1 |
/*************************************************
|
2 |
* Perl-Compatible Regular Expressions *
|
3 |
*************************************************/
|
4 |
|
5 |
/*
|
6 |
This is a library of functions to support regular expressions whose syntax
|
7 |
and semantics are as close as possible to those of the Perl 5 language. See
|
8 |
the file Tech.Notes for some information on the internals.
|
9 |
|
10 |
Written by: Philip Hazel <ph10@cam.ac.uk>
|
11 |
|
12 |
Copyright (c) 1998 University of Cambridge
|
13 |
|
14 |
-----------------------------------------------------------------------------
|
15 |
Permission is granted to anyone to use this software for any purpose on any
|
16 |
computer system, and to redistribute it freely, subject to the following
|
17 |
restrictions:
|
18 |
|
19 |
1. This software is distributed in the hope that it will be useful,
|
20 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
21 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
22 |
|
23 |
2. The origin of this software must not be misrepresented, either by
|
24 |
explicit claim or by omission.
|
25 |
|
26 |
3. Altered versions must be plainly marked as such, and must not be
|
27 |
misrepresented as being the original software.
|
28 |
-----------------------------------------------------------------------------
|
29 |
*/
|
30 |
|
31 |
|
32 |
/* Define DEBUG to get debugging output on stdout. */
|
33 |
|
34 |
/* #define DEBUG */
|
35 |
|
36 |
/* Use a macro for debugging printing, 'cause that eliminates the the use
|
37 |
of #ifdef inline, and there are *still* stupid compilers about that don't like
|
38 |
indented pre-processor statements. I suppose it's only been 10 years... */
|
39 |
|
40 |
#ifdef DEBUG
|
41 |
#define DPRINTF(p) printf p
|
42 |
#else
|
43 |
#define DPRINTF(p) /*nothing*/
|
44 |
#endif
|
45 |
|
46 |
/* Include the internals header, which itself includes Standard C headers plus
|
47 |
the external pcre header. */
|
48 |
|
49 |
#include "internal.h"
|
50 |
|
51 |
|
52 |
/* Allow compilation as C++ source code, should anybody want to do that. */
|
53 |
|
54 |
#ifdef __cplusplus
|
55 |
#define class pcre_class
|
56 |
#endif
|
57 |
|
58 |
|
59 |
/* Min and max values for the common repeats; for the maxima, 0 => infinity */
|
60 |
|
61 |
static const char rep_min[] = { 0, 0, 1, 1, 0, 0 };
|
62 |
static const char rep_max[] = { 0, 0, 0, 0, 1, 1 };
|
63 |
|
64 |
/* Text forms of OP_ values and things, for debugging (not all used) */
|
65 |
|
66 |
#ifdef DEBUG
|
67 |
static const char *OP_names[] = {
|
68 |
"End", "\\A", "\\B", "\\b", "\\D", "\\d",
|
69 |
"\\S", "\\s", "\\W", "\\w", "Cut", "\\Z", "^", "$", "Any", "chars",
|
70 |
"not",
|
71 |
"*", "*?", "+", "+?", "?", "??", "{", "{", "{",
|
72 |
"*", "*?", "+", "+?", "?", "??", "{", "{", "{",
|
73 |
"*", "*?", "+", "+?", "?", "??", "{", "{", "{",
|
74 |
"*", "*?", "+", "+?", "?", "??", "{", "{",
|
75 |
"class", "negclass", "Ref",
|
76 |
"Alt", "Ket", "KetRmax", "KetRmin", "Assert", "Assert not", "Once",
|
77 |
"Brazero", "Braminzero", "Bra"
|
78 |
};
|
79 |
#endif
|
80 |
|
81 |
/* Table for handling escaped characters in the range '0'-'z'. Positive returns
|
82 |
are simple data values; negative values are for special things like \d and so
|
83 |
on. Zero means further processing is needed (for things like \x), or the escape
|
84 |
is invalid. */
|
85 |
|
86 |
static const short int escapes[] = {
|
87 |
0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 7 */
|
88 |
0, 0, ':', ';', '<', '=', '>', '?', /* 8 - ? */
|
89 |
'@', -ESC_A, -ESC_B, 0, -ESC_D, 0, 0, 0, /* @ - G */
|
90 |
0, 0, 0, 0, 0, 0, 0, 0, /* H - O */
|
91 |
0, 0, 0, -ESC_S, 0, 0, 0, -ESC_W, /* P - W */
|
92 |
0, 0, -ESC_Z, '[', '\\', ']', '^', '_', /* X - _ */
|
93 |
'`', 7, -ESC_b, 0, -ESC_d, 27, '\f', 0, /* ` - g */
|
94 |
0, 0, 0, 0, 0, 0, '\n', 0, /* h - o */
|
95 |
0, 0, '\r', -ESC_s, '\t', 0, 0, -ESC_w, /* p - w */
|
96 |
0, 0, 0 /* x - z */
|
97 |
};
|
98 |
|
99 |
/* Definition to allow mutual recursion */
|
100 |
|
101 |
static BOOL
|
102 |
compile_regex(int, int *, uschar **, const uschar **, const char **);
|
103 |
|
104 |
/* Structure for passing "static" information around between the functions
|
105 |
doing the matching, so that they are thread-safe. */
|
106 |
|
107 |
typedef struct match_data {
|
108 |
int errorcode; /* As it says */
|
109 |
int *offset_vector; /* Offset vector */
|
110 |
int offset_end; /* One past the end */
|
111 |
BOOL offset_overflow; /* Set if too many extractions */
|
112 |
BOOL caseless; /* Case-independent flag */
|
113 |
BOOL runtime_caseless; /* Caseless forced at run time */
|
114 |
BOOL multiline; /* Multiline flag */
|
115 |
BOOL notbol; /* NOTBOL flag */
|
116 |
BOOL noteol; /* NOTEOL flag */
|
117 |
BOOL dotall; /* Dot matches any char */
|
118 |
BOOL endonly; /* Dollar not before final \n */
|
119 |
const uschar *start_subject; /* Start of the subject string */
|
120 |
const uschar *end_subject; /* End of the subject string */
|
121 |
jmp_buf fail_env; /* Environment for longjump() break out */
|
122 |
const uschar *end_match_ptr; /* Subject position at end match */
|
123 |
int end_offset_top; /* Highwater mark at end of match */
|
124 |
} match_data;
|
125 |
|
126 |
|
127 |
|
128 |
/*************************************************
|
129 |
* Global variables *
|
130 |
*************************************************/
|
131 |
|
132 |
/* PCRE is thread-clean and doesn't use any global variables in the normal
|
133 |
sense. However, it calls memory allocation and free functions via the two
|
134 |
indirections below, which are can be changed by the caller, but are shared
|
135 |
between all threads. */
|
136 |
|
137 |
void *(*pcre_malloc)(size_t) = malloc;
|
138 |
void (*pcre_free)(void *) = free;
|
139 |
|
140 |
|
141 |
|
142 |
|
143 |
/*************************************************
|
144 |
* Return version string *
|
145 |
*************************************************/
|
146 |
|
147 |
const char *
|
148 |
pcre_version(void)
|
149 |
{
|
150 |
return PCRE_VERSION;
|
151 |
}
|
152 |
|
153 |
|
154 |
|
155 |
|
156 |
/*************************************************
|
157 |
* Return info about a compiled pattern *
|
158 |
*************************************************/
|
159 |
|
160 |
/* This function picks potentially useful data out of the private
|
161 |
structure.
|
162 |
|
163 |
Arguments:
|
164 |
external_re points to compiled code
|
165 |
optptr where to pass back the options
|
166 |
first_char where to pass back the first character,
|
167 |
or -1 if multiline and all branches start ^,
|
168 |
or -2 otherwise
|
169 |
|
170 |
Returns: number of identifying extraction brackets
|
171 |
or negative values on error
|
172 |
*/
|
173 |
|
174 |
int
|
175 |
pcre_info(const pcre *external_re, int *optptr, int *first_char)
|
176 |
{
|
177 |
const real_pcre *re = (const real_pcre *)external_re;
|
178 |
if (re == NULL) return PCRE_ERROR_NULL;
|
179 |
if (re->magic_number != MAGIC_NUMBER) return PCRE_ERROR_BADMAGIC;
|
180 |
if (optptr != NULL) *optptr = (re->options & PUBLIC_OPTIONS);
|
181 |
if (first_char != NULL)
|
182 |
*first_char = ((re->options & PCRE_FIRSTSET) != 0)? re->first_char :
|
183 |
((re->options & PCRE_STARTLINE) != 0)? -1 : -2;
|
184 |
return re->top_bracket;
|
185 |
}
|
186 |
|
187 |
|
188 |
|
189 |
|
190 |
#ifdef DEBUG
|
191 |
/*************************************************
|
192 |
* Debugging function to print chars *
|
193 |
*************************************************/
|
194 |
|
195 |
/* Print a sequence of chars in printable format, stopping at the end of the
|
196 |
subject if the requested.
|
197 |
|
198 |
Arguments:
|
199 |
p points to characters
|
200 |
length number to print
|
201 |
is_subject TRUE if printing from within md->start_subject
|
202 |
md pointer to matching data block, if is_subject is TRUE
|
203 |
|
204 |
Returns: nothing
|
205 |
*/
|
206 |
|
207 |
static void
|
208 |
pchars(const uschar *p, int length, BOOL is_subject, match_data *md)
|
209 |
{
|
210 |
int c;
|
211 |
if (is_subject && length > md->end_subject - p) length = md->end_subject - p;
|
212 |
while (length-- > 0)
|
213 |
if (isprint(c = *(p++))) printf("%c", c); else printf("\\x%02x", c);
|
214 |
}
|
215 |
#endif
|
216 |
|
217 |
|
218 |
|
219 |
|
220 |
/*************************************************
|
221 |
* Check subpattern for empty operand *
|
222 |
*************************************************/
|
223 |
|
224 |
/* This function checks a bracketed subpattern to see if any of the paths
|
225 |
through it could match an empty string. This is used to diagnose an error if
|
226 |
such a subpattern is followed by a quantifier with an unlimited upper bound.
|
227 |
|
228 |
Argument:
|
229 |
code points to the opening bracket
|
230 |
|
231 |
Returns: TRUE or FALSE
|
232 |
*/
|
233 |
|
234 |
static BOOL
|
235 |
could_be_empty(uschar *code)
|
236 |
{
|
237 |
do {
|
238 |
uschar *cc = code + 3;
|
239 |
|
240 |
/* Scan along the opcodes for this branch; as soon as we find something
|
241 |
that matches a non-empty string, break out and advance to test the next
|
242 |
branch. If we get to the end of the branch, return TRUE for the whole
|
243 |
sub-expression. */
|
244 |
|
245 |
for (;;)
|
246 |
{
|
247 |
/* Test an embedded subpattern; if it could not be empty, break the
|
248 |
loop. Otherwise carry on in the branch. */
|
249 |
|
250 |
if ((int)(*cc) >= OP_BRA || (int)(*cc) == OP_ONCE)
|
251 |
{
|
252 |
if (!could_be_empty(cc)) break;
|
253 |
do cc += (cc[1] << 8) + cc[2]; while (*cc == OP_ALT);
|
254 |
cc += 3;
|
255 |
}
|
256 |
|
257 |
else switch (*cc)
|
258 |
{
|
259 |
/* Reached end of a branch: the subpattern may match the empty string */
|
260 |
|
261 |
case OP_ALT:
|
262 |
case OP_KET:
|
263 |
case OP_KETRMAX:
|
264 |
case OP_KETRMIN:
|
265 |
return TRUE;
|
266 |
|
267 |
/* Skip over assertive subpatterns */
|
268 |
|
269 |
case OP_ASSERT:
|
270 |
case OP_ASSERT_NOT:
|
271 |
do cc += (cc[1] << 8) + cc[2]; while (*cc == OP_ALT);
|
272 |
cc += 3;
|
273 |
break;
|
274 |
|
275 |
/* Skip over things that don't match chars */
|
276 |
|
277 |
case OP_SOD:
|
278 |
case OP_EOD:
|
279 |
case OP_CIRC:
|
280 |
case OP_DOLL:
|
281 |
case OP_BRAZERO:
|
282 |
case OP_BRAMINZERO:
|
283 |
case OP_NOT_WORD_BOUNDARY:
|
284 |
case OP_WORD_BOUNDARY:
|
285 |
cc++;
|
286 |
break;
|
287 |
|
288 |
/* Skip over simple repeats with zero lower bound */
|
289 |
|
290 |
case OP_STAR:
|
291 |
case OP_MINSTAR:
|
292 |
case OP_QUERY:
|
293 |
case OP_MINQUERY:
|
294 |
case OP_NOTSTAR:
|
295 |
case OP_NOTMINSTAR:
|
296 |
case OP_NOTQUERY:
|
297 |
case OP_NOTMINQUERY:
|
298 |
case OP_TYPESTAR:
|
299 |
case OP_TYPEMINSTAR:
|
300 |
case OP_TYPEQUERY:
|
301 |
case OP_TYPEMINQUERY:
|
302 |
cc += 2;
|
303 |
break;
|
304 |
|
305 |
/* Skip over UPTOs (lower bound is zero) */
|
306 |
|
307 |
case OP_UPTO:
|
308 |
case OP_MINUPTO:
|
309 |
case OP_TYPEUPTO:
|
310 |
case OP_TYPEMINUPTO:
|
311 |
cc += 4;
|
312 |
break;
|
313 |
|
314 |
/* Check a class or a back reference for a zero minimum */
|
315 |
|
316 |
case OP_CLASS:
|
317 |
case OP_NEGCLASS:
|
318 |
case OP_REF:
|
319 |
cc += (*cc == OP_REF)? 2 : 33;
|
320 |
|
321 |
switch (*cc)
|
322 |
{
|
323 |
case OP_CRSTAR:
|
324 |
case OP_CRMINSTAR:
|
325 |
case OP_CRQUERY:
|
326 |
case OP_CRMINQUERY:
|
327 |
cc++;
|
328 |
break;
|
329 |
|
330 |
case OP_CRRANGE:
|
331 |
case OP_CRMINRANGE:
|
332 |
if ((cc[1] << 8) + cc[2] != 0) goto NEXT_BRANCH;
|
333 |
cc += 3;
|
334 |
break;
|
335 |
|
336 |
default:
|
337 |
goto NEXT_BRANCH;
|
338 |
}
|
339 |
break;
|
340 |
|
341 |
/* Anything else matches at least one character */
|
342 |
|
343 |
default:
|
344 |
goto NEXT_BRANCH;
|
345 |
}
|
346 |
}
|
347 |
|
348 |
NEXT_BRANCH:
|
349 |
code += (code[1] << 8) + code[2];
|
350 |
}
|
351 |
while (*code == OP_ALT);
|
352 |
|
353 |
/* No branches match the empty string */
|
354 |
|
355 |
return FALSE;
|
356 |
}
|
357 |
|
358 |
|
359 |
|
360 |
/*************************************************
|
361 |
* Handle escapes *
|
362 |
*************************************************/
|
363 |
|
364 |
/* This function is called when a \ has been encountered. It either returns a
|
365 |
positive value for a simple escape such as \n, or a negative value which
|
366 |
encodes one of the more complicated things such as \d. On entry, ptr is
|
367 |
pointing at the \. On exit, it is on the final character of the escape
|
368 |
sequence.
|
369 |
|
370 |
Arguments:
|
371 |
ptrptr points to the pattern position pointer
|
372 |
errorptr points to the pointer to the error message
|
373 |
bracount number of previous extracting brackets
|
374 |
options the options bits
|
375 |
isclass TRUE if inside a character class
|
376 |
|
377 |
Returns: zero or positive => a data character
|
378 |
negative => a special escape sequence
|
379 |
on error, errorptr is set
|
380 |
*/
|
381 |
|
382 |
static int
|
383 |
check_escape(const uschar **ptrptr, const char **errorptr, int bracount,
|
384 |
int options, BOOL isclass)
|
385 |
{
|
386 |
const uschar *ptr = *ptrptr;
|
387 |
int c = *(++ptr) & 255; /* Ensure > 0 on signed-char systems */
|
388 |
int i;
|
389 |
|
390 |
if (c == 0) *errorptr = ERR1;
|
391 |
|
392 |
/* Digits or letters may have special meaning; all others are literals. */
|
393 |
|
394 |
else if (c < '0' || c > 'z') {}
|
395 |
|
396 |
/* Do an initial lookup in a table. A non-zero result is something that can be
|
397 |
returned immediately. Otherwise further processing may be required. */
|
398 |
|
399 |
else if ((i = escapes[c - '0']) != 0) c = i;
|
400 |
|
401 |
/* Escapes that need further processing, or are illegal. */
|
402 |
|
403 |
else
|
404 |
{
|
405 |
const uschar *oldptr;
|
406 |
switch (c)
|
407 |
{
|
408 |
/* The handling of escape sequences consisting of a string of digits
|
409 |
starting with one that is not zero is not straightforward. By experiment,
|
410 |
the way Perl works seems to be as follows:
|
411 |
|
412 |
Outside a character class, the digits are read as a decimal number. If the
|
413 |
number is less than 10, or if there are that many previous extracting
|
414 |
left brackets, then it is a back reference. Otherwise, up to three octal
|
415 |
digits are read to form an escaped byte. Thus \123 is likely to be octal
|
416 |
123 (cf \0123, which is octal 012 followed by the literal 3). If the octal
|
417 |
value is greater than 377, the least significant 8 bits are taken. Inside a
|
418 |
character class, \ followed by a digit is always an octal number. */
|
419 |
|
420 |
case '1': case '2': case '3': case '4': case '5':
|
421 |
case '6': case '7': case '8': case '9':
|
422 |
|
423 |
if (!isclass)
|
424 |
{
|
425 |
oldptr = ptr;
|
426 |
c -= '0';
|
427 |
while ((pcre_ctypes[ptr[1]] & ctype_digit) != 0)
|
428 |
c = c * 10 + *(++ptr) - '0';
|
429 |
if (c < 10 || c <= bracount)
|
430 |
{
|
431 |
c = -(ESC_REF + c);
|
432 |
break;
|
433 |
}
|
434 |
ptr = oldptr; /* Put the pointer back and fall through */
|
435 |
}
|
436 |
|
437 |
/* Handle an octal number following \. If the first digit is 8 or 9, Perl
|
438 |
generates a binary zero byte and treats the digit as a following literal.
