += 2; |
1788 | cc += 1 + IMM2_SIZE + 1; |
1789 | break; |
1790 | |
1791 | /* Handle single-char matchers */ |
1792 | |
1793 | case OP_PROP: |
1794 | case OP_NOTPROP: |
1795 | cc += 2; |
1796 | /* Fall through */ |
1797 | |
1798 | case OP_HSPACE: |
1799 | case OP_VSPACE: |
1800 | case OP_NOT_HSPACE: |
1801 | case OP_NOT_VSPACE: |
1802 | case OP_NOT_DIGIT: |
1803 | case OP_DIGIT: |
1804 | case OP_NOT_WHITESPACE: |
1805 | case OP_WHITESPACE: |
1806 | case OP_NOT_WORDCHAR: |
1807 | case OP_WORDCHAR: |
1808 | case OP_ANY: |
1809 | case OP_ALLANY: |
1810 | branchlength++; |
1811 | cc++; |
1812 | break; |
1813 | |
1814 | /* The single-byte matcher isn't allowed. This only happens in UTF-8 mode; |
1815 | otherwise \C is coded as OP_ALLANY. */ |
1816 | |
1817 | case OP_ANYBYTE: |
1818 | return -2; |
1819 | |
1820 | /* Check a class for variable quantification */ |
1821 | |
1822 | #if defined SUPPORT_UTF || defined COMPILE_PCRE16 |
1823 | case OP_XCLASS: |
1824 | cc += GET(cc, 1) - PRIV(OP_lengths)[OP_CLASS]; |
1825 | /* Fall through */ |
1826 | #endif |
1827 | |
1828 | case OP_CLASS: |
1829 | case OP_NCLASS: |
1830 | cc += PRIV(OP_lengths)[OP_CLASS]; |
1831 | |
1832 | switch (*cc) |
1833 | { |
1834 | case OP_CRPLUS: |
1835 | case OP_CRMINPLUS: |
1836 | case OP_CRSTAR: |
1837 | case OP_CRMINSTAR: |
1838 | case OP_CRQUERY: |
1839 | case OP_CRMINQUERY: |
1840 | return -1; |
1841 | |
1842 | case OP_CRRANGE: |
1843 | case OP_CRMINRANGE: |
1844 | if (GET2(cc,1) != GET2(cc,1+IMM2_SIZE)) return -1; |
1845 | branchlength += GET2(cc,1); |
1846 | cc += 1 + 2 * IMM2_SIZE; |
1847 | break; |
1848 | |
1849 | default: |
1850 | branchlength++; |
1851 | } |
1852 | break; |
1853 | |
1854 | /* Anything else is variable length */ |
1855 | |
1856 | case OP_ANYNL: |
1857 | case OP_BRAMINZERO: |
1858 | case OP_BRAPOS: |
1859 | case OP_BRAPOSZERO: |
1860 | case OP_BRAZERO: |
1861 | case OP_CBRAPOS: |
1862 | case OP_EXTUNI: |
1863 | case OP_KETRMAX: |
1864 | case OP_KETRMIN: |
1865 | case OP_KETRPOS: |
1866 | case OP_MINPLUS: |
1867 | case OP_MINPLUSI: |
1868 | case OP_MINQUERY: |
1869 | case OP_MINQUERYI: |
1870 | case OP_MINSTAR: |
1871 | case OP_MINSTARI: |
1872 | case OP_MINUPTO: |
1873 | case OP_MINUPTOI: |
1874 | case OP_NOTMINPLUS: |
1875 | case OP_NOTMINPLUSI: |
1876 | case OP_NOTMINQUERY: |
1877 | case OP_NOTMINQUERYI: |
1878 | case OP_NOTMINSTAR: |
1879 | case OP_NOTMINSTARI: |
1880 | case OP_NOTMINUPTO: |
1881 | case OP_NOTMINUPTOI: |
1882 | case OP_NOTPLUS: |
1883 | case OP_NOTPLUSI: |
1884 | case OP_NOTPOSPLUS: |
1885 | case OP_NOTPOSPLUSI: |
1886 | case OP_NOTPOSQUERY: |
1887 | case OP_NOTPOSQUERYI: |
1888 | case OP_NOTPOSSTAR: |
1889 | case OP_NOTPOSSTARI: |
1890 | case OP_NOTPOSUPTO: |
1891 | case OP_NOTPOSUPTOI: |
1892 | case OP_NOTQUERY: |
1893 | case OP_NOTQUERYI: |
1894 | case OP_NOTSTAR: |
1895 | case OP_NOTSTARI: |
1896 | case OP_NOTUPTO: |
1897 | case OP_NOTUPTOI: |
1898 | case OP_PLUS: |
1899 | case OP_PLUSI: |
1900 | case OP_POSPLUS: |
1901 | case OP_POSPLUSI: |
1902 | case OP_POSQUERY: |
1903 | case OP_POSQUERYI: |
1904 | case OP_POSSTAR: |
1905 | case OP_POSSTARI: |
1906 | case OP_POSUPTO: |
1907 | case OP_POSUPTOI: |
1908 | case OP_QUERY: |
1909 | case OP_QUERYI: |
1910 | case OP_REF: |
1911 | case OP_REFI: |
1912 | case OP_SBRA: |
1913 | case OP_SBRAPOS: |
1914 | case OP_SCBRA: |
1915 | case OP_SCBRAPOS: |
1916 | case OP_SCOND: |
1917 | case OP_SKIPZERO: |
1918 | case OP_STAR: |
1919 | case OP_STARI: |
1920 | case OP_TYPEMINPLUS: |
1921 | case OP_TYPEMINQUERY: |
1922 | case OP_TYPEMINSTAR: |
1923 | case OP_TYPEMINUPTO: |
1924 | case OP_TYPEPLUS: |
1925 | case OP_TYPEPOSPLUS: |
1926 | case OP_TYPEPOSQUERY: |
1927 | case OP_TYPEPOSSTAR: |
1928 | case OP_TYPEPOSUPTO: |
1929 | case OP_TYPEQUERY: |
1930 | case OP_TYPESTAR: |
1931 | case OP_TYPEUPTO: |
1932 | case OP_UPTO: |
1933 | case OP_UPTOI: |
1934 | return -1; |
1935 | |
1936 | /* Catch unrecognized opcodes so that when new ones are added they |
1937 | are not forgotten, as has happened in the past. */ |
1938 | |
1939 | default: |
1940 | return -4; |
1941 | } |
1942 | } |
1943 | /* Control never gets here */ |
1944 | } |
1945 | |
1946 | |
1947 | |
1948 | |
1949 | /************************************************* |
1950 | * Scan compiled regex for specific bracket * |
1951 | *************************************************/ |
1952 | |
1953 | /* This little function scans through a compiled pattern until it finds a |
1954 | capturing bracket with the given number, or, if the number is negative, an |
1955 | instance of OP_REVERSE for a lookbehind. The function is global in the C sense |
1956 | so that it can be called from pcre_study() when finding the minimum matching |
1957 | length. |
1958 | |
1959 | Arguments: |
1960 | code points to start of expression |
1961 | utf TRUE in UTF-8 / UTF-16 mode |
1962 | number the required bracket number or negative to find a lookbehind |
1963 | |
1964 | Returns: pointer to the opcode for the bracket, or NULL if not found |
1965 | */ |
1966 | |
1967 | const pcre_uchar * |
1968 | PRIV(find_bracket)(const pcre_uchar *code, BOOL utf, int number) |
1969 | { |
1970 | for (;;) |
1971 | { |
1972 | register int c = *code; |
1973 | |
1974 | if (c == OP_END) return NULL; |
1975 | |
1976 | /* XCLASS is used for classes that cannot be represented just by a bit |
1977 | map. This includes negated single high-valued characters. The length in |
1978 | the table is zero; the actual length is stored in the compiled code. */ |
1979 | |
1980 | if (c == OP_XCLASS) code += GET(code, 1); |
1981 | |
1982 | /* Handle recursion */ |
1983 | |
1984 | else if (c == OP_REVERSE) |
1985 | { |
1986 | if (number < 0) return (pcre_uchar *)code; |
1987 | code += PRIV(OP_lengths)[c]; |
1988 | } |
1989 | |
1990 | /* Handle capturing bracket */ |
1991 | |
1992 | else if (c == OP_CBRA || c == OP_SCBRA || |
1993 | c == OP_CBRAPOS || c == OP_SCBRAPOS) |
1994 | { |
1995 | int n = GET2(code, 1+LINK_SIZE); |
1996 | if (n == number) return (pcre_uchar *)code; |
1997 | code += PRIV(OP_lengths)[c]; |
1998 | } |
1999 | |
2000 | /* Otherwise, we can get the item's length from the table, except that for |
2001 | repeated character types, we have to test for \p and \P, which have an extra |
2002 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
2003 | must add in its length. */ |
2004 | |
2005 | else |
2006 | { |
2007 | switch(c) |
2008 | { |
2009 | case OP_TYPESTAR: |
2010 | case OP_TYPEMINSTAR: |
2011 | case OP_TYPEPLUS: |
2012 | case OP_TYPEMINPLUS: |
2013 | case OP_TYPEQUERY: |
2014 | case OP_TYPEMINQUERY: |
2015 | case OP_TYPEPOSSTAR: |
2016 | case OP_TYPEPOSPLUS: |
2017 | case OP_TYPEPOSQUERY: |
2018 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2019 | break; |
2020 | |
2021 | case OP_TYPEUPTO: |
2022 | case OP_TYPEMINUPTO: |
2023 | case OP_TYPEEXACT: |
2024 | case OP_TYPEPOSUPTO: |
2025 | if (code[1 + IMM2_SIZE] == OP_PROP |
2026 | || code[1 + IMM2_SIZE] == OP_NOTPROP) code += 2; |
2027 | break; |
2028 | |
2029 | case OP_MARK: |
2030 | case OP_PRUNE_ARG: |
2031 | case OP_SKIP_ARG: |
2032 | code += code[1]; |
2033 | break; |
2034 | |
2035 | case OP_THEN_ARG: |
2036 | code += code[1]; |
2037 | break; |
2038 | } |
2039 | |
2040 | /* Add in the fixed length from the table */ |
2041 | |
2042 | code += PRIV(OP_lengths)[c]; |
2043 | |
2044 | /* In UTF-8 mode, opcodes that are followed by a character may be followed by |
2045 | a multi-byte character. The length in the table is a minimum, so we have to |
2046 | arrange to skip the extra bytes. */ |
2047 | |
2048 | #ifdef SUPPORT_UTF |
2049 | if (utf) switch(c) |
2050 | { |
2051 | case OP_CHAR: |
2052 | case OP_CHARI: |
2053 | case OP_EXACT: |
2054 | case OP_EXACTI: |
2055 | case OP_UPTO: |
2056 | case OP_UPTOI: |
2057 | case OP_MINUPTO: |
2058 | case OP_MINUPTOI: |
2059 | case OP_POSUPTO: |
2060 | case OP_POSUPTOI: |
2061 | case OP_STAR: |
2062 | case OP_STARI: |
2063 | case OP_MINSTAR: |
2064 | case OP_MINSTARI: |
2065 | case OP_POSSTAR: |
2066 | case OP_POSSTARI: |
2067 | case OP_PLUS: |
2068 | case OP_PLUSI: |
2069 | case OP_MINPLUS: |
2070 | case OP_MINPLUSI: |
2071 | case OP_POSPLUS: |
2072 | case OP_POSPLUSI: |
2073 | case OP_QUERY: |
2074 | case OP_QUERYI: |
2075 | case OP_MINQUERY: |
2076 | case OP_MINQUERYI: |
2077 | case OP_POSQUERY: |
2078 | case OP_POSQUERYI: |
2079 | if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]); |
2080 | break; |
2081 | } |
2082 | #else |
2083 | (void)(utf); /* Keep compiler happy by referencing function argument */ |
2084 | #endif |
2085 | } |
2086 | } |
2087 | } |
2088 | |
2089 | |
2090 | |
2091 | /************************************************* |
2092 | * Scan compiled regex for recursion reference * |
2093 | *************************************************/ |
2094 | |
2095 | /* This little function scans through a compiled pattern until it finds an |
2096 | instance of OP_RECURSE. |
2097 | |
2098 | Arguments: |
2099 | code points to start of expression |
2100 | utf TRUE in UTF-8 / UTF-16 mode |
2101 | |
2102 | Returns: pointer to the opcode for OP_RECURSE, or NULL if not found |
2103 | */ |
2104 | |
2105 | static const pcre_uchar * |
2106 | find_recurse(const pcre_uchar *code, BOOL utf) |
2107 | { |
2108 | for (;;) |
2109 | { |
2110 | register int c = *code; |
2111 | if (c == OP_END) return NULL; |
2112 | if (c == OP_RECURSE) return code; |
2113 | |
2114 | /* XCLASS is used for classes that cannot be represented just by a bit |
2115 | map. This includes negated single high-valued characters. The length in |
2116 | the table is zero; the actual length is stored in the compiled code. */ |
2117 | |
2118 | if (c == OP_XCLASS) code += GET(code, 1); |
2119 | |
2120 | /* Otherwise, we can get the item's length from the table, except that for |
2121 | repeated character types, we have to test for \p and \P, which have an extra |
2122 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
2123 | must add in its length. */ |
2124 | |
2125 | else |
2126 | { |
2127 | switch(c) |
2128 | { |
2129 | case OP_TYPESTAR: |
2130 | case OP_TYPEMINSTAR: |
2131 | case OP_TYPEPLUS: |
2132 | case OP_TYPEMINPLUS: |
2133 | case OP_TYPEQUERY: |
2134 | case OP_TYPEMINQUERY: |
2135 | case OP_TYPEPOSSTAR: |
2136 | case OP_TYPEPOSPLUS: |
2137 | case OP_TYPEPOSQUERY: |
2138 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2139 | break; |
2140 | |
2141 | case OP_TYPEPOSUPTO: |
2142 | case OP_TYPEUPTO: |
2143 | case OP_TYPEMINUPTO: |
2144 | case OP_TYPEEXACT: |
2145 | if (code[1 + IMM2_SIZE] == OP_PROP |
2146 | || code[1 + IMM2_SIZE] == OP_NOTPROP) code += 2; |
2147 | break; |
2148 | |
2149 | case OP_MARK: |
2150 | case OP_PRUNE_ARG: |
2151 | case OP_SKIP_ARG: |
2152 | code += code[1]; |
2153 | break; |
2154 | |
2155 | case OP_THEN_ARG: |
2156 | code += code[1]; |
2157 | break; |
2158 | } |
2159 | |
2160 | /* Add in the fixed length from the table */ |
2161 | |
2162 | code += PRIV(OP_lengths)[c]; |
2163 | |
2164 | /* In UTF-8 mode, opcodes that are followed by a character may be followed |
2165 | by a multi-byte character. The length in the table is a minimum, so we have |
2166 | to arrange to skip the extra bytes. */ |
2167 | |
2168 | #ifdef SUPPORT_UTF |
2169 | if (utf) switch(c) |
2170 | { |
2171 | case OP_CHAR: |
2172 | case OP_CHARI: |
2173 | case OP_EXACT: |
2174 | case OP_EXACTI: |
2175 | case OP_UPTO: |
2176 | case OP_UPTOI: |
2177 | case OP_MINUPTO: |
2178 | case OP_MINUPTOI: |
2179 | case OP_POSUPTO: |
2180 | case OP_POSUPTOI: |
2181 | case OP_STAR: |
2182 | case OP_STARI: |
2183 | case OP_MINSTAR: |
2184 | case OP_MINSTARI: |
2185 | case OP_POSSTAR: |
2186 | case OP_POSSTARI: |
2187 | case OP_PLUS: |
2188 | case OP_PLUSI: |
2189 | case OP_MINPLUS: |
2190 | case OP_MINPLUSI: |
2191 | case OP_POSPLUS: |
2192 | case OP_POSPLUSI: |
2193 | case OP_QUERY: |
2194 | case OP_QUERYI: |
2195 | case OP_MINQUERY: |
2196 | case OP_MINQUERYI: |
2197 | case OP_POSQUERY: |
2198 | case OP_POSQUERYI: |
2199 | if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]); |
2200 | break; |
2201 | } |
2202 | #else |
2203 | (void)(utf); /* Keep compiler happy by referencing function argument */ |
2204 | #endif |
2205 | } |
2206 | } |
2207 | } |
2208 | |
2209 | |
2210 | |
2211 | /************************************************* |
2212 | * Scan compiled branch for non-emptiness * |
2213 | *************************************************/ |
2214 | |
2215 | /* This function scans through a branch of a compiled pattern to see whether it |
2216 | can match the empty string or not. It is called from could_be_empty() |
2217 | below and from compile_branch() when checking for an unlimited repeat of a |
2218 | group that can match nothing. Note that first_significant_code() skips over |
2219 | backward and negative forward assertions when its final argument is TRUE. If we |
2220 | hit an unclosed bracket, we return "empty" - this means we've struck an inner |
2221 | bracket whose current branch will already have been scanned. |
2222 | |
2223 | Arguments: |
2224 | code points to start of search |
2225 | endcode points to where to stop |
2226 | utf TRUE if in UTF-8 / UTF-16 mode |
2227 | cd contains pointers to tables etc. |
2228 | |
2229 | Returns: TRUE if what is matched could be empty |
2230 | */ |
2231 | |
2232 | static BOOL |
2233 | could_be_empty_branch(const pcre_uchar *code, const pcre_uchar *endcode, |
2234 | BOOL utf, compile_data *cd) |
2235 | { |
2236 | register int c; |
2237 | for (code = first_significant_code(code + PRIV(OP_lengths)[*code], TRUE); |
2238 | code < endcode; |
2239 | code = first_significant_code(code + PRIV(OP_lengths)[c], TRUE)) |
2240 | { |
2241 | const pcre_uchar *ccode; |
2242 | |
2243 | c = *code; |
2244 | |
2245 | /* Skip over forward assertions; the other assertions are skipped by |
2246 | first_significant_code() with a TRUE final argument. */ |
2247 | |
2248 | if (c == OP_ASSERT) |
2249 | { |
2250 | do code += GET(code, 1); while (*code == OP_ALT); |
2251 | c = *code; |
2252 | continue; |
2253 | } |
2254 | |
2255 | /* For a recursion/subroutine call, if its end has been reached, which |
2256 | implies a backward reference subroutine call, we can scan it. If it's a |
2257 | forward reference subroutine call, we can't. To detect forward reference |
2258 | we have to scan up the list that is kept in the workspace. This function is |
2259 | called only when doing the real compile, not during the pre-compile that |
2260 | measures the size of the compiled pattern. */ |
2261 | |
2262 | if (c == OP_RECURSE) |
2263 | { |
2264 | const pcre_uchar *scode; |
2265 | BOOL empty_branch; |
2266 | |
2267 | /* Test for forward reference */ |
2268 | |
2269 | for (scode = cd->start_workspace; scode < cd->hwm; scode += LINK_SIZE) |
2270 | if (GET(scode, 0) == code + 1 - cd->start_code) return TRUE; |
2271 | |
2272 | /* Not a forward reference, test for completed backward reference */ |
2273 | |
2274 | empty_branch = FALSE; |
2275 | scode = cd->start_code + GET(code, 1); |
2276 | if (GET(scode, 1) == 0) return TRUE; /* Unclosed */ |
2277 | |
2278 | /* Completed backwards reference */ |
2279 | |
2280 | do |
2281 | { |
2282 | if (could_be_empty_branch(scode, endcode, utf, cd)) |
2283 | { |
2284 | empty_branch = TRUE; |
2285 | break; |
2286 | } |
2287 | scode += GET(scode, 1); |
2288 | } |
2289 | while (*scode == OP_ALT); |
2290 | |
2291 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
2292 | continue; |
2293 | } |
2294 | |
2295 | /* Groups with zero repeats can of course be empty; skip them. */ |
2296 | |
2297 | if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO || |
2298 | c == OP_BRAPOSZERO) |
2299 | { |
2300 | code += PRIV(OP_lengths)[c]; |
2301 | do code += GET(code, 1); while (*code == OP_ALT); |
2302 | c = *code; |
2303 | continue; |
2304 | } |
2305 | |
2306 | /* A nested group that is already marked as "could be empty" can just be |
2307 | skipped. */ |
2308 | |
2309 | if (c == OP_SBRA || c == OP_SBRAPOS || |
2310 | c == OP_SCBRA || c == OP_SCBRAPOS) |
2311 | { |
2312 | do code += GET(code, 1); while (*code == OP_ALT); |
2313 | c = *code; |
2314 | continue; |
2315 | } |
2316 | |
2317 | /* For other groups, scan the branches. */ |
2318 | |
2319 | if (c == OP_BRA || c == OP_BRAPOS || |
2320 | c == OP_CBRA || c == OP_CBRAPOS || |
2321 | c == OP_ONCE || c == OP_ONCE_NC || |
2322 | c == OP_COND) |
2323 | { |
2324 | BOOL empty_branch; |
2325 | if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */ |
2326 | |
2327 | /* If a conditional group has only one branch, there is a second, implied, |
2328 | empty branch, so just skip over the conditional, because it could be empty. |
2329 | Otherwise, scan the individual branches of the group. */ |
2330 | |
2331 | if (c == OP_COND && code[GET(code, 1)] != OP_ALT) |
2332 | code += GET(code, 1); |
2333 | else |
2334 | { |
2335 | empty_branch = FALSE; |
2336 | do |
2337 | { |
2338 | if (!empty_branch && could_be_empty_branch(code, endcode, utf, cd)) |
2339 | empty_branch = TRUE; |
2340 | code += GET(code, 1); |
2341 | } |
2342 | while (*code == OP_ALT); |
2343 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
2344 | } |
2345 | |
2346 | c = *code; |
2347 | continue; |
2348 | } |
2349 | |
2350 | /* Handle the other opcodes */ |
2351 | |
2352 | switch (c) |
2353 | { |
2354 | /* Check for quantifiers after a class. XCLASS is used for classes that |
2355 | cannot be represented just by a bit map. This includes negated single |
2356 | high-valued characters. The length in PRIV(OP_lengths)[] is zero; the |
2357 | actual length is stored in the compiled code, so we must update "code" |
2358 | here. */ |
2359 | |
2360 | #ifdef SUPPORT_UTF8 |
2361 | case OP_XCLASS: |
2362 | ccode = code += GET(code, 1); |
2363 | goto CHECK_CLASS_REPEAT; |
2364 | #endif |
2365 | |
2366 | case OP_CLASS: |
2367 | case OP_NCLASS: |
2368 | ccode = code + PRIV(OP_lengths)[OP_CLASS]; |
2369 | |
2370 | #ifdef SUPPORT_UTF8 |
2371 | CHECK_CLASS_REPEAT: |
2372 | #endif |
2373 | |
2374 | switch (*ccode) |
2375 | { |
2376 | case OP_CRSTAR: /* These could be empty; continue */ |
2377 | case OP_CRMINSTAR: |
2378 | case OP_CRQUERY: |
2379 | case OP_CRMINQUERY: |
2380 | break; |
2381 | |
2382 | default: /* Non-repeat => class must match */ |
2383 | case OP_CRPLUS: /* These repeats aren't empty */ |
2384 | case OP_CRMINPLUS: |
2385 | return FALSE; |
2386 | |
2387 | case OP_CRRANGE: |
2388 | case OP_CRMINRANGE: |
2389 | if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */ |
2390 | break; |
2391 | } |
2392 | break; |
2393 | |
2394 | /* Opcodes that must match a character */ |
2395 | |
2396 | case OP_PROP: |
2397 | case OP_NOTPROP: |
2398 | case OP_EXTUNI: |
2399 | case OP_NOT_DIGIT: |
2400 | case OP_DIGIT: |
2401 | case OP_NOT_WHITESPACE: |
2402 | case OP_WHITESPACE: |
2403 | case OP_NOT_WORDCHAR: |
2404 | case OP_WORDCHAR: |
2405 | case OP_ANY: |
2406 | case OP_ALLANY: |
2407 | case OP_ANYBYTE: |
2408 | case OP_CHAR: |
2409 | case OP_CHARI: |
2410 | case OP_NOT: |
2411 | case OP_NOTI: |
2412 | case OP_PLUS: |
2413 | case OP_MINPLUS: |
2414 | case OP_POSPLUS: |
2415 | case OP_EXACT: |
2416 | case OP_NOTPLUS: |
2417 | case OP_NOTMINPLUS: |
2418 | case OP_NOTPOSPLUS: |
2419 | case OP_NOTEXACT: |
2420 | case OP_TYPEPLUS: |
2421 | case OP_TYPEMINPLUS: |
2422 | case OP_TYPEPOSPLUS: |
2423 | case OP_TYPEEXACT: |
2424 | return FALSE; |
2425 | |
2426 | /* These are going to continue, as they may be empty, but we have to |
2427 | fudge the length for the \p and \P cases. */ |
2428 | |
2429 | case OP_TYPESTAR: |
2430 | case OP_TYPEMINSTAR: |
2431 | case OP_TYPEPOSSTAR: |
2432 | case OP_TYPEQUERY: |
2433 | case OP_TYPEMINQUERY: |
2434 | case OP_TYPEPOSQUERY: |
2435 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2436 | break; |
2437 | |
2438 | /* Same for these */ |
2439 | |
2440 | case OP_TYPEUPTO: |
2441 | case OP_TYPEMINUPTO: |
2442 | case OP_TYPEPOSUPTO: |
2443 | if (code[1 + IMM2_SIZE] == OP_PROP |
2444 | || code[1 + IMM2_SIZE] == OP_NOTPROP) code += 2; |
2445 | break; |
2446 | |
2447 | /* End of branch */ |
2448 | |
2449 | case OP_KET: |
2450 | case OP_KETRMAX: |
2451 | case OP_KETRMIN: |
2452 | case OP_KETRPOS: |
2453 | case OP_ALT: |
2454 | return TRUE; |
2455 | |
2456 | /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO, |
2457 | MINUPTO, and POSUPTO may be followed by a multibyte character */ |
2458 | |
2459 | #ifdef SUPPORT_UTF |
2460 | case OP_STAR: |
2461 | case OP_STARI: |
2462 | case OP_MINSTAR: |
2463 | case OP_MINSTARI: |
2464 | case OP_POSSTAR: |
2465 | case OP_POSSTARI: |
2466 | case OP_QUERY: |
2467 | case OP_QUERYI: |
2468 | case OP_MINQUERY: |
2469 | case OP_MINQUERYI: |
2470 | case OP_POSQUERY: |
2471 | case OP_POSQUERYI: |
2472 | if (utf && HAS_EXTRALEN(code[1])) code += GET_EXTRALEN(code[1]); |
2473 | break; |
2474 | |
2475 | case OP_UPTO: |
2476 | case OP_UPTOI: |
2477 | case OP_MINUPTO: |
2478 | case OP_MINUPTOI: |
2479 | case OP_POSUPTO: |
2480 | case OP_POSUPTOI: |
2481 | if (utf && HAS_EXTRALEN(code[1 + IMM2_SIZE])) code += GET_EXTRALEN(code[1 + IMM2_SIZE]); |
2482 | break; |
2483 | #endif |
2484 | |
2485 | /* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument |
2486 | string. */ |
2487 | |
2488 | case OP_MARK: |
2489 | case OP_PRUNE_ARG: |
2490 | case OP_SKIP_ARG: |
