Parent Directory
|
Revision Log
Tag code/trunk as code/tags/pcre-4.4.
1 | /************************************************* |
2 | * Perl-Compatible Regular Expressions * |
3 | *************************************************/ |
4 | |
5 | /* |
6 | This is a library of functions to support regular expressions whose syntax |
7 | and semantics are as close as possible to those of the Perl 5 language. See |
8 | the file Tech.Notes for some information on the internals. |
9 | |
10 | Written by: Philip Hazel <ph10@cam.ac.uk> |
11 | |
12 | Copyright (c) 1997-2003 University of Cambridge |
13 | |
14 | ----------------------------------------------------------------------------- |
15 | Permission is granted to anyone to use this software for any purpose on any |
16 | computer system, and to redistribute it freely, subject to the following |
17 | restrictions: |
18 | |
19 | 1. This software is distributed in the hope that it will be useful, |
20 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
21 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
22 | |
23 | 2. The origin of this software must not be misrepresented, either by |
24 | explicit claim or by omission. |
25 | |
26 | 3. Altered versions must be plainly marked as such, and must not be |
27 | misrepresented as being the original software. |
28 | |
29 | 4. If PCRE is embedded in any software that is released under the GNU |
30 | General Purpose Licence (GPL), then the terms of that licence shall |
31 | supersede any condition above with which it is incompatible. |
32 | ----------------------------------------------------------------------------- |
33 | */ |
34 | |
35 | /* Define DEBUG to get debugging output on stdout. */ |
36 | |
37 | /* #define DEBUG */ |
38 | |
39 | /* Use a macro for debugging printing, 'cause that eliminates the use of #ifdef |
40 | inline, and there are *still* stupid compilers about that don't like indented |
41 | pre-processor statements. I suppose it's only been 10 years... */ |
42 | |
43 | #ifdef DEBUG |
44 | #define DPRINTF(p) printf p |
45 | #else |
46 | #define DPRINTF(p) /*nothing*/ |
47 | #endif |
48 | |
49 | /* Include the internals header, which itself includes Standard C headers plus |
50 | the external pcre header. */ |
51 | |
52 | #include "internal.h" |
53 | |
54 | |
55 | /* Allow compilation as C++ source code, should anybody want to do that. */ |
56 | |
57 | #ifdef __cplusplus |
58 | #define class pcre_class |
59 | #endif |
60 | |
61 | |
62 | /* Maximum number of items on the nested bracket stacks at compile time. This |
63 | applies to the nesting of all kinds of parentheses. It does not limit |
64 | un-nested, non-capturing parentheses. This number can be made bigger if |
65 | necessary - it is used to dimension one int and one unsigned char vector at |
66 | compile time. */ |
67 | |
68 | #define BRASTACK_SIZE 200 |
69 | |
70 | |
71 | /* Maximum number of ints of offset to save on the stack for recursive calls. |
72 | If the offset vector is bigger, malloc is used. This should be a multiple of 3, |
73 | because the offset vector is always a multiple of 3 long. */ |
74 | |
75 | #define REC_STACK_SAVE_MAX 30 |
76 | |
77 | |
78 | /* The number of bytes in a literal character string above which we can't add |
79 | any more is set at 250 in order to allow for UTF-8 characters. (In theory it |
80 | could be 255 when UTF-8 support is excluded, but that means that some of the |
81 | test output would be different, which just complicates things.) */ |
82 | |
83 | #define MAXLIT 250 |
84 | |
85 | |
86 | /* The maximum remaining length of subject we are prepared to search for a |
87 | req_byte match. */ |
88 | |
89 | #define REQ_BYTE_MAX 1000 |
90 | |
91 | |
92 | /* Table of sizes for the fixed-length opcodes. It's defined in a macro so that |
93 | the definition is next to the definition of the opcodes in internal.h. */ |
94 | |
95 | static uschar OP_lengths[] = { OP_LENGTHS }; |
96 | |
97 | /* Min and max values for the common repeats; for the maxima, 0 => infinity */ |
98 | |
99 | static const char rep_min[] = { 0, 0, 1, 1, 0, 0 }; |
100 | static const char rep_max[] = { 0, 0, 0, 0, 1, 1 }; |
101 | |
102 | /* Table for handling escaped characters in the range '0'-'z'. Positive returns |
103 | are simple data values; negative values are for special things like \d and so |
104 | on. Zero means further processing is needed (for things like \x), or the escape |
105 | is invalid. */ |
106 | |
107 | static const short int escapes[] = { |
108 | 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 7 */ |
109 | 0, 0, ':', ';', '<', '=', '>', '?', /* 8 - ? */ |
110 | '@', -ESC_A, -ESC_B, -ESC_C, -ESC_D, -ESC_E, 0, -ESC_G, /* @ - G */ |
111 | 0, 0, 0, 0, 0, 0, 0, 0, /* H - O */ |
112 | 0, -ESC_Q, 0, -ESC_S, 0, 0, 0, -ESC_W, /* P - W */ |
113 | 0, 0, -ESC_Z, '[', '\\', ']', '^', '_', /* X - _ */ |
114 | '`', 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, /* ` - g */ |
115 | 0, 0, 0, 0, 0, 0, ESC_n, 0, /* h - o */ |
116 | 0, 0, ESC_r, -ESC_s, ESC_tee, 0, 0, -ESC_w, /* p - w */ |
117 | 0, 0, -ESC_z /* x - z */ |
118 | }; |
119 | |
120 | /* Tables of names of POSIX character classes and their lengths. The list is |
121 | terminated by a zero length entry. The first three must be alpha, upper, lower, |
122 | as this is assumed for handling case independence. */ |
123 | |
124 | static const char *posix_names[] = { |
125 | "alpha", "lower", "upper", |
126 | "alnum", "ascii", "blank", "cntrl", "digit", "graph", |
127 | "print", "punct", "space", "word", "xdigit" }; |
128 | |
129 | static const uschar posix_name_lengths[] = { |
130 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 }; |
131 | |
132 | /* Table of class bit maps for each POSIX class; up to three may be combined |
133 | to form the class. The table for [:blank:] is dynamically modified to remove |
134 | the vertical space characters. */ |
135 | |
136 | static const int posix_class_maps[] = { |
137 | cbit_lower, cbit_upper, -1, /* alpha */ |
138 | cbit_lower, -1, -1, /* lower */ |
139 | cbit_upper, -1, -1, /* upper */ |
140 | cbit_digit, cbit_lower, cbit_upper, /* alnum */ |
141 | cbit_print, cbit_cntrl, -1, /* ascii */ |
142 | cbit_space, -1, -1, /* blank - a GNU extension */ |
143 | cbit_cntrl, -1, -1, /* cntrl */ |
144 | cbit_digit, -1, -1, /* digit */ |
145 | cbit_graph, -1, -1, /* graph */ |
146 | cbit_print, -1, -1, /* print */ |
147 | cbit_punct, -1, -1, /* punct */ |
148 | cbit_space, -1, -1, /* space */ |
149 | cbit_word, -1, -1, /* word - a Perl extension */ |
150 | cbit_xdigit,-1, -1 /* xdigit */ |
151 | }; |
152 | |
153 | /* Table to identify ASCII digits and hex digits. This is used when compiling |
154 | patterns. Note that the tables in chartables are dependent on the locale, and |
155 | may mark arbitrary characters as digits - but the PCRE compiling code expects |
156 | to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have |
157 | a private table here. It costs 256 bytes, but it is a lot faster than doing |
158 | character value tests (at least in some simple cases I timed), and in some |
159 | applications one wants PCRE to compile efficiently as well as match |
160 | efficiently. |
161 | |
162 | For convenience, we use the same bit definitions as in chartables: |
163 | |
164 | 0x04 decimal digit |
165 | 0x08 hexadecimal digit |
166 | |
167 | Then we can use ctype_digit and ctype_xdigit in the code. */ |
168 | |
169 | static const unsigned char digitab[] = |
170 | { |
171 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */ |
172 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
173 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */ |
174 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
175 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */ |
176 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */ |
177 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */ |
178 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */ |
179 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */ |
180 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */ |
181 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */ |
182 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */ |
183 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */ |
184 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */ |
185 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */ |
186 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */ |
187 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */ |
188 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */ |
189 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */ |
190 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */ |
191 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */ |
192 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */ |
193 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */ |
194 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
195 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */ |
196 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */ |
197 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */ |
198 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */ |
199 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */ |
200 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */ |
201 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */ |
202 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */ |
203 | |
204 | /* Definition to allow mutual recursion */ |
205 | |
206 | static BOOL |
207 | compile_regex(int, int, int *, uschar **, const uschar **, const char **, |
208 | BOOL, int, int *, int *, branch_chain *, compile_data *); |
209 | |
210 | /* Structure for building a chain of data that actually lives on the |
211 | stack, for holding the values of the subject pointer at the start of each |
212 | subpattern, so as to detect when an empty string has been matched by a |
213 | subpattern - to break infinite loops. */ |
214 | |
215 | typedef struct eptrblock { |
216 | struct eptrblock *prev; |
217 | const uschar *saved_eptr; |
218 | } eptrblock; |
219 | |
220 | /* Flag bits for the match() function */ |
221 | |
222 | #define match_condassert 0x01 /* Called to check a condition assertion */ |
223 | #define match_isgroup 0x02 /* Set if start of bracketed group */ |
224 | |
225 | /* Non-error returns from the match() function. Error returns are externally |
226 | defined PCRE_ERROR_xxx codes, which are all negative. */ |
227 | |
228 | #define MATCH_MATCH 1 |
229 | #define MATCH_NOMATCH 0 |
230 | |
231 | |
232 | |
233 | /************************************************* |
234 | * Global variables * |
235 | *************************************************/ |
236 | |
237 | /* PCRE is thread-clean and doesn't use any global variables in the normal |
238 | sense. However, it calls memory allocation and free functions via the two |
239 | indirections below, and it can optionally do callouts. These values can be |
240 | changed by the caller, but are shared between all threads. However, when |
241 | compiling for Virtual Pascal, things are done differently (see pcre.in). */ |
242 | |
243 | #ifndef VPCOMPAT |
244 | #ifdef __cplusplus |
245 | extern "C" void *(*pcre_malloc)(size_t) = malloc; |
246 | extern "C" void (*pcre_free)(void *) = free; |
247 | extern "C" int (*pcre_callout)(pcre_callout_block *) = NULL; |
248 | #else |
249 | void *(*pcre_malloc)(size_t) = malloc; |
250 | void (*pcre_free)(void *) = free; |
251 | int (*pcre_callout)(pcre_callout_block *) = NULL; |
252 | #endif |
253 | #endif |
254 | |
255 | |
256 | /************************************************* |
257 | * Macros and tables for character handling * |
258 | *************************************************/ |
259 | |
260 | /* When UTF-8 encoding is being used, a character is no longer just a single |
261 | byte. The macros for character handling generate simple sequences when used in |
262 | byte-mode, and more complicated ones for UTF-8 characters. */ |
263 | |
264 | #ifndef SUPPORT_UTF8 |
265 | #define GETCHAR(c, eptr) c = *eptr; |
266 | #define GETCHARINC(c, eptr) c = *eptr++; |
267 | #define GETCHARINCTEST(c, eptr) c = *eptr++; |
268 | #define GETCHARLEN(c, eptr, len) c = *eptr; |
269 | #define BACKCHAR(eptr) |
270 | |
271 | #else /* SUPPORT_UTF8 */ |
272 | |
273 | /* Get the next UTF-8 character, not advancing the pointer. This is called when |
274 | we know we are in UTF-8 mode. */ |
275 | |
276 | #define GETCHAR(c, eptr) \ |
277 | c = *eptr; \ |
278 | if ((c & 0xc0) == 0xc0) \ |
279 | { \ |
280 | int gcii; \ |
281 | int gcaa = utf8_table4[c & 0x3f]; /* Number of additional bytes */ \ |
282 | int gcss = 6*gcaa; \ |
283 | c = (c & utf8_table3[gcaa]) << gcss; \ |
284 | for (gcii = 1; gcii <= gcaa; gcii++) \ |
285 | { \ |
286 | gcss -= 6; \ |
287 | c |= (eptr[gcii] & 0x3f) << gcss; \ |
288 | } \ |
289 | } |
290 | |
291 | /* Get the next UTF-8 character, advancing the pointer. This is called when we |
292 | know we are in UTF-8 mode. */ |
293 | |
294 | #define GETCHARINC(c, eptr) \ |
295 | c = *eptr++; \ |
296 | if ((c & 0xc0) == 0xc0) \ |
297 | { \ |
298 | int gcaa = utf8_table4[c & 0x3f]; /* Number of additional bytes */ \ |
299 | int gcss = 6*gcaa; \ |
300 | c = (c & utf8_table3[gcaa]) << gcss; \ |
301 | while (gcaa-- > 0) \ |
302 | { \ |
303 | gcss -= 6; \ |
304 | c |= (*eptr++ & 0x3f) << gcss; \ |
305 | } \ |
306 | } |
307 | |
308 | /* Get the next character, testing for UTF-8 mode, and advancing the pointer */ |
309 | |
310 | #define GETCHARINCTEST(c, eptr) \ |
311 | c = *eptr++; \ |
312 | if (md->utf8 && (c & 0xc0) == 0xc0) \ |
313 | { \ |
314 | int gcaa = utf8_table4[c & 0x3f]; /* Number of additional bytes */ \ |
315 | int gcss = 6*gcaa; \ |
316 | c = (c & utf8_table3[gcaa]) << gcss; \ |
317 | while (gcaa-- > 0) \ |
318 | { \ |
319 | gcss -= 6; \ |
320 | c |= (*eptr++ & 0x3f) << gcss; \ |
321 | } \ |
322 | } |
323 | |
324 | /* Get the next UTF-8 character, not advancing the pointer, incrementing length |
325 | if there are extra bytes. This is called when we know we are in UTF-8 mode. */ |
326 | |
327 | #define GETCHARLEN(c, eptr, len) \ |
328 | c = *eptr; \ |
329 | if ((c & 0xc0) == 0xc0) \ |
330 | { \ |
331 | int gcii; \ |
332 | int gcaa = utf8_table4[c & 0x3f]; /* Number of additional bytes */ \ |
333 | int gcss = 6*gcaa; \ |
334 | c = (c & utf8_table3[gcaa]) << gcss; \ |
335 | for (gcii = 1; gcii <= gcaa; gcii++) \ |
336 | { \ |
337 | gcss -= 6; \ |
338 | c |= (eptr[gcii] & 0x3f) << gcss; \ |
339 | } \ |
340 | len += gcaa; \ |
341 | } |
342 | |
343 | /* If the pointer is not at the start of a character, move it back until |
344 | it is. Called only in UTF-8 mode. */ |
345 | |
346 | #define BACKCHAR(eptr) while((*eptr & 0xc0) == 0x80) eptr--; |
347 | |
348 | #endif |
349 | |
350 | |
351 | |
352 | /************************************************* |
353 | * Default character tables * |
354 | *************************************************/ |
355 | |
356 | /* A default set of character tables is included in the PCRE binary. Its source |
357 | is built by the maketables auxiliary program, which uses the default C ctypes |
358 | functions, and put in the file chartables.c. These tables are used by PCRE |
359 | whenever the caller of pcre_compile() does not provide an alternate set of |
360 | tables. */ |
361 | |
362 | #include "chartables.c" |
363 | |
364 | |
365 | |
366 | #ifdef SUPPORT_UTF8 |
367 | /************************************************* |
368 | * Tables for UTF-8 support * |
369 | *************************************************/ |
370 | |
371 | /* These are the breakpoints for different numbers of bytes in a UTF-8 |
372 | character. */ |
373 | |
374 | static const int utf8_table1[] = |
375 | { 0x7f, 0x7ff, 0xffff, 0x1fffff, 0x3ffffff, 0x7fffffff}; |
376 | |
377 | /* These are the indicator bits and the mask for the data bits to set in the |
378 | first byte of a character, indexed by the number of additional bytes. */ |
379 | |
380 | static const int utf8_table2[] = { 0, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc}; |
381 | static const int utf8_table3[] = { 0xff, 0x1f, 0x0f, 0x07, 0x03, 0x01}; |
382 | |
383 | /* Table of the number of extra characters, indexed by the first character |
384 | masked with 0x3f. The highest number for a valid UTF-8 character is in fact |
385 | 0x3d. */ |
386 | |
387 | static const uschar utf8_table4[] = { |
388 | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, |
389 | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, |
390 | 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, |
391 | 3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5 }; |
392 | |
393 | |
394 | /************************************************* |
395 | * Convert character value to UTF-8 * |
396 | *************************************************/ |
397 | |
398 | /* This function takes an integer value in the range 0 - 0x7fffffff |
399 | and encodes it as a UTF-8 character in 0 to 6 bytes. |
400 | |
401 | Arguments: |
402 | cvalue the character value |
403 | buffer pointer to buffer for result - at least 6 bytes long |
404 | |
405 | Returns: number of characters placed in the buffer |
406 | */ |
407 | |
408 | static int |
409 | ord2utf8(int cvalue, uschar *buffer) |
410 | { |
411 | register int i, j; |
412 | for (i = 0; i < sizeof(utf8_table1)/sizeof(int); i++) |
413 | if (cvalue <= utf8_table1[i]) break; |
414 | buffer += i; |
415 | for (j = i; j > 0; j--) |
416 | { |
417 | *buffer-- = 0x80 | (cvalue & 0x3f); |
418 | cvalue >>= 6; |
419 | } |
420 | *buffer = utf8_table2[i] | cvalue; |
421 | return i + 1; |
422 | } |
423 | #endif |
424 | |
425 | |
426 | |
427 | /************************************************* |
428 | * Print compiled regex * |
429 | *************************************************/ |
430 | |
431 | /* The code for doing this is held in a separate file that is also included in |
432 | pcretest.c. It defines a function called print_internals(). */ |
433 | |
434 | #ifdef DEBUG |
435 | #include "printint.c" |
436 | #endif |
437 | |
438 | |
439 | |
440 | /************************************************* |
441 | * Return version string * |
442 | *************************************************/ |
443 | |
444 | #define STRING(a) # a |
445 | #define XSTRING(s) STRING(s) |
446 | |
447 | const char * |
448 | pcre_version(void) |
449 | { |
450 | return XSTRING(PCRE_MAJOR) "." XSTRING(PCRE_MINOR) " " XSTRING(PCRE_DATE); |
451 | } |
452 | |
453 | |
454 | |
455 | |
456 | /************************************************* |
457 | * (Obsolete) Return info about compiled pattern * |
458 | *************************************************/ |
459 | |
460 | /* This is the original "info" function. It picks potentially useful data out |
461 | of the private structure, but its interface was too rigid. It remains for |
462 | backwards compatibility. The public options are passed back in an int - though |
463 | the re->options field has been expanded to a long int, all the public options |
464 | at the low end of it, and so even on 16-bit systems this will still be OK. |
465 | Therefore, I haven't changed the API for pcre_info(). |
466 | |
467 | Arguments: |
468 | external_re points to compiled code |
469 | optptr where to pass back the options |
470 | first_byte where to pass back the first character, |
471 | or -1 if multiline and all branches start ^, |
472 | or -2 otherwise |
473 | |
474 | Returns: number of capturing subpatterns |
475 | or negative values on error |
476 | */ |
477 | |
478 | int |
479 | pcre_info(const pcre *external_re, int *optptr, int *first_byte) |
480 | { |
481 | const real_pcre *re = (const real_pcre *)external_re; |
482 | if (re == NULL) return PCRE_ERROR_NULL; |
483 | if (re->magic_number != MAGIC_NUMBER) return PCRE_ERROR_BADMAGIC; |
484 | if (optptr != NULL) *optptr = (int)(re->options & PUBLIC_OPTIONS); |
485 | if (first_byte != NULL) |
486 | *first_byte = ((re->options & PCRE_FIRSTSET) != 0)? re->first_byte : |
487 | ((re->options & PCRE_STARTLINE) != 0)? -1 : -2; |
488 | return re->top_bracket; |
489 | } |
490 | |
491 | |
492 | |
493 | /************************************************* |
494 | * Return info about compiled pattern * |
495 | *************************************************/ |
496 | |
497 | /* This is a newer "info" function which has an extensible interface so |
498 | that additional items can be added compatibly. |
499 | |
500 | Arguments: |
501 | external_re points to compiled code |
502 | extra_data points extra data, or NULL |
503 | what what information is required |
504 | where where to put the information |
505 | |
506 | Returns: 0 if data returned, negative on error |
507 | */ |
508 | |
509 | int |
510 | pcre_fullinfo(const pcre *external_re, const pcre_extra *extra_data, int what, |
511 | void *where) |
512 | { |
513 | const real_pcre *re = (const real_pcre *)external_re; |
514 | const pcre_study_data *study = NULL; |
515 | |
516 | if (re == NULL || where == NULL) return PCRE_ERROR_NULL; |
517 | if (re->magic_number != MAGIC_NUMBER) return PCRE_ERROR_BADMAGIC; |
518 | |
519 | if (extra_data != NULL && (extra_data->flags & PCRE_EXTRA_STUDY_DATA) != 0) |
520 | study = (const pcre_study_data *)extra_data->study_data; |
521 | |
522 | switch (what) |
523 | { |
524 | case PCRE_INFO_OPTIONS: |
525 | *((unsigned long int *)where) = re->options & PUBLIC_OPTIONS; |
526 | break; |
527 | |
528 | case PCRE_INFO_SIZE: |
529 | *((size_t *)where) = re->size; |
530 | break; |
531 | |
532 | case PCRE_INFO_STUDYSIZE: |
533 | *((size_t *)where) = (study == NULL)? 0 : study->size; |
534 | break; |
535 | |
536 | case PCRE_INFO_CAPTURECOUNT: |
537 | *((int *)where) = re->top_bracket; |
538 | break; |
539 | |
540 | case PCRE_INFO_BACKREFMAX: |
541 | *((int *)where) = re->top_backref; |
542 | break; |
543 | |
544 | case PCRE_INFO_FIRSTBYTE: |
545 | *((int *)where) = |
546 | ((re->options & PCRE_FIRSTSET) != 0)? re->first_byte : |
547 | ((re->options & PCRE_STARTLINE) != 0)? -1 : -2; |
548 | break; |
549 | |
550 | case PCRE_INFO_FIRSTTABLE: |
551 | *((const uschar **)where) = |
552 | (study != NULL && (study->options & PCRE_STUDY_MAPPED) != 0)? |
553 | study->start_bits : NULL; |
554 | break; |
555 | |
556 | case PCRE_INFO_LASTLITERAL: |
557 | *((int *)where) = |
558 | ((re->options & PCRE_REQCHSET) != 0)? re->req_byte : -1; |
559 | break; |
560 | |
561 | case PCRE_INFO_NAMEENTRYSIZE: |
562 | *((int *)where) = re->name_entry_size; |
563 | break; |
564 | |
565 | case PCRE_INFO_NAMECOUNT: |
566 | *((int *)where) = re->name_count; |
567 | break; |
568 | |
569 | case PCRE_INFO_NAMETABLE: |
570 | *((const uschar **)where) = (const uschar *)re + sizeof(real_pcre); |
571 | break; |
572 | |
573 | default: return PCRE_ERROR_BADOPTION; |
574 | } |
575 | |
576 | return 0; |
577 | } |
578 | |
579 | |
580 | |
581 | /************************************************* |
582 | * Return info about what features are configured * |
583 | *************************************************/ |
584 | |
585 | /* This is function which has an extensible interface so that additional items |
586 | can be added compatibly. |
587 | |
588 | Arguments: |
589 | what what information is required |
590 | where where to put the information |
591 | |
592 | Returns: 0 if data returned, negative on error |
593 | */ |
594 | |
595 | int |
596 | pcre_config(int what, void *where) |
597 | { |
598 | switch (what) |
599 | { |
600 | case PCRE_CONFIG_UTF8: |
601 | #ifdef SUPPORT_UTF8 |
602 | *((int *)where) = 1; |
603 | #else |
604 | *((int *)where) = 0; |
605 | #endif |
606 | break; |
607 | |
608 | case PCRE_CONFIG_NEWLINE: |
609 | *((int *)where) = NEWLINE; |
610 | break; |
611 | |
612 | case PCRE_CONFIG_LINK_SIZE: |
613 | *((int *)where) = LINK_SIZE; |
614 | break; |
615 | |
616 | case PCRE_CONFIG_POSIX_MALLOC_THRESHOLD: |
617 | *((int *)where) = POSIX_MALLOC_THRESHOLD; |
618 | break; |
619 | |
620 | case PCRE_CONFIG_MATCH_LIMIT: |
621 | *((unsigned int *)where) = MATCH_LIMIT; |
622 | break; |
623 | |
624 | default: return PCRE_ERROR_BADOPTION; |
625 | } |
626 | |
627 | return 0; |
628 | } |
629 | |
630 | |
631 | |
632 | #ifdef DEBUG |
633 | /************************************************* |
634 | * Debugging function to print chars * |
635 | *************************************************/ |
636 | |
637 | /* Print a sequence of chars in printable format, stopping at the end of the |
638 | subject if the requested. |
639 | |
640 | Arguments: |
641 | p points to characters |
642 | length number to print |
643 | is_subject TRUE if printing from within md->start_subject |
644 | md pointer to matching data block, if is_subject is TRUE |
645 | |
646 | Returns: nothing |
647 | */ |
648 | |
649 | static void |
650 | pchars(const uschar *p, int length, BOOL is_subject, match_data *md) |
651 | { |
652 | int c; |
653 | if (is_subject && length > md->end_subject - p) length = md->end_subject - p; |
654 | while (length-- > 0) |
655 | if (isprint(c = *(p++))) printf("%c", c); else printf("\\x%02x", c); |
656 | } |
657 | #endif |
658 | |
659 | |
660 | |
661 | |
662 | /************************************************* |
663 | * Handle escapes * |
664 | *************************************************/ |
665 | |
666 | /* This function is called when a \ has been encountered. It either returns a |
667 | positive value for a simple escape such as \n, or a negative value which |
668 | encodes one of the more complicated things such as \d. When UTF-8 is enabled, |
669 | a positive value greater than 255 may be returned. On entry, ptr is pointing at |
670 | the \. On exit, it is on the final character of the escape sequence. |
671 | |
672 | Arguments: |
673 | ptrptr points to the pattern position pointer |
674 | errorptr points to the pointer to the error message |
675 | bracount number of previous extracting brackets |
676 | options the options bits |
677 | isclass TRUE if inside a character class |
678 | |
679 | Returns: zero or positive => a data character |
680 | negative => a special escape sequence |
681 | on error, errorptr is set |
682 | */ |
683 | |
684 | static int |
685 | check_escape(const uschar **ptrptr, const char **errorptr, int bracount, |
686 | int options, BOOL isclass) |
687 | { |
688 | const uschar *ptr = *ptrptr; |
689 | int c, i; |
690 | |
691 | /* If backslash is at the end of the pattern, it's an error. */ |
692 | |
693 | c = *(++ptr); |
694 | if (c == 0) *errorptr = ERR1; |
695 | |
696 | /* Digits or letters may have special meaning; all others are literals. */ |
697 | |
698 | else if (c < '0' || c > 'z') {} |
699 | |
700 | /* Do an initial lookup in a table. A non-zero result is something that can be |
701 | returned immediately. Otherwise further processing may be required. */ |
702 | |
703 | else if ((i = escapes[c - '0']) != 0) c = i; |
704 | |
705 | /* Escapes that need further processing, or are illegal. */ |
706 | |
707 | else |
708 | { |
709 | const uschar *oldptr; |
710 | switch (c) |
711 | { |
712 | /* A number of Perl escapes are not handled by PCRE. We give an explicit |
713 | error. */ |
714 | |
715 | case 'l': |
716 | case 'L': |
717 | case 'N': |
718 | case 'p': |
719 | case 'P': |
720 | case 'u': |
721 | case 'U': |
722 | case 'X': |
723 | *errorptr = ERR37; |
724 | break; |
725 | |
726 | /* The handling of escape sequences consisting of a string of digits |
727 | starting with one that is not zero is not straightforward. By experiment, |
728 | the way Perl works seems to be as follows: |
729 | |
730 | Outside a character class, the digits are read as a decimal number. If the |
731 | number is less than 10, or if there are that many previous extracting |
732 | left brackets, then it is a back reference. Otherwise, up to three octal |
733 | digits are read to form an escaped byte. Thus \123 is likely to be octal |
734 | 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal |
735 | value is greater than 377, the least significant 8 bits are taken. Inside a |
736 | character class, \ followed by a digit is always an octal number. */ |
737 | |
738 | case '1': case '2': case '3': case '4': case '5': |
739 | case '6': case '7': case '8': case '9': |
740 | |
741 | if (!isclass) |
742 | { |
743 | oldptr = ptr; |
744 | c -= '0'; |
745 | while ((digitab[ptr[1]] & ctype_digit) != 0) |
746 | c = c * 10 + *(++ptr) - '0'; |
747 | if (c < 10 || c <= bracount) |
748 | { |
749 | c = -(ESC_REF + c); |
750 | break; |
751 | } |
752 | ptr = oldptr; /* Put the pointer back and fall through */ |
753 | } |
754 | |
755 | /* Handle an octal number following \. If the first digit is 8 or 9, Perl |
756 | generates a binary zero byte and treats the digit as a following literal. |