|
439 |
Thus we have to pull back the pointer by one. */
|
440 |
|
441 |
if ((c = *ptr) >= '8')
|
442 |
{
|
443 |
ptr--;
|
444 |
c = 0;
|
445 |
break;
|
446 |
}
|
447 |
|
448 |
/* \0 always starts an octal number, but we may drop through to here with a
|
449 |
larger first octal digit */
|
450 |
|
451 |
case '0':
|
452 |
c -= '0';
|
453 |
while(i++ < 2 && (pcre_ctypes[ptr[1]] & ctype_digit) != 0 &&
|
454 |
ptr[1] != '8' && ptr[1] != '9')
|
455 |
c = c * 8 + *(++ptr) - '0';
|
456 |
break;
|
457 |
|
458 |
/* Special escapes not starting with a digit are straightforward */
|
459 |
|
460 |
case 'x':
|
461 |
c = 0;
|
462 |
while (i++ < 2 && (pcre_ctypes[ptr[1]] & ctype_xdigit) != 0)
|
463 |
{
|
464 |
ptr++;
|
465 |
c = c * 16 + pcre_lcc[*ptr] -
|
466 |
(((pcre_ctypes[*ptr] & ctype_digit) != 0)? '0' : 'W');
|
467 |
}
|
468 |
break;
|
469 |
|
470 |
case 'c':
|
471 |
c = *(++ptr);
|
472 |
if (c == 0)
|
473 |
{
|
474 |
*errorptr = ERR2;
|
475 |
return 0;
|
476 |
}
|
477 |
|
478 |
/* A letter is upper-cased; then the 0x40 bit is flipped */
|
479 |
|
480 |
if (c >= 'a' && c <= 'z') c = pcre_fcc[c];
|
481 |
c ^= 0x40;
|
482 |
break;
|
483 |
|
484 |
/* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any
|
485 |
other alphameric following \ is an error if PCRE_EXTRA was set; otherwise,
|
486 |
for Perl compatibility, it is a literal. */
|
487 |
|
488 |
default:
|
489 |
if ((options & PCRE_EXTRA) != 0) switch(c)
|
490 |
{
|
491 |
case 'X':
|
492 |
c = -ESC_X; /* This could be a lookup if it ever got into Perl */
|
493 |
break;
|
494 |
|
495 |
default:
|
496 |
*errorptr = ERR3;
|
497 |
break;
|
498 |
}
|
499 |
break;
|
500 |
}
|
501 |
}
|
502 |
|
503 |
*ptrptr = ptr;
|
504 |
return c;
|
505 |
}
|
506 |
|
507 |
|
508 |
|
509 |
/*************************************************
|
510 |
* Check for counted repeat *
|
511 |
*************************************************/
|
512 |
|
513 |
/* This function is called when a '{' is encountered in a place where it might
|
514 |
start a quantifier. It looks ahead to see if it really is a quantifier or not.
|
515 |
It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd}
|
516 |
where the ddds are digits.
|
517 |
|
518 |
Arguments:
|
519 |
p pointer to the first char after '{'
|
520 |
|
521 |
Returns: TRUE or FALSE
|
522 |
*/
|
523 |
|
524 |
static BOOL
|
525 |
is_counted_repeat(const uschar *p)
|
526 |
{
|
527 |
if ((pcre_ctypes[*p++] & ctype_digit) == 0) return FALSE;
|
528 |
while ((pcre_ctypes[*p] & ctype_digit) != 0) p++;
|
529 |
if (*p == '}') return TRUE;
|
530 |
|
531 |
if (*p++ != ',') return FALSE;
|
532 |
if (*p == '}') return TRUE;
|
533 |
|
534 |
if ((pcre_ctypes[*p++] & ctype_digit) == 0) return FALSE;
|
535 |
while ((pcre_ctypes[*p] & ctype_digit) != 0) p++;
|
536 |
return (*p == '}');
|
537 |
}
|
538 |
|
539 |
|
540 |
|
541 |
/*************************************************
|
542 |
* Read repeat counts *
|
543 |
*************************************************/
|
544 |
|
545 |
/* Read an item of the form {n,m} and return the values. This is called only
|
546 |
after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
|
547 |
so the syntax is guaranteed to be correct, but we need to check the values.
|
548 |
|
549 |
Arguments:
|
550 |
p pointer to first char after '{'
|
551 |
minp pointer to int for min
|
552 |
maxp pointer to int for max
|
553 |
returned as -1 if no max
|
554 |
errorptr points to pointer to error message
|
555 |
|
556 |
Returns: pointer to '}' on success;
|
557 |
current ptr on error, with errorptr set
|
558 |
*/
|
559 |
|
560 |
static const uschar *
|
561 |
read_repeat_counts(const uschar *p, int *minp, int *maxp, const char **errorptr)
|
562 |
{
|
563 |
int min = 0;
|
564 |
int max = -1;
|
565 |
|
566 |
while ((pcre_ctypes[*p] & ctype_digit) != 0) min = min * 10 + *p++ - '0';
|
567 |
|
568 |
if (*p == '}') max = min; else
|
569 |
{
|
570 |
if (*(++p) != '}')
|
571 |
{
|
572 |
max = 0;
|
573 |
while((pcre_ctypes[*p] & ctype_digit) != 0) max = max * 10 + *p++ - '0';
|
574 |
if (max < min)
|
575 |
{
|
576 |
*errorptr = ERR4;
|
577 |
return p;
|
578 |
}
|
579 |
}
|
580 |
}
|
581 |
|
582 |
/* Do paranoid checks, then fill in the required variables, and pass back the
|
583 |
pointer to the terminating '}'. */
|
584 |
|
585 |
if (min > 65535 || max > 65535)
|
586 |
*errorptr = ERR5;
|
587 |
else
|
588 |
{
|
589 |
*minp = min;
|
590 |
*maxp = max;
|
591 |
}
|
592 |
return p;
|
593 |
}
|
594 |
|
595 |
|
596 |
|
597 |
/*************************************************
|
598 |
* Compile one branch *
|
599 |
*************************************************/
|
600 |
|
601 |
/* Scan the pattern, compiling it into the code vector.
|
602 |
|
603 |
Arguments:
|
604 |
options the option bits
|
605 |
bracket points to number of brackets used
|
606 |
code points to the pointer to the current code point
|
607 |
ptrptr points to the current pattern pointer
|
608 |
errorptr points to pointer to error message
|
609 |
|
610 |
Returns: TRUE on success
|
611 |
FALSE, with *errorptr set on error
|
612 |
*/
|
613 |
|
614 |
static BOOL
|
615 |
compile_branch(int options, int *brackets, uschar **codeptr,
|
616 |
const uschar **ptrptr, const char **errorptr)
|
617 |
{
|
618 |
int repeat_type, op_type;
|
619 |
int repeat_min, repeat_max;
|
620 |
int bravalue, length;
|
621 |
register int c;
|
622 |
register uschar *code = *codeptr;
|
623 |
const uschar *ptr = *ptrptr;
|
624 |
const uschar *oldptr;
|
625 |
uschar *previous = NULL;
|
626 |
uschar class[32];
|
627 |
|
628 |
/* Switch on next character until the end of the branch */
|
629 |
|
630 |
for (;; ptr++)
|
631 |
{
|
632 |
BOOL negate_class;
|
633 |
int class_charcount;
|
634 |
int class_lastchar;
|
635 |
|
636 |
c = *ptr;
|
637 |
if ((options & PCRE_EXTENDED) != 0)
|
638 |
{
|
639 |
if ((pcre_ctypes[c] & ctype_space) != 0) continue;
|
640 |
if (c == '#')
|
641 |
{
|
642 |
while ((c = *(++ptr)) != 0 && c != '\n');
|
643 |
continue;
|
644 |
}
|
645 |
}
|
646 |
|
647 |
switch(c)
|
648 |
{
|
649 |
/* The branch terminates at end of string, |, or ). */
|
650 |
|
651 |
case 0:
|
652 |
case '|':
|
653 |
case ')':
|
654 |
*codeptr = code;
|
655 |
*ptrptr = ptr;
|
656 |
return TRUE;
|
657 |
|
658 |
/* Handle single-character metacharacters */
|
659 |
|
660 |
case '^':
|
661 |
previous = NULL;
|
662 |
*code++ = OP_CIRC;
|
663 |
break;
|
664 |
|
665 |
case '$':
|
666 |
previous = NULL;
|
667 |
*code++ = OP_DOLL;
|
668 |
break;
|
669 |
|
670 |
case '.':
|
671 |
previous = code;
|
672 |
*code++ = OP_ANY;
|
673 |
break;
|
674 |
|
675 |
/* Character classes. These always build a 32-byte bitmap of the permitted
|
676 |
characters, except in the special case where there is only one character.
|
677 |
For negated classes, we build the map as usual, then invert it at the end.
|
678 |
*/
|
679 |
|
680 |
case '[':
|
681 |
previous = code;
|
682 |
|
683 |
/* If the first character is '^', set the negation flag, and use a
|
684 |
different opcode. This only matters if caseless matching is specified at
|
685 |
runtime. */
|
686 |
|
687 |
if ((c = *(++ptr)) == '^')
|
688 |
{
|
689 |
negate_class = TRUE;
|
690 |
*code++ = OP_NEGCLASS;
|
691 |
c = *(++ptr);
|
692 |
}
|
693 |
else
|
694 |
{
|
695 |
negate_class = FALSE;
|
696 |
*code++ = OP_CLASS;
|
697 |
}
|
698 |
|
699 |
/* Keep a count of chars so that we can optimize the case of just a single
|
700 |
character. */
|
701 |
|
702 |
class_charcount = 0;
|
703 |
class_lastchar = -1;
|
704 |
|
705 |
/* Initialize the 32-char bit map to all zeros. We have to build the
|
706 |
map in a temporary bit of store, in case the class contains only 1
|
707 |
character, because in that case the compiled code doesn't use the
|
708 |
bit map. */
|
709 |
|
710 |
memset(class, 0, 32 * sizeof(uschar));
|
711 |
|
712 |
/* Process characters until ] is reached. By writing this as a "do" it
|
713 |
means that an initial ] is taken as a data character. */
|
714 |
|
715 |
do
|
716 |
{
|
717 |
if (c == 0)
|
718 |
{
|
719 |
*errorptr = ERR6;
|
720 |
goto FAILED;
|
721 |
}
|
722 |
|
723 |
/* Backslash may introduce a single character, or it may introduce one
|
724 |
of the specials, which just set a flag. Escaped items are checked for
|
725 |
validity in the pre-compiling pass. The sequence \b is a special case.
|
726 |
Inside a class (and only there) it is treated as backspace. Elsewhere
|
727 |
it marks a word boundary. Other escapes have preset maps ready to
|
728 |
or into the one we are building. We assume they have more than one
|
729 |
character in them, so set class_count bigger than one. */
|
730 |
|
731 |
if (c == '\\')
|
732 |
{
|
733 |
c = check_escape(&ptr, errorptr, *brackets, options, TRUE);
|
734 |
if (-c == ESC_b) c = '\b';
|
735 |
else if (c < 0)
|
736 |
{
|
737 |
class_charcount = 10;
|
738 |
switch (-c)
|
739 |
{
|
740 |
case ESC_d:
|
741 |
for (c = 0; c < 32; c++) class[c] |= pcre_cbits[c+cbit_digit];
|
742 |
continue;
|
743 |
|
744 |
case ESC_D:
|
745 |
for (c = 0; c < 32; c++) class[c] |= ~pcre_cbits[c+cbit_digit];
|
746 |
continue;
|
747 |
|
748 |
case ESC_w:
|
749 |
for (c = 0; c < 32; c++)
|
750 |
class[c] |= (pcre_cbits[c] | pcre_cbits[c+cbit_word]);
|
751 |
continue;
|
752 |
|
753 |
case ESC_W:
|
754 |
for (c = 0; c < 32; c++)
|
755 |
class[c] |= ~(pcre_cbits[c] | pcre_cbits[c+cbit_word]);
|
756 |
continue;
|
757 |
|
758 |
case ESC_s:
|
759 |
for (c = 0; c < 32; c++) class[c] |= pcre_cbits[c+cbit_space];
|
760 |
continue;
|
761 |
|
762 |
case ESC_S:
|
763 |
for (c = 0; c < 32; c++) class[c] |= ~pcre_cbits[c+cbit_space];
|
764 |
continue;
|
765 |
|
766 |
default:
|
767 |
*errorptr = ERR7;
|
768 |
goto FAILED;
|
769 |
}
|
770 |
}
|
771 |
/* Fall through if single character */
|
772 |
}
|
773 |
|
774 |
/* A single character may be followed by '-' to form a range. However,
|
775 |
Perl does not permit ']' to be the end of the range. A '-' character
|
776 |
here is treated as a literal. */
|
777 |
|
778 |
if (ptr[1] == '-' && ptr[2] != ']')
|
779 |
{
|
780 |
int d;
|
781 |
ptr += 2;
|
782 |
d = *ptr;
|
783 |
|
784 |
if (d == 0)
|
785 |
{
|
786 |
*errorptr = ERR6;
|
787 |
goto FAILED;
|
788 |
}
|
789 |
|
790 |
/* The second part of a range can be a single-character escape, but
|
791 |
not any of the other escapes. */
|
792 |
|
793 |
if (d == '\\')
|
794 |
{
|
795 |
d = check_escape(&ptr, errorptr, *brackets, options, TRUE);
|
796 |
if (d < 0)
|
797 |
{
|
798 |
if (d == -ESC_b) d = '\b'; else
|
799 |
{
|
800 |
*errorptr = ERR7;
|
801 |
goto FAILED;
|
802 |
}
|
803 |
}
|
804 |
}
|
805 |
|
806 |
if (d < c)
|
807 |
{
|
808 |
*errorptr = ERR8;
|
809 |
goto FAILED;
|
810 |
}
|
811 |
|
812 |
for (; c <= d; c++)
|
813 |
{
|
814 |
class[c/8] |= (1 << (c&7));
|
815 |
if ((options & PCRE_CASELESS) != 0)
|
816 |
{
|
817 |
int uc = pcre_fcc[c]; /* flip case */
|
818 |
class[uc/8] |= (1 << (uc&7));
|
819 |
}
|
820 |
class_charcount++; /* in case a one-char range */
|
821 |
class_lastchar = c;
|
822 |
}
|
823 |
continue; /* Go get the next char in the class */
|
824 |
}
|
825 |
|
826 |
/* Handle a lone single character - we can get here for a normal
|
827 |
non-escape char, or after \ that introduces a single character. */
|
828 |
|
829 |
class [c/8] |= (1 << (c&7));
|
830 |
if ((options & PCRE_CASELESS) != 0)
|
831 |
{
|
832 |
c = pcre_fcc[c]; /* flip case */
|
833 |
class[c/8] |= (1 << (c&7));
|
834 |
}
|
835 |
class_charcount++;
|
836 |
class_lastchar = c;
|
837 |
}
|
838 |
|
839 |
/* Loop until ']' reached; the check for end of string happens inside the
|
840 |
loop. This "while" is the end of the "do" above. */
|
841 |
|
842 |
while ((c = *(++ptr)) != ']');
|
843 |
|
844 |
/* If class_charcount is 1 and class_lastchar is not negative, we saw
|
845 |
precisely one character. This doesn't need the whole 32-byte bit map.
|
846 |
We turn it into a 1-character OP_CHAR if it's positive, or OP_NOT if
|
847 |
it's negative. */
|
848 |
|
849 |
if (class_charcount == 1 && class_lastchar >= 0)
|
850 |
{
|
851 |
if (negate_class)
|
852 |
{
|
853 |
code[-1] = OP_NOT;
|
854 |
}
|
855 |
else
|
856 |
{
|
857 |
code[-1] = OP_CHARS;
|
858 |
*code++ = 1;
|
859 |
}
|
860 |
*code++ = class_lastchar;
|
861 |
}
|
862 |
|
863 |
/* Otherwise, negate the 32-byte map if necessary, and copy it into
|
864 |
the code vector. */
|
865 |
|
866 |
else
|
867 |
{
|
868 |
if (negate_class)
|
869 |
for (c = 0; c < 32; c++) code[c] = ~class[c];
|
870 |
else
|
871 |
memcpy(code, class, 32);
|
872 |
code += 32;
|
873 |
}
|
874 |
break;
|
875 |
|
876 |
/* Various kinds of repeat */
|
877 |
|
878 |
case '{':
|
879 |
if (!is_counted_repeat(ptr+1)) goto NORMAL_CHAR;
|
880 |
ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorptr);
|
881 |
if (*errorptr != NULL) goto FAILED;
|
882 |
goto REPEAT;
|
883 |
|
884 |
case '*':
|
885 |
repeat_min = 0;
|
886 |
repeat_max = -1;
|
887 |
goto REPEAT;
|
888 |
|
889 |
case '+':
|
890 |
repeat_min = 1;
|
891 |
repeat_max = -1;
|
892 |
goto REPEAT;
|
893 |
|
894 |
case '?':
|
895 |
repeat_min = 0;
|
896 |
repeat_max = 1;
|
897 |
|
898 |
REPEAT:
|
899 |
if (previous == NULL)
|
900 |
{
|
901 |
*errorptr = ERR9;
|
902 |
goto FAILED;
|
903 |
}
|
904 |
|
905 |
/* If the next character is '?' this is a minimizing repeat. Advance to the
|
906 |
next character. */
|
907 |
|
908 |
if (ptr[1] == '?') { repeat_type = 1; ptr++; } else repeat_type = 0;
|
909 |
|
910 |
/* If the maximum is zero then the minimum must also be zero; Perl allows
|
911 |
this case, so we do too - by simply omitting the item altogether. */
|
912 |
|
913 |
if (repeat_max == 0) code = previous;
|
914 |
|
915 |
/* If previous was a string of characters, chop off the last one and use it
|
916 |
as the subject of the repeat. If there was only one character, we can
|
917 |
abolish the previous item altogether. */
|
918 |
|
919 |
else if (*previous == OP_CHARS)
|
920 |
{
|
921 |
int len = previous[1];
|
922 |
if (len == 1)
|
923 |
{
|
924 |
c = previous[2];
|
925 |
code = previous;
|
926 |
}
|
927 |
else
|
928 |
{
|
929 |
c = previous[len+1];
|
930 |
previous[1]--;
|
931 |
code--;
|
932 |
}
|
933 |
op_type = 0; /* Use single-char op codes */
|
934 |
goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
|
935 |
}
|
936 |
|
937 |
/* If previous was a single negated character ([^a] or similar), we use
|
938 |
one of the special opcodes, replacing it. The code is shared with single-
|
939 |
character repeats by adding a suitable offset into repeat_type. */
|
940 |
|
941 |
else if ((int)*previous == OP_NOT)
|
942 |
{
|
943 |
op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */
|
944 |
c = previous[1];
|
945 |
code = previous;
|
946 |
goto OUTPUT_SINGLE_REPEAT;
|
947 |
}
|
948 |
|
949 |
/* If previous was a character type match (\d or similar), abolish it and
|
950 |
create a suitable repeat item. The code is shared with single-character
|
951 |
repeats by adding a suitable offset into repeat_type. */
|
952 |
|
953 |
else if ((int)*previous < OP_EOD || *previous == OP_ANY)
|
954 |
{
|
955 |
op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
|
956 |
c = *previous;
|
957 |
code = previous;
|
958 |
|
959 |
OUTPUT_SINGLE_REPEAT:
|
960 |
repeat_type += op_type; /* Combine both values for many cases */
|
961 |
|
962 |
/* A minimum of zero is handled either as the special case * or ?, or as
|
963 |
an UPTO, with the maximum given. */
|
964 |
|
965 |
if (repeat_min == 0)
|
966 |
{
|
967 |
if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
|
968 |
else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
|
969 |
else
|
970 |
{
|
971 |
*code++ = OP_UPTO + repeat_type;
|
972 |
*code++ = repeat_max >> 8;
|
973 |
*code++ = (repeat_max & 255);
|
974 |
}
|
975 |
}
|
976 |
|
977 |
/* The case {1,} is handled as the special case + */
|
978 |
|
979 |
else if (repeat_min == 1 && repeat_max == -1)
|
980 |
*code++ = OP_PLUS + repeat_type;
|
981 |
|
982 |
/* The case {n,n} is just an EXACT, while the general case {n,m} is
|
983 |
handled as an EXACT followed by an UPTO. An EXACT of 1 is optimized. */
|
984 |
|
985 |
else
|
986 |
{
|
987 |
if (repeat_min != 1)
|
988 |
{
|
989 |
*code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
|
990 |
*code++ = repeat_min >> 8;
|
991 |
*code++ = (repeat_min & 255);
|
992 |
}
|
993 |
|
994 |
/* If the mininum is 1 and the previous item was a character string,
|
995 |
we either have to put back the item that got cancelled if the string
|
996 |
length was 1, or add the character back onto the end of a longer
|
997 |
string. For a character type nothing need be done; it will just get put
|
998 |
back naturally. */
|
999 |
|
1000 |
else if (*previous == OP_CHARS)
|
1001 |
{
|
1002 |
if (code == previous) code += 2; else previous[1]++;
|
1003 |
}
|
1004 |
|
1005 |
/* If the maximum is unlimited, insert an OP_STAR. */
|
1006 |
|
1007 |
if (repeat_max < 0)
|
1008 |
{
|
1009 |
*code++ = c;
|
1010 |
*code++ = OP_STAR + repeat_type;
|
1011 |
}
|
1012 |
|
1013 |
/* Else insert an UPTO if the max is greater than the min. */
|
1014 |
|
1015 |
else if (repeat_max != repeat_min)
|
1016 |
{
|
1017 |
*code++ = c;
|
1018 |
repeat_max -= repeat_min;
|
1019 |
*code++ = OP_UPTO + repeat_type;
|
1020 |
*code++ = repeat_max >> 8;
|
1021 |
*code++ = (repeat_max & 255);
|
1022 |
}
|
1023 |
}
|
1024 |
|
1025 |
/* The character or character type itself comes last in all cases. */
|
1026 |
|
1027 |
*code++ = c;
|
1028 |
}
|
1029 |
|
1030 |
/* If previous was a character class or a back reference, we put the repeat
|
1031 |
stuff after it. */
|
1032 |
|
1033 |
else if (*previous == OP_CLASS || *previous == OP_NEGCLASS ||
|
1034 |
*previous == OP_REF)
|
1035 |
{
|
1036 |
if (repeat_min == 0 && repeat_max == -1)
|
1037 |
*code++ = OP_CRSTAR + repeat_type;
|
1038 |
else if (repeat_min == 1 && repeat_max == -1)
|
1039 |
*code++ = OP_CRPLUS + repeat_type;
|
1040 |
else if (repeat_min == 0 && repeat_max == 1)
|
1041 |
*code++ = OP_CRQUERY + repeat_type;
|
1042 |
else
|
1043 |
{
|
1044 |
*code++ = OP_CRRANGE + repeat_type;
|
1045 |
*code++ = repeat_min >> 8;
|
1046 |
*code++ = repeat_min & 255;
|
1047 |
if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
|
1048 |
*code++ = repeat_max >> 8;
|
1049 |
*code++ = repeat_max & 255;
|
1050 |
}
|
1051 |
}
|
1052 |
|
1053 |
/* If previous was a bracket group, we may have to replicate it in certain
|
1054 |
cases. If the maximum repeat count is unlimited, check that the bracket
|
1055 |
group cannot match the empty string, and diagnose an error if it can. */
|
1056 |
|
1057 |
else if ((int)*previous >= OP_BRA)
|
1058 |
{
|
1059 |
int i;
|
1060 |
int len = code - previous;
|
1061 |
|
1062 |
if (repeat_max == -1 && could_be_empty(previous))
|
1063 |
{
|
1064 |
*errorptr = ERR10;
|
1065 |
goto FAILED;
|
1066 |
}
|
1067 |
|
1068 |
/* If the minimum is greater than zero, and the maximum is unlimited or
|
1069 |
equal to the minimum, the first copy remains where it is, and is
|
1070 |
replicated up to the minimum number of times. This case includes the +
|
1071 |
repeat, but of course no replication is needed in that case. */
|
1072 |
|
1073 |
if (repeat_min > 0 && (repeat_max == -1 || repeat_max == repeat_min))
|
1074 |
{
|
1075 |
for (i = 1; i < repeat_min; i++)
|
1076 |
{
|
1077 |
memcpy(code, previous, len);
|
1078 |
code += len;
|
1079 |
}
|
1080 |
}
|
1081 |
|
1082 |
/* If the minimum is zero, stick BRAZERO in front of the first copy.
