/[pcre]/code/tags/pcre-8.33/pcre_compile.c
ViewVC logotype

Contents of /code/tags/pcre-8.33/pcre_compile.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1046 - (show annotations)
Tue Sep 25 16:27:58 2012 UTC (7 years, 1 month ago) by ph10
Original Path: code/trunk/pcre_compile.c
File MIME type: text/plain
File size: 269266 byte(s)
All the remaining changes for handling characters with more than one other 
case.
1 /*************************************************
2 * Perl-Compatible Regular Expressions *
3 *************************************************/
4
5 /* PCRE is a library of functions to support regular expressions whose syntax
6 and semantics are as close as possible to those of the Perl 5 language.
7
8 Written by Philip Hazel
9 Copyright (c) 1997-2012 University of Cambridge
10
11 -----------------------------------------------------------------------------
12 Redistribution and use in source and binary forms, with or without
13 modification, are permitted provided that the following conditions are met:
14
15 * Redistributions of source code must retain the above copyright notice,
16 this list of conditions and the following disclaimer.
17
18 * Redistributions in binary form must reproduce the above copyright
19 notice, this list of conditions and the following disclaimer in the
20 documentation and/or other materials provided with the distribution.
21
22 * Neither the name of the University of Cambridge nor the names of its
23 contributors may be used to endorse or promote products derived from
24 this software without specific prior written permission.
25
26 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
27 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
30 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 POSSIBILITY OF SUCH DAMAGE.
37 -----------------------------------------------------------------------------
38 */
39
40
41 /* This module contains the external function pcre_compile(), along with
42 supporting internal functions that are not used by other modules. */
43
44
45 #ifdef HAVE_CONFIG_H
46 #include "config.h"
47 #endif
48
49 #define NLBLOCK cd /* Block containing newline information */
50 #define PSSTART start_pattern /* Field containing processed string start */
51 #define PSEND end_pattern /* Field containing processed string end */
52
53 #include "pcre_internal.h"
54
55
56 /* When PCRE_DEBUG is defined, we need the pcre(16)_printint() function, which
57 is also used by pcretest. PCRE_DEBUG is not defined when building a production
58 library. We do not need to select pcre16_printint.c specially, because the
59 COMPILE_PCREx macro will already be appropriately set. */
60
61 #ifdef PCRE_DEBUG
62 /* pcre_printint.c should not include any headers */
63 #define PCRE_INCLUDED
64 #include "pcre_printint.c"
65 #undef PCRE_INCLUDED
66 #endif
67
68
69 /* Macro for setting individual bits in class bitmaps. */
70
71 #define SETBIT(a,b) a[(b)/8] |= (1 << ((b)&7))
72
73 /* Maximum length value to check against when making sure that the integer that
74 holds the compiled pattern length does not overflow. We make it a bit less than
75 INT_MAX to allow for adding in group terminating bytes, so that we don't have
76 to check them every time. */
77
78 #define OFLOW_MAX (INT_MAX - 20)
79
80 /* Definitions to allow mutual recursion */
81
82 static int
83 add_list_to_class(pcre_uint8 *, pcre_uchar **, int, compile_data *,
84 const pcre_uint32 *, unsigned int);
85
86 static BOOL
87 compile_regex(int, pcre_uchar **, const pcre_uchar **, int *, BOOL, BOOL,
88 int, int, int *, int *, branch_chain *, compile_data *, int *);
89
90
91
92 /*************************************************
93 * Code parameters and static tables *
94 *************************************************/
95
96 /* This value specifies the size of stack workspace that is used during the
97 first pre-compile phase that determines how much memory is required. The regex
98 is partly compiled into this space, but the compiled parts are discarded as
99 soon as they can be, so that hopefully there will never be an overrun. The code
100 does, however, check for an overrun. The largest amount I've seen used is 218,
101 so this number is very generous.
102
103 The same workspace is used during the second, actual compile phase for
104 remembering forward references to groups so that they can be filled in at the
105 end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE
106 is 4 there is plenty of room for most patterns. However, the memory can get
107 filled up by repetitions of forward references, for example patterns like
108 /(?1){0,1999}(b)/, and one user did hit the limit. The code has been changed so
109 that the workspace is expanded using malloc() in this situation. The value
110 below is therefore a minimum, and we put a maximum on it for safety. The
111 minimum is now also defined in terms of LINK_SIZE so that the use of malloc()
112 kicks in at the same number of forward references in all cases. */
113
114 #define COMPILE_WORK_SIZE (2048*LINK_SIZE)
115 #define COMPILE_WORK_SIZE_MAX (100*COMPILE_WORK_SIZE)
116
117 /* The overrun tests check for a slightly smaller size so that they detect the
118 overrun before it actually does run off the end of the data block. */
119
120 #define WORK_SIZE_SAFETY_MARGIN (100)
121
122 /* Private flags added to firstchar and reqchar. */
123
124 #define REQ_CASELESS 0x10000000l /* Indicates caselessness */
125 #define REQ_VARY 0x20000000l /* Reqchar followed non-literal item */
126
127 /* Repeated character flags. */
128
129 #define UTF_LENGTH 0x10000000l /* The char contains its length. */
130
131 /* Table for handling escaped characters in the range '0'-'z'. Positive returns
132 are simple data values; negative values are for special things like \d and so
133 on. Zero means further processing is needed (for things like \x), or the escape
134 is invalid. */
135
136 #ifndef EBCDIC
137
138 /* This is the "normal" table for ASCII systems or for EBCDIC systems running
139 in UTF-8 mode. */
140
141 static const short int escapes[] = {
142 0, 0,
143 0, 0,
144 0, 0,
145 0, 0,
146 0, 0,
147 CHAR_COLON, CHAR_SEMICOLON,
148 CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN,
149 CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK,
150 CHAR_COMMERCIAL_AT, -ESC_A,
151 -ESC_B, -ESC_C,
152 -ESC_D, -ESC_E,
153 0, -ESC_G,
154 -ESC_H, 0,
155 0, -ESC_K,
156 0, 0,
157 -ESC_N, 0,
158 -ESC_P, -ESC_Q,
159 -ESC_R, -ESC_S,
160 0, 0,
161 -ESC_V, -ESC_W,
162 -ESC_X, 0,
163 -ESC_Z, CHAR_LEFT_SQUARE_BRACKET,
164 CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET,
165 CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE,
166 CHAR_GRAVE_ACCENT, 7,
167 -ESC_b, 0,
168 -ESC_d, ESC_e,
169 ESC_f, 0,
170 -ESC_h, 0,
171 0, -ESC_k,
172 0, 0,
173 ESC_n, 0,
174 -ESC_p, 0,
175 ESC_r, -ESC_s,
176 ESC_tee, 0,
177 -ESC_v, -ESC_w,
178 0, 0,
179 -ESC_z
180 };
181
182 #else
183
184 /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */
185
186 static const short int escapes[] = {
187 /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|',
188 /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0,
189 /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~',
190 /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0,
191 /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?',
192 /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0,
193 /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"',
194 /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0,
195 /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0,
196 /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p,
197 /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0,
198 /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0,
199 /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0,
200 /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0,
201 /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-',
202 /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G,
203 /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0,
204 /* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P,
205 /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0,
206 /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X,
207 /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0,
208 /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0,
209 /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0
210 };
211 #endif
212
213
214 /* Table of special "verbs" like (*PRUNE). This is a short table, so it is
215 searched linearly. Put all the names into a single string, in order to reduce
216 the number of relocations when a shared library is dynamically linked. The
217 string is built from string macros so that it works in UTF-8 mode on EBCDIC
218 platforms. */
219
220 typedef struct verbitem {
221 int len; /* Length of verb name */
222 int op; /* Op when no arg, or -1 if arg mandatory */
223 int op_arg; /* Op when arg present, or -1 if not allowed */
224 } verbitem;
225
226 static const char verbnames[] =
227 "\0" /* Empty name is a shorthand for MARK */
228 STRING_MARK0
229 STRING_ACCEPT0
230 STRING_COMMIT0
231 STRING_F0
232 STRING_FAIL0
233 STRING_PRUNE0
234 STRING_SKIP0
235 STRING_THEN;
236
237 static const verbitem verbs[] = {
238 { 0, -1, OP_MARK },
239 { 4, -1, OP_MARK },
240 { 6, OP_ACCEPT, -1 },
241 { 6, OP_COMMIT, -1 },
242 { 1, OP_FAIL, -1 },
243 { 4, OP_FAIL, -1 },
244 { 5, OP_PRUNE, OP_PRUNE_ARG },
245 { 4, OP_SKIP, OP_SKIP_ARG },
246 { 4, OP_THEN, OP_THEN_ARG }
247 };
248
249 static const int verbcount = sizeof(verbs)/sizeof(verbitem);
250
251
252 /* Tables of names of POSIX character classes and their lengths. The names are
253 now all in a single string, to reduce the number of relocations when a shared
254 library is dynamically loaded. The list of lengths is terminated by a zero
255 length entry. The first three must be alpha, lower, upper, as this is assumed
256 for handling case independence. */
257
258 static const char posix_names[] =
259 STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0
260 STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0
261 STRING_graph0 STRING_print0 STRING_punct0 STRING_space0
262 STRING_word0 STRING_xdigit;
263
264 static const pcre_uint8 posix_name_lengths[] = {
265 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 };
266
267 /* Table of class bit maps for each POSIX class. Each class is formed from a
268 base map, with an optional addition or removal of another map. Then, for some
269 classes, there is some additional tweaking: for [:blank:] the vertical space
270 characters are removed, and for [:alpha:] and [:alnum:] the underscore
271 character is removed. The triples in the table consist of the base map offset,
272 second map offset or -1 if no second map, and a non-negative value for map
273 addition or a negative value for map subtraction (if there are two maps). The
274 absolute value of the third field has these meanings: 0 => no tweaking, 1 =>
275 remove vertical space characters, 2 => remove underscore. */
276
277 static const int posix_class_maps[] = {
278 cbit_word, cbit_digit, -2, /* alpha */
279 cbit_lower, -1, 0, /* lower */
280 cbit_upper, -1, 0, /* upper */
281 cbit_word, -1, 2, /* alnum - word without underscore */
282 cbit_print, cbit_cntrl, 0, /* ascii */
283 cbit_space, -1, 1, /* blank - a GNU extension */
284 cbit_cntrl, -1, 0, /* cntrl */
285 cbit_digit, -1, 0, /* digit */
286 cbit_graph, -1, 0, /* graph */
287 cbit_print, -1, 0, /* print */
288 cbit_punct, -1, 0, /* punct */
289 cbit_space, -1, 0, /* space */
290 cbit_word, -1, 0, /* word - a Perl extension */
291 cbit_xdigit,-1, 0 /* xdigit */
292 };
293
294 /* Table of substitutes for \d etc when PCRE_UCP is set. The POSIX class
295 substitutes must be in the order of the names, defined above, and there are
296 both positive and negative cases. NULL means no substitute. */
297
298 #ifdef SUPPORT_UCP
299 static const pcre_uchar string_PNd[] = {
300 CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
301 CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
302 static const pcre_uchar string_pNd[] = {
303 CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
304 CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
305 static const pcre_uchar string_PXsp[] = {
306 CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
307 CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' };
308 static const pcre_uchar string_pXsp[] = {
309 CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
310 CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' };
311 static const pcre_uchar string_PXwd[] = {
312 CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
313 CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
314 static const pcre_uchar string_pXwd[] = {
315 CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
316 CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
317
318 static const pcre_uchar *substitutes[] = {
319 string_PNd, /* \D */
320 string_pNd, /* \d */
321 string_PXsp, /* \S */ /* NOTE: Xsp is Perl space */
322 string_pXsp, /* \s */
323 string_PXwd, /* \W */
324 string_pXwd /* \w */
325 };
326
327 static const pcre_uchar string_pL[] = {
328 CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
329 CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' };
330 static const pcre_uchar string_pLl[] = {
331 CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
332 CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' };
333 static const pcre_uchar string_pLu[] = {
334 CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
335 CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' };
336 static const pcre_uchar string_pXan[] = {
337 CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
338 CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' };
339 static const pcre_uchar string_h[] = {
340 CHAR_BACKSLASH, CHAR_h, '\0' };
341 static const pcre_uchar string_pXps[] = {
342 CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
343 CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' };
344 static const pcre_uchar string_PL[] = {
345 CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
346 CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' };
347 static const pcre_uchar string_PLl[] = {
348 CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
349 CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' };
350 static const pcre_uchar string_PLu[] = {
351 CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
352 CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' };
353 static const pcre_uchar string_PXan[] = {
354 CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
355 CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' };
356 static const pcre_uchar string_H[] = {
357 CHAR_BACKSLASH, CHAR_H, '\0' };
358 static const pcre_uchar string_PXps[] = {
359 CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
360 CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' };
361
362 static const pcre_uchar *posix_substitutes[] = {
363 string_pL, /* alpha */
364 string_pLl, /* lower */
365 string_pLu, /* upper */
366 string_pXan, /* alnum */
367 NULL, /* ascii */
368 string_h, /* blank */
369 NULL, /* cntrl */
370 string_pNd, /* digit */
371 NULL, /* graph */
372 NULL, /* print */
373 NULL, /* punct */
374 string_pXps, /* space */ /* NOTE: Xps is POSIX space */
375 string_pXwd, /* word */
376 NULL, /* xdigit */
377 /* Negated cases */
378 string_PL, /* ^alpha */
379 string_PLl, /* ^lower */
380 string_PLu, /* ^upper */
381 string_PXan, /* ^alnum */
382 NULL, /* ^ascii */
383 string_H, /* ^blank */
384 NULL, /* ^cntrl */
385 string_PNd, /* ^digit */
386 NULL, /* ^graph */
387 NULL, /* ^print */
388 NULL, /* ^punct */
389 string_PXps, /* ^space */ /* NOTE: Xps is POSIX space */
390 string_PXwd, /* ^word */
391 NULL /* ^xdigit */
392 };
393 #define POSIX_SUBSIZE (sizeof(posix_substitutes) / sizeof(pcre_uchar *))
394 #endif
395
396 #define STRING(a) # a
397 #define XSTRING(s) STRING(s)
398
399 /* The texts of compile-time error messages. These are "char *" because they
400 are passed to the outside world. Do not ever re-use any error number, because
401 they are documented. Always add a new error instead. Messages marked DEAD below
402 are no longer used. This used to be a table of strings, but in order to reduce
403 the number of relocations needed when a shared library is loaded dynamically,
404 it is now one long string. We cannot use a table of offsets, because the
405 lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we
406 simply count through to the one we want - this isn't a performance issue
407 because these strings are used only when there is a compilation error.
408
409 Each substring ends with \0 to insert a null character. This includes the final
410 substring, so that the whole string ends with \0\0, which can be detected when
411 counting through. */
412
413 static const char error_texts[] =
414 "no error\0"
415 "\\ at end of pattern\0"
416 "\\c at end of pattern\0"
417 "unrecognized character follows \\\0"
418 "numbers out of order in {} quantifier\0"
419 /* 5 */
420 "number too big in {} quantifier\0"
421 "missing terminating ] for character class\0"
422 "invalid escape sequence in character class\0"
423 "range out of order in character class\0"
424 "nothing to repeat\0"
425 /* 10 */
426 "operand of unlimited repeat could match the empty string\0" /** DEAD **/
427 "internal error: unexpected repeat\0"
428 "unrecognized character after (? or (?-\0"
429 "POSIX named classes are supported only within a class\0"
430 "missing )\0"
431 /* 15 */
432 "reference to non-existent subpattern\0"
433 "erroffset passed as NULL\0"
434 "unknown option bit(s) set\0"
435 "missing ) after comment\0"
436 "parentheses nested too deeply\0" /** DEAD **/
437 /* 20 */
438 "regular expression is too large\0"
439 "failed to get memory\0"
440 "unmatched parentheses\0"
441 "internal error: code overflow\0"
442 "unrecognized character after (?<\0"
443 /* 25 */
444 "lookbehind assertion is not fixed length\0"
445 "malformed number or name after (?(\0"
446 "conditional group contains more than two branches\0"
447 "assertion expected after (?(\0"
448 "(?R or (?[+-]digits must be followed by )\0"
449 /* 30 */
450 "unknown POSIX class name\0"
451 "POSIX collating elements are not supported\0"
452 "this version of PCRE is compiled without UTF support\0"
453 "spare error\0" /** DEAD **/
454 "character value in \\x{...} sequence is too large\0"
455 /* 35 */
456 "invalid condition (?(0)\0"
457 "\\C not allowed in lookbehind assertion\0"
458 "PCRE does not support \\L, \\l, \\N{name}, \\U, or \\u\0"
459 "number after (?C is > 255\0"
460 "closing ) for (?C expected\0"
461 /* 40 */
462 "recursive call could loop indefinitely\0"
463 "unrecognized character after (?P\0"
464 "syntax error in subpattern name (missing terminator)\0"
465 "two named subpatterns have the same name\0"
466 "invalid UTF-8 string\0"
467 /* 45 */
468 "support for \\P, \\p, and \\X has not been compiled\0"
469 "malformed \\P or \\p sequence\0"
470 "unknown property name after \\P or \\p\0"
471 "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0"
472 "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0"
473 /* 50 */
474 "repeated subpattern is too long\0" /** DEAD **/
475 "octal value is greater than \\377 in 8-bit non-UTF-8 mode\0"
476 "internal error: overran compiling workspace\0"
477 "internal error: previously-checked referenced subpattern not found\0"
478 "DEFINE group contains more than one branch\0"
479 /* 55 */
480 "repeating a DEFINE group is not allowed\0" /** DEAD **/
481 "inconsistent NEWLINE options\0"
482 "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0"
483 "a numbered reference must not be zero\0"
484 "an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0"
485 /* 60 */
486 "(*VERB) not recognized\0"
487 "number is too big\0"
488 "subpattern name expected\0"
489 "digit expected after (?+\0"
490 "] is an invalid data character in JavaScript compatibility mode\0"
491 /* 65 */
492 "different names for subpatterns of the same number are not allowed\0"
493 "(*MARK) must have an argument\0"
494 "this version of PCRE is not compiled with Unicode property support\0"
495 "\\c must be followed by an ASCII character\0"
496 "\\k is not followed by a braced, angle-bracketed, or quoted name\0"
497 /* 70 */
498 "internal error: unknown opcode in find_fixedlength()\0"
499 "\\N is not supported in a class\0"
500 "too many forward references\0"
501 "disallowed Unicode code point (>= 0xd800 && <= 0xdfff)\0"
502 "invalid UTF-16 string\0"
503 /* 75 */
504 "name is too long in (*MARK), (*PRUNE), (*SKIP), or (*THEN)\0"
505 "character value in \\u.... sequence is too large\0"
506 ;
507
508 /* Table to identify digits and hex digits. This is used when compiling
509 patterns. Note that the tables in chartables are dependent on the locale, and
510 may mark arbitrary characters as digits - but the PCRE compiling code expects
511 to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have
512 a private table here. It costs 256 bytes, but it is a lot faster than doing
513 character value tests (at least in some simple cases I timed), and in some
514 applications one wants PCRE to compile efficiently as well as match
515 efficiently.
516
517 For convenience, we use the same bit definitions as in chartables:
518
519 0x04 decimal digit
520 0x08 hexadecimal digit
521
522 Then we can use ctype_digit and ctype_xdigit in the code. */
523
524 /* Using a simple comparison for decimal numbers rather than a memory read
525 is much faster, and the resulting code is simpler (the compiler turns it
526 into a subtraction and unsigned comparison). */
527
528 #define IS_DIGIT(x) ((x) >= CHAR_0 && (x) <= CHAR_9)
529
530 #ifndef EBCDIC
531
532 /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in
533 UTF-8 mode. */
534
535 static const pcre_uint8 digitab[] =
536 {
537 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */
538 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
539 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */
540 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
541 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */
542 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */
543 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */
544 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */
545 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */
546 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */
547 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */
548 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */
549 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */
550 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */
551 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */
552 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */
553 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */
554 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */
555 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */
556 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */
557 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */
558 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */
559 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */
560 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
561 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */
562 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */
563 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */
564 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */
565 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */
566 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */
567 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */
568 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */
569
570 #else
571
572 /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */
573
574 static const pcre_uint8 digitab[] =
575 {
576 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */
577 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
578 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */
579 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
580 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */
581 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
582 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */
583 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
584 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */
585 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */
586 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */
587 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */
588 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */
589 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */
590 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */
591 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
592 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */
593 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
594 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */
595 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
596 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */
597 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
598 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */
599 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
600 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */
601 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
602 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */
603 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
604 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */
605 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
606 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */
607 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
608
609 static const pcre_uint8 ebcdic_chartab[] = { /* chartable partial dup */
610 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */
611 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */
612 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */
613 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
614 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */
615 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
616 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */
617 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
618 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */
619 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */
620 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */
621 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */
622 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */
623 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */
624 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */
625 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
626 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */
627 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
628 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */
629 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
630 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */
631 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
632 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */
633 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
634 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */
635 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
636 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */
637 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
638 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */
639 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
640 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */
641 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
642 #endif
643
644
645
646
647 /*************************************************
648 * Find an error text *
649 *************************************************/
650
651 /* The error texts are now all in one long string, to save on relocations. As
652 some of the text is of unknown length, we can't use a table of offsets.
653 Instead, just count through the strings. This is not a performance issue
654 because it happens only when there has been a compilation error.
655
656 Argument: the error number
657 Returns: pointer to the error string
658 */
659
660 static const char *
661 find_error_text(int n)
662 {
663 const char *s = error_texts;
664 for (; n > 0; n--)
665 {
666 while (*s++ != 0) {};
667 if (*s == 0) return "Error text not found (please report)";
668 }
669 return s;
670 }
671
672
673 /*************************************************
674 * Expand the workspace *
675 *************************************************/
676
677 /* This function is called during the second compiling phase, if the number of
678 forward references fills the existing workspace, which is originally a block on
679 the stack. A larger block is obtained from malloc() unless the ultimate limit
680 has been reached or the increase will be rather small.
681
682 Argument: pointer to the compile data block
683 Returns: 0 if all went well, else an error number
684 */
685
686 static int
687 expand_workspace(compile_data *cd)
688 {
689 pcre_uchar *newspace;
690 int newsize = cd->workspace_size * 2;
691
692 if (newsize > COMPILE_WORK_SIZE_MAX) newsize = COMPILE_WORK_SIZE_MAX;
693 if (cd->workspace_size >= COMPILE_WORK_SIZE_MAX ||
694 newsize - cd->workspace_size < WORK_SIZE_SAFETY_MARGIN)
695 return ERR72;
696
697 newspace = (PUBL(malloc))(IN_UCHARS(newsize));
698 if (newspace == NULL) return ERR21;
699 memcpy(newspace, cd->start_workspace, cd->workspace_size * sizeof(pcre_uchar));
700 cd->hwm = (pcre_uchar *)newspace + (cd->hwm - cd->start_workspace);
701 if (cd->workspace_size > COMPILE_WORK_SIZE)
702 (PUBL(free))((void *)cd->start_workspace);
703 cd->start_workspace = newspace;
704 cd->workspace_size = newsize;
705 return 0;
706 }
707
708
709
710 /*************************************************
711 * Check for counted repeat *
712 *************************************************/
713
714 /* This function is called when a '{' is encountered in a place where it might
715 start a quantifier. It looks ahead to see if it really is a quantifier or not.
716 It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd}
717 where the ddds are digits.