2491 | code += code[1]; |
2492 | break; |
2493 | |
2494 | case OP_THEN_ARG: |
2495 | code += code[1]; |
2496 | break; |
2497 | |
2498 | /* None of the remaining opcodes are required to match a character. */ |
2499 | |
2500 | default: |
2501 | break; |
2502 | } |
2503 | } |
2504 | |
2505 | return TRUE; |
2506 | } |
2507 | |
2508 | |
2509 | |
2510 | /************************************************* |
2511 | * Scan compiled regex for non-emptiness * |
2512 | *************************************************/ |
2513 | |
2514 | /* This function is called to check for left recursive calls. We want to check |
2515 | the current branch of the current pattern to see if it could match the empty |
2516 | string. If it could, we must look outwards for branches at other levels, |
2517 | stopping when we pass beyond the bracket which is the subject of the recursion. |
2518 | This function is called only during the real compile, not during the |
2519 | pre-compile. |
2520 | |
2521 | Arguments: |
2522 | code points to start of the recursion |
2523 | endcode points to where to stop (current RECURSE item) |
2524 | bcptr points to the chain of current (unclosed) branch starts |
2525 | utf TRUE if in UTF-8 / UTF-16 mode |
2526 | cd pointers to tables etc |
2527 | |
2528 | Returns: TRUE if what is matched could be empty |
2529 | */ |
2530 | |
2531 | static BOOL |
2532 | could_be_empty(const pcre_uchar *code, const pcre_uchar *endcode, |
2533 | branch_chain *bcptr, BOOL utf, compile_data *cd) |
2534 | { |
2535 | while (bcptr != NULL && bcptr->current_branch >= code) |
2536 | { |
2537 | if (!could_be_empty_branch(bcptr->current_branch, endcode, utf, cd)) |
2538 | return FALSE; |
2539 | bcptr = bcptr->outer; |
2540 | } |
2541 | return TRUE; |
2542 | } |
2543 | |
2544 | |
2545 | |
2546 | /************************************************* |
2547 | * Check for POSIX class syntax * |
2548 | *************************************************/ |
2549 | |
2550 | /* This function is called when the sequence "[:" or "[." or "[=" is |
2551 | encountered in a character class. It checks whether this is followed by a |
2552 | sequence of characters terminated by a matching ":]" or ".]" or "=]". If we |
2553 | reach an unescaped ']' without the special preceding character, return FALSE. |
2554 | |
2555 | Originally, this function only recognized a sequence of letters between the |
2556 | terminators, but it seems that Perl recognizes any sequence of characters, |
2557 | though of course unknown POSIX names are subsequently rejected. Perl gives an |
2558 | "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE |
2559 | didn't consider this to be a POSIX class. Likewise for [:1234:]. |
2560 | |
2561 | The problem in trying to be exactly like Perl is in the handling of escapes. We |
2562 | have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX |
2563 | class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code |
2564 | below handles the special case of \], but does not try to do any other escape |
2565 | processing. This makes it different from Perl for cases such as [:l\ower:] |
2566 | where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize |
2567 | "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does, |
2568 | I think. |
2569 | |
2570 | A user pointed out that PCRE was rejecting [:a[:digit:]] whereas Perl was not. |
2571 | It seems that the appearance of a nested POSIX class supersedes an apparent |
2572 | external class. For example, [:a[:digit:]b:] matches "a", "b", ":", or |
2573 | a digit. |
2574 | |
2575 | In Perl, unescaped square brackets may also appear as part of class names. For |
2576 | example, [:a[:abc]b:] gives unknown POSIX class "[:abc]b:]". However, for |
2577 | [:a[:abc]b][b:] it gives unknown POSIX class "[:abc]b][b:]", which does not |
2578 | seem right at all. PCRE does not allow closing square brackets in POSIX class |
2579 | names. |
2580 | |
2581 | Arguments: |
2582 | ptr pointer to the initial [ |
2583 | endptr where to return the end pointer |
2584 | |
2585 | Returns: TRUE or FALSE |
2586 | */ |
2587 | |
2588 | static BOOL |
2589 | check_posix_syntax(const pcre_uchar *ptr, const pcre_uchar **endptr) |
2590 | { |
2591 | int terminator; /* Don't combine these lines; the Solaris cc */ |
2592 | terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */ |
2593 | for (++ptr; *ptr != 0; ptr++) |
2594 | { |
2595 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
2596 | ptr++; |
2597 | else if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE; |
2598 | else |
2599 | { |
2600 | if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
2601 | { |
2602 | *endptr = ptr; |
2603 | return TRUE; |
2604 | } |
2605 | if (*ptr == CHAR_LEFT_SQUARE_BRACKET && |
2606 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
2607 | ptr[1] == CHAR_EQUALS_SIGN) && |
2608 | check_posix_syntax(ptr, endptr)) |
2609 | return FALSE; |
2610 | } |
2611 | } |
2612 | return FALSE; |
2613 | } |
2614 | |
2615 | |
2616 | |
2617 | |
2618 | /************************************************* |
2619 | * Check POSIX class name * |
2620 | *************************************************/ |
2621 | |
2622 | /* This function is called to check the name given in a POSIX-style class entry |
2623 | such as [:alnum:]. |
2624 | |
2625 | Arguments: |
2626 | ptr points to the first letter |
2627 | len the length of the name |
2628 | |
2629 | Returns: a value representing the name, or -1 if unknown |
2630 | */ |
2631 | |
2632 | static int |
2633 | check_posix_name(const pcre_uchar *ptr, int len) |
2634 | { |
2635 | const char *pn = posix_names; |
2636 | register int yield = 0; |
2637 | while (posix_name_lengths[yield] != 0) |
2638 | { |
2639 | if (len == posix_name_lengths[yield] && |
2640 | STRNCMP_UC_C8(ptr, pn, len) == 0) return yield; |
2641 | pn += posix_name_lengths[yield] + 1; |
2642 | yield++; |
2643 | } |
2644 | return -1; |
2645 | } |
2646 | |
2647 | |
2648 | /************************************************* |
2649 | * Adjust OP_RECURSE items in repeated group * |
2650 | *************************************************/ |
2651 | |
2652 | /* OP_RECURSE items contain an offset from the start of the regex to the group |
2653 | that is referenced. This means that groups can be replicated for fixed |
2654 | repetition simply by copying (because the recursion is allowed to refer to |
2655 | earlier groups that are outside the current group). However, when a group is |
2656 | optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is |
2657 | inserted before it, after it has been compiled. This means that any OP_RECURSE |
2658 | items within it that refer to the group itself or any contained groups have to |
2659 | have their offsets adjusted. That one of the jobs of this function. Before it |
2660 | is called, the partially compiled regex must be temporarily terminated with |
2661 | OP_END. |
2662 | |
2663 | This function has been extended with the possibility of forward references for |
2664 | recursions and subroutine calls. It must also check the list of such references |
2665 | for the group we are dealing with. If it finds that one of the recursions in |
2666 | the current group is on this list, it adjusts the offset in the list, not the |
2667 | value in the reference (which is a group number). |
2668 | |
2669 | Arguments: |
2670 | group points to the start of the group |
2671 | adjust the amount by which the group is to be moved |
2672 | utf TRUE in UTF-8 / UTF-16 mode |
2673 | cd contains pointers to tables etc. |
2674 | save_hwm the hwm forward reference pointer at the start of the group |
2675 | |
2676 | Returns: nothing |
2677 | */ |
2678 | |
2679 | static void |
2680 | adjust_recurse(pcre_uchar *group, int adjust, BOOL utf, compile_data *cd, |
2681 | pcre_uchar *save_hwm) |
2682 | { |
2683 | pcre_uchar *ptr = group; |
2684 | |
2685 | while ((ptr = (pcre_uchar *)find_recurse(ptr, utf)) != NULL) |
2686 | { |
2687 | int offset; |
2688 | pcre_uchar *hc; |
2689 | |
2690 | /* See if this recursion is on the forward reference list. If so, adjust the |
2691 | reference. */ |
2692 | |
2693 | for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE) |
2694 | { |
2695 | offset = GET(hc, 0); |
2696 | if (cd->start_code + offset == ptr + 1) |
2697 | { |
2698 | PUT(hc, 0, offset + adjust); |
2699 | break; |
2700 | } |
2701 | } |
2702 | |
2703 | /* Otherwise, adjust the recursion offset if it's after the start of this |
2704 | group. */ |
2705 | |
2706 | if (hc >= cd->hwm) |
2707 | { |
2708 | offset = GET(ptr, 1); |
2709 | if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust); |
2710 | } |
2711 | |
2712 | ptr += 1 + LINK_SIZE; |
2713 | } |
2714 | } |
2715 | |
2716 | |
2717 | |
2718 | /************************************************* |
2719 | * Insert an automatic callout point * |
2720 | *************************************************/ |
2721 | |
2722 | /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert |
2723 | callout points before each pattern item. |
2724 | |
2725 | Arguments: |
2726 | code current code pointer |
2727 | ptr current pattern pointer |
2728 | cd pointers to tables etc |
2729 | |
2730 | Returns: new code pointer |
2731 | */ |
2732 | |
2733 | static pcre_uchar * |
2734 | auto_callout(pcre_uchar *code, const pcre_uchar *ptr, compile_data *cd) |
2735 | { |
2736 | *code++ = OP_CALLOUT; |
2737 | *code++ = 255; |
2738 | PUT(code, 0, (int)(ptr - cd->start_pattern)); /* Pattern offset */ |
2739 | PUT(code, LINK_SIZE, 0); /* Default length */ |
2740 | return code + 2 * LINK_SIZE; |
2741 | } |
2742 | |
2743 | |
2744 | |
2745 | /************************************************* |
2746 | * Complete a callout item * |
2747 | *************************************************/ |
2748 | |
2749 | /* A callout item contains the length of the next item in the pattern, which |
2750 | we can't fill in till after we have reached the relevant point. This is used |
2751 | for both automatic and manual callouts. |
2752 | |
2753 | Arguments: |
2754 | previous_callout points to previous callout item |
2755 | ptr current pattern pointer |
2756 | cd pointers to tables etc |
2757 | |
2758 | Returns: nothing |
2759 | */ |
2760 | |
2761 | static void |
2762 | complete_callout(pcre_uchar *previous_callout, const pcre_uchar *ptr, compile_data *cd) |
2763 | { |
2764 | int length = (int)(ptr - cd->start_pattern - GET(previous_callout, 2)); |
2765 | PUT(previous_callout, 2 + LINK_SIZE, length); |
2766 | } |
2767 | |
2768 | |
2769 | |
2770 | #ifdef SUPPORT_UCP |
2771 | /************************************************* |
2772 | * Get othercase range * |
2773 | *************************************************/ |
2774 | |
2775 | /* This function is passed the start and end of a class range, in UTF-8 mode |
2776 | with UCP support. It searches up the characters, looking for internal ranges of |
2777 | characters in the "other" case. Each call returns the next one, updating the |
2778 | start address. |
2779 | |
2780 | Arguments: |
2781 | cptr points to starting character value; updated |
2782 | d end value |
2783 | ocptr where to put start of othercase range |
2784 | odptr where to put end of othercase range |
2785 | |
2786 | Yield: TRUE when range returned; FALSE when no more |
2787 | */ |
2788 | |
2789 | static BOOL |
2790 | get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr, |
2791 | unsigned int *odptr) |
2792 | { |
2793 | unsigned int c, othercase, next; |
2794 | |
2795 | for (c = *cptr; c <= d; c++) |
2796 | { if ((othercase = UCD_OTHERCASE(c)) != c) break; } |
2797 | |
2798 | if (c > d) return FALSE; |
2799 | |
2800 | *ocptr = othercase; |
2801 | next = othercase + 1; |
2802 | |
2803 | for (++c; c <= d; c++) |
2804 | { |
2805 | if (UCD_OTHERCASE(c) != next) break; |
2806 | next++; |
2807 | } |
2808 | |
2809 | *odptr = next - 1; |
2810 | *cptr = c; |
2811 | |
2812 | return TRUE; |
2813 | } |
2814 | |
2815 | |
2816 | |
2817 | /************************************************* |
2818 | * Check a character and a property * |
2819 | *************************************************/ |
2820 | |
2821 | /* This function is called by check_auto_possessive() when a property item |
2822 | is adjacent to a fixed character. |
2823 | |
2824 | Arguments: |
2825 | c the character |
2826 | ptype the property type |
2827 | pdata the data for the type |
2828 | negated TRUE if it's a negated property (\P or \p{^) |
2829 | |
2830 | Returns: TRUE if auto-possessifying is OK |
2831 | */ |
2832 | |
2833 | static BOOL |
2834 | check_char_prop(int c, int ptype, int pdata, BOOL negated) |
2835 | { |
2836 | const ucd_record *prop = GET_UCD(c); |
2837 | switch(ptype) |
2838 | { |
2839 | case PT_LAMP: |
2840 | return (prop->chartype == ucp_Lu || |
2841 | prop->chartype == ucp_Ll || |
2842 | prop->chartype == ucp_Lt) == negated; |
2843 | |
2844 | case PT_GC: |
2845 | return (pdata == PRIV(ucp_gentype)[prop->chartype]) == negated; |
2846 | |
2847 | case PT_PC: |
2848 | return (pdata == prop->chartype) == negated; |
2849 | |
2850 | case PT_SC: |
2851 | return (pdata == prop->script) == negated; |
2852 | |
2853 | /* These are specials */ |
2854 | |
2855 | case PT_ALNUM: |
2856 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_L || |
2857 | PRIV(ucp_gentype)[prop->chartype] == ucp_N) == negated; |
2858 | |
2859 | case PT_SPACE: /* Perl space */ |
2860 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_Z || |
2861 | c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR) |
2862 | == negated; |
2863 | |
2864 | case PT_PXSPACE: /* POSIX space */ |
2865 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_Z || |
2866 | c == CHAR_HT || c == CHAR_NL || c == CHAR_VT || |
2867 | c == CHAR_FF || c == CHAR_CR) |
2868 | == negated; |
2869 | |
2870 | case PT_WORD: |
2871 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_L || |
2872 | PRIV(ucp_gentype)[prop->chartype] == ucp_N || |
2873 | c == CHAR_UNDERSCORE) == negated; |
2874 | } |
2875 | return FALSE; |
2876 | } |
2877 | #endif /* SUPPORT_UCP */ |
2878 | |
2879 | |
2880 | |
2881 | /************************************************* |
2882 | * Check if auto-possessifying is possible * |
2883 | *************************************************/ |
2884 | |
2885 | /* This function is called for unlimited repeats of certain items, to see |
2886 | whether the next thing could possibly match the repeated item. If not, it makes |
2887 | sense to automatically possessify the repeated item. |
2888 | |
2889 | Arguments: |
2890 | previous pointer to the repeated opcode |
2891 | utf TRUE in UTF-8 / UTF-16 mode |
2892 | ptr next character in pattern |
2893 | options options bits |
2894 | cd contains pointers to tables etc. |
2895 | |
2896 | Returns: TRUE if possessifying is wanted |
2897 | */ |
2898 | |
2899 | static BOOL |
2900 | check_auto_possessive(const pcre_uchar *previous, BOOL utf, |
2901 | const pcre_uchar *ptr, int options, compile_data *cd) |
2902 | { |
2903 | pcre_int32 c, next; |
2904 | int op_code = *previous++; |
2905 | |
2906 | /* Skip whitespace and comments in extended mode */ |
2907 | |
2908 | if ((options & PCRE_EXTENDED) != 0) |
2909 | { |
2910 | for (;;) |
2911 | { |
2912 | while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++; |
2913 | if (*ptr == CHAR_NUMBER_SIGN) |
2914 | { |
2915 | ptr++; |
2916 | while (*ptr != 0) |
2917 | { |
2918 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } |
2919 | ptr++; |
2920 | #ifdef SUPPORT_UTF |
2921 | if (utf) FORWARDCHAR(ptr); |
2922 | #endif |
2923 | } |
2924 | } |
2925 | else break; |
2926 | } |
2927 | } |
2928 | |
2929 | /* If the next item is one that we can handle, get its value. A non-negative |
2930 | value is a character, a negative value is an escape value. */ |
2931 | |
2932 | if (*ptr == CHAR_BACKSLASH) |
2933 | { |
2934 | int temperrorcode = 0; |
2935 | next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE); |
2936 | if (temperrorcode != 0) return FALSE; |
2937 | ptr++; /* Point after the escape sequence */ |
2938 | } |
2939 | else if (!MAX_255(*ptr) || (cd->ctypes[*ptr] & ctype_meta) == 0) |
2940 | { |
2941 | #ifdef SUPPORT_UTF |
2942 | if (utf) { GETCHARINC(next, ptr); } else |
2943 | #endif |
2944 | next = *ptr++; |
2945 | } |
2946 | else return FALSE; |
2947 | |
2948 | /* Skip whitespace and comments in extended mode */ |
2949 | |
2950 | if ((options & PCRE_EXTENDED) != 0) |
2951 | { |
2952 | for (;;) |
2953 | { |
2954 | while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++; |
2955 | if (*ptr == CHAR_NUMBER_SIGN) |
2956 | { |
2957 | ptr++; |
2958 | while (*ptr != 0) |
2959 | { |
2960 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } |
2961 | ptr++; |
2962 | #ifdef SUPPORT_UTF |
2963 | if (utf) FORWARDCHAR(ptr); |
2964 | #endif |
2965 | } |
2966 | } |
2967 | else break; |
2968 | } |
2969 | } |
2970 | |
2971 | /* If the next thing is itself optional, we have to give up. */ |
2972 | |
2973 | if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK || |
2974 | STRNCMP_UC_C8(ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0) |
2975 | return FALSE; |
2976 | |
2977 | /* Now compare the next item with the previous opcode. First, handle cases when |
2978 | the next item is a character. */ |
2979 | |
2980 | if (next >= 0) switch(op_code) |
2981 | { |
2982 | case OP_CHAR: |
2983 | #ifdef SUPPORT_UTF8 |
2984 | GETCHARTEST(c, previous); |
2985 | #else |
2986 | c = *previous; |
2987 | #endif |
2988 | return c != next; |
2989 | |
2990 | /* For CHARI (caseless character) we must check the other case. If we have |
2991 | Unicode property support, we can use it to test the other case of |
2992 | high-valued characters. */ |
2993 | |
2994 | case OP_CHARI: |
2995 | #ifdef SUPPORT_UTF8 |
2996 | GETCHARTEST(c, previous); |
2997 | #else |
2998 | c = *previous; |
2999 | #endif |
3000 | if (c == next) return FALSE; |
3001 | #ifdef SUPPORT_UTF8 |
3002 | if (utf) |
3003 | { |
3004 | unsigned int othercase; |
3005 | if (next < 128) othercase = cd->fcc[next]; else |
3006 | #ifdef SUPPORT_UCP |
3007 | othercase = UCD_OTHERCASE((unsigned int)next); |
3008 | #else |
3009 | othercase = NOTACHAR; |
3010 | #endif |
3011 | return (unsigned int)c != othercase; |
3012 | } |
3013 | else |
3014 | #endif /* SUPPORT_UTF8 */ |
3015 | return (c != cd->fcc[next]); /* Non-UTF-8 mode */ |
3016 | |
3017 | /* For OP_NOT and OP_NOTI, the data is always a single-byte character. These |
3018 | opcodes are not used for multi-byte characters, because they are coded using |
3019 | an XCLASS instead. */ |
3020 | |
3021 | case OP_NOT: |
3022 | return (c = *previous) == next; |
3023 | |
3024 | case OP_NOTI: |
3025 | if ((c = *previous) == next) return TRUE; |
3026 | #ifdef SUPPORT_UTF8 |
3027 | if (utf) |
3028 | { |
3029 | unsigned int othercase; |
3030 | if (next < 128) othercase = cd->fcc[next]; else |
3031 | #ifdef SUPPORT_UCP |
3032 | othercase = UCD_OTHERCASE(next); |
3033 | #else |
3034 | othercase = NOTACHAR; |
3035 | #endif |
3036 | return (unsigned int)c == othercase; |
3037 | } |
3038 | else |
3039 | #endif /* SUPPORT_UTF8 */ |
3040 | return (c == cd->fcc[next]); /* Non-UTF-8 mode */ |
3041 | |
3042 | /* Note that OP_DIGIT etc. are generated only when PCRE_UCP is *not* set. |
3043 | When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */ |
3044 | |
3045 | case OP_DIGIT: |
3046 | return next > 127 || (cd->ctypes[next] & ctype_digit) == 0; |
3047 | |
3048 | case OP_NOT_DIGIT: |
3049 | return next <= 127 && (cd->ctypes[next] & ctype_digit) != 0; |
3050 | |
3051 | case OP_WHITESPACE: |
3052 | return next > 127 || (cd->ctypes[next] & ctype_space) == 0; |
3053 | |
3054 | case OP_NOT_WHITESPACE: |
3055 | return next <= 127 && (cd->ctypes[next] & ctype_space) != 0; |
3056 | |
3057 | case OP_WORDCHAR: |
3058 | return next > 127 || (cd->ctypes[next] & ctype_word) == 0; |
3059 | |
3060 | case OP_NOT_WORDCHAR: |
3061 | return next <= 127 && (cd->ctypes[next] & ctype_word) != 0; |
3062 | |
3063 | case OP_HSPACE: |
3064 | case OP_NOT_HSPACE: |
3065 | switch(next) |
3066 | { |
3067 | case 0x09: |
3068 | case 0x20: |
3069 | case 0xa0: |
3070 | case 0x1680: |
3071 | case 0x180e: |
3072 | case 0x2000: |
3073 | case 0x2001: |
3074 | case 0x2002: |
3075 | case 0x2003: |
3076 | case 0x2004: |
3077 | case 0x2005: |
3078 | case 0x2006: |
3079 | case 0x2007: |
3080 | case 0x2008: |
3081 | case 0x2009: |
3082 | case 0x200A: |
3083 | case 0x202f: |
3084 | case 0x205f: |
3085 | case 0x3000: |
3086 | return op_code == OP_NOT_HSPACE; |
3087 | default: |
3088 | return op_code != OP_NOT_HSPACE; |
3089 | } |
3090 | |
3091 | case OP_ANYNL: |
3092 | case OP_VSPACE: |
3093 | case OP_NOT_VSPACE: |
3094 | switch(next) |
3095 | { |
3096 | case 0x0a: |
3097 | case 0x0b: |
3098 | case 0x0c: |
3099 | case 0x0d: |
3100 | case 0x85: |
3101 | case 0x2028: |
3102 | case 0x2029: |
3103 | return op_code == OP_NOT_VSPACE; |
3104 | default: |
3105 | return op_code != OP_NOT_VSPACE; |
3106 | } |
3107 | |
3108 | #ifdef SUPPORT_UCP |
3109 | case OP_PROP: |
3110 | return check_char_prop(next, previous[0], previous[1], FALSE); |
3111 | |
3112 | case OP_NOTPROP: |
3113 | return check_char_prop(next, previous[0], previous[1], TRUE); |
3114 | #endif |
3115 | |
3116 | default: |
3117 | return FALSE; |
3118 | } |
3119 | |
3120 | |