|
1083 |
Then, if there is a fixed upper limit, replicated up to that many times,
|
1084 |
sticking BRAZERO in front of all the optional ones. */
|
1085 |
|
1086 |
else
|
1087 |
{
|
1088 |
if (repeat_min == 0)
|
1089 |
{
|
1090 |
memmove(previous+1, previous, len);
|
1091 |
code++;
|
1092 |
*previous++ = OP_BRAZERO + repeat_type;
|
1093 |
}
|
1094 |
|
1095 |
for (i = 1; i < repeat_min; i++)
|
1096 |
{
|
1097 |
memcpy(code, previous, len);
|
1098 |
code += len;
|
1099 |
}
|
1100 |
|
1101 |
for (i = (repeat_min > 0)? repeat_min : 1; i < repeat_max; i++)
|
1102 |
{
|
1103 |
*code++ = OP_BRAZERO + repeat_type;
|
1104 |
memcpy(code, previous, len);
|
1105 |
code += len;
|
1106 |
}
|
1107 |
}
|
1108 |
|
1109 |
/* If the maximum is unlimited, set a repeater in the final copy. */
|
1110 |
|
1111 |
if (repeat_max == -1) code[-3] = OP_KETRMAX + repeat_type;
|
1112 |
}
|
1113 |
|
1114 |
/* Else there's some kind of shambles */
|
1115 |
|
1116 |
else
|
1117 |
{
|
1118 |
*errorptr = ERR11;
|
1119 |
goto FAILED;
|
1120 |
}
|
1121 |
|
1122 |
/* In all case we no longer have a previous item. */
|
1123 |
|
1124 |
previous = NULL;
|
1125 |
break;
|
1126 |
|
1127 |
|
1128 |
/* Start of nested bracket sub-expression, or comment or lookahead.
|
1129 |
First deal with special things that can come after a bracket; all are
|
1130 |
introduced by ?, and the appearance of any of them means that this is not a
|
1131 |
referencing group. They were checked for validity in the first pass over
|
1132 |
the string, so we don't have to check for syntax errors here. */
|
1133 |
|
1134 |
case '(':
|
1135 |
previous = code; /* Only real brackets can be repeated */
|
1136 |
if (*(++ptr) == '?')
|
1137 |
{
|
1138 |
bravalue = OP_BRA;
|
1139 |
|
1140 |
switch (*(++ptr))
|
1141 |
{
|
1142 |
case '#':
|
1143 |
case 'i':
|
1144 |
case 'm':
|
1145 |
case 's':
|
1146 |
case 'x':
|
1147 |
ptr++;
|
1148 |
while (*ptr != ')') ptr++;
|
1149 |
previous = NULL;
|
1150 |
continue;
|
1151 |
|
1152 |
case ':': /* Non-extracting bracket */
|
1153 |
ptr++;
|
1154 |
break;
|
1155 |
|
1156 |
case '=': /* Assertions can't be repeated */
|
1157 |
bravalue = OP_ASSERT;
|
1158 |
ptr++;
|
1159 |
previous = NULL;
|
1160 |
break;
|
1161 |
|
1162 |
case '!':
|
1163 |
bravalue = OP_ASSERT_NOT;
|
1164 |
ptr++;
|
1165 |
previous = NULL;
|
1166 |
break;
|
1167 |
|
1168 |
case '>': /* "Match once" brackets */
|
1169 |
if ((options & PCRE_EXTRA) != 0) /* Not yet standard */
|
1170 |
{
|
1171 |
bravalue = OP_ONCE;
|
1172 |
ptr++;
|
1173 |
previous = NULL;
|
1174 |
break;
|
1175 |
}
|
1176 |
/* Else fall through */
|
1177 |
|
1178 |
default:
|
1179 |
*errorptr = ERR12;
|
1180 |
goto FAILED;
|
1181 |
}
|
1182 |
}
|
1183 |
|
1184 |
/* Else we have a referencing group */
|
1185 |
|
1186 |
else
|
1187 |
{
|
1188 |
if (++(*brackets) > EXTRACT_MAX)
|
1189 |
{
|
1190 |
*errorptr = ERR13;
|
1191 |
goto FAILED;
|
1192 |
}
|
1193 |
bravalue = OP_BRA + *brackets;
|
1194 |
}
|
1195 |
|
1196 |
/* Process nested bracketed re; at end pointer is on the bracket. We copy
|
1197 |
code into a non-register variable in order to be able to pass its address
|
1198 |
because some compilers complain otherwise. */
|
1199 |
|
1200 |
*code = bravalue;
|
1201 |
{
|
1202 |
uschar *mcode = code;
|
1203 |
if (!compile_regex(options, brackets, &mcode, &ptr, errorptr))
|
1204 |
goto FAILED;
|
1205 |
code = mcode;
|
1206 |
}
|
1207 |
|
1208 |
if (*ptr != ')')
|
1209 |
{
|
1210 |
*errorptr = ERR14;
|
1211 |
goto FAILED;
|
1212 |
}
|
1213 |
break;
|
1214 |
|
1215 |
/* Check \ for being a real metacharacter; if not, fall through and handle
|
1216 |
it as a data character at the start of a string. Escape items are checked
|
1217 |
for validity in the pre-compiling pass. */
|
1218 |
|
1219 |
case '\\':
|
1220 |
oldptr = ptr;
|
1221 |
c = check_escape(&ptr, errorptr, *brackets, options, FALSE);
|
1222 |
|
1223 |
/* Handle metacharacters introduced by \. For ones like \d, the ESC_ values
|
1224 |
are arranged to be the negation of the corresponding OP_values. For the
|
1225 |
back references, the values are ESC_REF plus the reference number. Only
|
1226 |
back references and those types that consume a character may be repeated.
|
1227 |
We can test for values between ESC_b and ESC_Z for the latter; this may
|
1228 |
have to change if any new ones are ever created. */
|
1229 |
|
1230 |
if (c < 0)
|
1231 |
{
|
1232 |
if (-c >= ESC_REF)
|
1233 |
{
|
1234 |
int refnum = -c - ESC_REF;
|
1235 |
if (*brackets < refnum)
|
1236 |
{
|
1237 |
*errorptr = ERR15;
|
1238 |
goto FAILED;
|
1239 |
}
|
1240 |
previous = code;
|
1241 |
*code++ = OP_REF;
|
1242 |
*code++ = refnum;
|
1243 |
}
|
1244 |
else
|
1245 |
{
|
1246 |
previous = (-c > ESC_b && -c < ESC_X)? code : NULL;
|
1247 |
*code++ = -c;
|
1248 |
}
|
1249 |
continue;
|
1250 |
}
|
1251 |
|
1252 |
/* Data character: reset and fall through */
|
1253 |
|
1254 |
ptr = oldptr;
|
1255 |
c = '\\';
|
1256 |
|
1257 |
/* Handle a run of data characters until a metacharacter is encountered.
|
1258 |
The first character is guaranteed not to be whitespace or # when the
|
1259 |
extended flag is set. */
|
1260 |
|
1261 |
NORMAL_CHAR:
|
1262 |
default:
|
1263 |
previous = code;
|
1264 |
*code = OP_CHARS;
|
1265 |
code += 2;
|
1266 |
length = 0;
|
1267 |
|
1268 |
do
|
1269 |
{
|
1270 |
if ((options & PCRE_EXTENDED) != 0)
|
1271 |
{
|
1272 |
if ((pcre_ctypes[c] & ctype_space) != 0) continue;
|
1273 |
if (c == '#')
|
1274 |
{
|
1275 |
while ((c = *(++ptr)) != 0 && c != '\n');
|
1276 |
if (c == 0) break;
|
1277 |
continue;
|
1278 |
}
|
1279 |
}
|
1280 |
|
1281 |
/* Backslash may introduce a data char or a metacharacter. Escaped items
|
1282 |
are checked for validity in the pre-compiling pass. Stop the string
|
1283 |
before a metaitem. */
|
1284 |
|
1285 |
if (c == '\\')
|
1286 |
{
|
1287 |
oldptr = ptr;
|
1288 |
c = check_escape(&ptr, errorptr, *brackets, options, FALSE);
|
1289 |
if (c < 0) { ptr = oldptr; break; }
|
1290 |
}
|
1291 |
|
1292 |
/* Ordinary character or single-char escape */
|
1293 |
|
1294 |
*code++ = c;
|
1295 |
length++;
|
1296 |
}
|
1297 |
|
1298 |
/* This "while" is the end of the "do" above. */
|
1299 |
|
1300 |
while (length < 255 && (pcre_ctypes[c = *(++ptr)] & ctype_meta) == 0);
|
1301 |
|
1302 |
/* Compute the length and set it in the data vector, and advance to
|
1303 |
the next state. */
|
1304 |
|
1305 |
previous[1] = length;
|
1306 |
if (length < 255) ptr--;
|
1307 |
break;
|
1308 |
}
|
1309 |
} /* end of big loop */
|
1310 |
|
1311 |
/* Control never reaches here by falling through, only by a goto for all the
|
1312 |
error states. Pass back the position in the pattern so that it can be displayed
|
1313 |
to the user for diagnosing the error. */
|
1314 |
|
1315 |
FAILED:
|
1316 |
*ptrptr = ptr;
|
1317 |
return FALSE;
|
1318 |
}
|
1319 |
|
1320 |
|
1321 |
|
1322 |
|
1323 |
/*************************************************
|
1324 |
* Compile sequence of alternatives *
|
1325 |
*************************************************/
|
1326 |
|
1327 |
/* On entry, ptr is pointing past the bracket character, but on return
|
1328 |
it points to the closing bracket, or vertical bar, or end of string.
|
1329 |
The code variable is pointing at the byte into which the BRA operator has been
|
1330 |
stored.
|
1331 |
|
1332 |
Argument:
|
1333 |
options the option bits
|
1334 |
brackets -> int containing the number of extracting brackets used
|
1335 |
codeptr -> the address of the current code pointer
|
1336 |
ptrptr -> the address of the current pattern pointer
|
1337 |
errorptr -> pointer to error message
|
1338 |
|
1339 |
Returns: TRUE on success
|
1340 |
*/
|
1341 |
|
1342 |
static BOOL
|
1343 |
compile_regex(int options, int *brackets, uschar **codeptr,
|
1344 |
const uschar **ptrptr, const char **errorptr)
|
1345 |
{
|
1346 |
const uschar *ptr = *ptrptr;
|
1347 |
uschar *code = *codeptr;
|
1348 |
uschar *start_bracket = code;
|
1349 |
|
1350 |
for (;;)
|
1351 |
{
|
1352 |
int length;
|
1353 |
uschar *last_branch = code;
|
1354 |
|
1355 |
code += 3;
|
1356 |
if (!compile_branch(options, brackets, &code, &ptr, errorptr))
|
1357 |
{
|
1358 |
*ptrptr = ptr;
|
1359 |
return FALSE;
|
1360 |
}
|
1361 |
|
1362 |
/* Fill in the length of the last branch */
|
1363 |
|
1364 |
length = code - last_branch;
|
1365 |
last_branch[1] = length >> 8;
|
1366 |
last_branch[2] = length & 255;
|
1367 |
|
1368 |
/* Reached end of expression, either ')' or end of pattern. Insert a
|
1369 |
terminating ket and the length of the whole bracketed item, and return,
|
1370 |
leaving the pointer at the terminating char. */
|
1371 |
|
1372 |
if (*ptr != '|')
|
1373 |
{
|
1374 |
length = code - start_bracket;
|
1375 |
*code++ = OP_KET;
|
1376 |
*code++ = length >> 8;
|
1377 |
*code++ = length & 255;
|
1378 |
*codeptr = code;
|
1379 |
*ptrptr = ptr;
|
1380 |
return TRUE;
|
1381 |
}
|
1382 |
|
1383 |
/* Another branch follows; insert an "or" node and advance the pointer. */
|
1384 |
|
1385 |
*code = OP_ALT;
|
1386 |
ptr++;
|
1387 |
}
|
1388 |
/* Control never reaches here */
|
1389 |
}
|
1390 |
|
1391 |
|
1392 |
|
1393 |
/*************************************************
|
1394 |
* Check for anchored expression *
|
1395 |
*************************************************/
|
1396 |
|
1397 |
/* Try to find out if this is an anchored regular expression. Consider each
|
1398 |
alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket
|
1399 |
all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then
|
1400 |
it's anchored. However, if this is a multiline pattern, then only OP_SOD
|
1401 |
counts, since OP_CIRC can match in the middle.
|
1402 |
|
1403 |
A branch is also implicitly anchored if it starts with .* because that will try
|
1404 |
the rest of the pattern at all possible matching points, so there is no point
|
1405 |
trying them again.
|
1406 |
|
1407 |
Argument: points to start of expression (the bracket)
|
1408 |
Returns: TRUE or FALSE
|
1409 |
*/
|
1410 |
|
1411 |
static BOOL
|
1412 |
is_anchored(register const uschar *code, BOOL multiline)
|
1413 |
{
|
1414 |
do {
|
1415 |
int op = (int)code[3];
|
1416 |
if (op >= OP_BRA || op == OP_ASSERT || op == OP_ONCE)
|
1417 |
{ if (!is_anchored(code+3, multiline)) return FALSE; }
|
1418 |
else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR)
|
1419 |
{ if (code[4] != OP_ANY) return FALSE; }
|
1420 |
else if (op != OP_SOD && (multiline || op != OP_CIRC)) return FALSE;
|
1421 |
code += (code[1] << 8) + code[2];
|
1422 |
}
|
1423 |
while (*code == OP_ALT);
|
1424 |
return TRUE;
|
1425 |
}
|
1426 |
|
1427 |
|
1428 |
|
1429 |
/*************************************************
|
1430 |
* Check for start with \n line expression *
|
1431 |
*************************************************/
|
1432 |
|
1433 |
/* This is called for multiline expressions to try to find out if every branch
|
1434 |
starts with ^ so that "first char" processing can be done to speed things up.
|
1435 |
|
1436 |
Argument: points to start of expression (the bracket)
|
1437 |
Returns: TRUE or FALSE
|
1438 |
*/
|
1439 |
|
1440 |
static BOOL
|
1441 |
is_startline(const uschar *code)
|
1442 |
{
|
1443 |
do {
|
1444 |
if ((int)code[3] >= OP_BRA || code[3] == OP_ASSERT)
|
1445 |
{ if (!is_startline(code+3)) return FALSE; }
|
1446 |
else if (code[3] != OP_CIRC) return FALSE;
|
1447 |
code += (code[1] << 8) + code[2];
|
1448 |
}
|
1449 |
while (*code == OP_ALT);
|
1450 |
return TRUE;
|
1451 |
}
|
1452 |
|
1453 |
|
1454 |
|
1455 |
/*************************************************
|
1456 |
* Check for fixed first char *
|
1457 |
*************************************************/
|
1458 |
|
1459 |
/* Try to find out if there is a fixed first character. This is called for
|
1460 |
unanchored expressions, as it speeds up their processing quite considerably.