718
719 Arguments:
720 p pointer to the first char after '{'
721
722 Returns: TRUE or FALSE
723 */
724
725 static BOOL
726 is_counted_repeat(const pcre_uchar *p)
727 {
728 if (!IS_DIGIT(*p)) return FALSE;
729 p++;
730 while (IS_DIGIT(*p)) p++;
731 if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
732
733 if (*p++ != CHAR_COMMA) return FALSE;
734 if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
735
736 if (!IS_DIGIT(*p)) return FALSE;
737 p++;
738 while (IS_DIGIT(*p)) p++;
739
740 return (*p == CHAR_RIGHT_CURLY_BRACKET);
741 }
742
743
744
745 /*************************************************
746 * Handle escapes *
747 *************************************************/
748
749 /* This function is called when a \ has been encountered. It either returns a
750 positive value for a simple escape such as \n, or a negative value which
751 encodes one of the more complicated things such as \d. A backreference to group
752 n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When
753 UTF-8 is enabled, a positive value greater than 255 may be returned. On entry,
754 ptr is pointing at the \. On exit, it is on the final character of the escape
755 sequence.
756
757 Arguments:
758 ptrptr points to the pattern position pointer
759 errorcodeptr points to the errorcode variable
760 bracount number of previous extracting brackets
761 options the options bits
762 isclass TRUE if inside a character class
763
764 Returns: zero or positive => a data character
765 negative => a special escape sequence
766 on error, errorcodeptr is set
767 */
768
769 static int
770 check_escape(const pcre_uchar **ptrptr, int *errorcodeptr, int bracount,
771 int options, BOOL isclass)
772 {
773 /* PCRE_UTF16 has the same value as PCRE_UTF8. */
774 BOOL utf = (options & PCRE_UTF8) != 0;
775 const pcre_uchar *ptr = *ptrptr + 1;
776 pcre_int32 c;
777 int i;
778
779 GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */
780 ptr--; /* Set pointer back to the last byte */
781
782 /* If backslash is at the end of the pattern, it's an error. */
783
784 if (c == 0) *errorcodeptr = ERR1;
785
786 /* Non-alphanumerics are literals. For digits or letters, do an initial lookup
787 in a table. A non-zero result is something that can be returned immediately.
788 Otherwise further processing may be required. */
789
790 #ifndef EBCDIC /* ASCII/UTF-8 coding */
791 /* Not alphanumeric */
792 else if (c < CHAR_0 || c > CHAR_z) {}
793 else if ((i = escapes[c - CHAR_0]) != 0) c = i;
794
795 #else /* EBCDIC coding */
796 /* Not alphanumeric */
797 else if (c < CHAR_a || (!MAX_255(c) || (ebcdic_chartab[c] & 0x0E) == 0)) {}
798 else if ((i = escapes[c - 0x48]) != 0) c = i;
799 #endif
800
801 /* Escapes that need further processing, or are illegal. */
802
803 else
804 {
805 const pcre_uchar *oldptr;
806 BOOL braced, negated;
807
808 switch (c)
809 {
810 /* A number of Perl escapes are not handled by PCRE. We give an explicit
811 error. */
812
813 case CHAR_l:
814 case CHAR_L:
815 *errorcodeptr = ERR37;
816 break;
817
818 case CHAR_u:
819 if ((options & PCRE_JAVASCRIPT_COMPAT) != 0)
820 {
821 /* In JavaScript, \u must be followed by four hexadecimal numbers.
822 Otherwise it is a lowercase u letter. */
823 if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0
824 && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0
825 && MAX_255(ptr[3]) && (digitab[ptr[3]] & ctype_xdigit) != 0
826 && MAX_255(ptr[4]) && (digitab[ptr[4]] & ctype_xdigit) != 0)
827 {
828 c = 0;
829 for (i = 0; i < 4; ++i)
830 {
831 register int cc = *(++ptr);
832 #ifndef EBCDIC /* ASCII/UTF-8 coding */
833 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
834 c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
835 #else /* EBCDIC coding */
836 if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
837 c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
838 #endif
839 }
840
841 #ifdef COMPILE_PCRE8
842 if (c > (utf ? 0x10ffff : 0xff))
843 #else
844 #ifdef COMPILE_PCRE16
845 if (c > (utf ? 0x10ffff : 0xffff))
846 #endif
847 #endif
848 {
849 *errorcodeptr = ERR76;
850 }
851 else if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73;
852 }
853 }
854 else
855 *errorcodeptr = ERR37;
856 break;
857
858 case CHAR_U:
859 /* In JavaScript, \U is an uppercase U letter. */
860 if ((options & PCRE_JAVASCRIPT_COMPAT) == 0) *errorcodeptr = ERR37;
861 break;
862
863 /* In a character class, \g is just a literal "g". Outside a character
864 class, \g must be followed by one of a number of specific things:
865
866 (1) A number, either plain or braced. If positive, it is an absolute
867 backreference. If negative, it is a relative backreference. This is a Perl
868 5.10 feature.
869
870 (2) Perl 5.10 also supports \g{name} as a reference to a named group. This
871 is part of Perl's movement towards a unified syntax for back references. As
872 this is synonymous with \k{name}, we fudge it up by pretending it really
873 was \k.
874
875 (3) For Oniguruma compatibility we also support \g followed by a name or a
876 number either in angle brackets or in single quotes. However, these are
877 (possibly recursive) subroutine calls, _not_ backreferences. Just return
878 the -ESC_g code (cf \k). */
879
880 case CHAR_g:
881 if (isclass) break;
882 if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE)
883 {
884 c = -ESC_g;
885 break;
886 }
887
888 /* Handle the Perl-compatible cases */
889
890 if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
891 {
892 const pcre_uchar *p;
893 for (p = ptr+2; *p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET; p++)
894 if (*p != CHAR_MINUS && !IS_DIGIT(*p)) break;
895 if (*p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET)
896 {
897 c = -ESC_k;
898 break;
899 }
900 braced = TRUE;
901 ptr++;
902 }
903 else braced = FALSE;
904
905 if (ptr[1] == CHAR_MINUS)
906 {
907 negated = TRUE;
908 ptr++;
909 }
910 else negated = FALSE;
911
912 /* The integer range is limited by the machine's int representation. */
913 c = 0;
914 while (IS_DIGIT(ptr[1]))
915 {
916 if (((unsigned int)c) > INT_MAX / 10) /* Integer overflow */
917 {
918 c = -1;
919 break;
920 }
921 c = c * 10 + *(++ptr) - CHAR_0;
922 }
923 if (((unsigned int)c) > INT_MAX) /* Integer overflow */
924 {
925 while (IS_DIGIT(ptr[1]))
926 ptr++;
927 *errorcodeptr = ERR61;
928 break;
929 }
930
931 if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET)
932 {
933 *errorcodeptr = ERR57;
934 break;
935 }
936
937 if (c == 0)
938 {
939 *errorcodeptr = ERR58;
940 break;
941 }
942
943 if (negated)
944 {
945 if (c > bracount)
946 {
947 *errorcodeptr = ERR15;
948 break;
949 }
950 c = bracount - (c - 1);
951 }
952
953 c = -(ESC_REF + c);
954 break;
955
956 /* The handling of escape sequences consisting of a string of digits
957 starting with one that is not zero is not straightforward. By experiment,
958 the way Perl works seems to be as follows:
959
960 Outside a character class, the digits are read as a decimal number. If the
961 number is less than 10, or if there are that many previous extracting
962 left brackets, then it is a back reference. Otherwise, up to three octal
963 digits are read to form an escaped byte. Thus \123 is likely to be octal
964 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal
965 value is greater than 377, the least significant 8 bits are taken. Inside a
966 character class, \ followed by a digit is always an octal number. */
967
968 case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5:
969 case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
970
971 if (!isclass)
972 {
973 oldptr = ptr;
974 /* The integer range is limited by the machine's int representation. */
975 c -= CHAR_0;
976 while (IS_DIGIT(ptr[1]))
977 {
978 if (((unsigned int)c) > INT_MAX / 10) /* Integer overflow */
979 {
980 c = -1;
981 break;
982 }
983 c = c * 10 + *(++ptr) - CHAR_0;
984 }
985 if (((unsigned int)c) > INT_MAX) /* Integer overflow */
986 {
987 while (IS_DIGIT(ptr[1]))
988 ptr++;
989 *errorcodeptr = ERR61;
990 break;
991 }
992 if (c < 10 || c <= bracount)
993 {
994 c = -(ESC_REF + c);
995 break;
996 }
997 ptr = oldptr; /* Put the pointer back and fall through */
998 }
999
1000 /* Handle an octal number following \. If the first digit is 8 or 9, Perl
1001 generates a binary zero byte and treats the digit as a following literal.
1002 Thus we have to pull back the pointer by one. */
1003
1004 if ((c = *ptr) >= CHAR_8)
1005 {
1006 ptr--;
1007 c = 0;
1008 break;
1009 }
1010
1011 /* \0 always starts an octal number, but we may drop through to here with a
1012 larger first octal digit. The original code used just to take the least
1013 significant 8 bits of octal numbers (I think this is what early Perls used
1014 to do). Nowadays we allow for larger numbers in UTF-8 mode and 16-bit mode,
1015 but no more than 3 octal digits. */
1016
1017 case CHAR_0:
1018 c -= CHAR_0;
1019 while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7)
1020 c = c * 8 + *(++ptr) - CHAR_0;
1021 #ifdef COMPILE_PCRE8
1022 if (!utf && c > 0xff) *errorcodeptr = ERR51;
1023 #endif
1024 break;
1025
1026 /* \x is complicated. \x{ddd} is a character number which can be greater
1027 than 0xff in utf or non-8bit mode, but only if the ddd are hex digits.
1028 If not, { is treated as a data character. */
1029
1030 case CHAR_x:
1031 if ((options & PCRE_JAVASCRIPT_COMPAT) != 0)
1032 {
1033 /* In JavaScript, \x must be followed by two hexadecimal numbers.
1034 Otherwise it is a lowercase x letter. */
1035 if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0
1036 && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0)
1037 {
1038 c = 0;
1039 for (i = 0; i < 2; ++i)
1040 {
1041 register int cc = *(++ptr);
1042 #ifndef EBCDIC /* ASCII/UTF-8 coding */
1043 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
1044 c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
1045 #else /* EBCDIC coding */
1046 if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
1047 c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
1048 #endif
1049 }
1050 }
1051 break;
1052 }
1053
1054 if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
1055 {
1056 const pcre_uchar *pt = ptr + 2;
1057
1058 c = 0;
1059 while (MAX_255(*pt) && (digitab[*pt] & ctype_xdigit) != 0)
1060 {
1061 register int cc = *pt++;
1062 if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */
1063
1064 #ifndef EBCDIC /* ASCII/UTF-8 coding */
1065 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
1066 c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
1067 #else /* EBCDIC coding */
1068 if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
1069 c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
1070 #endif
1071
1072 #ifdef COMPILE_PCRE8
1073 if (c > (utf ? 0x10ffff : 0xff)) { c = -1; break; }
1074 #else
1075 #ifdef COMPILE_PCRE16
1076 if (c > (utf ? 0x10ffff : 0xffff)) { c = -1; break; }
1077 #endif
1078 #endif
1079 }
1080
1081 if (c < 0)
1082 {
1083 while (MAX_255(*pt) && (digitab[*pt] & ctype_xdigit) != 0) pt++;
1084 *errorcodeptr = ERR34;
1085 }
1086
1087 if (*pt == CHAR_RIGHT_CURLY_BRACKET)
1088 {
1089 if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73;
1090 ptr = pt;
1091 break;
1092 }
1093
1094 /* If the sequence of hex digits does not end with '}', then we don't
1095 recognize this construct; fall through to the normal \x handling. */
1096 }
1097
1098 /* Read just a single-byte hex-defined char */
1099
1100 c = 0;
1101 while (i++ < 2 && MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0)
1102 {
1103 int cc; /* Some compilers don't like */
1104 cc = *(++ptr); /* ++ in initializers */
1105 #ifndef EBCDIC /* ASCII/UTF-8 coding */
1106 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
1107 c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
1108 #else /* EBCDIC coding */
1109 if (cc <= CHAR_z) cc += 64; /* Convert to upper case */
1110 c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
1111 #endif
1112 }
1113 break;
1114
1115 /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped.
1116 An error is given if the byte following \c is not an ASCII character. This
1117 coding is ASCII-specific, but then the whole concept of \cx is
1118 ASCII-specific. (However, an EBCDIC equivalent has now been added.) */
1119
1120 case CHAR_c:
1121 c = *(++ptr);
1122 if (c == 0)
1123 {
1124 *errorcodeptr = ERR2;
1125 break;
1126 }
1127 #ifndef EBCDIC /* ASCII/UTF-8 coding */
1128 if (c > 127) /* Excludes all non-ASCII in either mode */
1129 {
1130 *errorcodeptr = ERR68;
1131 break;
1132 }
1133 if (c >= CHAR_a && c <= CHAR_z) c -= 32;
1134 c ^= 0x40;
1135 #else /* EBCDIC coding */
1136 if (c >= CHAR_a && c <= CHAR_z) c += 64;
1137 c ^= 0xC0;
1138 #endif
1139 break;
1140
1141 /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any
1142 other alphanumeric following \ is an error if PCRE_EXTRA was set;
1143 otherwise, for Perl compatibility, it is a literal. This code looks a bit
1144 odd, but there used to be some cases other than the default, and there may
1145 be again in future, so I haven't "optimized" it. */
1146
1147 default:
1148 if ((options & PCRE_EXTRA) != 0) switch(c)
1149 {
1150 default:
1151 *errorcodeptr = ERR3;
1152 break;
1153 }
1154 break;
1155 }
1156 }
1157
1158 /* Perl supports \N{name} for character names, as well as plain \N for "not
1159 newline". PCRE does not support \N{name}. However, it does support
1160 quantification such as \N{2,3}. */
1161
1162 if (c == -ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET &&
1163 !is_counted_repeat(ptr+2))
1164 *errorcodeptr = ERR37;
1165
1166 /* If PCRE_UCP is set, we change the values for \d etc. */
1167
1168 if ((options & PCRE_UCP) != 0 && c <= -ESC_D && c >= -ESC_w)
1169 c -= (ESC_DU - ESC_D);
1170
1171 /* Set the pointer to the final character before returning. */
1172
1173 *ptrptr = ptr;
1174 return c;
1175 }
1176
1177
1178
1179 #ifdef SUPPORT_UCP
1180 /*************************************************
1181 * Handle \P and \p *
1182 *************************************************/
1183
1184 /* This function is called after \P or \p has been encountered, provided that
1185 PCRE is compiled with support for Unicode properties. On entry, ptrptr is
1186 pointing at the P or p. On exit, it is pointing at the final character of the
1187 escape sequence.
1188
1189 Argument:
1190 ptrptr points to the pattern position pointer
1191 negptr points to a boolean that is set TRUE for negation else FALSE
1192 dptr points to an int that is set to the detailed property value
1193 errorcodeptr points to the error code variable
1194
1195 Returns: type value from ucp_type_table, or -1 for an invalid type
1196 */
1197
1198 static int
1199 get_ucp(const pcre_uchar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr)
1200 {
1201 int c, i, bot, top;
1202 const pcre_uchar *ptr = *ptrptr;
1203 pcre_uchar name[32];
1204
1205 c = *(++ptr);
1206 if (c == 0) goto ERROR_RETURN;
1207
1208 *negptr = FALSE;
1209
1210 /* \P or \p can be followed by a name in {}, optionally preceded by ^ for
1211 negation. */
1212
1213 if (c == CHAR_LEFT_CURLY_BRACKET)
1214 {
1215 if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT)
1216 {
1217 *negptr = TRUE;
1218 ptr++;
1219 }
1220 for (i = 0; i < (int)(sizeof(name) / sizeof(pcre_uchar)) - 1; i++)
1221 {
1222 c = *(++ptr);
1223 if (c == 0) goto ERROR_RETURN;
1224 if (c == CHAR_RIGHT_CURLY_BRACKET) break;
1225 name[i] = c;
1226 }
1227 if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN;
1228 name[i] = 0;
1229 }
1230
1231 /* Otherwise there is just one following character */
1232
1233 else
1234 {
1235 name[0] = c;
1236 name[1] = 0;
1237 }
1238
1239 *ptrptr = ptr;
1240
1241 /* Search for a recognized property name using binary chop */
1242
1243 bot = 0;
1244 top = PRIV(utt_size);
1245
1246 while (bot < top)
1247 {
1248 i = (bot + top) >> 1;
1249 c = STRCMP_UC_C8(name, PRIV(utt_names) + PRIV(utt)[i].name_offset);
1250 if (c == 0)
1251 {
1252 *dptr = PRIV(utt)[i].value;
1253 return PRIV(utt)[i].type;
1254 }
1255 if (c > 0) bot = i + 1; else top = i;
1256 }
1257
1258 *errorcodeptr = ERR47;
1259 *ptrptr = ptr;
1260 return -1;
1261
1262 ERROR_RETURN:
1263 *errorcodeptr = ERR46;
1264 *ptrptr = ptr;
1265 return -1;
1266 }
1267 #endif
1268
1269
1270
1271
1272 /*************************************************
1273 * Read repeat counts *
1274 *************************************************/
1275
1276 /* Read an item of the form {n,m} and return the values. This is called only
1277 after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
1278 so the syntax is guaranteed to be correct, but we need to check the values.
1279
1280 Arguments:
1281 p pointer to first char after '{'
1282 minp pointer to int for min
1283 maxp pointer to int for max
1284 returned as -1 if no max
1285 errorcodeptr points to error code variable
1286
1287 Returns: pointer to '}' on success;
1288 current ptr on error, with errorcodeptr set non-zero
1289 */
1290
1291 static const pcre_uchar *
1292 read_repeat_counts(const pcre_uchar *p, int *minp, int *maxp, int *errorcodeptr)
1293 {
1294 int min = 0;
1295 int max = -1;
1296
1297 /* Read the minimum value and do a paranoid check: a negative value indicates
1298 an integer overflow. */
1299
1300 while (IS_DIGIT(*p)) min = min * 10 + *p++ - CHAR_0;
1301 if (min < 0 || min > 65535)
1302 {
1303 *errorcodeptr = ERR5;
1304 return p;
1305 }
1306
1307 /* Read the maximum value if there is one, and again do a paranoid on its size.
1308 Also, max must not be less than min. */
1309
1310 if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else
1311 {
1312 if (*(++p) != CHAR_RIGHT_CURLY_BRACKET)
1313 {
1314 max = 0;
1315 while(IS_DIGIT(*p)) max = max * 10 + *p++ - CHAR_0;
1316 if (max < 0 || max > 65535)
1317 {
1318 *errorcodeptr = ERR5;
1319 return p;
1320 }
1321 if (max < min)
1322 {
1323 *errorcodeptr = ERR4;
1324 return p;
1325 }
1326 }
1327 }
1328
1329 /* Fill in the required variables, and pass back the pointer to the terminating
1330 '}'. */
1331
1332 *minp = min;
1333 *maxp = max;
1334 return p;
1335 }
1336
1337
1338
1339 /*************************************************
1340 * Subroutine for finding forward reference *
1341 *************************************************/
1342
1343 /* This recursive function is called only from find_parens() below. The
1344 top-level call starts at the beginning of the pattern. All other calls must
1345 start at a parenthesis. It scans along a pattern's text looking for capturing
1346 subpatterns, and counting them. If it finds a named pattern that matches the
1347 name it is given, it returns its number. Alternatively, if the name is NULL, it
1348 returns when it reaches a given numbered subpattern. Recursion is used to keep
1349 track of subpatterns that reset the capturing group numbers - the (?| feature.
1350
1351 This function was originally called only from the second pass, in which we know
1352 that if (?< or (?' or (?P< is encountered, the name will be correctly
1353 terminated because that is checked in the first pass. There is now one call to
1354 this function in the first pass, to check for a recursive back reference by
1355 name (so that we can make the whole group atomic). In this case, we need check
1356 only up to the current position in the pattern, and that is still OK because
1357 and previous occurrences will have been checked. To make this work, the test
1358 for "end of pattern" is a check against cd->end_pattern in the main loop,
1359 instead of looking for a binary zero. This means that the special first-pass
1360 call can adjust cd->end_pattern temporarily. (Checks for binary zero while
1361 processing items within the loop are OK, because afterwards the main loop will
1362 terminate.)