757 | Thus we have to pull back the pointer by one. */ |
758 | |
759 | if ((c = *ptr) >= '8') |
760 | { |
761 | ptr--; |
762 | c = 0; |
763 | break; |
764 | } |
765 | |
766 | /* \0 always starts an octal number, but we may drop through to here with a |
767 | larger first octal digit. */ |
768 | |
769 | case '0': |
770 | c -= '0'; |
771 | while(i++ < 2 && ptr[1] >= '0' && ptr[1] <= '7') |
772 | c = c * 8 + *(++ptr) - '0'; |
773 | c &= 255; /* Take least significant 8 bits */ |
774 | break; |
775 | |
776 | /* \x is complicated when UTF-8 is enabled. \x{ddd} is a character number |
777 | which can be greater than 0xff, but only if the ddd are hex digits. */ |
778 | |
779 | case 'x': |
780 | #ifdef SUPPORT_UTF8 |
781 | if (ptr[1] == '{' && (options & PCRE_UTF8) != 0) |
782 | { |
783 | const uschar *pt = ptr + 2; |
784 | register int count = 0; |
785 | c = 0; |
786 | while ((digitab[*pt] & ctype_xdigit) != 0) |
787 | { |
788 | int cc = *pt++; |
789 | if (cc >= 'a') cc -= 32; /* Convert to upper case */ |
790 | count++; |
791 | c = c * 16 + cc - ((cc < 'A')? '0' : ('A' - 10)); |
792 | } |
793 | if (*pt == '}') |
794 | { |
795 | if (c < 0 || count > 8) *errorptr = ERR34; |
796 | ptr = pt; |
797 | break; |
798 | } |
799 | /* If the sequence of hex digits does not end with '}', then we don't |
800 | recognize this construct; fall through to the normal \x handling. */ |
801 | } |
802 | #endif |
803 | |
804 | /* Read just a single hex char */ |
805 | |
806 | c = 0; |
807 | while (i++ < 2 && (digitab[ptr[1]] & ctype_xdigit) != 0) |
808 | { |
809 | int cc; /* Some compilers don't like ++ */ |
810 | cc = *(++ptr); /* in initializers */ |
811 | if (cc >= 'a') cc -= 32; /* Convert to upper case */ |
812 | c = c * 16 + cc - ((cc < 'A')? '0' : ('A' - 10)); |
813 | } |
814 | break; |
815 | |
816 | /* Other special escapes not starting with a digit are straightforward */ |
817 | |
818 | case 'c': |
819 | c = *(++ptr); |
820 | if (c == 0) |
821 | { |
822 | *errorptr = ERR2; |
823 | return 0; |
824 | } |
825 | |
826 | /* A letter is upper-cased; then the 0x40 bit is flipped. This coding |
827 | is ASCII-specific, but then the whole concept of \cx is ASCII-specific. */ |
828 | |
829 | if (c >= 'a' && c <= 'z') c -= 32; |
830 | c ^= 0x40; |
831 | break; |
832 | |
833 | /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any |
834 | other alphameric following \ is an error if PCRE_EXTRA was set; otherwise, |
835 | for Perl compatibility, it is a literal. This code looks a bit odd, but |
836 | there used to be some cases other than the default, and there may be again |
837 | in future, so I haven't "optimized" it. */ |
838 | |
839 | default: |
840 | if ((options & PCRE_EXTRA) != 0) switch(c) |
841 | { |
842 | default: |
843 | *errorptr = ERR3; |
844 | break; |
845 | } |
846 | break; |
847 | } |
848 | } |
849 | |
850 | *ptrptr = ptr; |
851 | return c; |
852 | } |
853 | |
854 | |
855 | |
856 | /************************************************* |
857 | * Check for counted repeat * |
858 | *************************************************/ |
859 | |
860 | /* This function is called when a '{' is encountered in a place where it might |
861 | start a quantifier. It looks ahead to see if it really is a quantifier or not. |
862 | It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd} |
863 | where the ddds are digits. |
864 | |
865 | Arguments: |
866 | p pointer to the first char after '{' |
867 | |
868 | Returns: TRUE or FALSE |
869 | */ |
870 | |
871 | static BOOL |
872 | is_counted_repeat(const uschar *p) |
873 | { |
874 | if ((digitab[*p++] && ctype_digit) == 0) return FALSE; |
875 | while ((digitab[*p] & ctype_digit) != 0) p++; |
876 | if (*p == '}') return TRUE; |
877 | |
878 | if (*p++ != ',') return FALSE; |
879 | if (*p == '}') return TRUE; |
880 | |
881 | if ((digitab[*p++] && ctype_digit) == 0) return FALSE; |
882 | while ((digitab[*p] & ctype_digit) != 0) p++; |
883 | |
884 | return (*p == '}'); |
885 | } |
886 | |
887 | |
888 | |
889 | /************************************************* |
890 | * Read repeat counts * |
891 | *************************************************/ |
892 | |
893 | /* Read an item of the form {n,m} and return the values. This is called only |
894 | after is_counted_repeat() has confirmed that a repeat-count quantifier exists, |
895 | so the syntax is guaranteed to be correct, but we need to check the values. |
896 | |
897 | Arguments: |
898 | p pointer to first char after '{' |
899 | minp pointer to int for min |
900 | maxp pointer to int for max |
901 | returned as -1 if no max |
902 | errorptr points to pointer to error message |
903 | |
904 | Returns: pointer to '}' on success; |
905 | current ptr on error, with errorptr set |
906 | */ |
907 | |
908 | static const uschar * |
909 | read_repeat_counts(const uschar *p, int *minp, int *maxp, const char **errorptr) |
910 | { |
911 | int min = 0; |
912 | int max = -1; |
913 | |
914 | while ((digitab[*p] & ctype_digit) != 0) min = min * 10 + *p++ - '0'; |
915 | |
916 | if (*p == '}') max = min; else |
917 | { |
918 | if (*(++p) != '}') |
919 | { |
920 | max = 0; |
921 | while((digitab[*p] & ctype_digit) != 0) max = max * 10 + *p++ - '0'; |
922 | if (max < min) |
923 | { |
924 | *errorptr = ERR4; |
925 | return p; |
926 | } |
927 | } |
928 | } |
929 | |
930 | /* Do paranoid checks, then fill in the required variables, and pass back the |
931 | pointer to the terminating '}'. */ |
932 | |
933 | if (min > 65535 || max > 65535) |
934 | *errorptr = ERR5; |
935 | else |
936 | { |
937 | *minp = min; |
938 | *maxp = max; |
939 | } |
940 | return p; |
941 | } |
942 | |
943 | |
944 | |
945 | /************************************************* |
946 | * Find first significant op code * |
947 | *************************************************/ |
948 | |
949 | /* This is called by several functions that scan a compiled expression looking |
950 | for a fixed first character, or an anchoring op code etc. It skips over things |
951 | that do not influence this. For some calls, a change of option is important. |
952 | |
953 | Arguments: |
954 | code pointer to the start of the group |
955 | options pointer to external options |
956 | optbit the option bit whose changing is significant, or |
957 | zero if none are |
958 | |
959 | Returns: pointer to the first significant opcode |
960 | */ |
961 | |
962 | static const uschar* |
963 | first_significant_code(const uschar *code, int *options, int optbit) |
964 | { |
965 | for (;;) |
966 | { |
967 | switch ((int)*code) |
968 | { |
969 | case OP_OPT: |
970 | if (optbit > 0 && ((int)code[1] & optbit) != (*options & optbit)) |
971 | *options = (int)code[1]; |
972 | code += 2; |
973 | break; |
974 | |
975 | case OP_ASSERT_NOT: |
976 | case OP_ASSERTBACK: |
977 | case OP_ASSERTBACK_NOT: |
978 | do code += GET(code, 1); while (*code == OP_ALT); |
979 | /* Fall through */ |
980 | |
981 | case OP_CALLOUT: |
982 | case OP_CREF: |
983 | case OP_BRANUMBER: |
984 | case OP_WORD_BOUNDARY: |
985 | case OP_NOT_WORD_BOUNDARY: |
986 | code += OP_lengths[*code]; |
987 | break; |
988 | |
989 | default: |
990 | return code; |
991 | } |
992 | } |
993 | /* Control never reaches here */ |
994 | } |
995 | |
996 | |
997 | |
998 | |
999 | /************************************************* |
1000 | * Find the fixed length of a pattern * |
1001 | *************************************************/ |
1002 | |
1003 | /* Scan a pattern and compute the fixed length of subject that will match it, |
1004 | if the length is fixed. This is needed for dealing with backward assertions. |
1005 | In UTF8 mode, the result is in characters rather than bytes. |
1006 | |
1007 | Arguments: |
1008 | code points to the start of the pattern (the bracket) |
1009 | options the compiling options |
1010 | |
1011 | Returns: the fixed length, or -1 if there is no fixed length, |
1012 | or -2 if \C was encountered |
1013 | */ |
1014 | |
1015 | static int |
1016 | find_fixedlength(uschar *code, int options) |
1017 | { |
1018 | int length = -1; |
1019 | |
1020 | register int branchlength = 0; |
1021 | register uschar *cc = code + 1 + LINK_SIZE; |
1022 | |
1023 | /* Scan along the opcodes for this branch. If we get to the end of the |
1024 | branch, check the length against that of the other branches. */ |
1025 | |
1026 | for (;;) |
1027 | { |
1028 | int d; |
1029 | register int op = *cc; |
1030 | if (op >= OP_BRA) op = OP_BRA; |
1031 | |
1032 | switch (op) |
1033 | { |
1034 | case OP_BRA: |
1035 | case OP_ONCE: |
1036 | case OP_COND: |
1037 | d = find_fixedlength(cc, options); |
1038 | if (d < 0) return d; |
1039 | branchlength += d; |
1040 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1041 | cc += 1 + LINK_SIZE; |
1042 | break; |
1043 | |
1044 | /* Reached end of a branch; if it's a ket it is the end of a nested |
1045 | call. If it's ALT it is an alternation in a nested call. If it is |
1046 | END it's the end of the outer call. All can be handled by the same code. */ |
1047 | |
1048 | case OP_ALT: |
1049 | case OP_KET: |
1050 | case OP_KETRMAX: |
1051 | case OP_KETRMIN: |
1052 | case OP_END: |
1053 | if (length < 0) length = branchlength; |
1054 | else if (length != branchlength) return -1; |
1055 | if (*cc != OP_ALT) return length; |
1056 | cc += 1 + LINK_SIZE; |
1057 | branchlength = 0; |
1058 | break; |
1059 | |
1060 | /* Skip over assertive subpatterns */ |
1061 | |
1062 | case OP_ASSERT: |
1063 | case OP_ASSERT_NOT: |
1064 | case OP_ASSERTBACK: |
1065 | case OP_ASSERTBACK_NOT: |
1066 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1067 | /* Fall through */ |
1068 | |
1069 | /* Skip over things that don't match chars */ |
1070 | |
1071 | case OP_REVERSE: |
1072 | case OP_BRANUMBER: |
1073 | case OP_CREF: |
1074 | case OP_OPT: |
1075 | case OP_CALLOUT: |
1076 | case OP_SOD: |
1077 | case OP_SOM: |
1078 | case OP_EOD: |
1079 | case OP_EODN: |
1080 | case OP_CIRC: |
1081 | case OP_DOLL: |
1082 | case OP_NOT_WORD_BOUNDARY: |
1083 | case OP_WORD_BOUNDARY: |
1084 | cc += OP_lengths[*cc]; |
1085 | break; |
1086 | |
1087 | /* Handle char strings. In UTF-8 mode we must count characters, not bytes. |
1088 | This requires a scan of the string, unfortunately. We assume valid UTF-8 |
1089 | strings, so all we do is reduce the length by one for every byte whose bits |
1090 | are 10xxxxxx. */ |
1091 | |
1092 | case OP_CHARS: |
1093 | branchlength += *(++cc); |
1094 | #ifdef SUPPORT_UTF8 |
1095 | if ((options & PCRE_UTF8) != 0) |
1096 | for (d = 1; d <= *cc; d++) |
1097 | if ((cc[d] & 0xc0) == 0x80) branchlength--; |
1098 | #endif |
1099 | cc += *cc + 1; |
1100 | break; |
1101 | |
1102 | /* Handle exact repetitions. The count is already in characters, but we |
1103 | need to skip over a multibyte character in UTF8 mode. */ |
1104 | |
1105 | case OP_EXACT: |
1106 | branchlength += GET2(cc,1); |
1107 | cc += 4; |
1108 | #ifdef SUPPORT_UTF8 |
1109 | if ((options & PCRE_UTF8) != 0) |
1110 | { |
1111 | while((*cc & 0x80) == 0x80) cc++; |
1112 | } |
1113 | #endif |
1114 | break; |
1115 | |
1116 | case OP_TYPEEXACT: |
1117 | branchlength += GET2(cc,1); |
1118 | cc += 4; |
1119 | break; |
1120 | |
1121 | /* Handle single-char matchers */ |
1122 | |
1123 | case OP_NOT_DIGIT: |
1124 | case OP_DIGIT: |
1125 | case OP_NOT_WHITESPACE: |
1126 | case OP_WHITESPACE: |
1127 | case OP_NOT_WORDCHAR: |
1128 | case OP_WORDCHAR: |
1129 | case OP_ANY: |
1130 | branchlength++; |
1131 | cc++; |
1132 | break; |
1133 | |
1134 | /* The single-byte matcher isn't allowed */ |
1135 | |
1136 | case OP_ANYBYTE: |
1137 | return -2; |
1138 | |
1139 | /* Check a class for variable quantification */ |
1140 | |
1141 | #ifdef SUPPORT_UTF8 |
1142 | case OP_XCLASS: |
1143 | cc += GET(cc, 1) - 33; |
1144 | /* Fall through */ |
1145 | #endif |
1146 | |
1147 | case OP_CLASS: |
1148 | case OP_NCLASS: |
1149 | cc += 33; |
1150 | |
1151 | switch (*cc) |
1152 | { |
1153 | case OP_CRSTAR: |
1154 | case OP_CRMINSTAR: |
1155 | case OP_CRQUERY: |
1156 | case OP_CRMINQUERY: |
1157 | return -1; |
1158 | |
1159 | case OP_CRRANGE: |
1160 | case OP_CRMINRANGE: |
1161 | if (GET2(cc,1) != GET2(cc,3)) return -1; |
1162 | branchlength += GET2(cc,1); |
1163 | cc += 5; |
1164 | break; |
1165 | |
1166 | default: |
1167 | branchlength++; |
1168 | } |
1169 | break; |
1170 | |
1171 | /* Anything else is variable length */ |
1172 | |
1173 | default: |
1174 | return -1; |
1175 | } |
1176 | } |
1177 | /* Control never gets here */ |
1178 | } |
1179 | |
1180 | |
1181 | |
1182 | |
1183 | /************************************************* |
1184 | * Scan compiled regex for numbered bracket * |
1185 | *************************************************/ |
1186 | |
1187 | /* This little function scans through a compiled pattern until it finds a |
1188 | capturing bracket with the given number. |
1189 | |
1190 | Arguments: |
1191 | code points to start of expression |
1192 | utf8 TRUE in UTF-8 mode |
1193 | number the required bracket number |
1194 | |
1195 | Returns: pointer to the opcode for the bracket, or NULL if not found |
1196 | */ |
1197 | |
1198 | static const uschar * |
1199 | find_bracket(const uschar *code, BOOL utf8, int number) |
1200 | { |
1201 | #ifndef SUPPORT_UTF8 |
1202 | utf8 = utf8; /* Stop pedantic compilers complaining */ |
1203 | #endif |
1204 | |
1205 | for (;;) |
1206 | { |
1207 | register int c = *code; |
1208 | if (c == OP_END) return NULL; |
1209 | else if (c == OP_CHARS) code += code[1] + OP_lengths[c]; |
1210 | else if (c > OP_BRA) |
1211 | { |
1212 | int n = c - OP_BRA; |
1213 | if (n > EXTRACT_BASIC_MAX) n = GET2(code, 2+LINK_SIZE); |
1214 | if (n == number) return (uschar *)code; |
1215 | code += OP_lengths[OP_BRA]; |
1216 | } |
1217 | else |
1218 | { |
1219 | code += OP_lengths[c]; |
1220 | |
1221 | /* In UTF-8 mode, opcodes that are followed by a character may be followed |
1222 | by a multi-byte character. The length in the table is a minimum, so we have |
1223 | to scan along to skip the extra characters. All opcodes are less than 128, |
1224 | so we can use relatively efficient code. */ |
1225 | |
1226 | #ifdef SUPPORT_UTF8 |
1227 | if (utf8) switch(c) |
1228 | { |
1229 | case OP_EXACT: |
1230 | case OP_UPTO: |
1231 | case OP_MINUPTO: |
1232 | case OP_STAR: |
1233 | case OP_MINSTAR: |
1234 | case OP_PLUS: |
1235 | case OP_MINPLUS: |
1236 | case OP_QUERY: |
1237 | case OP_MINQUERY: |
1238 | while ((*code & 0xc0) == 0x80) code++; |
1239 | break; |
1240 | } |
1241 | #endif |
1242 | } |
1243 | } |
1244 | } |
1245 | |
1246 | |
1247 | |
1248 | /************************************************* |
1249 | * Scan compiled branch for non-emptiness * |
1250 | *************************************************/ |
1251 | |
1252 | /* This function scans through a branch of a compiled pattern to see whether it |
1253 | can match the empty string or not. It is called only from could_be_empty() |
1254 | below. Note that first_significant_code() skips over assertions. If we hit an |
1255 | unclosed bracket, we return "empty" - this means we've struck an inner bracket |
1256 | whose current branch will already have been scanned. |
1257 | |
1258 | Arguments: |
1259 | code points to start of search |
1260 | endcode points to where to stop |
1261 | utf8 TRUE if in UTF8 mode |
1262 | |
1263 | Returns: TRUE if what is matched could be empty |
1264 | */ |
1265 | |
1266 | static BOOL |
1267 | could_be_empty_branch(const uschar *code, const uschar *endcode, BOOL utf8) |
1268 | { |
1269 | register int c; |
1270 | for (code = first_significant_code(code + 1 + LINK_SIZE, NULL, 0); |
1271 | code < endcode; |
1272 | code = first_significant_code(code + OP_lengths[c], NULL, 0)) |
1273 | { |
1274 | const uschar *ccode; |
1275 | |
1276 | c = *code; |
1277 | |
1278 | if (c >= OP_BRA) |
1279 | { |
1280 | BOOL empty_branch; |
1281 | if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */ |
1282 | |
1283 | /* Scan a closed bracket */ |
1284 | |
1285 | empty_branch = FALSE; |
1286 | do |
1287 | { |
1288 | if (!empty_branch && could_be_empty_branch(code, endcode, utf8)) |
1289 | empty_branch = TRUE; |
1290 | code += GET(code, 1); |
1291 | } |
1292 | while (*code == OP_ALT); |
1293 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
1294 | code += 1 + LINK_SIZE; |
1295 | c = *code; |
1296 | } |
1297 | |
1298 | else switch (c) |
1299 | { |
1300 | /* Check for quantifiers after a class */ |
1301 | |
1302 | #ifdef SUPPORT_UTF8 |
1303 | case OP_XCLASS: |
1304 | ccode = code + GET(code, 1); |
1305 | goto CHECK_CLASS_REPEAT; |
1306 | #endif |
1307 | |
1308 | case OP_CLASS: |
1309 | case OP_NCLASS: |
1310 | ccode = code + 33; |
1311 | |
1312 | #ifdef SUPPORT_UTF8 |
1313 | CHECK_CLASS_REPEAT: |
1314 | #endif |
1315 | |
1316 | switch (*ccode) |
1317 | { |
1318 | case OP_CRSTAR: /* These could be empty; continue */ |
1319 | case OP_CRMINSTAR: |
1320 | case OP_CRQUERY: |
1321 | case OP_CRMINQUERY: |
1322 | break; |
1323 | |
1324 | default: /* Non-repeat => class must match */ |
1325 | case OP_CRPLUS: /* These repeats aren't empty */ |
1326 | case OP_CRMINPLUS: |
1327 | return FALSE; |
1328 | |
1329 | case OP_CRRANGE: |
1330 | case OP_CRMINRANGE: |
1331 | if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */ |
1332 | break; |
1333 | } |
1334 | break; |
1335 | |
1336 | /* Opcodes that must match a character */ |
1337 | |
1338 | case OP_NOT_DIGIT: |
1339 | case OP_DIGIT: |
1340 | case OP_NOT_WHITESPACE: |
1341 | case OP_WHITESPACE: |
1342 | case OP_NOT_WORDCHAR: |
1343 | case OP_WORDCHAR: |
1344 | case OP_ANY: |
1345 | case OP_ANYBYTE: |
1346 | case OP_CHARS: |
1347 | case OP_NOT: |
1348 | case OP_PLUS: |
1349 | case OP_MINPLUS: |
1350 | case OP_EXACT: |
1351 | case OP_NOTPLUS: |
1352 | case OP_NOTMINPLUS: |
1353 | case OP_NOTEXACT: |
1354 | case OP_TYPEPLUS: |
1355 | case OP_TYPEMINPLUS: |
1356 | case OP_TYPEEXACT: |
1357 | return FALSE; |
1358 | |
1359 | /* End of branch */ |
1360 | |
1361 | case OP_KET: |
1362 | case OP_KETRMAX: |
1363 | case OP_KETRMIN: |
1364 | case OP_ALT: |
1365 | return TRUE; |
1366 | |
1367 | /* In UTF-8 mode, STAR, MINSTAR, QUERY, MINQUERY, UPTO, and MINUPTO may be |
1368 | followed by a multibyte character */ |
1369 | |
1370 | #ifdef SUPPORT_UTF8 |
1371 | case OP_STAR: |
1372 | case OP_MINSTAR: |
1373 | case OP_QUERY: |
1374 | case OP_MINQUERY: |
1375 | case OP_UPTO: |
1376 | case OP_MINUPTO: |
1377 | if (utf8) while ((code[2] & 0xc0) == 0x80) code++; |
1378 | break; |
1379 | #endif |
1380 | } |
1381 | } |
1382 | |
1383 | return TRUE; |
1384 | } |
1385 | |
1386 | |
1387 | |
1388 | /************************************************* |
1389 | * Scan compiled regex for non-emptiness * |
1390 | *************************************************/ |
1391 | |
1392 | /* This function is called to check for left recursive calls. We want to check |
1393 | the current branch of the current pattern to see if it could match the empty |
1394 | string. If it could, we must look outwards for branches at other levels, |
1395 | stopping when we pass beyond the bracket which is the subject of the recursion. |
1396 | |
1397 | Arguments: |
1398 | code points to start of the recursion |
1399 | endcode points to where to stop (current RECURSE item) |
1400 | bcptr points to the chain of current (unclosed) branch starts |
1401 | utf8 TRUE if in UTF-8 mode |
1402 | |
1403 | Returns: TRUE if what is matched could be empty |
1404 | */ |
1405 | |
1406 | static BOOL |
1407 | could_be_empty(const uschar *code, const uschar *endcode, branch_chain *bcptr, |
1408 | BOOL utf8) |
1409 | { |
1410 | while (bcptr != NULL && bcptr->current >= code) |
1411 | { |
1412 | if (!could_be_empty_branch(bcptr->current, endcode, utf8)) return FALSE; |
1413 | bcptr = bcptr->outer; |
1414 | } |
1415 | return TRUE; |
1416 | } |
1417 | |
1418 | |
1419 | |
1420 | /************************************************* |
1421 | * Check for POSIX class syntax * |
1422 | *************************************************/ |
1423 | |
1424 | /* This function is called when the sequence "[:" or "[." or "[=" is |
1425 | encountered in a character class. It checks whether this is followed by an |
1426 | optional ^ and then a sequence of letters, terminated by a matching ":]" or |
1427 | ".]" or "=]". |
1428 | |
1429 | Argument: |
1430 | ptr pointer to the initial [ |
1431 | endptr where to return the end pointer |
1432 | cd pointer to compile data |
1433 | |
1434 | Returns: TRUE or FALSE |
1435 | */ |
1436 | |
1437 | static BOOL |
1438 | check_posix_syntax(const uschar *ptr, const uschar **endptr, compile_data *cd) |
1439 | { |
1440 | int terminator; /* Don't combine these lines; the Solaris cc */ |
1441 | terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */ |
1442 | if (*(++ptr) == '^') ptr++; |
1443 | while ((cd->ctypes[*ptr] & ctype_letter) != 0) ptr++; |
1444 | if (*ptr == terminator && ptr[1] == ']') |
1445 | { |
1446 | *endptr = ptr; |
1447 | return TRUE; |
1448 | } |
1449 | return FALSE; |
1450 | } |
1451 | |
1452 | |
1453 | |
1454 | |
1455 | /************************************************* |
1456 | * Check POSIX class name * |
1457 | *************************************************/ |
1458 | |
1459 | /* This function is called to check the name given in a POSIX-style class entry |
1460 | such as [:alnum:]. |
1461 | |
1462 | Arguments: |
1463 | ptr points to the first letter |
1464 | len the length of the name |
1465 | |
1466 | Returns: a value representing the name, or -1 if unknown |
1467 | */ |
1468 | |
1469 | static int |
1470 | check_posix_name(const uschar *ptr, int len) |
1471 | { |
1472 | register int yield = 0; |
1473 | while (posix_name_lengths[yield] != 0) |
1474 | { |
1475 | if (len == posix_name_lengths[yield] && |
1476 | strncmp((const char *)ptr, posix_names[yield], len) == 0) return yield; |
1477 | yield++; |
1478 | } |
1479 | return -1; |
1480 | } |
1481 | |
1482 | |
1483 | |
1484 | |
1485 | /************************************************* |
1486 | * Compile one branch * |
1487 | *************************************************/ |
1488 | |
1489 | /* Scan the pattern, compiling it into the code vector. If the options are |
1490 | changed during the branch, the pointer is used to change the external options |
1491 | bits. |
1492 | |
1493 | Arguments: |
1494 | optionsptr pointer to the option bits |
1495 | brackets points to number of extracting brackets used |
1496 | code points to the pointer to the current code point |
1497 | ptrptr points to the current pattern pointer |
1498 | errorptr points to pointer to error message |
1499 | firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE) |
1500 | reqbyteptr set to the last literal character required, else < 0 |
1501 | bcptr points to current branch chain |
1502 | cd contains pointers to tables etc. |
1503 | |
1504 | Returns: TRUE on success |
1505 | FALSE, with *errorptr set on error |
1506 | */ |
1507 | |
1508 | static BOOL |
1509 | compile_branch(int *optionsptr, int *brackets, uschar **codeptr, |
1510 | const uschar **ptrptr, const char **errorptr, int *firstbyteptr, |
1511 | int *reqbyteptr, branch_chain *bcptr, compile_data *cd) |
1512 | { |
1513 | int repeat_type, op_type; |
1514 | int repeat_min = 0, repeat_max = 0; /* To please picky compilers */ |
1515 | int bravalue = 0; |
1516 | int length; |
1517 | int greedy_default, greedy_non_default; |
1518 | int firstbyte, reqbyte; |
1519 | int zeroreqbyte, zerofirstbyte; |
1520 | int req_caseopt, reqvary, tempreqvary; |
1521 | int condcount = 0; |
1522 | int options = *optionsptr; |
1523 | register int c; |
1524 | register uschar *code = *codeptr; |
1525 | uschar *tempcode; |
1526 | BOOL inescq = FALSE; |
1527 | BOOL groupsetfirstbyte = FALSE; |
1528 | const uschar *ptr = *ptrptr; |
1529 | const uschar *tempptr; |
1530 | uschar *previous = NULL; |
1531 | uschar class[32]; |
1532 | |
1533 | #ifdef SUPPORT_UTF8 |
1534 | BOOL class_utf8; |
1535 | BOOL utf8 = (options & PCRE_UTF8) != 0; |
1536 | uschar *class_utf8data; |
1537 | uschar utf8_char[6]; |
1538 | #else |
1539 | BOOL utf8 = FALSE; |
1540 | #endif |
1541 | |
1542 | /* Set up the default and non-default settings for greediness */ |
1543 | |
1544 | greedy_default = ((options & PCRE_UNGREEDY) != 0); |
1545 | greedy_non_default = greedy_default ^ 1; |
1546 | |
1547 | /* Initialize no first char, no required char. REQ_UNSET means "no char |
1548 | matching encountered yet". It gets changed to REQ_NONE if we hit something that |
1549 | matches a non-fixed char first char; reqbyte just remains unset if we never |
1550 | find one. |
1551 | |
1552 | When we hit a repeat whose minimum is zero, we may have to adjust these values |
1553 | to take the zero repeat into account. This is implemented by setting them to |
1554 | zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual |
1555 | item types that can be repeated set these backoff variables appropriately. */ |
1556 | |
1557 | firstbyte = reqbyte = zerofirstbyte = zeroreqbyte = REQ_UNSET; |
1558 | |
1559 | /* The variable req_caseopt contains either the REQ_CASELESS value or zero, |
1560 | according to the current setting of the caseless flag. REQ_CASELESS is a bit |
1561 | value > 255. It is added into the firstbyte or reqbyte variables to record the |
1562 | case status of the value. */ |
1563 | |
1564 | req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0; |
1565 | |
1566 | /* Switch on next character until the end of the branch */ |
1567 | |
1568 | for (;; ptr++) |
1569 | { |
1570 | BOOL negate_class; |
1571 | BOOL possessive_quantifier; |
1572 | int class_charcount; |
1573 | int class_lastchar; |
1574 | int newoptions; |
1575 | int recno; |
1576 | int skipbytes; |
1577 | int subreqbyte; |
1578 | int subfirstbyte; |
1579 | |
1580 | c = *ptr; |
1581 | if (inescq && c != 0) goto NORMAL_CHAR; |
1582 | |
1583 | if ((options & PCRE_EXTENDED) != 0) |
1584 | { |
1585 | if ((cd->ctypes[c] & ctype_space) != 0) continue; |
1586 | if (c == '#') |
1587 | { |
1588 | /* The space before the ; is to avoid a warning on a silly compiler |
1589 | on the Macintosh. */ |
1590 | while ((c = *(++ptr)) != 0 && c != NEWLINE) ; |
1591 | if (c != 0) continue; /* Else fall through to handle end of string */ |
1592 | } |
1593 | } |
1594 | |
1595 | switch(c) |
1596 | { |
1597 | /* The branch terminates at end of string, |, or ). */ |
1598 | |
1599 | case 0: |
1600 | case '|': |
1601 | case ')': |
1602 | *firstbyteptr = firstbyte; |
1603 | *reqbyteptr = reqbyte; |
1604 | *codeptr = code; |
1605 | *ptrptr = ptr; |
1606 | return TRUE; |
1607 | |
1608 | /* Handle single-character metacharacters. In multiline mode, ^ disables |
1609 | the setting of any following char as a first character. */ |
1610 | |
1611 | case '^': |
1612 | if ((options & PCRE_MULTILINE) != 0) |
1613 | { |
1614 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
1615 | } |
1616 | previous = NULL; |
1617 | *code++ = OP_CIRC; |
1618 | break; |
1619 | |
1620 | case '$': |
1621 | previous = NULL; |
1622 | *code++ = OP_DOLL; |
1623 | break; |
1624 | |
1625 | /* There can never be a first char if '.' is first, whatever happens about |
1626 | repeats. The value of reqbyte doesn't change either. */ |
1627 | |
1628 | case '.': |
1629 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
1630 | zerofirstbyte = firstbyte; |
1631 | zeroreqbyte = reqbyte; |
1632 | previous = code; |
1633 | *code++ = OP_ANY; |
1634 | break; |
1635 | |
1636 | /* Character classes. If the included characters are all < 255 in value, we |
1637 | build a 32-byte bitmap of the permitted characters, except in the special |
1638 | case where there is only one such character. For negated classes, we build |
1639 | the map as usual, then invert it at the end. However, we use a different |
1640 | opcode so that data characters > 255 can be handled correctly. |
1641 | |
1642 | If the class contains characters outside the 0-255 range, a different |
1643 | opcode is compiled. It may optionally have a bit map for characters < 256, |
1644 | but those above are are explicitly listed afterwards. A flag byte tells |
1645 | whether the bitmap is present, and whether this is a negated class or not. |
1646 | */ |
1647 | |
1648 | case '[': |
1649 | previous = code; |
1650 | |
1651 | /* PCRE supports POSIX class stuff inside a class. Perl gives an error if |
1652 | they are encountered at the top level, so we'll do that too. */ |
1653 | |
1654 | if ((ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') && |
1655 | check_posix_syntax(ptr, &tempptr, cd)) |
1656 | { |
1657 | *errorptr = (ptr[1] == ':')? ERR13 : ERR31; |
1658 | goto FAILED; |
1659 | } |
1660 | |
1661 | /* If the first character is '^', set the negation flag and skip it. */ |
1662 | |
1663 | if ((c = *(++ptr)) == '^') |
1664 | { |
1665 | negate_class = TRUE; |
1666 | c = *(++ptr); |
1667 | } |
1668 | else |