3121 | /* Handle the case when the next item is \d, \s, etc. Note that when PCRE_UCP |
3122 | is set, \d turns into ESC_du rather than ESC_d, etc., so ESC_d etc. are |
3123 | generated only when PCRE_UCP is *not* set, that is, when only ASCII |
3124 | characteristics are recognized. Similarly, the opcodes OP_DIGIT etc. are |
3125 | replaced by OP_PROP codes when PCRE_UCP is set. */ |
3126 | |
3127 | switch(op_code) |
3128 | { |
3129 | case OP_CHAR: |
3130 | case OP_CHARI: |
3131 | #ifdef SUPPORT_UTF8 |
3132 | GETCHARTEST(c, previous); |
3133 | #else |
3134 | c = *previous; |
3135 | #endif |
3136 | switch(-next) |
3137 | { |
3138 | case ESC_d: |
3139 | return c > 127 || (cd->ctypes[c] & ctype_digit) == 0; |
3140 | |
3141 | case ESC_D: |
3142 | return c <= 127 && (cd->ctypes[c] & ctype_digit) != 0; |
3143 | |
3144 | case ESC_s: |
3145 | return c > 127 || (cd->ctypes[c] & ctype_space) == 0; |
3146 | |
3147 | case ESC_S: |
3148 | return c <= 127 && (cd->ctypes[c] & ctype_space) != 0; |
3149 | |
3150 | case ESC_w: |
3151 | return c > 127 || (cd->ctypes[c] & ctype_word) == 0; |
3152 | |
3153 | case ESC_W: |
3154 | return c <= 127 && (cd->ctypes[c] & ctype_word) != 0; |
3155 | |
3156 | case ESC_h: |
3157 | case ESC_H: |
3158 | switch(c) |
3159 | { |
3160 | case 0x09: |
3161 | case 0x20: |
3162 | case 0xa0: |
3163 | case 0x1680: |
3164 | case 0x180e: |
3165 | case 0x2000: |
3166 | case 0x2001: |
3167 | case 0x2002: |
3168 | case 0x2003: |
3169 | case 0x2004: |
3170 | case 0x2005: |
3171 | case 0x2006: |
3172 | case 0x2007: |
3173 | case 0x2008: |
3174 | case 0x2009: |
3175 | case 0x200A: |
3176 | case 0x202f: |
3177 | case 0x205f: |
3178 | case 0x3000: |
3179 | return -next != ESC_h; |
3180 | default: |
3181 | return -next == ESC_h; |
3182 | } |
3183 | |
3184 | case ESC_v: |
3185 | case ESC_V: |
3186 | switch(c) |
3187 | { |
3188 | case 0x0a: |
3189 | case 0x0b: |
3190 | case 0x0c: |
3191 | case 0x0d: |
3192 | case 0x85: |
3193 | case 0x2028: |
3194 | case 0x2029: |
3195 | return -next != ESC_v; |
3196 | default: |
3197 | return -next == ESC_v; |
3198 | } |
3199 | |
3200 | /* When PCRE_UCP is set, these values get generated for \d etc. Find |
3201 | their substitutions and process them. The result will always be either |
3202 | -ESC_p or -ESC_P. Then fall through to process those values. */ |
3203 | |
3204 | #ifdef SUPPORT_UCP |
3205 | case ESC_du: |
3206 | case ESC_DU: |
3207 | case ESC_wu: |
3208 | case ESC_WU: |
3209 | case ESC_su: |
3210 | case ESC_SU: |
3211 | { |
3212 | int temperrorcode = 0; |
3213 | ptr = substitutes[-next - ESC_DU]; |
3214 | next = check_escape(&ptr, &temperrorcode, 0, options, FALSE); |
3215 | if (temperrorcode != 0) return FALSE; |
3216 | ptr++; /* For compatibility */ |
3217 | } |
3218 | /* Fall through */ |
3219 | |
3220 | case ESC_p: |
3221 | case ESC_P: |
3222 | { |
3223 | int ptype, pdata, errorcodeptr; |
3224 | BOOL negated; |
3225 | |
3226 | ptr--; /* Make ptr point at the p or P */ |
3227 | ptype = get_ucp(&ptr, &negated, &pdata, &errorcodeptr); |
3228 | if (ptype < 0) return FALSE; |
3229 | ptr++; /* Point past the final curly ket */ |
3230 | |
3231 | /* If the property item is optional, we have to give up. (When generated |
3232 | from \d etc by PCRE_UCP, this test will have been applied much earlier, |
3233 | to the original \d etc. At this point, ptr will point to a zero byte. */ |
3234 | |
3235 | if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK || |
3236 | STRNCMP_UC_C8(ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0) |
3237 | return FALSE; |
3238 | |
3239 | /* Do the property check. */ |
3240 | |
3241 | return check_char_prop(c, ptype, pdata, (next == -ESC_P) != negated); |
3242 | } |
3243 | #endif |
3244 | |
3245 | default: |
3246 | return FALSE; |
3247 | } |
3248 | |
3249 | /* In principle, support for Unicode properties should be integrated here as |
3250 | well. It means re-organizing the above code so as to get hold of the property |
3251 | values before switching on the op-code. However, I wonder how many patterns |
3252 | combine ASCII \d etc with Unicode properties? (Note that if PCRE_UCP is set, |
3253 | these op-codes are never generated.) */ |
3254 | |
3255 | case OP_DIGIT: |
3256 | return next == -ESC_D || next == -ESC_s || next == -ESC_W || |
3257 | next == -ESC_h || next == -ESC_v || next == -ESC_R; |
3258 | |
3259 | case OP_NOT_DIGIT: |
3260 | return next == -ESC_d; |
3261 | |
3262 | case OP_WHITESPACE: |
3263 | return next == -ESC_S || next == -ESC_d || next == -ESC_w || next == -ESC_R; |
3264 | |
3265 | case OP_NOT_WHITESPACE: |
3266 | return next == -ESC_s || next == -ESC_h || next == -ESC_v; |
3267 | |
3268 | case OP_HSPACE: |
3269 | return next == -ESC_S || next == -ESC_H || next == -ESC_d || |
3270 | next == -ESC_w || next == -ESC_v || next == -ESC_R; |
3271 | |
3272 | case OP_NOT_HSPACE: |
3273 | return next == -ESC_h; |
3274 | |
3275 | /* Can't have \S in here because VT matches \S (Perl anomaly) */ |
3276 | case OP_ANYNL: |
3277 | case OP_VSPACE: |
3278 | return next == -ESC_V || next == -ESC_d || next == -ESC_w; |
3279 | |
3280 | case OP_NOT_VSPACE: |
3281 | return next == -ESC_v || next == -ESC_R; |
3282 | |
3283 | case OP_WORDCHAR: |
3284 | return next == -ESC_W || next == -ESC_s || next == -ESC_h || |
3285 | next == -ESC_v || next == -ESC_R; |
3286 | |
3287 | case OP_NOT_WORDCHAR: |
3288 | return next == -ESC_w || next == -ESC_d; |
3289 | |
3290 | default: |
3291 | return FALSE; |
3292 | } |
3293 | |
3294 | /* Control does not reach here */ |
3295 | } |
3296 | |
3297 | |
3298 | |
3299 | /************************************************* |
3300 | * Compile one branch * |
3301 | *************************************************/ |
3302 | |
3303 | /* Scan the pattern, compiling it into the a vector. If the options are |
3304 | changed during the branch, the pointer is used to change the external options |
3305 | bits. This function is used during the pre-compile phase when we are trying |
3306 | to find out the amount of memory needed, as well as during the real compile |
3307 | phase. The value of lengthptr distinguishes the two phases. |
3308 | |
3309 | Arguments: |
3310 | optionsptr pointer to the option bits |
3311 | codeptr points to the pointer to the current code point |
3312 | ptrptr points to the current pattern pointer |
3313 | errorcodeptr points to error code variable |
3314 | firstcharptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE) |
3315 | reqcharptr set to the last literal character required, else < 0 |
3316 | bcptr points to current branch chain |
3317 | cond_depth conditional nesting depth |
3318 | cd contains pointers to tables etc. |
3319 | lengthptr NULL during the real compile phase |
3320 | points to length accumulator during pre-compile phase |
3321 | |
3322 | Returns: TRUE on success |
3323 | FALSE, with *errorcodeptr set non-zero on error |
3324 | */ |
3325 | |
3326 | static BOOL |
3327 | compile_branch(int *optionsptr, pcre_uchar **codeptr, |
3328 | const pcre_uchar **ptrptr, int *errorcodeptr, pcre_int32 *firstcharptr, |
3329 | pcre_int32 *reqcharptr, branch_chain *bcptr, int cond_depth, |
3330 | compile_data *cd, int *lengthptr) |
3331 | { |
3332 | int repeat_type, op_type; |
3333 | int repeat_min = 0, repeat_max = 0; /* To please picky compilers */ |
3334 | int bravalue = 0; |
3335 | int greedy_default, greedy_non_default; |
3336 | pcre_int32 firstchar, reqchar; |
3337 | pcre_int32 zeroreqchar, zerofirstchar; |
3338 | pcre_int32 req_caseopt, reqvary, tempreqvary; |
3339 | int options = *optionsptr; /* May change dynamically */ |
3340 | int after_manual_callout = 0; |
3341 | int length_prevgroup = 0; |
3342 | register int c; |
3343 | register pcre_uchar *code = *codeptr; |
3344 | pcre_uchar *last_code = code; |
3345 | pcre_uchar *orig_code = code; |
3346 | pcre_uchar *tempcode; |
3347 | BOOL inescq = FALSE; |
3348 | BOOL groupsetfirstchar = FALSE; |
3349 | const pcre_uchar *ptr = *ptrptr; |
3350 | const pcre_uchar *tempptr; |
3351 | const pcre_uchar *nestptr = NULL; |
3352 | pcre_uchar *previous = NULL; |
3353 | pcre_uchar *previous_callout = NULL; |
3354 | pcre_uchar *save_hwm = NULL; |
3355 | pcre_uint8 classbits[32]; |
3356 | |
3357 | /* We can fish out the UTF-8 setting once and for all into a BOOL, but we |
3358 | must not do this for other options (e.g. PCRE_EXTENDED) because they may change |
3359 | dynamically as we process the pattern. */ |
3360 | |
3361 | #ifdef SUPPORT_UTF8 |
3362 | /* PCRE_UTF16 has the same value as PCRE_UTF8. */ |
3363 | BOOL utf = (options & PCRE_UTF8) != 0; |
3364 | pcre_uchar utf_chars[6]; |
3365 | #else |
3366 | BOOL utf = FALSE; |
3367 | #endif |
3368 | |
3369 | /* Helper variables for OP_XCLASS opcode (for characters > 255). */ |
3370 | |
3371 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3372 | BOOL xclass; |
3373 | pcre_uchar *class_uchardata; |
3374 | pcre_uchar *class_uchardata_base; |
3375 | #endif |
3376 | |
3377 | #ifdef PCRE_DEBUG |
3378 | if (lengthptr != NULL) DPRINTF((">> start branch\n")); |
3379 | #endif |
3380 | |
3381 | /* Set up the default and non-default settings for greediness */ |
3382 | |
3383 | greedy_default = ((options & PCRE_UNGREEDY) != 0); |
3384 | greedy_non_default = greedy_default ^ 1; |
3385 | |
3386 | /* Initialize no first byte, no required byte. REQ_UNSET means "no char |
3387 | matching encountered yet". It gets changed to REQ_NONE if we hit something that |
3388 | matches a non-fixed char first char; reqchar just remains unset if we never |
3389 | find one. |
3390 | |
3391 | When we hit a repeat whose minimum is zero, we may have to adjust these values |
3392 | to take the zero repeat into account. This is implemented by setting them to |
3393 | zerofirstbyte and zeroreqchar when such a repeat is encountered. The individual |
3394 | item types that can be repeated set these backoff variables appropriately. */ |
3395 | |
3396 | firstchar = reqchar = zerofirstchar = zeroreqchar = REQ_UNSET; |
3397 | |
3398 | /* The variable req_caseopt contains either the REQ_CASELESS value |
3399 | or zero, according to the current setting of the caseless flag. The |
3400 | REQ_CASELESS leaves the lower 28 bit empty. It is added into the |
3401 | firstchar or reqchar variables to record the case status of the |
3402 | value. This is used only for ASCII characters. */ |
3403 | |
3404 | req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS:0; |
3405 | |
3406 | /* Switch on next character until the end of the branch */ |
3407 | |
3408 | for (;; ptr++) |
3409 | { |
3410 | BOOL negate_class; |
3411 | BOOL should_flip_negation; |
3412 | BOOL possessive_quantifier; |
3413 | BOOL is_quantifier; |
3414 | BOOL is_recurse; |
3415 | BOOL reset_bracount; |
3416 | int class_charcount; |
3417 | int class_lastchar; |
3418 | int newoptions; |
3419 | int recno; |
3420 | int refsign; |
3421 | int skipbytes; |
3422 | int subreqchar; |
3423 | int subfirstchar; |
3424 | int terminator; |
3425 | int mclength; |
3426 | int tempbracount; |
3427 | pcre_uchar mcbuffer[8]; |
3428 | |
3429 | /* Get next character in the pattern */ |
3430 | |
3431 | c = *ptr; |
3432 | |
3433 | /* If we are at the end of a nested substitution, revert to the outer level |
3434 | string. Nesting only happens one level deep. */ |
3435 | |
3436 | if (c == 0 && nestptr != NULL) |
3437 | { |
3438 | ptr = nestptr; |
3439 | nestptr = NULL; |
3440 | c = *ptr; |
3441 | } |
3442 | |
3443 | /* If we are in the pre-compile phase, accumulate the length used for the |
3444 | previous cycle of this loop. */ |
3445 | |
3446 | if (lengthptr != NULL) |
3447 | { |
3448 | #ifdef PCRE_DEBUG |
3449 | if (code > cd->hwm) cd->hwm = code; /* High water info */ |
3450 | #endif |
3451 | if (code > cd->start_workspace + WORK_SIZE_CHECK) /* Check for overrun */ |
3452 | { |
3453 | *errorcodeptr = ERR52; |
3454 | goto FAILED; |
3455 | } |
3456 | |
3457 | /* There is at least one situation where code goes backwards: this is the |
3458 | case of a zero quantifier after a class (e.g. [ab]{0}). At compile time, |
3459 | the class is simply eliminated. However, it is created first, so we have to |
3460 | allow memory for it. Therefore, don't ever reduce the length at this point. |
3461 | */ |
3462 | |
3463 | if (code < last_code) code = last_code; |
3464 | |
3465 | /* Paranoid check for integer overflow */ |
3466 | |
3467 | if (OFLOW_MAX - *lengthptr < code - last_code) |
3468 | { |
3469 | *errorcodeptr = ERR20; |
3470 | goto FAILED; |
3471 | } |
3472 | |
3473 | *lengthptr += (int)(code - last_code); |
3474 | DPRINTF(("length=%d added %d c=%c (0x%x)\n", *lengthptr, |
3475 | (int)(code - last_code), c, c)); |
3476 | |
3477 | /* If "previous" is set and it is not at the start of the work space, move |
3478 | it back to there, in order to avoid filling up the work space. Otherwise, |
3479 | if "previous" is NULL, reset the current code pointer to the start. */ |
3480 | |
3481 | if (previous != NULL) |
3482 | { |
3483 | if (previous > orig_code) |
3484 | { |
3485 | memmove(orig_code, previous, IN_UCHARS(code - previous)); |
3486 | code -= previous - orig_code; |
3487 | previous = orig_code; |
3488 | } |
3489 | } |
3490 | else code = orig_code; |
3491 | |
3492 | /* Remember where this code item starts so we can pick up the length |
3493 | next time round. */ |
3494 | |
3495 | last_code = code; |
3496 | } |
3497 | |
3498 | /* In the real compile phase, just check the workspace used by the forward |
3499 | reference list. */ |
3500 | |
3501 | else if (cd->hwm > cd->start_workspace + WORK_SIZE_CHECK) |
3502 | { |
3503 | *errorcodeptr = ERR52; |
3504 | goto FAILED; |
3505 | } |
3506 | |
3507 | /* If in \Q...\E, check for the end; if not, we have a literal */ |
3508 | |
3509 | if (inescq && c != 0) |
3510 | { |
3511 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
3512 | { |
3513 | inescq = FALSE; |
3514 | ptr++; |
3515 | continue; |
3516 | } |
3517 | else |
3518 | { |
3519 | if (previous_callout != NULL) |
3520 | { |
3521 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
3522 | complete_callout(previous_callout, ptr, cd); |
3523 | previous_callout = NULL; |
3524 | } |
3525 | if ((options & PCRE_AUTO_CALLOUT) != 0) |
3526 | { |
3527 | previous_callout = code; |
3528 | code = auto_callout(code, ptr, cd); |
3529 | } |
3530 | goto NORMAL_CHAR; |
3531 | } |
3532 | } |
3533 | |
3534 | /* Fill in length of a previous callout, except when the next thing is |
3535 | a quantifier. */ |
3536 | |
3537 | is_quantifier = |
3538 | c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK || |
3539 | (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1)); |
3540 | |
3541 | if (!is_quantifier && previous_callout != NULL && |
3542 | after_manual_callout-- <= 0) |
3543 | { |
3544 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
3545 | complete_callout(previous_callout, ptr, cd); |
3546 | previous_callout = NULL; |
3547 | } |
3548 | |
3549 | /* In extended mode, skip white space and comments. */ |
3550 | |
3551 | if ((options & PCRE_EXTENDED) != 0) |
3552 | { |
3553 | if ((cd->ctypes[c] & ctype_space) != 0) continue; |
3554 | if (c == CHAR_NUMBER_SIGN) |
3555 | { |
3556 | ptr++; |
3557 | while (*ptr != 0) |
3558 | { |
3559 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; } |
3560 | ptr++; |
3561 | #ifdef SUPPORT_UTF |
3562 | if (utf) FORWARDCHAR(ptr); |
3563 | #endif |
3564 | } |
3565 | if (*ptr != 0) continue; |
3566 | |
3567 | /* Else fall through to handle end of string */ |
3568 | c = 0; |
3569 | } |
3570 | } |
3571 | |
3572 | /* No auto callout for quantifiers. */ |
3573 | |
3574 | if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier) |
3575 | { |
3576 | previous_callout = code; |
3577 | code = auto_callout(code, ptr, cd); |
3578 | } |
3579 | |
3580 | switch(c) |
3581 | { |
3582 | /* ===================================================================*/ |
3583 | case 0: /* The branch terminates at string end */ |
3584 | case CHAR_VERTICAL_LINE: /* or | or ) */ |
3585 | case CHAR_RIGHT_PARENTHESIS: |
3586 | *firstcharptr = firstchar; |
3587 | *reqcharptr = reqchar; |
3588 | *codeptr = code; |
3589 | *ptrptr = ptr; |
3590 | if (lengthptr != NULL) |
3591 | { |
3592 | if (OFLOW_MAX - *lengthptr < code - last_code) |
3593 | { |
3594 | *errorcodeptr = ERR20; |
3595 | goto FAILED; |
3596 | } |
3597 | *lengthptr += (int)(code - last_code); /* To include callout length */ |
3598 | DPRINTF((">> end branch\n")); |
3599 | } |
3600 | return TRUE; |
3601 | |
3602 | |
3603 | /* ===================================================================*/ |
3604 | /* Handle single-character metacharacters. In multiline mode, ^ disables |
3605 | the setting of any following char as a first character. */ |
3606 | |
3607 | case CHAR_CIRCUMFLEX_ACCENT: |
3608 | previous = NULL; |
3609 | if ((options & PCRE_MULTILINE) != 0) |
3610 | { |
3611 | if (firstchar == REQ_UNSET) firstchar = REQ_NONE; |
3612 | *code++ = OP_CIRCM; |
3613 | } |
3614 | else *code++ = OP_CIRC; |
3615 | break; |
3616 | |
3617 | case CHAR_DOLLAR_SIGN: |
3618 | previous = NULL; |
3619 | *code++ = ((options & PCRE_MULTILINE) != 0)? OP_DOLLM : OP_DOLL; |
3620 | break; |
3621 | |
3622 | /* There can never be a first char if '.' is first, whatever happens about |
3623 | repeats. The value of reqchar doesn't change either. */ |
3624 | |
3625 | case CHAR_DOT: |
3626 | if (firstchar == REQ_UNSET) firstchar = REQ_NONE; |
3627 | zerofirstchar = firstchar; |
3628 | zeroreqchar = reqchar; |
3629 | previous = code; |
3630 | *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY; |
3631 | break; |
3632 | |
3633 | |
3634 | /* ===================================================================*/ |
3635 | /* Character classes. If the included characters are all < 256, we build a |
3636 | 32-byte bitmap of the permitted characters, except in the special case |
3637 | where there is only one such character. For negated classes, we build the |
3638 | map as usual, then invert it at the end. However, we use a different opcode |
3639 | so that data characters > 255 can be handled correctly. |
3640 | |
3641 | If the class contains characters outside the 0-255 range, a different |
3642 | opcode is compiled. It may optionally have a bit map for characters < 256, |
3643 | but those above are are explicitly listed afterwards. A flag byte tells |
3644 | whether the bitmap is present, and whether this is a negated class or not. |
3645 | |
3646 | In JavaScript compatibility mode, an isolated ']' causes an error. In |
3647 | default (Perl) mode, it is treated as a data character. */ |
3648 | |
3649 | case CHAR_RIGHT_SQUARE_BRACKET: |
3650 | if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
3651 | { |
3652 | *errorcodeptr = ERR64; |
3653 | goto FAILED; |
3654 | } |
3655 | goto NORMAL_CHAR; |
3656 | |
3657 | case CHAR_LEFT_SQUARE_BRACKET: |
3658 | previous = code; |
3659 | |
3660 | /* PCRE supports POSIX class stuff inside a class. Perl gives an error if |
3661 | they are encountered at the top level, so we'll do that too. */ |
3662 | |
3663 | if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
3664 | ptr[1] == CHAR_EQUALS_SIGN) && |
3665 | check_posix_syntax(ptr, &tempptr)) |
3666 | { |
3667 | *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31; |
3668 | goto FAILED; |
3669 | } |
3670 | |
3671 | /* If the first character is '^', set the negation flag and skip it. Also, |
3672 | if the first few characters (either before or after ^) are \Q\E or \E we |
3673 | skip them too. This makes for compatibility with Perl. */ |
3674 | |
3675 | negate_class = FALSE; |
3676 | for (;;) |
3677 | { |
3678 | c = *(++ptr); |
3679 | if (c == CHAR_BACKSLASH) |
3680 | { |
3681 | if (ptr[1] == CHAR_E) |
3682 | ptr++; |
3683 | else if (STRNCMP_UC_C8(ptr + 1, STR_Q STR_BACKSLASH STR_E, 3) == 0) |
3684 | ptr += 3; |
3685 | else |
3686 | break; |
3687 | } |
3688 | else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT) |
3689 | negate_class = TRUE; |
3690 | else break; |
3691 | } |
3692 | |
3693 | /* Empty classes are allowed in JavaScript compatibility mode. Otherwise, |
3694 | an initial ']' is taken as a data character -- the code below handles |
3695 | that. In JS mode, [] must always fail, so generate OP_FAIL, whereas |
3696 | [^] must match any character, so generate OP_ALLANY. */ |
3697 | |
3698 | if (c == CHAR_RIGHT_SQUARE_BRACKET && |
3699 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
3700 | { |
3701 | *code++ = negate_class? OP_ALLANY : OP_FAIL; |
3702 | if (firstchar == REQ_UNSET) firstchar = REQ_NONE; |
3703 | zerofirstchar = firstchar; |
3704 | break; |
3705 | } |
3706 | |
3707 | /* If a class contains a negative special such as \S, we need to flip the |
3708 | negation flag at the end, so that support for characters > 255 works |
3709 | correctly (they are all included in the class). */ |
3710 | |
3711 | should_flip_negation = FALSE; |
3712 | |
3713 | /* Keep a count of chars with values < 256 so that we can optimize the case |
3714 | of just a single character (as long as it's < 256). However, For higher |
3715 | valued UTF-8 characters, we don't yet do any optimization. */ |
3716 | |
3717 | class_charcount = 0; |
3718 | class_lastchar = -1; |
3719 | |
3720 | /* Initialize the 32-char bit map to all zeros. We build the map in a |