|
1461 |
Consider each alternative branch. If they all start with the same char, or with
|
1462 |
a bracket all of whose alternatives start with the same char (recurse ad lib),
|
1463 |
then we return that char, otherwise -1.
|
1464 |
|
1465 |
Argument: points to start of expression (the bracket)
|
1466 |
Returns: -1 or the fixed first char
|
1467 |
*/
|
1468 |
|
1469 |
static int
|
1470 |
find_firstchar(uschar *code)
|
1471 |
{
|
1472 |
register int c = -1;
|
1473 |
do
|
1474 |
{
|
1475 |
register int charoffset = 4;
|
1476 |
|
1477 |
if ((int)code[3] >= OP_BRA || code[3] == OP_ASSERT)
|
1478 |
{
|
1479 |
register int d;
|
1480 |
if ((d = find_firstchar(code+3)) < 0) return -1;
|
1481 |
if (c < 0) c = d; else if (c != d) return -1;
|
1482 |
}
|
1483 |
|
1484 |
else switch(code[3])
|
1485 |
{
|
1486 |
default:
|
1487 |
return -1;
|
1488 |
|
1489 |
case OP_EXACT: /* Fall through */
|
1490 |
charoffset++;
|
1491 |
|
1492 |
case OP_CHARS: /* Fall through */
|
1493 |
charoffset++;
|
1494 |
|
1495 |
case OP_PLUS:
|
1496 |
case OP_MINPLUS:
|
1497 |
if (c < 0) c = code[charoffset]; else if (c != code[charoffset]) return -1;
|
1498 |
break;
|
1499 |
}
|
1500 |
code += (code[1] << 8) + code[2];
|
1501 |
}
|
1502 |
while (*code == OP_ALT);
|
1503 |
return c;
|
1504 |
}
|
1505 |
|
1506 |
|
1507 |
|
1508 |
/*************************************************
|
1509 |
* Compile a Regular Expression *
|
1510 |
*************************************************/
|
1511 |
|
1512 |
/* This function takes a string and returns a pointer to a block of store
|
1513 |
holding a compiled version of the expression.
|
1514 |
|
1515 |
Arguments:
|
1516 |
pattern the regular expression
|
1517 |
options various option bits
|
1518 |
errorptr pointer to pointer to error text
|
1519 |
erroroffset ptr offset in pattern where error was detected
|
1520 |
|
1521 |
Returns: pointer to compiled data block, or NULL on error,
|
1522 |
with errorptr and erroroffset set
|
1523 |
*/
|
1524 |
|
1525 |
pcre *
|
1526 |
pcre_compile(const char *pattern, int options, const char **errorptr,
|
1527 |
int *erroroffset)
|
1528 |
{
|
1529 |
real_pcre *re;
|
1530 |
int spaces = 0;
|
1531 |
int length = 3; /* For initial BRA plus length */
|
1532 |
int runlength;
|
1533 |
int c, size;
|
1534 |
int bracount = 0;
|
1535 |
int brastack[200];
|
1536 |
int top_backref = 0;
|
1537 |
unsigned int brastackptr = 0;
|
1538 |
uschar *code;
|
1539 |
const uschar *ptr;
|
1540 |
|
1541 |
#ifdef DEBUG
|
1542 |
uschar *code_base, *code_end;
|
1543 |
#endif
|
1544 |
|
1545 |
/* We can't pass back an error message if errorptr is NULL; I guess the best we
|
1546 |
can do is just return NULL. */
|
1547 |
|
1548 |
if (errorptr == NULL) return NULL;
|
1549 |
*errorptr = NULL;
|
1550 |
|
1551 |
/* However, we can give a message for this error */
|
1552 |
|
1553 |
if (erroroffset == NULL)
|
1554 |
{
|
1555 |
*errorptr = ERR16;
|
1556 |
return NULL;
|
1557 |
}
|
1558 |
*erroroffset = 0;
|
1559 |
|
1560 |
if ((options & ~PUBLIC_OPTIONS) != 0)
|
1561 |
{
|
1562 |
*errorptr = ERR17;
|
1563 |
return NULL;
|
1564 |
}
|
1565 |
|
1566 |
DPRINTF(("------------------------------------------------------------------\n"));
|
1567 |
DPRINTF(("%s\n", pattern));
|
1568 |
|
1569 |
/* The first thing to do is to make a pass over the pattern to compute the
|
1570 |
amount of store required to hold the compiled code. This does not have to be
|
1571 |
perfect as long as errors are overestimates. At the same time we can detect any
|
1572 |
internal flag settings. Make an attempt to correct for any counted white space
|
1573 |
if an "extended" flag setting appears late in the pattern. We can't be so
|
1574 |
clever for #-comments. */
|
1575 |
|
1576 |
ptr = (const uschar *)(pattern - 1);
|
1577 |
while ((c = *(++ptr)) != 0)
|
1578 |
{
|
1579 |
int min, max;
|
1580 |
int class_charcount;
|
1581 |
|
1582 |
if ((pcre_ctypes[c] & ctype_space) != 0)
|
1583 |
{
|
1584 |
if ((options & PCRE_EXTENDED) != 0) continue;
|
1585 |
spaces++;
|
1586 |
}
|
1587 |
|
1588 |
if (c == '#' && (options & PCRE_EXTENDED) != 0)
|
1589 |
{
|
1590 |
while ((c = *(++ptr)) != 0 && c != '\n');
|
1591 |
continue;
|
1592 |
}
|
1593 |
|
1594 |
switch(c)
|
1595 |
{
|
1596 |
/* A backslashed item may be an escaped "normal" character or a
|
1597 |
character type. For a "normal" character, put the pointers and
|
1598 |
character back so that tests for whitespace etc. in the input
|
1599 |
are done correctly. */
|
1600 |
|
1601 |
case '\\':
|
1602 |
{
|
1603 |
const uschar *save_ptr = ptr;
|
1604 |
c = check_escape(&ptr, errorptr, bracount, options, FALSE);
|
1605 |
if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
|
1606 |
if (c >= 0)
|
1607 |
{
|
1608 |
ptr = save_ptr;
|
1609 |
c = '\\';
|
1610 |
goto NORMAL_CHAR;
|
1611 |
}
|
1612 |
}
|
1613 |
length++;
|
1614 |
|
1615 |
/* A back reference needs an additional char, plus either one or 5
|
1616 |
bytes for a repeat. We also need to keep the value of the highest
|
1617 |
back reference. */
|
1618 |
|
1619 |
if (c <= -ESC_REF)
|
1620 |
{
|
1621 |
int refnum = -c - ESC_REF;
|
1622 |
if (refnum > top_backref) top_backref = refnum;
|
1623 |
length++; /* For single back reference */
|
1624 |
if (ptr[1] == '{' && is_counted_repeat(ptr+2))
|
1625 |
{
|
1626 |
ptr = read_repeat_counts(ptr+2, &min, &max, errorptr);
|
1627 |
if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
|
1628 |
if ((min == 0 && (max == 1 || max == -1)) ||
|
1629 |
(min == 1 && max == -1))
|
1630 |
length++;
|
1631 |
else length += 5;
|
1632 |
if (ptr[1] == '?') ptr++;
|
1633 |
}
|
1634 |
}
|
1635 |
continue;
|
1636 |
|
1637 |
case '^':
|
1638 |
case '.':
|
1639 |
case '$':
|
1640 |
case '*': /* These repeats won't be after brackets; */
|
1641 |
case '+': /* those are handled separately */
|
1642 |
case '?':
|
1643 |
length++;
|
1644 |
continue;
|
1645 |
|
1646 |
/* This covers the cases of repeats after a single char, metachar, class,
|
1647 |
or back reference. */
|
1648 |
|
1649 |
case '{':
|
1650 |
if (!is_counted_repeat(ptr+1)) goto NORMAL_CHAR;
|
1651 |
ptr = read_repeat_counts(ptr+1, &min, &max, errorptr);
|
1652 |
if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
|
1653 |
if ((min == 0 && (max == 1 || max == -1)) ||
|
1654 |
(min == 1 && max == -1))
|
1655 |
length++;
|
1656 |
else
|
1657 |
{
|
1658 |
length--; /* Uncount the original char or metachar */
|
1659 |
if (min == 1) length++; else if (min > 0) length += 4;
|
1660 |
if (max > 0) length += 4; else length += 2;
|
1661 |
}
|
1662 |
if (ptr[1] == '?') ptr++;
|
1663 |
continue;
|
1664 |
|
1665 |
/* An alternation contains an offset to the next branch or ket. */
|
1666 |
case '|':
|
1667 |
length += 3;
|
1668 |
continue;
|
1669 |
|
1670 |
/* A character class uses 33 characters. Don't worry about character types
|
1671 |
that aren't allowed in classes - they'll get picked up during the compile.
|
1672 |
A character class that contains only one character uses 2 or 3 bytes,
|
1673 |
depending on whether it is negated or not. Notice this where we can. */
|
1674 |
|
1675 |
case '[':
|
1676 |
class_charcount = 0;
|
1677 |
if (*(++ptr) == '^') ptr++;
|
1678 |
do
|
1679 |
{
|
1680 |
if (*ptr == '\\')
|
1681 |
{
|
1682 |
int ch = check_escape(&ptr, errorptr, bracount, options, TRUE);
|
1683 |
if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
|
1684 |
if (-ch == ESC_b) class_charcount++; else class_charcount = 10;
|
1685 |
}
|
1686 |
else class_charcount++;
|
1687 |
ptr++;
|
1688 |
}
|
1689 |
while (*ptr != 0 && *ptr != ']');
|
1690 |
|
1691 |
/* Repeats for negated single chars are handled by the general code */
|
1692 |
|
1693 |
if (class_charcount == 1) length += 3; else
|
1694 |
{
|
1695 |
length += 33;
|
1696 |
|
1697 |
/* A repeat needs either 1 or 5 bytes. */
|
1698 |
|
1699 |
if (*ptr != 0 && ptr[1] == '{' && is_counted_repeat(ptr+2))
|
1700 |
{
|
1701 |
ptr = read_repeat_counts(ptr+2, &min, &max, errorptr);
|
1702 |
if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
|
1703 |
if ((min == 0 && (max == 1 || max == -1)) ||
|
1704 |
(min == 1 && max == -1))
|
1705 |
length++;
|
1706 |
else length += 5;
|
1707 |
if (ptr[1] == '?') ptr++;
|
1708 |
}
|
1709 |
}
|
1710 |
continue;
|
1711 |
|
1712 |
/* Brackets may be genuine groups or special things */
|
1713 |
|
1714 |
case '(':
|
1715 |
|
1716 |
/* Handle special forms of bracket, which all start (? */
|
1717 |
|
1718 |
if (ptr[1] == '?') switch (c = ptr[2])
|
1719 |
{
|
1720 |
/* Skip over comments entirely */
|
1721 |
case '#':
|
1722 |
ptr += 3;
|
1723 |
while (*ptr != 0 && *ptr != ')') ptr++;
|
1724 |
if (*ptr == 0)
|
1725 |
{
|
1726 |
*errorptr = ERR18;
|
1727 |
goto PCRE_ERROR_RETURN;
|
1728 |
}
|
1729 |
continue;
|
1730 |
|
1731 |
/* Non-referencing groups and lookaheads just move the pointer on, and
|
1732 |
then behave like a non-special bracket, except that they don't increment
|
1733 |
the count of extracting brackets. */
|
1734 |
|
1735 |
case ':':
|
1736 |
case '=':
|
1737 |
case '!':
|
1738 |
ptr += 2;
|
1739 |
break;
|
1740 |
|
1741 |
/* Ditto for the "once only" bracket, allowed only if the extra bit
|
1742 |
is set. */
|
1743 |
|
1744 |
case '>':
|
1745 |
if ((options & PCRE_EXTRA) != 0)
|
1746 |
{
|
1747 |
ptr += 2;
|
1748 |
break;
|
1749 |
}
|
1750 |
/* Else fall thourh */
|
1751 |
|
1752 |
/* Else loop setting valid options until ) is met. Anything else is an
|
1753 |
error. */
|
1754 |
|
1755 |
default:
|
1756 |
ptr += 2;
|
1757 |
for (;; ptr++)
|
1758 |
{
|
1759 |
if ((c = *ptr) == 'i')
|
1760 |
{
|
1761 |
options |= PCRE_CASELESS;
|
1762 |
continue;
|
1763 |
}
|
1764 |
else if ((c = *ptr) == 'm')
|
1765 |
{
|
1766 |
options |= PCRE_MULTILINE;
|
1767 |
continue;
|
1768 |
}
|
1769 |
else if (c == 's')
|
1770 |
{
|
1771 |
options |= PCRE_DOTALL;
|
1772 |
continue;
|
1773 |
}
|
1774 |
else if (c == 'x')
|
1775 |
{
|
1776 |
options |= PCRE_EXTENDED;
|
1777 |
length -= spaces; /* Already counted spaces */
|
1778 |
continue;
|
1779 |
}
|
1780 |
else if (c == ')') break;
|
1781 |
|
1782 |
*errorptr = ERR12;
|
1783 |
goto PCRE_ERROR_RETURN;
|
1784 |
}
|
1785 |
continue; /* End of this bracket handling */
|
1786 |
}
|
1787 |
|
1788 |
/* Extracting brackets must be counted so we can process escapes in a
|
1789 |
Perlish way. */
|
1790 |
|
1791 |
else bracount++;
|
1792 |
|
1793 |
/* Non-special forms of bracket. Save length for computing whole length
|
1794 |
at end if there's a repeat that requires duplication of the group. */
|
1795 |
|
1796 |
if (brastackptr >= sizeof(brastack)/sizeof(int))
|
1797 |
{
|
1798 |
*errorptr = ERR19;
|
1799 |
goto PCRE_ERROR_RETURN;
|
1800 |
}
|
1801 |
|
1802 |
brastack[brastackptr++] = length;
|
1803 |
length += 3;
|
1804 |
continue;
|
1805 |
|
1806 |
/* Handle ket. Look for subsequent max/min; for certain sets of values we
|
1807 |
have to replicate this bracket up to that many times. If brastackptr is
|
1808 |
0 this is an unmatched bracket which will generate an error, but take care
|
1809 |
not to try to access brastack[-1]. */
|
1810 |
|
1811 |
case ')':
|
1812 |
length += 3;
|
1813 |
{
|
1814 |
int minval = 1;
|
1815 |
int maxval = 1;
|
1816 |
int duplength = (brastackptr > 0)? length - brastack[--brastackptr] : 0;
|
1817 |
|
1818 |
/* Leave ptr at the final char; for read_repeat_counts this happens
|
1819 |
automatically; for the others we need an increment. */
|
1820 |
|
1821 |
if ((c = ptr[1]) == '{' && is_counted_repeat(ptr+2))
|
1822 |
{
|
1823 |
ptr = read_repeat_counts(ptr+2, &minval, &maxval, errorptr);
|
1824 |
if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
|
1825 |
}
|
1826 |
else if (c == '*') { minval = 0; maxval = -1; ptr++; }
|
1827 |
else if (c == '+') { maxval = -1; ptr++; }
|
1828 |
else if (c == '?') { minval = 0; ptr++; }
|
1829 |
|
1830 |
/* If there is a minimum > 1 we have to replicate up to minval-1 times;
|
1831 |
if there is a limited maximum we have to replicate up to maxval-1 times
|
1832 |
and allow for a BRAZERO item before each optional copy, as we also have
|
1833 |
to do before the first copy if the minimum is zero. */
|
1834 |
|
1835 |
if (minval == 0) length++;
|
1836 |
else if (minval > 1) length += (minval - 1) * duplength;
|
1837 |
if (maxval > minval) length += (maxval - minval) * (duplength + 1);
|
1838 |
}
|
1839 |
continue;
|
1840 |
|
1841 |
/* Non-special character. For a run of such characters the length required
|
1842 |
is the number of characters + 2, except that the maximum run length is 255.