1363
1364 Arguments:
1365 ptrptr address of the current character pointer (updated)
1366 cd compile background data
1367 name name to seek, or NULL if seeking a numbered subpattern
1368 lorn name length, or subpattern number if name is NULL
1369 xmode TRUE if we are in /x mode
1370 utf TRUE if we are in UTF-8 / UTF-16 mode
1371 count pointer to the current capturing subpattern number (updated)
1372
1373 Returns: the number of the named subpattern, or -1 if not found
1374 */
1375
1376 static int
1377 find_parens_sub(pcre_uchar **ptrptr, compile_data *cd, const pcre_uchar *name, int lorn,
1378 BOOL xmode, BOOL utf, int *count)
1379 {
1380 pcre_uchar *ptr = *ptrptr;
1381 int start_count = *count;
1382 int hwm_count = start_count;
1383 BOOL dup_parens = FALSE;
1384
1385 /* If the first character is a parenthesis, check on the type of group we are
1386 dealing with. The very first call may not start with a parenthesis. */
1387
1388 if (ptr[0] == CHAR_LEFT_PARENTHESIS)
1389 {
1390 /* Handle specials such as (*SKIP) or (*UTF8) etc. */
1391
1392 if (ptr[1] == CHAR_ASTERISK) ptr += 2;
1393
1394 /* Handle a normal, unnamed capturing parenthesis. */
1395
1396 else if (ptr[1] != CHAR_QUESTION_MARK)
1397 {
1398 *count += 1;
1399 if (name == NULL && *count == lorn) return *count;
1400 ptr++;
1401 }
1402
1403 /* All cases now have (? at the start. Remember when we are in a group
1404 where the parenthesis numbers are duplicated. */
1405
1406 else if (ptr[2] == CHAR_VERTICAL_LINE)
1407 {
1408 ptr += 3;
1409 dup_parens = TRUE;
1410 }
1411
1412 /* Handle comments; all characters are allowed until a ket is reached. */
1413
1414 else if (ptr[2] == CHAR_NUMBER_SIGN)
1415 {
1416 for (ptr += 3; *ptr != 0; ptr++) if (*ptr == CHAR_RIGHT_PARENTHESIS) break;
1417 goto FAIL_EXIT;
1418 }
1419
1420 /* Handle a condition. If it is an assertion, just carry on so that it
1421 is processed as normal. If not, skip to the closing parenthesis of the
1422 condition (there can't be any nested parens). */
1423
1424 else if (ptr[2] == CHAR_LEFT_PARENTHESIS)
1425 {
1426 ptr += 2;
1427 if (ptr[1] != CHAR_QUESTION_MARK)
1428 {
1429 while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
1430 if (*ptr != 0) ptr++;
1431 }
1432 }
1433
1434 /* Start with (? but not a condition. */
1435
1436 else
1437 {
1438 ptr += 2;
1439 if (*ptr == CHAR_P) ptr++; /* Allow optional P */
1440
1441 /* We have to disambiguate (?<! and (?<= from (?<name> for named groups */
1442
1443 if ((*ptr == CHAR_LESS_THAN_SIGN && ptr[1] != CHAR_EXCLAMATION_MARK &&
1444 ptr[1] != CHAR_EQUALS_SIGN) || *ptr == CHAR_APOSTROPHE)
1445 {
1446 int term;
1447 const pcre_uchar *thisname;
1448 *count += 1;
1449 if (name == NULL && *count == lorn) return *count;
1450 term = *ptr++;
1451 if (term == CHAR_LESS_THAN_SIGN) term = CHAR_GREATER_THAN_SIGN;
1452 thisname = ptr;
1453 while (*ptr != term) ptr++;
1454 if (name != NULL && lorn == ptr - thisname &&
1455 STRNCMP_UC_UC(name, thisname, lorn) == 0)
1456 return *count;
1457 term++;
1458 }
1459 }
1460 }
1461
1462 /* Past any initial parenthesis handling, scan for parentheses or vertical
1463 bars. Stop if we get to cd->end_pattern. Note that this is important for the
1464 first-pass call when this value is temporarily adjusted to stop at the current
1465 position. So DO NOT change this to a test for binary zero. */
1466
1467 for (; ptr < cd->end_pattern; ptr++)
1468 {
1469 /* Skip over backslashed characters and also entire \Q...\E */
1470
1471 if (*ptr == CHAR_BACKSLASH)
1472 {
1473 if (*(++ptr) == 0) goto FAIL_EXIT;
1474 if (*ptr == CHAR_Q) for (;;)
1475 {
1476 while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {};
1477 if (*ptr == 0) goto FAIL_EXIT;
1478 if (*(++ptr) == CHAR_E) break;
1479 }
1480 continue;
1481 }
1482
1483 /* Skip over character classes; this logic must be similar to the way they
1484 are handled for real. If the first character is '^', skip it. Also, if the
1485 first few characters (either before or after ^) are \Q\E or \E we skip them
1486 too. This makes for compatibility with Perl. Note the use of STR macros to
1487 encode "Q\\E" so that it works in UTF-8 on EBCDIC platforms. */
1488
1489 if (*ptr == CHAR_LEFT_SQUARE_BRACKET)
1490 {
1491 BOOL negate_class = FALSE;
1492 for (;;)
1493 {
1494 if (ptr[1] == CHAR_BACKSLASH)
1495 {
1496 if (ptr[2] == CHAR_E)
1497 ptr+= 2;
1498 else if (STRNCMP_UC_C8(ptr + 2,
1499 STR_Q STR_BACKSLASH STR_E, 3) == 0)
1500 ptr += 4;
1501 else
1502 break;
1503 }
1504 else if (!negate_class && ptr[1] == CHAR_CIRCUMFLEX_ACCENT)
1505 {
1506 negate_class = TRUE;
1507 ptr++;
1508 }
1509 else break;
1510 }
1511
1512 /* If the next character is ']', it is a data character that must be
1513 skipped, except in JavaScript compatibility mode. */
1514
1515 if (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET &&
1516 (cd->external_options & PCRE_JAVASCRIPT_COMPAT) == 0)
1517 ptr++;
1518
1519 while (*(++ptr) != CHAR_RIGHT_SQUARE_BRACKET)
1520 {
1521 if (*ptr == 0) return -1;
1522 if (*ptr == CHAR_BACKSLASH)
1523 {
1524 if (*(++ptr) == 0) goto FAIL_EXIT;
1525 if (*ptr == CHAR_Q) for (;;)
1526 {
1527 while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {};
1528 if (*ptr == 0) goto FAIL_EXIT;
1529 if (*(++ptr) == CHAR_E) break;
1530 }
1531 continue;
1532 }
1533 }
1534 continue;
1535 }
1536
1537 /* Skip comments in /x mode */
1538
1539 if (xmode && *ptr == CHAR_NUMBER_SIGN)
1540 {
1541 ptr++;
1542 while (*ptr != 0)
1543 {
1544 if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
1545 ptr++;
1546 #ifdef SUPPORT_UTF
1547 if (utf) FORWARDCHAR(ptr);
1548 #endif
1549 }
1550 if (*ptr == 0) goto FAIL_EXIT;
1551 continue;
1552 }
1553
1554 /* Check for the special metacharacters */
1555
1556 if (*ptr == CHAR_LEFT_PARENTHESIS)
1557 {
1558 int rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf, count);
1559 if (rc > 0) return rc;
1560 if (*ptr == 0) goto FAIL_EXIT;
1561 }
1562
1563 else if (*ptr == CHAR_RIGHT_PARENTHESIS)
1564 {
1565 if (dup_parens && *count < hwm_count) *count = hwm_count;
1566 goto FAIL_EXIT;
1567 }
1568
1569 else if (*ptr == CHAR_VERTICAL_LINE && dup_parens)
1570 {
1571 if (*count > hwm_count) hwm_count = *count;
1572 *count = start_count;
1573 }
1574 }
1575
1576 FAIL_EXIT:
1577 *ptrptr = ptr;
1578 return -1;
1579 }
1580
1581
1582
1583
1584 /*************************************************
1585 * Find forward referenced subpattern *
1586 *************************************************/
1587
1588 /* This function scans along a pattern's text looking for capturing
1589 subpatterns, and counting them. If it finds a named pattern that matches the
1590 name it is given, it returns its number. Alternatively, if the name is NULL, it
1591 returns when it reaches a given numbered subpattern. This is used for forward
1592 references to subpatterns. We used to be able to start this scan from the
1593 current compiling point, using the current count value from cd->bracount, and
1594 do it all in a single loop, but the addition of the possibility of duplicate
1595 subpattern numbers means that we have to scan from the very start, in order to
1596 take account of such duplicates, and to use a recursive function to keep track
1597 of the different types of group.
1598
1599 Arguments:
1600 cd compile background data
1601 name name to seek, or NULL if seeking a numbered subpattern
1602 lorn name length, or subpattern number if name is NULL
1603 xmode TRUE if we are in /x mode
1604 utf TRUE if we are in UTF-8 / UTF-16 mode
1605
1606 Returns: the number of the found subpattern, or -1 if not found
1607 */
1608
1609 static int
1610 find_parens(compile_data *cd, const pcre_uchar *name, int lorn, BOOL xmode,
1611 BOOL utf)
1612 {
1613 pcre_uchar *ptr = (pcre_uchar *)cd->start_pattern;
1614 int count = 0;
1615 int rc;
1616
1617 /* If the pattern does not start with an opening parenthesis, the first call
1618 to find_parens_sub() will scan right to the end (if necessary). However, if it
1619 does start with a parenthesis, find_parens_sub() will return when it hits the
1620 matching closing parens. That is why we have to have a loop. */
1621
1622 for (;;)
1623 {
1624 rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf, &count);
1625 if (rc > 0 || *ptr++ == 0) break;
1626 }
1627
1628 return rc;
1629 }
1630
1631
1632
1633
1634 /*************************************************
1635 * Find first significant op code *
1636 *************************************************/
1637
1638 /* This is called by several functions that scan a compiled expression looking
1639 for a fixed first character, or an anchoring op code etc. It skips over things
1640 that do not influence this. For some calls, it makes sense to skip negative
1641 forward and all backward assertions, and also the \b assertion; for others it
1642 does not.
1643
1644 Arguments:
1645 code pointer to the start of the group
1646 skipassert TRUE if certain assertions are to be skipped
1647
1648 Returns: pointer to the first significant opcode
1649 */
1650
1651 static const pcre_uchar*
1652 first_significant_code(const pcre_uchar *code, BOOL skipassert)
1653 {
1654 for (;;)
1655 {
1656 switch ((int)*code)
1657 {
1658 case OP_ASSERT_NOT:
1659 case OP_ASSERTBACK:
1660 case OP_ASSERTBACK_NOT:
1661 if (!skipassert) return code;
1662 do code += GET(code, 1); while (*code == OP_ALT);
1663 code += PRIV(OP_lengths)[*code];
1664 break;
1665
1666 case OP_WORD_BOUNDARY:
1667 case OP_NOT_WORD_BOUNDARY:
1668 if (!skipassert) return code;
1669 /* Fall through */
1670
1671 case OP_CALLOUT:
1672 case OP_CREF:
1673 case OP_NCREF:
1674 case OP_RREF:
1675 case OP_NRREF:
1676 case OP_DEF:
1677 code += PRIV(OP_lengths)[*code];
1678 break;
1679
1680 default:
1681 return code;
1682 }
1683 }
1684 /* Control never reaches here */
1685 }
1686
1687
1688
1689
1690 /*************************************************
1691 * Find the fixed length of a branch *
1692 *************************************************/
1693
1694 /* Scan a branch and compute the fixed length of subject that will match it,
1695 if the length is fixed. This is needed for dealing with backward assertions.
1696 In UTF8 mode, the result is in characters rather than bytes. The branch is
1697 temporarily terminated with OP_END when this function is called.
1698
1699 This function is called when a backward assertion is encountered, so that if it
1700 fails, the error message can point to the correct place in the pattern.
1701 However, we cannot do this when the assertion contains subroutine calls,
1702 because they can be forward references. We solve this by remembering this case
1703 and doing the check at the end; a flag specifies which mode we are running in.
1704
1705 Arguments:
1706 code points to the start of the pattern (the bracket)
1707 utf TRUE in UTF-8 / UTF-16 mode
1708 atend TRUE if called when the pattern is complete
1709 cd the "compile data" structure
1710
1711 Returns: the fixed length,
1712 or -1 if there is no fixed length,
1713 or -2 if \C was encountered (in UTF-8 mode only)
1714 or -3 if an OP_RECURSE item was encountered and atend is FALSE
1715 or -4 if an unknown opcode was encountered (internal error)
1716 */
1717
1718 static int
1719 find_fixedlength(pcre_uchar *code, BOOL utf, BOOL atend, compile_data *cd)
1720 {
1721 int length = -1;
1722
1723 register int branchlength = 0;
1724 register pcre_uchar *cc = code + 1 + LINK_SIZE;
1725
1726 /* Scan along the opcodes for this branch. If we get to the end of the
1727 branch, check the length against that of the other branches. */
1728
1729 for (;;)
1730 {
1731 int d;
1732 pcre_uchar *ce, *cs;
1733 register int op = *cc;
1734
1735 switch (op)
1736 {
1737 /* We only need to continue for OP_CBRA (normal capturing bracket) and
1738 OP_BRA (normal non-capturing bracket) because the other variants of these
1739 opcodes are all concerned with unlimited repeated groups, which of course
1740 are not of fixed length. */
1741
1742 case OP_CBRA:
1743 case OP_BRA:
1744 case OP_ONCE:
1745 case OP_ONCE_NC:
1746 case OP_COND:
1747 d = find_fixedlength(cc + ((op == OP_CBRA)? IMM2_SIZE : 0), utf, atend, cd);
1748 if (d < 0) return d;
1749 branchlength += d;
1750 do cc += GET(cc, 1); while (*cc == OP_ALT);
1751 cc += 1 + LINK_SIZE;
1752 break;
1753
1754 /* Reached end of a branch; if it's a ket it is the end of a nested call.
1755 If it's ALT it is an alternation in a nested call. An ACCEPT is effectively
1756 an ALT. If it is END it's the end of the outer call. All can be handled by
1757 the same code. Note that we must not include the OP_KETRxxx opcodes here,
1758 because they all imply an unlimited repeat. */
1759
1760 case OP_ALT:
1761 case OP_KET:
1762 case OP_END:
1763 case OP_ACCEPT:
1764 case OP_ASSERT_ACCEPT:
1765 if (length < 0) length = branchlength;
1766 else if (length != branchlength) return -1;
1767 if (*cc != OP_ALT) return length;
1768 cc += 1 + LINK_SIZE;
1769 branchlength = 0;
1770 break;
1771
1772 /* A true recursion implies not fixed length, but a subroutine call may
1773 be OK. If the subroutine is a forward reference, we can't deal with
1774 it until the end of the pattern, so return -3. */
1775
1776 case OP_RECURSE:
1777 if (!atend) return -3;
1778 cs = ce = (pcre_uchar *)cd->start_code + GET(cc, 1); /* Start subpattern */
1779 do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */
1780 if (cc > cs && cc < ce) return -1; /* Recursion */
1781 d = find_fixedlength(cs + IMM2_SIZE, utf, atend, cd);
1782 if (d < 0) return d;
1783 branchlength += d;
1784 cc += 1 + LINK_SIZE;
1785 break;
1786
1787 /* Skip over assertive subpatterns */
1788
1789 case OP_ASSERT:
1790 case OP_ASSERT_NOT:
1791 case OP_ASSERTBACK:
1792 case OP_ASSERTBACK_NOT:
1793 do cc += GET(cc, 1); while (*cc == OP_ALT);
1794 cc += PRIV(OP_lengths)[*cc];
1795 break;
1796
1797 /* Skip over things that don't match chars */
1798
1799 case OP_MARK:
1800 case OP_PRUNE_ARG:
1801 case OP_SKIP_ARG:
1802 case OP_THEN_ARG:
1803 cc += cc[1] + PRIV(OP_lengths)[*cc];
1804 break;
1805
1806 case OP_CALLOUT:
1807 case OP_CIRC:
1808 case OP_CIRCM:
1809 case OP_CLOSE:
1810 case OP_COMMIT:
1811 case OP_CREF:
1812 case OP_DEF:
1813 case OP_DOLL:
1814 case OP_DOLLM:
1815 case OP_EOD:
1816 case OP_EODN:
1817 case OP_FAIL:
1818 case OP_NCREF:
1819 case OP_NRREF:
1820 case OP_NOT_WORD_BOUNDARY:
1821 case OP_PRUNE:
1822 case OP_REVERSE:
1823 case OP_RREF:
1824 case OP_SET_SOM:
1825 case OP_SKIP:
1826 case OP_SOD:
1827 case OP_SOM:
1828 case OP_THEN:
1829 case OP_WORD_BOUNDARY:
1830 cc += PRIV(OP_lengths)[*cc];
1831 break;
1832
1833 /* Handle literal characters */
1834
1835 case OP_CHAR:
1836 case OP_CHARI:
1837 case OP_NOT:
1838 case OP_NOTI:
1839 branchlength++;
1840 cc += 2;
1841 #ifdef SUPPORT_UTF
1842 if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
1843 #endif
1844 break;
1845
1846 /* Handle exact repetitions. The count is already in characters, but we
1847 need to skip over a multibyte character in UTF8 mode. */
1848
1849 case OP_EXACT:
1850 case OP_EXACTI:
1851 case OP_NOTEXACT:
1852 case OP_NOTEXACTI:
1853 branchlength += GET2(cc,1);
1854 cc += 2 + IMM2_SIZE;
1855 #ifdef SUPPORT_UTF
1856 if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
1857 #endif
1858 break;
1859
1860 case OP_TYPEEXACT:
1861 branchlength += GET2(cc,1);
1862 if (cc[1 + IMM2_SIZE] == OP_PROP || cc[1 + IMM2_SIZE] == OP_NOTPROP)
1863 cc += 2;
1864 cc += 1 + IMM2_SIZE + 1;
1865 break;
1866
1867 /* Handle single-char matchers */
1868
1869 case OP_PROP:
1870 case OP_NOTPROP:
1871 cc += 2;
1872 /* Fall through */
1873
1874 case OP_HSPACE:
1875 case OP_VSPACE:
1876 case OP_NOT_HSPACE:
1877 case OP_NOT_VSPACE:
1878 case OP_NOT_DIGIT:
1879 case OP_DIGIT:
1880 case OP_NOT_WHITESPACE:
1881 case OP_WHITESPACE:
1882 case OP_NOT_WORDCHAR:
1883 case OP_WORDCHAR:
1884 case OP_ANY:
1885 case OP_ALLANY:
1886 branchlength++;
1887 cc++;
1888 break;
1889
1890 /* The single-byte matcher isn't allowed. This only happens in UTF-8 mode;
1891 otherwise \C is coded as OP_ALLANY. */
1892
1893 case OP_ANYBYTE:
1894 return -2;
1895
1896 /* Check a class for variable quantification */
1897
1898 #if defined SUPPORT_UTF || defined COMPILE_PCRE16
1899 case OP_XCLASS:
1900 cc += GET(cc, 1) - PRIV(OP_lengths)[OP_CLASS];
1901 /* Fall through */
1902 #endif
1903
1904 case OP_CLASS:
1905 case OP_NCLASS:
1906 cc += PRIV(OP_lengths)[OP_CLASS];
1907
1908 switch (*cc)
1909 {
1910 case OP_CRPLUS:
1911 case OP_CRMINPLUS:
1912 case OP_CRSTAR:
1913 case OP_CRMINSTAR:
1914 case OP_CRQUERY:
1915 case OP_CRMINQUERY:
1916 return -1;
1917
1918 case OP_CRRANGE:
1919 case OP_CRMINRANGE:
1920 if (GET2(cc,1) != GET2(cc,1+IMM2_SIZE)) return -1;
1921 branchlength += GET2(cc,1);
1922 cc += 1 + 2 * IMM2_SIZE;
1923 break;
1924
1925 default:
1926 branchlength++;
1927 }
1928 break;
1929
1930 /* Anything else is variable length */
1931
1932 case OP_ANYNL:
1933 case OP_BRAMINZERO:
1934 case OP_BRAPOS:
1935 case OP_BRAPOSZERO:
1936 case OP_BRAZERO:
1937 case OP_CBRAPOS:
1938 case OP_EXTUNI:
1939 case OP_KETRMAX:
1940 case OP_KETRMIN:
1941 case OP_KETRPOS:
1942 case OP_MINPLUS:
1943 case OP_MINPLUSI:
1944 case OP_MINQUERY:
1945 case OP_MINQUERYI:
1946 case OP_MINSTAR:
1947 case OP_MINSTARI:
1948 case OP_MINUPTO:
1949 case OP_MINUPTOI:
1950 case OP_NOTMINPLUS:
1951 case OP_NOTMINPLUSI:
1952 case OP_NOTMINQUERY:
1953 case OP_NOTMINQUERYI:
1954 case OP_NOTMINSTAR:
1955 case OP_NOTMINSTARI:
1956 case OP_NOTMINUPTO:
1957 case OP_NOTMINUPTOI:
1958 case OP_NOTPLUS:
1959 case OP_NOTPLUSI:
1960 case OP_NOTPOSPLUS:
1961 case OP_NOTPOSPLUSI:
1962 case OP_NOTPOSQUERY:
1963 case OP_NOTPOSQUERYI:
1964 case OP_NOTPOSSTAR:
1965 case OP_NOTPOSSTARI:
1966 case OP_NOTPOSUPTO:
1967 case OP_NOTPOSUPTOI:
1968 case OP_NOTQUERY:
1969 case OP_NOTQUERYI:
1970 case OP_NOTSTAR:
1971 case OP_NOTSTARI:
1972 case OP_NOTUPTO:
1973 case OP_NOTUPTOI:
1974 case OP_PLUS:
1975 case OP_PLUSI:
1976 case OP_POSPLUS:
1977 case OP_POSPLUSI:
1978 case OP_POSQUERY:
1979 case OP_POSQUERYI:
1980 case OP_POSSTAR:
1981 case OP_POSSTARI:
1982 case OP_POSUPTO:
1983 case OP_POSUPTOI:
1984 case OP_QUERY:
1985 case OP_QUERYI:
1986 case OP_REF:
1987 case OP_REFI:
1988 case OP_SBRA:
1989 case OP_SBRAPOS:
1990 case OP_SCBRA:
1991 case OP_SCBRAPOS:
1992 case OP_SCOND:
1993 case OP_SKIPZERO:
1994 case OP_STAR:
1995 case OP_STARI:
1996 case OP_TYPEMINPLUS:
1997 case OP_TYPEMINQUERY:
1998 case OP_TYPEMINSTAR:
1999 case OP_TYPEMINUPTO:
2000 case OP_TYPEPLUS:
2001 case OP_TYPEPOSPLUS:
2002 case OP_TYPEPOSQUERY:
2003 case OP_TYPEPOSSTAR:
2004 case OP_TYPEPOSUPTO:
2005 case OP_TYPEQUERY:
2006 case OP_TYPESTAR:
2007 case OP_TYPEUPTO:
2008 case OP_UPTO:
2009 case OP_UPTOI:
2010 return -1;
2011
2012 /* Catch unrecognized opcodes so that when new ones are added they
2013 are not forgotten, as has happened in the past. */
2014
2015 default:
2016 return -4;
2017 }
2018 }
2019 /* Control never gets here */
2020 }
2021
2022
2023
2024
2025 /*************************************************
2026 * Scan compiled regex for specific bracket *
2027 *************************************************/
2028
2029 /* This little function scans through a compiled pattern until it finds a
2030 capturing bracket with the given number, or, if the number is negative, an
2031 instance of OP_REVERSE for a lookbehind. The function is global in the C sense
2032 so that it can be called from pcre_study() when finding the minimum matching
2033 length.
2034
2035 Arguments:
2036 code points to start of expression
2037 utf TRUE in UTF-8 / UTF-16 mode
2038 number the required bracket number or negative to find a lookbehind
2039
2040 Returns: pointer to the opcode for the bracket, or NULL if not found
2041 */
2042
2043 const pcre_uchar *
2044 PRIV(find_bracket)(const pcre_uchar *code, BOOL utf, int number)
2045 {
2046 for (;;)
2047 {
2048 register int c = *code;
2049
2050 if (c == OP_END) return NULL;
2051
2052 /* XCLASS is used for classes that cannot be represented just by a bit
2053 map. This includes negated single high-valued characters. The length in
2054 the table is zero; the actual length is stored in the compiled code. */
2055
2056 if (c == OP_XCLASS) code += GET(code, 1);
2057
2058 /* Handle recursion */
2059
2060 else if (c == OP_REVERSE)
2061 {
2062 if (number < 0) return (pcre_uchar *)code;
2063 code += PRIV(OP_lengths)[c];
2064 }
2065
2066 /* Handle capturing bracket */
2067
2068 else if (c == OP_CBRA || c == OP_SCBRA ||
2069 c == OP_CBRAPOS || c == OP_SCBRAPOS)
2070 {
2071 int n = GET2(code, 1+LINK_SIZE);
2072 if (n == number) return (pcre_uchar *)code;
2073 code += PRIV(OP_lengths)[c];
2074 }
2075
2076 /* Otherwise, we can get the item's length from the table, except that for
2077 repeated character types, we have to test for \p and \P, which have an extra
2078 two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we
2079 must add in its length. */
2080
2081 else
2082 {
2083 switch(c)
2084 {
2085 case OP_TYPESTAR:
2086 case OP_TYPEMINSTAR:
2087 case OP_TYPEPLUS:
2088 case OP_TYPEMINPLUS:
2089 case OP_TYPEQUERY:
2090 case OP_TYPEMINQUERY:
2091 case OP_TYPEPOSSTAR:
2092 case OP_TYPEPOSPLUS:
2093 case OP_TYPEPOSQUERY:
2094 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
2095 break;
2096
2097 case OP_TYPEUPTO:
2098 case OP_TYPEMINUPTO:
2099 case OP_TYPEEXACT:
2100 case OP_TYPEPOSUPTO:
2101 if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP)
2102 code += 2;
2103 break;
2104
2105 case OP_MARK:
2106 case OP_PRUNE_ARG:
2107 case OP_SKIP_ARG:
2108 code += code[1];
2109 break;
2110
2111 case OP_THEN_ARG:
2112 code += code[1];
2113 break;
2114 }
2115
2116 /* Add in the fixed length from the table */
2117
2118 code += PRIV(OP_lengths)[c];
2119
2120 /* In UTF-8 mode, opcodes that are followed by a character may be followed by
2121 a multi-byte character. The length in the table is a minimum, so we have to
2122 arrange to skip the extra bytes. */
2123
2124 #ifdef SUPPORT_UTF
2125 if (utf) switch(c)
2126 {
2127 case OP_CHAR:
2128 case OP_CHARI:
2129 case OP_EXACT:
2130 case OP_EXACTI:
2131 case OP_UPTO:
2132 case OP_UPTOI:
2133 case OP_MINUPTO:
2134 case OP_MINUPTOI:
2135 case OP_POSUPTO:
2136 case OP_POSUPTOI:
2137 case OP_STAR:
2138 case OP_STARI:
2139 case OP_MINSTAR:
2140 case OP_MINSTARI:
2141 case OP_POSSTAR:
2142 case OP_POSSTARI:
2143 case OP_PLUS:
2144 case OP_PLUSI:
2145 case OP_MINPLUS:
2146 case OP_MINPLUSI:
2147 case OP_POSPLUS:
2148 case OP_POSPLUSI:
2149 case OP_QUERY:
2150 case OP_QUERYI:
2151 case OP_MINQUERY:
2152 case OP_MINQUERYI:
2153 case OP_POSQUERY:
2154 case OP_POSQUERYI:
2155 if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]);
2156 break;
2157 }
2158 #else
2159 (void)(utf); /* Keep compiler happy by referencing function argument */
2160 #endif
2161 }
2162 }
2163 }
2164
2165
2166
2167 /*************************************************
2168 * Scan compiled regex for recursion reference *
2169 *************************************************/
2170
2171 /* This little function scans through a compiled pattern until it finds an
2172 instance of OP_RECURSE.