3721 | temporary bit of memory, in case the class contains only 1 character (less |
3722 | than 256), because in that case the compiled code doesn't use the bit map. |
3723 | */ |
3724 | |
3725 | memset(classbits, 0, 32 * sizeof(pcre_uint8)); |
3726 | |
3727 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3728 | xclass = FALSE; /* No chars >= 256 */ |
3729 | class_uchardata = code + LINK_SIZE + 2; /* For UTF-8 items */ |
3730 | class_uchardata_base = class_uchardata; /* For resetting in pass 1 */ |
3731 | #endif |
3732 | |
3733 | /* Process characters until ] is reached. By writing this as a "do" it |
3734 | means that an initial ] is taken as a data character. At the start of the |
3735 | loop, c contains the first byte of the character. */ |
3736 | |
3737 | if (c != 0) do |
3738 | { |
3739 | const pcre_uchar *oldptr; |
3740 | |
3741 | #ifdef SUPPORT_UTF |
3742 | if (utf && HAS_EXTRALEN(c)) |
3743 | { /* Braces are required because the */ |
3744 | GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */ |
3745 | } |
3746 | #endif |
3747 | |
3748 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3749 | /* In the pre-compile phase, accumulate the length of any extra |
3750 | data and reset the pointer. This is so that very large classes that |
3751 | contain a zillion > 255 characters no longer overwrite the work space |
3752 | (which is on the stack). */ |
3753 | |
3754 | if (lengthptr != NULL) |
3755 | { |
3756 | *lengthptr += class_uchardata - class_uchardata_base; |
3757 | class_uchardata = class_uchardata_base; |
3758 | } |
3759 | #endif |
3760 | |
3761 | /* Inside \Q...\E everything is literal except \E */ |
3762 | |
3763 | if (inescq) |
3764 | { |
3765 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */ |
3766 | { |
3767 | inescq = FALSE; /* Reset literal state */ |
3768 | ptr++; /* Skip the 'E' */ |
3769 | continue; /* Carry on with next */ |
3770 | } |
3771 | goto CHECK_RANGE; /* Could be range if \E follows */ |
3772 | } |
3773 | |
3774 | /* Handle POSIX class names. Perl allows a negation extension of the |
3775 | form [:^name:]. A square bracket that doesn't match the syntax is |
3776 | treated as a literal. We also recognize the POSIX constructions |
3777 | [.ch.] and [=ch=] ("collating elements") and fault them, as Perl |
3778 | 5.6 and 5.8 do. */ |
3779 | |
3780 | if (c == CHAR_LEFT_SQUARE_BRACKET && |
3781 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
3782 | ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr)) |
3783 | { |
3784 | BOOL local_negate = FALSE; |
3785 | int posix_class, taboffset, tabopt; |
3786 | register const pcre_uint8 *cbits = cd->cbits; |
3787 | pcre_uint8 pbits[32]; |
3788 | |
3789 | if (ptr[1] != CHAR_COLON) |
3790 | { |
3791 | *errorcodeptr = ERR31; |
3792 | goto FAILED; |
3793 | } |
3794 | |
3795 | ptr += 2; |
3796 | if (*ptr == CHAR_CIRCUMFLEX_ACCENT) |
3797 | { |
3798 | local_negate = TRUE; |
3799 | should_flip_negation = TRUE; /* Note negative special */ |
3800 | ptr++; |
3801 | } |
3802 | |
3803 | posix_class = check_posix_name(ptr, (int)(tempptr - ptr)); |
3804 | if (posix_class < 0) |
3805 | { |
3806 | *errorcodeptr = ERR30; |
3807 | goto FAILED; |
3808 | } |
3809 | |
3810 | /* If matching is caseless, upper and lower are converted to |
3811 | alpha. This relies on the fact that the class table starts with |
3812 | alpha, lower, upper as the first 3 entries. */ |
3813 | |
3814 | if ((options & PCRE_CASELESS) != 0 && posix_class <= 2) |
3815 | posix_class = 0; |
3816 | |
3817 | /* When PCRE_UCP is set, some of the POSIX classes are converted to |
3818 | different escape sequences that use Unicode properties. */ |
3819 | |
3820 | #ifdef SUPPORT_UCP |
3821 | if ((options & PCRE_UCP) != 0) |
3822 | { |
3823 | int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0); |
3824 | if (posix_substitutes[pc] != NULL) |
3825 | { |
3826 | nestptr = tempptr + 1; |
3827 | ptr = posix_substitutes[pc] - 1; |
3828 | continue; |
3829 | } |
3830 | } |
3831 | #endif |
3832 | /* In the non-UCP case, we build the bit map for the POSIX class in a |
3833 | chunk of local store because we may be adding and subtracting from it, |
3834 | and we don't want to subtract bits that may be in the main map already. |
3835 | At the end we or the result into the bit map that is being built. */ |
3836 | |
3837 | posix_class *= 3; |
3838 | |
3839 | /* Copy in the first table (always present) */ |
3840 | |
3841 | memcpy(pbits, cbits + posix_class_maps[posix_class], |
3842 | 32 * sizeof(pcre_uint8)); |
3843 | |
3844 | /* If there is a second table, add or remove it as required. */ |
3845 | |
3846 | taboffset = posix_class_maps[posix_class + 1]; |
3847 | tabopt = posix_class_maps[posix_class + 2]; |
3848 | |
3849 | if (taboffset >= 0) |
3850 | { |
3851 | if (tabopt >= 0) |
3852 | for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset]; |
3853 | else |
3854 | for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset]; |
3855 | } |
3856 | |
3857 | /* Not see if we need to remove any special characters. An option |
3858 | value of 1 removes vertical space and 2 removes underscore. */ |
3859 | |
3860 | if (tabopt < 0) tabopt = -tabopt; |
3861 | if (tabopt == 1) pbits[1] &= ~0x3c; |
3862 | else if (tabopt == 2) pbits[11] &= 0x7f; |
3863 | |
3864 | /* Add the POSIX table or its complement into the main table that is |
3865 | being built and we are done. */ |
3866 | |
3867 | if (local_negate) |
3868 | for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c]; |
3869 | else |
3870 | for (c = 0; c < 32; c++) classbits[c] |= pbits[c]; |
3871 | |
3872 | ptr = tempptr + 1; |
3873 | class_charcount = 10; /* Set > 1; assumes more than 1 per class */ |
3874 | continue; /* End of POSIX syntax handling */ |
3875 | } |
3876 | |
3877 | /* Backslash may introduce a single character, or it may introduce one |
3878 | of the specials, which just set a flag. The sequence \b is a special |
3879 | case. Inside a class (and only there) it is treated as backspace. We |
3880 | assume that other escapes have more than one character in them, so set |
3881 | class_charcount bigger than one. Unrecognized escapes fall through and |
3882 | are either treated as literal characters (by default), or are faulted if |
3883 | PCRE_EXTRA is set. */ |
3884 | |
3885 | if (c == CHAR_BACKSLASH) |
3886 | { |
3887 | c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE); |
3888 | if (*errorcodeptr != 0) goto FAILED; |
3889 | |
3890 | if (-c == ESC_b) c = CHAR_BS; /* \b is backspace in a class */ |
3891 | else if (-c == ESC_Q) /* Handle start of quoted string */ |
3892 | { |
3893 | if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
3894 | { |
3895 | ptr += 2; /* avoid empty string */ |
3896 | } |
3897 | else inescq = TRUE; |
3898 | continue; |
3899 | } |
3900 | else if (-c == ESC_E) continue; /* Ignore orphan \E */ |
3901 | |
3902 | if (c < 0) |
3903 | { |
3904 | register const pcre_uint8 *cbits = cd->cbits; |
3905 | class_charcount += 2; /* Greater than 1 is what matters */ |
3906 | |
3907 | switch (-c) |
3908 | { |
3909 | #ifdef SUPPORT_UCP |
3910 | case ESC_du: /* These are the values given for \d etc */ |
3911 | case ESC_DU: /* when PCRE_UCP is set. We replace the */ |
3912 | case ESC_wu: /* escape sequence with an appropriate \p */ |
3913 | case ESC_WU: /* or \P to test Unicode properties instead */ |
3914 | case ESC_su: /* of the default ASCII testing. */ |
3915 | case ESC_SU: |
3916 | nestptr = ptr; |
3917 | ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */ |
3918 | class_charcount -= 2; /* Undo! */ |
3919 | continue; |
3920 | #endif |
3921 | case ESC_d: |
3922 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit]; |
3923 | continue; |
3924 | |
3925 | case ESC_D: |
3926 | should_flip_negation = TRUE; |
3927 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit]; |
3928 | continue; |
3929 | |
3930 | case ESC_w: |
3931 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word]; |
3932 | continue; |
3933 | |
3934 | case ESC_W: |
3935 | should_flip_negation = TRUE; |
3936 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word]; |
3937 | continue; |
3938 | |
3939 | /* Perl 5.004 onwards omits VT from \s, but we must preserve it |
3940 | if it was previously set by something earlier in the character |
3941 | class. */ |
3942 | |
3943 | case ESC_s: |
3944 | classbits[0] |= cbits[cbit_space]; |
3945 | classbits[1] |= cbits[cbit_space+1] & ~0x08; |
3946 | for (c = 2; c < 32; c++) classbits[c] |= cbits[c+cbit_space]; |
3947 | continue; |
3948 | |
3949 | case ESC_S: |
3950 | should_flip_negation = TRUE; |
3951 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space]; |
3952 | classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */ |
3953 | continue; |
3954 | |
3955 | case ESC_h: |
3956 | SETBIT(classbits, 0x09); /* VT */ |
3957 | SETBIT(classbits, 0x20); /* SPACE */ |
3958 | SETBIT(classbits, 0xa0); /* NSBP */ |
3959 | #ifdef SUPPORT_UTF |
3960 | if (utf) |
3961 | { |
3962 | xclass = TRUE; |
3963 | *class_uchardata++ = XCL_SINGLE; |
3964 | class_uchardata += PRIV(ord2utf)(0x1680, class_uchardata); |
3965 | *class_uchardata++ = XCL_SINGLE; |
3966 | class_uchardata += PRIV(ord2utf)(0x180e, class_uchardata); |
3967 | *class_uchardata++ = XCL_RANGE; |
3968 | class_uchardata += PRIV(ord2utf)(0x2000, class_uchardata); |
3969 | class_uchardata += PRIV(ord2utf)(0x200A, class_uchardata); |
3970 | *class_uchardata++ = XCL_SINGLE; |
3971 | class_uchardata += PRIV(ord2utf)(0x202f, class_uchardata); |
3972 | *class_uchardata++ = XCL_SINGLE; |
3973 | class_uchardata += PRIV(ord2utf)(0x205f, class_uchardata); |
3974 | *class_uchardata++ = XCL_SINGLE; |
3975 | class_uchardata += PRIV(ord2utf)(0x3000, class_uchardata); |
3976 | } |
3977 | #endif |
3978 | continue; |
3979 | |
3980 | case ESC_H: |
3981 | for (c = 0; c < 32; c++) |
3982 | { |
3983 | int x = 0xff; |
3984 | switch (c) |
3985 | { |
3986 | case 0x09/8: x ^= 1 << (0x09%8); break; |
3987 | case 0x20/8: x ^= 1 << (0x20%8); break; |
3988 | case 0xa0/8: x ^= 1 << (0xa0%8); break; |
3989 | default: break; |
3990 | } |
3991 | classbits[c] |= x; |
3992 | } |
3993 | |
3994 | #ifdef SUPPORT_UTF |
3995 | if (utf) |
3996 | { |
3997 | xclass = TRUE; |
3998 | *class_uchardata++ = XCL_RANGE; |
3999 | class_uchardata += PRIV(ord2utf)(0x0100, class_uchardata); |
4000 | class_uchardata += PRIV(ord2utf)(0x167f, class_uchardata); |
4001 | *class_uchardata++ = XCL_RANGE; |
4002 | class_uchardata += PRIV(ord2utf)(0x1681, class_uchardata); |
4003 | class_uchardata += PRIV(ord2utf)(0x180d, class_uchardata); |
4004 | *class_uchardata++ = XCL_RANGE; |
4005 | class_uchardata += PRIV(ord2utf)(0x180f, class_uchardata); |
4006 | class_uchardata += PRIV(ord2utf)(0x1fff, class_uchardata); |
4007 | *class_uchardata++ = XCL_RANGE; |
4008 | class_uchardata += PRIV(ord2utf)(0x200B, class_uchardata); |
4009 | class_uchardata += PRIV(ord2utf)(0x202e, class_uchardata); |
4010 | *class_uchardata++ = XCL_RANGE; |
4011 | class_uchardata += PRIV(ord2utf)(0x2030, class_uchardata); |
4012 | class_uchardata += PRIV(ord2utf)(0x205e, class_uchardata); |
4013 | *class_uchardata++ = XCL_RANGE; |
4014 | class_uchardata += PRIV(ord2utf)(0x2060, class_uchardata); |
4015 | class_uchardata += PRIV(ord2utf)(0x2fff, class_uchardata); |
4016 | *class_uchardata++ = XCL_RANGE; |
4017 | class_uchardata += PRIV(ord2utf)(0x3001, class_uchardata); |
4018 | class_uchardata += PRIV(ord2utf)(0x10ffff, class_uchardata); |
4019 | } |
4020 | #endif |
4021 | continue; |
4022 | |
4023 | case ESC_v: |
4024 | SETBIT(classbits, 0x0a); /* LF */ |
4025 | SETBIT(classbits, 0x0b); /* VT */ |
4026 | SETBIT(classbits, 0x0c); /* FF */ |
4027 | SETBIT(classbits, 0x0d); /* CR */ |
4028 | SETBIT(classbits, 0x85); /* NEL */ |
4029 | #ifdef SUPPORT_UTF |
4030 | if (utf) |
4031 | { |
4032 | xclass = TRUE; |
4033 | *class_uchardata++ = XCL_RANGE; |
4034 | class_uchardata += PRIV(ord2utf)(0x2028, class_uchardata); |
4035 | class_uchardata += PRIV(ord2utf)(0x2029, class_uchardata); |
4036 | } |
4037 | #endif |
4038 | continue; |
4039 | |
4040 | case ESC_V: |
4041 | for (c = 0; c < 32; c++) |
4042 | { |
4043 | int x = 0xff; |
4044 | switch (c) |
4045 | { |
4046 | case 0x0a/8: x ^= 1 << (0x0a%8); |
4047 | x ^= 1 << (0x0b%8); |
4048 | x ^= 1 << (0x0c%8); |
4049 | x ^= 1 << (0x0d%8); |
4050 | break; |
4051 | case 0x85/8: x ^= 1 << (0x85%8); break; |
4052 | default: break; |
4053 | } |
4054 | classbits[c] |= x; |
4055 | } |
4056 | |
4057 | #ifdef SUPPORT_UTF |
4058 | if (utf) |
4059 | { |
4060 | xclass = TRUE; |
4061 | *class_uchardata++ = XCL_RANGE; |
4062 | class_uchardata += PRIV(ord2utf)(0x0100, class_uchardata); |
4063 | class_uchardata += PRIV(ord2utf)(0x2027, class_uchardata); |
4064 | *class_uchardata++ = XCL_RANGE; |
4065 | class_uchardata += PRIV(ord2utf)(0x2029, class_uchardata); |
4066 | class_uchardata += PRIV(ord2utf)(0x10ffff, class_uchardata); |
4067 | } |
4068 | #endif |
4069 | continue; |
4070 | |
4071 | #ifdef SUPPORT_UCP |
4072 | case ESC_p: |
4073 | case ESC_P: |
4074 | { |
4075 | BOOL negated; |
4076 | int pdata; |
4077 | int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr); |
4078 | if (ptype < 0) goto FAILED; |
4079 | xclass = TRUE; |
4080 | *class_uchardata++ = ((-c == ESC_p) != negated)? |
4081 | XCL_PROP : XCL_NOTPROP; |
4082 | *class_uchardata++ = ptype; |
4083 | *class_uchardata++ = pdata; |
4084 | class_charcount -= 2; /* Not a < 256 character */ |
4085 | continue; |
4086 | } |
4087 | #endif |
4088 | /* Unrecognized escapes are faulted if PCRE is running in its |
4089 | strict mode. By default, for compatibility with Perl, they are |
4090 | treated as literals. */ |
4091 | |
4092 | default: |
4093 | if ((options & PCRE_EXTRA) != 0) |
4094 | { |
4095 | *errorcodeptr = ERR7; |
4096 | goto FAILED; |
4097 | } |
4098 | class_charcount -= 2; /* Undo the default count from above */ |
4099 | c = *ptr; /* Get the final character and fall through */ |
4100 | break; |
4101 | } |
4102 | } |
4103 | |
4104 | /* Fall through if we have a single character (c >= 0). This may be |
4105 | greater than 256 mode. */ |
4106 | |
4107 | } /* End of backslash handling */ |
4108 | |
4109 | /* A single character may be followed by '-' to form a range. However, |
4110 | Perl does not permit ']' to be the end of the range. A '-' character |
4111 | at the end is treated as a literal. Perl ignores orphaned \E sequences |
4112 | entirely. The code for handling \Q and \E is messy. */ |
4113 | |
4114 | CHECK_RANGE: |
4115 | while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
4116 | { |
4117 | inescq = FALSE; |
4118 | ptr += 2; |
4119 | } |
4120 | |
4121 | oldptr = ptr; |
4122 | |
4123 | /* Remember \r or \n */ |
4124 | |
4125 | if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
4126 | |
4127 | /* Check for range */ |
4128 | |
4129 | if (!inescq && ptr[1] == CHAR_MINUS) |
4130 | { |
4131 | int d; |
4132 | ptr += 2; |
4133 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2; |
4134 | |
4135 | /* If we hit \Q (not followed by \E) at this point, go into escaped |
4136 | mode. */ |
4137 | |
4138 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q) |
4139 | { |
4140 | ptr += 2; |
4141 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
4142 | { ptr += 2; continue; } |
4143 | inescq = TRUE; |
4144 | break; |
4145 | } |
4146 | |
4147 | if (*ptr == 0 || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET)) |
4148 | { |
4149 | ptr = oldptr; |
4150 | goto LONE_SINGLE_CHARACTER; |
4151 | } |
4152 | |
4153 | #ifdef SUPPORT_UTF8 |
4154 | if (utf) |
4155 | { /* Braces are required because the */ |
4156 | GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */ |
4157 | } |
4158 | else |
4159 | #endif |
4160 | d = *ptr; /* Not UTF-8 mode */ |
4161 | |
4162 | /* The second part of a range can be a single-character escape, but |
4163 | not any of the other escapes. Perl 5.6 treats a hyphen as a literal |
4164 | in such circumstances. */ |
4165 | |
4166 | if (!inescq && d == CHAR_BACKSLASH) |
4167 | { |
4168 | d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE); |
4169 | if (*errorcodeptr != 0) goto FAILED; |
4170 | |
4171 | /* \b is backspace; any other special means the '-' was literal */ |
4172 | |
4173 | if (d < 0) |
4174 | { |
4175 | if (d == -ESC_b) d = CHAR_BS; else |
4176 | { |
4177 | ptr = oldptr; |
4178 | goto LONE_SINGLE_CHARACTER; /* A few lines below */ |
4179 | } |
4180 | } |
4181 | } |
4182 | |
4183 | /* Check that the two values are in the correct order. Optimize |
4184 | one-character ranges */ |
4185 | |
4186 | if (d < c) |
4187 | { |
4188 | *errorcodeptr = ERR8; |
4189 | goto FAILED; |
4190 | } |
4191 | |
4192 | if (d == c) goto LONE_SINGLE_CHARACTER; /* A few lines below */ |
4193 | |
4194 | /* Remember \r or \n */ |
4195 | |
4196 | if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
4197 | |
4198 | /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless |
4199 | matching, we have to use an XCLASS with extra data items. Caseless |
4200 | matching for characters > 127 is available only if UCP support is |
4201 | available. */ |
4202 | |
4203 | #ifdef SUPPORT_UTF |
4204 | if (utf && (d > 255 || ((options & PCRE_CASELESS) != 0 && d > 127))) |
4205 | #elif !(defined COMPILE_PCRE8) |
4206 | if (d > 255) |
4207 | #endif |
4208 | #if defined SUPPORT_UTF || !(defined COMPILE_PCRE8) |
4209 | { |
4210 | xclass = TRUE; |
4211 | |
4212 | /* With UCP support, we can find the other case equivalents of |
4213 | the relevant characters. There may be several ranges. Optimize how |
4214 | they fit with the basic range. */ |
4215 | |
4216 | #ifdef SUPPORT_UCP |
4217 | if ((options & PCRE_CASELESS) != 0) |
4218 | { |
4219 | unsigned int occ, ocd; |
4220 | unsigned int cc = c; |
4221 | unsigned int origd = d; |
4222 | while (get_othercase_range(&cc, origd, &occ, &ocd)) |
4223 | { |
4224 | if (occ >= (unsigned int)c && |
4225 | ocd <= (unsigned int)d) |
4226 | continue; /* Skip embedded ranges */ |
4227 | |
4228 | if (occ < (unsigned int)c && |
4229 | ocd >= (unsigned int)c - 1) /* Extend the basic range */ |
4230 | { /* if there is overlap, */ |
4231 | c = occ; /* noting that if occ < c */ |
4232 | continue; /* we can't have ocd > d */ |
4233 | } /* because a subrange is */ |
4234 | if (ocd > (unsigned int)d && |
4235 | occ <= (unsigned int)d + 1) /* always shorter than */ |
4236 | { /* the basic range. */ |
4237 | d = ocd; |
4238 | continue; |
4239 | } |
4240 | |
4241 | if (occ == ocd) |
4242 | { |
4243 | *class_uchardata++ = XCL_SINGLE; |
4244 | } |
4245 | else |
4246 | { |
4247 | *class_uchardata++ = XCL_RANGE; |
4248 | class_uchardata += PRIV(ord2utf)(occ, class_uchardata); |
4249 | } |
4250 | class_uchardata += PRIV(ord2utf)(ocd, class_uchardata); |
4251 | } |
4252 | } |
4253 | #endif /* SUPPORT_UCP */ |
4254 | |
4255 | /* Now record the original range, possibly modified for UCP caseless |
4256 | overlapping ranges. */ |
4257 | |
4258 | *class_uchardata++ = XCL_RANGE; |
4259 | #ifdef SUPPORT_UTF |
4260 | class_uchardata += PRIV(ord2utf)(c, class_uchardata); |
4261 | class_uchardata += PRIV(ord2utf)(d, class_uchardata); |
4262 | #else |
4263 | *class_uchardata++ = c; |
4264 | *class_uchardata++ = d; |
4265 | #endif |
4266 | |
4267 | /* With UCP support, we are done. Without UCP support, there is no |
4268 | caseless matching for UTF characters > 127; we can use the bit map |
4269 | for the smaller ones. As for 16 bit characters without UTF, we |
4270 | can still use */ |
4271 | |
4272 | #ifdef SUPPORT_UCP |
4273 | continue; /* With next character in the class */ |
4274 | #else |
4275 | #ifdef SUPPORT_UTF |
4276 | if ((options & PCRE_CASELESS) == 0 || c > 127) continue; |
4277 | /* Adjust upper limit and fall through to set up the map */ |
4278 | d = 127; |
4279 | #else |
4280 | if (c > 255) continue; |
4281 | /* Adjust upper limit and fall through to set up the map */ |
4282 | d = 255; |
4283 | #endif /* SUPPORT_UTF */ |
4284 | #endif /* SUPPORT_UCP */ |
4285 | } |
4286 | #endif /* SUPPORT_UTF8 || COMPILE_PCRE16 */ |
4287 | |
4288 | /* We use the bit map for 8 bit mode, or when the characters fall |
4289 | partially or entirely to [0-255] ([0-127] for UCP) ranges. */ |
4290 | |
4291 | class_charcount += d - c + 1; |
4292 | class_lastchar = d; |
4293 | |
4294 | /* We can save a bit of time by skipping this in the pre-compile. */ |
4295 | |
4296 | if (lengthptr == NULL) for (; c <= d; c++) |
4297 | { |
4298 | classbits[c/8] |= (1 << (c&7)); |
4299 | if ((options & PCRE_CASELESS) != 0) |
4300 | { |
4301 | int uc = cd->fcc[c]; /* flip case */ |
4302 | classbits[uc/8] |= (1 << (uc&7)); |
4303 | } |
4304 | } |
4305 | |
4306 | continue; /* Go get the next char in the class */ |
4307 | } |
4308 | |
4309 | /* Handle a lone single character - we can get here for a normal |
4310 | non-escape char, or after \ that introduces a single character or for an |
4311 | apparent range that isn't. */ |
4312 | |
4313 | LONE_SINGLE_CHARACTER: |
4314 | |
4315 | /* Handle a character that cannot go in the bit map */ |
4316 | |
4317 | #ifdef SUPPORT_UTF |
4318 | if (utf && (c > 255 || ((options & PCRE_CASELESS) != 0 && c > 127))) |
4319 | #elif !(defined COMPILE_PCRE8) |
4320 | if (c > 255) |
4321 | #endif |