|
1843 |
We won't get a skipped space or a non-data escape or the start of a #
|
1844 |
comment as the first character, so the length can't be zero. */
|
1845 |
|
1846 |
NORMAL_CHAR:
|
1847 |
default:
|
1848 |
length += 2;
|
1849 |
runlength = 0;
|
1850 |
do
|
1851 |
{
|
1852 |
if ((pcre_ctypes[c] & ctype_space) != 0)
|
1853 |
{
|
1854 |
if ((options & PCRE_EXTENDED) != 0) continue;
|
1855 |
spaces++;
|
1856 |
}
|
1857 |
|
1858 |
if (c == '#' && (options & PCRE_EXTENDED) != 0)
|
1859 |
{
|
1860 |
while ((c = *(++ptr)) != 0 && c != '\n');
|
1861 |
continue;
|
1862 |
}
|
1863 |
|
1864 |
/* Backslash may introduce a data char or a metacharacter; stop the
|
1865 |
string before the latter. */
|
1866 |
|
1867 |
if (c == '\\')
|
1868 |
{
|
1869 |
const uschar *saveptr = ptr;
|
1870 |
c = check_escape(&ptr, errorptr, bracount, options, FALSE);
|
1871 |
if (*errorptr != NULL) goto PCRE_ERROR_RETURN;
|
1872 |
if (c < 0) { ptr = saveptr; break; }
|
1873 |
}
|
1874 |
|
1875 |
/* Ordinary character or single-char escape */
|
1876 |
|
1877 |
runlength++;
|
1878 |
}
|
1879 |
|
1880 |
/* This "while" is the end of the "do" above. */
|
1881 |
|
1882 |
while (runlength < 255 && (pcre_ctypes[c = *(++ptr)] & ctype_meta) == 0);
|
1883 |
|
1884 |
ptr--;
|
1885 |
length += runlength;
|
1886 |
continue;
|
1887 |
}
|
1888 |
}
|
1889 |
|
1890 |
length += 4; /* For final KET and END */
|
1891 |
|
1892 |
if (length > 65539)
|
1893 |
{
|
1894 |
*errorptr = ERR20;
|
1895 |
return NULL;
|
1896 |
}
|
1897 |
|
1898 |
/* Compute the size of data block needed and get it, either from malloc or
|
1899 |
externally provided function. We specify "code[0]" in the offsetof() expression
|
1900 |
rather than just "code", because it has been reported that one broken compiler
|
1901 |
fails on "code" because it is also an independent variable. It should make no
|
1902 |
difference to the value of the offsetof(). */
|
1903 |
|
1904 |
size = length + offsetof(real_pcre, code[0]);
|
1905 |
re = (real_pcre *)(pcre_malloc)(size);
|
1906 |
|
1907 |
if (re == NULL)
|
1908 |
{
|
1909 |
*errorptr = ERR21;
|
1910 |
return NULL;
|
1911 |
}
|
1912 |
|
1913 |
/* Put in the magic number and the options. */
|
1914 |
|
1915 |
re->magic_number = MAGIC_NUMBER;
|
1916 |
re->options = options;
|
1917 |
|
1918 |
/* Set up a starting, non-extracting bracket, then compile the expression. On
|
1919 |
error, *errorptr will be set non-NULL, so we don't need to look at the result
|
1920 |
of the function here. */
|
1921 |
|
1922 |
ptr = (const uschar *)pattern;
|
1923 |
code = re->code;
|
1924 |
*code = OP_BRA;
|
1925 |
bracount = 0;
|
1926 |
(void)compile_regex(options, &bracount, &code, &ptr, errorptr);
|
1927 |
re->top_bracket = bracount;
|
1928 |
re->top_backref = top_backref;
|
1929 |
|
1930 |
/* If not reached end of pattern on success, there's an excess bracket. */
|
1931 |
|
1932 |
if (*errorptr == NULL && *ptr != 0) *errorptr = ERR22;
|
1933 |
|
1934 |
/* Fill in the terminating state and check for disastrous overflow, but
|
1935 |
if debugging, leave the test till after things are printed out. */
|
1936 |
|
1937 |
*code++ = OP_END;
|
1938 |
|
1939 |
#ifndef DEBUG
|
1940 |
if (code - re->code > length) *errorptr = ERR23;
|
1941 |
#endif
|
1942 |
|
1943 |
/* Failed to compile */
|
1944 |
|
1945 |
if (*errorptr != NULL)
|
1946 |
{
|
1947 |
(pcre_free)(re);
|
1948 |
PCRE_ERROR_RETURN:
|
1949 |
*erroroffset = ptr - (const uschar *)pattern;
|
1950 |
return NULL;
|
1951 |
}
|
1952 |
|
1953 |
/* If the anchored option was not passed, set flag if we can determine that it
|
1954 |
is anchored by virtue of ^ characters or \A or anything else. Otherwise, see if
|
1955 |
we can determine what the first character has to be, because that speeds up
|
1956 |
unanchored matches no end. In the case of multiline matches, an alternative is
|
1957 |
to set the PCRE_STARTLINE flag if all branches start with ^. */
|
1958 |
|
1959 |
if ((options & PCRE_ANCHORED) == 0)
|
1960 |
{
|
1961 |
if (is_anchored(re->code, (options & PCRE_MULTILINE) != 0))
|
1962 |
re->options |= PCRE_ANCHORED;
|
1963 |
else
|
1964 |
{
|
1965 |
int ch = find_firstchar(re->code);
|
1966 |
if (ch >= 0)
|
1967 |
{
|
1968 |
re->first_char = ch;
|
1969 |
re->options |= PCRE_FIRSTSET;
|
1970 |
}
|
1971 |
else if (is_startline(re->code))
|
1972 |
re->options |= PCRE_STARTLINE;
|
1973 |
}
|
1974 |
}
|
1975 |
|
1976 |
/* Print out the compiled data for debugging */
|
1977 |
|
1978 |
#ifdef DEBUG
|
1979 |
|
1980 |
printf("Length = %d top_bracket = %d top_backref=%d\n",
|
1981 |
length, re->top_bracket, re->top_backref);
|
1982 |
|
1983 |
if (re->options != 0)
|
1984 |
{
|
1985 |
printf("%s%s%s%s%s%s%s\n",
|
1986 |
((re->options & PCRE_ANCHORED) != 0)? "anchored " : "",
|
1987 |
((re->options & PCRE_CASELESS) != 0)? "caseless " : "",
|
1988 |
((re->options & PCRE_EXTENDED) != 0)? "extended " : "",
|
1989 |
((re->options & PCRE_MULTILINE) != 0)? "multiline " : "",
|
1990 |
((re->options & PCRE_DOTALL) != 0)? "dotall " : "",
|
1991 |
((re->options & PCRE_DOLLAR_ENDONLY) != 0)? "endonly " : "",
|
1992 |
((re->options & PCRE_EXTRA) != 0)? "extra " : "");
|
1993 |
}
|
1994 |
|
1995 |
if ((re->options & PCRE_FIRSTSET) != 0)
|
1996 |
{
|
1997 |
if (isprint(re->first_char)) printf("First char = %c\n", re->first_char);
|
1998 |
else printf("First char = \\x%02x\n", re->first_char);
|
1999 |
}
|
2000 |
|
2001 |
code_end = code;
|
2002 |
code_base = code = re->code;
|
2003 |
|
2004 |
while (code < code_end)
|
2005 |
{
|
2006 |
int charlength;
|
2007 |
|
2008 |
printf("%3d ", code - code_base);
|
2009 |
|
2010 |
if (*code >= OP_BRA)
|
2011 |
{
|
2012 |
printf("%3d Bra %d", (code[1] << 8) + code[2], *code - OP_BRA);
|
2013 |
code += 2;
|
2014 |
}
|
2015 |
|
2016 |
else switch(*code)
|
2017 |
{
|
2018 |
case OP_CHARS:
|
2019 |
charlength = *(++code);
|
2020 |
printf("%3d ", charlength);
|
2021 |
while (charlength-- > 0)
|
2022 |
if (isprint(c = *(++code))) printf("%c", c); else printf("\\x%02x", c);
|
2023 |
break;
|
2024 |
|
2025 |
case OP_KETRMAX:
|
2026 |
case OP_KETRMIN:
|
2027 |
case OP_ALT:
|
2028 |
case OP_KET:
|
2029 |
case OP_ASSERT:
|
2030 |
case OP_ASSERT_NOT:
|
2031 |
case OP_ONCE:
|
2032 |
printf("%3d %s", (code[1] << 8) + code[2], OP_names[*code]);
|
2033 |
code += 2;
|
2034 |
break;
|
2035 |
|
2036 |
case OP_STAR:
|
2037 |
case OP_MINSTAR:
|
2038 |
case OP_PLUS:
|
2039 |
case OP_MINPLUS:
|
2040 |
case OP_QUERY:
|
2041 |
case OP_MINQUERY:
|
2042 |
case OP_TYPESTAR:
|
2043 |
case OP_TYPEMINSTAR:
|
2044 |
case OP_TYPEPLUS:
|
2045 |
case OP_TYPEMINPLUS:
|
2046 |
case OP_TYPEQUERY:
|
2047 |
case OP_TYPEMINQUERY:
|
2048 |
if (*code >= OP_TYPESTAR)
|
2049 |
printf(" %s", OP_names[code[1]]);
|
2050 |
else if (isprint(c = code[1])) printf(" %c", c);
|
2051 |
else printf(" \\x%02x", c);
|
2052 |
printf("%s", OP_names[*code++]);
|
2053 |
break;
|
2054 |
|
2055 |
case OP_EXACT:
|
2056 |
case OP_UPTO:
|
2057 |
case OP_MINUPTO:
|
2058 |
if (isprint(c = code[3])) printf(" %c{", c);
|
2059 |
else printf(" \\x%02x{", c);
|
2060 |
if (*code != OP_EXACT) printf("0,");
|
2061 |
printf("%d}", (code[1] << 8) + code[2]);
|
2062 |
if (*code == OP_MINUPTO) printf("?");
|
2063 |
code += 3;
|
2064 |
break;
|
2065 |
|
2066 |
case OP_TYPEEXACT:
|
2067 |
case OP_TYPEUPTO:
|
2068 |
case OP_TYPEMINUPTO:
|
2069 |
printf(" %s{", OP_names[code[3]]);
|
2070 |
if (*code != OP_TYPEEXACT) printf(",");
|
2071 |
printf("%d}", (code[1] << 8) + code[2]);
|
2072 |
if (*code == OP_TYPEMINUPTO) printf("?");
|
2073 |
code += 3;
|
2074 |
break;
|
2075 |
|
2076 |
case OP_NOT:
|
2077 |
if (isprint(c = *(++code))) printf(" [^%c]", c);
|
2078 |
else printf(" [^\\x%02x]", c);
|
2079 |
break;
|
2080 |
|
2081 |
case OP_NOTSTAR:
|
2082 |
case OP_NOTMINSTAR:
|
2083 |
case OP_NOTPLUS:
|
2084 |
case OP_NOTMINPLUS:
|
2085 |
case OP_NOTQUERY:
|
2086 |
case OP_NOTMINQUERY:
|
2087 |
if (isprint(c = code[1])) printf(" [^%c]", c);
|
2088 |
else printf(" [^\\x%02x]", c);
|
2089 |
printf("%s", OP_names[*code++]);
|
2090 |
break;
|
2091 |
|
2092 |
case OP_NOTEXACT:
|
2093 |
case OP_NOTUPTO:
|
2094 |
case OP_NOTMINUPTO:
|
2095 |
if (isprint(c = code[3])) printf(" [^%c]{", c);
|
2096 |
else printf(" [^\\x%02x]{", c);
|
2097 |
if (*code != OP_NOTEXACT) printf(",");
|
2098 |
printf("%d}", (code[1] << 8) + code[2]);
|
2099 |
if (*code == OP_NOTMINUPTO) printf("?");
|
2100 |
code += 3;
|
2101 |
break;
|
2102 |
|
2103 |
case OP_REF:
|
2104 |
printf(" \\%d", *(++code));
|
2105 |
code ++;
|
2106 |
goto CLASS_REF_REPEAT;
|
2107 |
|
2108 |
case OP_CLASS:
|
2109 |
case OP_NEGCLASS:
|
2110 |
{
|
2111 |
int i, min, max;
|
2112 |
|
2113 |
if (*code++ == OP_CLASS) printf(" [");
|
2114 |
else printf(" ^[");
|
2115 |
|
2116 |
for (i = 0; i < 256; i++)
|
2117 |
{
|
2118 |
if ((code[i/8] & (1 << (i&7))) != 0)
|
2119 |
{
|
2120 |
int j;
|
2121 |
for (j = i+1; j < 256; j++)
|
2122 |
if ((code[j/8] & (1 << (j&7))) == 0) break;
|
2123 |
if (i == '-' || i == ']') printf("\\");
|
2124 |
if (isprint(i)) printf("%c", i); else printf("\\x%02x", i);
|
2125 |
if (--j > i)
|
2126 |
{
|
2127 |
printf("-");
|
2128 |
if (j == '-' || j == ']') printf("\\");
|
2129 |
if (isprint(j)) printf("%c", j); else printf("\\x%02x", j);
|
2130 |
}
|
2131 |
i = j;
|
2132 |
}
|
2133 |
}
|
2134 |
printf("]");
|
2135 |
code += 32;
|
2136 |
|
2137 |
CLASS_REF_REPEAT:
|
2138 |
|
2139 |
switch(*code)
|
2140 |
{
|
2141 |
case OP_CRSTAR:
|
2142 |
case OP_CRMINSTAR:
|
2143 |
case OP_CRPLUS:
|
2144 |
case OP_CRMINPLUS:
|
2145 |
case OP_CRQUERY:
|
2146 |
case OP_CRMINQUERY:
|
2147 |
printf("%s", OP_names[*code]);
|
2148 |
break;
|
2149 |
|
2150 |
case OP_CRRANGE:
|
2151 |
case OP_CRMINRANGE:
|
2152 |
min = (code[1] << 8) + code[2];
|
2153 |
max = (code[3] << 8) + code[4];
|
2154 |
if (max == 0) printf("{%d,}", min);
|
2155 |
else printf("{%d,%d}", min, max);
|
2156 |
if (*code == OP_CRMINRANGE) printf("?");
|
2157 |
code += 4;
|
2158 |
break;
|
2159 |
|
2160 |
default:
|
2161 |
code--;
|
2162 |
}
|
2163 |
}
|
2164 |
break;
|
2165 |
|
2166 |
/* Anything else is just a one-node item */
|
2167 |
|
2168 |
default:
|
2169 |
printf(" %s", OP_names[*code]);
|
2170 |
break;
|
2171 |
}
|
2172 |
|
2173 |
code++;
|
2174 |
printf("\n");
|
2175 |
}
|
2176 |
printf("------------------------------------------------------------------\n");
|
2177 |
|
2178 |
/* This check is done here in the debugging case so that the code that
|
2179 |
was compiled can be seen. */
|
2180 |
|
2181 |
if (code - re->code > length)
|
2182 |
{
|
2183 |
*errorptr = ERR23;
|
2184 |
(pcre_free)(re);
|
2185 |
*erroroffset = ptr - (uschar *)pattern;
|
2186 |
return NULL;
|
2187 |
}
|
2188 |
#endif
|
2189 |
|
2190 |
return (pcre *)re;
|
2191 |
}
|
2192 |
|
2193 |
|
2194 |
|
2195 |
/*************************************************
|
2196 |
* Match a character type *
|
2197 |
*************************************************/
|
2198 |
|
2199 |
/* Not used in all the places it might be as it's sometimes faster
|
2200 |
to put the code inline.
|
2201 |
|
2202 |
Arguments:
|
2203 |
type the character type
|
2204 |
c the character
|
2205 |
dotall the dotall flag
|
2206 |
|
2207 |
Returns: TRUE if character is of the type
|
2208 |
*/
|
2209 |
|
2210 |
static BOOL
|
2211 |
match_type(int type, int c, BOOL dotall)
|
2212 |
{
|
2213 |
|
2214 |
#ifdef DEBUG
|
2215 |
if (isprint(c)) printf("matching subject %c against ", c);
|
2216 |
else printf("matching subject \\x%02x against ", c);
|
2217 |
printf("%s\n", OP_names[type]);
|
2218 |
#endif
|
2219 |
|
2220 |
switch(type)
|
2221 |
{
|
2222 |
case OP_ANY: return dotall || c != '\n';
|
2223 |
case OP_NOT_DIGIT: return (pcre_ctypes[c] & ctype_digit) == 0;
|
2224 |
case OP_DIGIT: return (pcre_ctypes[c] & ctype_digit) != 0;
|
2225 |
case OP_NOT_WHITESPACE: return (pcre_ctypes[c] & ctype_space) == 0;
|
2226 |
case OP_WHITESPACE: return (pcre_ctypes[c] & ctype_space) != 0;
|
2227 |
case OP_NOT_WORDCHAR: return (pcre_ctypes[c] & ctype_word) == 0;
|
2228 |
case OP_WORDCHAR: return (pcre_ctypes[c] & ctype_word) != 0;
|
2229 |
}
|
2230 |
return FALSE;
|
2231 |
}
|
2232 |
|
2233 |
|
2234 |
|
2235 |
/*************************************************
|
2236 |
* Match a back-reference *
|
2237 |
*************************************************/
|
2238 |
|
2239 |
/* If a back reference hasn't been set, the match fails.
|
2240 |
|
2241 |
Arguments:
|
2242 |
number reference number
|
2243 |
eptr points into the subject
|
2244 |
length length to be matched
|
2245 |
md points to match data block
|
2246 |
|
2247 |
Returns: TRUE if matched
|
2248 |
*/
|
2249 |
|
2250 |
static BOOL
|
2251 |
match_ref(int number, register const uschar *eptr, int length, match_data *md)
|
2252 |
{
|
2253 |
const uschar *p = md->start_subject + md->offset_vector[number];
|
2254 |
|
2255 |
#ifdef DEBUG
|
2256 |
if (eptr >= md->end_subject)
|
2257 |
printf("matching subject <null>");
|
2258 |
else
|
2259 |
{
|
2260 |
printf("matching subject ");
|
2261 |
pchars(eptr, length, TRUE, md);
|
2262 |
}
|
2263 |
printf(" against backref ");
|
2264 |
pchars(p, length, FALSE, md);
|
2265 |
printf("\n");
|
2266 |
#endif
|
2267 |
|
2268 |
/* Always fail if not enough characters left */
|
2269 |
|
2270 |
if (length > md->end_subject - p) return FALSE;
|
2271 |
|
2272 |
/* Separate the caselesss case for speed */
|
2273 |
|
2274 |
if (md->caseless)
|
2275 |
{ while (length-- > 0) if (pcre_lcc[*p++] != pcre_lcc[*eptr++]) return FALSE; }
|
2276 |
else
|
2277 |
{ while (length-- > 0) if (*p++ != *eptr++) return FALSE; }
|
2278 |
|
2279 |
return TRUE;
|
2280 |
}
|
2281 |
|
2282 |
|
2283 |
|
2284 |
/*************************************************
|
2285 |
* Match from current position *
|
2286 |
*************************************************/
|
2287 |
|
2288 |
/* On entry ecode points to the first opcode, and eptr to the first character.