2173
2174 Arguments:
2175 code points to start of expression
2176 utf TRUE in UTF-8 / UTF-16 mode
2177
2178 Returns: pointer to the opcode for OP_RECURSE, or NULL if not found
2179 */
2180
2181 static const pcre_uchar *
2182 find_recurse(const pcre_uchar *code, BOOL utf)
2183 {
2184 for (;;)
2185 {
2186 register int c = *code;
2187 if (c == OP_END) return NULL;
2188 if (c == OP_RECURSE) return code;
2189
2190 /* XCLASS is used for classes that cannot be represented just by a bit
2191 map. This includes negated single high-valued characters. The length in
2192 the table is zero; the actual length is stored in the compiled code. */
2193
2194 if (c == OP_XCLASS) code += GET(code, 1);
2195
2196 /* Otherwise, we can get the item's length from the table, except that for
2197 repeated character types, we have to test for \p and \P, which have an extra
2198 two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we
2199 must add in its length. */
2200
2201 else
2202 {
2203 switch(c)
2204 {
2205 case OP_TYPESTAR:
2206 case OP_TYPEMINSTAR:
2207 case OP_TYPEPLUS:
2208 case OP_TYPEMINPLUS:
2209 case OP_TYPEQUERY:
2210 case OP_TYPEMINQUERY:
2211 case OP_TYPEPOSSTAR:
2212 case OP_TYPEPOSPLUS:
2213 case OP_TYPEPOSQUERY:
2214 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
2215 break;
2216
2217 case OP_TYPEPOSUPTO:
2218 case OP_TYPEUPTO:
2219 case OP_TYPEMINUPTO:
2220 case OP_TYPEEXACT:
2221 if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP)
2222 code += 2;
2223 break;
2224
2225 case OP_MARK:
2226 case OP_PRUNE_ARG:
2227 case OP_SKIP_ARG:
2228 code += code[1];
2229 break;
2230
2231 case OP_THEN_ARG:
2232 code += code[1];
2233 break;
2234 }
2235
2236 /* Add in the fixed length from the table */
2237
2238 code += PRIV(OP_lengths)[c];
2239
2240 /* In UTF-8 mode, opcodes that are followed by a character may be followed
2241 by a multi-byte character. The length in the table is a minimum, so we have
2242 to arrange to skip the extra bytes. */
2243
2244 #ifdef SUPPORT_UTF
2245 if (utf) switch(c)
2246 {
2247 case OP_CHAR:
2248 case OP_CHARI:
2249 case OP_NOT:
2250 case OP_NOTI:
2251 case OP_EXACT:
2252 case OP_EXACTI:
2253 case OP_NOTEXACT:
2254 case OP_NOTEXACTI:
2255 case OP_UPTO:
2256 case OP_UPTOI:
2257 case OP_NOTUPTO:
2258 case OP_NOTUPTOI:
2259 case OP_MINUPTO:
2260 case OP_MINUPTOI:
2261 case OP_NOTMINUPTO:
2262 case OP_NOTMINUPTOI:
2263 case OP_POSUPTO:
2264 case OP_POSUPTOI:
2265 case OP_NOTPOSUPTO:
2266 case OP_NOTPOSUPTOI:
2267 case OP_STAR:
2268 case OP_STARI:
2269 case OP_NOTSTAR:
2270 case OP_NOTSTARI:
2271 case OP_MINSTAR:
2272 case OP_MINSTARI:
2273 case OP_NOTMINSTAR:
2274 case OP_NOTMINSTARI:
2275 case OP_POSSTAR:
2276 case OP_POSSTARI:
2277 case OP_NOTPOSSTAR:
2278 case OP_NOTPOSSTARI:
2279 case OP_PLUS:
2280 case OP_PLUSI:
2281 case OP_NOTPLUS:
2282 case OP_NOTPLUSI:
2283 case OP_MINPLUS:
2284 case OP_MINPLUSI:
2285 case OP_NOTMINPLUS:
2286 case OP_NOTMINPLUSI:
2287 case OP_POSPLUS:
2288 case OP_POSPLUSI:
2289 case OP_NOTPOSPLUS:
2290 case OP_NOTPOSPLUSI:
2291 case OP_QUERY:
2292 case OP_QUERYI:
2293 case OP_NOTQUERY:
2294 case OP_NOTQUERYI:
2295 case OP_MINQUERY:
2296 case OP_MINQUERYI:
2297 case OP_NOTMINQUERY:
2298 case OP_NOTMINQUERYI:
2299 case OP_POSQUERY:
2300 case OP_POSQUERYI:
2301 case OP_NOTPOSQUERY:
2302 case OP_NOTPOSQUERYI:
2303 if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]);
2304 break;
2305 }
2306 #else
2307 (void)(utf); /* Keep compiler happy by referencing function argument */
2308 #endif
2309 }
2310 }
2311 }
2312
2313
2314
2315 /*************************************************
2316 * Scan compiled branch for non-emptiness *
2317 *************************************************/
2318
2319 /* This function scans through a branch of a compiled pattern to see whether it
2320 can match the empty string or not. It is called from could_be_empty()
2321 below and from compile_branch() when checking for an unlimited repeat of a
2322 group that can match nothing. Note that first_significant_code() skips over
2323 backward and negative forward assertions when its final argument is TRUE. If we
2324 hit an unclosed bracket, we return "empty" - this means we've struck an inner
2325 bracket whose current branch will already have been scanned.
2326
2327 Arguments:
2328 code points to start of search
2329 endcode points to where to stop
2330 utf TRUE if in UTF-8 / UTF-16 mode
2331 cd contains pointers to tables etc.
2332
2333 Returns: TRUE if what is matched could be empty
2334 */
2335
2336 static BOOL
2337 could_be_empty_branch(const pcre_uchar *code, const pcre_uchar *endcode,
2338 BOOL utf, compile_data *cd)
2339 {
2340 register int c;
2341 for (code = first_significant_code(code + PRIV(OP_lengths)[*code], TRUE);
2342 code < endcode;
2343 code = first_significant_code(code + PRIV(OP_lengths)[c], TRUE))
2344 {
2345 const pcre_uchar *ccode;
2346
2347 c = *code;
2348
2349 /* Skip over forward assertions; the other assertions are skipped by
2350 first_significant_code() with a TRUE final argument. */
2351
2352 if (c == OP_ASSERT)
2353 {
2354 do code += GET(code, 1); while (*code == OP_ALT);
2355 c = *code;
2356 continue;
2357 }
2358
2359 /* For a recursion/subroutine call, if its end has been reached, which
2360 implies a backward reference subroutine call, we can scan it. If it's a
2361 forward reference subroutine call, we can't. To detect forward reference
2362 we have to scan up the list that is kept in the workspace. This function is
2363 called only when doing the real compile, not during the pre-compile that
2364 measures the size of the compiled pattern. */
2365
2366 if (c == OP_RECURSE)
2367 {
2368 const pcre_uchar *scode;
2369 BOOL empty_branch;
2370
2371 /* Test for forward reference */
2372
2373 for (scode = cd->start_workspace; scode < cd->hwm; scode += LINK_SIZE)
2374 if (GET(scode, 0) == code + 1 - cd->start_code) return TRUE;
2375
2376 /* Not a forward reference, test for completed backward reference */
2377
2378 empty_branch = FALSE;
2379 scode = cd->start_code + GET(code, 1);
2380 if (GET(scode, 1) == 0) return TRUE; /* Unclosed */
2381
2382 /* Completed backwards reference */
2383
2384 do
2385 {
2386 if (could_be_empty_branch(scode, endcode, utf, cd))
2387 {
2388 empty_branch = TRUE;
2389 break;
2390 }
2391 scode += GET(scode, 1);
2392 }
2393 while (*scode == OP_ALT);
2394
2395 if (!empty_branch) return FALSE; /* All branches are non-empty */
2396 continue;
2397 }
2398
2399 /* Groups with zero repeats can of course be empty; skip them. */
2400
2401 if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO ||
2402 c == OP_BRAPOSZERO)
2403 {
2404 code += PRIV(OP_lengths)[c];
2405 do code += GET(code, 1); while (*code == OP_ALT);
2406 c = *code;
2407 continue;
2408 }
2409
2410 /* A nested group that is already marked as "could be empty" can just be
2411 skipped. */
2412
2413 if (c == OP_SBRA || c == OP_SBRAPOS ||
2414 c == OP_SCBRA || c == OP_SCBRAPOS)
2415 {
2416 do code += GET(code, 1); while (*code == OP_ALT);
2417 c = *code;
2418 continue;
2419 }
2420
2421 /* For other groups, scan the branches. */
2422
2423 if (c == OP_BRA || c == OP_BRAPOS ||
2424 c == OP_CBRA || c == OP_CBRAPOS ||
2425 c == OP_ONCE || c == OP_ONCE_NC ||
2426 c == OP_COND)
2427 {
2428 BOOL empty_branch;
2429 if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */
2430
2431 /* If a conditional group has only one branch, there is a second, implied,
2432 empty branch, so just skip over the conditional, because it could be empty.
2433 Otherwise, scan the individual branches of the group. */
2434
2435 if (c == OP_COND && code[GET(code, 1)] != OP_ALT)
2436 code += GET(code, 1);
2437 else
2438 {
2439 empty_branch = FALSE;
2440 do
2441 {
2442 if (!empty_branch && could_be_empty_branch(code, endcode, utf, cd))
2443 empty_branch = TRUE;
2444 code += GET(code, 1);
2445 }
2446 while (*code == OP_ALT);
2447 if (!empty_branch) return FALSE; /* All branches are non-empty */
2448 }
2449
2450 c = *code;
2451 continue;
2452 }
2453
2454 /* Handle the other opcodes */
2455
2456 switch (c)
2457 {
2458 /* Check for quantifiers after a class. XCLASS is used for classes that
2459 cannot be represented just by a bit map. This includes negated single
2460 high-valued characters. The length in PRIV(OP_lengths)[] is zero; the
2461 actual length is stored in the compiled code, so we must update "code"
2462 here. */
2463
2464 #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
2465 case OP_XCLASS:
2466 ccode = code += GET(code, 1);
2467 goto CHECK_CLASS_REPEAT;
2468 #endif
2469
2470 case OP_CLASS:
2471 case OP_NCLASS:
2472 ccode = code + PRIV(OP_lengths)[OP_CLASS];
2473
2474 #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
2475 CHECK_CLASS_REPEAT:
2476 #endif
2477
2478 switch (*ccode)
2479 {
2480 case OP_CRSTAR: /* These could be empty; continue */
2481 case OP_CRMINSTAR:
2482 case OP_CRQUERY:
2483 case OP_CRMINQUERY:
2484 break;
2485
2486 default: /* Non-repeat => class must match */
2487 case OP_CRPLUS: /* These repeats aren't empty */
2488 case OP_CRMINPLUS:
2489 return FALSE;
2490
2491 case OP_CRRANGE:
2492 case OP_CRMINRANGE:
2493 if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */
2494 break;
2495 }
2496 break;
2497
2498 /* Opcodes that must match a character */
2499
2500 case OP_PROP:
2501 case OP_NOTPROP:
2502 case OP_EXTUNI:
2503 case OP_NOT_DIGIT:
2504 case OP_DIGIT:
2505 case OP_NOT_WHITESPACE:
2506 case OP_WHITESPACE:
2507 case OP_NOT_WORDCHAR:
2508 case OP_WORDCHAR:
2509 case OP_ANY:
2510 case OP_ALLANY:
2511 case OP_ANYBYTE:
2512 case OP_CHAR:
2513 case OP_CHARI:
2514 case OP_NOT:
2515 case OP_NOTI:
2516 case OP_PLUS:
2517 case OP_MINPLUS:
2518 case OP_POSPLUS:
2519 case OP_EXACT:
2520 case OP_NOTPLUS:
2521 case OP_NOTMINPLUS:
2522 case OP_NOTPOSPLUS:
2523 case OP_NOTEXACT:
2524 case OP_TYPEPLUS:
2525 case OP_TYPEMINPLUS:
2526 case OP_TYPEPOSPLUS:
2527 case OP_TYPEEXACT:
2528 return FALSE;
2529
2530 /* These are going to continue, as they may be empty, but we have to
2531 fudge the length for the \p and \P cases. */
2532
2533 case OP_TYPESTAR:
2534 case OP_TYPEMINSTAR:
2535 case OP_TYPEPOSSTAR:
2536 case OP_TYPEQUERY:
2537 case OP_TYPEMINQUERY:
2538 case OP_TYPEPOSQUERY:
2539 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
2540 break;
2541
2542 /* Same for these */
2543
2544 case OP_TYPEUPTO:
2545 case OP_TYPEMINUPTO:
2546 case OP_TYPEPOSUPTO:
2547 if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP)
2548 code += 2;
2549 break;
2550
2551 /* End of branch */
2552
2553 case OP_KET:
2554 case OP_KETRMAX:
2555 case OP_KETRMIN:
2556 case OP_KETRPOS:
2557 case OP_ALT:
2558 return TRUE;
2559
2560 /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO,
2561 MINUPTO, and POSUPTO may be followed by a multibyte character */
2562
2563 #ifdef SUPPORT_UTF
2564 case OP_STAR:
2565 case OP_STARI:
2566 case OP_MINSTAR:
2567 case OP_MINSTARI:
2568 case OP_POSSTAR:
2569 case OP_POSSTARI:
2570 case OP_QUERY:
2571 case OP_QUERYI:
2572 case OP_MINQUERY:
2573 case OP_MINQUERYI:
2574 case OP_POSQUERY:
2575 case OP_POSQUERYI:
2576 if (utf && HAS_EXTRALEN(code[1])) code += GET_EXTRALEN(code[1]);
2577 break;
2578
2579 case OP_UPTO:
2580 case OP_UPTOI:
2581 case OP_MINUPTO:
2582 case OP_MINUPTOI:
2583 case OP_POSUPTO:
2584 case OP_POSUPTOI:
2585 if (utf && HAS_EXTRALEN(code[1 + IMM2_SIZE])) code += GET_EXTRALEN(code[1 + IMM2_SIZE]);
2586 break;
2587 #endif
2588
2589 /* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument
2590 string. */
2591
2592 case OP_MARK:
2593 case OP_PRUNE_ARG:
2594 case OP_SKIP_ARG:
2595 code += code[1];
2596 break;
2597
2598 case OP_THEN_ARG:
2599 code += code[1];
2600 break;
2601
2602 /* None of the remaining opcodes are required to match a character. */
2603
2604 default:
2605 break;
2606 }
2607 }
2608
2609 return TRUE;
2610 }
2611
2612
2613
2614 /*************************************************
2615 * Scan compiled regex for non-emptiness *
2616 *************************************************/
2617
2618 /* This function is called to check for left recursive calls. We want to check
2619 the current branch of the current pattern to see if it could match the empty
2620 string. If it could, we must look outwards for branches at other levels,
2621 stopping when we pass beyond the bracket which is the subject of the recursion.
2622 This function is called only during the real compile, not during the
2623 pre-compile.
2624
2625 Arguments:
2626 code points to start of the recursion
2627 endcode points to where to stop (current RECURSE item)
2628 bcptr points to the chain of current (unclosed) branch starts
2629 utf TRUE if in UTF-8 / UTF-16 mode
2630 cd pointers to tables etc
2631
2632 Returns: TRUE if what is matched could be empty
2633 */
2634
2635 static BOOL
2636 could_be_empty(const pcre_uchar *code, const pcre_uchar *endcode,
2637 branch_chain *bcptr, BOOL utf, compile_data *cd)
2638 {
2639 while (bcptr != NULL && bcptr->current_branch >= code)
2640 {
2641 if (!could_be_empty_branch(bcptr->current_branch, endcode, utf, cd))
2642 return FALSE;
2643 bcptr = bcptr->outer;
2644 }
2645 return TRUE;
2646 }
2647
2648
2649
2650 /*************************************************
2651 * Check for POSIX class syntax *
2652 *************************************************/
2653
2654 /* This function is called when the sequence "[:" or "[." or "[=" is
2655 encountered in a character class. It checks whether this is followed by a
2656 sequence of characters terminated by a matching ":]" or ".]" or "=]". If we
2657 reach an unescaped ']' without the special preceding character, return FALSE.
2658
2659 Originally, this function only recognized a sequence of letters between the
2660 terminators, but it seems that Perl recognizes any sequence of characters,
2661 though of course unknown POSIX names are subsequently rejected. Perl gives an
2662 "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE
2663 didn't consider this to be a POSIX class. Likewise for [:1234:].
2664
2665 The problem in trying to be exactly like Perl is in the handling of escapes. We
2666 have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX
2667 class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code
2668 below handles the special case of \], but does not try to do any other escape
2669 processing. This makes it different from Perl for cases such as [:l\ower:]
2670 where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize
2671 "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does,
2672 I think.
2673
2674 A user pointed out that PCRE was rejecting [:a[:digit:]] whereas Perl was not.
2675 It seems that the appearance of a nested POSIX class supersedes an apparent
2676 external class. For example, [:a[:digit:]b:] matches "a", "b", ":", or
2677 a digit.
2678
2679 In Perl, unescaped square brackets may also appear as part of class names. For
2680 example, [:a[:abc]b:] gives unknown POSIX class "[:abc]b:]". However, for
2681 [:a[:abc]b][b:] it gives unknown POSIX class "[:abc]b][b:]", which does not
2682 seem right at all. PCRE does not allow closing square brackets in POSIX class
2683 names.
2684
2685 Arguments:
2686 ptr pointer to the initial [
2687 endptr where to return the end pointer
2688
2689 Returns: TRUE or FALSE
2690 */
2691
2692 static BOOL
2693 check_posix_syntax(const pcre_uchar *ptr, const pcre_uchar **endptr)
2694 {
2695 int terminator; /* Don't combine these lines; the Solaris cc */
2696 terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */
2697 for (++ptr; *ptr != 0; ptr++)
2698 {
2699 if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
2700 ptr++;
2701 else if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE;
2702 else
2703 {
2704 if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
2705 {
2706 *endptr = ptr;
2707 return TRUE;
2708 }
2709 if (*ptr == CHAR_LEFT_SQUARE_BRACKET &&
2710 (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
2711 ptr[1] == CHAR_EQUALS_SIGN) &&
2712 check_posix_syntax(ptr, endptr))
2713 return FALSE;
2714 }
2715 }
2716 return FALSE;
2717 }
2718
2719
2720
2721
2722 /*************************************************
2723 * Check POSIX class name *
2724 *************************************************/
2725
2726 /* This function is called to check the name given in a POSIX-style class entry
2727 such as [:alnum:].
2728
2729 Arguments:
2730 ptr points to the first letter
2731 len the length of the name
2732
2733 Returns: a value representing the name, or -1 if unknown
2734 */
2735
2736 static int
2737 check_posix_name(const pcre_uchar *ptr, int len)
2738 {
2739 const char *pn = posix_names;
2740 register int yield = 0;
2741 while (posix_name_lengths[yield] != 0)
2742 {
2743 if (len == posix_name_lengths[yield] &&
2744 STRNCMP_UC_C8(ptr, pn, len) == 0) return yield;
2745 pn += posix_name_lengths[yield] + 1;
2746 yield++;
2747 }
2748 return -1;
2749 }
2750
2751
2752 /*************************************************
2753 * Adjust OP_RECURSE items in repeated group *
2754 *************************************************/
2755
2756 /* OP_RECURSE items contain an offset from the start of the regex to the group
2757 that is referenced. This means that groups can be replicated for fixed
2758 repetition simply by copying (because the recursion is allowed to refer to
2759 earlier groups that are outside the current group). However, when a group is
2760 optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is
2761 inserted before it, after it has been compiled. This means that any OP_RECURSE
2762 items within it that refer to the group itself or any contained groups have to
2763 have their offsets adjusted. That one of the jobs of this function. Before it
2764 is called, the partially compiled regex must be temporarily terminated with
2765 OP_END.
2766
2767 This function has been extended with the possibility of forward references for
2768 recursions and subroutine calls. It must also check the list of such references
2769 for the group we are dealing with. If it finds that one of the recursions in
2770 the current group is on this list, it adjusts the offset in the list, not the
2771 value in the reference (which is a group number).
2772
2773 Arguments:
2774 group points to the start of the group
2775 adjust the amount by which the group is to be moved
2776 utf TRUE in UTF-8 / UTF-16 mode
2777 cd contains pointers to tables etc.
2778 save_hwm the hwm forward reference pointer at the start of the group
2779
2780 Returns: nothing
2781 */
2782
2783 static void
2784 adjust_recurse(pcre_uchar *group, int adjust, BOOL utf, compile_data *cd,
2785 pcre_uchar *save_hwm)
2786 {
2787 pcre_uchar *ptr = group;
2788
2789 while ((ptr = (pcre_uchar *)find_recurse(ptr, utf)) != NULL)
2790 {
2791 int offset;
2792 pcre_uchar *hc;
2793
2794 /* See if this recursion is on the forward reference list. If so, adjust the
2795 reference. */
2796
2797 for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE)
2798 {
2799 offset = GET(hc, 0);
2800 if (cd->start_code + offset == ptr + 1)
2801 {
2802 PUT(hc, 0, offset + adjust);
2803 break;
2804 }
2805 }
2806
2807 /* Otherwise, adjust the recursion offset if it's after the start of this
2808 group. */
2809
2810 if (hc >= cd->hwm)
2811 {
2812 offset = GET(ptr, 1);
2813 if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust);
2814 }
2815
2816 ptr += 1 + LINK_SIZE;
2817 }
2818 }
2819
2820
2821
2822 /*************************************************
2823 * Insert an automatic callout point *
2824 *************************************************/
2825
2826 /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert
2827 callout points before each pattern item.
2828
2829 Arguments:
2830 code current code pointer
2831 ptr current pattern pointer
2832 cd pointers to tables etc
2833
2834 Returns: new code pointer
2835 */
2836
2837 static pcre_uchar *
2838 auto_callout(pcre_uchar *code, const pcre_uchar *ptr, compile_data *cd)
2839 {
2840 *code++ = OP_CALLOUT;
2841 *code++ = 255;
2842 PUT(code, 0, (int)(ptr - cd->start_pattern)); /* Pattern offset */
2843 PUT(code, LINK_SIZE, 0); /* Default length */
2844 return code + 2 * LINK_SIZE;
2845 }
2846
2847
2848
2849 /*************************************************
2850 * Complete a callout item *
2851 *************************************************/
2852
2853 /* A callout item contains the length of the next item in the pattern, which
2854 we can't fill in till after we have reached the relevant point. This is used
2855 for both automatic and manual callouts.
2856
2857 Arguments:
2858 previous_callout points to previous callout item
2859 ptr current pattern pointer
2860 cd pointers to tables etc
2861
2862 Returns: nothing
2863 */
2864
2865 static void
2866 complete_callout(pcre_uchar *previous_callout, const pcre_uchar *ptr, compile_data *cd)
2867 {
2868 int length = (int)(ptr - cd->start_pattern - GET(previous_callout, 2));
2869 PUT(previous_callout, 2 + LINK_SIZE, length);
2870 }
2871
2872
2873
2874 #ifdef SUPPORT_UCP
2875 /*************************************************
2876 * Get othercase range *
2877 *************************************************/
2878
2879 /* This function is passed the start and end of a class range, in UTF-8 mode
2880 with UCP support. It searches up the characters, looking for ranges of
2881 characters in the "other" case. Each call returns the next one, updating the
2882 start address. A character with multiple other cases is returned on its own
2883 with a special return value.