4322 | #if defined SUPPORT_UTF || !(defined COMPILE_PCRE8) |
4323 | { |
4324 | xclass = TRUE; |
4325 | *class_uchardata++ = XCL_SINGLE; |
4326 | #ifdef SUPPORT_UTF |
4327 | class_uchardata += PRIV(ord2utf)(c, class_uchardata); |
4328 | #else |
4329 | *class_uchardata++ = c; |
4330 | #endif |
4331 | |
4332 | #ifdef SUPPORT_UCP |
4333 | if ((options & PCRE_CASELESS) != 0) |
4334 | { |
4335 | unsigned int othercase; |
4336 | if ((othercase = UCD_OTHERCASE(c)) != c) |
4337 | { |
4338 | *class_uchardata++ = XCL_SINGLE; |
4339 | class_uchardata += PRIV(ord2utf)(othercase, class_uchardata); |
4340 | } |
4341 | } |
4342 | #endif /* SUPPORT_UCP */ |
4343 | |
4344 | } |
4345 | else |
4346 | #endif /* SUPPORT_UTF || COMPILE_PCRE16 */ |
4347 | /* Handle a single-byte character */ |
4348 | { |
4349 | classbits[c/8] |= (1 << (c&7)); |
4350 | if ((options & PCRE_CASELESS) != 0) |
4351 | { |
4352 | c = cd->fcc[c]; /* flip case */ |
4353 | classbits[c/8] |= (1 << (c&7)); |
4354 | } |
4355 | class_charcount++; |
4356 | class_lastchar = c; |
4357 | } |
4358 | |
4359 | } |
4360 | |
4361 | /* Loop until ']' reached. This "while" is the end of the "do" far above. |
4362 | If we are at the end of an internal nested string, revert to the outer |
4363 | string. */ |
4364 | |
4365 | while (((c = *(++ptr)) != 0 || |
4366 | (nestptr != NULL && |
4367 | (ptr = nestptr, nestptr = NULL, c = *(++ptr)) != 0)) && |
4368 | (c != CHAR_RIGHT_SQUARE_BRACKET || inescq)); |
4369 | |
4370 | /* Check for missing terminating ']' */ |
4371 | |
4372 | if (c == 0) |
4373 | { |
4374 | *errorcodeptr = ERR6; |
4375 | goto FAILED; |
4376 | } |
4377 | |
4378 | /* If class_charcount is 1, we saw precisely one character whose value is |
4379 | less than 256. As long as there were no characters >= 128 and there was no |
4380 | use of \p or \P, in other words, no use of any XCLASS features, we can |
4381 | optimize. |
4382 | |
4383 | In UTF-8 mode, we can optimize the negative case only if there were no |
4384 | characters >= 128 because OP_NOT and the related opcodes like OP_NOTSTAR |
4385 | operate on single-bytes characters only. This is an historical hangover. |
4386 | Maybe one day we can tidy these opcodes to handle multi-byte characters. |
4387 | |
4388 | The optimization throws away the bit map. We turn the item into a |
4389 | 1-character OP_CHAR[I] if it's positive, or OP_NOT[I] if it's negative. |
4390 | Note that OP_NOT[I] does not support multibyte characters. In the positive |
4391 | case, it can cause firstchar to be set. Otherwise, there can be no first |
4392 | char if this item is first, whatever repeat count may follow. In the case |
4393 | of reqchar, save the previous value for reinstating. */ |
4394 | |
4395 | #ifdef SUPPORT_UTF |
4396 | if (class_charcount == 1 && !xclass && |
4397 | (!utf || !negate_class || class_lastchar < 128)) |
4398 | #else |
4399 | if (class_charcount == 1) |
4400 | #endif |
4401 | { |
4402 | zeroreqchar = reqchar; |
4403 | |
4404 | /* The OP_NOT[I] opcodes work on one-byte characters only. */ |
4405 | |
4406 | if (negate_class) |
4407 | { |
4408 | if (firstchar == REQ_UNSET) firstchar = REQ_NONE; |
4409 | zerofirstchar = firstchar; |
4410 | *code++ = ((options & PCRE_CASELESS) != 0)? OP_NOTI: OP_NOT; |
4411 | *code++ = class_lastchar; |
4412 | break; |
4413 | } |
4414 | |
4415 | /* For a single, positive character, get the value into mcbuffer, and |
4416 | then we can handle this with the normal one-character code. */ |
4417 | |
4418 | #ifdef SUPPORT_UTF8 |
4419 | if (utf && class_lastchar > 127) |
4420 | mclength = PRIV(ord2utf)(class_lastchar, mcbuffer); |
4421 | else |
4422 | #endif |
4423 | { |
4424 | mcbuffer[0] = class_lastchar; |
4425 | mclength = 1; |
4426 | } |
4427 | goto ONE_CHAR; |
4428 | } /* End of 1-char optimization */ |
4429 | |
4430 | /* The general case - not the one-char optimization. If this is the first |
4431 | thing in the branch, there can be no first char setting, whatever the |
4432 | repeat count. Any reqchar setting must remain unchanged after any kind of |
4433 | repeat. */ |
4434 | |
4435 | if (firstchar == REQ_UNSET) firstchar = REQ_NONE; |
4436 | zerofirstchar = firstchar; |
4437 | zeroreqchar = reqchar; |
4438 | |
4439 | /* If there are characters with values > 255, we have to compile an |
4440 | extended class, with its own opcode, unless there was a negated special |
4441 | such as \S in the class, and PCRE_UCP is not set, because in that case all |
4442 | characters > 255 are in the class, so any that were explicitly given as |
4443 | well can be ignored. If (when there are explicit characters > 255 that must |
4444 | be listed) there are no characters < 256, we can omit the bitmap in the |
4445 | actual compiled code. */ |
4446 | |
4447 | #ifdef SUPPORT_UTF |
4448 | if (xclass && (!should_flip_negation || (options & PCRE_UCP) != 0)) |
4449 | #endif |
4450 | #ifndef COMPILE_PCRE8 |
4451 | if (xclass && !should_flip_negation) |
4452 | #endif |
4453 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4454 | { |
4455 | *class_uchardata++ = XCL_END; /* Marks the end of extra data */ |
4456 | *code++ = OP_XCLASS; |
4457 | code += LINK_SIZE; |
4458 | *code = negate_class? XCL_NOT:0; |
4459 | |
4460 | /* If the map is required, move up the extra data to make room for it; |
4461 | otherwise just move the code pointer to the end of the extra data. */ |
4462 | |
4463 | if (class_charcount > 0) |
4464 | { |
4465 | *code++ |= XCL_MAP; |
4466 | memmove(code + (32 / sizeof(pcre_uchar)), code, |
4467 | IN_UCHARS(class_uchardata - code)); |
4468 | memcpy(code, classbits, 32); |
4469 | code = class_uchardata + (32 / sizeof(pcre_uchar)); |
4470 | } |
4471 | else code = class_uchardata; |
4472 | |
4473 | /* Now fill in the complete length of the item */ |
4474 | |
4475 | PUT(previous, 1, code - previous); |
4476 | break; /* End of class handling */ |
4477 | } |
4478 | #endif |
4479 | |
4480 | /* If there are no characters > 255, or they are all to be included or |
4481 | excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the |
4482 | whole class was negated and whether there were negative specials such as \S |
4483 | (non-UCP) in the class. Then copy the 32-byte map into the code vector, |
4484 | negating it if necessary. */ |
4485 | |
4486 | *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS; |
4487 | if (lengthptr == NULL) /* Save time in the pre-compile phase */ |
4488 | { |
4489 | if (negate_class) |
4490 | for (c = 0; c < 32; c++) classbits[c] = ~classbits[c]; |
4491 | memcpy(code, classbits, 32); |
4492 | } |
4493 | code += 32 / sizeof(pcre_uchar); |
4494 | break; |
4495 | |
4496 | |
4497 | /* ===================================================================*/ |
4498 | /* Various kinds of repeat; '{' is not necessarily a quantifier, but this |
4499 | has been tested above. */ |
4500 | |
4501 | case CHAR_LEFT_CURLY_BRACKET: |
4502 | if (!is_quantifier) goto NORMAL_CHAR; |
4503 | ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr); |
4504 | if (*errorcodeptr != 0) goto FAILED; |
4505 | goto REPEAT; |
4506 | |
4507 | case CHAR_ASTERISK: |
4508 | repeat_min = 0; |
4509 | repeat_max = -1; |
4510 | goto REPEAT; |
4511 | |
4512 | case CHAR_PLUS: |
4513 | repeat_min = 1; |
4514 | repeat_max = -1; |
4515 | goto REPEAT; |
4516 | |
4517 | case CHAR_QUESTION_MARK: |
4518 | repeat_min = 0; |
4519 | repeat_max = 1; |
4520 | |
4521 | REPEAT: |
4522 | if (previous == NULL) |
4523 | { |
4524 | *errorcodeptr = ERR9; |
4525 | goto FAILED; |
4526 | } |
4527 | |
4528 | if (repeat_min == 0) |
4529 | { |
4530 | firstchar = zerofirstchar; /* Adjust for zero repeat */ |
4531 | reqchar = zeroreqchar; /* Ditto */ |
4532 | } |
4533 | |
4534 | /* Remember whether this is a variable length repeat */ |
4535 | |
4536 | reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY; |
4537 | |
4538 | op_type = 0; /* Default single-char op codes */ |
4539 | possessive_quantifier = FALSE; /* Default not possessive quantifier */ |
4540 | |
4541 | /* Save start of previous item, in case we have to move it up in order to |
4542 | insert something before it. */ |
4543 | |
4544 | tempcode = previous; |
4545 | |
4546 | /* If the next character is '+', we have a possessive quantifier. This |
4547 | implies greediness, whatever the setting of the PCRE_UNGREEDY option. |
4548 | If the next character is '?' this is a minimizing repeat, by default, |
4549 | but if PCRE_UNGREEDY is set, it works the other way round. We change the |
4550 | repeat type to the non-default. */ |
4551 | |
4552 | if (ptr[1] == CHAR_PLUS) |
4553 | { |
4554 | repeat_type = 0; /* Force greedy */ |
4555 | possessive_quantifier = TRUE; |
4556 | ptr++; |
4557 | } |
4558 | else if (ptr[1] == CHAR_QUESTION_MARK) |
4559 | { |
4560 | repeat_type = greedy_non_default; |
4561 | ptr++; |
4562 | } |
4563 | else repeat_type = greedy_default; |
4564 | |
4565 | /* If previous was a recursion call, wrap it in atomic brackets so that |
4566 | previous becomes the atomic group. All recursions were so wrapped in the |
4567 | past, but it no longer happens for non-repeated recursions. In fact, the |
4568 | repeated ones could be re-implemented independently so as not to need this, |
4569 | but for the moment we rely on the code for repeating groups. */ |
4570 | |
4571 | if (*previous == OP_RECURSE) |
4572 | { |
4573 | memmove(previous + 1 + LINK_SIZE, previous, IN_UCHARS(1 + LINK_SIZE)); |
4574 | *previous = OP_ONCE; |
4575 | PUT(previous, 1, 2 + 2*LINK_SIZE); |
4576 | previous[2 + 2*LINK_SIZE] = OP_KET; |
4577 | PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE); |
4578 | code += 2 + 2 * LINK_SIZE; |
4579 | length_prevgroup = 3 + 3*LINK_SIZE; |
4580 | |
4581 | /* When actually compiling, we need to check whether this was a forward |
4582 | reference, and if so, adjust the offset. */ |
4583 | |
4584 | if (lengthptr == NULL && cd->hwm >= cd->start_workspace + LINK_SIZE) |
4585 | { |
4586 | int offset = GET(cd->hwm, -LINK_SIZE); |
4587 | if (offset == previous + 1 - cd->start_code) |
4588 | PUT(cd->hwm, -LINK_SIZE, offset + 1 + LINK_SIZE); |
4589 | } |
4590 | } |
4591 | |
4592 | /* Now handle repetition for the different types of item. */ |
4593 | |
4594 | /* If previous was a character match, abolish the item and generate a |
4595 | repeat item instead. If a char item has a minumum of more than one, ensure |
4596 | that it is set in reqchar - it might not be if a sequence such as x{3} is |
4597 | the first thing in a branch because the x will have gone into firstchar |
4598 | instead. */ |
4599 | |
4600 | if (*previous == OP_CHAR || *previous == OP_CHARI) |
4601 | { |
4602 | op_type = (*previous == OP_CHAR)? 0 : OP_STARI - OP_STAR; |
4603 | |
4604 | /* Deal with UTF characters that take up more than one character. It's |
4605 | easier to write this out separately than try to macrify it. Use c to |
4606 | hold the length of the character in bytes, plus UTF_LENGTH to flag that |
4607 | it's a length rather than a small character. */ |
4608 | |
4609 | #ifdef SUPPORT_UTF |
4610 | #ifdef COMPILE_PCRE8 |
4611 | if (utf && (code[-1] & 0x80) != 0) |
4612 | #endif /* COMPILE_PCRE8 */ |
4613 | #ifdef COMPILE_PCRE16 |
4614 | if (utf && (code[-1] & 0xfc00) == 0xdc00) |
4615 | #endif /* COMPILE_PCRE8 */ |
4616 | { |
4617 | pcre_uchar *lastchar = code - 1; |
4618 | BACKCHAR(lastchar); |
4619 | c = code - lastchar; /* Length of UTF-8 character */ |
4620 | memcpy(utf_chars, lastchar, IN_UCHARS(c)); /* Save the char */ |
4621 | c |= UTF_LENGTH; /* Flag c as a length */ |
4622 | } |
4623 | else |
4624 | #endif /* SUPPORT_UTF */ |
4625 | |
4626 | /* Handle the case of a single charater - either with no UTF support, or |
4627 | with UTF disabled, or for a single character UTF character. */ |
4628 | |
4629 | { |
4630 | c = code[-1]; |
4631 | if (repeat_min > 1) reqchar = c | req_caseopt | cd->req_varyopt; |
4632 | } |
4633 | |
4634 | /* If the repetition is unlimited, it pays to see if the next thing on |
4635 | the line is something that cannot possibly match this character. If so, |
4636 | automatically possessifying this item gains some performance in the case |
4637 | where the match fails. */ |
4638 | |
4639 | if (!possessive_quantifier && |
4640 | repeat_max < 0 && |
4641 | check_auto_possessive(previous, utf, ptr + 1, options, cd)) |
4642 | { |
4643 | repeat_type = 0; /* Force greedy */ |
4644 | possessive_quantifier = TRUE; |
4645 | } |
4646 | |
4647 | goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */ |
4648 | } |
4649 | |
4650 | /* If previous was a single negated character ([^a] or similar), we use |
4651 | one of the special opcodes, replacing it. The code is shared with single- |
4652 | character repeats by setting opt_type to add a suitable offset into |
4653 | repeat_type. We can also test for auto-possessification. OP_NOT and OP_NOTI |
4654 | are currently used only for single-byte chars. */ |
4655 | |
4656 | else if (*previous == OP_NOT || *previous == OP_NOTI) |
4657 | { |
4658 | op_type = ((*previous == OP_NOT)? OP_NOTSTAR : OP_NOTSTARI) - OP_STAR; |
4659 | c = previous[1]; |
4660 | if (!possessive_quantifier && |
4661 | repeat_max < 0 && |
4662 | check_auto_possessive(previous, utf, ptr + 1, options, cd)) |
4663 | { |
4664 | repeat_type = 0; /* Force greedy */ |
4665 | possessive_quantifier = TRUE; |
4666 | } |
4667 | goto OUTPUT_SINGLE_REPEAT; |
4668 | } |
4669 | |
4670 | /* If previous was a character type match (\d or similar), abolish it and |
4671 | create a suitable repeat item. The code is shared with single-character |
4672 | repeats by setting op_type to add a suitable offset into repeat_type. Note |
4673 | the the Unicode property types will be present only when SUPPORT_UCP is |
4674 | defined, but we don't wrap the little bits of code here because it just |
4675 | makes it horribly messy. */ |
4676 | |
4677 | else if (*previous < OP_EODN) |
4678 | { |
4679 | pcre_uchar *oldcode; |
4680 | int prop_type, prop_value; |
4681 | op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ |
4682 | c = *previous; |
4683 | |
4684 | if (!possessive_quantifier && |
4685 | repeat_max < 0 && |
4686 | check_auto_possessive(previous, utf, ptr + 1, options, cd)) |
4687 | { |
4688 | repeat_type = 0; /* Force greedy */ |
4689 | possessive_quantifier = TRUE; |
4690 | } |
4691 | |
4692 | OUTPUT_SINGLE_REPEAT: |
4693 | if (*previous == OP_PROP || *previous == OP_NOTPROP) |
4694 | { |
4695 | prop_type = previous[1]; |
4696 | prop_value = previous[2]; |
4697 | } |
4698 | else prop_type = prop_value = -1; |
4699 | |
4700 | oldcode = code; |
4701 | code = previous; /* Usually overwrite previous item */ |
4702 | |
4703 | /* If the maximum is zero then the minimum must also be zero; Perl allows |
4704 | this case, so we do too - by simply omitting the item altogether. */ |
4705 | |
4706 | if (repeat_max == 0) goto END_REPEAT; |
4707 | |
4708 | /*--------------------------------------------------------------------*/ |
4709 | /* This code is obsolete from release 8.00; the restriction was finally |
4710 | removed: */ |
4711 | |
4712 | /* All real repeats make it impossible to handle partial matching (maybe |
4713 | one day we will be able to remove this restriction). */ |
4714 | |
4715 | /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ |
4716 | /*--------------------------------------------------------------------*/ |
4717 | |
4718 | /* Combine the op_type with the repeat_type */ |
4719 | |
4720 | repeat_type += op_type; |
4721 | |
4722 | /* A minimum of zero is handled either as the special case * or ?, or as |
4723 | an UPTO, with the maximum given. */ |
4724 | |
4725 | if (repeat_min == 0) |
4726 | { |
4727 | if (repeat_max == -1) *code++ = OP_STAR + repeat_type; |
4728 | else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type; |
4729 | else |
4730 | { |
4731 | *code++ = OP_UPTO + repeat_type; |
4732 | PUT2INC(code, 0, repeat_max); |
4733 | } |
4734 | } |
4735 | |
4736 | /* A repeat minimum of 1 is optimized into some special cases. If the |
4737 | maximum is unlimited, we use OP_PLUS. Otherwise, the original item is |
4738 | left in place and, if the maximum is greater than 1, we use OP_UPTO with |
4739 | one less than the maximum. */ |
4740 | |
4741 | else if (repeat_min == 1) |
4742 | { |
4743 | if (repeat_max == -1) |
4744 | *code++ = OP_PLUS + repeat_type; |
4745 | else |
4746 | { |
4747 | code = oldcode; /* leave previous item in place */ |
4748 | if (repeat_max == 1) goto END_REPEAT; |
4749 | *code++ = OP_UPTO + repeat_type; |
4750 | PUT2INC(code, 0, repeat_max - 1); |
4751 | } |
4752 | } |
4753 | |
4754 | /* The case {n,n} is just an EXACT, while the general case {n,m} is |
4755 | handled as an EXACT followed by an UPTO. */ |
4756 | |
4757 | else |
4758 | { |
4759 | *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */ |
4760 | PUT2INC(code, 0, repeat_min); |
4761 | |
4762 | /* If the maximum is unlimited, insert an OP_STAR. Before doing so, |
4763 | we have to insert the character for the previous code. For a repeated |
4764 | Unicode property match, there are two extra bytes that define the |
4765 | required property. In UTF-8 mode, long characters have their length in |
4766 | c, with the UTF_LENGTH bit as a flag. */ |
4767 | |
4768 | if (repeat_max < 0) |
4769 | { |
4770 | #ifdef SUPPORT_UTF |
4771 | if (utf && (c & UTF_LENGTH) != 0) |
4772 | { |
4773 | memcpy(code, utf_chars, IN_UCHARS(c & 7)); |
4774 | code += c & 7; |
4775 | } |
4776 | else |
4777 | #endif |
4778 | { |
4779 | *code++ = c; |
4780 | if (prop_type >= 0) |
4781 | { |
4782 | *code++ = prop_type; |
4783 | *code++ = prop_value; |
4784 | } |
4785 | } |
4786 | *code++ = OP_STAR + repeat_type; |
4787 | } |
4788 | |
4789 | /* Else insert an UPTO if the max is greater than the min, again |
4790 | preceded by the character, for the previously inserted code. If the |
4791 | UPTO is just for 1 instance, we can use QUERY instead. */ |
4792 | |
4793 | else if (repeat_max != repeat_min) |
4794 | { |
4795 | #ifdef SUPPORT_UTF |
4796 | if (utf && (c & UTF_LENGTH) != 0) |
4797 | { |
4798 | memcpy(code, utf_chars, IN_UCHARS(c & 7)); |
4799 | code += c & 7; |
4800 | } |
4801 | else |
4802 | #endif |
4803 | *code++ = c; |
4804 | if (prop_type >= 0) |
4805 | { |
4806 | *code++ = prop_type; |
4807 | *code++ = prop_value; |
4808 | } |
4809 | repeat_max -= repeat_min; |
4810 | |
4811 | if (repeat_max == 1) |
4812 | { |
4813 | *code++ = OP_QUERY + repeat_type; |
4814 | } |
4815 | else |
4816 | { |
4817 | *code++ = OP_UPTO + repeat_type; |
4818 | PUT2INC(code, 0, repeat_max); |
4819 | } |
4820 | } |
4821 | } |
4822 | |
4823 | /* The character or character type itself comes last in all cases. */ |
4824 | |
4825 | #ifdef SUPPORT_UTF |
4826 | if (utf && (c & UTF_LENGTH) != 0) |
4827 | { |
4828 | memcpy(code, utf_chars, IN_UCHARS(c & 7)); |
4829 | code += c & 7; |
4830 | } |
4831 | else |
4832 | #endif |
4833 | *code++ = c; |
4834 | |
4835 | /* For a repeated Unicode property match, there are two extra bytes that |
4836 | define the required property. */ |
4837 | |
4838 | #ifdef SUPPORT_UCP |
4839 | if (prop_type >= 0) |
4840 | { |
4841 | *code++ = prop_type; |
4842 | *code++ = prop_value; |
4843 | } |
4844 | #endif |
4845 | } |
4846 | |
4847 | /* If previous was a character class or a back reference, we put the repeat |
4848 | stuff after it, but just skip the item if the repeat was {0,0}. */ |
4849 | |
4850 | else if (*previous == OP_CLASS || |
4851 | *previous == OP_NCLASS || |
4852 | #if defined SUPPORT_UTF8 || !defined COMPILE_PCRE8 |
4853 | *previous == OP_XCLASS || |
4854 | #endif |
4855 | *previous == OP_REF || |
4856 | *previous == OP_REFI) |
4857 | { |
4858 | if (repeat_max == 0) |
4859 | { |
4860 | code = previous; |
4861 | goto END_REPEAT; |
4862 | } |
4863 | |
4864 | /*--------------------------------------------------------------------*/ |
4865 | /* This code is obsolete from release 8.00; the restriction was finally |
4866 | removed: */ |
4867 | |
4868 | /* All real repeats make it impossible to handle partial matching (maybe |
4869 | one day we will be able to remove this restriction). */ |
4870 | |
4871 | /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ |
4872 | /*--------------------------------------------------------------------*/ |
4873 | |
4874 | if (repeat_min == 0 && repeat_max == -1) |
4875 | *code++ = OP_CRSTAR + repeat_type; |
4876 | else if (repeat_min == 1 && repeat_max == -1) |
4877 | *code++ = OP_CRPLUS + repeat_type; |
4878 | else if (repeat_min == 0 && repeat_max == 1) |
4879 | *code++ = OP_CRQUERY + repeat_type; |
4880 | else |
4881 | { |
4882 | *code++ = OP_CRRANGE + repeat_type; |
4883 | PUT2INC(code, 0, repeat_min); |
4884 | if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */ |
4885 | PUT2INC(code, 0, repeat_max); |
4886 | } |
4887 | } |
4888 | |
4889 | /* If previous was a bracket group, we may have to replicate it in certain |
4890 | cases. Note that at this point we can encounter only the "basic" bracket |
4891 | opcodes such as BRA and CBRA, as this is the place where they get converted |
4892 | into the more special varieties such as BRAPOS and SBRA. A test for >= |
4893 | OP_ASSERT and <= OP_COND includes ASSERT, ASSERT_NOT, ASSERTBACK, |
4894 | ASSERTBACK_NOT, ONCE, BRA, CBRA, and COND. Originally, PCRE did not allow |