|
2289 |
|
2290 |
Arguments:
|
2291 |
eptr pointer in subject
|
2292 |
ecode position in code
|
2293 |
offset_top current top pointer
|
2294 |
md pointer to "static" info for the match
|
2295 |
|
2296 |
Returns: TRUE if matched
|
2297 |
*/
|
2298 |
|
2299 |
static BOOL
|
2300 |
match(register const uschar *eptr, register const uschar *ecode, int offset_top,
|
2301 |
match_data *md)
|
2302 |
{
|
2303 |
for (;;)
|
2304 |
{
|
2305 |
int min, max, ctype;
|
2306 |
register int i;
|
2307 |
register int c;
|
2308 |
BOOL minimize = FALSE;
|
2309 |
|
2310 |
/* Opening bracket. Check the alternative branches in turn, failing if none
|
2311 |
match. We have to set the start offset if required and there is space
|
2312 |
in the offset vector so that it is available for subsequent back references
|
2313 |
if the bracket matches. However, if the bracket fails, we must put back the
|
2314 |
previous value of both offsets in case they were set by a previous copy of
|
2315 |
the same bracket. Don't worry about setting the flag for the error case here;
|
2316 |
that is handled in the code for KET. */
|
2317 |
|
2318 |
if ((int)*ecode >= OP_BRA)
|
2319 |
{
|
2320 |
int number = (*ecode - OP_BRA) << 1;
|
2321 |
int save_offset1 = 0, save_offset2 = 0;
|
2322 |
|
2323 |
DPRINTF(("start bracket %d\n", number/2));
|
2324 |
|
2325 |
if (number > 0 && number < md->offset_end)
|
2326 |
{
|
2327 |
save_offset1 = md->offset_vector[number];
|
2328 |
save_offset2 = md->offset_vector[number+1];
|
2329 |
md->offset_vector[number] = eptr - md->start_subject;
|
2330 |
|
2331 |
DPRINTF(("saving %d %d\n", save_offset1, save_offset2));
|
2332 |
}
|
2333 |
|
2334 |
/* Recurse for all the alternatives. */
|
2335 |
|
2336 |
do
|
2337 |
{
|
2338 |
if (match(eptr, ecode+3, offset_top, md)) return TRUE;
|
2339 |
ecode += (ecode[1] << 8) + ecode[2];
|
2340 |
}
|
2341 |
while (*ecode == OP_ALT);
|
2342 |
|
2343 |
DPRINTF(("bracket %d failed\n", number/2));
|
2344 |
|
2345 |
if (number > 0 && number < md->offset_end)
|
2346 |
{
|
2347 |
md->offset_vector[number] = save_offset1;
|
2348 |
md->offset_vector[number+1] = save_offset2;
|
2349 |
}
|
2350 |
|
2351 |
return FALSE;
|
2352 |
}
|
2353 |
|
2354 |
/* Other types of node can be handled by a switch */
|
2355 |
|
2356 |
switch(*ecode)
|
2357 |
{
|
2358 |
case OP_END:
|
2359 |
md->end_match_ptr = eptr; /* Record where we ended */
|
2360 |
md->end_offset_top = offset_top; /* and how many extracts were taken */
|
2361 |
return TRUE;
|
2362 |
|
2363 |
/* The equivalent of Prolog's "cut" - if the rest doesn't match, the
|
2364 |
whole thing doesn't match, so we have to get out via a longjmp(). */
|
2365 |
|
2366 |
case OP_CUT:
|
2367 |
if (match(eptr, ecode+1, offset_top, md)) return TRUE;
|
2368 |
longjmp(md->fail_env, 1);
|
2369 |
|
2370 |
/* Assertion brackets. Check the alternative branches in turn - the
|
2371 |
matching won't pass the KET for an assertion. If any one branch matches,
|
2372 |
the assertion is true. */
|
2373 |
|
2374 |
case OP_ASSERT:
|
2375 |
do
|
2376 |
{
|
2377 |
if (match(eptr, ecode+3, offset_top, md)) break;
|
2378 |
ecode += (ecode[1] << 8) + ecode[2];
|
2379 |
}
|
2380 |
while (*ecode == OP_ALT);
|
2381 |
if (*ecode == OP_KET) return FALSE;
|
2382 |
|
2383 |
/* Continue from after the assertion, updating the offsets high water
|
2384 |
mark, since extracts may have been taken during the assertion. */
|
2385 |
|
2386 |
do ecode += (ecode[1] << 8) + ecode[2]; while (*ecode == OP_ALT);
|
2387 |
ecode += 3;
|
2388 |
offset_top = md->end_offset_top;
|
2389 |
continue;
|
2390 |
|
2391 |
/* Negative assertion: all branches must fail to match */
|
2392 |
|
2393 |
case OP_ASSERT_NOT:
|
2394 |
do
|
2395 |
{
|
2396 |
if (match(eptr, ecode+3, offset_top, md)) return FALSE;
|
2397 |
ecode += (ecode[1] << 8) + ecode[2];
|
2398 |
}
|
2399 |
while (*ecode == OP_ALT);
|
2400 |
ecode += 3;
|
2401 |
continue;
|
2402 |
|
2403 |
/* "Once" brackets are like assertion brackets except that after a match,
|
2404 |
the point in the subject string is not moved back. Thus there can never be
|
2405 |
a move back into the brackets. Check the alternative branches in turn - the
|
2406 |
matching won't pass the KET for this kind of subpattern. If any one branch
|
2407 |
matches, we carry on, leaving the subject pointer. */
|
2408 |
|
2409 |
case OP_ONCE:
|
2410 |
do
|
2411 |
{
|
2412 |
if (match(eptr, ecode+3, offset_top, md)) break;
|
2413 |
ecode += (ecode[1] << 8) + ecode[2];
|
2414 |
}
|
2415 |
while (*ecode == OP_ALT);
|
2416 |
if (*ecode == OP_KET) return FALSE;
|
2417 |
|
2418 |
/* Continue as from after the assertion, updating the offsets high water
|
2419 |
mark, since extracts may have been taken. */
|
2420 |
|
2421 |
do ecode += (ecode[1] << 8) + ecode[2]; while (*ecode == OP_ALT);
|
2422 |
ecode += 3;
|
2423 |
offset_top = md->end_offset_top;
|
2424 |
eptr = md->end_match_ptr;
|
2425 |
continue;
|
2426 |
|
2427 |
/* An alternation is the end of a branch; scan along to find the end of the
|
2428 |
bracketed group and go to there. */
|
2429 |
|
2430 |
case OP_ALT:
|
2431 |
do ecode += (ecode[1] << 8) + ecode[2]; while (*ecode == OP_ALT);
|
2432 |
break;
|
2433 |
|
2434 |
/* BRAZERO and BRAMINZERO occur just before a bracket group, indicating
|
2435 |
that it may occur zero times. It may repeat infinitely, or not at all -
|
2436 |
i.e. it could be ()* or ()? in the pattern. Brackets with fixed upper
|
2437 |
repeat limits are compiled as a number of copies, with the optional ones
|
2438 |
preceded by BRAZERO or BRAMINZERO. */
|
2439 |
|
2440 |
case OP_BRAZERO:
|
2441 |
{
|
2442 |
const uschar *next = ecode+1;
|
2443 |
if (match(eptr, next, offset_top, md)) return TRUE;
|
2444 |
do next += (next[1] << 8) + next[2]; while (*next == OP_ALT);
|
2445 |
ecode = next + 3;
|
2446 |
}
|
2447 |
break;
|
2448 |
|
2449 |
case OP_BRAMINZERO:
|
2450 |
{
|
2451 |
const uschar *next = ecode+1;
|
2452 |
do next += (next[1] << 8) + next[2]; while (*next == OP_ALT);
|
2453 |
if (match(eptr, next+3, offset_top, md)) return TRUE;
|
2454 |
ecode++;
|
2455 |
}
|
2456 |
break;;
|
2457 |
|
2458 |
/* End of a group, repeated or non-repeating. If we are at the end of
|
2459 |
an assertion "group", stop matching and return TRUE, but record the
|
2460 |
current high water mark for use by positive assertions. */
|
2461 |
|
2462 |
case OP_KET:
|
2463 |
case OP_KETRMIN:
|
2464 |
case OP_KETRMAX:
|
2465 |
{
|
2466 |
int number;
|
2467 |
const uschar *prev = ecode - (ecode[1] << 8) - ecode[2];
|
2468 |
|
2469 |
if (*prev == OP_ASSERT || *prev == OP_ASSERT_NOT || *prev == OP_ONCE)
|
2470 |
{
|
2471 |
md->end_match_ptr = eptr; /* For ONCE */
|
2472 |
md->end_offset_top = offset_top;
|
2473 |
return TRUE;
|
2474 |
}
|
2475 |
|
2476 |
/* In all other cases we have to check the group number back at the
|
2477 |
start and if necessary complete handling an extraction by setting the
|
2478 |
final offset and bumping the high water mark. */
|
2479 |
|
2480 |
number = (*prev - OP_BRA) << 1;
|
2481 |
|
2482 |
DPRINTF(("end bracket %d\n", number/2));
|
2483 |
|
2484 |
if (number > 0)
|
2485 |
{
|
2486 |
if (number >= md->offset_end) md->offset_overflow = TRUE; else
|
2487 |
{
|
2488 |
md->offset_vector[number+1] = eptr - md->start_subject;
|
2489 |
if (offset_top <= number) offset_top = number + 2;
|
2490 |
}
|
2491 |
}
|
2492 |
|
2493 |
/* For a non-repeating ket, just advance to the next node and continue at
|
2494 |
this level. */
|
2495 |
|
2496 |
if (*ecode == OP_KET)
|
2497 |
{
|
2498 |
ecode += 3;
|
2499 |
break;
|
2500 |
}
|
2501 |
|
2502 |
/* The repeating kets try the rest of the pattern or restart from the
|
2503 |
preceding bracket, in the appropriate order. */
|
2504 |
|
2505 |
if (*ecode == OP_KETRMIN)
|
2506 |
{
|
2507 |
if (match(eptr, ecode+3, offset_top, md) ||
|
2508 |
match(eptr, prev, offset_top, md)) return TRUE;
|
2509 |
}
|
2510 |
else /* OP_KETRMAX */
|
2511 |
{
|
2512 |
if (match(eptr, prev, offset_top, md) ||
|
2513 |
match(eptr, ecode+3, offset_top, md)) return TRUE;
|
2514 |
}
|
2515 |
}
|
2516 |
return FALSE;
|
2517 |
|
2518 |
/* Start of subject unless notbol, or after internal newline if multiline */
|
2519 |
|
2520 |
case OP_CIRC:
|
2521 |
if (md->notbol && eptr == md->start_subject) return FALSE;
|
2522 |
if (md->multiline)
|
2523 |
{
|
2524 |
if (eptr != md->start_subject && eptr[-1] != '\n') return FALSE;
|
2525 |
ecode++;
|
2526 |
break;
|
2527 |
}
|
2528 |
/* ... else fall through */
|
2529 |
|
2530 |
/* Start of subject assertion */
|
2531 |
|
2532 |
case OP_SOD:
|
2533 |
if (eptr != md->start_subject) return FALSE;
|
2534 |
ecode++;
|
2535 |
break;
|
2536 |
|
2537 |
/* Assert before internal newline if multiline, or before
|
2538 |
a terminating newline unless endonly is set, else end of subject unless
|
2539 |
noteol is set. */
|
2540 |
|
2541 |
case OP_DOLL:
|
2542 |
if (md->noteol && eptr >= md->end_subject) return FALSE;
|
2543 |
if (md->multiline)
|
2544 |
{
|
2545 |
if (eptr < md->end_subject && *eptr != '\n') return FALSE;
|
2546 |
ecode++;
|
2547 |
break;
|
2548 |
}
|
2549 |
else if (!md->endonly)
|
2550 |
{
|
2551 |
if (eptr < md->end_subject - 1 ||
|
2552 |
(eptr == md->end_subject - 1 && *eptr != '\n')) return FALSE;
|
2553 |
ecode++;
|
2554 |
break;
|
2555 |
}
|
2556 |
/* ... else fall through */
|
2557 |
|
2558 |
/* End of subject assertion */
|
2559 |
|
2560 |
case OP_EOD:
|
2561 |
if (eptr < md->end_subject) return FALSE;
|
2562 |
ecode++;
|
2563 |
break;
|
2564 |
|
2565 |
/* Word boundary assertions */
|
2566 |
|
2567 |
case OP_NOT_WORD_BOUNDARY:
|
2568 |
case OP_WORD_BOUNDARY:
|
2569 |
{
|
2570 |
BOOL prev_is_word = (eptr != md->start_subject) &&
|
2571 |
((pcre_ctypes[eptr[-1]] & ctype_word) != 0);
|
2572 |
BOOL cur_is_word = (eptr < md->end_subject) &&
|
2573 |
((pcre_ctypes[*eptr] & ctype_word) != 0);
|
2574 |
if ((*ecode++ == OP_WORD_BOUNDARY)?
|
2575 |
cur_is_word == prev_is_word : cur_is_word != prev_is_word)
|
2576 |
return FALSE;
|
2577 |
}
|
2578 |
break;
|
2579 |
|
2580 |
/* Match a single character type; inline for speed */
|
2581 |
|
2582 |
case OP_ANY:
|
2583 |
if (!md->dotall && eptr < md->end_subject && *eptr == '\n') return FALSE;
|
2584 |
if (eptr++ >= md->end_subject) return FALSE;
|
2585 |
ecode++;
|
2586 |
break;
|
2587 |
|
2588 |
case OP_NOT_DIGIT:
|
2589 |
if (eptr >= md->end_subject || (pcre_ctypes[*eptr++] & ctype_digit) != 0)
|
2590 |
return FALSE;
|
2591 |
ecode++;
|
2592 |
break;
|
2593 |
|
2594 |
case OP_DIGIT:
|
2595 |
if (eptr >= md->end_subject || (pcre_ctypes[*eptr++] & ctype_digit) == 0)
|
2596 |
return FALSE;
|
2597 |
ecode++;
|
2598 |
break;
|
2599 |
|
2600 |
case OP_NOT_WHITESPACE:
|
2601 |
if (eptr >= md->end_subject || (pcre_ctypes[*eptr++] & ctype_space) != 0)
|
2602 |
return FALSE;
|
2603 |
ecode++;
|
2604 |
break;
|
2605 |
|
2606 |
case OP_WHITESPACE:
|
2607 |
if (eptr >= md->end_subject || (pcre_ctypes[*eptr++] & ctype_space) == 0)
|
2608 |
return FALSE;
|
2609 |
ecode++;
|
2610 |
break;
|
2611 |
|
2612 |
case OP_NOT_WORDCHAR:
|
2613 |
if (eptr >= md->end_subject || (pcre_ctypes[*eptr++] & ctype_word) != 0)
|
2614 |
return FALSE;
|
2615 |
ecode++;
|
2616 |
break;
|
2617 |
|
2618 |
case OP_WORDCHAR:
|
2619 |
if (eptr >= md->end_subject || (pcre_ctypes[*eptr++] & ctype_word) == 0)
|
2620 |
return FALSE;
|
2621 |
ecode++;
|
2622 |
break;
|
2623 |
|
2624 |
/* Match a back reference, possibly repeatedly. Look past the end of the
|
2625 |
item to see if there is repeat information following. The code is similar
|
2626 |
to that for character classes, but repeated for efficiency. Then obey
|
2627 |
similar code to character type repeats - written out again for speed.
|
2628 |
However, if the referenced string is the empty string, always treat
|
2629 |
it as matched, any number of times (otherwise there could be infinite
|
2630 |
loops). */
|
2631 |
|
2632 |
case OP_REF:
|
2633 |
{
|
2634 |
int length;
|
2635 |
int number = ecode[1] << 1; /* Doubled reference number */
|
2636 |
ecode += 2; /* Advance past the item */
|
2637 |
|
2638 |
if (number >= offset_top || md->offset_vector[number] < 0)
|
2639 |
{
|
2640 |
md->errorcode = PCRE_ERROR_BADREF;
|
2641 |
return FALSE;
|
2642 |
}
|
2643 |
|
2644 |
length = md->offset_vector[number+1] - md->offset_vector[number];
|
2645 |
|
2646 |
switch (*ecode)
|
2647 |
{
|
2648 |
case OP_CRSTAR:
|
2649 |
case OP_CRMINSTAR:
|
2650 |
case OP_CRPLUS:
|
2651 |
case OP_CRMINPLUS:
|
2652 |
case OP_CRQUERY:
|
2653 |
case OP_CRMINQUERY:
|
2654 |
c = *ecode++ - OP_CRSTAR;
|
2655 |
minimize = (c & 1) != 0;
|
2656 |
min = rep_min[c]; /* Pick up values from tables; */
|
2657 |
max = rep_max[c]; /* zero for max => infinity */
|
2658 |
if (max == 0) max = INT_MAX;
|
2659 |
break;
|
2660 |
|
2661 |
case OP_CRRANGE:
|
2662 |
case OP_CRMINRANGE:
|
2663 |
minimize = (*ecode == OP_CRMINRANGE);
|
2664 |
min = (ecode[1] << 8) + ecode[2];
|
2665 |
max = (ecode[3] << 8) + ecode[4];
|
2666 |
if (max == 0) max = INT_MAX;
|
2667 |
ecode += 5;
|
2668 |
break;
|
2669 |
|
2670 |
default: /* No repeat follows */
|
2671 |
if (!match_ref(number, eptr, length, md)) return FALSE;
|
2672 |
eptr += length;
|
2673 |
continue; /* With the main loop */
|
2674 |
}
|
2675 |
|
2676 |
/* If the length of the reference is zero, just continue with the
|
2677 |
main loop. */
|
2678 |
|
2679 |
if (length == 0) continue;
|
2680 |
|
2681 |
/* First, ensure the minimum number of matches are present. We get back
|
2682 |
the length of the reference string explicitly rather than passing the
|
2683 |
address of eptr, so that eptr can be a register variable. */
|
2684 |
|
2685 |
for (i = 1; i <= min; i++)
|
2686 |
{
|
2687 |
if (!match_ref(number, eptr, length, md)) return FALSE;
|
2688 |
eptr += length;
|
2689 |
}
|
2690 |
|
2691 |
/* If min = max, continue at the same level without recursion.