2884
2885 Arguments:
2886 cptr points to starting character value; updated
2887 d end value
2888 ocptr where to put start of othercase range
2889 odptr where to put end of othercase range
2890
2891 Yield: -1 when no more
2892 0 when a range is returned
2893 >0 the CASESET offset for char with multiple other cases
2894 in this case, ocptr contains the original
2895 */
2896
2897 static int
2898 get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr,
2899 unsigned int *odptr)
2900 {
2901 unsigned int c, othercase, next;
2902 int co;
2903
2904 /* Find the first character that has an other case. If it has multiple other
2905 cases, return its case offset value. */
2906
2907 for (c = *cptr; c <= d; c++)
2908 {
2909 if ((co = UCD_CASESET(c)) != 0)
2910 {
2911 *ocptr = c++; /* Character that has the set */
2912 *cptr = c; /* Rest of input range */
2913 return co;
2914 }
2915 if ((othercase = UCD_OTHERCASE(c)) != c) break;
2916 }
2917
2918 if (c > d) return -1; /* Reached end of range */
2919
2920 *ocptr = othercase;
2921 next = othercase + 1;
2922
2923 for (++c; c <= d; c++)
2924 {
2925 if (UCD_OTHERCASE(c) != next) break;
2926 next++;
2927 }
2928
2929 *odptr = next - 1; /* End of othercase range */
2930 *cptr = c; /* Rest of input range */
2931 return 0;
2932 }
2933
2934
2935
2936 /*************************************************
2937 * Check a character and a property *
2938 *************************************************/
2939
2940 /* This function is called by check_auto_possessive() when a property item
2941 is adjacent to a fixed character.
2942
2943 Arguments:
2944 c the character
2945 ptype the property type
2946 pdata the data for the type
2947 negated TRUE if it's a negated property (\P or \p{^)
2948
2949 Returns: TRUE if auto-possessifying is OK
2950 */
2951
2952 static BOOL
2953 check_char_prop(int c, int ptype, int pdata, BOOL negated)
2954 {
2955 #ifdef SUPPORT_UCP
2956 const pcre_uint32 *p;
2957 #endif
2958
2959 const ucd_record *prop = GET_UCD(c);
2960
2961 switch(ptype)
2962 {
2963 case PT_LAMP:
2964 return (prop->chartype == ucp_Lu ||
2965 prop->chartype == ucp_Ll ||
2966 prop->chartype == ucp_Lt) == negated;
2967
2968 case PT_GC:
2969 return (pdata == PRIV(ucp_gentype)[prop->chartype]) == negated;
2970
2971 case PT_PC:
2972 return (pdata == prop->chartype) == negated;
2973
2974 case PT_SC:
2975 return (pdata == prop->script) == negated;
2976
2977 /* These are specials */
2978
2979 case PT_ALNUM:
2980 return (PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
2981 PRIV(ucp_gentype)[prop->chartype] == ucp_N) == negated;
2982
2983 case PT_SPACE: /* Perl space */
2984 return (PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
2985 c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR)
2986 == negated;
2987
2988 case PT_PXSPACE: /* POSIX space */
2989 return (PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
2990 c == CHAR_HT || c == CHAR_NL || c == CHAR_VT ||
2991 c == CHAR_FF || c == CHAR_CR)
2992 == negated;
2993
2994 case PT_WORD:
2995 return (PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
2996 PRIV(ucp_gentype)[prop->chartype] == ucp_N ||
2997 c == CHAR_UNDERSCORE) == negated;
2998
2999 #ifdef SUPPORT_UCP
3000 case PT_CLIST:
3001 p = PRIV(ucd_caseless_sets) + prop->caseset;
3002 for (;;)
3003 {
3004 if ((unsigned int)c < *p) return !negated;
3005 if ((unsigned int)c == *p++) return negated;
3006 }
3007 break; /* Control never reaches here */
3008 #endif
3009 }
3010
3011 return FALSE;
3012 }
3013 #endif /* SUPPORT_UCP */
3014
3015
3016
3017 /*************************************************
3018 * Check if auto-possessifying is possible *
3019 *************************************************/
3020
3021 /* This function is called for unlimited repeats of certain items, to see
3022 whether the next thing could possibly match the repeated item. If not, it makes
3023 sense to automatically possessify the repeated item.
3024
3025 Arguments:
3026 previous pointer to the repeated opcode
3027 utf TRUE in UTF-8 / UTF-16 mode
3028 ptr next character in pattern
3029 options options bits
3030 cd contains pointers to tables etc.
3031
3032 Returns: TRUE if possessifying is wanted
3033 */
3034
3035 static BOOL
3036 check_auto_possessive(const pcre_uchar *previous, BOOL utf,
3037 const pcre_uchar *ptr, int options, compile_data *cd)
3038 {
3039 pcre_int32 c, next;
3040 int op_code = *previous++;
3041
3042 /* Skip whitespace and comments in extended mode */
3043
3044 if ((options & PCRE_EXTENDED) != 0)
3045 {
3046 for (;;)
3047 {
3048 while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
3049 if (*ptr == CHAR_NUMBER_SIGN)
3050 {
3051 ptr++;
3052 while (*ptr != 0)
3053 {
3054 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
3055 ptr++;
3056 #ifdef SUPPORT_UTF
3057 if (utf) FORWARDCHAR(ptr);
3058 #endif
3059 }
3060 }
3061 else break;
3062 }
3063 }
3064
3065 /* If the next item is one that we can handle, get its value. A non-negative
3066 value is a character, a negative value is an escape value. */
3067
3068 if (*ptr == CHAR_BACKSLASH)
3069 {
3070 int temperrorcode = 0;
3071 next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE);
3072 if (temperrorcode != 0) return FALSE;
3073 ptr++; /* Point after the escape sequence */
3074 }
3075 else if (!MAX_255(*ptr) || (cd->ctypes[*ptr] & ctype_meta) == 0)
3076 {
3077 #ifdef SUPPORT_UTF
3078 if (utf) { GETCHARINC(next, ptr); } else
3079 #endif
3080 next = *ptr++;
3081 }
3082 else return FALSE;
3083
3084 /* Skip whitespace and comments in extended mode */
3085
3086 if ((options & PCRE_EXTENDED) != 0)
3087 {
3088 for (;;)
3089 {
3090 while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
3091 if (*ptr == CHAR_NUMBER_SIGN)
3092 {
3093 ptr++;
3094 while (*ptr != 0)
3095 {
3096 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
3097 ptr++;
3098 #ifdef SUPPORT_UTF
3099 if (utf) FORWARDCHAR(ptr);
3100 #endif
3101 }
3102 }
3103 else break;
3104 }
3105 }
3106
3107 /* If the next thing is itself optional, we have to give up. */
3108
3109 if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK ||
3110 STRNCMP_UC_C8(ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0)
3111 return FALSE;
3112
3113 /* If the previous item is a character, get its value. */
3114
3115 if (op_code == OP_CHAR || op_code == OP_CHARI ||
3116 op_code == OP_NOT || op_code == OP_NOTI)
3117 {
3118 #ifdef SUPPORT_UTF
3119 GETCHARTEST(c, previous);
3120 #else
3121 c = *previous;
3122 #endif
3123 }
3124
3125 /* Now compare the next item with the previous opcode. First, handle cases when
3126 the next item is a character. For a caseless UTF match, the next character may
3127 have more than one other case; convert this to a special property. */
3128
3129 if (next >= 0)
3130 {
3131 #ifdef SUPPORT_UCP
3132 if (utf && (options & PCRE_CASELESS) != 0)
3133 {
3134 int ocs = UCD_CASESET(next);
3135 if (ocs > 0) return check_char_prop(c, PT_CLIST, ocs, FALSE);
3136 }
3137 #endif
3138
3139 switch(op_code)
3140 {
3141 case OP_CHAR:
3142 return c != next;
3143
3144 /* For CHARI (caseless character) we must check the other case. If we have
3145 Unicode property support, we can use it to test the other case of
3146 high-valued characters. We know that next can have only one other case,
3147 because multi-other-case characters are dealt with above. */
3148
3149 case OP_CHARI:
3150 if (c == next) return FALSE;
3151 #ifdef SUPPORT_UTF
3152 if (utf)
3153 {
3154 unsigned int othercase;
3155 if (next < 128) othercase = cd->fcc[next]; else
3156 #ifdef SUPPORT_UCP
3157 othercase = UCD_OTHERCASE((unsigned int)next);
3158 #else
3159 othercase = NOTACHAR;
3160 #endif
3161 return (unsigned int)c != othercase;
3162 }
3163 else
3164 #endif /* SUPPORT_UTF */
3165 return (c != TABLE_GET((unsigned int)next, cd->fcc, next)); /* Not UTF */
3166
3167 case OP_NOT:
3168 return c == next;
3169
3170 case OP_NOTI:
3171 if (c == next) return TRUE;
3172 #ifdef SUPPORT_UTF
3173 if (utf)
3174 {
3175 unsigned int othercase;
3176 if (next < 128) othercase = cd->fcc[next]; else
3177 #ifdef SUPPORT_UCP
3178 othercase = UCD_OTHERCASE((unsigned int)next);
3179 #else
3180 othercase = NOTACHAR;
3181 #endif
3182 return (unsigned int)c == othercase;
3183 }
3184 else
3185 #endif /* SUPPORT_UTF */
3186 return (c == TABLE_GET((unsigned int)next, cd->fcc, next)); /* Not UTF */
3187
3188 /* Note that OP_DIGIT etc. are generated only when PCRE_UCP is *not* set.
3189 When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */
3190
3191 case OP_DIGIT:
3192 return next > 255 || (cd->ctypes[next] & ctype_digit) == 0;
3193
3194 case OP_NOT_DIGIT:
3195 return next <= 255 && (cd->ctypes[next] & ctype_digit) != 0;
3196
3197 case OP_WHITESPACE:
3198 return next > 255 || (cd->ctypes[next] & ctype_space) == 0;
3199
3200 case OP_NOT_WHITESPACE:
3201 return next <= 255 && (cd->ctypes[next] & ctype_space) != 0;
3202
3203 case OP_WORDCHAR:
3204 return next > 255 || (cd->ctypes[next] & ctype_word) == 0;
3205
3206 case OP_NOT_WORDCHAR:
3207 return next <= 255 && (cd->ctypes[next] & ctype_word) != 0;
3208
3209 case OP_HSPACE:
3210 case OP_NOT_HSPACE:
3211 switch(next)
3212 {
3213 HSPACE_CASES:
3214 return op_code == OP_NOT_HSPACE;
3215
3216 default:
3217 return op_code != OP_NOT_HSPACE;
3218 }
3219
3220 case OP_ANYNL:
3221 case OP_VSPACE:
3222 case OP_NOT_VSPACE:
3223 switch(next)
3224 {
3225 VSPACE_CASES:
3226 return op_code == OP_NOT_VSPACE;
3227
3228 default:
3229 return op_code != OP_NOT_VSPACE;
3230 }
3231
3232 #ifdef SUPPORT_UCP
3233 case OP_PROP:
3234 return check_char_prop(next, previous[0], previous[1], FALSE);
3235
3236 case OP_NOTPROP:
3237 return check_char_prop(next, previous[0], previous[1], TRUE);
3238 #endif
3239
3240 default:
3241 return FALSE;
3242 }
3243 }
3244
3245 /* Handle the case when the next item is \d, \s, etc. Note that when PCRE_UCP
3246 is set, \d turns into ESC_du rather than ESC_d, etc., so ESC_d etc. are
3247 generated only when PCRE_UCP is *not* set, that is, when only ASCII
3248 characteristics are recognized. Similarly, the opcodes OP_DIGIT etc. are
3249 replaced by OP_PROP codes when PCRE_UCP is set. */
3250
3251 switch(op_code)
3252 {
3253 case OP_CHAR:
3254 case OP_CHARI:
3255 switch(-next)
3256 {
3257 case ESC_d:
3258 return c > 255 || (cd->ctypes[c] & ctype_digit) == 0;
3259
3260 case ESC_D:
3261 return c <= 255 && (cd->ctypes[c] & ctype_digit) != 0;
3262
3263 case ESC_s:
3264 return c > 255 || (cd->ctypes[c] & ctype_space) == 0;
3265
3266 case ESC_S:
3267 return c <= 255 && (cd->ctypes[c] & ctype_space) != 0;
3268
3269 case ESC_w:
3270 return c > 255 || (cd->ctypes[c] & ctype_word) == 0;
3271
3272 case ESC_W:
3273 return c <= 255 && (cd->ctypes[c] & ctype_word) != 0;
3274
3275 case ESC_h:
3276 case ESC_H:
3277 switch(c)
3278 {
3279 HSPACE_CASES:
3280 return -next != ESC_h;
3281
3282 default:
3283 return -next == ESC_h;
3284 }
3285
3286 case ESC_v:
3287 case ESC_V:
3288 switch(c)
3289 {
3290 VSPACE_CASES:
3291 return -next != ESC_v;
3292
3293 default:
3294 return -next == ESC_v;
3295 }
3296
3297 /* When PCRE_UCP is set, these values get generated for \d etc. Find
3298 their substitutions and process them. The result will always be either
3299 -ESC_p or -ESC_P. Then fall through to process those values. */
3300
3301 #ifdef SUPPORT_UCP
3302 case ESC_du:
3303 case ESC_DU:
3304 case ESC_wu:
3305 case ESC_WU:
3306 case ESC_su:
3307 case ESC_SU:
3308 {
3309 int temperrorcode = 0;
3310 ptr = substitutes[-next - ESC_DU];
3311 next = check_escape(&ptr, &temperrorcode, 0, options, FALSE);
3312 if (temperrorcode != 0) return FALSE;
3313 ptr++; /* For compatibility */
3314 }
3315 /* Fall through */
3316
3317 case ESC_p:
3318 case ESC_P:
3319 {
3320 int ptype, pdata, errorcodeptr;
3321 BOOL negated;
3322
3323 ptr--; /* Make ptr point at the p or P */
3324 ptype = get_ucp(&ptr, &negated, &pdata, &errorcodeptr);
3325 if (ptype < 0) return FALSE;
3326 ptr++; /* Point past the final curly ket */
3327
3328 /* If the property item is optional, we have to give up. (When generated
3329 from \d etc by PCRE_UCP, this test will have been applied much earlier,
3330 to the original \d etc. At this point, ptr will point to a zero byte. */
3331
3332 if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK ||
3333 STRNCMP_UC_C8(ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0)
3334 return FALSE;
3335
3336 /* Do the property check. */
3337
3338 return check_char_prop(c, ptype, pdata, (next == -ESC_P) != negated);
3339 }
3340 #endif
3341
3342 default:
3343 return FALSE;
3344 }
3345
3346 /* In principle, support for Unicode properties should be integrated here as
3347 well. It means re-organizing the above code so as to get hold of the property
3348 values before switching on the op-code. However, I wonder how many patterns
3349 combine ASCII \d etc with Unicode properties? (Note that if PCRE_UCP is set,
3350 these op-codes are never generated.) */
3351
3352 case OP_DIGIT:
3353 return next == -ESC_D || next == -ESC_s || next == -ESC_W ||
3354 next == -ESC_h || next == -ESC_v || next == -ESC_R;
3355
3356 case OP_NOT_DIGIT:
3357 return next == -ESC_d;
3358
3359 case OP_WHITESPACE:
3360 return next == -ESC_S || next == -ESC_d || next == -ESC_w;
3361
3362 case OP_NOT_WHITESPACE:
3363 return next == -ESC_s || next == -ESC_h || next == -ESC_v || next == -ESC_R;
3364
3365 case OP_HSPACE:
3366 return next == -ESC_S || next == -ESC_H || next == -ESC_d ||
3367 next == -ESC_w || next == -ESC_v || next == -ESC_R;
3368
3369 case OP_NOT_HSPACE:
3370 return next == -ESC_h;
3371
3372 /* Can't have \S in here because VT matches \S (Perl anomaly) */
3373 case OP_ANYNL:
3374 case OP_VSPACE:
3375 return next == -ESC_V || next == -ESC_d || next == -ESC_w;
3376
3377 case OP_NOT_VSPACE:
3378 return next == -ESC_v || next == -ESC_R;
3379
3380 case OP_WORDCHAR:
3381 return next == -ESC_W || next == -ESC_s || next == -ESC_h ||
3382 next == -ESC_v || next == -ESC_R;
3383
3384 case OP_NOT_WORDCHAR:
3385 return next == -ESC_w || next == -ESC_d;
3386
3387 default:
3388 return FALSE;
3389 }
3390
3391 /* Control does not reach here */
3392 }
3393
3394
3395
3396 /*************************************************
3397 * Add a character or range to a class *
3398 *************************************************/
3399
3400 /* This function packages up the logic of adding a character or range of
3401 characters to a class. The character values in the arguments will be within the
3402 valid values for the current mode (8-bit, 16-bit, UTF, etc). This function is
3403 mutually recursive with the function immediately below.
3404
3405 Arguments:
3406 classbits the bit map for characters < 256
3407 uchardptr points to the pointer for extra data
3408 options the options word
3409 cd contains pointers to tables etc.
3410 start start of range character
3411 end end of range character
3412
3413 Returns: the number of < 256 characters added
3414 the pointer to extra data is updated
3415 */
3416
3417 static int
3418 add_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, int options,
3419 compile_data *cd, unsigned int start, unsigned int end)
3420 {
3421 unsigned int c;
3422 int n8 = 0;
3423
3424 /* If caseless matching is required, scan the range and process alternate
3425 cases. In Unicode, there are 8-bit characters that have alternate cases that
3426 are greater than 255 and vice-versa. Sometimes we can just extend the original
3427 range. */
3428
3429 if ((options & PCRE_CASELESS) != 0)
3430 {
3431 #ifdef SUPPORT_UCP
3432 if ((options & PCRE_UTF8) != 0)
3433 {
3434 int rc;
3435 unsigned int oc, od;
3436
3437 options &= ~PCRE_CASELESS; /* Remove for recursive calls */
3438 c = start;
3439
3440 while ((rc = get_othercase_range(&c, end, &oc, &od)) >= 0)
3441 {
3442 /* Handle a single character that has more than one other case. */
3443
3444 if (rc > 0) n8 += add_list_to_class(classbits, uchardptr, options, cd,
3445 PRIV(ucd_caseless_sets) + rc, oc);
3446
3447 /* Do nothing if the other case range is within the original range. */
3448
3449 else if (oc >= start && od <= end) continue;
3450
3451 /* Extend the original range if there is overlap, noting that if oc < c, we
3452 can't have od > end because a subrange is always shorter than the basic
3453 range. Otherwise, use a recursive call to add the additional range. */
3454
3455 else if (oc < start && od >= start - 1) start = oc; /* Extend downwards */
3456 else if (od > end && oc <= end + 1) end = od; /* Extend upwards */
3457 else n8 += add_to_class(classbits, uchardptr, options, cd, oc, od);
3458 }
3459 }
3460 else
3461 #endif /* SUPPORT_UCP */
3462
3463 /* Not UTF-mode, or no UCP */
3464
3465 for (c = start; c <= end && c < 256; c++)
3466 {
3467 SETBIT(classbits, cd->fcc[c]);
3468 n8++;
3469 }
3470 }
3471
3472 /* Now handle the original range. Adjust the final value according to the bit
3473 length - this means that the same lists of (e.g.) horizontal spaces can be used
3474 in all cases. */
3475
3476 #ifdef COMPILE_PCRE8
3477 #ifdef SUPPORT_UTF
3478 if ((options & PCRE_UTF8) == 0)
3479 #endif
3480 if (end > 0xff) end = 0xff;
3481 #endif
3482
3483 #ifdef COMPILE_PCRE16
3484 #ifdef SUPPORT_UTF
3485 if ((options & PCRE_UTF16) == 0)
3486 #endif
3487 if (end > 0xffff) end = 0xffff;
3488 #endif
3489
3490 /* If all characters are less than 256, use the bit map. Otherwise use extra
3491 data. */
3492
3493 if (end < 0x100)
3494 {
3495 for (c = start; c <= end; c++)
3496 {
3497 n8++;
3498 SETBIT(classbits, c);
3499 }
3500 }
3501
3502 else
3503 {
3504 pcre_uchar *uchardata = *uchardptr;
3505
3506 #ifdef SUPPORT_UTF
3507 if ((options & PCRE_UTF8) != 0) /* All UTFs use the same flag bit */
3508 {
3509 if (start < end)
3510 {
3511 *uchardata++ = XCL_RANGE;
3512 uchardata += PRIV(ord2utf)(start, uchardata);
3513 uchardata += PRIV(ord2utf)(end, uchardata);
3514 }
3515 else if (start == end)
3516 {
3517 *uchardata++ = XCL_SINGLE;
3518 uchardata += PRIV(ord2utf)(start, uchardata);
3519 }
3520 }
3521 else
3522 #endif /* SUPPORT_UTF */
3523
3524 /* Without UTF support, character values are constrained by the bit length,
3525 and can only be > 256 for 16-bit and 32-bit libraries. */
3526
3527 #ifdef COMPILE_PCRE8
3528 {}
3529 #else
3530 if (start < end)
3531 {
3532 *uchardata++ = XCL_RANGE;
3533 *uchardata++ = start;
3534 *uchardata++ = end;
3535 }
3536 else if (start == end)
3537 {
3538 *uchardata++ = XCL_SINGLE;
3539 *uchardata++ = start;
3540 }
3541 #endif
3542
3543 *uchardptr = uchardata; /* Updata extra data pointer */
3544 }
3545
3546 return n8; /* Number of 8-bit characters */
3547 }
3548
3549
3550
3551
3552 /*************************************************
3553 * Add a list of characters to a class *
3554 *************************************************/
3555
3556 /* This function is used for adding a list of case-equivalent characters to a
3557 class, and also for adding a list of horizontal or vertical whitespace. If the
3558 list is in order (which it should be), ranges of characters are detected and
3559 handled appropriately. This function is mutually recursive with the function
3560 above.
3561
3562 Arguments:
3563 classbits the bit map for characters < 256
3564 uchardptr points to the pointer for extra data
3565 options the options word
3566 cd contains pointers to tables etc.
3567 p points to row of 32-bit values, terminated by NOTACHAR
3568 except character to omit; this is used when adding lists of
3569 case-equivalent characters to avoid including the one we
3570 already know about
3571
3572 Returns: the number of < 256 characters added
3573 the pointer to extra data is updated
3574 */
3575
3576 static int
3577 add_list_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, int options,
3578 compile_data *cd, const pcre_uint32 *p, unsigned int except)
3579 {
3580 int n8 = 0;
3581 while (p[0] < NOTACHAR)
3582 {
3583 int n = 0;
3584 if (p[0] != except)
3585 {
3586 while(p[n+1] == p[0] + n + 1) n++;
3587 n8 += add_to_class(classbits, uchardptr, options, cd, p[0], p[n]);
3588 }
3589 p += n + 1;
3590 }
3591 return n8;
3592 }
3593
3594
3595
3596 /*************************************************
3597 * Add characters not in a list to a class *
3598 *************************************************/
3599
3600 /* This function is used for adding the complement of a list of horizontal or
3601 vertical whitespace to a class. The list must be in order.
3602
3603 Arguments:
3604 classbits the bit map for characters < 256
3605 uchardptr points to the pointer for extra data
3606 options the options word
3607 cd contains pointers to tables etc.
3608 p points to row of 32-bit values, terminated by NOTACHAR
3609
3610 Returns: the number of < 256 characters added
3611 the pointer to extra data is updated
3612 */
3613
3614 static int
3615 add_not_list_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr,
3616 int options, compile_data *cd, const pcre_uint32 *p)
3617 {
3618 int n8 = 0;
3619 if (p[0] > 0)
3620 n8 += add_to_class(classbits, uchardptr, options, cd, 0, p[0] - 1);
3621 while (p[0] < NOTACHAR)
3622 {
3623 while (p[1] == p[0] + 1) p++;
3624 n8 += add_to_class(classbits, uchardptr, options, cd, p[0] + 1,
3625 (p[1] == NOTACHAR)? 0x10ffff : p[1] - 1);
3626 p++;
3627 }
3628 return n8;
3629 }
3630
3631
3632
3633 /*************************************************
3634 * Compile one branch *
3635 *************************************************/
3636
3637 /* Scan the pattern, compiling it into the a vector. If the options are
3638 changed during the branch, the pointer is used to change the external options
3639 bits. This function is used during the pre-compile phase when we are trying
3640 to find out the amount of memory needed, as well as during the real compile
3641 phase. The value of lengthptr distinguishes the two phases.