4895 | repetition of assertions, but now it does, for Perl compatibility. */ |
4896 | |
4897 | else if (*previous >= OP_ASSERT && *previous <= OP_COND) |
4898 | { |
4899 | register int i; |
4900 | int len = (int)(code - previous); |
4901 | pcre_uchar *bralink = NULL; |
4902 | pcre_uchar *brazeroptr = NULL; |
4903 | |
4904 | /* Repeating a DEFINE group is pointless, but Perl allows the syntax, so |
4905 | we just ignore the repeat. */ |
4906 | |
4907 | if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF) |
4908 | goto END_REPEAT; |
4909 | |
4910 | /* There is no sense in actually repeating assertions. The only potential |
4911 | use of repetition is in cases when the assertion is optional. Therefore, |
4912 | if the minimum is greater than zero, just ignore the repeat. If the |
4913 | maximum is not not zero or one, set it to 1. */ |
4914 | |
4915 | if (*previous < OP_ONCE) /* Assertion */ |
4916 | { |
4917 | if (repeat_min > 0) goto END_REPEAT; |
4918 | if (repeat_max < 0 || repeat_max > 1) repeat_max = 1; |
4919 | } |
4920 | |
4921 | /* The case of a zero minimum is special because of the need to stick |
4922 | OP_BRAZERO in front of it, and because the group appears once in the |
4923 | data, whereas in other cases it appears the minimum number of times. For |
4924 | this reason, it is simplest to treat this case separately, as otherwise |
4925 | the code gets far too messy. There are several special subcases when the |
4926 | minimum is zero. */ |
4927 | |
4928 | if (repeat_min == 0) |
4929 | { |
4930 | /* If the maximum is also zero, we used to just omit the group from the |
4931 | output altogether, like this: |
4932 | |
4933 | ** if (repeat_max == 0) |
4934 | ** { |
4935 | ** code = previous; |
4936 | ** goto END_REPEAT; |
4937 | ** } |
4938 | |
4939 | However, that fails when a group or a subgroup within it is referenced |
4940 | as a subroutine from elsewhere in the pattern, so now we stick in |
4941 | OP_SKIPZERO in front of it so that it is skipped on execution. As we |
4942 | don't have a list of which groups are referenced, we cannot do this |
4943 | selectively. |
4944 | |
4945 | If the maximum is 1 or unlimited, we just have to stick in the BRAZERO |
4946 | and do no more at this point. However, we do need to adjust any |
4947 | OP_RECURSE calls inside the group that refer to the group itself or any |
4948 | internal or forward referenced group, because the offset is from the |
4949 | start of the whole regex. Temporarily terminate the pattern while doing |
4950 | this. */ |
4951 | |
4952 | if (repeat_max <= 1) /* Covers 0, 1, and unlimited */ |
4953 | { |
4954 | *code = OP_END; |
4955 | adjust_recurse(previous, 1, utf, cd, save_hwm); |
4956 | memmove(previous + 1, previous, IN_UCHARS(len)); |
4957 | code++; |
4958 | if (repeat_max == 0) |
4959 | { |
4960 | *previous++ = OP_SKIPZERO; |
4961 | goto END_REPEAT; |
4962 | } |
4963 | brazeroptr = previous; /* Save for possessive optimizing */ |
4964 | *previous++ = OP_BRAZERO + repeat_type; |
4965 | } |
4966 | |
4967 | /* If the maximum is greater than 1 and limited, we have to replicate |
4968 | in a nested fashion, sticking OP_BRAZERO before each set of brackets. |
4969 | The first one has to be handled carefully because it's the original |
4970 | copy, which has to be moved up. The remainder can be handled by code |
4971 | that is common with the non-zero minimum case below. We have to |
4972 | adjust the value or repeat_max, since one less copy is required. Once |
4973 | again, we may have to adjust any OP_RECURSE calls inside the group. */ |
4974 | |
4975 | else |
4976 | { |
4977 | int offset; |
4978 | *code = OP_END; |
4979 | adjust_recurse(previous, 2 + LINK_SIZE, utf, cd, save_hwm); |
4980 | memmove(previous + 2 + LINK_SIZE, previous, IN_UCHARS(len)); |
4981 | code += 2 + LINK_SIZE; |
4982 | *previous++ = OP_BRAZERO + repeat_type; |
4983 | *previous++ = OP_BRA; |
4984 | |
4985 | /* We chain together the bracket offset fields that have to be |
4986 | filled in later when the ends of the brackets are reached. */ |
4987 | |
4988 | offset = (bralink == NULL)? 0 : (int)(previous - bralink); |
4989 | bralink = previous; |
4990 | PUTINC(previous, 0, offset); |
4991 | } |
4992 | |
4993 | repeat_max--; |
4994 | } |
4995 | |
4996 | /* If the minimum is greater than zero, replicate the group as many |
4997 | times as necessary, and adjust the maximum to the number of subsequent |
4998 | copies that we need. If we set a first char from the group, and didn't |
4999 | set a required char, copy the latter from the former. If there are any |
5000 | forward reference subroutine calls in the group, there will be entries on |
5001 | the workspace list; replicate these with an appropriate increment. */ |
5002 | |
5003 | else |
5004 | { |
5005 | if (repeat_min > 1) |
5006 | { |
5007 | /* In the pre-compile phase, we don't actually do the replication. We |
5008 | just adjust the length as if we had. Do some paranoid checks for |
5009 | potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit |
5010 | integer type when available, otherwise double. */ |
5011 | |
5012 | if (lengthptr != NULL) |
5013 | { |
5014 | int delta = (repeat_min - 1)*length_prevgroup; |
5015 | if ((INT64_OR_DOUBLE)(repeat_min - 1)* |
5016 | (INT64_OR_DOUBLE)length_prevgroup > |
5017 | (INT64_OR_DOUBLE)INT_MAX || |
5018 | OFLOW_MAX - *lengthptr < delta) |
5019 | { |
5020 | *errorcodeptr = ERR20; |
5021 | goto FAILED; |
5022 | } |
5023 | *lengthptr += delta; |
5024 | } |
5025 | |
5026 | /* This is compiling for real */ |
5027 | |
5028 | else |
5029 | { |
5030 | if (groupsetfirstchar && reqchar < 0) reqchar = firstchar; |
5031 | for (i = 1; i < repeat_min; i++) |
5032 | { |
5033 | pcre_uchar *hc; |
5034 | pcre_uchar *this_hwm = cd->hwm; |
5035 | memcpy(code, previous, IN_UCHARS(len)); |
5036 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
5037 | { |
5038 | PUT(cd->hwm, 0, GET(hc, 0) + len); |
5039 | cd->hwm += LINK_SIZE; |
5040 | } |
5041 | save_hwm = this_hwm; |
5042 | code += len; |
5043 | } |
5044 | } |
5045 | } |
5046 | |
5047 | if (repeat_max > 0) repeat_max -= repeat_min; |
5048 | } |
5049 | |
5050 | /* This code is common to both the zero and non-zero minimum cases. If |
5051 | the maximum is limited, it replicates the group in a nested fashion, |
5052 | remembering the bracket starts on a stack. In the case of a zero minimum, |
5053 | the first one was set up above. In all cases the repeat_max now specifies |
5054 | the number of additional copies needed. Again, we must remember to |
5055 | replicate entries on the forward reference list. */ |
5056 | |
5057 | if (repeat_max >= 0) |
5058 | { |
5059 | /* In the pre-compile phase, we don't actually do the replication. We |
5060 | just adjust the length as if we had. For each repetition we must add 1 |
5061 | to the length for BRAZERO and for all but the last repetition we must |
5062 | add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some |
5063 | paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is |
5064 | a 64-bit integer type when available, otherwise double. */ |
5065 | |
5066 | if (lengthptr != NULL && repeat_max > 0) |
5067 | { |
5068 | int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) - |
5069 | 2 - 2*LINK_SIZE; /* Last one doesn't nest */ |
5070 | if ((INT64_OR_DOUBLE)repeat_max * |
5071 | (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE) |
5072 | > (INT64_OR_DOUBLE)INT_MAX || |
5073 | OFLOW_MAX - *lengthptr < delta) |
5074 | { |
5075 | *errorcodeptr = ERR20; |
5076 | goto FAILED; |
5077 | } |
5078 | *lengthptr += delta; |
5079 | } |
5080 | |
5081 | /* This is compiling for real */ |
5082 | |
5083 | else for (i = repeat_max - 1; i >= 0; i--) |
5084 | { |
5085 | pcre_uchar *hc; |
5086 | pcre_uchar *this_hwm = cd->hwm; |
5087 | |
5088 | *code++ = OP_BRAZERO + repeat_type; |
5089 | |
5090 | /* All but the final copy start a new nesting, maintaining the |
5091 | chain of brackets outstanding. */ |
5092 | |
5093 | if (i != 0) |
5094 | { |
5095 | int offset; |
5096 | *code++ = OP_BRA; |
5097 | offset = (bralink == NULL)? 0 : (int)(code - bralink); |
5098 | bralink = code; |
5099 | PUTINC(code, 0, offset); |
5100 | } |
5101 | |
5102 | memcpy(code, previous, IN_UCHARS(len)); |
5103 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
5104 | { |
5105 | PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1)); |
5106 | cd->hwm += LINK_SIZE; |
5107 | } |
5108 | save_hwm = this_hwm; |
5109 | code += len; |
5110 | } |
5111 | |
5112 | /* Now chain through the pending brackets, and fill in their length |
5113 | fields (which are holding the chain links pro tem). */ |
5114 | |
5115 | while (bralink != NULL) |
5116 | { |
5117 | int oldlinkoffset; |
5118 | int offset = (int)(code - bralink + 1); |
5119 | pcre_uchar *bra = code - offset; |
5120 | oldlinkoffset = GET(bra, 1); |
5121 | bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset; |
5122 | *code++ = OP_KET; |
5123 | PUTINC(code, 0, offset); |
5124 | PUT(bra, 1, offset); |
5125 | } |
5126 | } |
5127 | |
5128 | /* If the maximum is unlimited, set a repeater in the final copy. For |
5129 | ONCE brackets, that's all we need to do. However, possessively repeated |
5130 | ONCE brackets can be converted into non-capturing brackets, as the |
5131 | behaviour of (?:xx)++ is the same as (?>xx)++ and this saves having to |
5132 | deal with possessive ONCEs specially. |
5133 | |
5134 | Otherwise, when we are doing the actual compile phase, check to see |
5135 | whether this group is one that could match an empty string. If so, |
5136 | convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so |
5137 | that runtime checking can be done. [This check is also applied to ONCE |
5138 | groups at runtime, but in a different way.] |
5139 | |
5140 | Then, if the quantifier was possessive and the bracket is not a |
5141 | conditional, we convert the BRA code to the POS form, and the KET code to |
5142 | KETRPOS. (It turns out to be convenient at runtime to detect this kind of |
5143 | subpattern at both the start and at the end.) The use of special opcodes |
5144 | makes it possible to reduce greatly the stack usage in pcre_exec(). If |
5145 | the group is preceded by OP_BRAZERO, convert this to OP_BRAPOSZERO. |
5146 | |
5147 | Then, if the minimum number of matches is 1 or 0, cancel the possessive |
5148 | flag so that the default action below, of wrapping everything inside |
5149 | atomic brackets, does not happen. When the minimum is greater than 1, |
5150 | there will be earlier copies of the group, and so we still have to wrap |
5151 | the whole thing. */ |
5152 | |
5153 | else |
5154 | { |
5155 | pcre_uchar *ketcode = code - 1 - LINK_SIZE; |
5156 | pcre_uchar *bracode = ketcode - GET(ketcode, 1); |
5157 | |
5158 | /* Convert possessive ONCE brackets to non-capturing */ |
5159 | |
5160 | if ((*bracode == OP_ONCE || *bracode == OP_ONCE_NC) && |
5161 | possessive_quantifier) *bracode = OP_BRA; |
5162 | |
5163 | /* For non-possessive ONCE brackets, all we need to do is to |
5164 | set the KET. */ |
5165 | |
5166 | if (*bracode == OP_ONCE || *bracode == OP_ONCE_NC) |
5167 | *ketcode = OP_KETRMAX + repeat_type; |
5168 | |
5169 | /* Handle non-ONCE brackets and possessive ONCEs (which have been |
5170 | converted to non-capturing above). */ |
5171 | |
5172 | else |
5173 | { |
5174 | /* In the compile phase, check for empty string matching. */ |
5175 | |
5176 | if (lengthptr == NULL) |
5177 | { |
5178 | pcre_uchar *scode = bracode; |
5179 | do |
5180 | { |
5181 | if (could_be_empty_branch(scode, ketcode, utf, cd)) |
5182 | { |
5183 | *bracode += OP_SBRA - OP_BRA; |
5184 | break; |
5185 | } |
5186 | scode += GET(scode, 1); |
5187 | } |
5188 | while (*scode == OP_ALT); |
5189 | } |
5190 | |
5191 | /* Handle possessive quantifiers. */ |
5192 | |
5193 | if (possessive_quantifier) |
5194 | { |
5195 | /* For COND brackets, we wrap the whole thing in a possessively |
5196 | repeated non-capturing bracket, because we have not invented POS |
5197 | versions of the COND opcodes. Because we are moving code along, we |
5198 | must ensure that any pending recursive references are updated. */ |
5199 | |
5200 | if (*bracode == OP_COND || *bracode == OP_SCOND) |
5201 | { |
5202 | int nlen = (int)(code - bracode); |
5203 | *code = OP_END; |
5204 | adjust_recurse(bracode, 1 + LINK_SIZE, utf, cd, save_hwm); |
5205 | memmove(bracode + 1 + LINK_SIZE, bracode, IN_UCHARS(nlen)); |
5206 | code += 1 + LINK_SIZE; |
5207 | nlen += 1 + LINK_SIZE; |
5208 | *bracode = OP_BRAPOS; |
5209 | *code++ = OP_KETRPOS; |
5210 | PUTINC(code, 0, nlen); |
5211 | PUT(bracode, 1, nlen); |
5212 | } |
5213 | |
5214 | /* For non-COND brackets, we modify the BRA code and use KETRPOS. */ |
5215 | |
5216 | else |
5217 | { |
5218 | *bracode += 1; /* Switch to xxxPOS opcodes */ |
5219 | *ketcode = OP_KETRPOS; |
5220 | } |
5221 | |
5222 | /* If the minimum is zero, mark it as possessive, then unset the |
5223 | possessive flag when the minimum is 0 or 1. */ |
5224 | |
5225 | if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO; |
5226 | if (repeat_min < 2) possessive_quantifier = FALSE; |
5227 | } |
5228 | |
5229 | /* Non-possessive quantifier */ |
5230 | |
5231 | else *ketcode = OP_KETRMAX + repeat_type; |
5232 | } |
5233 | } |
5234 | } |
5235 | |
5236 | /* If previous is OP_FAIL, it was generated by an empty class [] in |
5237 | JavaScript mode. The other ways in which OP_FAIL can be generated, that is |
5238 | by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat" |
5239 | error above. We can just ignore the repeat in JS case. */ |
5240 | |
5241 | else if (*previous == OP_FAIL) goto END_REPEAT; |
5242 | |
5243 | /* Else there's some kind of shambles */ |
5244 | |
5245 | else |
5246 | { |
5247 | *errorcodeptr = ERR11; |
5248 | goto FAILED; |
5249 | } |
5250 | |
5251 | /* If the character following a repeat is '+', or if certain optimization |
5252 | tests above succeeded, possessive_quantifier is TRUE. For some opcodes, |
5253 | there are special alternative opcodes for this case. For anything else, we |
5254 | wrap the entire repeated item inside OP_ONCE brackets. Logically, the '+' |
5255 | notation is just syntactic sugar, taken from Sun's Java package, but the |
5256 | special opcodes can optimize it. |
5257 | |
5258 | Some (but not all) possessively repeated subpatterns have already been |
5259 | completely handled in the code just above. For them, possessive_quantifier |
5260 | is always FALSE at this stage. |
5261 | |
5262 | Note that the repeated item starts at tempcode, not at previous, which |
5263 | might be the first part of a string whose (former) last char we repeated. |
5264 | |
5265 | Possessifying an 'exact' quantifier has no effect, so we can ignore it. But |
5266 | an 'upto' may follow. We skip over an 'exact' item, and then test the |
5267 | length of what remains before proceeding. */ |
5268 | |
5269 | if (possessive_quantifier) |
5270 | { |
5271 | int len; |
5272 | |
5273 | if (*tempcode == OP_TYPEEXACT) |
5274 | tempcode += PRIV(OP_lengths)[*tempcode] + |
5275 | ((tempcode[1 + IMM2_SIZE] == OP_PROP |
5276 | || tempcode[1 + IMM2_SIZE] == OP_NOTPROP)? 2 : 0); |
5277 | |
5278 | else if (*tempcode == OP_EXACT || *tempcode == OP_NOTEXACT) |
5279 | { |
5280 | tempcode += PRIV(OP_lengths)[*tempcode]; |
5281 | #ifdef SUPPORT_UTF |
5282 | if (utf && HAS_EXTRALEN(tempcode[-1])) |
5283 | tempcode += GET_EXTRALEN(tempcode[-1]); |
5284 | #endif |
5285 | } |
5286 | |
5287 | len = (int)(code - tempcode); |
5288 | if (len > 0) switch (*tempcode) |
5289 | { |
5290 | case OP_STAR: *tempcode = OP_POSSTAR; break; |
5291 | case OP_PLUS: *tempcode = OP_POSPLUS; break; |
5292 | case OP_QUERY: *tempcode = OP_POSQUERY; break; |
5293 | case OP_UPTO: *tempcode = OP_POSUPTO; break; |
5294 | |
5295 | case OP_STARI: *tempcode = OP_POSSTARI; break; |
5296 | case OP_PLUSI: *tempcode = OP_POSPLUSI; break; |
5297 | case OP_QUERYI: *tempcode = OP_POSQUERYI; break; |
5298 | case OP_UPTOI: *tempcode = OP_POSUPTOI; break; |
5299 | |
5300 | case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break; |
5301 | case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break; |
5302 | case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break; |
5303 | case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break; |
5304 | |
5305 | case OP_NOTSTARI: *tempcode = OP_NOTPOSSTARI; break; |
5306 | case OP_NOTPLUSI: *tempcode = OP_NOTPOSPLUSI; break; |
5307 | case OP_NOTQUERYI: *tempcode = OP_NOTPOSQUERYI; break; |
5308 | case OP_NOTUPTOI: *tempcode = OP_NOTPOSUPTOI; break; |
5309 | |
5310 | case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break; |
5311 | case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break; |
5312 | case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break; |
5313 | case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break; |
5314 | |
5315 | /* Because we are moving code along, we must ensure that any |
5316 | pending recursive references are updated. */ |
5317 | |
5318 | default: |
5319 | *code = OP_END; |
5320 | adjust_recurse(tempcode, 1 + LINK_SIZE, utf, cd, save_hwm); |
5321 | memmove(tempcode + 1 + LINK_SIZE, tempcode, IN_UCHARS(len)); |
5322 | code += 1 + LINK_SIZE; |
5323 | len += 1 + LINK_SIZE; |
5324 | tempcode[0] = OP_ONCE; |
5325 | *code++ = OP_KET; |
5326 | PUTINC(code, 0, len); |
5327 | PUT(tempcode, 1, len); |
5328 | break; |
5329 | } |
5330 | } |
5331 | |
5332 | /* In all case we no longer have a previous item. We also set the |
5333 | "follows varying string" flag for subsequently encountered reqchars if |
5334 | it isn't already set and we have just passed a varying length item. */ |
5335 | |
5336 | END_REPEAT: |
5337 | previous = NULL; |
5338 | cd->req_varyopt |= reqvary; |
5339 | break; |
5340 | |
5341 | |
5342 | /* ===================================================================*/ |
5343 | /* Start of nested parenthesized sub-expression, or comment or lookahead or |
5344 | lookbehind or option setting or condition or all the other extended |
5345 | parenthesis forms. */ |
5346 | |
5347 | case CHAR_LEFT_PARENTHESIS: |
5348 | newoptions = options; |
5349 | skipbytes = 0; |
5350 | bravalue = OP_CBRA; |
5351 | save_hwm = cd->hwm; |
5352 | reset_bracount = FALSE; |
5353 | |
5354 | /* First deal with various "verbs" that can be introduced by '*'. */ |
5355 | |
5356 | if (*(++ptr) == CHAR_ASTERISK && |
5357 | ((cd->ctypes[ptr[1]] & ctype_letter) != 0 || ptr[1] == ':')) |
5358 | { |
5359 | int i, namelen; |
5360 | int arglen = 0; |
5361 | const char *vn = verbnames; |
5362 | const pcre_uchar *name = ptr + 1; |
5363 | const pcre_uchar *arg = NULL; |
5364 | previous = NULL; |
5365 | while ((cd->ctypes[*++ptr] & ctype_letter) != 0) {}; |
5366 | namelen = (int)(ptr - name); |
5367 | |
5368 | /* It appears that Perl allows any characters whatsoever, other than |
5369 | a closing parenthesis, to appear in arguments, so we no longer insist on |
5370 | letters, digits, and underscores. */ |
5371 | |
5372 | if (*ptr == CHAR_COLON) |
5373 | { |
5374 | arg = ++ptr; |
5375 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
5376 | arglen = (int)(ptr - arg); |
5377 | } |
5378 | |
5379 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
5380 | { |
5381 | *errorcodeptr = ERR60; |
5382 | goto FAILED; |
5383 | } |
5384 | |
5385 | /* Scan the table of verb names */ |
5386 | |
5387 | for (i = 0; i < verbcount; i++) |
5388 | { |
5389 | if (namelen == verbs[i].len && |
5390 | STRNCMP_UC_C8(name, vn, namelen) == 0) |
5391 | { |
5392 | /* Check for open captures before ACCEPT and convert it to |
5393 | ASSERT_ACCEPT if in an assertion. */ |
5394 | |
5395 | if (verbs[i].op == OP_ACCEPT) |
5396 | { |
5397 | open_capitem *oc; |
5398 | if (arglen != 0) |
5399 | { |
5400 | *errorcodeptr = ERR59; |
5401 | goto FAILED; |
5402 | } |
5403 | cd->had_accept = TRUE; |
5404 | for (oc = cd->open_caps; oc != NULL; oc = oc->next) |
5405 | { |
5406 | *code++ = OP_CLOSE; |
5407 | PUT2INC(code, 0, oc->number); |
5408 | } |
5409 | *code++ = (cd->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT; |
5410 | |
5411 | /* Do not set firstchar after *ACCEPT */ |
5412 | if (firstchar == REQ_UNSET) firstchar = REQ_NONE; |
5413 | } |
5414 | |
5415 | /* Handle other cases with/without an argument */ |
5416 | |
5417 | else if (arglen == 0) |
5418 | { |
5419 | if (verbs[i].op < 0) /* Argument is mandatory */ |
5420 | { |
5421 | *errorcodeptr = ERR66; |
5422 | goto FAILED; |
5423 | } |
5424 | *code = verbs[i].op; |
5425 | if (*code++ == OP_THEN) cd->external_flags |= PCRE_HASTHEN; |
5426 | } |
5427 | |
5428 | else |
5429 | { |
5430 | if (verbs[i].op_arg < 0) /* Argument is forbidden */ |
5431 | { |
5432 | *errorcodeptr = ERR59; |
5433 | goto FAILED; |
5434 | } |
5435 | *code = verbs[i].op_arg; |
5436 | if (*code++ == OP_THEN_ARG) cd->external_flags |= PCRE_HASTHEN; |
5437 | *code++ = arglen; |
5438 | memcpy(code, arg, IN_UCHARS(arglen)); |
5439 | code += arglen; |
5440 | *code++ = 0; |
5441 | } |
5442 | |
5443 | break; /* Found verb, exit loop */ |
5444 | } |
5445 | |
5446 | vn += verbs[i].len + 1; |
5447 | } |
5448 | |
5449 | if (i < verbcount) continue; /* Successfully handled a verb */ |