1669 | { |
1670 | negate_class = FALSE; |
1671 | } |
1672 | |
1673 | /* Keep a count of chars with values < 256 so that we can optimize the case |
1674 | of just a single character (as long as it's < 256). For higher valued UTF-8 |
1675 | characters, we don't yet do any optimization. */ |
1676 | |
1677 | class_charcount = 0; |
1678 | class_lastchar = -1; |
1679 | |
1680 | #ifdef SUPPORT_UTF8 |
1681 | class_utf8 = FALSE; /* No chars >= 256 */ |
1682 | class_utf8data = code + LINK_SIZE + 34; /* For UTF-8 items */ |
1683 | #endif |
1684 | |
1685 | /* Initialize the 32-char bit map to all zeros. We have to build the |
1686 | map in a temporary bit of store, in case the class contains only 1 |
1687 | character (< 256), because in that case the compiled code doesn't use the |
1688 | bit map. */ |
1689 | |
1690 | memset(class, 0, 32 * sizeof(uschar)); |
1691 | |
1692 | /* Process characters until ] is reached. By writing this as a "do" it |
1693 | means that an initial ] is taken as a data character. The first pass |
1694 | through the regex checked the overall syntax, so we don't need to be very |
1695 | strict here. At the start of the loop, c contains the first byte of the |
1696 | character. */ |
1697 | |
1698 | do |
1699 | { |
1700 | #ifdef SUPPORT_UTF8 |
1701 | if (utf8 && c > 127) |
1702 | { /* Braces are required because the */ |
1703 | GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */ |
1704 | } |
1705 | #endif |
1706 | |
1707 | /* Inside \Q...\E everything is literal except \E */ |
1708 | |
1709 | if (inescq) |
1710 | { |
1711 | if (c == '\\' && ptr[1] == 'E') |
1712 | { |
1713 | inescq = FALSE; |
1714 | ptr++; |
1715 | continue; |
1716 | } |
1717 | else goto LONE_SINGLE_CHARACTER; |
1718 | } |
1719 | |
1720 | /* Handle POSIX class names. Perl allows a negation extension of the |
1721 | form [:^name:]. A square bracket that doesn't match the syntax is |
1722 | treated as a literal. We also recognize the POSIX constructions |
1723 | [.ch.] and [=ch=] ("collating elements") and fault them, as Perl |
1724 | 5.6 and 5.8 do. */ |
1725 | |
1726 | if (c == '[' && |
1727 | (ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') && |
1728 | check_posix_syntax(ptr, &tempptr, cd)) |
1729 | { |
1730 | BOOL local_negate = FALSE; |
1731 | int posix_class, i; |
1732 | register const uschar *cbits = cd->cbits; |
1733 | |
1734 | if (ptr[1] != ':') |
1735 | { |
1736 | *errorptr = ERR31; |
1737 | goto FAILED; |
1738 | } |
1739 | |
1740 | ptr += 2; |
1741 | if (*ptr == '^') |
1742 | { |
1743 | local_negate = TRUE; |
1744 | ptr++; |
1745 | } |
1746 | |
1747 | posix_class = check_posix_name(ptr, tempptr - ptr); |
1748 | if (posix_class < 0) |
1749 | { |
1750 | *errorptr = ERR30; |
1751 | goto FAILED; |
1752 | } |
1753 | |
1754 | /* If matching is caseless, upper and lower are converted to |
1755 | alpha. This relies on the fact that the class table starts with |
1756 | alpha, lower, upper as the first 3 entries. */ |
1757 | |
1758 | if ((options & PCRE_CASELESS) != 0 && posix_class <= 2) |
1759 | posix_class = 0; |
1760 | |
1761 | /* Or into the map we are building up to 3 of the static class |
1762 | tables, or their negations. The [:blank:] class sets up the same |
1763 | chars as the [:space:] class (all white space). We remove the vertical |
1764 | white space chars afterwards. */ |
1765 | |
1766 | posix_class *= 3; |
1767 | for (i = 0; i < 3; i++) |
1768 | { |
1769 | BOOL isblank = strncmp((char *)ptr, "blank", 5) == 0; |
1770 | int taboffset = posix_class_maps[posix_class + i]; |
1771 | if (taboffset < 0) break; |
1772 | if (local_negate) |
1773 | { |
1774 | for (c = 0; c < 32; c++) class[c] |= ~cbits[c+taboffset]; |
1775 | if (isblank) class[1] |= 0x3c; |
1776 | } |
1777 | else |
1778 | { |
1779 | for (c = 0; c < 32; c++) class[c] |= cbits[c+taboffset]; |
1780 | if (isblank) class[1] &= ~0x3c; |
1781 | } |
1782 | } |
1783 | |
1784 | ptr = tempptr + 1; |
1785 | class_charcount = 10; /* Set > 1; assumes more than 1 per class */ |
1786 | continue; /* End of POSIX syntax handling */ |
1787 | } |
1788 | |
1789 | /* Backslash may introduce a single character, or it may introduce one |
1790 | of the specials, which just set a flag. Escaped items are checked for |
1791 | validity in the pre-compiling pass. The sequence \b is a special case. |
1792 | Inside a class (and only there) it is treated as backspace. Elsewhere |
1793 | it marks a word boundary. Other escapes have preset maps ready to |
1794 | or into the one we are building. We assume they have more than one |
1795 | character in them, so set class_charcount bigger than one. */ |
1796 | |
1797 | if (c == '\\') |
1798 | { |
1799 | c = check_escape(&ptr, errorptr, *brackets, options, TRUE); |
1800 | if (-c == ESC_b) c = '\b'; /* \b is backslash in a class */ |
1801 | |
1802 | if (-c == ESC_Q) /* Handle start of quoted string */ |
1803 | { |
1804 | if (ptr[1] == '\\' && ptr[2] == 'E') |
1805 | { |
1806 | ptr += 2; /* avoid empty string */ |
1807 | } |
1808 | else inescq = TRUE; |
1809 | continue; |
1810 | } |
1811 | |
1812 | else if (c < 0) |
1813 | { |
1814 | register const uschar *cbits = cd->cbits; |
1815 | class_charcount = 10; /* Greater than 1 is what matters */ |
1816 | switch (-c) |
1817 | { |
1818 | case ESC_d: |
1819 | for (c = 0; c < 32; c++) class[c] |= cbits[c+cbit_digit]; |
1820 | continue; |
1821 | |
1822 | case ESC_D: |
1823 | for (c = 0; c < 32; c++) class[c] |= ~cbits[c+cbit_digit]; |
1824 | continue; |
1825 | |
1826 | case ESC_w: |
1827 | for (c = 0; c < 32; c++) class[c] |= cbits[c+cbit_word]; |
1828 | continue; |
1829 | |
1830 | case ESC_W: |
1831 | for (c = 0; c < 32; c++) class[c] |= ~cbits[c+cbit_word]; |
1832 | continue; |
1833 | |
1834 | case ESC_s: |
1835 | for (c = 0; c < 32; c++) class[c] |= cbits[c+cbit_space]; |
1836 | class[1] &= ~0x08; /* Perl 5.004 onwards omits VT from \s */ |
1837 | continue; |
1838 | |
1839 | case ESC_S: |
1840 | for (c = 0; c < 32; c++) class[c] |= ~cbits[c+cbit_space]; |
1841 | class[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */ |
1842 | continue; |
1843 | |
1844 | /* Unrecognized escapes are faulted if PCRE is running in its |
1845 | strict mode. By default, for compatibility with Perl, they are |
1846 | treated as literals. */ |
1847 | |
1848 | default: |
1849 | if ((options & PCRE_EXTRA) != 0) |
1850 | { |
1851 | *errorptr = ERR7; |
1852 | goto FAILED; |
1853 | } |
1854 | c = *ptr; /* The final character */ |
1855 | } |
1856 | } |
1857 | |
1858 | /* Fall through if we have a single character (c >= 0). This may be |
1859 | > 256 in UTF-8 mode. */ |
1860 | |
1861 | } /* End of backslash handling */ |
1862 | |
1863 | /* A single character may be followed by '-' to form a range. However, |
1864 | Perl does not permit ']' to be the end of the range. A '-' character |
1865 | here is treated as a literal. */ |
1866 | |
1867 | if (ptr[1] == '-' && ptr[2] != ']') |
1868 | { |
1869 | int d; |
1870 | ptr += 2; |
1871 | |
1872 | #ifdef SUPPORT_UTF8 |
1873 | if (utf8) |
1874 | { /* Braces are required because the */ |
1875 | GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */ |
1876 | } |
1877 | else |
1878 | #endif |
1879 | d = *ptr; |
1880 | |
1881 | /* The second part of a range can be a single-character escape, but |
1882 | not any of the other escapes. Perl 5.6 treats a hyphen as a literal |
1883 | in such circumstances. */ |
1884 | |
1885 | if (d == '\\') |
1886 | { |
1887 | const uschar *oldptr = ptr; |
1888 | d = check_escape(&ptr, errorptr, *brackets, options, TRUE); |
1889 | |
1890 | /* \b is backslash; any other special means the '-' was literal */ |
1891 | |
1892 | if (d < 0) |
1893 | { |
1894 | if (d == -ESC_b) d = '\b'; else |
1895 | { |
1896 | ptr = oldptr - 2; |
1897 | goto LONE_SINGLE_CHARACTER; /* A few lines below */ |
1898 | } |
1899 | } |
1900 | } |
1901 | |
1902 | /* Check that the two values are in the correct order */ |
1903 | |
1904 | if (d < c) |
1905 | { |
1906 | *errorptr = ERR8; |
1907 | goto FAILED; |
1908 | } |
1909 | |
1910 | /* If d is greater than 255, we can't just use the bit map, so set up |
1911 | for the UTF-8 supporting class type. If we are not caseless, we can |
1912 | just set up a single range. If we are caseless, the characters < 256 |
1913 | are handled with a bitmap, in order to get the case-insensitive |
1914 | handling. */ |
1915 | |
1916 | #ifdef SUPPORT_UTF8 |
1917 | if (d > 255) |
1918 | { |
1919 | class_utf8 = TRUE; |
1920 | *class_utf8data++ = XCL_RANGE; |
1921 | if ((options & PCRE_CASELESS) == 0) |
1922 | { |
1923 | class_utf8data += ord2utf8(c, class_utf8data); |
1924 | class_utf8data += ord2utf8(d, class_utf8data); |
1925 | continue; /* Go get the next char in the class */ |
1926 | } |
1927 | class_utf8data += ord2utf8(256, class_utf8data); |
1928 | class_utf8data += ord2utf8(d, class_utf8data); |
1929 | d = 255; |
1930 | /* Fall through */ |
1931 | } |
1932 | #endif |
1933 | /* We use the bit map if the range is entirely < 255, or if part of it |
1934 | is < 255 and matching is caseless. */ |
1935 | |
1936 | for (; c <= d; c++) |
1937 | { |
1938 | class[c/8] |= (1 << (c&7)); |
1939 | if ((options & PCRE_CASELESS) != 0) |
1940 | { |
1941 | int uc = cd->fcc[c]; /* flip case */ |
1942 | class[uc/8] |= (1 << (uc&7)); |
1943 | } |
1944 | class_charcount++; /* in case a one-char range */ |
1945 | class_lastchar = c; |
1946 | } |
1947 | |
1948 | continue; /* Go get the next char in the class */ |
1949 | } |
1950 | |
1951 | /* Handle a lone single character - we can get here for a normal |
1952 | non-escape char, or after \ that introduces a single character. */ |
1953 | |
1954 | LONE_SINGLE_CHARACTER: |
1955 | |
1956 | /* Handle a multibyte character */ |
1957 | |
1958 | #ifdef SUPPORT_UTF8 |
1959 | if (utf8 && c > 255) |
1960 | { |
1961 | class_utf8 = TRUE; |
1962 | *class_utf8data++ = XCL_SINGLE; |
1963 | class_utf8data += ord2utf8(c, class_utf8data); |
1964 | } |
1965 | else |
1966 | #endif |
1967 | /* Handle a single-byte character */ |
1968 | { |
1969 | class [c/8] |= (1 << (c&7)); |
1970 | if ((options & PCRE_CASELESS) != 0) |
1971 | { |
1972 | c = cd->fcc[c]; /* flip case */ |
1973 | class[c/8] |= (1 << (c&7)); |
1974 | } |
1975 | class_charcount++; |
1976 | class_lastchar = c; |
1977 | } |
1978 | } |
1979 | |
1980 | /* Loop until ']' reached; the check for end of string happens inside the |
1981 | loop. This "while" is the end of the "do" above. */ |
1982 | |
1983 | while ((c = *(++ptr)) != ']' || inescq); |
1984 | |
1985 | /* If class_charcount is 1, we saw precisely one character with a value < |
1986 | 256. In UTF-8 mode, we can optimize if there were no characters >= 256 and |
1987 | the one character is < 128. In non-UTF-8 mode we can always optimize. |
1988 | |
1989 | The optimization throws away the bit map. We turn the item into a |
1990 | 1-character OP_CHARS if it's positive, or OP_NOT if it's negative. Note |
1991 | that OP_NOT does not support multibyte characters. In the positive case, it |
1992 | can cause firstbyte to be set. Otherwise, there can be no first char if |
1993 | this item is first, whatever repeat count may follow. In the case of |
1994 | reqbyte, save the previous value for reinstating. */ |
1995 | |
1996 | #ifdef SUPPORT_UTF8 |
1997 | if (class_charcount == 1 && |
1998 | (!utf8 || |
1999 | (!class_utf8 && class_lastchar < 128))) |
2000 | #else |
2001 | if (class_charcount == 1) |
2002 | #endif |
2003 | { |
2004 | zeroreqbyte = reqbyte; |
2005 | if (negate_class) |
2006 | { |
2007 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
2008 | zerofirstbyte = firstbyte; |
2009 | *code++ = OP_NOT; |
2010 | } |
2011 | else |
2012 | { |
2013 | if (firstbyte == REQ_UNSET) |
2014 | { |
2015 | zerofirstbyte = REQ_NONE; |
2016 | firstbyte = class_lastchar | req_caseopt; |
2017 | } |
2018 | else |
2019 | { |
2020 | zerofirstbyte = firstbyte; |
2021 | reqbyte = class_lastchar | req_caseopt | cd->req_varyopt; |
2022 | } |
2023 | *code++ = OP_CHARS; |
2024 | *code++ = 1; |
2025 | } |
2026 | *code++ = class_lastchar; |
2027 | break; /* End of class handling */ |
2028 | } /* End of 1-byte optimization */ |
2029 | |
2030 | /* Otherwise, if this is the first thing in the branch, there can be no |
2031 | first char setting, whatever the repeat count. Any reqbyte setting must |
2032 | remain unchanged after any kind of repeat. */ |
2033 | |
2034 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
2035 | zerofirstbyte = firstbyte; |
2036 | zeroreqbyte = reqbyte; |
2037 | |
2038 | /* If there are characters with values > 255, we have to compile an |
2039 | extended class, with its own opcode. If there are no characters < 256, |
2040 | we can omit the bitmap. */ |
2041 | |
2042 | #ifdef SUPPORT_UTF8 |
2043 | if (class_utf8) |
2044 | { |
2045 | *class_utf8data++ = XCL_END; /* Marks the end of extra data */ |
2046 | *code++ = OP_XCLASS; |
2047 | code += LINK_SIZE; |
2048 | *code = negate_class? XCL_NOT : 0; |
2049 | |
2050 | /* If the map is required, install it, and move on to the end of |
2051 | the extra data */ |
2052 | |
2053 | if (class_charcount > 0) |
2054 | { |
2055 | *code++ |= XCL_MAP; |
2056 | memcpy(code, class, 32); |
2057 | code = class_utf8data; |
2058 | } |
2059 | |
2060 | /* If the map is not required, slide down the extra data. */ |
2061 | |
2062 | else |
2063 | { |
2064 | int len = class_utf8data - (code + 33); |
2065 | memmove(code + 1, code + 33, len); |
2066 | code += len + 1; |
2067 | } |
2068 | |
2069 | /* Now fill in the complete length of the item */ |
2070 | |
2071 | PUT(previous, 1, code - previous); |
2072 | break; /* End of class handling */ |
2073 | } |
2074 | #endif |
2075 | |
2076 | /* If there are no characters > 255, negate the 32-byte map if necessary, |
2077 | and copy it into the code vector. If this is the first thing in the branch, |
2078 | there can be no first char setting, whatever the repeat count. Any reqbyte |
2079 | setting must remain unchanged after any kind of repeat. */ |
2080 | |
2081 | if (negate_class) |
2082 | { |
2083 | *code++ = OP_NCLASS; |
2084 | for (c = 0; c < 32; c++) code[c] = ~class[c]; |
2085 | } |
2086 | else |
2087 | { |
2088 | *code++ = OP_CLASS; |
2089 | memcpy(code, class, 32); |
2090 | } |
2091 | code += 32; |
2092 | break; |
2093 | |
2094 | /* Various kinds of repeat */ |
2095 | |
2096 | case '{': |
2097 | if (!is_counted_repeat(ptr+1)) goto NORMAL_CHAR; |
2098 | ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorptr); |
2099 | if (*errorptr != NULL) goto FAILED; |
2100 | goto REPEAT; |
2101 | |
2102 | case '*': |
2103 | repeat_min = 0; |
2104 | repeat_max = -1; |
2105 | goto REPEAT; |
2106 | |
2107 | case '+': |
2108 | repeat_min = 1; |
2109 | repeat_max = -1; |
2110 | goto REPEAT; |
2111 | |
2112 | case '?': |
2113 | repeat_min = 0; |
2114 | repeat_max = 1; |
2115 | |
2116 | REPEAT: |
2117 | if (previous == NULL) |
2118 | { |
2119 | *errorptr = ERR9; |
2120 | goto FAILED; |
2121 | } |
2122 | |
2123 | if (repeat_min == 0) |
2124 | { |
2125 | firstbyte = zerofirstbyte; /* Adjust for zero repeat */ |
2126 | reqbyte = zeroreqbyte; /* Ditto */ |
2127 | } |
2128 | |
2129 | /* Remember whether this is a variable length repeat */ |
2130 | |
2131 | reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY; |
2132 | |
2133 | op_type = 0; /* Default single-char op codes */ |
2134 | possessive_quantifier = FALSE; /* Default not possessive quantifier */ |
2135 | |
2136 | /* Save start of previous item, in case we have to move it up to make space |
2137 | for an inserted OP_ONCE for the additional '+' extension. */ |
2138 | |
2139 | tempcode = previous; |
2140 | |
2141 | /* If the next character is '+', we have a possessive quantifier. This |
2142 | implies greediness, whatever the setting of the PCRE_UNGREEDY option. |
2143 | If the next character is '?' this is a minimizing repeat, by default, |
2144 | but if PCRE_UNGREEDY is set, it works the other way round. We change the |
2145 | repeat type to the non-default. */ |
2146 | |
2147 | if (ptr[1] == '+') |
2148 | { |
2149 | repeat_type = 0; /* Force greedy */ |
2150 | possessive_quantifier = TRUE; |
2151 | ptr++; |
2152 | } |
2153 | else if (ptr[1] == '?') |
2154 | { |
2155 | repeat_type = greedy_non_default; |
2156 | ptr++; |
2157 | } |
2158 | else repeat_type = greedy_default; |
2159 | |
2160 | /* If previous was a recursion, we need to wrap it inside brackets so that |
2161 | it can be replicated if necessary. */ |
2162 | |
2163 | if (*previous == OP_RECURSE) |
2164 | { |
2165 | memmove(previous + 1 + LINK_SIZE, previous, 1 + LINK_SIZE); |
2166 | code += 1 + LINK_SIZE; |
2167 | *previous = OP_BRA; |
2168 | PUT(previous, 1, code - previous); |
2169 | *code = OP_KET; |
2170 | PUT(code, 1, code - previous); |
2171 | code += 1 + LINK_SIZE; |
2172 | } |
2173 | |
2174 | /* If previous was a string of characters, chop off the last one and use it |
2175 | as the subject of the repeat. If there was only one character, we can |
2176 | abolish the previous item altogether. If a one-char item has a minumum of |
2177 | more than one, ensure that it is set in reqbyte - it might not be if a |
2178 | sequence such as x{3} is the first thing in a branch because the x will |
2179 | have gone into firstbyte instead. */ |
2180 | |
2181 | if (*previous == OP_CHARS) |
2182 | { |
2183 | /* Deal with UTF-8 characters that take up more than one byte. It's |
2184 | easier to write this out separately than try to macrify it. Use c to |
2185 | hold the length of the character in bytes, plus 0x80 to flag that it's a |
2186 | length rather than a small character. */ |
2187 | |
2188 | #ifdef SUPPORT_UTF8 |
2189 | if (utf8 && (code[-1] & 0x80) != 0) |
2190 | { |
2191 | uschar *lastchar = code - 1; |
2192 | while((*lastchar & 0xc0) == 0x80) lastchar--; |
2193 | c = code - lastchar; /* Length of UTF-8 character */ |
2194 | memcpy(utf8_char, lastchar, c); /* Save the char */ |
2195 | if (lastchar == previous + 2) /* There was only one character */ |
2196 | { |
2197 | code = previous; /* Abolish the previous item */ |
2198 | } |
2199 | else |
2200 | { |
2201 | previous[1] -= c; /* Adjust length of previous */ |
2202 | code = lastchar; /* Lost char off the end */ |
2203 | tempcode = code; /* Adjust position to be moved for '+' */ |
2204 | } |
2205 | c |= 0x80; /* Flag c as a length */ |
2206 | } |
2207 | else |
2208 | #endif |
2209 | |
2210 | /* Handle the case of a single byte - either with no UTF8 support, or |
2211 | with UTF-8 disabled, or for a UTF-8 character < 128. */ |
2212 | |
2213 | { |
2214 | c = *(--code); |
2215 | if (code == previous + 2) /* There was only one character */ |
2216 | { |
2217 | code = previous; /* Abolish the previous item */ |
2218 | if (repeat_min > 1) reqbyte = c | req_caseopt | cd->req_varyopt; |
2219 | } |
2220 | else |
2221 | { |
2222 | previous[1]--; /* adjust length */ |
2223 | tempcode = code; /* Adjust position to be moved for '+' */ |
2224 | } |
2225 | } |
2226 | |
2227 | goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */ |
2228 | } |
2229 | |
2230 | /* If previous was a single negated character ([^a] or similar), we use |
2231 | one of the special opcodes, replacing it. The code is shared with single- |
2232 | character repeats by setting opt_type to add a suitable offset into |
2233 | repeat_type. OP_NOT is currently used only for single-byte chars. */ |
2234 | |
2235 | else if (*previous == OP_NOT) |
2236 | { |
2237 | op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */ |
2238 | c = previous[1]; |
2239 | code = previous; |
2240 | goto OUTPUT_SINGLE_REPEAT; |
2241 | } |
2242 | |
2243 | /* If previous was a character type match (\d or similar), abolish it and |
2244 | create a suitable repeat item. The code is shared with single-character |
2245 | repeats by setting op_type to add a suitable offset into repeat_type. */ |
2246 | |
2247 | else if (*previous < OP_EODN) |
2248 | { |
2249 | op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ |
2250 | c = *previous; |
2251 | code = previous; |
2252 | |
2253 | OUTPUT_SINGLE_REPEAT: |
2254 | |
2255 | /* If the maximum is zero then the minimum must also be zero; Perl allows |
2256 | this case, so we do too - by simply omitting the item altogether. */ |
2257 | |
2258 | if (repeat_max == 0) goto END_REPEAT; |
2259 | |
2260 | /* Combine the op_type with the repeat_type */ |
2261 | |
2262 | repeat_type += op_type; |
2263 | |
2264 | /* A minimum of zero is handled either as the special case * or ?, or as |
2265 | an UPTO, with the maximum given. */ |
2266 | |
2267 | if (repeat_min == 0) |
2268 | { |
2269 | if (repeat_max == -1) *code++ = OP_STAR + repeat_type; |
2270 | else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type; |
2271 | else |
2272 | { |
2273 | *code++ = OP_UPTO + repeat_type; |
2274 | PUT2INC(code, 0, repeat_max); |
2275 | } |
2276 | } |
2277 | |
2278 | /* The case {1,} is handled as the special case + */ |
2279 | |
2280 | else if (repeat_min == 1 && repeat_max == -1) |
2281 | *code++ = OP_PLUS + repeat_type; |
2282 | |
2283 | /* The case {n,n} is just an EXACT, while the general case {n,m} is |
2284 | handled as an EXACT followed by an UPTO. An EXACT of 1 is optimized. */ |
2285 | |
2286 | else |
2287 | { |
2288 | if (repeat_min != 1) |
2289 | { |
2290 | *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */ |
2291 | PUT2INC(code, 0, repeat_min); |
2292 | } |
2293 | |
2294 | /* If the mininum is 1 and the previous item was a character string, |
2295 | we either have to put back the item that got cancelled if the string |
2296 | length was 1, or add the character back onto the end of a longer |
2297 | string. For a character type nothing need be done; it will just get |
2298 | put back naturally. Note that the final character is always going to |
2299 | get added below, so we leave code ready for its insertion. */ |
2300 | |
2301 | else if (*previous == OP_CHARS) |
2302 | { |
2303 | if (code == previous) code += 2; else |
2304 | |
2305 | /* In UTF-8 mode, a multibyte char has its length in c, with the 0x80 |
2306 | bit set as a flag. The length will always be between 2 and 6. */ |
2307 | |
2308 | #ifdef SUPPORT_UTF8 |
2309 | if (utf8 && c >= 128) previous[1] += c & 7; else |
2310 | #endif |
2311 | previous[1]++; |
2312 | } |
2313 | |
2314 | /* For a single negated character we also have to put back the |
2315 | item that got cancelled. At present this applies only to single byte |
2316 | characters in any mode. */ |
2317 | |
2318 | else if (*previous == OP_NOT) code++; |
2319 | |
2320 | /* If the maximum is unlimited, insert an OP_STAR. Before doing so, |
2321 | we have to insert the character for the previous code. In UTF-8 mode, |
2322 | long characters have their length in c, with the 0x80 bit as a flag. */ |
2323 | |
2324 | if (repeat_max < 0) |
2325 | { |
2326 | #ifdef SUPPORT_UTF8 |
2327 | if (utf8 && c >= 128) |
2328 | { |
2329 | memcpy(code, utf8_char, c & 7); |
2330 | code += c & 7; |
2331 | } |
2332 | else |
2333 | #endif |
2334 | *code++ = c; |
2335 | *code++ = OP_STAR + repeat_type; |
2336 | } |
2337 | |
2338 | /* Else insert an UPTO if the max is greater than the min, again |
2339 | preceded by the character, for the previously inserted code. */ |
2340 | |
2341 | else if (repeat_max != repeat_min) |
2342 | { |
2343 | #ifdef SUPPORT_UTF8 |
2344 | if (utf8 && c >= 128) |
2345 | { |
2346 | memcpy(code, utf8_char, c & 7); |
2347 | code += c & 7; |
2348 | } |
2349 | else |
2350 | #endif |
2351 | *code++ = c; |
2352 | repeat_max -= repeat_min; |
2353 | *code++ = OP_UPTO + repeat_type; |
2354 | PUT2INC(code, 0, repeat_max); |
2355 | } |
2356 | } |
2357 | |
2358 | /* The character or character type itself comes last in all cases. */ |
2359 | |
2360 | #ifdef SUPPORT_UTF8 |
2361 | if (utf8 && c >= 128) |
2362 | { |
2363 | memcpy(code, utf8_char, c & 7); |
2364 | code += c & 7; |
2365 | } |
2366 | else |
2367 | #endif |
2368 | |
2369 | *code++ = c; |
2370 | } |
2371 | |
2372 | /* If previous was a character class or a back reference, we put the repeat |
2373 | stuff after it, but just skip the item if the repeat was {0,0}. */ |
2374 | |
2375 | else if (*previous == OP_CLASS || |
2376 | *previous == OP_NCLASS || |
2377 | #ifdef SUPPORT_UTF8 |
2378 | *previous == OP_XCLASS || |
2379 | #endif |
2380 | *previous == OP_REF) |
2381 | { |
2382 | if (repeat_max == 0) |
2383 | { |
2384 | code = previous; |
2385 | goto END_REPEAT; |
2386 | } |
2387 | if (repeat_min == 0 && repeat_max == -1) |
2388 | *code++ = OP_CRSTAR + repeat_type; |
2389 | else if (repeat_min == 1 && repeat_max == -1) |
2390 | *code++ = OP_CRPLUS + repeat_type; |
2391 | else if (repeat_min == 0 && repeat_max == 1) |
2392 | *code++ = OP_CRQUERY + repeat_type; |
2393 | else |
2394 | { |
2395 | *code++ = OP_CRRANGE + repeat_type; |
2396 | PUT2INC(code, 0, repeat_min); |
2397 | if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */ |
2398 | PUT2INC(code, 0, repeat_max); |
2399 | } |
2400 | } |
2401 | |
2402 | /* If previous was a bracket group, we may have to replicate it in certain |
2403 | cases. */ |
2404 | |
2405 | else if (*previous >= OP_BRA || *previous == OP_ONCE || |
2406 | *previous == OP_COND) |
2407 | { |
2408 | register int i; |
2409 | int ketoffset = 0; |
2410 | int len = code - previous; |
2411 | uschar *bralink = NULL; |
2412 | |
2413 | /* If the maximum repeat count is unlimited, find the end of the bracket |
2414 | by scanning through from the start, and compute the offset back to it |
2415 | from the current code pointer. There may be an OP_OPT setting following |
2416 | the final KET, so we can't find the end just by going back from the code |
2417 | pointer. */ |
2418 | |
2419 | if (repeat_max == -1) |
2420 | { |
2421 | register uschar *ket = previous; |
2422 | do ket += GET(ket, 1); while (*ket != OP_KET); |
2423 | ketoffset = code - ket; |
2424 | } |
2425 | |
2426 | /* The case of a zero minimum is special because of the need to stick |
2427 | OP_BRAZERO in front of it, and because the group appears once in the |
2428 | data, whereas in other cases it appears the minimum number of times. For |
2429 | this reason, it is simplest to treat this case separately, as otherwise |
2430 | the code gets far too messy. There are several special subcases when the |
2431 | minimum is zero. */ |
2432 | |
2433 | if (repeat_min == 0) |
2434 | { |
2435 | /* If the maximum is also zero, we just omit the group from the output |
2436 | altogether. */ |
2437 | |
2438 | if (repeat_max == 0) |
2439 | { |
2440 | code = previous; |
2441 | goto END_REPEAT; |
2442 | } |
2443 | |
2444 | /* If the maximum is 1 or unlimited, we just have to stick in the |
2445 | BRAZERO and do no more at this point. */ |
2446 | |
2447 | if (repeat_max <= 1) |
2448 | { |
2449 | memmove(previous+1, previous, len); |
2450 | code++; |
2451 | *previous++ = OP_BRAZERO + repeat_type; |
2452 | } |
2453 | |
2454 | /* If the maximum is greater than 1 and limited, we have to replicate |
2455 | in a nested fashion, sticking OP_BRAZERO before each set of brackets. |
2456 | The first one has to be handled carefully because it's the original |
2457 | copy, which has to be moved up. The remainder can be handled by code |
2458 | that is common with the non-zero minimum case below. We just have to |
2459 | adjust the value or repeat_max, since one less copy is required. */ |
2460 | |
2461 | else |
2462 | { |
2463 | int offset; |
2464 | memmove(previous + 2 + LINK_SIZE, previous, len); |
2465 | code += 2 + LINK_SIZE; |
2466 | *previous++ = OP_BRAZERO + repeat_type; |
2467 | *previous++ = OP_BRA; |
2468 | |
2469 | /* We chain together the bracket offset fields that have to be |
2470 | filled in later when the ends of the brackets are reached. */ |
2471 | |
2472 | offset = (bralink == NULL)? 0 : previous - bralink; |
2473 | bralink = previous; |
2474 | PUTINC(previous, 0, offset); |
2475 | } |
2476 | |
2477 | repeat_max--; |
2478 | } |
2479 | |
2480 | /* If the minimum is greater than zero, replicate the group as many |
2481 | times as necessary, and adjust the maximum to the number of subsequent |
2482 | copies that we need. If we set a first char from the group, and didn't |
2483 | set a required char, copy the latter from the former. */ |
2484 | |
2485 | else |
2486 | { |
2487 | if (repeat_min > 1) |
2488 | { |
2489 | if (groupsetfirstbyte && reqbyte < 0) reqbyte = firstbyte; |
2490 | for (i = 1; i < repeat_min; i++) |
2491 | { |
2492 | memcpy(code, previous, len); |
2493 | code += len; |
2494 | } |
2495 | } |
2496 | if (repeat_max > 0) repeat_max -= repeat_min; |
2497 | } |
2498 | |
2499 | /* This code is common to both the zero and non-zero minimum cases. If |
2500 | the maximum is limited, it replicates the group in a nested fashion, |
2501 | remembering the bracket starts on a stack. In the case of a zero minimum, |