3642
3643 Arguments:
3644 optionsptr pointer to the option bits
3645 codeptr points to the pointer to the current code point
3646 ptrptr points to the current pattern pointer
3647 errorcodeptr points to error code variable
3648 firstcharptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE)
3649 reqcharptr set to the last literal character required, else < 0
3650 bcptr points to current branch chain
3651 cond_depth conditional nesting depth
3652 cd contains pointers to tables etc.
3653 lengthptr NULL during the real compile phase
3654 points to length accumulator during pre-compile phase
3655
3656 Returns: TRUE on success
3657 FALSE, with *errorcodeptr set non-zero on error
3658 */
3659
3660 static BOOL
3661 compile_branch(int *optionsptr, pcre_uchar **codeptr,
3662 const pcre_uchar **ptrptr, int *errorcodeptr, pcre_int32 *firstcharptr,
3663 pcre_int32 *reqcharptr, branch_chain *bcptr, int cond_depth,
3664 compile_data *cd, int *lengthptr)
3665 {
3666 int repeat_type, op_type;
3667 int repeat_min = 0, repeat_max = 0; /* To please picky compilers */
3668 int bravalue = 0;
3669 int greedy_default, greedy_non_default;
3670 pcre_int32 firstchar, reqchar;
3671 pcre_int32 zeroreqchar, zerofirstchar;
3672 pcre_int32 req_caseopt, reqvary, tempreqvary;
3673 int options = *optionsptr; /* May change dynamically */
3674 int after_manual_callout = 0;
3675 int length_prevgroup = 0;
3676 register int c;
3677 register pcre_uchar *code = *codeptr;
3678 pcre_uchar *last_code = code;
3679 pcre_uchar *orig_code = code;
3680 pcre_uchar *tempcode;
3681 BOOL inescq = FALSE;
3682 BOOL groupsetfirstchar = FALSE;
3683 const pcre_uchar *ptr = *ptrptr;
3684 const pcre_uchar *tempptr;
3685 const pcre_uchar *nestptr = NULL;
3686 pcre_uchar *previous = NULL;
3687 pcre_uchar *previous_callout = NULL;
3688 pcre_uchar *save_hwm = NULL;
3689 pcre_uint8 classbits[32];
3690
3691 /* We can fish out the UTF-8 setting once and for all into a BOOL, but we
3692 must not do this for other options (e.g. PCRE_EXTENDED) because they may change
3693 dynamically as we process the pattern. */
3694
3695 #ifdef SUPPORT_UTF
3696 /* PCRE_UTF16 has the same value as PCRE_UTF8. */
3697 BOOL utf = (options & PCRE_UTF8) != 0;
3698 pcre_uchar utf_chars[6];
3699 #else
3700 BOOL utf = FALSE;
3701 #endif
3702
3703 /* Helper variables for OP_XCLASS opcode (for characters > 255). We define
3704 class_uchardata always so that it can be passed to add_to_class() always,
3705 though it will not be used in non-UTF 8-bit cases. This avoids having to supply
3706 alternative calls for the different cases. */
3707
3708 pcre_uchar *class_uchardata;
3709 #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
3710 BOOL xclass;
3711 pcre_uchar *class_uchardata_base;
3712 #endif
3713
3714 #ifdef PCRE_DEBUG
3715 if (lengthptr != NULL) DPRINTF((">> start branch\n"));
3716 #endif
3717
3718 /* Set up the default and non-default settings for greediness */
3719
3720 greedy_default = ((options & PCRE_UNGREEDY) != 0);
3721 greedy_non_default = greedy_default ^ 1;
3722
3723 /* Initialize no first byte, no required byte. REQ_UNSET means "no char
3724 matching encountered yet". It gets changed to REQ_NONE if we hit something that
3725 matches a non-fixed char first char; reqchar just remains unset if we never
3726 find one.
3727
3728 When we hit a repeat whose minimum is zero, we may have to adjust these values
3729 to take the zero repeat into account. This is implemented by setting them to
3730 zerofirstbyte and zeroreqchar when such a repeat is encountered. The individual
3731 item types that can be repeated set these backoff variables appropriately. */
3732
3733 firstchar = reqchar = zerofirstchar = zeroreqchar = REQ_UNSET;
3734
3735 /* The variable req_caseopt contains either the REQ_CASELESS value
3736 or zero, according to the current setting of the caseless flag. The
3737 REQ_CASELESS leaves the lower 28 bit empty. It is added into the
3738 firstchar or reqchar variables to record the case status of the
3739 value. This is used only for ASCII characters. */
3740
3741 req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS:0;
3742
3743 /* Switch on next character until the end of the branch */
3744
3745 for (;; ptr++)
3746 {
3747 BOOL negate_class;
3748 BOOL should_flip_negation;
3749 BOOL possessive_quantifier;
3750 BOOL is_quantifier;
3751 BOOL is_recurse;
3752 BOOL reset_bracount;
3753 int class_has_8bitchar;
3754 int class_one_char;
3755 int newoptions;
3756 int recno;
3757 int refsign;
3758 int skipbytes;
3759 int subreqchar;
3760 int subfirstchar;
3761 int terminator;
3762 int mclength;
3763 int tempbracount;
3764 pcre_uchar mcbuffer[8];
3765
3766 /* Get next character in the pattern */
3767
3768 c = *ptr;
3769
3770 /* If we are at the end of a nested substitution, revert to the outer level
3771 string. Nesting only happens one level deep. */
3772
3773 if (c == 0 && nestptr != NULL)
3774 {
3775 ptr = nestptr;
3776 nestptr = NULL;
3777 c = *ptr;
3778 }
3779
3780 /* If we are in the pre-compile phase, accumulate the length used for the
3781 previous cycle of this loop. */
3782
3783 if (lengthptr != NULL)
3784 {
3785 #ifdef PCRE_DEBUG
3786 if (code > cd->hwm) cd->hwm = code; /* High water info */
3787 #endif
3788 if (code > cd->start_workspace + cd->workspace_size -
3789 WORK_SIZE_SAFETY_MARGIN) /* Check for overrun */
3790 {
3791 *errorcodeptr = ERR52;
3792 goto FAILED;
3793 }
3794
3795 /* There is at least one situation where code goes backwards: this is the
3796 case of a zero quantifier after a class (e.g. [ab]{0}). At compile time,
3797 the class is simply eliminated. However, it is created first, so we have to
3798 allow memory for it. Therefore, don't ever reduce the length at this point.
3799 */
3800
3801 if (code < last_code) code = last_code;
3802
3803 /* Paranoid check for integer overflow */
3804
3805 if (OFLOW_MAX - *lengthptr < code - last_code)
3806 {
3807 *errorcodeptr = ERR20;
3808 goto FAILED;
3809 }
3810
3811 *lengthptr += (int)(code - last_code);
3812 DPRINTF(("length=%d added %d c=%c (0x%x)\n", *lengthptr,
3813 (int)(code - last_code), c, c));
3814
3815 /* If "previous" is set and it is not at the start of the work space, move
3816 it back to there, in order to avoid filling up the work space. Otherwise,
3817 if "previous" is NULL, reset the current code pointer to the start. */
3818
3819 if (previous != NULL)
3820 {
3821 if (previous > orig_code)
3822 {
3823 memmove(orig_code, previous, IN_UCHARS(code - previous));
3824 code -= previous - orig_code;
3825 previous = orig_code;
3826 }
3827 }
3828 else code = orig_code;
3829
3830 /* Remember where this code item starts so we can pick up the length
3831 next time round. */
3832
3833 last_code = code;
3834 }
3835
3836 /* In the real compile phase, just check the workspace used by the forward
3837 reference list. */
3838
3839 else if (cd->hwm > cd->start_workspace + cd->workspace_size -
3840 WORK_SIZE_SAFETY_MARGIN)
3841 {
3842 *errorcodeptr = ERR52;
3843 goto FAILED;
3844 }
3845
3846 /* If in \Q...\E, check for the end; if not, we have a literal */
3847
3848 if (inescq && c != 0)
3849 {
3850 if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E)
3851 {
3852 inescq = FALSE;
3853 ptr++;
3854 continue;
3855 }
3856 else
3857 {
3858 if (previous_callout != NULL)
3859 {
3860 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
3861 complete_callout(previous_callout, ptr, cd);
3862 previous_callout = NULL;
3863 }
3864 if ((options & PCRE_AUTO_CALLOUT) != 0)
3865 {
3866 previous_callout = code;
3867 code = auto_callout(code, ptr, cd);
3868 }
3869 goto NORMAL_CHAR;
3870 }
3871 }
3872
3873 /* Fill in length of a previous callout, except when the next thing is
3874 a quantifier. */
3875
3876 is_quantifier =
3877 c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK ||
3878 (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1));
3879
3880 if (!is_quantifier && previous_callout != NULL &&
3881 after_manual_callout-- <= 0)
3882 {
3883 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
3884 complete_callout(previous_callout, ptr, cd);
3885 previous_callout = NULL;
3886 }
3887
3888 /* In extended mode, skip white space and comments. */
3889
3890 if ((options & PCRE_EXTENDED) != 0)
3891 {
3892 if (MAX_255(*ptr) && (cd->ctypes[c] & ctype_space) != 0) continue;
3893 if (c == CHAR_NUMBER_SIGN)
3894 {
3895 ptr++;
3896 while (*ptr != 0)
3897 {
3898 if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
3899 ptr++;
3900 #ifdef SUPPORT_UTF
3901 if (utf) FORWARDCHAR(ptr);
3902 #endif
3903 }
3904 if (*ptr != 0) continue;
3905
3906 /* Else fall through to handle end of string */
3907 c = 0;
3908 }
3909 }
3910
3911 /* No auto callout for quantifiers. */
3912
3913 if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier)
3914 {
3915 previous_callout = code;
3916 code = auto_callout(code, ptr, cd);
3917 }
3918
3919 switch(c)
3920 {
3921 /* ===================================================================*/
3922 case 0: /* The branch terminates at string end */
3923 case CHAR_VERTICAL_LINE: /* or | or ) */
3924 case CHAR_RIGHT_PARENTHESIS:
3925 *firstcharptr = firstchar;
3926 *reqcharptr = reqchar;
3927 *codeptr = code;
3928 *ptrptr = ptr;
3929 if (lengthptr != NULL)
3930 {
3931 if (OFLOW_MAX - *lengthptr < code - last_code)
3932 {
3933 *errorcodeptr = ERR20;
3934 goto FAILED;
3935 }
3936 *lengthptr += (int)(code - last_code); /* To include callout length */
3937 DPRINTF((">> end branch\n"));
3938 }
3939 return TRUE;
3940
3941
3942 /* ===================================================================*/
3943 /* Handle single-character metacharacters. In multiline mode, ^ disables
3944 the setting of any following char as a first character. */
3945
3946 case CHAR_CIRCUMFLEX_ACCENT:
3947 previous = NULL;
3948 if ((options & PCRE_MULTILINE) != 0)
3949 {
3950 if (firstchar == REQ_UNSET) firstchar = REQ_NONE;
3951 *code++ = OP_CIRCM;
3952 }
3953 else *code++ = OP_CIRC;
3954 break;
3955
3956 case CHAR_DOLLAR_SIGN:
3957 previous = NULL;
3958 *code++ = ((options & PCRE_MULTILINE) != 0)? OP_DOLLM : OP_DOLL;
3959 break;
3960
3961 /* There can never be a first char if '.' is first, whatever happens about
3962 repeats. The value of reqchar doesn't change either. */
3963
3964 case CHAR_DOT:
3965 if (firstchar == REQ_UNSET) firstchar = REQ_NONE;
3966 zerofirstchar = firstchar;
3967 zeroreqchar = reqchar;
3968 previous = code;
3969 *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY;
3970 break;
3971
3972
3973 /* ===================================================================*/
3974 /* Character classes. If the included characters are all < 256, we build a
3975 32-byte bitmap of the permitted characters, except in the special case
3976 where there is only one such character. For negated classes, we build the
3977 map as usual, then invert it at the end. However, we use a different opcode
3978 so that data characters > 255 can be handled correctly.
3979
3980 If the class contains characters outside the 0-255 range, a different
3981 opcode is compiled. It may optionally have a bit map for characters < 256,
3982 but those above are are explicitly listed afterwards. A flag byte tells
3983 whether the bitmap is present, and whether this is a negated class or not.
3984
3985 In JavaScript compatibility mode, an isolated ']' causes an error. In
3986 default (Perl) mode, it is treated as a data character. */
3987
3988 case CHAR_RIGHT_SQUARE_BRACKET:
3989 if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
3990 {
3991 *errorcodeptr = ERR64;
3992 goto FAILED;
3993 }
3994 goto NORMAL_CHAR;
3995
3996 case CHAR_LEFT_SQUARE_BRACKET:
3997 previous = code;
3998
3999 /* PCRE supports POSIX class stuff inside a class. Perl gives an error if
4000 they are encountered at the top level, so we'll do that too. */
4001
4002 if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
4003 ptr[1] == CHAR_EQUALS_SIGN) &&
4004 check_posix_syntax(ptr, &tempptr))
4005 {
4006 *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31;
4007 goto FAILED;
4008 }
4009
4010 /* If the first character is '^', set the negation flag and skip it. Also,
4011 if the first few characters (either before or after ^) are \Q\E or \E we
4012 skip them too. This makes for compatibility with Perl. */
4013
4014 negate_class = FALSE;
4015 for (;;)
4016 {
4017 c = *(++ptr);
4018 if (c == CHAR_BACKSLASH)
4019 {
4020 if (ptr[1] == CHAR_E)
4021 ptr++;
4022 else if (STRNCMP_UC_C8(ptr + 1, STR_Q STR_BACKSLASH STR_E, 3) == 0)
4023 ptr += 3;
4024 else
4025 break;
4026 }
4027 else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT)
4028 negate_class = TRUE;
4029 else break;
4030 }
4031
4032 /* Empty classes are allowed in JavaScript compatibility mode. Otherwise,
4033 an initial ']' is taken as a data character -- the code below handles
4034 that. In JS mode, [] must always fail, so generate OP_FAIL, whereas
4035 [^] must match any character, so generate OP_ALLANY. */
4036
4037 if (c == CHAR_RIGHT_SQUARE_BRACKET &&
4038 (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
4039 {
4040 *code++ = negate_class? OP_ALLANY : OP_FAIL;
4041 if (firstchar == REQ_UNSET) firstchar = REQ_NONE;
4042 zerofirstchar = firstchar;
4043 break;
4044 }
4045
4046 /* If a class contains a negative special such as \S, we need to flip the
4047 negation flag at the end, so that support for characters > 255 works
4048 correctly (they are all included in the class). */
4049
4050 should_flip_negation = FALSE;
4051
4052 /* For optimization purposes, we track some properties of the class:
4053 class_has_8bitchar will be non-zero if the class contains at least one <
4054 256 character; class_one_char will be 1 if the class contains just one
4055 character. */
4056
4057 class_has_8bitchar = 0;
4058 class_one_char = 0;
4059
4060 /* Initialize the 32-char bit map to all zeros. We build the map in a
4061 temporary bit of memory, in case the class contains fewer than two
4062 8-bit characters because in that case the compiled code doesn't use the bit
4063 map. */
4064
4065 memset(classbits, 0, 32 * sizeof(pcre_uint8));
4066
4067 #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
4068 xclass = FALSE;
4069 class_uchardata = code + LINK_SIZE + 2; /* For XCLASS items */
4070 class_uchardata_base = class_uchardata; /* Save the start */
4071 #endif
4072
4073 /* Process characters until ] is reached. By writing this as a "do" it
4074 means that an initial ] is taken as a data character. At the start of the
4075 loop, c contains the first byte of the character. */
4076
4077 if (c != 0) do
4078 {
4079 const pcre_uchar *oldptr;
4080
4081 #ifdef SUPPORT_UTF
4082 if (utf && HAS_EXTRALEN(c))
4083 { /* Braces are required because the */
4084 GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */
4085 }
4086 #endif
4087
4088 #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
4089 /* In the pre-compile phase, accumulate the length of any extra
4090 data and reset the pointer. This is so that very large classes that
4091 contain a zillion > 255 characters no longer overwrite the work space
4092 (which is on the stack). We have to remember that there was XCLASS data,
4093 however. */
4094
4095 if (lengthptr != NULL && class_uchardata > class_uchardata_base)
4096 {
4097 xclass = TRUE;
4098 *lengthptr += class_uchardata - class_uchardata_base;
4099 class_uchardata = class_uchardata_base;
4100 }
4101 #endif
4102
4103 /* Inside \Q...\E everything is literal except \E */
4104
4105 if (inescq)
4106 {
4107 if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */
4108 {
4109 inescq = FALSE; /* Reset literal state */
4110 ptr++; /* Skip the 'E' */
4111 continue; /* Carry on with next */
4112 }
4113 goto CHECK_RANGE; /* Could be range if \E follows */
4114 }
4115
4116 /* Handle POSIX class names. Perl allows a negation extension of the
4117 form [:^name:]. A square bracket that doesn't match the syntax is
4118 treated as a literal. We also recognize the POSIX constructions
4119 [.ch.] and [=ch=] ("collating elements") and fault them, as Perl
4120 5.6 and 5.8 do. */
4121
4122 if (c == CHAR_LEFT_SQUARE_BRACKET &&
4123 (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
4124 ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr))
4125 {
4126 BOOL local_negate = FALSE;
4127 int posix_class, taboffset, tabopt;
4128 register const pcre_uint8 *cbits = cd->cbits;
4129 pcre_uint8 pbits[32];
4130
4131 if (ptr[1] != CHAR_COLON)
4132 {
4133 *errorcodeptr = ERR31;
4134 goto FAILED;
4135 }
4136
4137 ptr += 2;
4138 if (*ptr == CHAR_CIRCUMFLEX_ACCENT)
4139 {
4140 local_negate = TRUE;
4141 should_flip_negation = TRUE; /* Note negative special */
4142 ptr++;
4143 }
4144
4145 posix_class = check_posix_name(ptr, (int)(tempptr - ptr));
4146 if (posix_class < 0)
4147 {
4148 *errorcodeptr = ERR30;
4149 goto FAILED;
4150 }
4151
4152 /* If matching is caseless, upper and lower are converted to
4153 alpha. This relies on the fact that the class table starts with
4154 alpha, lower, upper as the first 3 entries. */
4155
4156 if ((options & PCRE_CASELESS) != 0 && posix_class <= 2)
4157 posix_class = 0;
4158
4159 /* When PCRE_UCP is set, some of the POSIX classes are converted to
4160 different escape sequences that use Unicode properties. */
4161
4162 #ifdef SUPPORT_UCP
4163 if ((options & PCRE_UCP) != 0)
4164 {
4165 int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0);
4166 if (posix_substitutes[pc] != NULL)
4167 {
4168 nestptr = tempptr + 1;
4169 ptr = posix_substitutes[pc] - 1;
4170 continue;
4171 }
4172 }
4173 #endif
4174 /* In the non-UCP case, we build the bit map for the POSIX class in a
4175 chunk of local store because we may be adding and subtracting from it,
4176 and we don't want to subtract bits that may be in the main map already.
4177 At the end we or the result into the bit map that is being built. */
4178
4179 posix_class *= 3;
4180
4181 /* Copy in the first table (always present) */
4182
4183 memcpy(pbits, cbits + posix_class_maps[posix_class],
4184 32 * sizeof(pcre_uint8));
4185
4186 /* If there is a second table, add or remove it as required. */
4187
4188 taboffset = posix_class_maps[posix_class + 1];
4189 tabopt = posix_class_maps[posix_class + 2];
4190
4191 if (taboffset >= 0)
4192 {
4193 if (tabopt >= 0)
4194 for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset];
4195 else
4196 for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset];
4197 }
4198
4199 /* Now see if we need to remove any special characters. An option
4200 value of 1 removes vertical space and 2 removes underscore. */
4201
4202 if (tabopt < 0) tabopt = -tabopt;
4203 if (tabopt == 1) pbits[1] &= ~0x3c;
4204 else if (tabopt == 2) pbits[11] &= 0x7f;
4205
4206 /* Add the POSIX table or its complement into the main table that is
4207 being built and we are done. */
4208
4209 if (local_negate)
4210 for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c];
4211 else
4212 for (c = 0; c < 32; c++) classbits[c] |= pbits[c];
4213
4214 ptr = tempptr + 1;
4215 /* Every class contains at least one < 256 character. */
4216 class_has_8bitchar = 1;
4217 /* Every class contains at least two characters. */
4218 class_one_char = 2;
4219 continue; /* End of POSIX syntax handling */
4220 }
4221
4222 /* Backslash may introduce a single character, or it may introduce one
4223 of the specials, which just set a flag. The sequence \b is a special
4224 case. Inside a class (and only there) it is treated as backspace. We
4225 assume that other escapes have more than one character in them, so
4226 speculatively set both class_has_8bitchar and class_one_char bigger
4227 than one. Unrecognized escapes fall through and are either treated
4228 as literal characters (by default), or are faulted if
4229 PCRE_EXTRA is set. */
4230
4231 if (c == CHAR_BACKSLASH)
4232 {
4233 c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
4234 if (*errorcodeptr != 0) goto FAILED;
4235
4236 if (-c == ESC_b) c = CHAR_BS; /* \b is backspace in a class */
4237 else if (-c == ESC_N) /* \N is not supported in a class */
4238 {
4239 *errorcodeptr = ERR71;
4240 goto FAILED;
4241 }
4242 else if (-c == ESC_Q) /* Handle start of quoted string */
4243 {
4244 if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
4245 {
4246 ptr += 2; /* avoid empty string */
4247 }
4248 else inescq = TRUE;
4249 continue;
4250 }
4251 else if (-c == ESC_E) continue; /* Ignore orphan \E */
4252
4253 if (c < 0)
4254 {
4255 register const pcre_uint8 *cbits = cd->cbits;
4256 /* Every class contains at least two < 256 characters. */
4257 class_has_8bitchar++;
4258 /* Every class contains at least two characters. */
4259 class_one_char += 2;
4260
4261 switch (-c)
4262 {
4263 #ifdef SUPPORT_UCP
4264 case ESC_du: /* These are the values given for \d etc */
4265 case ESC_DU: /* when PCRE_UCP is set. We replace the */
4266 case ESC_wu: /* escape sequence with an appropriate \p */
4267 case ESC_WU: /* or \P to test Unicode properties instead */
4268 case ESC_su: /* of the default ASCII testing. */
4269 case ESC_SU:
4270 nestptr = ptr;
4271 ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */
4272 class_has_8bitchar--; /* Undo! */
4273 continue;
4274 #endif
4275 case ESC_d:
4276 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit];
4277 continue;
4278
4279 case ESC_D:
4280 should_flip_negation = TRUE;
4281 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit];
4282 continue;
4283
4284 case ESC_w:
4285 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word];
4286 continue;
4287
4288 case ESC_W:
4289 should_flip_negation = TRUE;
4290 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word];
4291 continue;
4292
4293 /* Perl 5.004 onwards omits VT from \s, but we must preserve it
4294 if it was previously set by something earlier in the character
4295 class. Luckily, the value of CHAR_VT is 0x0b in both ASCII and
4296 EBCDIC, so we lazily just adjust the appropriate bit. */
4297
4298 case ESC_s:
4299 classbits[0] |= cbits[cbit_space];
4300 classbits[1] |= cbits[cbit_space+1] & ~0x08;
4301 for (c = 2; c < 32; c++) classbits[c] |= cbits[c+cbit_space];
4302 continue;
4303
4304 case ESC_S:
4305 should_flip_negation = TRUE;
4306 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space];
4307 classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */
4308 continue;
4309
4310 /* The rest apply in both UCP and non-UCP cases. */
4311
4312 case ESC_h:
4313 (void)add_list_to_class(classbits, &class_uchardata, options, cd,
4314 PRIV(hspace_list), NOTACHAR);
4315 continue;
4316
4317 case ESC_H:
4318 (void)add_not_list_to_class(classbits, &class_uchardata, options,
4319 cd, PRIV(hspace_list));
4320 continue;
4321
4322 case ESC_v:
4323 (void)add_list_to_class(classbits, &class_uchardata, options, cd,
4324 PRIV(vspace_list), NOTACHAR);
4325 continue;
4326
4327 case ESC_V:
4328 (void)add_not_list_to_class(classbits, &class_uchardata, options,
4329 cd, PRIV(vspace_list));
4330 continue;
4331
4332 #ifdef SUPPORT_UCP
4333 case ESC_p:
4334 case ESC_P:
4335 {
4336 BOOL negated;
4337 int pdata;
4338 int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
4339 if (ptype < 0) goto FAILED;
4340 *class_uchardata++ = ((-c == ESC_p) != negated)?