5450 | *errorcodeptr = ERR60; /* Verb not recognized */ |
5451 | goto FAILED; |
5452 | } |
5453 | |
5454 | /* Deal with the extended parentheses; all are introduced by '?', and the |
5455 | appearance of any of them means that this is not a capturing group. */ |
5456 | |
5457 | else if (*ptr == CHAR_QUESTION_MARK) |
5458 | { |
5459 | int i, set, unset, namelen; |
5460 | int *optset; |
5461 | const pcre_uchar *name; |
5462 | pcre_uchar *slot; |
5463 | |
5464 | switch (*(++ptr)) |
5465 | { |
5466 | case CHAR_NUMBER_SIGN: /* Comment; skip to ket */ |
5467 | ptr++; |
5468 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
5469 | if (*ptr == 0) |
5470 | { |
5471 | *errorcodeptr = ERR18; |
5472 | goto FAILED; |
5473 | } |
5474 | continue; |
5475 | |
5476 | |
5477 | /* ------------------------------------------------------------ */ |
5478 | case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */ |
5479 | reset_bracount = TRUE; |
5480 | /* Fall through */ |
5481 | |
5482 | /* ------------------------------------------------------------ */ |
5483 | case CHAR_COLON: /* Non-capturing bracket */ |
5484 | bravalue = OP_BRA; |
5485 | ptr++; |
5486 | break; |
5487 | |
5488 | |
5489 | /* ------------------------------------------------------------ */ |
5490 | case CHAR_LEFT_PARENTHESIS: |
5491 | bravalue = OP_COND; /* Conditional group */ |
5492 | |
5493 | /* A condition can be an assertion, a number (referring to a numbered |
5494 | group), a name (referring to a named group), or 'R', referring to |
5495 | recursion. R<digits> and R&name are also permitted for recursion tests. |
5496 | |
5497 | There are several syntaxes for testing a named group: (?(name)) is used |
5498 | by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')). |
5499 | |
5500 | There are two unfortunate ambiguities, caused by history. (a) 'R' can |
5501 | be the recursive thing or the name 'R' (and similarly for 'R' followed |
5502 | by digits), and (b) a number could be a name that consists of digits. |
5503 | In both cases, we look for a name first; if not found, we try the other |
5504 | cases. */ |
5505 | |
5506 | /* For conditions that are assertions, check the syntax, and then exit |
5507 | the switch. This will take control down to where bracketed groups, |
5508 | including assertions, are processed. */ |
5509 | |
5510 | if (ptr[1] == CHAR_QUESTION_MARK && (ptr[2] == CHAR_EQUALS_SIGN || |
5511 | ptr[2] == CHAR_EXCLAMATION_MARK || ptr[2] == CHAR_LESS_THAN_SIGN)) |
5512 | break; |
5513 | |
5514 | /* Most other conditions use OP_CREF (a couple change to OP_RREF |
5515 | below), and all need to skip 1+IMM2_SIZE bytes at the start of the group. */ |
5516 | |
5517 | code[1+LINK_SIZE] = OP_CREF; |
5518 | skipbytes = 1+IMM2_SIZE; |
5519 | refsign = -1; |
5520 | |
5521 | /* Check for a test for recursion in a named group. */ |
5522 | |
5523 | if (ptr[1] == CHAR_R && ptr[2] == CHAR_AMPERSAND) |
5524 | { |
5525 | terminator = -1; |
5526 | ptr += 2; |
5527 | code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */ |
5528 | } |
5529 | |
5530 | /* Check for a test for a named group's having been set, using the Perl |
5531 | syntax (?(<name>) or (?('name') */ |
5532 | |
5533 | else if (ptr[1] == CHAR_LESS_THAN_SIGN) |
5534 | { |
5535 | terminator = CHAR_GREATER_THAN_SIGN; |
5536 | ptr++; |
5537 | } |
5538 | else if (ptr[1] == CHAR_APOSTROPHE) |
5539 | { |
5540 | terminator = CHAR_APOSTROPHE; |
5541 | ptr++; |
5542 | } |
5543 | else |
5544 | { |
5545 | terminator = 0; |
5546 | if (ptr[1] == CHAR_MINUS || ptr[1] == CHAR_PLUS) refsign = *(++ptr); |
5547 | } |
5548 | |
5549 | /* We now expect to read a name; any thing else is an error */ |
5550 | |
5551 | if ((cd->ctypes[ptr[1]] & ctype_word) == 0) |
5552 | { |
5553 | ptr += 1; /* To get the right offset */ |
5554 | *errorcodeptr = ERR28; |
5555 | goto FAILED; |
5556 | } |
5557 | |
5558 | /* Read the name, but also get it as a number if it's all digits */ |
5559 | |
5560 | recno = 0; |
5561 | name = ++ptr; |
5562 | while ((cd->ctypes[*ptr] & ctype_word) != 0) |
5563 | { |
5564 | if (recno >= 0) |
5565 | recno = (IS_DIGIT(*ptr))? recno * 10 + *ptr - CHAR_0 : -1; |
5566 | ptr++; |
5567 | } |
5568 | namelen = (int)(ptr - name); |
5569 | |
5570 | if ((terminator > 0 && *ptr++ != terminator) || |
5571 | *ptr++ != CHAR_RIGHT_PARENTHESIS) |
5572 | { |
5573 | ptr--; /* Error offset */ |
5574 | *errorcodeptr = ERR26; |
5575 | goto FAILED; |
5576 | } |
5577 | |
5578 | /* Do no further checking in the pre-compile phase. */ |
5579 | |
5580 | if (lengthptr != NULL) break; |
5581 | |
5582 | /* In the real compile we do the work of looking for the actual |
5583 | reference. If the string started with "+" or "-" we require the rest to |
5584 | be digits, in which case recno will be set. */ |
5585 | |
5586 | if (refsign > 0) |
5587 | { |
5588 | if (recno <= 0) |
5589 | { |
5590 | *errorcodeptr = ERR58; |
5591 | goto FAILED; |
5592 | } |
5593 | recno = (refsign == CHAR_MINUS)? |
5594 | cd->bracount - recno + 1 : recno +cd->bracount; |
5595 | if (recno <= 0 || recno > cd->final_bracount) |
5596 | { |
5597 | *errorcodeptr = ERR15; |
5598 | goto FAILED; |
5599 | } |
5600 | PUT2(code, 2+LINK_SIZE, recno); |
5601 | break; |
5602 | } |
5603 | |
5604 | /* Otherwise (did not start with "+" or "-"), start by looking for the |
5605 | name. If we find a name, add one to the opcode to change OP_CREF or |
5606 | OP_RREF into OP_NCREF or OP_NRREF. These behave exactly the same, |
5607 | except they record that the reference was originally to a name. The |
5608 | information is used to check duplicate names. */ |
5609 | |
5610 | slot = cd->name_table; |
5611 | for (i = 0; i < cd->names_found; i++) |
5612 | { |
5613 | if (STRNCMP_UC_UC(name, slot+IMM2_SIZE, namelen) == 0) break; |
5614 | slot += cd->name_entry_size; |
5615 | } |
5616 | |
5617 | /* Found a previous named subpattern */ |
5618 | |
5619 | if (i < cd->names_found) |
5620 | { |
5621 | recno = GET2(slot, 0); |
5622 | PUT2(code, 2+LINK_SIZE, recno); |
5623 | code[1+LINK_SIZE]++; |
5624 | } |
5625 | |
5626 | /* Search the pattern for a forward reference */ |
5627 | |
5628 | else if ((i = find_parens(cd, name, namelen, |
5629 | (options & PCRE_EXTENDED) != 0, utf)) > 0) |
5630 | { |
5631 | PUT2(code, 2+LINK_SIZE, i); |
5632 | code[1+LINK_SIZE]++; |
5633 | } |
5634 | |
5635 | /* If terminator == 0 it means that the name followed directly after |
5636 | the opening parenthesis [e.g. (?(abc)...] and in this case there are |
5637 | some further alternatives to try. For the cases where terminator != 0 |
5638 | [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have |
5639 | now checked all the possibilities, so give an error. */ |
5640 | |
5641 | else if (terminator != 0) |
5642 | { |
5643 | *errorcodeptr = ERR15; |
5644 | goto FAILED; |
5645 | } |
5646 | |
5647 | /* Check for (?(R) for recursion. Allow digits after R to specify a |
5648 | specific group number. */ |
5649 | |
5650 | else if (*name == CHAR_R) |
5651 | { |
5652 | recno = 0; |
5653 | for (i = 1; i < namelen; i++) |
5654 | { |
5655 | if (!IS_DIGIT(name[i])) |
5656 | { |
5657 | *errorcodeptr = ERR15; |
5658 | goto FAILED; |
5659 | } |
5660 | recno = recno * 10 + name[i] - CHAR_0; |
5661 | } |
5662 | if (recno == 0) recno = RREF_ANY; |
5663 | code[1+LINK_SIZE] = OP_RREF; /* Change test type */ |
5664 | PUT2(code, 2+LINK_SIZE, recno); |
5665 | } |
5666 | |
5667 | /* Similarly, check for the (?(DEFINE) "condition", which is always |
5668 | false. */ |
5669 | |
5670 | else if (namelen == 6 && STRNCMP_UC_C8(name, STRING_DEFINE, 6) == 0) |
5671 | { |
5672 | code[1+LINK_SIZE] = OP_DEF; |
5673 | skipbytes = 1; |
5674 | } |
5675 | |
5676 | /* Check for the "name" actually being a subpattern number. We are |
5677 | in the second pass here, so final_bracount is set. */ |
5678 | |
5679 | else if (recno > 0 && recno <= cd->final_bracount) |
5680 | { |
5681 | PUT2(code, 2+LINK_SIZE, recno); |
5682 | } |
5683 | |
5684 | /* Either an unidentified subpattern, or a reference to (?(0) */ |
5685 | |
5686 | else |
5687 | { |
5688 | *errorcodeptr = (recno == 0)? ERR35: ERR15; |
5689 | goto FAILED; |
5690 | } |
5691 | break; |
5692 | |
5693 | |
5694 | /* ------------------------------------------------------------ */ |
5695 | case CHAR_EQUALS_SIGN: /* Positive lookahead */ |
5696 | bravalue = OP_ASSERT; |
5697 | cd->assert_depth += 1; |
5698 | ptr++; |
5699 | break; |
5700 | |
5701 | |
5702 | /* ------------------------------------------------------------ */ |
5703 | case CHAR_EXCLAMATION_MARK: /* Negative lookahead */ |
5704 | ptr++; |
5705 | if (*ptr == CHAR_RIGHT_PARENTHESIS) /* Optimize (?!) */ |
5706 | { |
5707 | *code++ = OP_FAIL; |
5708 | previous = NULL; |
5709 | continue; |
5710 | } |
5711 | bravalue = OP_ASSERT_NOT; |
5712 | cd->assert_depth += 1; |
5713 | break; |
5714 | |
5715 | |
5716 | /* ------------------------------------------------------------ */ |
5717 | case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */ |
5718 | switch (ptr[1]) |
5719 | { |
5720 | case CHAR_EQUALS_SIGN: /* Positive lookbehind */ |
5721 | bravalue = OP_ASSERTBACK; |
5722 | cd->assert_depth += 1; |
5723 | ptr += 2; |
5724 | break; |
5725 | |
5726 | case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */ |
5727 | bravalue = OP_ASSERTBACK_NOT; |
5728 | cd->assert_depth += 1; |
5729 | ptr += 2; |
5730 | break; |
5731 | |
5732 | default: /* Could be name define, else bad */ |
5733 | if ((cd->ctypes[ptr[1]] & ctype_word) != 0) goto DEFINE_NAME; |
5734 | ptr++; /* Correct offset for error */ |
5735 | *errorcodeptr = ERR24; |
5736 | goto FAILED; |
5737 | } |
5738 | break; |
5739 | |
5740 | |
5741 | /* ------------------------------------------------------------ */ |
5742 | case CHAR_GREATER_THAN_SIGN: /* One-time brackets */ |
5743 | bravalue = OP_ONCE; |
5744 | ptr++; |
5745 | break; |
5746 | |
5747 | |
5748 | /* ------------------------------------------------------------ */ |
5749 | case CHAR_C: /* Callout - may be followed by digits; */ |
5750 | previous_callout = code; /* Save for later completion */ |
5751 | after_manual_callout = 1; /* Skip one item before completing */ |
5752 | *code++ = OP_CALLOUT; |
5753 | { |
5754 | int n = 0; |
5755 | ptr++; |
5756 | while(IS_DIGIT(*ptr)) |
5757 | n = n * 10 + *ptr++ - CHAR_0; |
5758 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
5759 | { |
5760 | *errorcodeptr = ERR39; |
5761 | goto FAILED; |
5762 | } |
5763 | if (n > 255) |
5764 | { |
5765 | *errorcodeptr = ERR38; |
5766 | goto FAILED; |
5767 | } |
5768 | *code++ = n; |
5769 | PUT(code, 0, (int)(ptr - cd->start_pattern + 1)); /* Pattern offset */ |
5770 | PUT(code, LINK_SIZE, 0); /* Default length */ |
5771 | code += 2 * LINK_SIZE; |
5772 | } |
5773 | previous = NULL; |
5774 | continue; |
5775 | |
5776 | |
5777 | /* ------------------------------------------------------------ */ |
5778 | case CHAR_P: /* Python-style named subpattern handling */ |
5779 | if (*(++ptr) == CHAR_EQUALS_SIGN || |
5780 | *ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */ |
5781 | { |
5782 | is_recurse = *ptr == CHAR_GREATER_THAN_SIGN; |
5783 | terminator = CHAR_RIGHT_PARENTHESIS; |
5784 | goto NAMED_REF_OR_RECURSE; |
5785 | } |
5786 | else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */ |
5787 | { |
5788 | *errorcodeptr = ERR41; |
5789 | goto FAILED; |
5790 | } |
5791 | /* Fall through to handle (?P< as (?< is handled */ |
5792 | |
5793 | |
5794 | /* ------------------------------------------------------------ */ |
5795 | DEFINE_NAME: /* Come here from (?< handling */ |
5796 | case CHAR_APOSTROPHE: |
5797 | { |
5798 | terminator = (*ptr == CHAR_LESS_THAN_SIGN)? |
5799 | CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE; |
5800 | name = ++ptr; |
5801 | |
5802 | while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++; |
5803 | namelen = (int)(ptr - name); |
5804 | |
5805 | /* In the pre-compile phase, just do a syntax check. */ |
5806 | |
5807 | if (lengthptr != NULL) |
5808 | { |
5809 | if (*ptr != terminator) |
5810 | { |
5811 | *errorcodeptr = ERR42; |
5812 | goto FAILED; |
5813 | } |
5814 | if (cd->names_found >= MAX_NAME_COUNT) |
5815 | { |
5816 | *errorcodeptr = ERR49; |
5817 | goto FAILED; |
5818 | } |
5819 | if (namelen + IMM2_SIZE + 1 > cd->name_entry_size) |
5820 | { |
5821 | cd->name_entry_size = namelen + IMM2_SIZE + 1; |
5822 | if (namelen > MAX_NAME_SIZE) |
5823 | { |
5824 | *errorcodeptr = ERR48; |
5825 | goto FAILED; |
5826 | } |
5827 | } |
5828 | } |
5829 | |
5830 | /* In the real compile, create the entry in the table, maintaining |
5831 | alphabetical order. Duplicate names for different numbers are |
5832 | permitted only if PCRE_DUPNAMES is set. Duplicate names for the same |
5833 | number are always OK. (An existing number can be re-used if (?| |
5834 | appears in the pattern.) In either event, a duplicate name results in |
5835 | a duplicate entry in the table, even if the number is the same. This |
5836 | is because the number of names, and hence the table size, is computed |
5837 | in the pre-compile, and it affects various numbers and pointers which |
5838 | would all have to be modified, and the compiled code moved down, if |
5839 | duplicates with the same number were omitted from the table. This |
5840 | doesn't seem worth the hassle. However, *different* names for the |
5841 | same number are not permitted. */ |
5842 | |
5843 | else |
5844 | { |
5845 | BOOL dupname = FALSE; |
5846 | slot = cd->name_table; |
5847 | |
5848 | for (i = 0; i < cd->names_found; i++) |
5849 | { |
5850 | int crc = memcmp(name, slot+IMM2_SIZE, IN_UCHARS(namelen)); |
5851 | if (crc == 0) |
5852 | { |
5853 | if (slot[IMM2_SIZE+namelen] == 0) |
5854 | { |
5855 | if (GET2(slot, 0) != cd->bracount + 1 && |
5856 | (options & PCRE_DUPNAMES) == 0) |
5857 | { |
5858 | *errorcodeptr = ERR43; |
5859 | goto FAILED; |
5860 | } |
5861 | else dupname = TRUE; |
5862 | } |
5863 | else crc = -1; /* Current name is a substring */ |
5864 | } |
5865 | |
5866 | /* Make space in the table and break the loop for an earlier |
5867 | name. For a duplicate or later name, carry on. We do this for |
5868 | duplicates so that in the simple case (when ?(| is not used) they |
5869 | are in order of their numbers. */ |
5870 | |
5871 | if (crc < 0) |
5872 | { |
5873 | memmove(slot + cd->name_entry_size, slot, |
5874 | IN_UCHARS((cd->names_found - i) * cd->name_entry_size)); |
5875 | break; |
5876 | } |
5877 | |
5878 | /* Continue the loop for a later or duplicate name */ |
5879 | |
5880 | slot += cd->name_entry_size; |
5881 | } |
5882 | |
5883 | /* For non-duplicate names, check for a duplicate number before |
5884 | adding the new name. */ |
5885 | |
5886 | if (!dupname) |
5887 | { |
5888 | pcre_uchar *cslot = cd->name_table; |
5889 | for (i = 0; i < cd->names_found; i++) |
5890 | { |
5891 | if (cslot != slot) |
5892 | { |
5893 | if (GET2(cslot, 0) == cd->bracount + 1) |
5894 | { |
5895 | *errorcodeptr = ERR65; |
5896 | goto FAILED; |
5897 | } |
5898 | } |
5899 | else i--; |
5900 | cslot += cd->name_entry_size; |
5901 | } |
5902 | } |
5903 | |
5904 | PUT2(slot, 0, cd->bracount + 1); |
5905 | memcpy(slot + IMM2_SIZE, name, IN_UCHARS(namelen)); |
5906 | slot[IMM2_SIZE + namelen] = 0; |
5907 | } |
5908 | } |
5909 | |
5910 | /* In both pre-compile and compile, count the number of names we've |
5911 | encountered. */ |
5912 | |
5913 | cd->names_found++; |
5914 | ptr++; /* Move past > or ' */ |
5915 | goto NUMBERED_GROUP; |
5916 | |
5917 | |
5918 | /* ------------------------------------------------------------ */ |
5919 | case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */ |
5920 | terminator = CHAR_RIGHT_PARENTHESIS; |
5921 | is_recurse = TRUE; |
5922 | /* Fall through */ |
5923 | |
5924 | /* We come here from the Python syntax above that handles both |
5925 | references (?P=name) and recursion (?P>name), as well as falling |
5926 | through from the Perl recursion syntax (?&name). We also come here from |
5927 | the Perl \k<name> or \k'name' back reference syntax and the \k{name} |
5928 | .NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */ |
5929 | |
5930 | NAMED_REF_OR_RECURSE: |
5931 | name = ++ptr; |
5932 | while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++; |
5933 | namelen = (int)(ptr - name); |
5934 | |
5935 | /* In the pre-compile phase, do a syntax check. We used to just set |
5936 | a dummy reference number, because it was not used in the first pass. |
5937 | However, with the change of recursive back references to be atomic, |
5938 | we have to look for the number so that this state can be identified, as |
5939 | otherwise the incorrect length is computed. If it's not a backwards |
5940 | reference, the dummy number will do. */ |
5941 | |
5942 | if (lengthptr != NULL) |
5943 | { |
5944 | const pcre_uchar *temp; |
5945 | |
5946 | if (namelen == 0) |
5947 | { |
5948 | *errorcodeptr = ERR62; |
5949 | goto FAILED; |
5950 | } |
5951 | if (*ptr != terminator) |
5952 | { |
5953 | *errorcodeptr = ERR42; |
5954 | goto FAILED; |
5955 | } |
5956 | if (namelen > MAX_NAME_SIZE) |
5957 | { |
5958 | *errorcodeptr = ERR48; |
5959 | goto FAILED; |
5960 | } |
5961 | |
5962 | /* The name table does not exist in the first pass, so we cannot |
5963 | do a simple search as in the code below. Instead, we have to scan the |
5964 | pattern to find the number. It is important that we scan it only as |
5965 | far as we have got because the syntax of named subpatterns has not |
5966 | been checked for the rest of the pattern, and find_parens() assumes |
5967 | correct syntax. In any case, it's a waste of resources to scan |
5968 | further. We stop the scan at the current point by temporarily |
5969 | adjusting the value of cd->endpattern. */ |
5970 | |
5971 | temp = cd->end_pattern; |
5972 | cd->end_pattern = ptr; |
5973 | recno = find_parens(cd, name, namelen, |
5974 | (options & PCRE_EXTENDED) != 0, utf); |
5975 | cd->end_pattern = temp; |
5976 | if (recno < 0) recno = 0; /* Forward ref; set dummy number */ |
5977 | } |
5978 | |
5979 | /* In the real compile, seek the name in the table. We check the name |
5980 | first, and then check that we have reached the end of the name in the |
5981 | table. That way, if the name that is longer than any in the table, |
5982 | the comparison will fail without reading beyond the table entry. */ |
5983 | |
5984 | else |
5985 | { |
5986 | slot = cd->name_table; |
5987 | for (i = 0; i < cd->names_found; i++) |
5988 | { |
5989 | if (STRNCMP_UC_UC(name, slot+IMM2_SIZE, namelen) == 0 && |
5990 | slot[IMM2_SIZE+namelen] == 0) |
5991 | break; |
5992 | slot += cd->name_entry_size; |
5993 | } |
5994 | |
5995 | if (i < cd->names_found) /* Back reference */ |
5996 | { |
5997 | recno = GET2(slot, 0); |
5998 | } |
5999 | else if ((recno = /* Forward back reference */ |
6000 | find_parens(cd, name, namelen, |
6001 | (options & PCRE_EXTENDED) != 0, utf)) <= 0) |
6002 | { |
6003 | *errorcodeptr = ERR15; |
6004 | goto FAILED; |
6005 | } |
6006 | } |
6007 | |
6008 | /* In both phases, we can now go to the code than handles numerical |
6009 | recursion or backreferences. */ |
6010 | |
6011 | if (is_recurse) goto HANDLE_RECURSION; |
6012 | else goto HANDLE_REFERENCE; |
6013 | |
6014 | |
6015 | /* ------------------------------------------------------------ */ |
6016 | case CHAR_R: /* Recursion */ |
6017 | ptr++; /* Same as (?0) */ |
6018 | /* Fall through */ |
6019 | |
6020 | |
6021 | /* ------------------------------------------------------------ */ |
6022 | case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */ |
6023 | case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: |
6024 | case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
6025 | { |
6026 | const pcre_uchar *called; |
6027 | terminator = CHAR_RIGHT_PARENTHESIS; |
6028 | |
6029 | /* Come here from the \g<...> and \g'...' code (Oniguruma |
6030 | compatibility). However, the syntax has been checked to ensure that |
6031 | the ... are a (signed) number, so that neither ERR63 nor ERR29 will |
6032 | be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY |
6033 | ever be taken. */ |
6034 | |
6035 | HANDLE_NUMERICAL_RECURSION: |
6036 | |
6037 | if ((refsign = *ptr) == CHAR_PLUS) |
6038 | { |
6039 | ptr++; |
6040 | if (!IS_DIGIT(*ptr)) |
6041 | { |
6042 | *errorcodeptr = ERR63; |
6043 | goto FAILED; |
6044 | } |
6045 | } |
6046 | else if (refsign == CHAR_MINUS) |
6047 | { |
6048 | if (!IS_DIGIT(ptr[1])) |
6049 | goto OTHER_CHAR_AFTER_QUERY; |
6050 | ptr++; |
6051 | } |
6052 | |
6053 | recno = 0; |
6054 | while(IS_DIGIT(*ptr)) |
6055 | recno = recno * 10 + *ptr++ - CHAR_0; |
6056 | |
6057 | if (*ptr != terminator) |
6058 | { |
6059 | *errorcodeptr = ERR29; |
6060 | goto FAILED; |
6061 | } |
6062 | |
6063 | if (refsign == CHAR_MINUS) |
6064 | { |
6065 | if (recno == 0) |
6066 | { |
6067 | *errorcodeptr = ERR58; |
6068 | goto FAILED; |
6069 | } |
6070 | recno = cd->bracount - recno + 1; |
6071 | if (recno <= 0) |
6072 | { |
6073 | *errorcodeptr = ERR15; |
6074 | goto FAILED; |
6075 | } |
6076 | } |
6077 | else if (refsign == CHAR_PLUS) |
6078 | { |
6079 | if (recno == 0) |
6080 | { |
6081 | *errorcodeptr = ERR58; |
6082 | goto FAILED; |
6083 | } |
6084 | recno += cd->bracount; |