2502 | the first one was set up above. In all cases the repeat_max now specifies |
2503 | the number of additional copies needed. */ |
2504 | |
2505 | if (repeat_max >= 0) |
2506 | { |
2507 | for (i = repeat_max - 1; i >= 0; i--) |
2508 | { |
2509 | *code++ = OP_BRAZERO + repeat_type; |
2510 | |
2511 | /* All but the final copy start a new nesting, maintaining the |
2512 | chain of brackets outstanding. */ |
2513 | |
2514 | if (i != 0) |
2515 | { |
2516 | int offset; |
2517 | *code++ = OP_BRA; |
2518 | offset = (bralink == NULL)? 0 : code - bralink; |
2519 | bralink = code; |
2520 | PUTINC(code, 0, offset); |
2521 | } |
2522 | |
2523 | memcpy(code, previous, len); |
2524 | code += len; |
2525 | } |
2526 | |
2527 | /* Now chain through the pending brackets, and fill in their length |
2528 | fields (which are holding the chain links pro tem). */ |
2529 | |
2530 | while (bralink != NULL) |
2531 | { |
2532 | int oldlinkoffset; |
2533 | int offset = code - bralink + 1; |
2534 | uschar *bra = code - offset; |
2535 | oldlinkoffset = GET(bra, 1); |
2536 | bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset; |
2537 | *code++ = OP_KET; |
2538 | PUTINC(code, 0, offset); |
2539 | PUT(bra, 1, offset); |
2540 | } |
2541 | } |
2542 | |
2543 | /* If the maximum is unlimited, set a repeater in the final copy. We |
2544 | can't just offset backwards from the current code point, because we |
2545 | don't know if there's been an options resetting after the ket. The |
2546 | correct offset was computed above. */ |
2547 | |
2548 | else code[-ketoffset] = OP_KETRMAX + repeat_type; |
2549 | } |
2550 | |
2551 | /* Else there's some kind of shambles */ |
2552 | |
2553 | else |
2554 | { |
2555 | *errorptr = ERR11; |
2556 | goto FAILED; |
2557 | } |
2558 | |
2559 | /* If the character following a repeat is '+', we wrap the entire repeated |
2560 | item inside OP_ONCE brackets. This is just syntactic sugar, taken from |
2561 | Sun's Java package. The repeated item starts at tempcode, not at previous, |
2562 | which might be the first part of a string whose (former) last char we |
2563 | repeated. However, we don't support '+' after a greediness '?'. */ |
2564 | |
2565 | if (possessive_quantifier) |
2566 | { |
2567 | int len = code - tempcode; |
2568 | memmove(tempcode + 1+LINK_SIZE, tempcode, len); |
2569 | code += 1 + LINK_SIZE; |
2570 | len += 1 + LINK_SIZE; |
2571 | tempcode[0] = OP_ONCE; |
2572 | *code++ = OP_KET; |
2573 | PUTINC(code, 0, len); |
2574 | PUT(tempcode, 1, len); |
2575 | } |
2576 | |
2577 | /* In all case we no longer have a previous item. We also set the |
2578 | "follows varying string" flag for subsequently encountered reqbytes if |
2579 | it isn't already set and we have just passed a varying length item. */ |
2580 | |
2581 | END_REPEAT: |
2582 | previous = NULL; |
2583 | cd->req_varyopt |= reqvary; |
2584 | break; |
2585 | |
2586 | |
2587 | /* Start of nested bracket sub-expression, or comment or lookahead or |
2588 | lookbehind or option setting or condition. First deal with special things |
2589 | that can come after a bracket; all are introduced by ?, and the appearance |
2590 | of any of them means that this is not a referencing group. They were |
2591 | checked for validity in the first pass over the string, so we don't have to |
2592 | check for syntax errors here. */ |
2593 | |
2594 | case '(': |
2595 | newoptions = options; |
2596 | skipbytes = 0; |
2597 | |
2598 | if (*(++ptr) == '?') |
2599 | { |
2600 | int set, unset; |
2601 | int *optset; |
2602 | |
2603 | switch (*(++ptr)) |
2604 | { |
2605 | case '#': /* Comment; skip to ket */ |
2606 | ptr++; |
2607 | while (*ptr != ')') ptr++; |
2608 | continue; |
2609 | |
2610 | case ':': /* Non-extracting bracket */ |
2611 | bravalue = OP_BRA; |
2612 | ptr++; |
2613 | break; |
2614 | |
2615 | case '(': |
2616 | bravalue = OP_COND; /* Conditional group */ |
2617 | |
2618 | /* Condition to test for recursion */ |
2619 | |
2620 | if (ptr[1] == 'R') |
2621 | { |
2622 | code[1+LINK_SIZE] = OP_CREF; |
2623 | PUT2(code, 2+LINK_SIZE, CREF_RECURSE); |
2624 | skipbytes = 3; |
2625 | ptr += 3; |
2626 | } |
2627 | |
2628 | /* Condition to test for a numbered subpattern match. We know that |
2629 | if a digit follows ( then there will just be digits until ) because |
2630 | the syntax was checked in the first pass. */ |
2631 | |
2632 | else if ((digitab[ptr[1]] && ctype_digit) != 0) |
2633 | { |
2634 | int condref; /* Don't amalgamate; some compilers */ |
2635 | condref = *(++ptr) - '0'; /* grumble at autoincrement in declaration */ |
2636 | while (*(++ptr) != ')') condref = condref*10 + *ptr - '0'; |
2637 | if (condref == 0) |
2638 | { |
2639 | *errorptr = ERR35; |
2640 | goto FAILED; |
2641 | } |
2642 | ptr++; |
2643 | code[1+LINK_SIZE] = OP_CREF; |
2644 | PUT2(code, 2+LINK_SIZE, condref); |
2645 | skipbytes = 3; |
2646 | } |
2647 | /* For conditions that are assertions, we just fall through, having |
2648 | set bravalue above. */ |
2649 | break; |
2650 | |
2651 | case '=': /* Positive lookahead */ |
2652 | bravalue = OP_ASSERT; |
2653 | ptr++; |
2654 | break; |
2655 | |
2656 | case '!': /* Negative lookahead */ |
2657 | bravalue = OP_ASSERT_NOT; |
2658 | ptr++; |
2659 | break; |
2660 | |
2661 | case '<': /* Lookbehinds */ |
2662 | switch (*(++ptr)) |
2663 | { |
2664 | case '=': /* Positive lookbehind */ |
2665 | bravalue = OP_ASSERTBACK; |
2666 | ptr++; |
2667 | break; |
2668 | |
2669 | case '!': /* Negative lookbehind */ |
2670 | bravalue = OP_ASSERTBACK_NOT; |
2671 | ptr++; |
2672 | break; |
2673 | } |
2674 | break; |
2675 | |
2676 | case '>': /* One-time brackets */ |
2677 | bravalue = OP_ONCE; |
2678 | ptr++; |
2679 | break; |
2680 | |
2681 | case 'C': /* Callout - may be followed by digits */ |
2682 | *code++ = OP_CALLOUT; |
2683 | { |
2684 | int n = 0; |
2685 | while ((digitab[*(++ptr)] & ctype_digit) != 0) |
2686 | n = n * 10 + *ptr - '0'; |
2687 | if (n > 255) |
2688 | { |
2689 | *errorptr = ERR38; |
2690 | goto FAILED; |
2691 | } |
2692 | *code++ = n; |
2693 | } |
2694 | previous = NULL; |
2695 | continue; |
2696 | |
2697 | case 'P': /* Named subpattern handling */ |
2698 | if (*(++ptr) == '<') /* Definition */ |
2699 | { |
2700 | int i, namelen; |
2701 | uschar *slot = cd->name_table; |
2702 | const uschar *name; /* Don't amalgamate; some compilers */ |
2703 | name = ++ptr; /* grumble at autoincrement in declaration */ |
2704 | |
2705 | while (*ptr++ != '>'); |
2706 | namelen = ptr - name - 1; |
2707 | |
2708 | for (i = 0; i < cd->names_found; i++) |
2709 | { |
2710 | int crc = memcmp(name, slot+2, namelen); |
2711 | if (crc == 0) |
2712 | { |
2713 | if (slot[2+namelen] == 0) |
2714 | { |
2715 | *errorptr = ERR43; |
2716 | goto FAILED; |
2717 | } |
2718 | crc = -1; /* Current name is substring */ |
2719 | } |
2720 | if (crc < 0) |
2721 | { |
2722 | memmove(slot + cd->name_entry_size, slot, |
2723 | (cd->names_found - i) * cd->name_entry_size); |
2724 | break; |
2725 | } |
2726 | slot += cd->name_entry_size; |
2727 | } |
2728 | |
2729 | PUT2(slot, 0, *brackets + 1); |
2730 | memcpy(slot + 2, name, namelen); |
2731 | slot[2+namelen] = 0; |
2732 | cd->names_found++; |
2733 | goto NUMBERED_GROUP; |
2734 | } |
2735 | |
2736 | if (*ptr == '=' || *ptr == '>') /* Reference or recursion */ |
2737 | { |
2738 | int i, namelen; |
2739 | int type = *ptr++; |
2740 | const uschar *name = ptr; |
2741 | uschar *slot = cd->name_table; |
2742 | |
2743 | while (*ptr != ')') ptr++; |
2744 | namelen = ptr - name; |
2745 | |
2746 | for (i = 0; i < cd->names_found; i++) |
2747 | { |
2748 | if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break; |
2749 | slot += cd->name_entry_size; |
2750 | } |
2751 | if (i >= cd->names_found) |
2752 | { |
2753 | *errorptr = ERR15; |
2754 | goto FAILED; |
2755 | } |
2756 | |
2757 | recno = GET2(slot, 0); |
2758 | |
2759 | if (type == '>') goto HANDLE_RECURSION; /* A few lines below */ |
2760 | |
2761 | /* Back reference */ |
2762 | |
2763 | previous = code; |
2764 | *code++ = OP_REF; |
2765 | PUT2INC(code, 0, recno); |
2766 | cd->backref_map |= (recno < 32)? (1 << recno) : 1; |
2767 | if (recno > cd->top_backref) cd->top_backref = recno; |
2768 | continue; |
2769 | } |
2770 | |
2771 | /* Should never happen */ |
2772 | break; |
2773 | |
2774 | case 'R': /* Pattern recursion */ |
2775 | ptr++; /* Same as (?0) */ |
2776 | /* Fall through */ |
2777 | |
2778 | /* Recursion or "subroutine" call */ |
2779 | |
2780 | case '0': case '1': case '2': case '3': case '4': |
2781 | case '5': case '6': case '7': case '8': case '9': |
2782 | { |
2783 | const uschar *called; |
2784 | recno = 0; |
2785 | while((digitab[*ptr] & ctype_digit) != 0) |
2786 | recno = recno * 10 + *ptr++ - '0'; |
2787 | |
2788 | /* Come here from code above that handles a named recursion */ |
2789 | |
2790 | HANDLE_RECURSION: |
2791 | |
2792 | previous = code; |
2793 | |
2794 | /* Find the bracket that is being referenced. Temporarily end the |
2795 | regex in case it doesn't exist. */ |
2796 | |
2797 | *code = OP_END; |
2798 | called = (recno == 0)? |
2799 | cd->start_code : find_bracket(cd->start_code, utf8, recno); |
2800 | |
2801 | if (called == NULL) |
2802 | { |
2803 | *errorptr = ERR15; |
2804 | goto FAILED; |
2805 | } |
2806 | |
2807 | /* If the subpattern is still open, this is a recursive call. We |
2808 | check to see if this is a left recursion that could loop for ever, |
2809 | and diagnose that case. */ |
2810 | |
2811 | if (GET(called, 1) == 0 && could_be_empty(called, code, bcptr, utf8)) |
2812 | { |
2813 | *errorptr = ERR40; |
2814 | goto FAILED; |
2815 | } |
2816 | |
2817 | /* Insert the recursion/subroutine item */ |
2818 | |
2819 | *code = OP_RECURSE; |
2820 | PUT(code, 1, called - cd->start_code); |
2821 | code += 1 + LINK_SIZE; |
2822 | } |
2823 | continue; |
2824 | |
2825 | /* Character after (? not specially recognized */ |
2826 | |
2827 | default: /* Option setting */ |
2828 | set = unset = 0; |
2829 | optset = &set; |
2830 | |
2831 | while (*ptr != ')' && *ptr != ':') |
2832 | { |
2833 | switch (*ptr++) |
2834 | { |
2835 | case '-': optset = &unset; break; |
2836 | |
2837 | case 'i': *optset |= PCRE_CASELESS; break; |
2838 | case 'm': *optset |= PCRE_MULTILINE; break; |
2839 | case 's': *optset |= PCRE_DOTALL; break; |
2840 | case 'x': *optset |= PCRE_EXTENDED; break; |
2841 | case 'U': *optset |= PCRE_UNGREEDY; break; |
2842 | case 'X': *optset |= PCRE_EXTRA; break; |
2843 | } |
2844 | } |
2845 | |
2846 | /* Set up the changed option bits, but don't change anything yet. */ |
2847 | |
2848 | newoptions = (options | set) & (~unset); |
2849 | |
2850 | /* If the options ended with ')' this is not the start of a nested |
2851 | group with option changes, so the options change at this level. Compile |
2852 | code to change the ims options if this setting actually changes any of |
2853 | them. We also pass the new setting back so that it can be put at the |
2854 | start of any following branches, and when this group ends (if we are in |
2855 | a group), a resetting item can be compiled. |
2856 | |
2857 | Note that if this item is right at the start of the pattern, the |
2858 | options will have been abstracted and made global, so there will be no |
2859 | change to compile. */ |
2860 | |
2861 | if (*ptr == ')') |
2862 | { |
2863 | if ((options & PCRE_IMS) != (newoptions & PCRE_IMS)) |
2864 | { |
2865 | *code++ = OP_OPT; |
2866 | *code++ = newoptions & PCRE_IMS; |
2867 | } |
2868 | |
2869 | /* Change options at this level, and pass them back for use |
2870 | in subsequent branches. Reset the greedy defaults and the case |
2871 | value for firstbyte and reqbyte. */ |
2872 | |
2873 | *optionsptr = options = newoptions; |
2874 | greedy_default = ((newoptions & PCRE_UNGREEDY) != 0); |
2875 | greedy_non_default = greedy_default ^ 1; |
2876 | req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0; |
2877 | |
2878 | previous = NULL; /* This item can't be repeated */ |
2879 | continue; /* It is complete */ |
2880 | } |
2881 | |
2882 | /* If the options ended with ':' we are heading into a nested group |
2883 | with possible change of options. Such groups are non-capturing and are |
2884 | not assertions of any kind. All we need to do is skip over the ':'; |
2885 | the newoptions value is handled below. */ |
2886 | |
2887 | bravalue = OP_BRA; |
2888 | ptr++; |
2889 | } |
2890 | } |
2891 | |
2892 | /* If PCRE_NO_AUTO_CAPTURE is set, all unadorned brackets become |
2893 | non-capturing and behave like (?:...) brackets */ |
2894 | |
2895 | else if ((options & PCRE_NO_AUTO_CAPTURE) != 0) |
2896 | { |
2897 | bravalue = OP_BRA; |
2898 | } |
2899 | |
2900 | /* Else we have a referencing group; adjust the opcode. If the bracket |
2901 | number is greater than EXTRACT_BASIC_MAX, we set the opcode one higher, and |
2902 | arrange for the true number to follow later, in an OP_BRANUMBER item. */ |
2903 | |
2904 | else |
2905 | { |
2906 | NUMBERED_GROUP: |
2907 | if (++(*brackets) > EXTRACT_BASIC_MAX) |
2908 | { |
2909 | bravalue = OP_BRA + EXTRACT_BASIC_MAX + 1; |
2910 | code[1+LINK_SIZE] = OP_BRANUMBER; |
2911 | PUT2(code, 2+LINK_SIZE, *brackets); |
2912 | skipbytes = 3; |
2913 | } |
2914 | else bravalue = OP_BRA + *brackets; |
2915 | } |
2916 | |
2917 | /* Process nested bracketed re. Assertions may not be repeated, but other |
2918 | kinds can be. We copy code into a non-register variable in order to be able |
2919 | to pass its address because some compilers complain otherwise. Pass in a |
2920 | new setting for the ims options if they have changed. */ |
2921 | |
2922 | previous = (bravalue >= OP_ONCE)? code : NULL; |
2923 | *code = bravalue; |
2924 | tempcode = code; |
2925 | tempreqvary = cd->req_varyopt; /* Save value before bracket */ |
2926 | |
2927 | if (!compile_regex( |
2928 | newoptions, /* The complete new option state */ |
2929 | options & PCRE_IMS, /* The previous ims option state */ |
2930 | brackets, /* Extracting bracket count */ |
2931 | &tempcode, /* Where to put code (updated) */ |
2932 | &ptr, /* Input pointer (updated) */ |
2933 | errorptr, /* Where to put an error message */ |
2934 | (bravalue == OP_ASSERTBACK || |
2935 | bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */ |
2936 | skipbytes, /* Skip over OP_COND/OP_BRANUMBER */ |
2937 | &subfirstbyte, /* For possible first char */ |
2938 | &subreqbyte, /* For possible last char */ |
2939 | bcptr, /* Current branch chain */ |
2940 | cd)) /* Tables block */ |
2941 | goto FAILED; |
2942 | |
2943 | /* At the end of compiling, code is still pointing to the start of the |
2944 | group, while tempcode has been updated to point past the end of the group |
2945 | and any option resetting that may follow it. The pattern pointer (ptr) |
2946 | is on the bracket. */ |
2947 | |
2948 | /* If this is a conditional bracket, check that there are no more than |
2949 | two branches in the group. */ |
2950 | |
2951 | else if (bravalue == OP_COND) |
2952 | { |
2953 | uschar *tc = code; |
2954 | condcount = 0; |
2955 | |
2956 | do { |
2957 | condcount++; |
2958 | tc += GET(tc,1); |
2959 | } |
2960 | while (*tc != OP_KET); |
2961 | |
2962 | if (condcount > 2) |
2963 | { |
2964 | *errorptr = ERR27; |
2965 | goto FAILED; |
2966 | } |
2967 | |
2968 | /* If there is just one branch, we must not make use of its firstbyte or |
2969 | reqbyte, because this is equivalent to an empty second branch. */ |
2970 | |
2971 | if (condcount == 1) subfirstbyte = subreqbyte = REQ_NONE; |
2972 | } |
2973 | |
2974 | /* Handle updating of the required and first characters. Update for normal |
2975 | brackets of all kinds, and conditions with two branches (see code above). |
2976 | If the bracket is followed by a quantifier with zero repeat, we have to |
2977 | back off. Hence the definition of zeroreqbyte and zerofirstbyte outside the |
2978 | main loop so that they can be accessed for the back off. */ |
2979 | |
2980 | zeroreqbyte = reqbyte; |
2981 | zerofirstbyte = firstbyte; |
2982 | groupsetfirstbyte = FALSE; |
2983 | |
2984 | if (bravalue >= OP_BRA || bravalue == OP_ONCE || bravalue == OP_COND) |
2985 | { |
2986 | /* If we have not yet set a firstbyte in this branch, take it from the |
2987 | subpattern, remembering that it was set here so that a repeat of more |
2988 | than one can replicate it as reqbyte if necessary. If the subpattern has |
2989 | no firstbyte, set "none" for the whole branch. In both cases, a zero |
2990 | repeat forces firstbyte to "none". */ |
2991 | |
2992 | if (firstbyte == REQ_UNSET) |
2993 | { |
2994 | if (subfirstbyte >= 0) |
2995 | { |
2996 | firstbyte = subfirstbyte; |
2997 | groupsetfirstbyte = TRUE; |
2998 | } |
2999 | else firstbyte = REQ_NONE; |
3000 | zerofirstbyte = REQ_NONE; |
3001 | } |
3002 | |
3003 | /* If firstbyte was previously set, convert the subpattern's firstbyte |
3004 | into reqbyte if there wasn't one, using the vary flag that was in |
3005 | existence beforehand. */ |
3006 | |
3007 | else if (subfirstbyte >= 0 && subreqbyte < 0) |
3008 | subreqbyte = subfirstbyte | tempreqvary; |
3009 | |
3010 | /* If the subpattern set a required byte (or set a first byte that isn't |
3011 | really the first byte - see above), set it. */ |
3012 | |
3013 | if (subreqbyte >= 0) reqbyte = subreqbyte; |
3014 | } |
3015 | |
3016 | /* For a forward assertion, we take the reqbyte, if set. This can be |
3017 | helpful if the pattern that follows the assertion doesn't set a different |
3018 | char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte |
3019 | for an assertion, however because it leads to incorrect effect for patterns |
3020 | such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead |
3021 | of a firstbyte. This is overcome by a scan at the end if there's no |
3022 | firstbyte, looking for an asserted first char. */ |
3023 | |
3024 | else if (bravalue == OP_ASSERT && subreqbyte >= 0) reqbyte = subreqbyte; |
3025 | |
3026 | /* Now update the main code pointer to the end of the group. */ |
3027 | |
3028 | code = tempcode; |
3029 | |
3030 | /* Error if hit end of pattern */ |
3031 | |
3032 | if (*ptr != ')') |
3033 | { |
3034 | *errorptr = ERR14; |
3035 | goto FAILED; |
3036 | } |
3037 | break; |
3038 | |
3039 | /* Check \ for being a real metacharacter; if not, fall through and handle |
3040 | it as a data character at the start of a string. Escape items are checked |
3041 | for validity in the pre-compiling pass. */ |
3042 | |
3043 | case '\\': |
3044 | tempptr = ptr; |
3045 | c = check_escape(&ptr, errorptr, *brackets, options, FALSE); |
3046 | |
3047 | /* Handle metacharacters introduced by \. For ones like \d, the ESC_ values |
3048 | are arranged to be the negation of the corresponding OP_values. For the |
3049 | back references, the values are ESC_REF plus the reference number. Only |
3050 | back references and those types that consume a character may be repeated. |
3051 | We can test for values between ESC_b and ESC_Z for the latter; this may |
3052 | have to change if any new ones are ever created. */ |
3053 | |
3054 | if (c < 0) |
3055 | { |
3056 | if (-c == ESC_Q) /* Handle start of quoted string */ |
3057 | { |
3058 | if (ptr[1] == '\\' && ptr[2] == 'E') ptr += 2; /* avoid empty string */ |
3059 | else inescq = TRUE; |
3060 | continue; |
3061 | } |
3062 | |
3063 | /* For metasequences that actually match a character, we disable the |
3064 | setting of a first character if it hasn't already been set. */ |
3065 | |
3066 | if (firstbyte == REQ_UNSET && -c > ESC_b && -c < ESC_Z) |
3067 | firstbyte = REQ_NONE; |
3068 | |
3069 | /* Set values to reset to if this is followed by a zero repeat. */ |
3070 | |
3071 | zerofirstbyte = firstbyte; |
3072 | zeroreqbyte = reqbyte; |
3073 | |
3074 | /* Back references are handled specially */ |
3075 | |
3076 | if (-c >= ESC_REF) |
3077 | { |
3078 | int number = -c - ESC_REF; |
3079 | previous = code; |
3080 | *code++ = OP_REF; |
3081 | PUT2INC(code, 0, number); |
3082 | } |
3083 | else |
3084 | { |
3085 | previous = (-c > ESC_b && -c < ESC_Z)? code : NULL; |
3086 | *code++ = -c; |
3087 | } |
3088 | continue; |
3089 | } |
3090 | |
3091 | /* Data character: reset and fall through */ |
3092 | |
3093 | ptr = tempptr; |
3094 | c = '\\'; |
3095 | |
3096 | /* Handle a run of data characters until a metacharacter is encountered. |
3097 | The first character is guaranteed not to be whitespace or # when the |
3098 | extended flag is set. */ |
3099 | |
3100 | NORMAL_CHAR: |
3101 | default: |
3102 | previous = code; |
3103 | *code = OP_CHARS; |
3104 | code += 2; |
3105 | length = 0; |
3106 | |
3107 | do |
3108 | { |
3109 | /* If in \Q...\E, check for the end; if not, we always have a literal */ |
3110 | |
3111 | if (inescq) |
3112 | { |
3113 | if (c == '\\' && ptr[1] == 'E') |
3114 | { |
3115 | inescq = FALSE; |
3116 | ptr++; |
3117 | } |
3118 | else |
3119 | { |
3120 | *code++ = c; |
3121 | length++; |
3122 | } |
3123 | continue; |
3124 | } |
3125 | |
3126 | /* Skip white space and comments for /x patterns */ |
3127 | |
3128 | if ((options & PCRE_EXTENDED) != 0) |
3129 | { |
3130 | if ((cd->ctypes[c] & ctype_space) != 0) continue; |
3131 | if (c == '#') |
3132 | { |
3133 | /* The space before the ; is to avoid a warning on a silly compiler |
3134 | on the Macintosh. */ |
3135 | while ((c = *(++ptr)) != 0 && c != NEWLINE) ; |
3136 | if (c == 0) break; |
3137 | continue; |
3138 | } |
3139 | } |
3140 | |
3141 | /* Backslash may introduce a data char or a metacharacter. Escaped items |
3142 | are checked for validity in the pre-compiling pass. Stop the string |
3143 | before a metaitem. */ |
3144 | |
3145 | if (c == '\\') |
3146 | { |
3147 | tempptr = ptr; |
3148 | c = check_escape(&ptr, errorptr, *brackets, options, FALSE); |
3149 | if (c < 0) { ptr = tempptr; break; } |
3150 | |
3151 | /* If a character is > 127 in UTF-8 mode, we have to turn it into |
3152 | two or more characters in the UTF-8 encoding. */ |
3153 | |
3154 | #ifdef SUPPORT_UTF8 |
3155 | if (utf8 && c > 127) |
3156 | { |
3157 | uschar buffer[8]; |
3158 | int len = ord2utf8(c, buffer); |
3159 | for (c = 0; c < len; c++) *code++ = buffer[c]; |
3160 | length += len; |
3161 | continue; |
3162 | } |
3163 | #endif |
3164 | } |
3165 | |
3166 | /* Ordinary character or single-char escape */ |
3167 | |
3168 | *code++ = c; |
3169 | length++; |
3170 | } |
3171 | |
3172 | /* This "while" is the end of the "do" above. */ |
3173 | |
3174 | while (length < MAXLIT && (cd->ctypes[c = *(++ptr)] & ctype_meta) == 0); |
3175 | |
3176 | /* Update the first and last requirements. These are always bytes, even in |
3177 | UTF-8 mode. However, there is a special case to be considered when there |
3178 | are only one or two characters. Because this gets messy in UTF-8 mode, the |
3179 | code is kept separate. When we get here "length" contains the number of |
3180 | bytes. */ |
3181 | |
3182 | #ifdef SUPPORT_UTF8 |
3183 | if (utf8 && length > 1) |
3184 | { |
3185 | uschar *t = previous + 3; /* After this code, t */ |
3186 | while (t < code && (*t & 0xc0) == 0x80) t++; /* follows the 1st char */ |
3187 | |
3188 | /* Handle the case when there is only one multibyte character. It must |
3189 | have at least two bytes because of the "length > 1" test above. */ |
3190 | |
3191 | if (t == code) |
3192 | { |
3193 | /* If no previous first byte, set it from this character, but revert to |
3194 | none on a zero repeat. */ |
3195 | |
3196 | if (firstbyte == REQ_UNSET) |
3197 | { |
3198 | zerofirstbyte = REQ_NONE; |
3199 | firstbyte = previous[2]; |
3200 | } |
3201 | |
3202 | /* Otherwise, leave the first byte value alone, and don't change it on |
3203 | a zero repeat */ |
3204 | |
3205 | else zerofirstbyte = firstbyte; |
3206 | |
3207 | /* In both cases, a zero repeat resets the previous required byte */ |
3208 | |
3209 | zeroreqbyte = reqbyte; |
3210 | } |
3211 | |
3212 | /* Handle the case when there is more than one character. These may be |
3213 | single-byte or multibyte characters */ |
3214 | |
3215 | else |
3216 | { |
3217 | t = code - 1; /* After this code, t is at the */ |
3218 | while ((*t & 0xc0) == 0x80) t--; /* start of the last character */ |
3219 | |
3220 | /* If no previous first byte, set it from the first character, and |
3221 | retain it on a zero repeat (of the last character). The required byte |
3222 | is reset on a zero repeat, either to the byte before the last |
3223 | character, unless this is the first byte of the string. In that case, |
3224 | it reverts to its previous value. */ |
3225 | |
3226 | if (firstbyte == REQ_UNSET) |
3227 | { |
3228 | zerofirstbyte = firstbyte = previous[2] | req_caseopt; |
3229 | zeroreqbyte = (t - 1 == previous + 2)? |
3230 | reqbyte : t[-1] | req_caseopt | cd->req_varyopt; |
3231 | } |
3232 | |
3233 | /* If there was a previous first byte, leave it alone, and don't change |
3234 | it on a zero repeat. The required byte is reset on a zero repeat to the |
3235 | byte before the last character. */ |
3236 | |
3237 | else |
3238 | { |
3239 | zerofirstbyte = firstbyte; |
3240 | zeroreqbyte = t[-1] | req_caseopt | cd->req_varyopt; |
3241 | } |
3242 | } |
3243 | |
3244 | /* In all cases (we know length > 1), the new required byte is the last |
3245 | byte of the string. */ |
3246 | |
3247 | reqbyte = code[-1] | req_caseopt | cd->req_varyopt; |
3248 | } |
3249 | |
3250 | else /* End of UTF-8 coding */ |
3251 | #endif |
3252 | |
3253 | /* This is the code for non-UTF-8 operation, either without UTF-8 support, |
3254 | or when UTF-8 is not enabled. */ |
3255 | |
3256 | { |
3257 | /* firstbyte was not previously set; take it from this string */ |
3258 | |
3259 | if (firstbyte == REQ_UNSET) |
3260 | { |
3261 | if (length == 1) |
3262 | { |
3263 | zerofirstbyte = REQ_NONE; |
3264 | firstbyte = previous[2] | req_caseopt; |
3265 | zeroreqbyte = reqbyte; |
3266 | } |
3267 | else |
3268 | { |
3269 | zerofirstbyte = firstbyte = previous[2] | req_caseopt; |
3270 | zeroreqbyte = (length > 2)? |
3271 | (code[-2] | req_caseopt | cd->req_varyopt) : reqbyte; |
3272 | reqbyte = code[-1] | req_caseopt | cd->req_varyopt; |
3273 | } |
3274 | } |
3275 | |
3276 | /* firstbyte was previously set */ |
3277 | |
3278 | else |
3279 | { |
3280 | zerofirstbyte = firstbyte; |
3281 | zeroreqbyte = (length == 1)? reqbyte : |
3282 | code[-2] | req_caseopt | cd->req_varyopt; |
3283 | reqbyte = code[-1] | req_caseopt | cd->req_varyopt; |
3284 | } |
3285 | } |
3286 | |
3287 | /* Set the length in the data vector, and advance to the next state. */ |
3288 | |
3289 | previous[1] = length; |
3290 | if (length < MAXLIT) ptr--; |
3291 | break; |
3292 | } |
3293 | } /* end of big loop */ |
3294 | |
3295 | /* Control never reaches here by falling through, only by a goto for all the |
3296 | error states. Pass back the position in the pattern so that it can be displayed |
3297 | to the user for diagnosing the error. */ |
3298 | |
3299 | FAILED: |
3300 | *ptrptr = ptr; |
3301 | return FALSE; |
3302 | } |
3303 | |
3304 | |
3305 | |
3306 | |
3307 | /************************************************* |
3308 | * Compile sequence of alternatives * |
3309 | *************************************************/ |
3310 | |
3311 | /* On entry, ptr is pointing past the bracket character, but on return |
3312 | it points to the closing bracket, or vertical bar, or end of string. |
3313 | The code variable is pointing at the byte into which the BRA operator has been |
3314 | stored. If the ims options are changed at the start (for a (?ims: group) or |
3315 | during any branch, we need to insert an OP_OPT item at the start of every |
3316 | following branch to ensure they get set correctly at run time, and also pass |
3317 | the new options into every subsequent branch compile. |
3318 | |
3319 | Argument: |
3320 | options option bits, including any changes for this subpattern |
3321 | oldims previous settings of ims option bits |
3322 | brackets -> int containing the number of extracting brackets used |
3323 | codeptr -> the address of the current code pointer |
3324 | ptrptr -> the address of the current pattern pointer |
3325 | errorptr -> pointer to error message |
3326 | lookbehind TRUE if this is a lookbehind assertion |
3327 | skipbytes skip this many bytes at start (for OP_COND, OP_BRANUMBER) |
3328 | firstbyteptr place to put the first required character, or a negative number |
3329 | reqbyteptr place to put the last required character, or a negative number |
3330 | bcptr pointer to the chain of currently open branches |
3331 | cd points to the data block with tables pointers etc. |
3332 | |
3333 | Returns: TRUE on success |
3334 | */ |
3335 | |
3336 | static BOOL |
3337 | compile_regex(int options, int oldims, int *brackets, uschar **codeptr, |