4341 XCL_PROP : XCL_NOTPROP;
4342 *class_uchardata++ = ptype;
4343 *class_uchardata++ = pdata;
4344 class_has_8bitchar--; /* Undo! */
4345 continue;
4346 }
4347 #endif
4348 /* Unrecognized escapes are faulted if PCRE is running in its
4349 strict mode. By default, for compatibility with Perl, they are
4350 treated as literals. */
4351
4352 default:
4353 if ((options & PCRE_EXTRA) != 0)
4354 {
4355 *errorcodeptr = ERR7;
4356 goto FAILED;
4357 }
4358 class_has_8bitchar--; /* Undo the speculative increase. */
4359 class_one_char -= 2; /* Undo the speculative increase. */
4360 c = *ptr; /* Get the final character and fall through */
4361 break;
4362 }
4363 }
4364
4365 /* Fall through if the escape just defined a single character (c >= 0).
4366 This may be greater than 256. */
4367
4368 } /* End of backslash handling */
4369
4370 /* A character may be followed by '-' to form a range. However, Perl does
4371 not permit ']' to be the end of the range. A '-' character at the end is
4372 treated as a literal. Perl ignores orphaned \E sequences entirely. The
4373 code for handling \Q and \E is messy. */
4374
4375 CHECK_RANGE:
4376 while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
4377 {
4378 inescq = FALSE;
4379 ptr += 2;
4380 }
4381 oldptr = ptr;
4382
4383 /* Remember if \r or \n were explicitly used */
4384
4385 if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF;
4386
4387 /* Check for range */
4388
4389 if (!inescq && ptr[1] == CHAR_MINUS)
4390 {
4391 int d;
4392 ptr += 2;
4393 while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2;
4394
4395 /* If we hit \Q (not followed by \E) at this point, go into escaped
4396 mode. */
4397
4398 while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q)
4399 {
4400 ptr += 2;
4401 if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E)
4402 { ptr += 2; continue; }
4403 inescq = TRUE;
4404 break;
4405 }
4406
4407 /* Minus (hyphen) at the end of a class is treated as a literal, so put
4408 back the pointer and jump to handle the character that preceded it. */
4409
4410 if (*ptr == 0 || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET))
4411 {
4412 ptr = oldptr;
4413 goto CLASS_SINGLE_CHARACTER;
4414 }
4415
4416 /* Otherwise, we have a potential range; pick up the next character */
4417
4418 #ifdef SUPPORT_UTF
4419 if (utf)
4420 { /* Braces are required because the */
4421 GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */
4422 }
4423 else
4424 #endif
4425 d = *ptr; /* Not UTF-8 mode */
4426
4427 /* The second part of a range can be a single-character escape, but
4428 not any of the other escapes. Perl 5.6 treats a hyphen as a literal
4429 in such circumstances. */
4430
4431 if (!inescq && d == CHAR_BACKSLASH)
4432 {
4433 d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
4434 if (*errorcodeptr != 0) goto FAILED;
4435
4436 /* \b is backspace; any other special means the '-' was literal. */
4437
4438 if (d < 0)
4439 {
4440 if (d == -ESC_b) d = CHAR_BS; else
4441 {
4442 ptr = oldptr;
4443 goto CLASS_SINGLE_CHARACTER; /* A few lines below */
4444 }
4445 }
4446 }
4447
4448 /* Check that the two values are in the correct order. Optimize
4449 one-character ranges. */
4450
4451 if (d < c)
4452 {
4453 *errorcodeptr = ERR8;
4454 goto FAILED;
4455 }
4456 if (d == c) goto CLASS_SINGLE_CHARACTER; /* A few lines below */
4457
4458 /* We have found a character range, so single character optimizations
4459 cannot be done anymore. Any value greater than 1 indicates that there
4460 is more than one character. */
4461
4462 class_one_char = 2;
4463
4464 /* Remember an explicit \r or \n, and add the range to the class. */
4465
4466 if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF;
4467
4468 class_has_8bitchar +=
4469 add_to_class(classbits, &class_uchardata, options, cd, c, d);
4470
4471 continue; /* Go get the next char in the class */
4472 }
4473
4474 /* Handle a single character - we can get here for a normal non-escape
4475 char, or after \ that introduces a single character or for an apparent
4476 range that isn't. Only the value 1 matters for class_one_char, so don't
4477 increase it if it is already 2 or more ... just in case there's a class
4478 with a zillion characters in it. */
4479
4480 CLASS_SINGLE_CHARACTER:
4481 if (class_one_char < 2) class_one_char++;
4482
4483 /* If class_one_char is 1, we have the first single character in the
4484 class, and there have been no prior ranges, or XCLASS items generated by
4485 escapes. If this is the final character in the class, we can optimize by
4486 turning the item into a 1-character OP_CHAR[I] if it's positive, or
4487 OP_NOT[I] if it's negative. In the positive case, it can cause firstchar
4488 to be set. Otherwise, there can be no first char if this item is first,
4489 whatever repeat count may follow. In the case of reqchar, save the
4490 previous value for reinstating. */
4491
4492 if (class_one_char == 1 && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
4493 {
4494 ptr++;
4495 zeroreqchar = reqchar;
4496
4497 if (negate_class)
4498 {
4499 #ifdef SUPPORT_UCP
4500 int d;
4501 #endif
4502 if (firstchar == REQ_UNSET) firstchar = REQ_NONE;
4503 zerofirstchar = firstchar;
4504
4505 /* For caseless UTF-8 mode when UCP support is available, check
4506 whether this character has more than one other case. If so, generate
4507 a special OP_NOTPROP item instead of OP_NOTI. */
4508
4509 #ifdef SUPPORT_UCP
4510 if (utf && (options & PCRE_CASELESS) != 0 &&
4511 (d = UCD_CASESET(c)) != 0)
4512 {
4513 *code++ = OP_NOTPROP;
4514 *code++ = PT_CLIST;
4515 *code++ = d;
4516 }
4517 else
4518 #endif
4519 /* Char has only one other case, or UCP not available */
4520
4521 {
4522 *code++ = ((options & PCRE_CASELESS) != 0)? OP_NOTI: OP_NOT;
4523 #ifdef SUPPORT_UTF
4524 if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR)
4525 code += PRIV(ord2utf)(c, code);
4526 else
4527 #endif
4528 *code++ = c;
4529 }
4530
4531 /* We are finished with this character class */
4532
4533 goto END_CLASS;
4534 }
4535
4536 /* For a single, positive character, get the value into mcbuffer, and
4537 then we can handle this with the normal one-character code. */
4538
4539 #ifdef SUPPORT_UTF
4540 if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR)
4541 mclength = PRIV(ord2utf)(c, mcbuffer);
4542 else
4543 #endif
4544 {
4545 mcbuffer[0] = c;
4546 mclength = 1;
4547 }
4548 goto ONE_CHAR;
4549 } /* End of 1-char optimization */
4550
4551 /* There is more than one character in the class, or an XCLASS item
4552 has been generated. Add this character to the class. */
4553
4554 class_has_8bitchar +=
4555 add_to_class(classbits, &class_uchardata, options, cd, c, c);
4556 }
4557
4558 /* Loop until ']' reached. This "while" is the end of the "do" far above.
4559 If we are at the end of an internal nested string, revert to the outer
4560 string. */
4561
4562 while (((c = *(++ptr)) != 0 ||
4563 (nestptr != NULL &&
4564 (ptr = nestptr, nestptr = NULL, c = *(++ptr)) != 0)) &&
4565 (c != CHAR_RIGHT_SQUARE_BRACKET || inescq));
4566
4567 /* Check for missing terminating ']' */
4568
4569 if (c == 0)
4570 {
4571 *errorcodeptr = ERR6;
4572 goto FAILED;
4573 }
4574
4575 /* We will need an XCLASS if data has been placed in class_uchardata. In
4576 the second phase this is a sufficient test. However, in the pre-compile
4577 phase, class_uchardata gets emptied to prevent workspace overflow, so it
4578 only if the very last character in the class needs XCLASS will it contain
4579 anything at this point. For this reason, xclass gets set TRUE above when
4580 uchar_classdata is emptied, and that's why this code is the way it is here
4581 instead of just doing a test on class_uchardata below. */
4582
4583 #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
4584 if (class_uchardata > class_uchardata_base) xclass = TRUE;
4585 #endif
4586
4587 /* If this is the first thing in the branch, there can be no first char
4588 setting, whatever the repeat count. Any reqchar setting must remain
4589 unchanged after any kind of repeat. */
4590
4591 if (firstchar == REQ_UNSET) firstchar = REQ_NONE;
4592 zerofirstchar = firstchar;
4593 zeroreqchar = reqchar;
4594
4595 /* If there are characters with values > 255, we have to compile an
4596 extended class, with its own opcode, unless there was a negated special
4597 such as \S in the class, and PCRE_UCP is not set, because in that case all
4598 characters > 255 are in the class, so any that were explicitly given as
4599 well can be ignored. If (when there are explicit characters > 255 that must
4600 be listed) there are no characters < 256, we can omit the bitmap in the
4601 actual compiled code. */
4602
4603 #ifdef SUPPORT_UTF
4604 if (xclass && (!should_flip_negation || (options & PCRE_UCP) != 0))
4605 #elif !defined COMPILE_PCRE8
4606 if (xclass && !should_flip_negation)
4607 #endif
4608 #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
4609 {
4610 *class_uchardata++ = XCL_END; /* Marks the end of extra data */
4611 *code++ = OP_XCLASS;
4612 code += LINK_SIZE;
4613 *code = negate_class? XCL_NOT:0;
4614
4615 /* If the map is required, move up the extra data to make room for it;
4616 otherwise just move the code pointer to the end of the extra data. */
4617
4618 if (class_has_8bitchar > 0)
4619 {
4620 *code++ |= XCL_MAP;
4621 memmove(code + (32 / sizeof(pcre_uchar)), code,
4622 IN_UCHARS(class_uchardata - code));
4623 memcpy(code, classbits, 32);
4624 code = class_uchardata + (32 / sizeof(pcre_uchar));
4625 }
4626 else code = class_uchardata;
4627
4628 /* Now fill in the complete length of the item */
4629
4630 PUT(previous, 1, (int)(code - previous));
4631 break; /* End of class handling */
4632 }
4633 #endif
4634
4635 /* If there are no characters > 255, or they are all to be included or
4636 excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the
4637 whole class was negated and whether there were negative specials such as \S
4638 (non-UCP) in the class. Then copy the 32-byte map into the code vector,
4639 negating it if necessary. */
4640
4641 *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS;
4642 if (lengthptr == NULL) /* Save time in the pre-compile phase */
4643 {
4644 if (negate_class)
4645 for (c = 0; c < 32; c++) classbits[c] = ~classbits[c];
4646 memcpy(code, classbits, 32);
4647 }
4648 code += 32 / sizeof(pcre_uchar);
4649
4650 END_CLASS:
4651 break;
4652
4653
4654 /* ===================================================================*/
4655 /* Various kinds of repeat; '{' is not necessarily a quantifier, but this
4656 has been tested above. */
4657
4658 case CHAR_LEFT_CURLY_BRACKET:
4659 if (!is_quantifier) goto NORMAL_CHAR;
4660 ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr);
4661 if (*errorcodeptr != 0) goto FAILED;
4662 goto REPEAT;
4663
4664 case CHAR_ASTERISK:
4665 repeat_min = 0;
4666 repeat_max = -1;
4667 goto REPEAT;
4668
4669 case CHAR_PLUS:
4670 repeat_min = 1;
4671 repeat_max = -1;
4672 goto REPEAT;
4673
4674 case CHAR_QUESTION_MARK:
4675 repeat_min = 0;
4676 repeat_max = 1;
4677
4678 REPEAT:
4679 if (previous == NULL)
4680 {
4681 *errorcodeptr = ERR9;
4682 goto FAILED;
4683 }
4684
4685 if (repeat_min == 0)
4686 {
4687 firstchar = zerofirstchar; /* Adjust for zero repeat */
4688 reqchar = zeroreqchar; /* Ditto */
4689 }
4690
4691 /* Remember whether this is a variable length repeat */
4692
4693 reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY;
4694
4695 op_type = 0; /* Default single-char op codes */
4696 possessive_quantifier = FALSE; /* Default not possessive quantifier */
4697
4698 /* Save start of previous item, in case we have to move it up in order to
4699 insert something before it. */
4700
4701 tempcode = previous;
4702
4703 /* If the next character is '+', we have a possessive quantifier. This
4704 implies greediness, whatever the setting of the PCRE_UNGREEDY option.
4705 If the next character is '?' this is a minimizing repeat, by default,
4706 but if PCRE_UNGREEDY is set, it works the other way round. We change the
4707 repeat type to the non-default. */
4708
4709 if (ptr[1] == CHAR_PLUS)
4710 {
4711 repeat_type = 0; /* Force greedy */
4712 possessive_quantifier = TRUE;
4713 ptr++;
4714 }
4715 else if (ptr[1] == CHAR_QUESTION_MARK)
4716 {
4717 repeat_type = greedy_non_default;
4718 ptr++;
4719 }
4720 else repeat_type = greedy_default;
4721
4722 /* If previous was a recursion call, wrap it in atomic brackets so that
4723 previous becomes the atomic group. All recursions were so wrapped in the
4724 past, but it no longer happens for non-repeated recursions. In fact, the
4725 repeated ones could be re-implemented independently so as not to need this,
4726 but for the moment we rely on the code for repeating groups. */
4727
4728 if (*previous == OP_RECURSE)
4729 {
4730 memmove(previous + 1 + LINK_SIZE, previous, IN_UCHARS(1 + LINK_SIZE));
4731 *previous = OP_ONCE;
4732 PUT(previous, 1, 2 + 2*LINK_SIZE);
4733 previous[2 + 2*LINK_SIZE] = OP_KET;
4734 PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE);
4735 code += 2 + 2 * LINK_SIZE;
4736 length_prevgroup = 3 + 3*LINK_SIZE;
4737
4738 /* When actually compiling, we need to check whether this was a forward
4739 reference, and if so, adjust the offset. */
4740
4741 if (lengthptr == NULL && cd->hwm >= cd->start_workspace + LINK_SIZE)
4742 {
4743 int offset = GET(cd->hwm, -LINK_SIZE);
4744 if (offset == previous + 1 - cd->start_code)
4745 PUT(cd->hwm, -LINK_SIZE, offset + 1 + LINK_SIZE);
4746 }
4747 }
4748
4749 /* Now handle repetition for the different types of item. */
4750
4751 /* If previous was a character or negated character match, abolish the item
4752 and generate a repeat item instead. If a char item has a minimum of more
4753 than one, ensure that it is set in reqchar - it might not be if a sequence
4754 such as x{3} is the first thing in a branch because the x will have gone
4755 into firstchar instead. */
4756
4757 if (*previous == OP_CHAR || *previous == OP_CHARI
4758 || *previous == OP_NOT || *previous == OP_NOTI)
4759 {
4760 switch (*previous)
4761 {
4762 default: /* Make compiler happy. */
4763 case OP_CHAR: op_type = OP_STAR - OP_STAR; break;
4764 case OP_CHARI: op_type = OP_STARI - OP_STAR; break;
4765 case OP_NOT: op_type = OP_NOTSTAR - OP_STAR; break;
4766 case OP_NOTI: op_type = OP_NOTSTARI - OP_STAR; break;
4767 }
4768
4769 /* Deal with UTF characters that take up more than one character. It's
4770 easier to write this out separately than try to macrify it. Use c to
4771 hold the length of the character in bytes, plus UTF_LENGTH to flag that
4772 it's a length rather than a small character. */
4773
4774 #ifdef SUPPORT_UTF
4775 if (utf && NOT_FIRSTCHAR(code[-1]))
4776 {
4777 pcre_uchar *lastchar = code - 1;
4778 BACKCHAR(lastchar);
4779 c = (int)(code - lastchar); /* Length of UTF-8 character */
4780 memcpy(utf_chars, lastchar, IN_UCHARS(c)); /* Save the char */
4781 c |= UTF_LENGTH; /* Flag c as a length */
4782 }
4783 else
4784 #endif /* SUPPORT_UTF */
4785
4786 /* Handle the case of a single charater - either with no UTF support, or
4787 with UTF disabled, or for a single character UTF character. */
4788 {
4789 c = code[-1];
4790 if (*previous <= OP_CHARI && repeat_min > 1)
4791 reqchar = c | req_caseopt | cd->req_varyopt;
4792 }
4793
4794 /* If the repetition is unlimited, it pays to see if the next thing on
4795 the line is something that cannot possibly match this character. If so,
4796 automatically possessifying this item gains some performance in the case
4797 where the match fails. */
4798
4799 if (!possessive_quantifier &&
4800 repeat_max < 0 &&
4801 check_auto_possessive(previous, utf, ptr + 1, options, cd))
4802 {
4803 repeat_type = 0; /* Force greedy */
4804 possessive_quantifier = TRUE;
4805 }
4806
4807 goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
4808 }
4809
4810 /* If previous was a character type match (\d or similar), abolish it and
4811 create a suitable repeat item. The code is shared with single-character
4812 repeats by setting op_type to add a suitable offset into repeat_type. Note
4813 the the Unicode property types will be present only when SUPPORT_UCP is
4814 defined, but we don't wrap the little bits of code here because it just
4815 makes it horribly messy. */
4816
4817 else if (*previous < OP_EODN)
4818 {
4819 pcre_uchar *oldcode;
4820 int prop_type, prop_value;
4821 op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
4822 c = *previous;
4823
4824 if (!possessive_quantifier &&
4825 repeat_max < 0 &&
4826 check_auto_possessive(previous, utf, ptr + 1, options, cd))
4827 {
4828 repeat_type = 0; /* Force greedy */
4829 possessive_quantifier = TRUE;
4830 }
4831
4832 OUTPUT_SINGLE_REPEAT:
4833 if (*previous == OP_PROP || *previous == OP_NOTPROP)
4834 {
4835 prop_type = previous[1];
4836 prop_value = previous[2];
4837 }
4838 else prop_type = prop_value = -1;
4839
4840 oldcode = code;
4841 code = previous; /* Usually overwrite previous item */
4842
4843 /* If the maximum is zero then the minimum must also be zero; Perl allows
4844 this case, so we do too - by simply omitting the item altogether. */
4845
4846 if (repeat_max == 0) goto END_REPEAT;
4847
4848 /*--------------------------------------------------------------------*/
4849 /* This code is obsolete from release 8.00; the restriction was finally
4850 removed: */
4851
4852 /* All real repeats make it impossible to handle partial matching (maybe
4853 one day we will be able to remove this restriction). */
4854
4855 /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */
4856 /*--------------------------------------------------------------------*/
4857
4858 /* Combine the op_type with the repeat_type */
4859
4860 repeat_type += op_type;
4861
4862 /* A minimum of zero is handled either as the special case * or ?, or as
4863 an UPTO, with the maximum given. */
4864
4865 if (repeat_min == 0)
4866 {
4867 if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
4868 else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
4869 else
4870 {
4871 *code++ = OP_UPTO + repeat_type;
4872 PUT2INC(code, 0, repeat_max);
4873 }
4874 }
4875
4876 /* A repeat minimum of 1 is optimized into some special cases. If the
4877 maximum is unlimited, we use OP_PLUS. Otherwise, the original item is
4878 left in place and, if the maximum is greater than 1, we use OP_UPTO with
4879 one less than the maximum. */
4880
4881 else if (repeat_min == 1)
4882 {
4883 if (repeat_max == -1)
4884 *code++ = OP_PLUS + repeat_type;
4885 else
4886 {
4887 code = oldcode; /* leave previous item in place */
4888 if (repeat_max == 1) goto END_REPEAT;
4889 *code++ = OP_UPTO + repeat_type;
4890 PUT2INC(code, 0, repeat_max - 1);
4891 }
4892 }
4893
4894 /* The case {n,n} is just an EXACT, while the general case {n,m} is
4895 handled as an EXACT followed by an UPTO. */
4896
4897 else
4898 {
4899 *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
4900 PUT2INC(code, 0, repeat_min);
4901
4902 /* If the maximum is unlimited, insert an OP_STAR. Before doing so,
4903 we have to insert the character for the previous code. For a repeated
4904 Unicode property match, there are two extra bytes that define the
4905 required property. In UTF-8 mode, long characters have their length in
4906 c, with the UTF_LENGTH bit as a flag. */
4907
4908 if (repeat_max < 0)
4909 {
4910 #ifdef SUPPORT_UTF
4911 if (utf && (c & UTF_LENGTH) != 0)
4912 {
4913 memcpy(code, utf_chars, IN_UCHARS(c & 7));
4914 code += c & 7;
4915 }
4916 else
4917 #endif
4918 {
4919 *code++ = c;
4920 if (prop_type >= 0)
4921 {
4922 *code++ = prop_type;
4923 *code++ = prop_value;
4924 }
4925 }
4926 *code++ = OP_STAR + repeat_type;
4927 }
4928
4929 /* Else insert an UPTO if the max is greater than the min, again
4930 preceded by the character, for the previously inserted code. If the
4931 UPTO is just for 1 instance, we can use QUERY instead. */
4932
4933 else if (repeat_max != repeat_min)
4934 {
4935 #ifdef SUPPORT_UTF
4936 if (utf && (c & UTF_LENGTH) != 0)
4937 {
4938 memcpy(code, utf_chars, IN_UCHARS(c & 7));
4939 code += c & 7;
4940 }
4941 else
4942 #endif
4943 *code++ = c;
4944 if (prop_type >= 0)
4945 {
4946 *code++ = prop_type;
4947 *code++ = prop_value;
4948 }
4949 repeat_max -= repeat_min;
4950
4951 if (repeat_max == 1)
4952 {
4953 *code++ = OP_QUERY + repeat_type;
4954 }
4955 else
4956 {
4957 *code++ = OP_UPTO + repeat_type;
4958 PUT2INC(code, 0, repeat_max);
4959 }
4960 }
4961 }
4962
4963 /* The character or character type itself comes last in all cases. */
4964
4965 #ifdef SUPPORT_UTF
4966 if (utf && (c & UTF_LENGTH) != 0)
4967 {
4968 memcpy(code, utf_chars, IN_UCHARS(c & 7));
4969 code += c & 7;
4970 }
4971 else
4972 #endif
4973 *code++ = c;
4974
4975 /* For a repeated Unicode property match, there are two extra bytes that
4976 define the required property. */
4977
4978 #ifdef SUPPORT_UCP
4979 if (prop_type >= 0)
4980 {
4981 *code++ = prop_type;
4982 *code++ = prop_value;
4983 }
4984 #endif
4985 }
4986
4987 /* If previous was a character class or a back reference, we put the repeat
4988 stuff after it, but just skip the item if the repeat was {0,0}. */
4989
4990 else if (*previous == OP_CLASS ||
4991 *previous == OP_NCLASS ||
4992 #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
4993 *previous == OP_XCLASS ||
4994 #endif
4995 *previous == OP_REF ||
4996 *previous == OP_REFI)
4997 {
4998 if (repeat_max == 0)
4999 {
5000 code = previous;
5001 goto END_REPEAT;
5002 }
5003
5004 /*--------------------------------------------------------------------*/
5005 /* This code is obsolete from release 8.00; the restriction was finally
5006 removed: */
5007
5008 /* All real repeats make it impossible to handle partial matching (maybe
5009 one day we will be able to remove this restriction). */
5010
5011 /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */
5012 /*--------------------------------------------------------------------*/
5013
5014 if (repeat_min == 0 && repeat_max == -1)
5015 *code++ = OP_CRSTAR + repeat_type;
5016 else if (repeat_min == 1 && repeat_max == -1)
5017 *code++ = OP_CRPLUS + repeat_type;
5018 else if (repeat_min == 0 && repeat_max == 1)
5019 *code++ = OP_CRQUERY + repeat_type;
5020 else
5021 {
5022 *code++ = OP_CRRANGE + repeat_type;
5023 PUT2INC(code, 0, repeat_min);
5024 if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
5025 PUT2INC(code, 0, repeat_max);
5026 }
5027 }
5028
5029 /* If previous was a bracket group, we may have to replicate it in certain
5030 cases. Note that at this point we can encounter only the "basic" bracket
5031 opcodes such as BRA and CBRA, as this is the place where they get converted
5032 into the more special varieties such as BRAPOS and SBRA. A test for >=
5033 OP_ASSERT and <= OP_COND includes ASSERT, ASSERT_NOT, ASSERTBACK,
5034 ASSERTBACK_NOT, ONCE, BRA, CBRA, and COND. Originally, PCRE did not allow
5035 repetition of assertions, but now it does, for Perl compatibility. */
5036
5037 else if (*previous >= OP_ASSERT && *previous <= OP_COND)
5038 {
5039 register int i;
5040 int len = (int)(code - previous);
5041 pcre_uchar *bralink = NULL;
5042 pcre_uchar *brazeroptr = NULL;
5043
5044 /* Repeating a DEFINE group is pointless, but Perl allows the syntax, so
5045 we just ignore the repeat. */
5046
5047 if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF)
5048 goto END_REPEAT;
5049
5050 /* There is no sense in actually repeating assertions. The only potential
5051 use of repetition is in cases when the assertion is optional. Therefore,
5052 if the minimum is greater than zero, just ignore the repeat. If the
5053 maximum is not not zero or one, set it to 1. */
5054
5055 if (*previous < OP_ONCE) /* Assertion */
5056 {
5057 if (repeat_min > 0) goto END_REPEAT;
5058 if (repeat_max < 0 || repeat_max > 1) repeat_max = 1;
5059 }
5060
5061 /* The case of a zero minimum is special because of the need to stick
5062 OP_BRAZERO in front of it, and because the group appears once in the
5063 data, whereas in other cases it appears the minimum number of times. For
5064 this reason, it is simplest to treat this case separately, as otherwise
5065 the code gets far too messy. There are several special subcases when the
5066 minimum is zero. */
5067
5068 if (repeat_min == 0)
5069 {
5070 /* If the maximum is also zero, we used to just omit the group from the
5071 output altogether, like this:
5072
5073 ** if (repeat_max == 0)
5074 ** {
5075 ** code = previous;
5076 ** goto END_REPEAT;
5077 ** }
5078
5079 However, that fails when a group or a subgroup within it is referenced
5080 as a subroutine from elsewhere in the pattern, so now we stick in
5081 OP_SKIPZERO in front of it so that it is skipped on execution. As we
5082 don't have a list of which groups are referenced, we cannot do this
5083 selectively.