6085 | } |
6086 | |
6087 | /* Come here from code above that handles a named recursion */ |
6088 | |
6089 | HANDLE_RECURSION: |
6090 | |
6091 | previous = code; |
6092 | called = cd->start_code; |
6093 | |
6094 | /* When we are actually compiling, find the bracket that is being |
6095 | referenced. Temporarily end the regex in case it doesn't exist before |
6096 | this point. If we end up with a forward reference, first check that |
6097 | the bracket does occur later so we can give the error (and position) |
6098 | now. Then remember this forward reference in the workspace so it can |
6099 | be filled in at the end. */ |
6100 | |
6101 | if (lengthptr == NULL) |
6102 | { |
6103 | *code = OP_END; |
6104 | if (recno != 0) |
6105 | called = PRIV(find_bracket)(cd->start_code, utf, recno); |
6106 | |
6107 | /* Forward reference */ |
6108 | |
6109 | if (called == NULL) |
6110 | { |
6111 | if (find_parens(cd, NULL, recno, |
6112 | (options & PCRE_EXTENDED) != 0, utf) < 0) |
6113 | { |
6114 | *errorcodeptr = ERR15; |
6115 | goto FAILED; |
6116 | } |
6117 | |
6118 | /* Fudge the value of "called" so that when it is inserted as an |
6119 | offset below, what it actually inserted is the reference number |
6120 | of the group. Then remember the forward reference. */ |
6121 | |
6122 | called = cd->start_code + recno; |
6123 | PUTINC(cd->hwm, 0, (int)(code + 1 - cd->start_code)); |
6124 | } |
6125 | |
6126 | /* If not a forward reference, and the subpattern is still open, |
6127 | this is a recursive call. We check to see if this is a left |
6128 | recursion that could loop for ever, and diagnose that case. We |
6129 | must not, however, do this check if we are in a conditional |
6130 | subpattern because the condition might be testing for recursion in |
6131 | a pattern such as /(?(R)a+|(?R)b)/, which is perfectly valid. |
6132 | Forever loops are also detected at runtime, so those that occur in |
6133 | conditional subpatterns will be picked up then. */ |
6134 | |
6135 | else if (GET(called, 1) == 0 && cond_depth <= 0 && |
6136 | could_be_empty(called, code, bcptr, utf, cd)) |
6137 | { |
6138 | *errorcodeptr = ERR40; |
6139 | goto FAILED; |
6140 | } |
6141 | } |
6142 | |
6143 | /* Insert the recursion/subroutine item. */ |
6144 | |
6145 | *code = OP_RECURSE; |
6146 | PUT(code, 1, (int)(called - cd->start_code)); |
6147 | code += 1 + LINK_SIZE; |
6148 | } |
6149 | |
6150 | /* Can't determine a first byte now */ |
6151 | |
6152 | if (firstchar == REQ_UNSET) firstchar = REQ_NONE; |
6153 | continue; |
6154 | |
6155 | |
6156 | /* ------------------------------------------------------------ */ |
6157 | default: /* Other characters: check option setting */ |
6158 | OTHER_CHAR_AFTER_QUERY: |
6159 | set = unset = 0; |
6160 | optset = &set; |
6161 | |
6162 | while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON) |
6163 | { |
6164 | switch (*ptr++) |
6165 | { |
6166 | case CHAR_MINUS: optset = &unset; break; |
6167 | |
6168 | case CHAR_J: /* Record that it changed in the external options */ |
6169 | *optset |= PCRE_DUPNAMES; |
6170 | cd->external_flags |= PCRE_JCHANGED; |
6171 | break; |
6172 | |
6173 | case CHAR_i: *optset |= PCRE_CASELESS; break; |
6174 | case CHAR_m: *optset |= PCRE_MULTILINE; break; |
6175 | case CHAR_s: *optset |= PCRE_DOTALL; break; |
6176 | case CHAR_x: *optset |= PCRE_EXTENDED; break; |
6177 | case CHAR_U: *optset |= PCRE_UNGREEDY; break; |
6178 | case CHAR_X: *optset |= PCRE_EXTRA; break; |
6179 | |
6180 | default: *errorcodeptr = ERR12; |
6181 | ptr--; /* Correct the offset */ |
6182 | goto FAILED; |
6183 | } |
6184 | } |
6185 | |
6186 | /* Set up the changed option bits, but don't change anything yet. */ |
6187 | |
6188 | newoptions = (options | set) & (~unset); |
6189 | |
6190 | /* If the options ended with ')' this is not the start of a nested |
6191 | group with option changes, so the options change at this level. If this |
6192 | item is right at the start of the pattern, the options can be |
6193 | abstracted and made external in the pre-compile phase, and ignored in |
6194 | the compile phase. This can be helpful when matching -- for instance in |
6195 | caseless checking of required bytes. |
6196 | |
6197 | If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are |
6198 | definitely *not* at the start of the pattern because something has been |
6199 | compiled. In the pre-compile phase, however, the code pointer can have |
6200 | that value after the start, because it gets reset as code is discarded |
6201 | during the pre-compile. However, this can happen only at top level - if |
6202 | we are within parentheses, the starting BRA will still be present. At |
6203 | any parenthesis level, the length value can be used to test if anything |
6204 | has been compiled at that level. Thus, a test for both these conditions |
6205 | is necessary to ensure we correctly detect the start of the pattern in |
6206 | both phases. |
6207 | |
6208 | If we are not at the pattern start, reset the greedy defaults and the |
6209 | case value for firstchar and reqchar. */ |
6210 | |
6211 | if (*ptr == CHAR_RIGHT_PARENTHESIS) |
6212 | { |
6213 | if (code == cd->start_code + 1 + LINK_SIZE && |
6214 | (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE)) |
6215 | { |
6216 | cd->external_options = newoptions; |
6217 | } |
6218 | else |
6219 | { |
6220 | greedy_default = ((newoptions & PCRE_UNGREEDY) != 0); |
6221 | greedy_non_default = greedy_default ^ 1; |
6222 | req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS:0; |
6223 | } |
6224 | |
6225 | /* Change options at this level, and pass them back for use |
6226 | in subsequent branches. */ |
6227 | |
6228 | *optionsptr = options = newoptions; |
6229 | previous = NULL; /* This item can't be repeated */ |
6230 | continue; /* It is complete */ |
6231 | } |
6232 | |
6233 | /* If the options ended with ':' we are heading into a nested group |
6234 | with possible change of options. Such groups are non-capturing and are |
6235 | not assertions of any kind. All we need to do is skip over the ':'; |
6236 | the newoptions value is handled below. */ |
6237 | |
6238 | bravalue = OP_BRA; |
6239 | ptr++; |
6240 | } /* End of switch for character following (? */ |
6241 | } /* End of (? handling */ |
6242 | |
6243 | /* Opening parenthesis not followed by '*' or '?'. If PCRE_NO_AUTO_CAPTURE |
6244 | is set, all unadorned brackets become non-capturing and behave like (?:...) |
6245 | brackets. */ |
6246 | |
6247 | else if ((options & PCRE_NO_AUTO_CAPTURE) != 0) |
6248 | { |
6249 | bravalue = OP_BRA; |
6250 | } |
6251 | |
6252 | /* Else we have a capturing group. */ |
6253 | |
6254 | else |
6255 | { |
6256 | NUMBERED_GROUP: |
6257 | cd->bracount += 1; |
6258 | PUT2(code, 1+LINK_SIZE, cd->bracount); |
6259 | skipbytes = IMM2_SIZE; |
6260 | } |
6261 | |
6262 | /* Process nested bracketed regex. Assertions used not to be repeatable, |
6263 | but this was changed for Perl compatibility, so all kinds can now be |
6264 | repeated. We copy code into a non-register variable (tempcode) in order to |
6265 | be able to pass its address because some compilers complain otherwise. */ |
6266 | |
6267 | previous = code; /* For handling repetition */ |
6268 | *code = bravalue; |
6269 | tempcode = code; |
6270 | tempreqvary = cd->req_varyopt; /* Save value before bracket */ |
6271 | tempbracount = cd->bracount; /* Save value before bracket */ |
6272 | length_prevgroup = 0; /* Initialize for pre-compile phase */ |
6273 | |
6274 | if (!compile_regex( |
6275 | newoptions, /* The complete new option state */ |
6276 | &tempcode, /* Where to put code (updated) */ |
6277 | &ptr, /* Input pointer (updated) */ |
6278 | errorcodeptr, /* Where to put an error message */ |
6279 | (bravalue == OP_ASSERTBACK || |
6280 | bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */ |
6281 | reset_bracount, /* True if (?| group */ |
6282 | skipbytes, /* Skip over bracket number */ |
6283 | cond_depth + |
6284 | ((bravalue == OP_COND)?1:0), /* Depth of condition subpatterns */ |
6285 | &subfirstchar, /* For possible first char */ |
6286 | &subreqchar, /* For possible last char */ |
6287 | bcptr, /* Current branch chain */ |
6288 | cd, /* Tables block */ |
6289 | (lengthptr == NULL)? NULL : /* Actual compile phase */ |
6290 | &length_prevgroup /* Pre-compile phase */ |
6291 | )) |
6292 | goto FAILED; |
6293 | |
6294 | /* If this was an atomic group and there are no capturing groups within it, |
6295 | generate OP_ONCE_NC instead of OP_ONCE. */ |
6296 | |
6297 | if (bravalue == OP_ONCE && cd->bracount <= tempbracount) |
6298 | *code = OP_ONCE_NC; |
6299 | |
6300 | if (bravalue >= OP_ASSERT && bravalue <= OP_ASSERTBACK_NOT) |
6301 | cd->assert_depth -= 1; |
6302 | |
6303 | /* At the end of compiling, code is still pointing to the start of the |
6304 | group, while tempcode has been updated to point past the end of the group. |
6305 | The pattern pointer (ptr) is on the bracket. |
6306 | |
6307 | If this is a conditional bracket, check that there are no more than |
6308 | two branches in the group, or just one if it's a DEFINE group. We do this |
6309 | in the real compile phase, not in the pre-pass, where the whole group may |
6310 | not be available. */ |
6311 | |
6312 | if (bravalue == OP_COND && lengthptr == NULL) |
6313 | { |
6314 | pcre_uchar *tc = code; |
6315 | int condcount = 0; |
6316 | |
6317 | do { |
6318 | condcount++; |
6319 | tc += GET(tc,1); |
6320 | } |
6321 | while (*tc != OP_KET); |
6322 | |
6323 | /* A DEFINE group is never obeyed inline (the "condition" is always |
6324 | false). It must have only one branch. */ |
6325 | |
6326 | if (code[LINK_SIZE+1] == OP_DEF) |
6327 | { |
6328 | if (condcount > 1) |
6329 | { |
6330 | *errorcodeptr = ERR54; |
6331 | goto FAILED; |
6332 | } |
6333 | bravalue = OP_DEF; /* Just a flag to suppress char handling below */ |
6334 | } |
6335 | |
6336 | /* A "normal" conditional group. If there is just one branch, we must not |
6337 | make use of its firstchar or reqchar, because this is equivalent to an |
6338 | empty second branch. */ |
6339 | |
6340 | else |
6341 | { |
6342 | if (condcount > 2) |
6343 | { |
6344 | *errorcodeptr = ERR27; |
6345 | goto FAILED; |
6346 | } |
6347 | if (condcount == 1) subfirstchar = subreqchar = REQ_NONE; |
6348 | } |
6349 | } |
6350 | |
6351 | /* Error if hit end of pattern */ |
6352 | |
6353 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
6354 | { |
6355 | *errorcodeptr = ERR14; |
6356 | goto FAILED; |
6357 | } |
6358 | |
6359 | /* In the pre-compile phase, update the length by the length of the group, |
6360 | less the brackets at either end. Then reduce the compiled code to just a |
6361 | set of non-capturing brackets so that it doesn't use much memory if it is |
6362 | duplicated by a quantifier.*/ |
6363 | |
6364 | if (lengthptr != NULL) |
6365 | { |
6366 | if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE) |
6367 | { |
6368 | *errorcodeptr = ERR20; |
6369 | goto FAILED; |
6370 | } |
6371 | *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE; |
6372 | code++; /* This already contains bravalue */ |
6373 | PUTINC(code, 0, 1 + LINK_SIZE); |
6374 | *code++ = OP_KET; |
6375 | PUTINC(code, 0, 1 + LINK_SIZE); |
6376 | break; /* No need to waste time with special character handling */ |
6377 | } |
6378 | |
6379 | /* Otherwise update the main code pointer to the end of the group. */ |
6380 | |
6381 | code = tempcode; |
6382 | |
6383 | /* For a DEFINE group, required and first character settings are not |
6384 | relevant. */ |
6385 | |
6386 | if (bravalue == OP_DEF) break; |
6387 | |
6388 | /* Handle updating of the required and first characters for other types of |
6389 | group. Update for normal brackets of all kinds, and conditions with two |
6390 | branches (see code above). If the bracket is followed by a quantifier with |
6391 | zero repeat, we have to back off. Hence the definition of zeroreqchar and |
6392 | zerofirstchar outside the main loop so that they can be accessed for the |
6393 | back off. */ |
6394 | |
6395 | zeroreqchar = reqchar; |
6396 | zerofirstchar = firstchar; |
6397 | groupsetfirstchar = FALSE; |
6398 | |
6399 | if (bravalue >= OP_ONCE) |
6400 | { |
6401 | /* If we have not yet set a firstchar in this branch, take it from the |
6402 | subpattern, remembering that it was set here so that a repeat of more |
6403 | than one can replicate it as reqchar if necessary. If the subpattern has |
6404 | no firstchar, set "none" for the whole branch. In both cases, a zero |
6405 | repeat forces firstchar to "none". */ |
6406 | |
6407 | if (firstchar == REQ_UNSET) |
6408 | { |
6409 | if (subfirstchar >= 0) |
6410 | { |
6411 | firstchar = subfirstchar; |
6412 | groupsetfirstchar = TRUE; |
6413 | } |
6414 | else firstchar = REQ_NONE; |
6415 | zerofirstchar = REQ_NONE; |
6416 | } |
6417 | |
6418 | /* If firstchar was previously set, convert the subpattern's firstchar |
6419 | into reqchar if there wasn't one, using the vary flag that was in |
6420 | existence beforehand. */ |
6421 | |
6422 | else if (subfirstchar >= 0 && subreqchar < 0) |
6423 | subreqchar = subfirstchar | tempreqvary; |
6424 | |
6425 | /* If the subpattern set a required byte (or set a first byte that isn't |
6426 | really the first byte - see above), set it. */ |
6427 | |
6428 | if (subreqchar >= 0) reqchar = subreqchar; |
6429 | } |
6430 | |
6431 | /* For a forward assertion, we take the reqchar, if set. This can be |
6432 | helpful if the pattern that follows the assertion doesn't set a different |
6433 | char. For example, it's useful for /(?=abcde).+/. We can't set firstchar |
6434 | for an assertion, however because it leads to incorrect effect for patterns |
6435 | such as /(?=a)a.+/ when the "real" "a" would then become a reqchar instead |
6436 | of a firstchar. This is overcome by a scan at the end if there's no |
6437 | firstchar, looking for an asserted first char. */ |
6438 | |
6439 | else if (bravalue == OP_ASSERT && subreqchar >= 0) reqchar = subreqchar; |
6440 | break; /* End of processing '(' */ |
6441 | |
6442 | |
6443 | /* ===================================================================*/ |
6444 | /* Handle metasequences introduced by \. For ones like \d, the ESC_ values |
6445 | are arranged to be the negation of the corresponding OP_values in the |
6446 | default case when PCRE_UCP is not set. For the back references, the values |
6447 | are ESC_REF plus the reference number. Only back references and those types |
6448 | that consume a character may be repeated. We can test for values between |
6449 | ESC_b and ESC_Z for the latter; this may have to change if any new ones are |
6450 | ever created. */ |
6451 | |
6452 | case CHAR_BACKSLASH: |
6453 | tempptr = ptr; |
6454 | c = check_escape(&ptr, errorcodeptr, cd->bracount, options, FALSE); |
6455 | if (*errorcodeptr != 0) goto FAILED; |
6456 | |
6457 | if (c < 0) |
6458 | { |
6459 | if (-c == ESC_Q) /* Handle start of quoted string */ |
6460 | { |
6461 | if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
6462 | ptr += 2; /* avoid empty string */ |
6463 | else inescq = TRUE; |
6464 | continue; |
6465 | } |
6466 | |
6467 | if (-c == ESC_E) continue; /* Perl ignores an orphan \E */ |
6468 | |
6469 | /* For metasequences that actually match a character, we disable the |
6470 | setting of a first character if it hasn't already been set. */ |
6471 | |
6472 | if (firstchar == REQ_UNSET && -c > ESC_b && -c < ESC_Z) |
6473 | firstchar = REQ_NONE; |
6474 | |
6475 | /* Set values to reset to if this is followed by a zero repeat. */ |
6476 | |
6477 | zerofirstchar = firstchar; |
6478 | zeroreqchar = reqchar; |
6479 | |
6480 | /* \g<name> or \g'name' is a subroutine call by name and \g<n> or \g'n' |
6481 | is a subroutine call by number (Oniguruma syntax). In fact, the value |
6482 | -ESC_g is returned only for these cases. So we don't need to check for < |
6483 | or ' if the value is -ESC_g. For the Perl syntax \g{n} the value is |
6484 | -ESC_REF+n, and for the Perl syntax \g{name} the result is -ESC_k (as |
6485 | that is a synonym for a named back reference). */ |
6486 | |
6487 | if (-c == ESC_g) |
6488 | { |
6489 | const pcre_uchar *p; |
6490 | save_hwm = cd->hwm; /* Normally this is set when '(' is read */ |
6491 | terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)? |
6492 | CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE; |
6493 | |
6494 | /* These two statements stop the compiler for warning about possibly |
6495 | unset variables caused by the jump to HANDLE_NUMERICAL_RECURSION. In |
6496 | fact, because we actually check for a number below, the paths that |
6497 | would actually be in error are never taken. */ |
6498 | |
6499 | skipbytes = 0; |
6500 | reset_bracount = FALSE; |
6501 | |
6502 | /* Test for a name */ |
6503 | |
6504 | if (ptr[1] != CHAR_PLUS && ptr[1] != CHAR_MINUS) |
6505 | { |
6506 | BOOL isnumber = TRUE; |
6507 | for (p = ptr + 1; *p != 0 && *p != terminator; p++) |
6508 | { |
6509 | if ((cd->ctypes[*p] & ctype_digit) == 0) isnumber = FALSE; |
6510 | if ((cd->ctypes[*p] & ctype_word) == 0) break; |
6511 | } |
6512 | if (*p != terminator) |
6513 | { |
6514 | *errorcodeptr = ERR57; |
6515 | break; |
6516 | } |
6517 | if (isnumber) |
6518 | { |
6519 | ptr++; |
6520 | goto HANDLE_NUMERICAL_RECURSION; |
6521 | } |
6522 | is_recurse = TRUE; |
6523 | goto NAMED_REF_OR_RECURSE; |
6524 | } |
6525 | |
6526 | /* Test a signed number in angle brackets or quotes. */ |
6527 | |
6528 | p = ptr + 2; |
6529 | while (IS_DIGIT(*p)) p++; |
6530 | if (*p != terminator) |
6531 | { |
6532 | *errorcodeptr = ERR57; |
6533 | break; |
6534 | } |
6535 | ptr++; |
6536 | goto HANDLE_NUMERICAL_RECURSION; |
6537 | } |
6538 | |
6539 | /* \k<name> or \k'name' is a back reference by name (Perl syntax). |
6540 | We also support \k{name} (.NET syntax). */ |
6541 | |
6542 | if (-c == ESC_k) |
6543 | { |
6544 | if ((ptr[1] != CHAR_LESS_THAN_SIGN && |
6545 | ptr[1] != CHAR_APOSTROPHE && ptr[1] != CHAR_LEFT_CURLY_BRACKET)) |
6546 | { |
6547 | *errorcodeptr = ERR69; |
6548 | break; |
6549 | } |
6550 | is_recurse = FALSE; |
6551 | terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)? |
6552 | CHAR_GREATER_THAN_SIGN : (*ptr == CHAR_APOSTROPHE)? |
6553 | CHAR_APOSTROPHE : CHAR_RIGHT_CURLY_BRACKET; |
6554 | goto NAMED_REF_OR_RECURSE; |
6555 | } |
6556 | |
6557 | /* Back references are handled specially; must disable firstchar if |
6558 | not set to cope with cases like (?=(\w+))\1: which would otherwise set |
6559 | ':' later. */ |
6560 | |
6561 | if (-c >= ESC_REF) |
6562 | { |
6563 | open_capitem *oc; |
6564 | recno = -c - ESC_REF; |
6565 | |
6566 | HANDLE_REFERENCE: /* Come here from named backref handling */ |
6567 | if (firstchar == REQ_UNSET) firstchar = REQ_NONE; |
6568 | previous = code; |
6569 | *code++ = ((options & PCRE_CASELESS) != 0)? OP_REFI : OP_REF; |
6570 | PUT2INC(code, 0, recno); |
6571 | cd->backref_map |= (recno < 32)? (1 << recno) : 1; |
6572 | if (recno > cd->top_backref) cd->top_backref = recno; |
6573 | |
6574 | /* Check to see if this back reference is recursive, that it, it |
6575 | is inside the group that it references. A flag is set so that the |
6576 | group can be made atomic. */ |
6577 | |
6578 | for (oc = cd->open_caps; oc != NULL; oc = oc->next) |
6579 | { |
6580 | if (oc->number == recno) |
6581 | { |
6582 | oc->flag = TRUE; |
6583 | break; |
6584 | } |
6585 | } |
6586 | } |
6587 | |
6588 | /* So are Unicode property matches, if supported. */ |
6589 | |
6590 | #ifdef SUPPORT_UCP |
6591 | else if (-c == ESC_P || -c == ESC_p) |
6592 | { |
6593 | BOOL negated; |
6594 | int pdata; |
6595 | int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr); |
6596 | if (ptype < 0) goto FAILED; |
6597 | previous = code; |
6598 | *code++ = ((-c == ESC_p) != negated)? OP_PROP : OP_NOTPROP; |
6599 | *code++ = ptype; |
6600 | *code++ = pdata; |
6601 | } |
6602 | #else |
6603 | |
6604 | /* If Unicode properties are not supported, \X, \P, and \p are not |
6605 | allowed. */ |
6606 | |
6607 | else if (-c == ESC_X || -c == ESC_P || -c == ESC_p) |
6608 | { |
6609 | *errorcodeptr = ERR45; |
6610 | goto FAILED; |
6611 | } |
6612 | #endif |
6613 | |
6614 | /* For the rest (including \X when Unicode properties are supported), we |
6615 | can obtain the OP value by negating the escape value in the default |
6616 | situation when PCRE_UCP is not set. When it *is* set, we substitute |
6617 | Unicode property tests. */ |
6618 | |
6619 | else |
6620 | { |
6621 | #ifdef SUPPORT_UCP |
6622 | if (-c >= ESC_DU && -c <= ESC_wu) |
6623 | { |
6624 | nestptr = ptr + 1; /* Where to resume */ |
6625 | ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */ |
6626 | } |
6627 | else |
6628 | #endif |
6629 | /* In non-UTF-8 mode, we turn \C into OP_ALLANY instead of OP_ANYBYTE |
6630 | so that it works in DFA mode and in lookbehinds. */ |
6631 | |
6632 | { |
6633 | previous = (-c > ESC_b && -c < ESC_Z)? code : NULL; |
6634 | *code++ = (!utf && c == -ESC_C)? OP_ALLANY : -c; |
6635 | } |
6636 | } |
6637 | continue; |
6638 | } |
6639 | |
6640 | /* We have a data character whose value is in c. In UTF-8 mode it may have |
6641 | a value > 127. We set its representation in the length/buffer, and then |