|
2692 |
They are not both allowed to be zero. */
|
2693 |
|
2694 |
if (min == max) continue;
|
2695 |
|
2696 |
/* If minimizing, keep trying and advancing the pointer */
|
2697 |
|
2698 |
if (minimize)
|
2699 |
{
|
2700 |
for (i = min;; i++)
|
2701 |
{
|
2702 |
if (match(eptr, ecode, offset_top, md)) return TRUE;
|
2703 |
if (i >= max || !match_ref(number, eptr, length, md))
|
2704 |
return FALSE;
|
2705 |
eptr += length;
|
2706 |
}
|
2707 |
/* Control never gets here */
|
2708 |
}
|
2709 |
|
2710 |
/* If maximizing, find the longest string and work backwards */
|
2711 |
|
2712 |
else
|
2713 |
{
|
2714 |
const uschar *pp = eptr;
|
2715 |
for (i = min; i < max; i++)
|
2716 |
{
|
2717 |
if (!match_ref(number, eptr, length, md)) break;
|
2718 |
eptr += length;
|
2719 |
}
|
2720 |
while (eptr >= pp)
|
2721 |
{
|
2722 |
if (match(eptr, ecode, offset_top, md)) return TRUE;
|
2723 |
eptr -= length;
|
2724 |
}
|
2725 |
return FALSE;
|
2726 |
}
|
2727 |
}
|
2728 |
/* Control never gets here */
|
2729 |
|
2730 |
/* Match a character class, possibly repeatedly. Look past the end of the
|
2731 |
item to see if there is repeat information following. Then obey similar
|
2732 |
code to character type repeats - written out again for speed. If caseless
|
2733 |
matching was set at runtime but not at compile time, we have to check both
|
2734 |
versions of a character, and we have to behave differently for positive and
|
2735 |
negative classes. This is the only time where OP_CLASS and OP_NEGCLASS are
|
2736 |
treated differently. */
|
2737 |
|
2738 |
case OP_CLASS:
|
2739 |
case OP_NEGCLASS:
|
2740 |
{
|
2741 |
BOOL nasty_case = *ecode == OP_NEGCLASS && md->runtime_caseless;
|
2742 |
const uschar *data = ecode + 1; /* Save for matching */
|
2743 |
ecode += 33; /* Advance past the item */
|
2744 |
|
2745 |
switch (*ecode)
|
2746 |
{
|
2747 |
case OP_CRSTAR:
|
2748 |
case OP_CRMINSTAR:
|
2749 |
case OP_CRPLUS:
|
2750 |
case OP_CRMINPLUS:
|
2751 |
case OP_CRQUERY:
|
2752 |
case OP_CRMINQUERY:
|
2753 |
c = *ecode++ - OP_CRSTAR;
|
2754 |
minimize = (c & 1) != 0;
|
2755 |
min = rep_min[c]; /* Pick up values from tables; */
|
2756 |
max = rep_max[c]; /* zero for max => infinity */
|
2757 |
if (max == 0) max = INT_MAX;
|
2758 |
break;
|
2759 |
|
2760 |
case OP_CRRANGE:
|
2761 |
case OP_CRMINRANGE:
|
2762 |
minimize = (*ecode == OP_CRMINRANGE);
|
2763 |
min = (ecode[1] << 8) + ecode[2];
|
2764 |
max = (ecode[3] << 8) + ecode[4];
|
2765 |
if (max == 0) max = INT_MAX;
|
2766 |
ecode += 5;
|
2767 |
break;
|
2768 |
|
2769 |
default: /* No repeat follows */
|
2770 |
min = max = 1;
|
2771 |
break;
|
2772 |
}
|
2773 |
|
2774 |
/* First, ensure the minimum number of matches are present. */
|
2775 |
|
2776 |
for (i = 1; i <= min; i++)
|
2777 |
{
|
2778 |
if (eptr >= md->end_subject) return FALSE;
|
2779 |
c = *eptr++;
|
2780 |
|
2781 |
/* Either not runtime caseless, or it was a positive class. For
|
2782 |
runtime caseless, continue if either case is in the map. */
|
2783 |
|
2784 |
if (!nasty_case)
|
2785 |
{
|
2786 |
if ((data[c/8] & (1 << (c&7))) != 0) continue;
|
2787 |
if (md->runtime_caseless)
|
2788 |
{
|
2789 |
c = pcre_fcc[c];
|
2790 |
if ((data[c/8] & (1 << (c&7))) != 0) continue;
|
2791 |
}
|
2792 |
}
|
2793 |
|
2794 |
/* Runtime caseless and it was a negative class. Continue only if
|
2795 |
both cases are in the map. */
|
2796 |
|
2797 |
else
|
2798 |
{
|
2799 |
if ((data[c/8] & (1 << (c&7))) == 0) return FALSE;
|
2800 |
c = pcre_fcc[c];
|
2801 |
if ((data[c/8] & (1 << (c&7))) != 0) continue;
|
2802 |
}
|
2803 |
|
2804 |
return FALSE;
|
2805 |
}
|
2806 |
|
2807 |
/* If max == min we can continue with the main loop without the
|
2808 |
need to recurse. */
|
2809 |
|
2810 |
if (min == max) continue;
|
2811 |
|
2812 |
/* If minimizing, keep testing the rest of the expression and advancing
|
2813 |
the pointer while it matches the class. */
|
2814 |
|
2815 |
if (minimize)
|
2816 |
{
|
2817 |
for (i = min;; i++)
|
2818 |
{
|
2819 |
if (match(eptr, ecode, offset_top, md)) return TRUE;
|
2820 |
if (i >= max || eptr >= md->end_subject) return FALSE;
|
2821 |
c = *eptr++;
|
2822 |
|
2823 |
/* Either not runtime caseless, or it was a positive class. For
|
2824 |
runtime caseless, continue if either case is in the map. */
|
2825 |
|
2826 |
if (!nasty_case)
|
2827 |
{
|
2828 |
if ((data[c/8] & (1 << (c&7))) != 0) continue;
|
2829 |
if (md->runtime_caseless)
|
2830 |
{
|
2831 |
c = pcre_fcc[c];
|
2832 |
if ((data[c/8] & (1 << (c&7))) != 0) continue;
|
2833 |
}
|
2834 |
}
|
2835 |
|
2836 |
/* Runtime caseless and it was a negative class. Continue only if
|
2837 |
both cases are in the map. */
|
2838 |
|
2839 |
else
|
2840 |
{
|
2841 |
if ((data[c/8] & (1 << (c&7))) == 0) return FALSE;
|
2842 |
c = pcre_fcc[c];
|
2843 |
if ((data[c/8] & (1 << (c&7))) != 0) continue;
|
2844 |
}
|
2845 |
|
2846 |
return FALSE;
|
2847 |
}
|
2848 |
/* Control never gets here */
|
2849 |
}
|
2850 |
|
2851 |
/* If maximizing, find the longest possible run, then work backwards. */
|
2852 |
|
2853 |
else
|
2854 |
{
|
2855 |
const uschar *pp = eptr;
|
2856 |
for (i = min; i < max; eptr++, i++)
|
2857 |
{
|
2858 |
if (eptr >= md->end_subject) break;
|
2859 |
c = *eptr;
|
2860 |
|
2861 |
/* Either not runtime caseless, or it was a positive class. For
|
2862 |
runtime caseless, continue if either case is in the map. */
|
2863 |
|
2864 |
if (!nasty_case)
|
2865 |
{
|
2866 |
if ((data[c/8] & (1 << (c&7))) != 0) continue;
|
2867 |
if (md->runtime_caseless)
|
2868 |
{
|
2869 |
c = pcre_fcc[c];
|
2870 |
if ((data[c/8] & (1 << (c&7))) != 0) continue;
|
2871 |
}
|
2872 |
}
|
2873 |
|
2874 |
/* Runtime caseless and it was a negative class. Continue only if
|
2875 |
both cases are in the map. */
|
2876 |
|
2877 |
else
|
2878 |
{
|
2879 |
if ((data[c/8] & (1 << (c&7))) == 0) break;
|
2880 |
c = pcre_fcc[c];
|
2881 |
if ((data[c/8] & (1 << (c&7))) != 0) continue;
|
2882 |
}
|
2883 |
|
2884 |
break;
|
2885 |
}
|
2886 |
|
2887 |
while (eptr >= pp)
|
2888 |
if (match(eptr--, ecode, offset_top, md)) return TRUE;
|
2889 |
return FALSE;
|
2890 |
}
|
2891 |
}
|
2892 |
/* Control never gets here */
|
2893 |
|
2894 |
/* Match a run of characters */
|
2895 |
|
2896 |
case OP_CHARS:
|
2897 |
{
|
2898 |
register int length = ecode[1];
|
2899 |
ecode += 2;
|
2900 |
|
2901 |
#ifdef DEBUG /* Sigh. Some compilers never learn. */
|
2902 |
if (eptr >= md->end_subject)
|
2903 |
printf("matching subject <null> against pattern ");
|
2904 |
else
|
2905 |
{
|
2906 |
printf("matching subject ");
|
2907 |
pchars(eptr, length, TRUE, md);
|
2908 |
printf(" against pattern ");
|
2909 |
}
|
2910 |
pchars(ecode, length, FALSE, md);
|
2911 |
printf("\n");
|
2912 |
#endif
|
2913 |
|
2914 |
if (length > md->end_subject - eptr) return FALSE;
|
2915 |
if (md->caseless)
|
2916 |
{
|
2917 |
while (length-- > 0) if (pcre_lcc[*ecode++] != pcre_lcc[*eptr++]) return FALSE;
|
2918 |
}
|
2919 |
else
|
2920 |
{
|
2921 |
while (length-- > 0) if (*ecode++ != *eptr++) return FALSE;
|
2922 |
}
|
2923 |
}
|
2924 |
break;
|
2925 |
|
2926 |
/* Match a single character repeatedly; different opcodes share code. */
|
2927 |
|
2928 |
case OP_EXACT:
|
2929 |
min = max = (ecode[1] << 8) + ecode[2];
|
2930 |
ecode += 3;
|
2931 |
goto REPEATCHAR;
|
2932 |
|
2933 |
case OP_UPTO:
|
2934 |
case OP_MINUPTO:
|
2935 |
min = 0;
|
2936 |
max = (ecode[1] << 8) + ecode[2];
|
2937 |
minimize = *ecode == OP_MINUPTO;
|
2938 |
ecode += 3;
|
2939 |
goto REPEATCHAR;
|
2940 |
|
2941 |
case OP_STAR:
|
2942 |
case OP_MINSTAR:
|
2943 |
case OP_PLUS:
|
2944 |
case OP_MINPLUS:
|
2945 |
case OP_QUERY:
|
2946 |
case OP_MINQUERY:
|
2947 |
c = *ecode++ - OP_STAR;
|
2948 |
minimize = (c & 1) != 0;
|
2949 |
min = rep_min[c]; /* Pick up values from tables; */
|
2950 |
max = rep_max[c]; /* zero for max => infinity */
|
2951 |
if (max == 0) max = INT_MAX;
|
2952 |
|
2953 |
/* Common code for all repeated single-character matches. We can give
|
2954 |
up quickly if there are fewer than the minimum number of characters left in
|
2955 |
the subject. */
|
2956 |
|
2957 |
REPEATCHAR:
|
2958 |
if (min > md->end_subject - eptr) return FALSE;
|
2959 |
c = *ecode++;
|
2960 |
|
2961 |
/* The code is duplicated for the caseless and caseful cases, for speed,
|
2962 |
since matching characters is likely to be quite common. First, ensure the
|
2963 |
minimum number of matches are present. If min = max, continue at the same
|
2964 |
level without recursing. Otherwise, if minimizing, keep trying the rest of
|
2965 |
the expression and advancing one matching character if failing, up to the
|
2966 |
maximum. Alternatively, if maximizing, find the maximum number of
|
2967 |
characters and work backwards. */
|
2968 |
|
2969 |
DPRINTF(("matching %c{%d,%d} against subject %.*s\n", c, min, max,
|
2970 |
max, eptr));
|
2971 |
|
2972 |
if (md->caseless)
|
2973 |
{
|
2974 |
c = pcre_lcc[c];
|
2975 |
for (i = 1; i <= min; i++) if (c != pcre_lcc[*eptr++]) return FALSE;
|
2976 |
if (min == max) continue;
|
2977 |
if (minimize)
|
2978 |
{
|
2979 |
for (i = min;; i++)
|
2980 |
{
|
2981 |
if (match(eptr, ecode, offset_top, md)) return TRUE;
|
2982 |
if (i >= max || eptr >= md->end_subject || c != pcre_lcc[*eptr++])
|
2983 |
return FALSE;
|
2984 |
}
|
2985 |
/* Control never gets here */
|
2986 |
}
|
2987 |
else
|
2988 |
{
|
2989 |
const uschar *pp = eptr;
|
2990 |
for (i = min; i < max; i++)
|
2991 |
{
|
2992 |
if (eptr >= md->end_subject || c != pcre_lcc[*eptr]) break;
|
2993 |
eptr++;
|
2994 |
}
|
2995 |
while (eptr >= pp)
|
2996 |
if (match(eptr--, ecode, offset_top, md)) return TRUE;
|
2997 |
return FALSE;
|
2998 |
}
|
2999 |
/* Control never gets here */
|
3000 |
}
|
3001 |
|
3002 |
/* Caseful comparisons */
|
3003 |
|
3004 |
else
|
3005 |
{
|
3006 |
for (i = 1; i <= min; i++) if (c != *eptr++) return FALSE;
|
3007 |
if (min == max) continue;
|
3008 |
if (minimize)
|
3009 |
{
|
3010 |
for (i = min;; i++)
|
3011 |
{
|
3012 |
if (match(eptr, ecode, offset_top, md)) return TRUE;
|
3013 |
if (i >= max || eptr >= md->end_subject || c != *eptr++) return FALSE;
|
3014 |
}
|
3015 |
/* Control never gets here */
|
3016 |
}
|
3017 |
else
|
3018 |
{
|
3019 |
const uschar *pp = eptr;
|
3020 |
for (i = min; i < max; i++)
|
3021 |
{
|
3022 |
if (eptr >= md->end_subject || c != *eptr) break;
|
3023 |
eptr++;
|
3024 |
}
|
3025 |
while (eptr >= pp)
|
3026 |
if (match(eptr--, ecode, offset_top, md)) return TRUE;
|
3027 |
return FALSE;
|
3028 |
}
|
3029 |
}
|
3030 |
/* Control never gets here */
|
3031 |
|
3032 |
/* Match a negated single character */
|
3033 |
|
3034 |
case OP_NOT:
|
3035 |
if (eptr >= md->end_subject) return FALSE;
|
3036 |
ecode++;
|
3037 |
if (md->caseless)
|
3038 |
{
|
3039 |
if (pcre_lcc[*ecode++] == pcre_lcc[*eptr++]) return FALSE;
|
3040 |
}
|
3041 |
else
|
3042 |
{
|
3043 |
if (*ecode++ == *eptr++) return FALSE;
|
3044 |
}
|
3045 |
break;
|
3046 |
|
3047 |
/* Match a negated single character repeatedly. This is almost a repeat of
|
3048 |
the code for a repeated single character, but I haven't found a nice way of
|
3049 |
commoning these up that doesn't require a test of the positive/negative
|
3050 |
option for each character match. Maybe that wouldn't add very much to the
|
3051 |
time taken, but character matching *is* what this is all about... */
|
3052 |
|
3053 |
case OP_NOTEXACT:
|
3054 |
min = max = (ecode[1] << 8) + ecode[2];
|
3055 |
ecode += 3;
|
3056 |
goto REPEATNOTCHAR;
|
3057 |
|
3058 |
case OP_NOTUPTO:
|
3059 |
case OP_NOTMINUPTO:
|
3060 |
min = 0;
|
3061 |
max = (ecode[1] << 8) + ecode[2];
|
3062 |
minimize = *ecode == OP_NOTMINUPTO;
|
3063 |
ecode += 3;
|
3064 |
goto REPEATNOTCHAR;
|
3065 |
|
3066 |
case OP_NOTSTAR:
|
3067 |
case OP_NOTMINSTAR:
|
3068 |
case OP_NOTPLUS:
|
3069 |
case OP_NOTMINPLUS:
|
3070 |
case OP_NOTQUERY:
|
3071 |
case OP_NOTMINQUERY:
|
3072 |
c = *ecode++ - OP_NOTSTAR;
|
3073 |
minimize = (c & 1) != 0;
|
3074 |
min = rep_min[c]; /* Pick up values from tables; */
|
3075 |
max = rep_max[c]; /* zero for max => infinity */
|
3076 |
if (max == 0) max = INT_MAX;
|
3077 |
|
3078 |
/* Common code for all repeated single-character matches. We can give
|
3079 |
up quickly if there are fewer than the minimum number of characters left in
|
3080 |
the subject. */
|
3081 |
|
3082 |
REPEATNOTCHAR:
|
3083 |
if (min > md->end_subject - eptr) return FALSE;
|
3084 |
c = *ecode++;
|
3085 |
|
3086 |
/* The code is duplicated for the caseless and caseful cases, for speed,
|
3087 |
since matching characters is likely to be quite common. First, ensure the
|
3088 |
minimum number of matches are present. If min = max, continue at the same
|
3089 |
level without recursing. Otherwise, if minimizing, keep trying the rest of
|
3090 |
the expression and advancing one matching character if failing, up to the
|
3091 |
maximum. Alternatively, if maximizing, find the maximum number of
|
3092 |
characters and work backwards. */
|
3093 |
|
3094 |
DPRINTF(("negative matching %c{%d,%d} against subject %.*s\n", c, min, max,
|
3095 |
max, eptr));
|
3096 |
|
3097 |
if (md->caseless)
|
3098 |
{
|
3099 |
c = pcre_lcc[c];
|
3100 |
for (i = 1; i <= min; i++) if (c == pcre_lcc[*eptr++]) return FALSE;
|
3101 |
if (min == max) continue;
|
3102 |
if (minimize)
|
3103 |
{
|
3104 |
for (i = min;; i++)
|
3105 |
{
|
3106 |
if (match(eptr, ecode, offset_top, md)) return TRUE;
|
3107 |
if (i >= max || eptr >= md->end_subject || c == pcre_lcc[*eptr++])
|
3108 |
return FALSE;
|
3109 |
}
|
3110 |
/* Control never gets here */
|
3111 |
}
|
3112 |
else
|
3113 |
{
|
3114 |
const uschar *pp = eptr;
|
3115 |
for (i = min; i < max; i++)
|
3116 |
{
|
3117 |
if (eptr >= md->end_subject || c == pcre_lcc[*eptr]) break;
|
3118 |
eptr++;
|
3119 |
}
|
3120 |
while (eptr >= pp)
|
3121 |
if (match(eptr--, ecode, offset_top, md)) return TRUE;
|
3122 |
return FALSE;
|
3123 |
}
|
3124 |
/* Control never gets here */
|
3125 |
}
|
3126 |
|
3127 |
/* Caseful comparisons */
|
3128 |
|
3129 |
else
|
3130 |
{
|
3131 |
for (i = 1; i <= min; i++) if (c == *eptr++) return FALSE;
|
3132 |
if (min == max) continue;
|
3133 |
if (minimize)
|
3134 |
{
|
3135 |
for (i = min;; i++)
|
3136 |
{
|
3137 |
if (match(eptr, ecode, offset_top, md)) return TRUE;
|
3138 |
if (i >= max || eptr >= md->end_subject || c == *eptr++) return FALSE;
|
3139 |
}
|
3140 |
/* Control never gets here */
|
3141 |
}
|
3142 |
else
|
3143 |
{
|
3144 |
const uschar *pp = eptr;
|
3145 |
for (i = min; i < max; i++)
|
3146 |
{
|
3147 |
if (eptr >= md->end_subject || c == *eptr) break;
|
3148 |
eptr++;
|
3149 |
}
|
3150 |
while (eptr >= pp)
|
3151 |
if (match(eptr--, ecode, offset_top, md)) return TRUE;
|
3152 |
return FALSE;
|
3153 |
}
|
3154 |
}
|
3155 |
/* Control never gets here */
|
3156 |
|
3157 |
/* Match a single character type repeatedly; several different opcodes
|
3158 |
share code. This is very similar to the code for single characters, but we
|
3159 |
repeat it in the interests of efficiency. */
|
3160 |
|
3161 |
case OP_TYPEEXACT:
|
3162 |
min = max = (ecode[1] << 8) + ecode[2];
|
3163 |
minimize = TRUE;
|
3164 |
ecode += 3;
|
3165 |
goto REPEATTYPE;
|
3166 |
|
3167 |
case OP_TYPEUPTO:
|
3168 |
case OP_TYPEMINUPTO:
|
3169 |
min = 0;
|
3170 |
max = (ecode[1] << 8) + ecode[2];
|
3171 |
minimize = *ecode == OP_TYPEMINUPTO;
|
3172 |
ecode += 3;
|
3173 |
goto REPEATTYPE;
|
3174 |
|
3175 |
case OP_TYPESTAR:
|
3176 |
case OP_TYPEMINSTAR:
|
3177 |
case OP_TYPEPLUS:
|
3178 |
case OP_TYPEMINPLUS:
|
3179 |
case OP_TYPEQUERY:
|
3180 |
case OP_TYPEMINQUERY:
|
3181 |
c = *ecode++ - OP_TYPESTAR;
|
3182 |
minimize = (c & 1) != 0;
|
3183 |
min = rep_min[c]; /* Pick up values from tables; */
|
3184 |
max = rep_max[c]; /* zero for max => infinity */
|
3185 |
if (max == 0) max = INT_MAX;
|
3186 |
|
3187 |
/* Common code for all repeated single character type matches */
|
3188 |
|
3189 |
REPEATTYPE:
|
3190 |
ctype = *ecode++; /* Code for the character type */
|
3191 |
|
3192 |
/* First, ensure the minimum number of matches are present. Use inline
|
3193 |