3338 | const uschar **ptrptr, const char **errorptr, BOOL lookbehind, int skipbytes, |
3339 | int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, compile_data *cd) |
3340 | { |
3341 | const uschar *ptr = *ptrptr; |
3342 | uschar *code = *codeptr; |
3343 | uschar *last_branch = code; |
3344 | uschar *start_bracket = code; |
3345 | uschar *reverse_count = NULL; |
3346 | int firstbyte, reqbyte; |
3347 | int branchfirstbyte, branchreqbyte; |
3348 | branch_chain bc; |
3349 | |
3350 | bc.outer = bcptr; |
3351 | bc.current = code; |
3352 | |
3353 | firstbyte = reqbyte = REQ_UNSET; |
3354 | |
3355 | /* Offset is set zero to mark that this bracket is still open */ |
3356 | |
3357 | PUT(code, 1, 0); |
3358 | code += 1 + LINK_SIZE + skipbytes; |
3359 | |
3360 | /* Loop for each alternative branch */ |
3361 | |
3362 | for (;;) |
3363 | { |
3364 | /* Handle a change of ims options at the start of the branch */ |
3365 | |
3366 | if ((options & PCRE_IMS) != oldims) |
3367 | { |
3368 | *code++ = OP_OPT; |
3369 | *code++ = options & PCRE_IMS; |
3370 | } |
3371 | |
3372 | /* Set up dummy OP_REVERSE if lookbehind assertion */ |
3373 | |
3374 | if (lookbehind) |
3375 | { |
3376 | *code++ = OP_REVERSE; |
3377 | reverse_count = code; |
3378 | PUTINC(code, 0, 0); |
3379 | } |
3380 | |
3381 | /* Now compile the branch */ |
3382 | |
3383 | if (!compile_branch(&options, brackets, &code, &ptr, errorptr, |
3384 | &branchfirstbyte, &branchreqbyte, &bc, cd)) |
3385 | { |
3386 | *ptrptr = ptr; |
3387 | return FALSE; |
3388 | } |
3389 | |
3390 | /* If this is the first branch, the firstbyte and reqbyte values for the |
3391 | branch become the values for the regex. */ |
3392 | |
3393 | if (*last_branch != OP_ALT) |
3394 | { |
3395 | firstbyte = branchfirstbyte; |
3396 | reqbyte = branchreqbyte; |
3397 | } |
3398 | |
3399 | /* If this is not the first branch, the first char and reqbyte have to |
3400 | match the values from all the previous branches, except that if the previous |
3401 | value for reqbyte didn't have REQ_VARY set, it can still match, and we set |
3402 | REQ_VARY for the regex. */ |
3403 | |
3404 | else |
3405 | { |
3406 | /* If we previously had a firstbyte, but it doesn't match the new branch, |
3407 | we have to abandon the firstbyte for the regex, but if there was previously |
3408 | no reqbyte, it takes on the value of the old firstbyte. */ |
3409 | |
3410 | if (firstbyte >= 0 && firstbyte != branchfirstbyte) |
3411 | { |
3412 | if (reqbyte < 0) reqbyte = firstbyte; |
3413 | firstbyte = REQ_NONE; |
3414 | } |
3415 | |
3416 | /* If we (now or from before) have no firstbyte, a firstbyte from the |
3417 | branch becomes a reqbyte if there isn't a branch reqbyte. */ |
3418 | |
3419 | if (firstbyte < 0 && branchfirstbyte >= 0 && branchreqbyte < 0) |
3420 | branchreqbyte = branchfirstbyte; |
3421 | |
3422 | /* Now ensure that the reqbytes match */ |
3423 | |
3424 | if ((reqbyte & ~REQ_VARY) != (branchreqbyte & ~REQ_VARY)) |
3425 | reqbyte = REQ_NONE; |
3426 | else reqbyte |= branchreqbyte; /* To "or" REQ_VARY */ |
3427 | } |
3428 | |
3429 | /* If lookbehind, check that this branch matches a fixed-length string, |
3430 | and put the length into the OP_REVERSE item. Temporarily mark the end of |
3431 | the branch with OP_END. */ |
3432 | |
3433 | if (lookbehind) |
3434 | { |
3435 | int length; |
3436 | *code = OP_END; |
3437 | length = find_fixedlength(last_branch, options); |
3438 | DPRINTF(("fixed length = %d\n", length)); |
3439 | if (length < 0) |
3440 | { |
3441 | *errorptr = (length == -2)? ERR36 : ERR25; |
3442 | *ptrptr = ptr; |
3443 | return FALSE; |
3444 | } |
3445 | PUT(reverse_count, 0, length); |
3446 | } |
3447 | |
3448 | /* Reached end of expression, either ')' or end of pattern. Go back through |
3449 | the alternative branches and reverse the chain of offsets, with the field in |
3450 | the BRA item now becoming an offset to the first alternative. If there are |
3451 | no alternatives, it points to the end of the group. The length in the |
3452 | terminating ket is always the length of the whole bracketed item. If any of |
3453 | the ims options were changed inside the group, compile a resetting op-code |
3454 | following, except at the very end of the pattern. Return leaving the pointer |
3455 | at the terminating char. */ |
3456 | |
3457 | if (*ptr != '|') |
3458 | { |
3459 | int length = code - last_branch; |
3460 | do |
3461 | { |
3462 | int prev_length = GET(last_branch, 1); |
3463 | PUT(last_branch, 1, length); |
3464 | length = prev_length; |
3465 | last_branch -= length; |
3466 | } |
3467 | while (length > 0); |
3468 | |
3469 | /* Fill in the ket */ |
3470 | |
3471 | *code = OP_KET; |
3472 | PUT(code, 1, code - start_bracket); |
3473 | code += 1 + LINK_SIZE; |
3474 | |
3475 | /* Resetting option if needed */ |
3476 | |
3477 | if ((options & PCRE_IMS) != oldims && *ptr == ')') |
3478 | { |
3479 | *code++ = OP_OPT; |
3480 | *code++ = oldims; |
3481 | } |
3482 | |
3483 | /* Set values to pass back */ |
3484 | |
3485 | *codeptr = code; |
3486 | *ptrptr = ptr; |
3487 | *firstbyteptr = firstbyte; |
3488 | *reqbyteptr = reqbyte; |
3489 | return TRUE; |
3490 | } |
3491 | |
3492 | /* Another branch follows; insert an "or" node. Its length field points back |
3493 | to the previous branch while the bracket remains open. At the end the chain |
3494 | is reversed. It's done like this so that the start of the bracket has a |
3495 | zero offset until it is closed, making it possible to detect recursion. */ |
3496 | |
3497 | *code = OP_ALT; |
3498 | PUT(code, 1, code - last_branch); |
3499 | bc.current = last_branch = code; |
3500 | code += 1 + LINK_SIZE; |
3501 | ptr++; |
3502 | } |
3503 | /* Control never reaches here */ |
3504 | } |
3505 | |
3506 | |
3507 | |
3508 | |
3509 | /************************************************* |
3510 | * Check for anchored expression * |
3511 | *************************************************/ |
3512 | |
3513 | /* Try to find out if this is an anchored regular expression. Consider each |
3514 | alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket |
3515 | all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then |
3516 | it's anchored. However, if this is a multiline pattern, then only OP_SOD |
3517 | counts, since OP_CIRC can match in the middle. |
3518 | |
3519 | We can also consider a regex to be anchored if OP_SOM starts all its branches. |
3520 | This is the code for \G, which means "match at start of match position, taking |
3521 | into account the match offset". |
3522 | |
3523 | A branch is also implicitly anchored if it starts with .* and DOTALL is set, |
3524 | because that will try the rest of the pattern at all possible matching points, |
3525 | so there is no point trying again.... er .... |
3526 | |
3527 | .... except when the .* appears inside capturing parentheses, and there is a |
3528 | subsequent back reference to those parentheses. We haven't enough information |
3529 | to catch that case precisely. |
3530 | |
3531 | At first, the best we could do was to detect when .* was in capturing brackets |
3532 | and the highest back reference was greater than or equal to that level. |
3533 | However, by keeping a bitmap of the first 31 back references, we can catch some |
3534 | of the more common cases more precisely. |
3535 | |
3536 | Arguments: |
3537 | code points to start of expression (the bracket) |
3538 | options points to the options setting |
3539 | bracket_map a bitmap of which brackets we are inside while testing; this |
3540 | handles up to substring 31; after that we just have to take |
3541 | the less precise approach |
3542 | backref_map the back reference bitmap |
3543 | |
3544 | Returns: TRUE or FALSE |
3545 | */ |
3546 | |
3547 | static BOOL |
3548 | is_anchored(register const uschar *code, int *options, unsigned int bracket_map, |
3549 | unsigned int backref_map) |
3550 | { |
3551 | do { |
3552 | const uschar *scode = |
3553 | first_significant_code(code + 1+LINK_SIZE, options, PCRE_MULTILINE); |
3554 | register int op = *scode; |
3555 | |
3556 | /* Capturing brackets */ |
3557 | |
3558 | if (op > OP_BRA) |
3559 | { |
3560 | int new_map; |
3561 | op -= OP_BRA; |
3562 | if (op > EXTRACT_BASIC_MAX) op = GET2(scode, 2+LINK_SIZE); |
3563 | new_map = bracket_map | ((op < 32)? (1 << op) : 1); |
3564 | if (!is_anchored(scode, options, new_map, backref_map)) return FALSE; |
3565 | } |
3566 | |
3567 | /* Other brackets */ |
3568 | |
3569 | else if (op == OP_BRA || op == OP_ASSERT || op == OP_ONCE || op == OP_COND) |
3570 | { |
3571 | if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE; |
3572 | } |
3573 | |
3574 | /* .* is not anchored unless DOTALL is set and it isn't in brackets that |
3575 | are or may be referenced. */ |
3576 | |
3577 | else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR) && |
3578 | (*options & PCRE_DOTALL) != 0) |
3579 | { |
3580 | if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE; |
3581 | } |
3582 | |
3583 | /* Check for explicit anchoring */ |
3584 | |
3585 | else if (op != OP_SOD && op != OP_SOM && |
3586 | ((*options & PCRE_MULTILINE) != 0 || op != OP_CIRC)) |
3587 | return FALSE; |
3588 | code += GET(code, 1); |
3589 | } |
3590 | while (*code == OP_ALT); /* Loop for each alternative */ |
3591 | return TRUE; |
3592 | } |
3593 | |
3594 | |
3595 | |
3596 | /************************************************* |
3597 | * Check for starting with ^ or .* * |
3598 | *************************************************/ |
3599 | |
3600 | /* This is called to find out if every branch starts with ^ or .* so that |
3601 | "first char" processing can be done to speed things up in multiline |
3602 | matching and for non-DOTALL patterns that start with .* (which must start at |
3603 | the beginning or after \n). As in the case of is_anchored() (see above), we |
3604 | have to take account of back references to capturing brackets that contain .* |
3605 | because in that case we can't make the assumption. |
3606 | |
3607 | Arguments: |
3608 | code points to start of expression (the bracket) |
3609 | bracket_map a bitmap of which brackets we are inside while testing; this |
3610 | handles up to substring 31; after that we just have to take |
3611 | the less precise approach |
3612 | backref_map the back reference bitmap |
3613 | |
3614 | Returns: TRUE or FALSE |
3615 | */ |
3616 | |
3617 | static BOOL |
3618 | is_startline(const uschar *code, unsigned int bracket_map, |
3619 | unsigned int backref_map) |
3620 | { |
3621 | do { |
3622 | const uschar *scode = first_significant_code(code + 1+LINK_SIZE, NULL, 0); |
3623 | register int op = *scode; |
3624 | |
3625 | /* Capturing brackets */ |
3626 | |
3627 | if (op > OP_BRA) |
3628 | { |
3629 | int new_map; |
3630 | op -= OP_BRA; |
3631 | if (op > EXTRACT_BASIC_MAX) op = GET2(scode, 2+LINK_SIZE); |
3632 | new_map = bracket_map | ((op < 32)? (1 << op) : 1); |
3633 | if (!is_startline(scode, new_map, backref_map)) return FALSE; |
3634 | } |
3635 | |
3636 | /* Other brackets */ |
3637 | |
3638 | else if (op == OP_BRA || op == OP_ASSERT || op == OP_ONCE || op == OP_COND) |
3639 | { if (!is_startline(scode, bracket_map, backref_map)) return FALSE; } |
3640 | |
3641 | /* .* is not anchored unless DOTALL is set and it isn't in brackets that |
3642 | may be referenced. */ |
3643 | |
3644 | else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR) |
3645 | { |
3646 | if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE; |
3647 | } |
3648 | |
3649 | /* Check for explicit circumflex */ |
3650 | |
3651 | else if (op != OP_CIRC) return FALSE; |
3652 | code += GET(code, 1); |
3653 | } |
3654 | while (*code == OP_ALT); /* Loop for each alternative */ |
3655 | return TRUE; |
3656 | } |
3657 | |
3658 | |
3659 | |
3660 | /************************************************* |
3661 | * Check for asserted fixed first char * |
3662 | *************************************************/ |
3663 | |
3664 | /* During compilation, the "first char" settings from forward assertions are |
3665 | discarded, because they can cause conflicts with actual literals that follow. |
3666 | However, if we end up without a first char setting for an unanchored pattern, |
3667 | it is worth scanning the regex to see if there is an initial asserted first |
3668 | char. If all branches start with the same asserted char, or with a bracket all |
3669 | of whose alternatives start with the same asserted char (recurse ad lib), then |
3670 | we return that char, otherwise -1. |
3671 | |
3672 | Arguments: |
3673 | code points to start of expression (the bracket) |
3674 | options pointer to the options (used to check casing changes) |
3675 | inassert TRUE if in an assertion |
3676 | |
3677 | Returns: -1 or the fixed first char |
3678 | */ |
3679 | |
3680 | static int |
3681 | find_firstassertedchar(const uschar *code, int *options, BOOL inassert) |
3682 | { |
3683 | register int c = -1; |
3684 | do { |
3685 | int d; |
3686 | const uschar *scode = |
3687 | first_significant_code(code + 1+LINK_SIZE, options, PCRE_CASELESS); |
3688 | register int op = *scode; |
3689 | |
3690 | if (op >= OP_BRA) op = OP_BRA; |
3691 | |
3692 | switch(op) |
3693 | { |
3694 | default: |
3695 | return -1; |
3696 | |
3697 | case OP_BRA: |
3698 | case OP_ASSERT: |
3699 | case OP_ONCE: |
3700 | case OP_COND: |
3701 | if ((d = find_firstassertedchar(scode, options, op == OP_ASSERT)) < 0) |
3702 | return -1; |
3703 | if (c < 0) c = d; else if (c != d) return -1; |
3704 | break; |
3705 | |
3706 | case OP_EXACT: /* Fall through */ |
3707 | scode++; |
3708 | |
3709 | case OP_CHARS: /* Fall through */ |
3710 | scode++; |
3711 | |
3712 | case OP_PLUS: |
3713 | case OP_MINPLUS: |
3714 | if (!inassert) return -1; |
3715 | if (c < 0) |
3716 | { |
3717 | c = scode[1]; |
3718 | if ((*options & PCRE_CASELESS) != 0) c |= REQ_CASELESS; |
3719 | } |
3720 | else if (c != scode[1]) return -1; |
3721 | break; |
3722 | } |
3723 | |
3724 | code += GET(code, 1); |
3725 | } |
3726 | while (*code == OP_ALT); |
3727 | return c; |
3728 | } |
3729 | |
3730 | |
3731 | |
3732 | |
3733 | #ifdef SUPPORT_UTF8 |
3734 | /************************************************* |
3735 | * Validate a UTF-8 string * |
3736 | *************************************************/ |
3737 | |
3738 | /* This function is called (optionally) at the start of compile or match, to |
3739 | validate that a supposed UTF-8 string is actually valid. The early check means |
3740 | that subsequent code can assume it is dealing with a valid string. The check |
3741 | can be turned off for maximum performance, but then consequences of supplying |
3742 | an invalid string are then undefined. |
3743 | |
3744 | Arguments: |
3745 | string points to the string |
3746 | length length of string, or -1 if the string is zero-terminated |
3747 | |
3748 | Returns: < 0 if the string is a valid UTF-8 string |
3749 | >= 0 otherwise; the value is the offset of the bad byte |
3750 | */ |
3751 | |
3752 | static int |
3753 | valid_utf8(const uschar *string, int length) |
3754 | { |
3755 | register const uschar *p; |
3756 | |
3757 | if (length < 0) |
3758 | { |
3759 | for (p = string; *p != 0; p++); |
3760 | length = p - string; |
3761 | } |
3762 | |
3763 | for (p = string; length-- > 0; p++) |
3764 | { |
3765 | int ab; |
3766 | if (*p < 128) continue; |
3767 | if ((*p & 0xc0) != 0xc0) return p - string; |
3768 | ab = utf8_table4[*p & 0x3f]; /* Number of additional bytes */ |
3769 | if (length < ab) return p - string; |
3770 | while (ab-- > 0) |
3771 | { |
3772 | if ((*(++p) & 0xc0) != 0x80) return p - string; |
3773 | length--; |
3774 | } |
3775 | } |
3776 | |
3777 | return -1; |
3778 | } |
3779 | #endif |
3780 | |
3781 | |
3782 | |
3783 | /************************************************* |
3784 | * Compile a Regular Expression * |
3785 | *************************************************/ |
3786 | |
3787 | /* This function takes a string and returns a pointer to a block of store |
3788 | holding a compiled version of the expression. |
3789 | |
3790 | Arguments: |
3791 | pattern the regular expression |
3792 | options various option bits |
3793 | errorptr pointer to pointer to error text |
3794 | erroroffset ptr offset in pattern where error was detected |
3795 | tables pointer to character tables or NULL |
3796 | |
3797 | Returns: pointer to compiled data block, or NULL on error, |
3798 | with errorptr and erroroffset set |
3799 | */ |
3800 | |
3801 | pcre * |
3802 | pcre_compile(const char *pattern, int options, const char **errorptr, |
3803 | int *erroroffset, const unsigned char *tables) |
3804 | { |
3805 | real_pcre *re; |
3806 | int length = 1 + LINK_SIZE; /* For initial BRA plus length */ |
3807 | int runlength; |
3808 | int c, firstbyte, reqbyte; |
3809 | int bracount = 0; |
3810 | int branch_extra = 0; |
3811 | int branch_newextra; |
3812 | int item_count = -1; |
3813 | int name_count = 0; |
3814 | int max_name_size = 0; |
3815 | #ifdef SUPPORT_UTF8 |
3816 | int lastcharlength = 0; |
3817 | BOOL utf8; |
3818 | BOOL class_utf8; |
3819 | #endif |
3820 | BOOL inescq = FALSE; |
3821 | unsigned int brastackptr = 0; |
3822 | size_t size; |
3823 | uschar *code; |
3824 | const uschar *codestart; |
3825 | const uschar *ptr; |
3826 | compile_data compile_block; |
3827 | int brastack[BRASTACK_SIZE]; |
3828 | uschar bralenstack[BRASTACK_SIZE]; |
3829 | |
3830 | /* We can't pass back an error message if errorptr is NULL; I guess the best we |
3831 | can do is just return NULL. */ |
3832 | |
3833 | if (errorptr == NULL) return NULL; |
3834 | *errorptr = NULL; |
3835 | |
3836 | /* However, we can give a message for this error */ |
3837 | |
3838 | if (erroroffset == NULL) |
3839 | { |
3840 | *errorptr = ERR16; |
3841 | return NULL; |
3842 | } |
3843 | *erroroffset = 0; |
3844 | |
3845 | /* Can't support UTF8 unless PCRE has been compiled to include the code. */ |
3846 | |
3847 | #ifdef SUPPORT_UTF8 |
3848 | utf8 = (options & PCRE_UTF8) != 0; |
3849 | if (utf8 && (options & PCRE_NO_UTF8_CHECK) == 0 && |
3850 | (*erroroffset = valid_utf8((uschar *)pattern, -1)) >= 0) |
3851 | { |
3852 | *errorptr = ERR44; |
3853 | return NULL; |
3854 | } |
3855 | #else |
3856 | if ((options & PCRE_UTF8) != 0) |
3857 | { |
3858 | *errorptr = ERR32; |
3859 | return NULL; |
3860 | } |
3861 | #endif |
3862 | |
3863 | if ((options & ~PUBLIC_OPTIONS) != 0) |
3864 | { |
3865 | *errorptr = ERR17; |
3866 | return NULL; |
3867 | } |
3868 | |
3869 | /* Set up pointers to the individual character tables */ |
3870 | |
3871 | if (tables == NULL) tables = pcre_default_tables; |
3872 | compile_block.lcc = tables + lcc_offset; |
3873 | compile_block.fcc = tables + fcc_offset; |
3874 | compile_block.cbits = tables + cbits_offset; |
3875 | compile_block.ctypes = tables + ctypes_offset; |
3876 | |
3877 | /* Maximum back reference and backref bitmap. This is updated for numeric |
3878 | references during the first pass, but for named references during the actual |
3879 | compile pass. The bitmap records up to 31 back references to help in deciding |
3880 | whether (.*) can be treated as anchored or not. */ |
3881 | |
3882 | compile_block.top_backref = 0; |
3883 | compile_block.backref_map = 0; |
3884 | |
3885 | /* Reflect pattern for debugging output */ |
3886 | |
3887 | DPRINTF(("------------------------------------------------------------------\n")); |
3888 | DPRINTF(("%s\n", pattern)); |
3889 | |
3890 | /* The first thing to do is to make a pass over the pattern to compute the |
3891 | amount of store required to hold the compiled code. This does not have to be |
3892 | perfect as long as errors are overestimates. At the same time we can detect any |
3893 | flag settings right at the start, and extract them. Make an attempt to correct |
3894 | for any counted white space if an "extended" flag setting appears late in the |
3895 | pattern. We can't be so clever for #-comments. */ |
3896 | |
3897 | ptr = (const uschar *)(pattern - 1); |
3898 | while ((c = *(++ptr)) != 0) |
3899 | { |
3900 | int min, max; |
3901 | int class_optcount; |
3902 | int bracket_length; |
3903 | int duplength; |
3904 | |
3905 | /* If we are inside a \Q...\E sequence, all chars are literal */ |
3906 | |
3907 | if (inescq) goto NORMAL_CHAR; |
3908 | |
3909 | /* Otherwise, first check for ignored whitespace and comments */ |
3910 | |
3911 | if ((options & PCRE_EXTENDED) != 0) |
3912 | { |
3913 | if ((compile_block.ctypes[c] & ctype_space) != 0) continue; |
3914 | if (c == '#') |
3915 | { |
3916 | /* The space before the ; is to avoid a warning on a silly compiler |
3917 | on the Macintosh. */ |
3918 | while ((c = *(++ptr)) != 0 && c != NEWLINE) ; |
3919 | if (c == 0) break; |
3920 | continue; |
3921 | } |
3922 | } |
3923 | |
3924 | item_count++; /* Is zero for the first non-comment item */ |
3925 | |
3926 | switch(c) |
3927 | { |
3928 | /* A backslashed item may be an escaped "normal" character or a |
3929 | character type. For a "normal" character, put the pointers and |
3930 | character back so that tests for whitespace etc. in the input |
3931 | are done correctly. */ |
3932 | |
3933 | case '\\': |
3934 | { |
3935 | const uschar *save_ptr = ptr; |
3936 | c = check_escape(&ptr, errorptr, bracount, options, FALSE); |
3937 | if (*errorptr != NULL) goto PCRE_ERROR_RETURN; |
3938 | if (c >= 0) |
3939 | { |
3940 | ptr = save_ptr; |
3941 | c = '\\'; |
3942 | goto NORMAL_CHAR; |
3943 | } |
3944 | } |
3945 | |
3946 | /* If \Q, enter "literal" mode */ |
3947 | |
3948 | if (-c == ESC_Q) |
3949 | { |
3950 | inescq = TRUE; |
3951 | continue; |
3952 | } |
3953 | |
3954 | /* Other escapes need one byte, and are of length one for repeats */ |
3955 | |
3956 | length++; |
3957 | #ifdef SUPPORT_UTF8 |
3958 | lastcharlength = 1; |
3959 | #endif |
3960 | |
3961 | /* A back reference needs an additional 2 bytes, plus either one or 5 |
3962 | bytes for a repeat. We also need to keep the value of the highest |
3963 | back reference. */ |
3964 | |
3965 | if (c <= -ESC_REF) |
3966 | { |
3967 | int refnum = -c - ESC_REF; |
3968 | compile_block.backref_map |= (refnum < 32)? (1 << refnum) : 1; |
3969 | if (refnum > compile_block.top_backref) |
3970 | compile_block.top_backref = refnum; |
3971 | length += 2; /* For single back reference */ |
3972 | if (ptr[1] == '{' && is_counted_repeat(ptr+2)) |
3973 | { |
3974 | ptr = read_repeat_counts(ptr+2, &min, &max, errorptr); |
3975 | if (*errorptr != NULL) goto PCRE_ERROR_RETURN; |
3976 | if ((min == 0 && (max == 1 || max == -1)) || |
3977 | (min == 1 && max == -1)) |
3978 | length++; |
3979 | else length += 5; |
3980 | if (ptr[1] == '?') ptr++; |
3981 | } |
3982 | } |
3983 | continue; |
3984 | |
3985 | case '^': /* Single-byte metacharacters */ |
3986 | case '.': |
3987 | case '$': |
3988 | length++; |
3989 | #ifdef SUPPORT_UTF8 |
3990 | lastcharlength = 1; |
3991 | #endif |
3992 | continue; |
3993 | |
3994 | case '*': /* These repeats won't be after brackets; */ |
3995 | case '+': /* those are handled separately */ |
3996 | case '?': |
3997 | length++; |
3998 | goto POSESSIVE; /* A few lines below */ |
3999 | |
4000 | /* This covers the cases of braced repeats after a single char, metachar, |
4001 | class, or back reference. */ |
4002 | |
4003 | case '{': |
4004 | if (!is_counted_repeat(ptr+1)) goto NORMAL_CHAR; |
4005 | ptr = read_repeat_counts(ptr+1, &min, &max, errorptr); |
4006 | if (*errorptr != NULL) goto PCRE_ERROR_RETURN; |
4007 | |
4008 | /* These special cases just insert one extra opcode */ |
4009 | |
4010 | if ((min == 0 && (max == 1 || max == -1)) || |
4011 | (min == 1 && max == -1)) |
4012 | length++; |
4013 | |
4014 | /* These cases might insert additional copies of a preceding character. */ |
4015 | |
4016 | else |
4017 | { |
4018 | #ifdef SUPPORT_UTF8 |
4019 | /* In UTF-8 mode, we should find the length in lastcharlength */ |
4020 | if (utf8) |
4021 | { |
4022 | if (min != 1) |
4023 | { |
4024 | length -= lastcharlength; /* Uncount the original char or metachar */ |
4025 | if (min > 0) length += 3 + lastcharlength; |
4026 | } |
4027 | length += lastcharlength + ((max > 0)? 3 : 1); |
4028 | } |
4029 | else |
4030 | #endif |
4031 | |
4032 | /* Not UTF-8 mode: all characters are one byte */ |
4033 | { |
4034 | if (min != 1) |
4035 | { |
4036 | length--; /* Uncount the original char or metachar */ |
4037 | if (min > 0) length += 4; |
4038 | } |
4039 | |
4040 | length += (max > 0)? 4 : 2; |
4041 | } |
4042 | } |
4043 | |
4044 | if (ptr[1] == '?') ptr++; /* Needs no extra length */ |
4045 | |
4046 | POSESSIVE: /* Test for possessive quantifier */ |
4047 | if (ptr[1] == '+') |
4048 | { |
4049 | ptr++; |
4050 | length += 2 + 2*LINK_SIZE; /* Allow for atomic brackets */ |
4051 | } |
4052 | continue; |
4053 | |
4054 | /* An alternation contains an offset to the next branch or ket. If any ims |
4055 | options changed in the previous branch(es), and/or if we are in a |
4056 | lookbehind assertion, extra space will be needed at the start of the |
4057 | branch. This is handled by branch_extra. */ |
4058 | |
4059 | case '|': |
4060 | length += 1 + LINK_SIZE + branch_extra; |
4061 | continue; |
4062 | |
4063 | /* A character class uses 33 characters provided that all the character |
4064 | values are less than 256. Otherwise, it uses a bit map for low valued |
4065 | characters, and individual items for others. Don't worry about character |
4066 | types that aren't allowed in classes - they'll get picked up during the |
4067 | compile. A character class that contains only one single-byte character |
4068 | uses 2 or 3 bytes, depending on whether it is negated or not. Notice this |
4069 | where we can. (In UTF-8 mode we can do this only for chars < 128.) */ |
4070 | |
4071 | case '[': |
4072 | class_optcount = 0; |
4073 | |
4074 | #ifdef SUPPORT_UTF8 |
4075 | class_utf8 = FALSE; |
4076 | #endif |
4077 | |
4078 | if (*(++ptr) == '^') ptr++; |
4079 | |
4080 | /* Written as a "do" so that an initial ']' is taken as data */ |
4081 | |
4082 | if (*ptr != 0) do |
4083 | { |
4084 | /* Inside \Q...\E everything is literal except \E */ |
4085 | |
4086 | if (inescq) |
4087 | { |
4088 | if (*ptr != '\\' || ptr[1] != 'E') goto NON_SPECIAL_CHARACTER; |
4089 | inescq = FALSE; |
4090 | ptr += 1; |
4091 | continue; |
4092 | } |
4093 | |
4094 | /* Outside \Q...\E, check for escapes */ |
4095 | |
4096 | if (*ptr == '\\') |
4097 | { |
4098 | #ifdef SUPPORT_UTF8 |
4099 | int prevchar = ptr[-1]; |
4100 | #endif |
4101 | int ch = check_escape(&ptr, errorptr, bracount, options, TRUE); |
4102 | if (*errorptr != NULL) goto PCRE_ERROR_RETURN; |
4103 | |
4104 | /* \b is backspace inside a class */ |
4105 | |
4106 | if (-ch == ESC_b) ch = '\b'; |
4107 | |
4108 | /* \Q enters quoting mode */ |
4109 | |
4110 | if (-ch == ESC_Q) |
4111 | { |
4112 | inescq = TRUE; |
4113 | continue; |
4114 | } |
4115 | |
4116 | /* Handle escapes that turn into characters */ |
4117 | |
4118 | if (ch >= 0) |
4119 | { |
4120 | #ifdef SUPPORT_UTF8 |
4121 | if (utf8) |
4122 | { |
4123 | if (ch > 127) class_optcount = 10; /* Ensure > 1 */ |
4124 | if (ch > 255) |
4125 | { |
4126 | uschar buffer[6]; |
4127 | if (!class_utf8) |
4128 | { |
4129 | class_utf8 = TRUE; |
4130 | length += LINK_SIZE + 1 + 1; |
4131 | } |
4132 | length += 1 + ord2utf8(ch, buffer); |
4133 | |
4134 | /* If this wide character is preceded by '-', add an extra 2 to |
4135 | the length in case the previous character was < 128, because in |
4136 | this case the whole range will be put into the list. */ |
4137 | |
4138 | if (prevchar == '-') length += 2; |
4139 | } |
4140 | } |
4141 | #endif |
4142 | class_optcount++; /* for possible optimization */ |
4143 | } |
4144 | else class_optcount = 10; /* \d, \s etc; make sure > 1 */ |
4145 | } |
4146 | |
4147 | /* Check the syntax for POSIX stuff. The bits we actually handle are |
4148 | checked during the real compile phase. */ |
4149 | |
4150 | else if (*ptr == '[' && check_posix_syntax(ptr, &ptr, &compile_block)) |
4151 | { |
4152 | ptr++; |
4153 | class_optcount = 10; /* Make sure > 1 */ |
4154 | } |
4155 | |
4156 | /* Anything else just increments the possible optimization count. If |
4157 | there are wide characters, we are going to have to use an XCLASS. */ |
4158 | |
4159 | else |
4160 | { |
4161 | NON_SPECIAL_CHARACTER: |
4162 | class_optcount++; |
4163 | |
4164 | #ifdef SUPPORT_UTF8 |
4165 | if (utf8) |
4166 | { |
4167 | int ch; |
4168 | int extra = 0; |
4169 | GETCHARLEN(ch, ptr, extra); |
4170 | if (ch > 127) class_optcount = 10; /* No optimization possible */ |
4171 | if (ch > 255) |
4172 | { |
4173 | if (!class_utf8) |
4174 | { |
4175 | class_utf8 = TRUE; |
4176 | length += LINK_SIZE + 1 + 1; |
4177 | } |
4178 | length += 2 + extra; |
4179 | |
4180 | /* If this wide character is preceded by '-', add an extra 2 to |
4181 | the length in case the previous character was < 128, because in |
4182 | this case the whole range will be put into the list. */ |
4183 | |
4184 | if (ptr[-1] == '-') length += 2; |
4185 | |
4186 | /* Advance to the end of this character */ |
4187 | |
4188 | ptr += extra; |
4189 | } |
4190 | } |
4191 | #endif |
4192 | } |
4193 | } |
4194 | while (*(++ptr) != 0 && (inescq || *ptr != ']')); /* Concludes "do" above */ |
4195 | |
4196 | if (*ptr == 0) /* Missing terminating ']' */ |
4197 | { |
4198 | *errorptr = ERR6; |
4199 | goto PCRE_ERROR_RETURN; |
4200 | } |
4201 | |
4202 | /* We can optimize when there was only one optimizable character. Repeats |
4203 | for positive and negated single one-byte chars are handled by the general |
4204 | code. Here, we handle repeats for the class opcodes. */ |
4205 | |
4206 | if (class_optcount == 1) length += 3; else |
4207 | { |
4208 | length += 33; |
4209 | |
4210 | /* A repeat needs either 1 or 5 bytes. */ |
4211 | |
4212 | if (*ptr != 0 && ptr[1] == '{' && is_counted_repeat(ptr+2)) |
4213 | { |
4214 | ptr = read_repeat_counts(ptr+2, &min, &max, errorptr); |
4215 | if (*errorptr != NULL) goto PCRE_ERROR_RETURN; |
4216 | if ((min == 0 && (max == 1 || max == -1)) || |
4217 | (min == 1 && max == -1)) |
4218 | length++; |
4219 | else length += 5; |
4220 | if (ptr[1] == '?') ptr++; |
4221 | } |
4222 | } |
4223 | continue; |
4224 | |
4225 | /* Brackets may be genuine groups or special things */ |
4226 | |
4227 | case '(': |
4228 | branch_newextra = 0; |
4229 | bracket_length = 1 + LINK_SIZE; |
4230 | |
4231 | /* Handle special forms of bracket, which all start (? */ |
4232 | |
4233 | if (ptr[1] == '?') |
4234 | { |
4235 | int set, unset; |
4236 | int *optset; |
4237 | |
4238 | switch (c = ptr[2]) |
4239 | { |
4240 | /* Skip over comments entirely */ |
4241 | case '#': |
4242 | ptr += 3; |
4243 | while (*ptr != 0 && *ptr != ')') ptr++; |
4244 | if (*ptr == 0) |
4245 | { |
4246 | *errorptr = ERR18; |
4247 | goto PCRE_ERROR_RETURN; |
4248 | } |
4249 | continue; |
4250 | |
4251 | /* Non-referencing groups and lookaheads just move the pointer on, and |
4252 | then behave like a non-special bracket, except that they don't increment |
4253 | the count of extracting brackets. Ditto for the "once only" bracket, |
4254 | which is in Perl from version 5.005. */ |
4255 | |
4256 | case ':': |
4257 | case '=': |
4258 | case '!': |
4259 | case '>': |
4260 | ptr += 2; |
4261 | break; |
4262 | |
4263 | /* (?R) specifies a recursive call to the regex, which is an extension |
4264 | to provide the facility which can be obtained by (?p{perl-code}) in |
4265 | Perl 5.6. In Perl 5.8 this has become (??{perl-code}). |
4266 | |
4267 | From PCRE 4.00, items such as (?3) specify subroutine-like "calls" to |
4268 | the appropriate numbered brackets. This includes both recursive and |
4269 | non-recursive calls. (?R) is now synonymous with (?0). */ |
4270 | |
4271 | case 'R': |
4272 | ptr++; |
4273 | |
4274 | case '0': case '1': case '2': case '3': case '4': |
4275 | case '5': case '6': case '7': case '8': case '9': |
4276 | ptr += 2; |
4277 | if (c != 'R') |
4278 | while ((digitab[*(++ptr)] & ctype_digit) != 0); |
4279 | if (*ptr != ')') |
4280 | { |
4281 | *errorptr = ERR29; |
4282 | goto PCRE_ERROR_RETURN; |
4283 | } |
4284 | length += 1 + LINK_SIZE; |
4285 | |
4286 | /* If this item is quantified, it will get wrapped inside brackets so |
4287 | as to use the code for quantified brackets. We jump down and use the |
4288 | code that handles this for real brackets. */ |
4289 | |
4290 | if (ptr[1] == '+' || ptr[1] == '*' || ptr[1] == '?' || ptr[1] == '{') |
4291 | { |
4292 | length += 2 + 2 * LINK_SIZE; /* to make bracketed */ |
4293 | duplength = 5 + 3 * LINK_SIZE; |
4294 | goto HANDLE_QUANTIFIED_BRACKETS; |
4295 | } |
4296 | continue; |
4297 | |
4298 | /* (?C) is an extension which provides "callout" - to provide a bit of |
4299 | the functionality of the Perl (?{...}) feature. An optional number may |
4300 | follow (default is zero). */ |
4301 | |
4302 | case 'C': |
4303 | ptr += 2; |
4304 | while ((digitab[*(++ptr)] & ctype_digit) != 0); |
4305 | if (*ptr != ')') |
4306 | { |
4307 | *errorptr = ERR39; |
4308 | goto PCRE_ERROR_RETURN; |
4309 | } |
4310 | length += 2; |
4311 | continue; |
4312 | |
4313 | /* Named subpatterns are an extension copied from Python */ |
4314 | |
4315 | case 'P': |
4316 | ptr += 3; |
4317 | if (*ptr == '<') |
4318 | { |
4319 | const uschar *p; /* Don't amalgamate; some compilers */ |
4320 | p = ++ptr; /* grumble at autoincrement in declaration */ |
4321 | while ((compile_block.ctypes[*ptr] & ctype_word) != 0) ptr++; |
4322 | if (*ptr != '>') |
4323 | { |
4324 | *errorptr = ERR42; |
4325 | goto PCRE_ERROR_RETURN; |
4326 | } |
4327 | name_count++; |
4328 | if (ptr - p > max_name_size) max_name_size = (ptr - p); |
4329 | break; |
4330 | } |
4331 | |
4332 | if (*ptr == '=' || *ptr == '>') |
4333 | { |
4334 | while ((compile_block.ctypes[*(++ptr)] & ctype_word) != 0); |
4335 | if (*ptr != ')') |
4336 | { |
4337 | *errorptr = ERR42; |
4338 | goto PCRE_ERROR_RETURN; |
4339 | } |
4340 | break; |
4341 | } |
4342 | |
4343 | /* Unknown character after (?P */ |
4344 | |
4345 | *errorptr = ERR41; |
4346 | goto PCRE_ERROR_RETURN; |
4347 | |
4348 | /* Lookbehinds are in Perl from version 5.005 */ |
4349 | |
4350 | case '<': |
4351 | ptr += 3; |
4352 | if (*ptr == '=' || *ptr == '!') |
4353 | { |
4354 | branch_newextra = 1 + LINK_SIZE; |
4355 | length += 1 + LINK_SIZE; /* For the first branch */ |
4356 | break; |
4357 | } |
4358 | *errorptr = ERR24; |
4359 | goto PCRE_ERROR_RETURN; |
4360 | |
4361 | /* Conditionals are in Perl from version 5.005. The bracket must either |
4362 | be followed by a number (for bracket reference) or by an assertion |
4363 | group, or (a PCRE extension) by 'R' for a recursion test. */ |
4364 | |
4365 | case '(': |
4366 | if (ptr[3] == 'R' && ptr[4] == ')') |
4367 | { |
4368 | ptr += 4; |
4369 | length += 3; |
4370 | } |
4371 | else if ((digitab[ptr[3]] & ctype_digit) != 0) |
4372 | { |
4373 | ptr += 4; |
4374 | length += 3; |
4375 | while ((digitab[*ptr] & ctype_digit) != 0) ptr++; |
4376 | if (*ptr != ')') |
4377 | { |
4378 | *errorptr = ERR26; |
4379 | goto PCRE_ERROR_RETURN; |
4380 | } |
4381 | } |
4382 | else /* An assertion must follow */ |
4383 | { |
4384 | ptr++; /* Can treat like ':' as far as spacing is concerned */ |
4385 | if (ptr[2] != '?' || |
4386 | (ptr[3] != '=' && ptr[3] != '!' && ptr[3] != '<') ) |
4387 | { |
4388 | ptr += 2; /* To get right offset in message */ |
4389 | *errorptr = ERR28; |
4390 | goto PCRE_ERROR_RETURN; |
4391 | } |
4392 | } |
4393 | break; |
4394 | |
4395 | /* Else loop checking valid options until ) is met. Anything else is an |
4396 | error. If we are without any brackets, i.e. at top level, the settings |
4397 | act as if specified in the options, so massage the options immediately. |
4398 | This is for backward compatibility with Perl 5.004. */ |
4399 | |
4400 | default: |
4401 | set = unset = 0; |
4402 | optset = &set; |
4403 | ptr += 2; |
4404 | |
4405 | for (;; ptr++) |
4406 | { |
4407 | c = *ptr; |
4408 | switch (c) |
4409 | { |
4410 | case 'i': |
4411 | *optset |= PCRE_CASELESS; |
4412 | continue; |
4413 | |
4414 | case 'm': |
4415 | *optset |= PCRE_MULTILINE; |
4416 | continue; |
4417 | |
4418 | case 's': |
4419 | *optset |= PCRE_DOTALL; |
4420 | continue; |
4421 | |
4422 | case 'x': |
4423 | *optset |= PCRE_EXTENDED; |
4424 | continue; |
4425 | |
4426 | case 'X': |
4427 | *optset |= PCRE_EXTRA; |
4428 | continue; |
4429 | |
4430 | case 'U': |
4431 | *optset |= PCRE_UNGREEDY; |
4432 | continue; |
4433 | |
4434 | case '-': |
4435 | optset = &unset; |
4436 | continue; |
4437 | |
4438 | /* A termination by ')' indicates an options-setting-only item; if |
4439 | this is at the very start of the pattern (indicated by item_count |
4440 | being zero), we use it to set the global options. This is helpful |
4441 | when analyzing the pattern for first characters, etc. Otherwise |
4442 | nothing is done here and it is handled during the compiling |
4443 | process. |
4444 | |
4445 | [Historical note: Up to Perl 5.8, options settings at top level |
4446 | were always global settings, wherever they appeared in the pattern. |
4447 | That is, they were equivalent to an external setting. From 5.8 |
4448 | onwards, they apply only to what follows (which is what you might |
4449 | expect).] */ |
4450 | |
4451 | case ')': |
4452 | if (item_count == 0) |
4453 | { |
4454 | options = (options | set) & (~unset); |
4455 | set = unset = 0; /* To save length */ |
4456 | item_count--; /* To allow for several */ |
4457 | } |
4458 | |
4459 | /* Fall through */ |
4460 | |
4461 | /* A termination by ':' indicates the start of a nested group with |
4462 | the given options set. This is again handled at compile time, but |
4463 | we must allow for compiled space if any of the ims options are |
4464 | set. We also have to allow for resetting space at the end of |
4465 | the group, which is why 4 is added to the length and not just 2. |
4466 | If there are several changes of options within the same group, this |
4467 | will lead to an over-estimate on the length, but this shouldn't |
4468 | matter very much. We also have to allow for resetting options at |
4469 | the start of any alternations, which we do by setting |
4470 | branch_newextra to 2. Finally, we record whether the case-dependent |
4471 | flag ever changes within the regex. This is used by the "required |
4472 | character" code. */ |
4473 | |
4474 | case ':': |
4475 | if (((set|unset) & PCRE_IMS) != 0) |
4476 | { |
4477 | length += 4; |
4478 | branch_newextra = 2; |
4479 | if (((set|unset) & PCRE_CASELESS) != 0) options |= PCRE_ICHANGED; |
4480 | } |
4481 | goto END_OPTIONS; |
4482 | |
4483 | /* Unrecognized option character */ |
4484 | |
4485 | default: |
4486 | *errorptr = ERR12; |
4487 | goto PCRE_ERROR_RETURN; |
4488 | } |
4489 | } |
4490 | |
4491 | /* If we hit a closing bracket, that's it - this is a freestanding |
4492 | option-setting. We need to ensure that branch_extra is updated if |
4493 | necessary. The only values branch_newextra can have here are 0 or 2. |
4494 | If the value is 2, then branch_extra must either be 2 or 5, depending |
4495 | on whether this is a lookbehind group or not. */ |
4496 | |
4497 | END_OPTIONS: |
4498 | if (c == ')') |
4499 | { |
4500 | if (branch_newextra == 2 && |
4501 | (branch_extra == 0 || branch_extra == 1+LINK_SIZE)) |
4502 | branch_extra += branch_newextra; |
4503 | continue; |
4504 | } |
4505 | |
4506 | /* If options were terminated by ':' control comes here. Fall through |
4507 | to handle the group below. */ |
4508 | } |
4509 | } |
4510 | |
4511 | /* Extracting brackets must be counted so we can process escapes in a |
4512 | Perlish way. If the number exceeds EXTRACT_BASIC_MAX we are going to |
4513 | need an additional 3 bytes of store per extracting bracket. However, if |
4514 | PCRE_NO_AUTO)CAPTURE is set, unadorned brackets become non-capturing, so we |
4515 | must leave the count alone (it will aways be zero). */ |
4516 | |
4517 | else if ((options & PCRE_NO_AUTO_CAPTURE) == 0) |
4518 | { |
4519 | bracount++; |
4520 | if (bracount > EXTRACT_BASIC_MAX) bracket_length += 3; |
4521 | } |
4522 | |
4523 | /* Save length for computing whole length at end if there's a repeat that |
4524 | requires duplication of the group. Also save the current value of |
4525 | branch_extra, and start the new group with the new value. If non-zero, this |
4526 | will either be 2 for a (?imsx: group, or 3 for a lookbehind assertion. */ |
4527 | |
4528 | if (brastackptr >= sizeof(brastack)/sizeof(int)) |
4529 | { |
4530 | *errorptr = ERR19; |
4531 | goto PCRE_ERROR_RETURN; |
4532 | } |
4533 | |
4534 | bralenstack[brastackptr] = branch_extra; |
4535 | branch_extra = branch_newextra; |
4536 | |
4537 | brastack[brastackptr++] = length; |
4538 | length += bracket_length; |
4539 | continue; |
4540 | |
4541 | /* Handle ket. Look for subsequent max/min; for certain sets of values we |
4542 | have to replicate this bracket up to that many times. If brastackptr is |
4543 | 0 this is an unmatched bracket which will generate an error, but take care |
4544 | not to try to access brastack[-1] when computing the length and restoring |
4545 | the branch_extra value. */ |
4546 | |
4547 | case ')': |
4548 | length += 1 + LINK_SIZE; |
4549 | if (brastackptr > 0) |
4550 | { |
4551 | duplength = length - brastack[--brastackptr]; |
4552 | branch_extra = bralenstack[brastackptr]; |
4553 | } |
4554 | else duplength = 0; |
4555 | |
4556 | /* The following code is also used when a recursion such as (?3) is |
4557 | followed by a quantifier, because in that case, it has to be wrapped inside |
4558 | brackets so that the quantifier works. The value of duplength must be |
4559 | set before arrival. */ |
4560 | |
4561 | HANDLE_QUANTIFIED_BRACKETS: |
4562 | |
4563 | /* Leave ptr at the final char; for read_repeat_counts this happens |
4564 | automatically; for the others we need an increment. */ |
4565 | |
4566 | if ((c = ptr[1]) == '{' && is_counted_repeat(ptr+2)) |
4567 | { |
4568 | ptr = read_repeat_counts(ptr+2, &min, &max, errorptr); |
4569 | if (*errorptr != NULL) goto PCRE_ERROR_RETURN; |
4570 | } |
4571 | else if (c == '*') { min = 0; max = -1; ptr++; } |
4572 | else if (c == '+') { min = 1; max = -1; ptr++; } |
4573 | else if (c == '?') { min = 0; max = 1; ptr++; } |
4574 | else { min = 1; max = 1; } |
4575 | |
4576 | /* If the minimum is zero, we have to allow for an OP_BRAZERO before the |
4577 | group, and if the maximum is greater than zero, we have to replicate |
4578 | maxval-1 times; each replication acquires an OP_BRAZERO plus a nesting |
4579 | bracket set. */ |
4580 | |
4581 | if (min == 0) |
4582 | { |
4583 | length++; |
4584 | if (max > 0) length += (max - 1) * (duplength + 3 + 2*LINK_SIZE); |
4585 | } |
4586 | |
4587 | /* When the minimum is greater than zero, we have to replicate up to |
4588 | minval-1 times, with no additions required in the copies. Then, if there |
4589 | is a limited maximum we have to replicate up to maxval-1 times allowing |
4590 | for a BRAZERO item before each optional copy and nesting brackets for all |
4591 | but one of the optional copies. */ |
4592 | |
4593 | else |
4594 | { |
4595 | length += (min - 1) * duplength; |
4596 | if (max > min) /* Need this test as max=-1 means no limit */ |
4597 | length += (max - min) * (duplength + 3 + 2*LINK_SIZE) |
4598 | - (2 + 2*LINK_SIZE); |
4599 | } |
4600 | |
4601 | /* Allow space for once brackets for "possessive quantifier" */ |
4602 | |
4603 | if (ptr[1] == '+') |
4604 | { |
4605 | ptr++; |
4606 | length += 2 + 2*LINK_SIZE; |
4607 | } |
4608 | continue; |
4609 | |
4610 | /* Non-special character. For a run of such characters the length required |
4611 | is the number of characters + 2, except that the maximum run length is |
4612 | MAXLIT. We won't get a skipped space or a non-data escape or the start of a |
4613 | # comment as the first character, so the length can't be zero. */ |
4614 | |
4615 | NORMAL_CHAR: |
4616 | default: |
4617 | length += 2; |
4618 | runlength = 0; |
4619 | do |
4620 | { |
4621 | #ifdef SUPPORT_UTF8 |
4622 | lastcharlength = 1; /* Need length of last char for UTF-8 repeats */ |
4623 | #endif |
4624 | |
4625 | /* If in a \Q...\E sequence, check for end; otherwise it's a literal */ |
4626 | if (inescq) |
4627 | { |
4628 | if (c == '\\' && ptr[1] == 'E') |
4629 | { |
4630 | inescq = FALSE; |
4631 | ptr++; |
4632 | } |
4633 | else runlength++; |
4634 | continue; |
4635 | } |
4636 | |
4637 | /* Skip whitespace and comments for /x */ |
4638 | |
4639 | if ((options & PCRE_EXTENDED) != 0) |
4640 | { |
4641 | if ((compile_block.ctypes[c] & ctype_space) != 0) continue; |
4642 | if (c == '#') |
4643 | { |
4644 | /* The space before the ; is to avoid a warning on a silly compiler |
4645 | on the Macintosh. */ |
4646 | while ((c = *(++ptr)) != 0 && c != NEWLINE) ; |
4647 | continue; |
4648 | } |
4649 | } |
4650 | |
4651 | /* Backslash may introduce a data char or a metacharacter; stop the |
4652 | string before the latter. */ |
4653 | |
4654 | if (c == '\\') |
4655 | { |
4656 | const uschar *saveptr = ptr; |
4657 | c = check_escape(&ptr, errorptr, bracount, options, FALSE); |
4658 | if (*errorptr != NULL) goto PCRE_ERROR_RETURN; |
4659 | if (c < 0) { ptr = saveptr; break; } |
4660 | |
4661 | /* In UTF-8 mode, add on the number of additional bytes needed to |
4662 | encode this character, and save the total length in case this is a |
4663 | final char that is repeated. */ |
4664 | |
4665 | #ifdef SUPPORT_UTF8 |
4666 | if (utf8 && c > 127) |
4667 | { |
4668 | int i; |
4669 | for (i = 0; i < sizeof(utf8_table1)/sizeof(int); i++) |
4670 | if (c <= utf8_table1[i]) break; |
4671 | runlength += i; |
4672 | lastcharlength += i; |
4673 | } |
4674 | #endif |
4675 | } |
4676 | |
4677 | /* Ordinary character or single-char escape */ |
4678 | |
4679 | runlength++; |
4680 | } |
4681 | |
4682 | /* This "while" is the end of the "do" above. */ |
4683 | |
4684 | while (runlength < MAXLIT && |
4685 | (compile_block.ctypes[c = *(++ptr)] & ctype_meta) == 0); |
4686 | |
4687 | /* If we hit a meta-character, back off to point to it */ |
4688 | |
4689 | if (runlength < MAXLIT) ptr--; |
4690 | |
4691 | /* If the last char in the string is a UTF-8 multibyte character, we must |
4692 | set lastcharlength correctly. If it was specified as an escape, this will |
4693 | already have been done above. However, we also have to support in-line |
4694 | UTF-8 characters, so check backwards from where we are. */ |
4695 | |
4696 | #ifdef SUPPORT_UTF8 |
4697 | if (utf8) |
4698 | { |
4699 | const uschar *lastptr = ptr - 1; |
4700 | if ((*lastptr & 0x80) != 0) |
4701 | { |
4702 | while((*lastptr & 0xc0) == 0x80) lastptr--; |
4703 | lastcharlength = ptr - lastptr; |
4704 | } |
4705 | } |
4706 | #endif |
4707 | |
4708 | length += runlength; |
4709 | continue; |
4710 | } |
4711 | } |
4712 | |
4713 | length += 2 + LINK_SIZE; /* For final KET and END */ |
4714 | |
4715 | if (length > MAX_PATTERN_SIZE) |
4716 | { |
4717 | *errorptr = ERR20; |
4718 | return NULL; |
4719 | } |
4720 | |
4721 | /* Compute the size of data block needed and get it, either from malloc or |
4722 | externally provided function. */ |
4723 | |
4724 | size = length + sizeof(real_pcre) + name_count * (max_name_size + 3); |
4725 | re = (real_pcre *)(pcre_malloc)(size); |
4726 | |
4727 | if (re == NULL) |
4728 | { |
4729 | *errorptr = ERR21; |
4730 | return NULL; |
4731 | } |
4732 | |
4733 | /* Put in the magic number, and save the size, options, and table pointer */ |
4734 | |
4735 | re->magic_number = MAGIC_NUMBER; |
4736 | re->size = size; |
4737 | re->options = options; |
4738 | re->tables = tables; |
4739 | re->name_entry_size = max_name_size + 3; |
4740 | re->name_count = name_count; |
4741 | |
4742 | /* The starting points of the name/number translation table and of the code are |
4743 | passed around in the compile data block. */ |
4744 | |
4745 | compile_block.names_found = 0; |
4746 | compile_block.name_entry_size = max_name_size + 3; |
4747 | compile_block.name_table = (uschar *)re + sizeof(real_pcre); |
4748 | codestart = compile_block.name_table + re->name_entry_size * re->name_count; |
4749 | compile_block.start_code = codestart; |
4750 | compile_block.req_varyopt = 0; |
4751 | |
4752 | /* Set up a starting, non-extracting bracket, then compile the expression. On |
4753 | error, *errorptr will be set non-NULL, so we don't need to look at the result |
4754 | of the function here. */ |
4755 | |
4756 | ptr = (const uschar *)pattern; |
4757 | code = (uschar *)codestart; |
4758 | *code = OP_BRA; |
4759 | bracount = 0; |
4760 | (void)compile_regex(options, options & PCRE_IMS, &bracount, &code, &ptr, |
4761 | errorptr, FALSE, 0, &firstbyte, &reqbyte, NULL, &compile_block); |
4762 | re->top_bracket = bracount; |
4763 | re->top_backref = compile_block.top_backref; |
4764 | |
4765 | /* If not reached end of pattern on success, there's an excess bracket. */ |
4766 | |
4767 | if (*errorptr == NULL && *ptr != 0) *errorptr = ERR22; |
4768 | |
4769 | /* Fill in the terminating state and check for disastrous overflow, but |
4770 | if debugging, leave the test till after things are printed out. */ |
4771 | |
4772 | *code++ = OP_END; |
4773 | |
4774 | #ifndef DEBUG |
4775 | if (code - codestart > length) *errorptr = ERR23; |
4776 | #endif |
4777 | |
4778 | /* Give an error if there's back reference to a non-existent capturing |
4779 | subpattern. */ |
4780 | |
4781 | if (re->top_backref > re->top_bracket) *errorptr = ERR15; |
4782 | |
4783 | /* Failed to compile, or error while post-processing */ |
4784 | |
4785 | if (*errorptr != NULL) |
4786 | { |
4787 | (pcre_free)(re); |
4788 | PCRE_ERROR_RETURN: |
4789 | *erroroffset = ptr - (const uschar *)pattern; |
4790 | return NULL; |
4791 | } |
4792 | |
4793 | /* If the anchored option was not passed, set the flag if we can determine that |
4794 | the pattern is anchored by virtue of ^ characters or \A or anything else (such |
4795 | as starting with .* when DOTALL is set). |
4796 | |
4797 | Otherwise, if we know what the first character has to be, save it, because that |
4798 | speeds up unanchored matches no end. If not, see if we can set the |
4799 | PCRE_STARTLINE flag. This is helpful for multiline matches when all branches |
4800 | start with ^. and also when all branches start with .* for non-DOTALL matches. |
4801 | */ |
4802 | |
4803 | if ((options & PCRE_ANCHORED) == 0) |
4804 | { |
4805 | int temp_options = options; |
4806 | if (is_anchored(codestart, &temp_options, 0, compile_block.backref_map)) |
4807 | re->options |= PCRE_ANCHORED; |
4808 | else |
4809 | { |
4810 | if (firstbyte < 0) |
4811 | firstbyte = find_firstassertedchar(codestart, &temp_options, FALSE); |
4812 | if (firstbyte >= 0) /* Remove caseless flag for non-caseable chars */ |
4813 | { |
4814 | int ch = firstbyte & 255; |
4815 | re->first_byte = ((firstbyte & REQ_CASELESS) != 0 && |
4816 | compile_block.fcc[ch] == ch)? ch : firstbyte; |
4817 | re->options |= PCRE_FIRSTSET; |
4818 | } |
4819 | else if (is_startline(codestart, 0, compile_block.backref_map)) |
4820 | re->options |= PCRE_STARTLINE; |
4821 | } |
4822 | } |
4823 | |
4824 | /* For an anchored pattern, we use the "required byte" only if it follows a |
4825 | variable length item in the regex. Remove the caseless flag for non-caseable |
4826 | chars. */ |
4827 | |
4828 | if (reqbyte >= 0 && |
4829 | ((re->options & PCRE_ANCHORED) == 0 || (reqbyte & REQ_VARY) != 0)) |
4830 | { |
4831 | int ch = reqbyte & 255; |
4832 | re->req_byte = ((reqbyte & REQ_CASELESS) != 0 && |
4833 | compile_block.fcc[ch] == ch)? (reqbyte & ~REQ_CASELESS) : reqbyte; |
4834 | re->options |= PCRE_REQCHSET; |
4835 | } |
4836 | |
4837 | /* Print out the compiled data for debugging */ |
4838 | |
4839 | #ifdef DEBUG |
4840 | |
4841 | printf("Length = %d top_bracket = %d top_backref = %d\n", |
4842 | length, re->top_bracket, re->top_backref); |
4843 | |
4844 | if (re->options != 0) |
4845 | { |
4846 | printf("%s%s%s%s%s%s%s%s%s\n", |
4847 | ((re->options & PCRE_ANCHORED) != 0)? "anchored " : "", |
4848 | ((re->options & PCRE_CASELESS) != 0)? "caseless " : "", |
4849 | ((re->options & PCRE_ICHANGED) != 0)? "case state changed " : "", |
4850 | ((re->options & PCRE_EXTENDED) != 0)? "extended " : "", |
4851 | ((re->options & PCRE_MULTILINE) != 0)? "multiline " : "", |
4852 | ((re->options & PCRE_DOTALL) != 0)? "dotall " : "", |
4853 | ((re->options & PCRE_DOLLAR_ENDONLY) != 0)? "endonly " : "", |
4854 | ((re->options & PCRE_EXTRA) != 0)? "extra " : "", |
4855 | ((re->options & PCRE_UNGREEDY) != 0)? "ungreedy " : ""); |
4856 | } |
4857 | |
4858 | if ((re->options & PCRE_FIRSTSET) != 0) |
4859 | { |
4860 | int ch = re->first_byte & 255; |
4861 | char *caseless = ((re->first_byte & REQ_CASELESS) == 0)? "" : " (caseless)"; |
4862 | if (isprint(ch)) printf("First char = %c%s\n", ch, caseless); |
4863 | else printf("First char = \\x%02x%s\n", ch, caseless); |
4864 | } |
4865 | |
4866 | if ((re->options & PCRE_REQCHSET) != 0) |
4867 | { |
4868 | int ch = re->req_byte & 255; |
4869 | char *caseless = ((re->req_byte & REQ_CASELESS) == 0)? "" : " (caseless)"; |
4870 | if (isprint(ch)) printf("Req char = %c%s\n", ch, caseless); |
4871 | else printf("Req char = \\x%02x%s\n", ch, caseless); |
4872 | } |
4873 | |
4874 | print_internals(re, stdout); |
4875 | |
4876 | /* This check is done here in the debugging case so that the code that |
4877 | was compiled can be seen. */ |
4878 | |
4879 | if (code - codestart > length) |
4880 | { |
4881 | *errorptr = ERR23; |
4882 | (pcre_free)(re); |
4883 | *erroroffset = ptr - (uschar *)pattern; |
4884 | return NULL; |
4885 | } |
4886 | #endif |
4887 | |
4888 | return (pcre *)re; |
4889 | } |
4890 | |
4891 | |
4892 | |
4893 | /************************************************* |
4894 | * Match a back-reference * |
4895 | *************************************************/ |
4896 | |
4897 | /* If a back reference hasn't been set, the length that is passed is greater |
4898 | than the number of characters left in the string, so the match fails. |
4899 | |
4900 | Arguments: |
4901 | offset index into the offset vector |
4902 | eptr points into the subject |
4903 | length length to be matched |
4904 | md points to match data block |
4905 | ims the ims flags |
4906 | |
4907 | Returns: TRUE if matched |
4908 | */ |
4909 | |
4910 | static BOOL |
4911 | match_ref(int offset, register const uschar *eptr, int length, match_data *md, |
4912 | unsigned long int ims) |
4913 | { |
4914 | const uschar *p = md->start_subject + md->offset_vector[offset]; |
4915 | |
4916 | #ifdef DEBUG |
4917 | if (eptr >= md->end_subject) |
4918 | printf("matching subject <null>"); |
4919 | else |
4920 | { |
4921 | printf("matching subject "); |
4922 | pchars(eptr, length, TRUE, md); |
4923 | } |
4924 | printf(" against backref "); |
4925 | pchars(p, length, FALSE, md); |
4926 | printf("\n"); |
4927 | #endif |
4928 | |
4929 | /* Always fail if not enough characters left */ |
4930 | |
4931 | if (length > md->end_subject - eptr) return FALSE; |
4932 | |
4933 | /* Separate the caselesss case for speed */ |
4934 | |
4935 | if ((ims & PCRE_CASELESS) != 0) |
4936 | { |
4937 | while (length-- > 0) |
4938 | if (md->lcc[*p++] != md->lcc[*eptr++]) return FALSE; |
4939 | } |
4940 | else |
4941 | { while (length-- > 0) if (*p++ != *eptr++) return FALSE; } |
4942 | |
4943 | return TRUE; |
4944 | } |
4945 | |
4946 | |
4947 | #ifdef SUPPORT_UTF8 |
4948 | /************************************************* |
4949 | * Match character against an XCLASS * |
4950 | *************************************************/ |
4951 | |
4952 | /* This function is called from within the XCLASS code below, to match a |
4953 | character against an extended class which might match values > 255. |
4954 | |
4955 | Arguments: |
4956 | c the character |
4957 | data points to the flag byte of the XCLASS data |
4958 | |
4959 | Returns: TRUE if character matches, else FALSE |
4960 | */ |
4961 | |
4962 | static BOOL |
4963 | match_xclass(int c, const uschar *data) |
4964 | { |
4965 | int t; |
4966 | BOOL negated = (*data & XCL_NOT) != 0; |
4967 | |
4968 | /* Character values < 256 are matched against a bitmap, if one is present. If |
4969 | not, we still carry on, because there may be ranges that start below 256 in the |
4970 | additional data. */ |
4971 | |
4972 | if (c < 256) |
4973 | { |
4974 | if ((*data & XCL_MAP) != 0 && (data[1 + c/8] & (1 << (c&7))) != 0) |
4975 | return !negated; /* char found */ |
4976 | } |
4977 | |
4978 | /* Now match against the list of large chars or ranges that end with a large |
4979 | char. First skip the bit map if present. */ |
4980 | |
4981 | if ((*data++ & XCL_MAP) != 0) data += 32; |
4982 | |
4983 | while ((t = *data++) != XCL_END) |
4984 | { |
4985 | int x, y; |
4986 | GETCHARINC(x, data); |
4987 | if (t == XCL_SINGLE) |
4988 | { |
4989 | if (c == x) return !negated; |
4990 | } |
4991 | else |
4992 | { |
4993 | GETCHARINC(y, data); |
4994 | if (c >= x && c <= y) return !negated; |
4995 | } |
4996 | } |
4997 | |
4998 | return negated; /* char was not found */ |
4999 | } |
5000 | #endif |
5001 | |
5002 | |
5003 | |
5004 | |
5005 | /************************************************* |
5006 | * Match from current position * |
5007 | *************************************************/ |
5008 | |
5009 | /* On entry ecode points to the first opcode, and eptr to the first character |
5010 | in the subject string, while eptrb holds the value of eptr at the start of the |