code for maximizing the speed, and do the type test once at the start
|
3194 |
(i.e. keep it out of the loop). Also test that there are at least the
|
3195 |
minimum number of characters before we start. */
|
3196 |
|
3197 |
if (min > md->end_subject - eptr) return FALSE;
|
3198 |
if (min > 0) switch(ctype)
|
3199 |
{
|
3200 |
case OP_ANY:
|
3201 |
if (!md->dotall)
|
3202 |
{ for (i = 1; i <= min; i++) if (*eptr++ == '\n') return FALSE; }
|
3203 |
else eptr += min;
|
3204 |
break;
|
3205 |
|
3206 |
case OP_NOT_DIGIT:
|
3207 |
for (i = 1; i <= min; i++)
|
3208 |
if ((pcre_ctypes[*eptr++] & ctype_digit) != 0) return FALSE;
|
3209 |
break;
|
3210 |
|
3211 |
case OP_DIGIT:
|
3212 |
for (i = 1; i <= min; i++)
|
3213 |
if ((pcre_ctypes[*eptr++] & ctype_digit) == 0) return FALSE;
|
3214 |
break;
|
3215 |
|
3216 |
case OP_NOT_WHITESPACE:
|
3217 |
for (i = 1; i <= min; i++)
|
3218 |
if ((pcre_ctypes[*eptr++] & ctype_space) != 0) return FALSE;
|
3219 |
break;
|
3220 |
|
3221 |
case OP_WHITESPACE:
|
3222 |
for (i = 1; i <= min; i++)
|
3223 |
if ((pcre_ctypes[*eptr++] & ctype_space) == 0) return FALSE;
|
3224 |
break;
|
3225 |
|
3226 |
case OP_NOT_WORDCHAR:
|
3227 |
for (i = 1; i <= min; i++) if ((pcre_ctypes[*eptr++] & ctype_word) != 0)
|
3228 |
return FALSE;
|
3229 |
break;
|
3230 |
|
3231 |
case OP_WORDCHAR:
|
3232 |
for (i = 1; i <= min; i++) if ((pcre_ctypes[*eptr++] & ctype_word) == 0)
|
3233 |
return FALSE;
|
3234 |
break;
|
3235 |
}
|
3236 |
|
3237 |
/* If min = max, continue at the same level without recursing */
|
3238 |
|
3239 |
if (min == max) continue;
|
3240 |
|
3241 |
/* If minimizing, we have to test the rest of the pattern before each
|
3242 |
subsequent match, so inlining isn't much help; just use the function. */
|
3243 |
|
3244 |
if (minimize)
|
3245 |
{
|
3246 |
for (i = min;; i++)
|
3247 |
{
|
3248 |
if (match(eptr, ecode, offset_top, md)) return TRUE;
|
3249 |
if (i >= max || eptr >= md->end_subject ||
|
3250 |
!match_type(ctype, *eptr++, md->dotall))
|
3251 |
return FALSE;
|
3252 |
}
|
3253 |
/* Control never gets here */
|
3254 |
}
|
3255 |
|
3256 |
/* If maximizing it is worth using inline code for speed, doing the type
|
3257 |
test once at the start (i.e. keep it out of the loop). */
|
3258 |
|
3259 |
else
|
3260 |
{
|
3261 |
const uschar *pp = eptr;
|
3262 |
switch(ctype)
|
3263 |
{
|
3264 |
case OP_ANY:
|
3265 |
if (!md->dotall)
|
3266 |
{
|
3267 |
for (i = min; i < max; i++)
|
3268 |
{
|
3269 |
if (eptr >= md->end_subject || *eptr == '\n') break;
|
3270 |
eptr++;
|
3271 |
}
|
3272 |
}
|
3273 |
else
|
3274 |
{
|
3275 |
c = max - min;
|
3276 |
if (c > md->end_subject - eptr) c = md->end_subject - eptr;
|
3277 |
eptr += c;
|
3278 |
}
|
3279 |
break;
|
3280 |
|
3281 |
case OP_NOT_DIGIT:
|
3282 |
for (i = min; i < max; i++)
|
3283 |
{
|
3284 |
if (eptr >= md->end_subject || (pcre_ctypes[*eptr] & ctype_digit) != 0)
|
3285 |
break;
|
3286 |
eptr++;
|
3287 |
}
|
3288 |
break;
|
3289 |
|
3290 |
case OP_DIGIT:
|
3291 |
for (i = min; i < max; i++)
|
3292 |
{
|
3293 |
if (eptr >= md->end_subject || (pcre_ctypes[*eptr] & ctype_digit) == 0)
|
3294 |
break;
|
3295 |
eptr++;
|
3296 |
}
|
3297 |
break;
|
3298 |
|
3299 |
case OP_NOT_WHITESPACE:
|
3300 |
for (i = min; i < max; i++)
|
3301 |
{
|
3302 |
if (eptr >= md->end_subject || (pcre_ctypes[*eptr] & ctype_space) != 0)
|
3303 |
break;
|
3304 |
eptr++;
|
3305 |
}
|
3306 |
break;
|
3307 |
|
3308 |
case OP_WHITESPACE:
|
3309 |
for (i = min; i < max; i++)
|
3310 |
{
|
3311 |
if (eptr >= md->end_subject || (pcre_ctypes[*eptr] & ctype_space) == 0)
|
3312 |
break;
|
3313 |
eptr++;
|
3314 |
}
|
3315 |
break;
|
3316 |
|
3317 |
case OP_NOT_WORDCHAR:
|
3318 |
for (i = min; i < max; i++)
|
3319 |
{
|
3320 |
if (eptr >= md->end_subject || (pcre_ctypes[*eptr] & ctype_word) != 0)
|
3321 |
break;
|
3322 |
eptr++;
|
3323 |
}
|
3324 |
break;
|
3325 |
|
3326 |
case OP_WORDCHAR:
|
3327 |
for (i = min; i < max; i++)
|
3328 |
{
|
3329 |
if (eptr >= md->end_subject || (pcre_ctypes[*eptr] & ctype_word) == 0)
|
3330 |
break;
|
3331 |
eptr++;
|
3332 |
}
|
3333 |
break;
|
3334 |
}
|
3335 |
|
3336 |
while (eptr >= pp)
|
3337 |
if (match(eptr--, ecode, offset_top, md)) return TRUE;
|
3338 |
return FALSE;
|
3339 |
}
|
3340 |
/* Control never gets here */
|
3341 |
|
3342 |
/* There's been some horrible disaster. */
|
3343 |
|
3344 |
default:
|
3345 |
DPRINTF(("Unknown opcode %d\n", *ecode));
|
3346 |
md->errorcode = PCRE_ERROR_UNKNOWN_NODE;
|
3347 |
return FALSE;
|
3348 |
}
|
3349 |
|
3350 |
/* Do not stick any code in here without much thought; it is assumed
|
3351 |
that "continue" in the code above comes out to here to repeat the main
|
3352 |
loop. */
|
3353 |
|
3354 |
} /* End of main loop */
|
3355 |
/* Control never reaches here */
|
3356 |
}
|
3357 |
|
3358 |
|
3359 |
|
3360 |
/*************************************************
|
3361 |
* Segregate setjmp() *
|
3362 |
*************************************************/
|
3363 |
|
3364 |
/* The -Wall option of gcc gives warnings for all local variables when setjmp()
|
3365 |
is used, even if the coding conforms to the rules of ANSI C. To avoid this, we
|
3366 |
hide it in a separate function. This is called only when PCRE_EXTRA is set,
|
3367 |
since it's needed only for the extension \X option, and with any luck, a good
|
3368 |
compiler will spot the tail recursion and compile it efficiently.
|
3369 |
|
3370 |
Arguments:
|
3371 |
eptr pointer in subject
|
3372 |
ecode position in code
|
3373 |
offset_top current top pointer
|
3374 |
md pointer to "static" info for the match
|
3375 |
|
3376 |
Returns: TRUE if matched
|
3377 |
*/
|
3378 |
|
3379 |
static BOOL
|
3380 |
match_with_setjmp(const uschar *eptr, const uschar *ecode, int offset_top,
|
3381 |
match_data *match_block)
|
3382 |
{
|
3383 |
return setjmp(match_block->fail_env) == 0 &&
|
3384 |
match(eptr, ecode, offset_top, match_block);
|
3385 |
}
|
3386 |
|
3387 |
|
3388 |
|
3389 |
/*************************************************
|
3390 |
* Execute a Regular Expression *
|
3391 |
*************************************************/
|
3392 |
|
3393 |
/* This function applies a compiled re to a subject string and picks out
|
3394 |
portions of the string if it matches. Two elements in the vector are set for
|
3395 |
each substring: the offsets to the start and end of the substring.
|
3396 |
|
3397 |
Arguments:
|
3398 |
external_re points to the compiled expression
|
3399 |
external_extra points to "hints" from pcre_study() or is NULL
|
3400 |
subject points to the subject string
|
3401 |
length length of subject string (may contain binary zeros)
|
3402 |
options option bits
|
3403 |
offsets points to a vector of ints to be filled in with offsets
|
3404 |
offsetcount the number of elements in the vector
|
3405 |
|
3406 |
Returns: > 0 => success; value is the number of elements filled in
|
3407 |
= 0 => success, but offsets is not big enough
|
3408 |
-1 => failed to match
|
3409 |
< -1 => some kind of unexpected problem
|
3410 |
*/
|
3411 |
|
3412 |
int
|
3413 |
pcre_exec(const pcre *external_re, const pcre_extra *external_extra,
|
3414 |
const char *subject, int length, int options, int *offsets, int offsetcount)
|
3415 |
{
|
3416 |
int resetcount, ocount;
|
3417 |
int first_char = -1;
|
3418 |
match_data match_block;
|
3419 |
const uschar *start_bits = NULL;
|
3420 |
const uschar *start_match = (const uschar *)subject;
|
3421 |
const uschar *end_subject;
|
3422 |
const real_pcre *re = (const real_pcre *)external_re;
|
3423 |
const real_pcre_extra *extra = (const real_pcre_extra *)external_extra;
|
3424 |
BOOL using_temporary_offsets = FALSE;
|
3425 |
BOOL anchored = ((re->options | options) & PCRE_ANCHORED) != 0;
|
3426 |
BOOL startline = (re->options & PCRE_STARTLINE) != 0;
|
3427 |
|
3428 |
if ((options & ~PUBLIC_EXEC_OPTIONS) != 0) return PCRE_ERROR_BADOPTION;
|
3429 |
|
3430 |
if (re == NULL || subject == NULL ||
|
3431 |
(offsets == NULL && offsetcount > 0)) return PCRE_ERROR_NULL;
|
3432 |
if (re->magic_number != MAGIC_NUMBER) return PCRE_ERROR_BADMAGIC;
|
3433 |
|
3434 |
match_block.start_subject = (const uschar *)subject;
|
3435 |
match_block.end_subject = match_block.start_subject + length;
|
3436 |
end_subject = match_block.end_subject;
|
3437 |
|
3438 |
match_block.caseless = ((re->options | options) & PCRE_CASELESS) != 0;
|
3439 |
match_block.runtime_caseless = match_block.caseless &&
|
3440 |
(re->options & PCRE_CASELESS) == 0;
|
3441 |
|
3442 |
match_block.multiline = ((re->options | options) & PCRE_MULTILINE) != 0;
|
3443 |
match_block.dotall = ((re->options | options) & PCRE_DOTALL) != 0;
|
3444 |
match_block.endonly = ((re->options | options) & PCRE_DOLLAR_ENDONLY) != 0;
|
3445 |
|
3446 |
match_block.notbol = (options & PCRE_NOTBOL) != 0;
|
3447 |
match_block.noteol = (options & PCRE_NOTEOL) != 0;
|
3448 |
|
3449 |
match_block.errorcode = PCRE_ERROR_NOMATCH; /* Default error */
|
3450 |
|
3451 |
/* If the expression has got more back references than the offsets supplied can
|
3452 |
hold, we get a temporary bit of working store to use during the matching.
|
3453 |
Otherwise, we can use the vector supplied, rounding down its size to a multiple
|
3454 |
of 2. */
|
3455 |
|
3456 |
ocount = offsetcount & (-2);
|
3457 |
if (re->top_backref > 0 && re->top_backref >= ocount/2)
|
3458 |
{
|
3459 |
ocount = re->top_backref * 2 + 2;
|
3460 |
match_block.offset_vector = (int *)(pcre_malloc)(ocount * sizeof(int));
|
3461 |
if (match_block.offset_vector == NULL) return PCRE_ERROR_NOMEMORY;
|
3462 |
using_temporary_offsets = TRUE;
|
3463 |
DPRINTF(("Got memory to hold back references\n"));
|
3464 |
}
|
3465 |
else match_block.offset_vector = offsets;
|
3466 |
|
3467 |
match_block.offset_end = ocount;
|
3468 |
match_block.offset_overflow = FALSE;
|
3469 |
|
3470 |
/* Compute the minimum number of offsets that we need to reset each time. Doing
|
3471 |
this makes a huge difference to execution time when there aren't many brackets
|
3472 |
in the pattern. */
|
3473 |
|
3474 |
resetcount = 2 + re->top_bracket * 2;
|
3475 |
if (resetcount > offsetcount) resetcount = ocount;
|
3476 |
|
3477 |
/* If MULTILINE is set at exec time but was not set at compile time, and the
|
3478 |
anchored flag is set, we must re-check because a setting provoked by ^ in the
|
3479 |
pattern is not right in multi-line mode. Calling is_anchored() again here does
|
3480 |
the right check, because multiline is now set. If it now yields FALSE, the
|
3481 |
expression must have had ^ starting some of its branches. Check to see if
|
3482 |
that is true for *all* branches, and if so, set the startline flag. */
|
3483 |
|
3484 |
if (match_block. multiline && anchored && (re->options & PCRE_MULTILINE) == 0 &&
|
3485 |
!is_anchored(re->code, match_block.multiline))
|
3486 |
{
|
3487 |
anchored = FALSE;
|
3488 |
if (is_startline(re->code)) startline = TRUE;
|
3489 |
}
|
3490 |
|
3491 |
/* Set up the first character to match, if available. The first_char value is
|
3492 |
never set for an anchored regular expression, but the anchoring may be forced
|
3493 |
at run time, so we have to test for anchoring. The first char may be unset for
|
3494 |
an unanchored pattern, of course. If there's no first char and the pattern was
|
3495 |
studied, the may be a bitmap of possible first characters. However, we can
|
3496 |
use this only if the caseless state of the studying was correct. */
|
3497 |
|
3498 |
if (!anchored)
|
3499 |
{
|
3500 |
if ((re->options & PCRE_FIRSTSET) != 0)
|
3501 |
{
|
3502 |
first_char = re->first_char;
|
3503 |
if (match_block.caseless) first_char = pcre_lcc[first_char];
|
3504 |
}
|
3505 |
else
|
3506 |
if (!startline && extra != NULL &&
|
3507 |
(extra->options & PCRE_STUDY_MAPPED) != 0 &&
|
3508 |
((extra->options & PCRE_STUDY_CASELESS) != 0) == match_block.caseless)
|
3509 |
start_bits = extra->start_bits;
|
3510 |
}
|
3511 |
|
3512 |
/* Loop for unanchored matches; for anchored regexps the loop runs just once. */
|
3513 |
|
3514 |
do
|
3515 |
{
|
3516 |
int rc;
|
3517 |
register int *iptr = match_block.offset_vector;
|
3518 |
register int *iend = iptr + resetcount;
|
3519 |
|
3520 |
/* Reset the maximum number of extractions we might see. */
|
3521 |
|
3522 |
while (iptr < iend) *iptr++ = -1;
|
3523 |
|
3524 |
/* Advance to a unique first char if possible */
|
3525 |
|
3526 |
if (first_char >= 0)
|
3527 |
{
|
3528 |
if (match_block.caseless)
|
3529 |
while (start_match < end_subject && pcre_lcc[*start_match] != first_char)
|
3530 |
start_match++;
|
3531 |
else
|
3532 |
while (start_match < end_subject && *start_match != first_char)
|
3533 |
start_match++;
|
3534 |
}
|
3535 |
|
3536 |
/* Or to just after \n for a multiline match if possible */
|
3537 |
|
3538 |
else if (startline)
|
3539 |
{
|
3540 |
if (start_match > match_block.start_subject)
|
3541 |
{
|
3542 |
while (start_match < end_subject && start_match[-1] != '\n')
|
3543 |
start_match++;
|
3544 |
}
|
3545 |
}
|
3546 |
|
3547 |
/* Or to a non-unique first char */
|
3548 |
|
3549 |
else if (start_bits != NULL)
|
3550 |
{
|
3551 |
while (start_match < end_subject)
|
3552 |
{
|
3553 |
register int c = *start_match;
|
3554 |
if ((start_bits[c/8] & (1 << (c&7))) == 0) start_match++; else break;
|
3555 |
}
|
3556 |
}
|
3557 |
|
3558 |
#ifdef DEBUG /* Sigh. Some compilers never learn. */
|
3559 |
printf(">>>> Match against: ");
|
3560 |
pchars(start_match, end_subject - start_match, TRUE, &match_block);
|
3561 |
printf("\n");
|
3562 |
#endif
|
3563 |
|
3564 |
/* When a match occurs, substrings will be set for all internal extractions;
|
3565 |
we just need to set up the whole thing as substring 0 before returning. If
|
3566 |
there were too many extractions, set the return code to zero. In the case
|
3567 |
where we had to get some local store to hold offsets for backreferences, copy
|
3568 |
those back references that we can. In this case there need not be overflow
|
3569 |
if certain parts of the pattern were not used.
|
3570 |
|
3571 |
Before starting the match, we have to set up a longjmp() target to enable
|
3572 |
the "cut" operation to fail a match completely without backtracking. This
|
3573 |
is done in a separate function to avoid compiler warnings. We need not do
|
3574 |
it unless PCRE_EXTRA is set, since only in that case is the "cut" operation
|
3575 |
enabled. */
|
3576 |
|
3577 |
if ((re->options & PCRE_EXTRA) != 0)
|
3578 |
{
|
3579 |
if (!match_with_setjmp(start_match, re->code, 2, &match_block))
|
3580 |
continue;
|
3581 |
}
|
3582 |
else if (!match(start_match, re->code, 2, &match_block)) continue;
|
3583 |
|
3584 |
/* Copy the offset information from temporary store if necessary */
|
3585 |
|
3586 |
if (using_temporary_offsets)
|
3587 |
{
|
3588 |
if (offsetcount >= 4)
|
3589 |
{
|
3590 |
memcpy(offsets + 2, match_block.offset_vector + 2,
|
3591 |
(offsetcount - 2) * sizeof(int));
|
3592 |
DPRINTF(("Copied offsets from temporary memory\n"));
|
3593 |
}
|
3594 |
if (match_block.end_offset_top > offsetcount)
|
3595 |
match_block.offset_overflow = TRUE;
|
3596 |
|
3597 |
DPRINTF(("Freeing temporary memory\n"));
|
3598 |
(pcre_free)(match_block.offset_vector);
|
3599 |
}
|
3600 |
|
3601 |
rc = match_block.offset_overflow? 0 : match_block.end_offset_top/2;
|
3602 |
|
3603 |
if (match_block.offset_end < 2) rc = 0; else
|
3604 |
{
|
3605 |
offsets[0] = start_match - match_block.start_subject;
|
3606 |
offsets[1] = match_block.end_match_ptr - match_block.start_subject;
|
3607 |
}
|
3608 |
|
3609 |
DPRINTF((">>>> returning %d\n", rc));
|
3610 |
return rc;
|
3611 |
}
|
3612 |
while (!anchored &&
|
3613 |
match_block.errorcode == PCRE_ERROR_NOMATCH &&
|
3614 |
start_match++ < end_subject);
|
3615 |
|
3616 |
if (using_temporary_offsets)
|
3617 |
{
|
3618 |
DPRINTF(("Freeing temporary memory\n"));
|
3619 |
(pcre_free)(match_block.offset_vector);
|
3620 |
}
|
3621 |
|
3622 |
DPRINTF((">>>> returning %d\n", match_block.errorcode));
|
3623 |
|
3624 |
return match_block.errorcode;
|
3625 |
}
|
3626 |
|
3627 |
/* End of pcre.c */
|