5011 | last bracketed group - used for breaking infinite loops matching zero-length |
5012 | strings. This function is called recursively in many circumstances. Whenever it |
5013 | returns a negative (error) response, the outer incarnation must also return the |
5014 | same response. |
5015 | |
5016 | Performance note: It might be tempting to extract commonly used fields from the |
5017 | md structure (e.g. utf8, end_subject) into individual variables to improve |
5018 | performance. Tests using gcc on a SPARC disproved this; in the first case, it |
5019 | made performance worse. |
5020 | |
5021 | Arguments: |
5022 | eptr pointer in subject |
5023 | ecode position in code |
5024 | offset_top current top pointer |
5025 | md pointer to "static" info for the match |
5026 | ims current /i, /m, and /s options |
5027 | eptrb pointer to chain of blocks containing eptr at start of |
5028 | brackets - for testing for empty matches |
5029 | flags can contain |
5030 | match_condassert - this is an assertion condition |
5031 | match_isgroup - this is the start of a bracketed group |
5032 | |
5033 | Returns: MATCH_MATCH if matched ) these values are >= 0 |
5034 | MATCH_NOMATCH if failed to match ) |
5035 | a negative PCRE_ERROR_xxx value if aborted by an error condition |
5036 | (e.g. stopped by recursion limit) |
5037 | */ |
5038 | |
5039 | static int |
5040 | match(register const uschar *eptr, register const uschar *ecode, |
5041 | int offset_top, match_data *md, unsigned long int ims, eptrblock *eptrb, |
5042 | int flags) |
5043 | { |
5044 | unsigned long int original_ims = ims; /* Save for resetting on ')' */ |
5045 | register int rrc; |
5046 | eptrblock newptrb; |
5047 | |
5048 | if (md->match_call_count++ >= md->match_limit) return PCRE_ERROR_MATCHLIMIT; |
5049 | |
5050 | /* At the start of a bracketed group, add the current subject pointer to the |
5051 | stack of such pointers, to be re-instated at the end of the group when we hit |
5052 | the closing ket. When match() is called in other circumstances, we don't add to |
5053 | the stack. */ |
5054 | |
5055 | if ((flags & match_isgroup) != 0) |
5056 | { |
5057 | newptrb.prev = eptrb; |
5058 | newptrb.saved_eptr = eptr; |
5059 | eptrb = &newptrb; |
5060 | } |
5061 | |
5062 | /* Now start processing the operations. */ |
5063 | |
5064 | for (;;) |
5065 | { |
5066 | int op = (int)*ecode; |
5067 | int min, max, ctype; |
5068 | register int i; |
5069 | register int c; |
5070 | BOOL minimize = FALSE; |
5071 | |
5072 | /* Opening capturing bracket. If there is space in the offset vector, save |
5073 | the current subject position in the working slot at the top of the vector. We |
5074 | mustn't change the current values of the data slot, because they may be set |
5075 | from a previous iteration of this group, and be referred to by a reference |
5076 | inside the group. |
5077 | |
5078 | If the bracket fails to match, we need to restore this value and also the |
5079 | values of the final offsets, in case they were set by a previous iteration of |
5080 | the same bracket. |
5081 | |
5082 | If there isn't enough space in the offset vector, treat this as if it were a |
5083 | non-capturing bracket. Don't worry about setting the flag for the error case |
5084 | here; that is handled in the code for KET. */ |
5085 | |
5086 | if (op > OP_BRA) |
5087 | { |
5088 | int offset; |
5089 | int number = op - OP_BRA; |
5090 | |
5091 | /* For extended extraction brackets (large number), we have to fish out the |
5092 | number from a dummy opcode at the start. */ |
5093 | |
5094 | if (number > EXTRACT_BASIC_MAX) |
5095 | number = GET2(ecode, 2+LINK_SIZE); |
5096 | offset = number << 1; |
5097 | |
5098 | #ifdef DEBUG |
5099 | printf("start bracket %d subject=", number); |
5100 | pchars(eptr, 16, TRUE, md); |
5101 | printf("\n"); |
5102 | #endif |
5103 | |
5104 | if (offset < md->offset_max) |
5105 | { |
5106 | int save_offset1 = md->offset_vector[offset]; |
5107 | int save_offset2 = md->offset_vector[offset+1]; |
5108 | int save_offset3 = md->offset_vector[md->offset_end - number]; |
5109 | int save_capture_last = md->capture_last; |
5110 | |
5111 | DPRINTF(("saving %d %d %d\n", save_offset1, save_offset2, save_offset3)); |
5112 | md->offset_vector[md->offset_end - number] = eptr - md->start_subject; |
5113 | |
5114 | do |
5115 | { |
5116 | if ((rrc = match(eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, |
5117 | eptrb, match_isgroup)) != MATCH_NOMATCH) return rrc; |
5118 | md->capture_last = save_capture_last; |
5119 | ecode += GET(ecode, 1); |
5120 | } |
5121 | while (*ecode == OP_ALT); |
5122 | |
5123 | DPRINTF(("bracket %d failed\n", number)); |
5124 | |
5125 | md->offset_vector[offset] = save_offset1; |
5126 | md->offset_vector[offset+1] = save_offset2; |
5127 | md->offset_vector[md->offset_end - number] = save_offset3; |
5128 | |
5129 | return MATCH_NOMATCH; |
5130 | } |
5131 | |
5132 | /* Insufficient room for saving captured contents */ |
5133 | |
5134 | else op = OP_BRA; |
5135 | } |
5136 | |
5137 | /* Other types of node can be handled by a switch */ |
5138 | |
5139 | switch(op) |
5140 | { |
5141 | case OP_BRA: /* Non-capturing bracket: optimized */ |
5142 | DPRINTF(("start bracket 0\n")); |
5143 | do |
5144 | { |
5145 | if ((rrc = match(eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, eptrb, |
5146 | match_isgroup)) != MATCH_NOMATCH) return rrc; |
5147 | ecode += GET(ecode, 1); |
5148 | } |
5149 | while (*ecode == OP_ALT); |
5150 | DPRINTF(("bracket 0 failed\n")); |
5151 | return MATCH_NOMATCH; |
5152 | |
5153 | /* Conditional group: compilation checked that there are no more than |
5154 | two branches. If the condition is false, skipping the first branch takes us |
5155 | past the end if there is only one branch, but that's OK because that is |
5156 | exactly what going to the ket would do. */ |
5157 | |
5158 | case OP_COND: |
5159 | if (ecode[LINK_SIZE+1] == OP_CREF) /* Condition extract or recurse test */ |
5160 | { |
5161 | int offset = GET2(ecode, LINK_SIZE+2) << 1; /* Doubled ref number */ |
5162 | BOOL condition = (offset == CREF_RECURSE * 2)? |
5163 | (md->recursive != NULL) : |
5164 | (offset < offset_top && md->offset_vector[offset] >= 0); |
5165 | return match(eptr, ecode + (condition? |
5166 | (LINK_SIZE + 4) : (LINK_SIZE + 1 + GET(ecode, 1))), |
5167 | offset_top, md, ims, eptrb, match_isgroup); |
5168 | } |
5169 | |
5170 | /* The condition is an assertion. Call match() to evaluate it - setting |
5171 | the final argument TRUE causes it to stop at the end of an assertion. */ |
5172 | |
5173 | else |
5174 | { |
5175 | if ((rrc = match(eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, NULL, |
5176 | match_condassert | match_isgroup)) == MATCH_MATCH) |
5177 | { |
5178 | ecode += 1 + LINK_SIZE + GET(ecode, LINK_SIZE+2); |
5179 | while (*ecode == OP_ALT) ecode += GET(ecode, 1); |
5180 | } |
5181 | else if (rrc != MATCH_NOMATCH) return rrc; |
5182 | else ecode += GET(ecode, 1); |
5183 | return match(eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, eptrb, |
5184 | match_isgroup); |
5185 | } |
5186 | /* Control never reaches here */ |
5187 | |
5188 | /* Skip over conditional reference or large extraction number data if |
5189 | encountered. */ |
5190 | |
5191 | case OP_CREF: |
5192 | case OP_BRANUMBER: |
5193 | ecode += 3; |
5194 | break; |
5195 | |
5196 | /* End of the pattern. If we are in a recursion, we should restore the |
5197 | offsets appropriately and continue from after the call. */ |
5198 | |
5199 | case OP_END: |
5200 | if (md->recursive != NULL && md->recursive->group_num == 0) |
5201 | { |
5202 | recursion_info *rec = md->recursive; |
5203 | DPRINTF(("Hit the end in a (?0) recursion\n")); |
5204 | md->recursive = rec->prev; |
5205 | memmove(md->offset_vector, rec->offset_save, |
5206 | rec->saved_max * sizeof(int)); |
5207 | md->start_match = rec->save_start; |
5208 | ims = original_ims; |
5209 | ecode = rec->after_call; |
5210 | break; |
5211 | } |
5212 | |
5213 | /* Otherwise, if PCRE_NOTEMPTY is set, fail if we have matched an empty |
5214 | string - backtracking will then try other alternatives, if any. */ |
5215 | |
5216 | if (md->notempty && eptr == md->start_match) return MATCH_NOMATCH; |
5217 | md->end_match_ptr = eptr; /* Record where we ended */ |
5218 | md->end_offset_top = offset_top; /* and how many extracts were taken */ |
5219 | return MATCH_MATCH; |
5220 | |
5221 | /* Change option settings */ |
5222 | |
5223 | case OP_OPT: |
5224 | ims = ecode[1]; |
5225 | ecode += 2; |
5226 | DPRINTF(("ims set to %02lx\n", ims)); |
5227 | break; |
5228 | |
5229 | /* Assertion brackets. Check the alternative branches in turn - the |
5230 | matching won't pass the KET for an assertion. If any one branch matches, |
5231 | the assertion is true. Lookbehind assertions have an OP_REVERSE item at the |
5232 | start of each branch to move the current point backwards, so the code at |
5233 | this level is identical to the lookahead case. */ |
5234 | |
5235 | case OP_ASSERT: |
5236 | case OP_ASSERTBACK: |
5237 | do |
5238 | { |
5239 | if ((rrc = match(eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, NULL, |
5240 | match_isgroup)) == MATCH_MATCH) break; |
5241 | if (rrc != MATCH_NOMATCH) return rrc; |
5242 | ecode += GET(ecode, 1); |
5243 | } |
5244 | while (*ecode == OP_ALT); |
5245 | if (*ecode == OP_KET) return MATCH_NOMATCH; |
5246 | |
5247 | /* If checking an assertion for a condition, return MATCH_MATCH. */ |
5248 | |
5249 | if ((flags & match_condassert) != 0) return MATCH_MATCH; |
5250 | |
5251 | /* Continue from after the assertion, updating the offsets high water |
5252 | mark, since extracts may have been taken during the assertion. */ |
5253 | |
5254 | do ecode += GET(ecode,1); while (*ecode == OP_ALT); |
5255 | ecode += 1 + LINK_SIZE; |
5256 | offset_top = md->end_offset_top; |
5257 | continue; |
5258 | |
5259 | /* Negative assertion: all branches must fail to match */ |
5260 | |
5261 | case OP_ASSERT_NOT: |
5262 | case OP_ASSERTBACK_NOT: |
5263 | do |
5264 | { |
5265 | if ((rrc = match(eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, NULL, |
5266 | match_isgroup)) == MATCH_MATCH) return MATCH_NOMATCH; |
5267 | if (rrc != MATCH_NOMATCH) return rrc; |
5268 | ecode += GET(ecode,1); |
5269 | } |
5270 | while (*ecode == OP_ALT); |
5271 | |
5272 | if ((flags & match_condassert) != 0) return MATCH_MATCH; |
5273 | |
5274 | ecode += 1 + LINK_SIZE; |
5275 | continue; |
5276 | |
5277 | /* Move the subject pointer back. This occurs only at the start of |
5278 | each branch of a lookbehind assertion. If we are too close to the start to |
5279 | move back, this match function fails. When working with UTF-8 we move |
5280 | back a number of characters, not bytes. */ |
5281 | |
5282 | case OP_REVERSE: |
5283 | #ifdef SUPPORT_UTF8 |
5284 | if (md->utf8) |
5285 | { |
5286 | c = GET(ecode,1); |
5287 | for (i = 0; i < c; i++) |
5288 | { |
5289 | eptr--; |
5290 | if (eptr < md->start_subject) return MATCH_NOMATCH; |
5291 | BACKCHAR(eptr) |
5292 | } |
5293 | } |
5294 | else |
5295 | #endif |
5296 | |
5297 | /* No UTF-8 support, or not in UTF-8 mode: count is byte count */ |
5298 | |
5299 | { |
5300 | eptr -= GET(ecode,1); |
5301 | if (eptr < md->start_subject) return MATCH_NOMATCH; |
5302 | } |
5303 | |
5304 | /* Skip to next op code */ |
5305 | |
5306 | ecode += 1 + LINK_SIZE; |
5307 | break; |
5308 | |
5309 | /* The callout item calls an external function, if one is provided, passing |
5310 | details of the match so far. This is mainly for debugging, though the |
5311 | function is able to force a failure. */ |
5312 | |
5313 | case OP_CALLOUT: |
5314 | if (pcre_callout != NULL) |
5315 | { |
5316 | pcre_callout_block cb; |
5317 | cb.version = 0; /* Version 0 of the callout block */ |
5318 | cb.callout_number = ecode[1]; |
5319 | cb.offset_vector = md->offset_vector; |
5320 | cb.subject = (const char *)md->start_subject; |
5321 | cb.subject_length = md->end_subject - md->start_subject; |
5322 | cb.start_match = md->start_match - md->start_subject; |
5323 | cb.current_position = eptr - md->start_subject; |
5324 | cb.capture_top = offset_top/2; |
5325 | cb.capture_last = md->capture_last; |
5326 | cb.callout_data = md->callout_data; |
5327 | if ((rrc = (*pcre_callout)(&cb)) > 0) return MATCH_NOMATCH; |
5328 | if (rrc < 0) return rrc; |
5329 | } |
5330 | ecode += 2; |
5331 | break; |
5332 | |
5333 | /* Recursion either matches the current regex, or some subexpression. The |
5334 | offset data is the offset to the starting bracket from the start of the |
5335 | whole pattern. However, it is possible that a BRAZERO was inserted before |
5336 | this bracket after we took the offset - we just skip it if encountered. |
5337 | |
5338 | If there are any capturing brackets started but not finished, we have to |
5339 | save their starting points and reinstate them after the recursion. However, |
5340 | we don't know how many such there are (offset_top records the completed |
5341 | total) so we just have to save all the potential data. There may be up to |
5342 | 65535 such values, which is too large to put on the stack, but using malloc |
5343 | for small numbers seems expensive. As a compromise, the stack is used when |
5344 | there are no more than REC_STACK_SAVE_MAX values to store; otherwise malloc |
5345 | is used. A problem is what to do if the malloc fails ... there is no way of |
5346 | returning to the top level with an error. Save the top REC_STACK_SAVE_MAX |
5347 | values on the stack, and accept that the rest may be wrong. |
5348 | |
5349 | There are also other values that have to be saved. We use a chained |
5350 | sequence of blocks that actually live on the stack. Thanks to Robin Houston |
5351 | for the original version of this logic. */ |
5352 | |
5353 | case OP_RECURSE: |
5354 | { |
5355 | int stacksave[REC_STACK_SAVE_MAX]; |
5356 | recursion_info new_recursive; |
5357 | const uschar *callpat = md->start_code + GET(ecode, 1); |
5358 | |
5359 | if (*callpat == OP_BRAZERO) callpat++; |
5360 | |
5361 | new_recursive.group_num = *callpat - OP_BRA; |
5362 | |
5363 | /* For extended extraction brackets (large number), we have to fish out |
5364 | the number from a dummy opcode at the start. */ |
5365 | |
5366 | if (new_recursive.group_num > EXTRACT_BASIC_MAX) |
5367 | new_recursive.group_num = GET2(callpat, 2+LINK_SIZE); |
5368 | |
5369 | /* Add to "recursing stack" */ |
5370 | |
5371 | new_recursive.prev = md->recursive; |
5372 | md->recursive = &new_recursive; |
5373 | |
5374 | /* Find where to continue from afterwards */ |
5375 | |
5376 | ecode += 1 + LINK_SIZE; |
5377 | new_recursive.after_call = ecode; |
5378 | |
5379 | /* Now save the offset data. */ |
5380 | |
5381 | new_recursive.saved_max = md->offset_end; |
5382 | if (new_recursive.saved_max <= REC_STACK_SAVE_MAX) |
5383 | new_recursive.offset_save = stacksave; |
5384 | else |
5385 | { |
5386 | new_recursive.offset_save = |
5387 | (int *)(pcre_malloc)(new_recursive.saved_max * sizeof(int)); |
5388 | if (new_recursive.offset_save == NULL) return PCRE_ERROR_NOMEMORY; |
5389 | } |
5390 | |
5391 | memcpy(new_recursive.offset_save, md->offset_vector, |
5392 | new_recursive.saved_max * sizeof(int)); |
5393 | new_recursive.save_start = md->start_match; |
5394 | md->start_match = eptr; |
5395 | |
5396 | /* OK, now we can do the recursion. For each top-level alternative we |
5397 | restore the offset and recursion data. */ |
5398 | |
5399 | DPRINTF(("Recursing into group %d\n", new_recursive.group_num)); |
5400 | do |
5401 | { |
5402 | if ((rrc = match(eptr, callpat + 1 + LINK_SIZE, offset_top, md, ims, |
5403 | eptrb, match_isgroup)) == MATCH_MATCH) |
5404 | { |
5405 | md->recursive = new_recursive.prev; |
5406 | if (new_recursive.offset_save != stacksave) |
5407 | (pcre_free)(new_recursive.offset_save); |
5408 | return MATCH_MATCH; |
5409 | } |
5410 | else if (rrc != MATCH_NOMATCH) return rrc; |
5411 | |
5412 | md->recursive = &new_recursive; |
5413 | memcpy(md->offset_vector, new_recursive.offset_save, |
5414 | new_recursive.saved_max * sizeof(int)); |
5415 | callpat += GET(callpat, 1); |
5416 | } |
5417 | while (*callpat == OP_ALT); |
5418 | |
5419 | DPRINTF(("Recursion didn't match\n")); |
5420 | md->recursive = new_recursive.prev; |
5421 | if (new_recursive.offset_save != stacksave) |
5422 | (pcre_free)(new_recursive.offset_save); |
5423 | return MATCH_NOMATCH; |
5424 | } |
5425 | /* Control never reaches here */ |
5426 | |
5427 | /* "Once" brackets are like assertion brackets except that after a match, |
5428 | the point in the subject string is not moved back. Thus there can never be |
5429 | a move back into the brackets. Friedl calls these "atomic" subpatterns. |
5430 | Check the alternative branches in turn - the matching won't pass the KET |
5431 | for this kind of subpattern. If any one branch matches, we carry on as at |
5432 | the end of a normal bracket, leaving the subject pointer. */ |
5433 | |
5434 | case OP_ONCE: |
5435 | { |
5436 | const uschar *prev = ecode; |
5437 | const uschar *saved_eptr = eptr; |
5438 | |
5439 | do |
5440 | { |
5441 | if ((rrc = match(eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, |
5442 | eptrb, match_isgroup)) == MATCH_MATCH) break; |
5443 | if (rrc != MATCH_NOMATCH) return rrc; |
5444 | ecode += GET(ecode,1); |
5445 | } |
5446 | while (*ecode == OP_ALT); |
5447 | |
5448 | /* If hit the end of the group (which could be repeated), fail */ |
5449 | |
5450 | if (*ecode != OP_ONCE && *ecode != OP_ALT) return MATCH_NOMATCH; |
5451 | |
5452 | /* Continue as from after the assertion, updating the offsets high water |
5453 | mark, since extracts may have been taken. */ |
5454 | |
5455 | do ecode += GET(ecode,1); while (*ecode == OP_ALT); |
5456 | |
5457 | offset_top = md->end_offset_top; |
5458 | eptr = md->end_match_ptr; |
5459 | |
5460 | /* For a non-repeating ket, just continue at this level. This also |
5461 | happens for a repeating ket if no characters were matched in the group. |
5462 | This is the forcible breaking of infinite loops as implemented in Perl |
5463 | 5.005. If there is an options reset, it will get obeyed in the normal |
5464 | course of events. */ |
5465 | |
5466 | if (*ecode == OP_KET || eptr == saved_eptr) |
5467 | { |
5468 | ecode += 1+LINK_SIZE; |
5469 | break; |
5470 | } |
5471 | |
5472 | /* The repeating kets try the rest of the pattern or restart from the |
5473 | preceding bracket, in the appropriate order. We need to reset any options |
5474 | that changed within the bracket before re-running it, so check the next |
5475 | opcode. */ |
5476 | |
5477 | if (ecode[1+LINK_SIZE] == OP_OPT) |
5478 | { |
5479 | ims = (ims & ~PCRE_IMS) | ecode[4]; |
5480 | DPRINTF(("ims set to %02lx at group repeat\n", ims)); |
5481 | } |
5482 | |
5483 | if (*ecode == OP_KETRMIN) |
5484 | { |
5485 | if ((rrc = match(eptr, ecode + 1 + LINK_SIZE, offset_top, md, ims, |
5486 | eptrb, 0)) != MATCH_NOMATCH) return rrc; |
5487 | if ((rrc = match(eptr, prev, offset_top, md, ims, eptrb, |
5488 | match_isgroup)) != MATCH_NOMATCH) return rrc; |
5489 | } |
5490 | else /* OP_KETRMAX */ |
5491 | { |
5492 | if ((rrc = match(eptr, prev, offset_top, md, ims, eptrb, |
5493 | match_isgroup)) != MATCH_NOMATCH) return rrc; |
5494 | if ((rrc = match(eptr, ecode + 1+LINK_SIZE, offset_top, md, ims, eptrb, |
5495 | 0)) != MATCH_NOMATCH) return rrc; |
5496 | } |
5497 | } |
5498 | return MATCH_NOMATCH; |
5499 | |
5500 | /* An alternation is the end of a branch; scan along to find the end of the |
5501 | bracketed group and go to there. */ |
5502 | |
5503 | case OP_ALT: |
5504 | do ecode += GET(ecode,1); while (*ecode == OP_ALT); |
5505 | break; |
5506 | |
5507 | /* BRAZERO and BRAMINZERO occur just before a bracket group, indicating |
5508 | that it may occur zero times. It may repeat infinitely, or not at all - |
5509 | i.e. it could be ()* or ()? in the pattern. Brackets with fixed upper |
5510 | repeat limits are compiled as a number of copies, with the optional ones |
5511 | preceded by BRAZERO or BRAMINZERO. */ |
5512 | |
5513 | case OP_BRAZERO: |
5514 | { |
5515 | const uschar *next = ecode+1; |
5516 | if ((rrc = match(eptr, next, offset_top, md, ims, eptrb, match_isgroup)) |
5517 | != MATCH_NOMATCH) return rrc; |
5518 | do next += GET(next,1); while (*next == OP_ALT); |
5519 | ecode = next + 1+LINK_SIZE; |
5520 | } |
5521 | break; |
5522 | |
5523 | case OP_BRAMINZERO: |
5524 | { |
5525 | const uschar *next = ecode+1; |
5526 | do next += GET(next,1); while (*next == OP_ALT); |
5527 | if ((rrc = match(eptr, next + 1+LINK_SIZE, offset_top, md, ims, eptrb, |
5528 | match_isgroup)) != MATCH_NOMATCH) return rrc; |
5529 | ecode++; |
5530 | } |
5531 | break; |
5532 | |
5533 | /* End of a group, repeated or non-repeating. If we are at the end of |
5534 | an assertion "group", stop matching and return MATCH_MATCH, but record the |
5535 | current high water mark for use by positive assertions. Do this also |
5536 | for the "once" (not-backup up) groups. */ |
5537 | |
5538 | case OP_KET: |
5539 | case OP_KETRMIN: |
5540 | case OP_KETRMAX: |
5541 | { |
5542 | const uschar *prev = ecode - GET(ecode, 1); |
5543 | const uschar *saved_eptr = eptrb->saved_eptr; |
5544 | |
5545 | eptrb = eptrb->prev; /* Back up the stack of bracket start pointers */ |
5546 | |
5547 | if (*prev == OP_ASSERT || *prev == OP_ASSERT_NOT || |
5548 | *prev == OP_ASSERTBACK || *prev == OP_ASSERTBACK_NOT || |
5549 | *prev == OP_ONCE) |
5550 | { |
5551 | md->end_match_ptr = eptr; /* For ONCE */ |
5552 | md->end_offset_top = offset_top; |
5553 | return MATCH_MATCH; |
5554 | } |
5555 | |
5556 | /* In all other cases except a conditional group we have to check the |
5557 | group number back at the start and if necessary complete handling an |
5558 | extraction by setting the offsets and bumping the high water mark. */ |
5559 | |
5560 | if (*prev != OP_COND) |
5561 | { |
5562 | int offset; |
5563 | int number = *prev - OP_BRA; |
5564 | |
5565 | /* For extended extraction brackets (large number), we have to fish out |
5566 | the number from a dummy opcode at the start. */ |
5567 | |
5568 | if (number > EXTRACT_BASIC_MAX) number = GET2(prev, 2+LINK_SIZE); |
5569 | offset = number << 1; |
5570 | |
5571 | #ifdef DEBUG |
5572 | printf("end bracket %d", number); |
5573 | printf("\n"); |
5574 | #endif |
5575 | |
5576 | /* Test for a numbered group. This includes groups called as a result |
5577 | of recursion. Note that whole-pattern recursion is coded as a recurse |
5578 | into group 0, so it won't be picked up here. Instead, we catch it when |
5579 | the OP_END is reached. */ |
5580 | |
5581 | if (number > 0) |
5582 | { |
5583 | md->capture_last = number; |
5584 | if (offset >= md->offset_max) md->offset_overflow = TRUE; else |
5585 | { |
5586 | md->offset_vector[offset] = |
5587 | md->offset_vector[md->offset_end - number]; |
5588 | md->offset_vector[offset+1] = eptr - md->start_subject; |
5589 | if (offset_top <= offset) offset_top = offset + 2; |
5590 | } |
5591 | |
5592 | /* Handle a recursively called group. Restore the offsets |
5593 | appropriately and continue from after the call. */ |
5594 | |
5595 | if (md->recursive != NULL && md->recursive->group_num == number) |
5596 | { |
5597 | recursion_info *rec = md->recursive; |
5598 | DPRINTF(("Recursion (%d) succeeded - continuing\n", number)); |
5599 | md->recursive = rec->prev; |
5600 | md->start_match = rec->save_start; |
5601 | memcpy(md->offset_vector, rec->offset_save, |
5602 | rec->saved_max * sizeof(int)); |
5603 | ecode = rec->after_call; |
5604 | ims = original_ims; |
5605 | break; |
5606 | } |
5607 | } |
5608 | } |
5609 | |
5610 | /* Reset the value of the ims flags, in case they got changed during |
5611 | the group. */ |
5612 | |
5613 | ims = original_ims; |
5614 | DPRINTF(("ims reset to %02lx\n", ims)); |
5615 | |
5616 | /* For a non-repeating ket, just continue at this level. This also |
5617 | happens for a repeating ket if no characters were matched in the group. |
5618 | This is the forcible breaking of infinite loops as implemented in Perl |
5619 | 5.005. If there is an options reset, it will get obeyed in the normal |
5620 | course of events. */ |
5621 | |
5622 | if (*ecode == OP_KET || eptr == saved_eptr) |
5623 | { |
5624 | ecode += 1 + LINK_SIZE; |
5625 | break; |
5626 | } |
5627 | |
5628 | /* The repeating kets try the rest of the pattern or restart from the |
5629 | preceding bracket, in the appropriate order. */ |
5630 | |
5631 | if (*ecode == OP_KETRMIN) |
5632 | { |
5633 | if ((rrc = match(eptr, ecode + 1+LINK_SIZE, offset_top, md, ims, eptrb, |
5634 | 0)) != MATCH_NOMATCH) return rrc; |
5635 | if ((rrc = match(eptr, prev, offset_top, md, ims, eptrb, |
5636 | match_isgroup)) != MATCH_NOMATCH) return rrc; |
5637 | } |
5638 | else /* OP_KETRMAX */ |
5639 | { |
5640 | if ((rrc = match(eptr, prev, offset_top, md, ims, eptrb, |
5641 | match_isgroup)) != MATCH_NOMATCH) return rrc; |
5642 | if ((rrc = match(eptr, ecode + 1+LINK_SIZE, offset_top, md, ims, eptrb, |
5643 | 0)) != MATCH_NOMATCH) return rrc; |
5644 | } |
5645 | } |
5646 | return MATCH_NOMATCH; |
5647 | |
5648 | /* Start of subject unless notbol, or after internal newline if multiline */ |
5649 | |
5650 | case OP_CIRC: |
5651 | if (md->notbol && eptr == md->start_subject) return MATCH_NOMATCH; |
5652 | if ((ims & PCRE_MULTILINE) != 0) |
5653 | { |
5654 | if (eptr != md->start_subject && eptr[-1] != NEWLINE) |
5655 | return MATCH_NOMATCH; |
5656 | ecode++; |
5657 | break; |
5658 | } |
5659 | /* ... else fall through */ |
5660 | |
5661 | /* Start of subject assertion */ |
5662 | |
5663 | case OP_SOD: |
5664 | if (eptr != md->start_subject) return MATCH_NOMATCH; |
5665 | ecode++; |
5666 | break; |
5667 | |
5668 | /* Start of match assertion */ |
5669 | |
5670 | case OP_SOM: |
5671 | if (eptr != md->start_subject + md->start_offset) return MATCH_NOMATCH; |
5672 | ecode++; |
5673 | break; |
5674 | |
5675 | /* Assert before internal newline if multiline, or before a terminating |
5676 | newline unless endonly is set, else end of subject unless noteol is set. */ |
5677 | |
5678 | case OP_DOLL: |
5679 | if ((ims & PCRE_MULTILINE) != 0) |
5680 | { |
5681 | if (eptr < md->end_subject) |
5682 | { if (*eptr != NEWLINE) return MATCH_NOMATCH; } |
5683 | else |
5684 | { if (md->noteol) return MATCH_NOMATCH; } |
5685 | ecode++; |
5686 | break; |
5687 | } |
5688 | else |
5689 | { |
5690 | if (md->noteol) return MATCH_NOMATCH; |
5691 | if (!md->endonly) |
5692 | { |
5693 | if (eptr < md->end_subject - 1 || |
5694 | (eptr == md->end_subject - 1 && *eptr != NEWLINE)) |
5695 | return MATCH_NOMATCH; |
5696 | ecode++; |
5697 | break; |
5698 | } |
5699 | } |
5700 | /* ... else fall through */ |
5701 | |
5702 | /* End of subject assertion (\z) */ |
5703 | |
5704 | case OP_EOD: |
5705 | if (eptr < md->end_subject) return MATCH_NOMATCH; |
5706 | ecode++; |
5707 | break; |
5708 | |
5709 | /* End of subject or ending \n assertion (\Z) */ |
5710 | |
5711 | case OP_EODN: |
5712 | if (eptr < md->end_subject - 1 || |
5713 | (eptr == md->end_subject - 1 && *eptr != NEWLINE)) return MATCH_NOMATCH; |
5714 | ecode++; |
5715 | break; |
5716 | |
5717 | /* Word boundary assertions */ |
5718 | |
5719 | case OP_NOT_WORD_BOUNDARY: |
5720 | case OP_WORD_BOUNDARY: |
5721 | { |
5722 | BOOL prev_is_word, cur_is_word; |
5723 | |
5724 | /* Find out if the previous and current characters are "word" characters. |
5725 | It takes a bit more work in UTF-8 mode. Characters > 255 are assumed to |
5726 | be "non-word" characters. */ |
5727 | |
5728 | #ifdef SUPPORT_UTF8 |
5729 | if (md->utf8) |
5730 | { |
5731 | if (eptr == md->start_subject) prev_is_word = FALSE; else |
5732 | { |
5733 | const uschar *lastptr = eptr - 1; |
5734 | while((*lastptr & 0xc0) == 0x80) lastptr--; |
5735 | GETCHAR(c, lastptr); |
5736 | prev_is_word = c < 256 && (md->ctypes[c] & ctype_word) != 0; |
5737 | } |
5738 | if (eptr >= md->end_subject) cur_is_word = FALSE; else |
5739 | { |
5740 | GETCHAR(c, eptr); |
5741 | cur_is_word = c < 256 && (md->ctypes[c] & ctype_word) != 0; |
5742 | } |
5743 | } |
5744 | else |
5745 | #endif |
5746 | |
5747 | /* More streamlined when not in UTF-8 mode */ |
5748 | |
5749 | { |
5750 | prev_is_word = (eptr != md->start_subject) && |
5751 | ((md->ctypes[eptr[-1]] & ctype_word) != 0); |
5752 | cur_is_word = (eptr < md->end_subject) && |
5753 | ((md->ctypes[*eptr] & ctype_word) != 0); |
5754 | } |
5755 | |
5756 | /* Now see if the situation is what we want */ |
5757 | |
5758 | if ((*ecode++ == OP_WORD_BOUNDARY)? |
5759 | cur_is_word == prev_is_word : cur_is_word != prev_is_word) |
5760 | return MATCH_NOMATCH; |
5761 | } |
5762 | break; |
5763 | |
5764 | /* Match a single character type; inline for speed */ |
5765 | |
5766 | case OP_ANY: |
5767 | if ((ims & PCRE_DOTALL) == 0 && eptr < md->end_subject && *eptr == NEWLINE) |
5768 | return MATCH_NOMATCH; |
5769 | if (eptr++ >= md->end_subject) return MATCH_NOMATCH; |
5770 | #ifdef SUPPORT_UTF8 |
5771 | if (md->utf8) |
5772 | while (eptr < md->end_subject && (*eptr & 0xc0) == 0x80) eptr++; |
5773 | #endif |
5774 | ecode++; |
5775 | break; |
5776 | |
5777 | /* Match a single byte, even in UTF-8 mode. This opcode really does match |
5778 | any byte, even newline, independent of the setting of PCRE_DOTALL. */ |
5779 | |
5780 | case OP_ANYBYTE: |
5781 | if (eptr++ >= md->end_subject) return MATCH_NOMATCH; |
5782 | ecode++; |
5783 | break; |
5784 | |
5785 | case OP_NOT_DIGIT: |
5786 | if (eptr >= md->end_subject) return MATCH_NOMATCH; |
5787 | GETCHARINCTEST(c, eptr); |
5788 | if ( |
5789 | #ifdef SUPPORT_UTF8 |
5790 | c < 256 && |
5791 | #endif |
5792 | (md->ctypes[c] & ctype_digit) != 0 |
5793 | ) |
5794 | return MATCH_NOMATCH; |
5795 | ecode++; |
5796 | break; |
5797 | |
5798 | case OP_DIGIT: |
5799 | if (eptr >= md->end_subject) return MATCH_NOMATCH; |
5800 | GETCHARINCTEST(c, eptr); |
5801 | if ( |
5802 | #ifdef SUPPORT_UTF8 |
5803 | c >= 256 || |
5804 | #endif |
5805 | (md->ctypes[c] & ctype_digit) == 0 |
5806 | ) |
5807 | return MATCH_NOMATCH; |
5808 | ecode++; |
5809 | break; |
5810 | |
5811 | case OP_NOT_WHITESPACE: |
5812 | if (eptr >= md->end_subject) return MATCH_NOMATCH; |
5813 | GETCHARINCTEST(c, eptr); |
5814 | if ( |
5815 | #ifdef SUPPORT_UTF8 |
5816 | c < 256 && |
5817 | #endif |
5818 | (md->ctypes[c] & ctype_space) != 0 |
5819 | ) |
5820 | return MATCH_NOMATCH; |
5821 | ecode++; |
5822 | break; |
5823 | |
5824 | case OP_WHITESPACE: |
5825 | if (eptr >= md->end_subject) return MATCH_NOMATCH; |
5826 | GETCHARINCTEST(c, eptr); |
5827 | if ( |
5828 | #ifdef SUPPORT_UTF8 |
5829 | c >= 256 || |
5830 | #endif |
5831 | (md->ctypes[c] & ctype_space) == 0 |
5832 | ) |
5833 | return MATCH_NOMATCH; |
5834 | ecode++; |
5835 | break; |
5836 | |
5837 | case OP_NOT_WORDCHAR: |
5838 | if (eptr >= md->end_subject) return MATCH_NOMATCH; |
5839 | GETCHARINCTEST(c, eptr); |
5840 | if ( |
5841 | #ifdef SUPPORT_UTF8 |
5842 | c < 256 && |
5843 | #endif |
5844 | (md->ctypes[c] & ctype_word) != 0 |
5845 | ) |
5846 | return MATCH_NOMATCH; |
5847 | ecode++; |
5848 | break; |
5849 | |
5850 | case OP_WORDCHAR: |
5851 | if (eptr >= md->end_subject) return MATCH_NOMATCH; |
5852 | GETCHARINCTEST(c, eptr); |
5853 | if ( |
5854 | #ifdef SUPPORT_UTF8 |
5855 | c >= 256 || |
5856 | #endif |
5857 | (md->ctypes[c] & ctype_word) == 0 |
5858 | ) |
5859 | return MATCH_NOMATCH; |
5860 | ecode++; |
5861 | break; |
5862 | |
5863 | /* Match a back reference, possibly repeatedly. Look past the end of the |
5864 | item to see if there is repeat information following. The code is similar |
5865 | to that for character classes, but repeated for efficiency. Then obey |
5866 | similar code to character type repeats - written out again for speed. |
5867 | However, if the referenced string is the empty string, always treat |
5868 | it as matched, any number of times (otherwise there could be infinite |
5869 | loops). */ |
5870 | |
5871 | case OP_REF: |
5872 | { |
5873 | int length; |
5874 | int offset = GET2(ecode, 1) << 1; /* Doubled ref number */ |
5875 | ecode += 3; /* Advance past item */ |
5876 | |
5877 | /* If the reference is unset, set the length to be longer than the amount |
5878 | of subject left; this ensures that every attempt at a match fails. We |
5879 | can't just fail here, because of the possibility of quantifiers with zero |
5880 | minima. */ |
5881 | |
5882 | length = (offset >= offset_top || md->offset_vector[offset] < 0)? |
5883 | md->end_subject - eptr + 1 : |
5884 | md->offset_vector[offset+1] - md->offset_vector[offset]; |
5885 | |
5886 | /* Set up for repetition, or handle the non-repeated case */ |
5887 | |
5888 | switch (*ecode) |
5889 | { |
5890 | case OP_CRSTAR: |
5891 | case OP_CRMINSTAR: |
5892 | case OP_CRPLUS: |
5893 | case OP_CRMINPLUS: |
5894 | case OP_CRQUERY: |
5895 | case OP_CRMINQUERY: |
5896 | c = *ecode++ - OP_CRSTAR; |
5897 | minimize = (c & 1) != 0; |
5898 | min = rep_min[c]; /* Pick up values from tables; */ |
5899 | max = rep_max[c]; /* zero for max => infinity */ |
5900 | if (max == 0) max = INT_MAX; |
5901 | break; |
5902 | |
5903 | case OP_CRRANGE: |
5904 | case OP_CRMINRANGE: |
5905 | minimize = (*ecode == OP_CRMINRANGE); |
5906 | min = GET2(ecode, 1); |
5907 | max = GET2(ecode, 3); |
5908 | if (max == 0) max = INT_MAX; |
5909 | ecode += 5; |
5910 | break; |
5911 | |
5912 | default: /* No repeat follows */ |
5913 | if (!match_ref(offset, eptr, length, md, ims)) return MATCH_NOMATCH; |
5914 | eptr += length; |
5915 | continue; /* With the main loop */ |
5916 | } |
5917 | |
5918 | /* If the length of the reference is zero, just continue with the |
5919 | main loop. */ |
5920 | |
5921 | if (length == 0) continue; |
5922 | |
5923 | /* First, ensure the minimum number of matches are present. We get back |
5924 | the length of the reference string explicitly rather than passing the |
5925 | address of eptr, so that eptr can be a register variable. */ |
5926 | |
5927 | for (i = 1; i <= min; i++) |
5928 | { |
5929 | if (!match_ref(offset, eptr, length, md, ims)) return MATCH_NOMATCH; |
5930 | eptr += length; |
5931 | } |
5932 | |
5933 | /* If min = max, continue at the same level without recursion. |
5934 | They are not both allowed to be zero. */ |
5935 | |
5936 | if (min == max) continue; |
5937 | |
5938 | /* If minimizing, keep trying and advancing the pointer */ |
5939 | |
5940 | if (minimize) |
5941 | { |
5942 | for (i = min;; i++) |
5943 | { |
5944 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
5945 | MATCH_NOMATCH) return rrc; |
5946 | if (i >= max || !match_ref(offset, eptr, length, md, ims)) |
5947 | return MATCH_NOMATCH; |
5948 | eptr += length; |
5949 | } |
5950 | /* Control never gets here */ |
5951 | } |
5952 | |
5953 | /* If maximizing, find the longest string and work backwards */ |
5954 | |
5955 | else |
5956 | { |
5957 | const uschar *pp = eptr; |
5958 | for (i = min; i < max; i++) |
5959 | { |
5960 | if (!match_ref(offset, eptr, length, md, ims)) break; |
5961 | eptr += length; |
5962 | } |
5963 | while (eptr >= pp) |
5964 | { |
5965 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
5966 | MATCH_NOMATCH) return rrc; |
5967 | eptr -= length; |
5968 | } |
5969 | return MATCH_NOMATCH; |
5970 | } |
5971 | } |
5972 | /* Control never gets here */ |
5973 | |
5974 | |
5975 | |
5976 | /* Match a bit-mapped character class, possibly repeatedly. This op code is |
5977 | used when all the characters in the class have values in the range 0-255. |
5978 | The only difference between OP_CLASS and OP_NCLASS occurs when a data |
5979 | character outside the range is encountered. |
5980 | |
5981 | First, look past the end of the item to see if there is repeat information |
5982 | following. Then obey similar code to character type repeats - written out |
5983 | again for speed. */ |
5984 | |
5985 | case OP_NCLASS: |
5986 | case OP_CLASS: |
5987 | { |
5988 | const uschar *data = ecode + 1; /* Save for matching */ |
5989 | ecode += 33; /* Advance past the item */ |
5990 | |
5991 | switch (*ecode) |
5992 | { |
5993 | case OP_CRSTAR: |
5994 | case OP_CRMINSTAR: |
5995 | case OP_CRPLUS: |
5996 | case OP_CRMINPLUS: |
5997 | case OP_CRQUERY: |
5998 | case OP_CRMINQUERY: |
5999 | c = *ecode++ - OP_CRSTAR; |
6000 | minimize = (c & 1) != 0; |
6001 | min = rep_min[c]; /* Pick up values from tables; */ |
6002 | max = rep_max[c]; /* zero for max => infinity */ |
6003 | if (max == 0) max = INT_MAX; |
6004 | break; |
6005 | |
6006 | case OP_CRRANGE: |
6007 | case OP_CRMINRANGE: |
6008 | minimize = (*ecode == OP_CRMINRANGE); |
6009 | min = GET2(ecode, 1); |
6010 | max = GET2(ecode, 3); |
6011 | if (max == 0) max = INT_MAX; |
6012 | ecode += 5; |
6013 | break; |
6014 | |
6015 | default: /* No repeat follows */ |
6016 | min = max = 1; |
6017 | break; |
6018 | } |
6019 | |
6020 | /* First, ensure the minimum number of matches are present. */ |
6021 | |
6022 | #ifdef SUPPORT_UTF8 |
6023 | /* UTF-8 mode */ |
6024 | if (md->utf8) |
6025 | { |
6026 | for (i = 1; i <= min; i++) |
6027 | { |
6028 | if (eptr >= md->end_subject) return MATCH_NOMATCH; |
6029 | GETCHARINC(c, eptr); |
6030 | if (c > 255) |
6031 | { |
6032 | if (op == OP_CLASS) return MATCH_NOMATCH; |
6033 | } |
6034 | else |
6035 | { |
6036 | if ((data[c/8] & (1 << (c&7))) == 0) return MATCH_NOMATCH; |
6037 | } |
6038 | } |
6039 | } |
6040 | else |
6041 | #endif |
6042 | /* Not UTF-8 mode */ |
6043 | { |
6044 | for (i = 1; i <= min; i++) |
6045 | { |
6046 | if (eptr >= md->end_subject) return MATCH_NOMATCH; |
6047 | c = *eptr++; |
6048 | if ((data[c/8] & (1 << (c&7))) == 0) return MATCH_NOMATCH; |
6049 | } |
6050 | } |
6051 | |
6052 | /* If max == min we can continue with the main loop without the |
6053 | need to recurse. */ |
6054 | |
6055 | if (min == max) continue; |
6056 | |
6057 | /* If minimizing, keep testing the rest of the expression and advancing |
6058 | the pointer while it matches the class. */ |
6059 | |
6060 | if (minimize) |
6061 | { |
6062 | #ifdef SUPPORT_UTF8 |
6063 | /* UTF-8 mode */ |
6064 | if (md->utf8) |
6065 | { |
6066 | for (i = min;; i++) |
6067 | { |
6068 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
6069 | MATCH_NOMATCH) return rrc; |
6070 | if (i >= max || eptr >= md->end_subject) return MATCH_NOMATCH; |
6071 | GETCHARINC(c, eptr); |
6072 | if (c > 255) |
6073 | { |
6074 | if (op == OP_CLASS) return MATCH_NOMATCH; |
6075 | } |
6076 | else |
6077 | { |
6078 | if ((data[c/8] & (1 << (c&7))) == 0) return MATCH_NOMATCH; |
6079 | } |
6080 | } |
6081 | } |
6082 | else |
6083 | #endif |
6084 | /* Not UTF-8 mode */ |
6085 | { |
6086 | for (i = min;; i++) |
6087 | { |
6088 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
6089 | MATCH_NOMATCH) return rrc; |
6090 | if (i >= max || eptr >= md->end_subject) return MATCH_NOMATCH; |
6091 | c = *eptr++; |
6092 | if ((data[c/8] & (1 << (c&7))) == 0) return MATCH_NOMATCH; |
6093 | } |
6094 | } |
6095 | /* Control never gets here */ |
6096 | } |
6097 | |
6098 | /* If maximizing, find the longest possible run, then work backwards. */ |
6099 | |
6100 | else |
6101 | { |
6102 | const uschar *pp = eptr; |
6103 | |
6104 | #ifdef SUPPORT_UTF8 |
6105 | /* UTF-8 mode */ |
6106 | if (md->utf8) |
6107 | { |
6108 | for (i = min; i < max; i++) |
6109 | { |
6110 | int len = 1; |
6111 | if (eptr >= md->end_subject) break; |
6112 | GETCHARLEN(c, eptr, len); |
6113 | if (c > 255) |
6114 | { |
6115 | if (op == OP_CLASS) break; |
6116 | } |
6117 | else |
6118 | { |
6119 | if ((data[c/8] & (1 << (c&7))) == 0) break; |
6120 | } |
6121 | eptr += len; |
6122 | } |
6123 | for (;;) |
6124 | { |
6125 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
6126 | MATCH_NOMATCH) return rrc; |
6127 | if (eptr-- == pp) break; /* Stop if tried at original pos */ |
6128 | BACKCHAR(eptr); |
6129 | } |
6130 | } |
6131 | else |
6132 | #endif |
6133 | /* Not UTF-8 mode */ |
6134 | { |
6135 | for (i = min; i < max; i++) |
6136 | { |
6137 | if (eptr >= md->end_subject) break; |
6138 | c = *eptr; |
6139 | if ((data[c/8] & (1 << (c&7))) == 0) break; |
6140 | eptr++; |
6141 | } |
6142 | while (eptr >= pp) |
6143 | { |
6144 | if ((rrc = match(eptr--, ecode, offset_top, md, ims, eptrb, 0)) != |
6145 | MATCH_NOMATCH) return rrc; |
6146 | } |
6147 | } |
6148 | |
6149 | return MATCH_NOMATCH; |
6150 | } |
6151 | } |
6152 | /* Control never gets here */ |
6153 | |
6154 | |
6155 | /* Match an extended character class. This opcode is encountered only |
6156 | in UTF-8 mode, because that's the only time it is compiled. */ |
6157 | |
6158 | #ifdef SUPPORT_UTF8 |
6159 | case OP_XCLASS: |
6160 | { |
6161 | const uschar *data = ecode + 1 + LINK_SIZE; /* Save for matching */ |
6162 | ecode += GET(ecode, 1); /* Advance past the item */ |
6163 | |
6164 | switch (*ecode) |
6165 | { |
6166 | case OP_CRSTAR: |
6167 | case OP_CRMINSTAR: |
6168 | case OP_CRPLUS: |
6169 | case OP_CRMINPLUS: |
6170 | case OP_CRQUERY: |
6171 | case OP_CRMINQUERY: |
6172 | c = *ecode++ - OP_CRSTAR; |
6173 | minimize = (c & 1) != 0; |
6174 | min = rep_min[c]; /* Pick up values from tables; */ |
6175 | max = rep_max[c]; /* zero for max => infinity */ |
6176 | if (max == 0) max = INT_MAX; |
6177 | break; |
6178 | |
6179 | case OP_CRRANGE: |
6180 | case OP_CRMINRANGE: |
6181 | minimize = (*ecode == OP_CRMINRANGE); |
6182 | min = GET2(ecode, 1); |
6183 | max = GET2(ecode, 3); |
6184 | if (max == 0) max = INT_MAX; |
6185 | ecode += 5; |
6186 | break; |
6187 | |
6188 | default: /* No repeat follows */ |
6189 | min = max = 1; |
6190 | break; |
6191 | } |
6192 | |
6193 | /* First, ensure the minimum number of matches are present. */ |
6194 | |
6195 | for (i = 1; i <= min; i++) |
6196 | { |
6197 | if (eptr >= md->end_subject) return MATCH_NOMATCH; |
6198 | GETCHARINC(c, eptr); |
6199 | if (!match_xclass(c, data)) return MATCH_NOMATCH; |
6200 | } |
6201 | |
6202 | /* If max == min we can continue with the main loop without the |
6203 | need to recurse. */ |
6204 | |
6205 | if (min == max) continue; |
6206 | |
6207 | /* If minimizing, keep testing the rest of the expression and advancing |
6208 | the pointer while it matches the class. */ |
6209 | |
6210 | if (minimize) |
6211 | { |
6212 | for (i = min;; i++) |
6213 | { |
6214 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
6215 | MATCH_NOMATCH) return rrc; |
6216 | if (i >= max || eptr >= md->end_subject) return MATCH_NOMATCH; |
6217 | GETCHARINC(c, eptr); |
6218 | if (!match_xclass(c, data)) return MATCH_NOMATCH; |
6219 | } |
6220 | /* Control never gets here */ |
6221 | } |
6222 | |
6223 | /* If maximizing, find the longest possible run, then work backwards. */ |
6224 | |
6225 | else |
6226 | { |
6227 | const uschar *pp = eptr; |
6228 | for (i = min; i < max; i++) |
6229 | { |
6230 | int len = 1; |
6231 | if (eptr >= md->end_subject) break; |
6232 | GETCHARLEN(c, eptr, len); |
6233 | if (!match_xclass(c, data)) break; |
6234 | eptr += len; |
6235 | } |
6236 | for(;;) |
6237 | { |
6238 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
6239 | MATCH_NOMATCH) return rrc; |
6240 | if (eptr-- == pp) break; /* Stop if tried at original pos */ |
6241 | BACKCHAR(eptr) |
6242 | } |
6243 | return MATCH_NOMATCH; |
6244 | } |
6245 | |
6246 | /* Control never gets here */ |
6247 | } |
6248 | #endif /* End of XCLASS */ |
6249 | |
6250 | /* Match a run of characters */ |
6251 | |
6252 | case OP_CHARS: |
6253 | { |
6254 | register int length = ecode[1]; |
6255 | ecode += 2; |
6256 | |
6257 | #ifdef DEBUG /* Sigh. Some compilers never learn. */ |
6258 | if (eptr >= md->end_subject) |
6259 | printf("matching subject <null> against pattern "); |
6260 | else |
6261 | { |
6262 | printf("matching subject "); |
6263 | pchars(eptr, length, TRUE, md); |
6264 | printf(" against pattern "); |
6265 | } |
6266 | pchars(ecode, length, FALSE, md); |
6267 | printf("\n"); |
6268 | #endif |
6269 | |
6270 | if (length > md->end_subject - eptr) return MATCH_NOMATCH; |
6271 | if ((ims & PCRE_CASELESS) != 0) |
6272 | { |
6273 | while (length-- > 0) |
6274 | if (md->lcc[*ecode++] != md->lcc[*eptr++]) |
6275 | return MATCH_NOMATCH; |
6276 | } |
6277 | else |
6278 | { |
6279 | while (length-- > 0) if (*ecode++ != *eptr++) return MATCH_NOMATCH; |
6280 | } |
6281 | } |
6282 | break; |
6283 | |
6284 | /* Match a single character repeatedly; different opcodes share code. */ |
6285 | |
6286 | case OP_EXACT: |
6287 | min = max = GET2(ecode, 1); |
6288 | ecode += 3; |
6289 | goto REPEATCHAR; |
6290 | |
6291 | case OP_UPTO: |
6292 | case OP_MINUPTO: |
6293 | min = 0; |
6294 | max = GET2(ecode, 1); |
6295 | minimize = *ecode == OP_MINUPTO; |
6296 | ecode += 3; |
6297 | goto REPEATCHAR; |
6298 | |
6299 | case OP_STAR: |
6300 | case OP_MINSTAR: |
6301 | case OP_PLUS: |
6302 | case OP_MINPLUS: |
6303 | case OP_QUERY: |
6304 | case OP_MINQUERY: |
6305 | c = *ecode++ - OP_STAR; |
6306 | minimize = (c & 1) != 0; |
6307 | min = rep_min[c]; /* Pick up values from tables; */ |
6308 | max = rep_max[c]; /* zero for max => infinity */ |
6309 | if (max == 0) max = INT_MAX; |
6310 | |
6311 | /* Common code for all repeated single-character matches. We can give |
6312 | up quickly if there are fewer than the minimum number of characters left in |
6313 | the subject. */ |
6314 | |
6315 | REPEATCHAR: |
6316 | #ifdef SUPPORT_UTF8 |
6317 | if (md->utf8) |
6318 | { |
6319 | int len = 1; |
6320 | const uschar *charptr = ecode; |
6321 | GETCHARLEN(c, ecode, len); |
6322 | if (min * len > md->end_subject - eptr) return MATCH_NOMATCH; |
6323 | ecode += len; |
6324 | |
6325 | /* Handle multibyte character matching specially here. There is no |
6326 | support for any kind of casing for multibyte characters. */ |
6327 | |
6328 | if (len > 1) |
6329 | { |
6330 | for (i = 1; i <= min; i++) |
6331 | { |
6332 | if (memcmp(eptr, charptr, len) != 0) return MATCH_NOMATCH; |
6333 | eptr += len; |
6334 | } |
6335 | |
6336 | if (min == max) continue; |
6337 | |
6338 | if (minimize) |
6339 | { |
6340 | for (i = min;; i++) |
6341 | { |
6342 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
6343 | MATCH_NOMATCH) return rrc; |
6344 | if (i >= max || |
6345 | eptr >= md->end_subject || |
6346 | memcmp(eptr, charptr, len) != 0) |
6347 | return MATCH_NOMATCH; |
6348 | eptr += len; |
6349 | } |
6350 | /* Control never gets here */ |
6351 | } |
6352 | else |
6353 | { |
6354 | const uschar *pp = eptr; |
6355 | for (i = min; i < max; i++) |
6356 | { |
6357 | if (eptr > md->end_subject - len || |
6358 | memcmp(eptr, charptr, len) != 0) |
6359 | break; |
6360 | eptr += len; |
6361 | } |
6362 | while (eptr >= pp) |
6363 | { |
6364 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
6365 | MATCH_NOMATCH) return rrc; |
6366 | eptr -= len; |
6367 | } |
6368 | return MATCH_NOMATCH; |
6369 | } |
6370 | /* Control never gets here */ |
6371 | } |
6372 | |
6373 | /* If the length of a UTF-8 character is 1, we fall through here, and |
6374 | obey the code as for non-UTF-8 characters below, though in this case the |
6375 | value of c will always be < 128. */ |
6376 | } |
6377 | else |
6378 | #endif |
6379 | |
6380 | /* When not in UTF-8 mode, load a single-byte character. */ |
6381 | { |
6382 | if (min > md->end_subject - eptr) return MATCH_NOMATCH; |
6383 | c = *ecode++; |
6384 | } |
6385 | |
6386 | /* The value of c at this point is always less than 256, though we may or |
6387 | may not be in UTF-8 mode. The code is duplicated for the caseless and |
6388 | caseful cases, for speed, since matching characters is likely to be quite |
6389 | common. First, ensure the minimum number of matches are present. If min = |
6390 | max, continue at the same level without recursing. Otherwise, if |
6391 | minimizing, keep trying the rest of the expression and advancing one |
6392 | matching character if failing, up to the maximum. Alternatively, if |
6393 | maximizing, find the maximum number of characters and work backwards. */ |
6394 | |
6395 | DPRINTF(("matching %c{%d,%d} against subject %.*s\n", c, min, max, |
6396 | max, eptr)); |
6397 | |
6398 | if ((ims & PCRE_CASELESS) != 0) |
6399 | { |
6400 | c = md->lcc[c]; |
6401 | for (i = 1; i <= min; i++) |
6402 | if (c != md->lcc[*eptr++]) return MATCH_NOMATCH; |
6403 | if (min == max) continue; |
6404 | if (minimize) |
6405 | { |
6406 | for (i = min;; i++) |
6407 | { |
6408 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
6409 | MATCH_NOMATCH) return rrc; |
6410 | if (i >= max || eptr >= md->end_subject || |
6411 | c != md->lcc[*eptr++]) |
6412 | return MATCH_NOMATCH; |
6413 | } |
6414 | /* Control never gets here */ |
6415 | } |
6416 | else |
6417 | { |
6418 | const uschar *pp = eptr; |
6419 | for (i = min; i < max; i++) |
6420 | { |
6421 | if (eptr >= md->end_subject || c != md->lcc[*eptr]) break; |
6422 | eptr++; |
6423 | } |
6424 | while (eptr >= pp) |
6425 | if ((rrc = match(eptr--, ecode, offset_top, md, ims, eptrb, 0)) != |
6426 | MATCH_NOMATCH) return rrc; |
6427 | return MATCH_NOMATCH; |
6428 | } |
6429 | /* Control never gets here */ |
6430 | } |
6431 | |
6432 | /* Caseful comparisons (includes all multi-byte characters) */ |
6433 | |
6434 | else |
6435 | { |
6436 | for (i = 1; i <= min; i++) if (c != *eptr++) return MATCH_NOMATCH; |
6437 | if (min == max) continue; |
6438 | if (minimize) |
6439 | { |
6440 | for (i = min;; i++) |
6441 | { |
6442 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
6443 | MATCH_NOMATCH) return rrc; |
6444 | if (i >= max || eptr >= md->end_subject || c != *eptr++) |
6445 | return MATCH_NOMATCH; |
6446 | } |
6447 | /* Control never gets here */ |
6448 | } |
6449 | else |
6450 | { |
6451 | const uschar *pp = eptr; |
6452 | for (i = min; i < max; i++) |
6453 | { |
6454 | if (eptr >= md->end_subject || c != *eptr) break; |
6455 | eptr++; |
6456 | } |
6457 | while (eptr >= pp) |
6458 | if ((rrc = match(eptr--, ecode, offset_top, md, ims, eptrb, 0)) != |
6459 | MATCH_NOMATCH) return rrc; |
6460 | return MATCH_NOMATCH; |
6461 | } |
6462 | } |
6463 | /* Control never gets here */ |
6464 | |
6465 | /* Match a negated single one-byte character. The character we are |
6466 | checking can be multibyte. */ |
6467 | |
6468 | case OP_NOT: |
6469 | if (eptr >= md->end_subject) return MATCH_NOMATCH; |
6470 | ecode++; |
6471 | GETCHARINCTEST(c, eptr); |
6472 | if ((ims & PCRE_CASELESS) != 0) |
6473 | { |
6474 | #ifdef SUPPORT_UTF8 |
6475 | if (c < 256) |
6476 | #endif |
6477 | c = md->lcc[c]; |
6478 | if (md->lcc[*ecode++] == c) return MATCH_NOMATCH; |
6479 | } |
6480 | else |
6481 | { |
6482 | if (*ecode++ == c) return MATCH_NOMATCH; |
6483 | } |
6484 | break; |
6485 | |
6486 | /* Match a negated single one-byte character repeatedly. This is almost a |
6487 | repeat of the code for a repeated single character, but I haven't found a |
6488 | nice way of commoning these up that doesn't require a test of the |
6489 | positive/negative option for each character match. Maybe that wouldn't add |
6490 | very much to the time taken, but character matching *is* what this is all |
6491 | about... */ |
6492 | |
6493 | case OP_NOTEXACT: |
6494 | min = max = GET2(ecode, 1); |
6495 | ecode += 3; |
6496 | goto REPEATNOTCHAR; |
6497 | |
6498 | case OP_NOTUPTO: |
6499 | case OP_NOTMINUPTO: |
6500 | min = 0; |
6501 | max = GET2(ecode, 1); |
6502 | minimize = *ecode == OP_NOTMINUPTO; |
6503 | ecode += 3; |
6504 | goto REPEATNOTCHAR; |
6505 | |
6506 | case OP_NOTSTAR: |
6507 | case OP_NOTMINSTAR: |
6508 | case OP_NOTPLUS: |
6509 | case OP_NOTMINPLUS: |
6510 | case OP_NOTQUERY: |
6511 | case OP_NOTMINQUERY: |
6512 | c = *ecode++ - OP_NOTSTAR; |
6513 | minimize = (c & 1) != 0; |
6514 | min = rep_min[c]; /* Pick up values from tables; */ |
6515 | max = rep_max[c]; /* zero for max => infinity */ |
6516 | if (max == 0) max = INT_MAX; |
6517 | |
6518 | /* Common code for all repeated single-character (less than 255) matches. |
6519 | We can give up quickly if there are fewer than the minimum number of |
6520 | characters left in the subject. */ |
6521 | |
6522 | REPEATNOTCHAR: |
6523 | if (min > md->end_subject - eptr) return MATCH_NOMATCH; |
6524 | c = *ecode++; |
6525 | |
6526 | /* The code is duplicated for the caseless and caseful cases, for speed, |
6527 | since matching characters is likely to be quite common. First, ensure the |
6528 | minimum number of matches are present. If min = max, continue at the same |
6529 | level without recursing. Otherwise, if minimizing, keep trying the rest of |
6530 | the expression and advancing one matching character if failing, up to the |
6531 | maximum. Alternatively, if maximizing, find the maximum number of |
6532 | characters and work backwards. */ |
6533 | |
6534 | DPRINTF(("negative matching %c{%d,%d} against subject %.*s\n", c, min, max, |
6535 | max, eptr)); |
6536 | |
6537 | if ((ims & PCRE_CASELESS) != 0) |
6538 | { |
6539 | c = md->lcc[c]; |
6540 | |
6541 | #ifdef SUPPORT_UTF8 |
6542 | /* UTF-8 mode */ |
6543 | if (md->utf8) |
6544 | { |
6545 | register int d; |
6546 | for (i = 1; i <= min; i++) |
6547 | { |
6548 | GETCHARINC(d, eptr); |
6549 | if (d < 256) d = md->lcc[d]; |
6550 | if (c == d) return MATCH_NOMATCH; |
6551 | } |
6552 | } |
6553 | else |
6554 | #endif |
6555 | |
6556 | /* Not UTF-8 mode */ |
6557 | { |
6558 | for (i = 1; i <= min; i++) |
6559 | if (c == md->lcc[*eptr++]) return MATCH_NOMATCH; |
6560 | } |
6561 | |
6562 | if (min == max) continue; |
6563 | |
6564 | if (minimize) |
6565 | { |
6566 | #ifdef SUPPORT_UTF8 |
6567 | /* UTF-8 mode */ |
6568 | if (md->utf8) |
6569 | { |
6570 | register int d; |
6571 | for (i = min;; i++) |
6572 | { |
6573 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
6574 | MATCH_NOMATCH) return rrc; |
6575 | GETCHARINC(d, eptr); |
6576 | if (d < 256) d = md->lcc[d]; |
6577 | if (i >= max || eptr >= md->end_subject || c == d) |
6578 | return MATCH_NOMATCH; |
6579 | } |
6580 | } |
6581 | else |
6582 | #endif |
6583 | /* Not UTF-8 mode */ |
6584 | { |
6585 | for (i = min;; i++) |
6586 | { |
6587 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
6588 | MATCH_NOMATCH) return rrc; |
6589 | if (i >= max || eptr >= md->end_subject || c == md->lcc[*eptr++]) |
6590 | return MATCH_NOMATCH; |
6591 | } |
6592 | } |
6593 | /* Control never gets here */ |
6594 | } |
6595 | |
6596 | /* Maximize case */ |
6597 | |
6598 | else |
6599 | { |
6600 | const uschar *pp = eptr; |
6601 | |
6602 | #ifdef SUPPORT_UTF8 |
6603 | /* UTF-8 mode */ |
6604 | if (md->utf8) |
6605 | { |
6606 | register int d; |
6607 | for (i = min; i < max; i++) |
6608 | { |
6609 | int len = 1; |
6610 | if (eptr >= md->end_subject) break; |
6611 | GETCHARLEN(d, eptr, len); |
6612 | if (d < 256) d = md->lcc[d]; |
6613 | if (c == d) break; |
6614 | eptr += len; |
6615 | } |
6616 | for(;;) |
6617 | { |
6618 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
6619 | MATCH_NOMATCH) return rrc; |
6620 | if (eptr-- == pp) break; /* Stop if tried at original pos */ |
6621 | BACKCHAR(eptr); |
6622 | } |
6623 | } |
6624 | else |
6625 | #endif |
6626 | /* Not UTF-8 mode */ |
6627 | { |
6628 | for (i = min; i < max; i++) |
6629 | { |
6630 | if (eptr >= md->end_subject || c == md->lcc[*eptr]) break; |
6631 | eptr++; |
6632 | } |
6633 | while (eptr >= pp) |
6634 | { |
6635 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
6636 | MATCH_NOMATCH) return rrc; |
6637 | eptr--; |
6638 | } |
6639 | } |
6640 | |
6641 | return MATCH_NOMATCH; |
6642 | } |
6643 | /* Control never gets here */ |
6644 | } |
6645 | |
6646 | /* Caseful comparisons */ |
6647 | |
6648 | else |
6649 | { |
6650 | #ifdef SUPPORT_UTF8 |
6651 | /* UTF-8 mode */ |
6652 | if (md->utf8) |
6653 | { |
6654 | register int d; |
6655 | for (i = 1; i <= min; i++) |
6656 | { |
6657 | GETCHARINC(d, eptr); |
6658 | if (c == d) return MATCH_NOMATCH; |
6659 | } |
6660 | } |
6661 | else |
6662 | #endif |
6663 | /* Not UTF-8 mode */ |
6664 | { |
6665 | for (i = 1; i <= min; i++) |
6666 | if (c == *eptr++) return MATCH_NOMATCH; |
6667 | } |
6668 | |
6669 | if (min == max) continue; |
6670 | |
6671 | if (minimize) |
6672 | { |
6673 | #ifdef SUPPORT_UTF8 |
6674 | /* UTF-8 mode */ |
6675 | if (md->utf8) |
6676 | { |
6677 | register int d; |
6678 | for (i = min;; i++) |
6679 | { |
6680 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
6681 | MATCH_NOMATCH) return rrc; |
6682 | GETCHARINC(d, eptr); |
6683 | if (i >= max || eptr >= md->end_subject || c == d) |
6684 | return MATCH_NOMATCH; |
6685 | } |
6686 | } |
6687 | else |
6688 | #endif |
6689 | /* Not UTF-8 mode */ |
6690 | { |
6691 | for (i = min;; i++) |
6692 | { |
6693 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
6694 | MATCH_NOMATCH) return rrc; |
6695 | if (i >= max || eptr >= md->end_subject || c == *eptr++) |
6696 | return MATCH_NOMATCH; |
6697 | } |
6698 | } |
6699 | /* Control never gets here */ |
6700 | } |
6701 | |
6702 | /* Maximize case */ |
6703 | |
6704 | else |
6705 | { |
6706 | const uschar *pp = eptr; |
6707 | |
6708 | #ifdef SUPPORT_UTF8 |
6709 | /* UTF-8 mode */ |
6710 | if (md->utf8) |
6711 | { |
6712 | register int d; |
6713 | for (i = min; i < max; i++) |
6714 | { |
6715 | int len = 1; |
6716 | if (eptr >= md->end_subject) break; |
6717 | GETCHARLEN(d, eptr, len); |
6718 | if (c == d) break; |
6719 | eptr += len; |
6720 | } |
6721 | for(;;) |
6722 | { |
6723 | if ((rrc = match(eptr, ecode, offset_top, md, ims, eptrb, 0)) != |
6724 | MATCH_NOMATCH) return rrc; |
6725 | if (eptr-- == pp) break; /* Stop if tried at original pos */ |
6726 | BACKCHAR(eptr); |
6727 | } |
6728 | } |
6729 | else |
6730 | #endif |
6731 | /* Not UTF-8 mode */ |
6732 | { |