5084
5085 If the maximum is 1 or unlimited, we just have to stick in the BRAZERO
5086 and do no more at this point. However, we do need to adjust any
5087 OP_RECURSE calls inside the group that refer to the group itself or any
5088 internal or forward referenced group, because the offset is from the
5089 start of the whole regex. Temporarily terminate the pattern while doing
5090 this. */
5091
5092 if (repeat_max <= 1) /* Covers 0, 1, and unlimited */
5093 {
5094 *code = OP_END;
5095 adjust_recurse(previous, 1, utf, cd, save_hwm);
5096 memmove(previous + 1, previous, IN_UCHARS(len));
5097 code++;
5098 if (repeat_max == 0)
5099 {
5100 *previous++ = OP_SKIPZERO;
5101 goto END_REPEAT;
5102 }
5103 brazeroptr = previous; /* Save for possessive optimizing */
5104 *previous++ = OP_BRAZERO + repeat_type;
5105 }
5106
5107 /* If the maximum is greater than 1 and limited, we have to replicate
5108 in a nested fashion, sticking OP_BRAZERO before each set of brackets.
5109 The first one has to be handled carefully because it's the original
5110 copy, which has to be moved up. The remainder can be handled by code
5111 that is common with the non-zero minimum case below. We have to
5112 adjust the value or repeat_max, since one less copy is required. Once
5113 again, we may have to adjust any OP_RECURSE calls inside the group. */
5114
5115 else
5116 {
5117 int offset;
5118 *code = OP_END;
5119 adjust_recurse(previous, 2 + LINK_SIZE, utf, cd, save_hwm);
5120 memmove(previous + 2 + LINK_SIZE, previous, IN_UCHARS(len));
5121 code += 2 + LINK_SIZE;
5122 *previous++ = OP_BRAZERO + repeat_type;
5123 *previous++ = OP_BRA;
5124
5125 /* We chain together the bracket offset fields that have to be
5126 filled in later when the ends of the brackets are reached. */
5127
5128 offset = (bralink == NULL)? 0 : (int)(previous - bralink);
5129 bralink = previous;
5130 PUTINC(previous, 0, offset);
5131 }
5132
5133 repeat_max--;
5134 }
5135
5136 /* If the minimum is greater than zero, replicate the group as many
5137 times as necessary, and adjust the maximum to the number of subsequent
5138 copies that we need. If we set a first char from the group, and didn't
5139 set a required char, copy the latter from the former. If there are any
5140 forward reference subroutine calls in the group, there will be entries on
5141 the workspace list; replicate these with an appropriate increment. */
5142
5143 else
5144 {
5145 if (repeat_min > 1)
5146 {
5147 /* In the pre-compile phase, we don't actually do the replication. We
5148 just adjust the length as if we had. Do some paranoid checks for
5149 potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit
5150 integer type when available, otherwise double. */
5151
5152 if (lengthptr != NULL)
5153 {
5154 int delta = (repeat_min - 1)*length_prevgroup;
5155 if ((INT64_OR_DOUBLE)(repeat_min - 1)*
5156 (INT64_OR_DOUBLE)length_prevgroup >
5157 (INT64_OR_DOUBLE)INT_MAX ||
5158 OFLOW_MAX - *lengthptr < delta)
5159 {
5160 *errorcodeptr = ERR20;
5161 goto FAILED;
5162 }
5163 *lengthptr += delta;
5164 }
5165
5166 /* This is compiling for real. If there is a set first byte for
5167 the group, and we have not yet set a "required byte", set it. Make
5168 sure there is enough workspace for copying forward references before
5169 doing the copy. */
5170
5171 else
5172 {
5173 if (groupsetfirstchar && reqchar < 0) reqchar = firstchar;
5174
5175 for (i = 1; i < repeat_min; i++)
5176 {
5177 pcre_uchar *hc;
5178 pcre_uchar *this_hwm = cd->hwm;
5179 memcpy(code, previous, IN_UCHARS(len));
5180
5181 while (cd->hwm > cd->start_workspace + cd->workspace_size -
5182 WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm))
5183 {
5184 int save_offset = save_hwm - cd->start_workspace;
5185 int this_offset = this_hwm - cd->start_workspace;
5186 *errorcodeptr = expand_workspace(cd);
5187 if (*errorcodeptr != 0) goto FAILED;
5188 save_hwm = (pcre_uchar *)cd->start_workspace + save_offset;
5189 this_hwm = (pcre_uchar *)cd->start_workspace + this_offset;
5190 }
5191
5192 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
5193 {
5194 PUT(cd->hwm, 0, GET(hc, 0) + len);
5195 cd->hwm += LINK_SIZE;
5196 }
5197 save_hwm = this_hwm;
5198 code += len;
5199 }
5200 }
5201 }
5202
5203 if (repeat_max > 0) repeat_max -= repeat_min;
5204 }
5205
5206 /* This code is common to both the zero and non-zero minimum cases. If
5207 the maximum is limited, it replicates the group in a nested fashion,
5208 remembering the bracket starts on a stack. In the case of a zero minimum,
5209 the first one was set up above. In all cases the repeat_max now specifies
5210 the number of additional copies needed. Again, we must remember to
5211 replicate entries on the forward reference list. */
5212
5213 if (repeat_max >= 0)
5214 {
5215 /* In the pre-compile phase, we don't actually do the replication. We
5216 just adjust the length as if we had. For each repetition we must add 1
5217 to the length for BRAZERO and for all but the last repetition we must
5218 add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some
5219 paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is
5220 a 64-bit integer type when available, otherwise double. */
5221
5222 if (lengthptr != NULL && repeat_max > 0)
5223 {
5224 int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) -
5225 2 - 2*LINK_SIZE; /* Last one doesn't nest */
5226 if ((INT64_OR_DOUBLE)repeat_max *
5227 (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE)
5228 > (INT64_OR_DOUBLE)INT_MAX ||
5229 OFLOW_MAX - *lengthptr < delta)
5230 {
5231 *errorcodeptr = ERR20;
5232 goto FAILED;
5233 }
5234 *lengthptr += delta;
5235 }
5236
5237 /* This is compiling for real */
5238
5239 else for (i = repeat_max - 1; i >= 0; i--)
5240 {
5241 pcre_uchar *hc;
5242 pcre_uchar *this_hwm = cd->hwm;
5243
5244 *code++ = OP_BRAZERO + repeat_type;
5245
5246 /* All but the final copy start a new nesting, maintaining the
5247 chain of brackets outstanding. */
5248
5249 if (i != 0)
5250 {
5251 int offset;
5252 *code++ = OP_BRA;
5253 offset = (bralink == NULL)? 0 : (int)(code - bralink);
5254 bralink = code;
5255 PUTINC(code, 0, offset);
5256 }
5257
5258 memcpy(code, previous, IN_UCHARS(len));
5259
5260 /* Ensure there is enough workspace for forward references before
5261 copying them. */
5262
5263 while (cd->hwm > cd->start_workspace + cd->workspace_size -
5264 WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm))
5265 {
5266 int save_offset = save_hwm - cd->start_workspace;
5267 int this_offset = this_hwm - cd->start_workspace;
5268 *errorcodeptr = expand_workspace(cd);
5269 if (*errorcodeptr != 0) goto FAILED;
5270 save_hwm = (pcre_uchar *)cd->start_workspace + save_offset;
5271 this_hwm = (pcre_uchar *)cd->start_workspace + this_offset;
5272 }
5273
5274 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
5275 {
5276 PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1));
5277 cd->hwm += LINK_SIZE;
5278 }
5279 save_hwm = this_hwm;
5280 code += len;
5281 }
5282
5283 /* Now chain through the pending brackets, and fill in their length
5284 fields (which are holding the chain links pro tem). */
5285
5286 while (bralink != NULL)
5287 {
5288 int oldlinkoffset;
5289 int offset = (int)(code - bralink + 1);
5290 pcre_uchar *bra = code - offset;
5291 oldlinkoffset = GET(bra, 1);
5292 bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset;
5293 *code++ = OP_KET;
5294 PUTINC(code, 0, offset);
5295 PUT(bra, 1, offset);
5296 }
5297 }
5298
5299 /* If the maximum is unlimited, set a repeater in the final copy. For
5300 ONCE brackets, that's all we need to do. However, possessively repeated
5301 ONCE brackets can be converted into non-capturing brackets, as the
5302 behaviour of (?:xx)++ is the same as (?>xx)++ and this saves having to
5303 deal with possessive ONCEs specially.
5304
5305 Otherwise, when we are doing the actual compile phase, check to see
5306 whether this group is one that could match an empty string. If so,
5307 convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so
5308 that runtime checking can be done. [This check is also applied to ONCE
5309 groups at runtime, but in a different way.]
5310
5311 Then, if the quantifier was possessive and the bracket is not a
5312 conditional, we convert the BRA code to the POS form, and the KET code to
5313 KETRPOS. (It turns out to be convenient at runtime to detect this kind of
5314 subpattern at both the start and at the end.) The use of special opcodes
5315 makes it possible to reduce greatly the stack usage in pcre_exec(). If
5316 the group is preceded by OP_BRAZERO, convert this to OP_BRAPOSZERO.
5317
5318 Then, if the minimum number of matches is 1 or 0, cancel the possessive
5319 flag so that the default action below, of wrapping everything inside
5320 atomic brackets, does not happen. When the minimum is greater than 1,
5321 there will be earlier copies of the group, and so we still have to wrap
5322 the whole thing. */
5323
5324 else
5325 {
5326 pcre_uchar *ketcode = code - 1 - LINK_SIZE;
5327 pcre_uchar *bracode = ketcode - GET(ketcode, 1);
5328
5329 /* Convert possessive ONCE brackets to non-capturing */
5330
5331 if ((*bracode == OP_ONCE || *bracode == OP_ONCE_NC) &&
5332 possessive_quantifier) *bracode = OP_BRA;
5333
5334 /* For non-possessive ONCE brackets, all we need to do is to
5335 set the KET. */
5336
5337 if (*bracode == OP_ONCE || *bracode == OP_ONCE_NC)
5338 *ketcode = OP_KETRMAX + repeat_type;
5339
5340 /* Handle non-ONCE brackets and possessive ONCEs (which have been
5341 converted to non-capturing above). */
5342
5343 else
5344 {
5345 /* In the compile phase, check for empty string matching. */
5346
5347 if (lengthptr == NULL)
5348 {
5349 pcre_uchar *scode = bracode;
5350 do
5351 {
5352 if (could_be_empty_branch(scode, ketcode, utf, cd))
5353 {
5354 *bracode += OP_SBRA - OP_BRA;
5355 break;
5356 }
5357 scode += GET(scode, 1);
5358 }
5359 while (*scode == OP_ALT);
5360 }
5361
5362 /* Handle possessive quantifiers. */
5363
5364 if (possessive_quantifier)
5365 {
5366 /* For COND brackets, we wrap the whole thing in a possessively
5367 repeated non-capturing bracket, because we have not invented POS
5368 versions of the COND opcodes. Because we are moving code along, we
5369 must ensure that any pending recursive references are updated. */
5370
5371 if (*bracode == OP_COND || *bracode == OP_SCOND)
5372 {
5373 int nlen = (int)(code - bracode);
5374 *code = OP_END;
5375 adjust_recurse(bracode, 1 + LINK_SIZE, utf, cd, save_hwm);
5376 memmove(bracode + 1 + LINK_SIZE, bracode, IN_UCHARS(nlen));
5377 code += 1 + LINK_SIZE;
5378 nlen += 1 + LINK_SIZE;
5379 *bracode = OP_BRAPOS;
5380 *code++ = OP_KETRPOS;
5381 PUTINC(code, 0, nlen);
5382 PUT(bracode, 1, nlen);
5383 }
5384
5385 /* For non-COND brackets, we modify the BRA code and use KETRPOS. */
5386
5387 else
5388 {
5389 *bracode += 1; /* Switch to xxxPOS opcodes */
5390 *ketcode = OP_KETRPOS;
5391 }
5392
5393 /* If the minimum is zero, mark it as possessive, then unset the
5394 possessive flag when the minimum is 0 or 1. */
5395
5396 if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO;
5397 if (repeat_min < 2) possessive_quantifier = FALSE;
5398 }
5399
5400 /* Non-possessive quantifier */
5401
5402 else *ketcode = OP_KETRMAX + repeat_type;
5403 }
5404 }
5405 }
5406
5407 /* If previous is OP_FAIL, it was generated by an empty class [] in
5408 JavaScript mode. The other ways in which OP_FAIL can be generated, that is
5409 by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat"
5410 error above. We can just ignore the repeat in JS case. */
5411
5412 else if (*previous == OP_FAIL) goto END_REPEAT;
5413
5414 /* Else there's some kind of shambles */
5415
5416 else
5417 {
5418 *errorcodeptr = ERR11;
5419 goto FAILED;
5420 }
5421
5422 /* If the character following a repeat is '+', or if certain optimization
5423 tests above succeeded, possessive_quantifier is TRUE. For some opcodes,
5424 there are special alternative opcodes for this case. For anything else, we
5425 wrap the entire repeated item inside OP_ONCE brackets. Logically, the '+'
5426 notation is just syntactic sugar, taken from Sun's Java package, but the
5427 special opcodes can optimize it.
5428
5429 Some (but not all) possessively repeated subpatterns have already been
5430 completely handled in the code just above. For them, possessive_quantifier
5431 is always FALSE at this stage.
5432
5433 Note that the repeated item starts at tempcode, not at previous, which
5434 might be the first part of a string whose (former) last char we repeated.
5435
5436 Possessifying an 'exact' quantifier has no effect, so we can ignore it. But
5437 an 'upto' may follow. We skip over an 'exact' item, and then test the
5438 length of what remains before proceeding. */
5439
5440 if (possessive_quantifier)
5441 {
5442 int len;
5443
5444 if (*tempcode == OP_TYPEEXACT)
5445 tempcode += PRIV(OP_lengths)[*tempcode] +
5446 ((tempcode[1 + IMM2_SIZE] == OP_PROP
5447 || tempcode[1 + IMM2_SIZE] == OP_NOTPROP)? 2 : 0);
5448
5449 else if (*tempcode == OP_EXACT || *tempcode == OP_NOTEXACT)
5450 {
5451 tempcode += PRIV(OP_lengths)[*tempcode];
5452 #ifdef SUPPORT_UTF
5453 if (utf && HAS_EXTRALEN(tempcode[-1]))
5454 tempcode += GET_EXTRALEN(tempcode[-1]);
5455 #endif
5456 }
5457
5458 len = (int)(code - tempcode);
5459 if (len > 0) switch (*tempcode)
5460 {
5461 case OP_STAR: *tempcode = OP_POSSTAR; break;
5462 case OP_PLUS: *tempcode = OP_POSPLUS; break;
5463 case OP_QUERY: *tempcode = OP_POSQUERY; break;
5464 case OP_UPTO: *tempcode = OP_POSUPTO; break;
5465
5466 case OP_STARI: *tempcode = OP_POSSTARI; break;
5467 case OP_PLUSI: *tempcode = OP_POSPLUSI; break;
5468 case OP_QUERYI: *tempcode = OP_POSQUERYI; break;
5469 case OP_UPTOI: *tempcode = OP_POSUPTOI; break;
5470
5471 case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break;
5472 case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break;
5473 case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break;
5474 case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break;
5475
5476 case OP_NOTSTARI: *tempcode = OP_NOTPOSSTARI; break;
5477 case OP_NOTPLUSI: *tempcode = OP_NOTPOSPLUSI; break;
5478 case OP_NOTQUERYI: *tempcode = OP_NOTPOSQUERYI; break;
5479 case OP_NOTUPTOI: *tempcode = OP_NOTPOSUPTOI; break;
5480
5481 case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break;
5482 case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break;
5483 case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break;
5484 case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break;
5485
5486 /* Because we are moving code along, we must ensure that any
5487 pending recursive references are updated. */
5488
5489 default:
5490 *code = OP_END;
5491 adjust_recurse(tempcode, 1 + LINK_SIZE, utf, cd, save_hwm);
5492 memmove(tempcode + 1 + LINK_SIZE, tempcode, IN_UCHARS(len));
5493 code += 1 + LINK_SIZE;
5494 len += 1 + LINK_SIZE;
5495 tempcode[0] = OP_ONCE;
5496 *code++ = OP_KET;
5497 PUTINC(code, 0, len);
5498 PUT(tempcode, 1, len);
5499 break;
5500 }
5501 }
5502
5503 /* In all case we no longer have a previous item. We also set the
5504 "follows varying string" flag for subsequently encountered reqchars if
5505 it isn't already set and we have just passed a varying length item. */
5506
5507 END_REPEAT:
5508 previous = NULL;
5509 cd->req_varyopt |= reqvary;
5510 break;
5511
5512
5513 /* ===================================================================*/
5514 /* Start of nested parenthesized sub-expression, or comment or lookahead or
5515 lookbehind or option setting or condition or all the other extended
5516 parenthesis forms. */
5517
5518 case CHAR_LEFT_PARENTHESIS:
5519 newoptions = options;
5520 skipbytes = 0;
5521 bravalue = OP_CBRA;
5522 save_hwm = cd->hwm;
5523 reset_bracount = FALSE;
5524
5525 /* First deal with various "verbs" that can be introduced by '*'. */
5526
5527 ptr++;
5528 if (ptr[0] == CHAR_ASTERISK && (ptr[1] == ':'
5529 || (MAX_255(ptr[1]) && ((cd->ctypes[ptr[1]] & ctype_letter) != 0))))
5530 {
5531 int i, namelen;
5532 int arglen = 0;
5533 const char *vn = verbnames;
5534 const pcre_uchar *name = ptr + 1;
5535 const pcre_uchar *arg = NULL;
5536 previous = NULL;
5537 ptr++;
5538 while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_letter) != 0) ptr++;
5539 namelen = (int)(ptr - name);
5540
5541 /* It appears that Perl allows any characters whatsoever, other than
5542 a closing parenthesis, to appear in arguments, so we no longer insist on
5543 letters, digits, and underscores. */
5544
5545 if (*ptr == CHAR_COLON)
5546 {
5547 arg = ++ptr;
5548 while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
5549 arglen = (int)(ptr - arg);
5550 if (arglen > (int)MAX_MARK)
5551 {
5552 *errorcodeptr = ERR75;
5553 goto FAILED;
5554 }
5555 }
5556
5557 if (*ptr != CHAR_RIGHT_PARENTHESIS)
5558 {
5559 *errorcodeptr = ERR60;
5560 goto FAILED;
5561 }
5562
5563 /* Scan the table of verb names */
5564
5565 for (i = 0; i < verbcount; i++)
5566 {
5567 if (namelen == verbs[i].len &&
5568 STRNCMP_UC_C8(name, vn, namelen) == 0)
5569 {
5570 int setverb;
5571
5572 /* Check for open captures before ACCEPT and convert it to
5573 ASSERT_ACCEPT if in an assertion. */
5574
5575 if (verbs[i].op == OP_ACCEPT)
5576 {
5577 open_capitem *oc;
5578 if (arglen != 0)
5579 {
5580 *errorcodeptr = ERR59;
5581 goto FAILED;
5582 }
5583 cd->had_accept = TRUE;
5584 for (oc = cd->open_caps; oc != NULL; oc = oc->next)
5585 {
5586 *code++ = OP_CLOSE;
5587 PUT2INC(code, 0, oc->number);
5588 }
5589 setverb = *code++ =
5590 (cd->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT;
5591
5592 /* Do not set firstchar after *ACCEPT */
5593 if (firstchar == REQ_UNSET) firstchar = REQ_NONE;
5594 }
5595
5596 /* Handle other cases with/without an argument */
5597
5598 else if (arglen == 0)
5599 {
5600 if (verbs[i].op < 0) /* Argument is mandatory */
5601 {
5602 *errorcodeptr = ERR66;
5603 goto FAILED;
5604 }
5605 setverb = *code++ = verbs[i].op;
5606 }
5607
5608 else
5609 {
5610 if (verbs[i].op_arg < 0) /* Argument is forbidden */
5611 {
5612 *errorcodeptr = ERR59;
5613 goto FAILED;
5614 }
5615 setverb = *code++ = verbs[i].op_arg;
5616 *code++ = arglen;
5617 memcpy(code, arg, IN_UCHARS(arglen));
5618 code += arglen;
5619 *code++ = 0;
5620 }
5621
5622 switch (setverb)
5623 {
5624 case OP_THEN:
5625 case OP_THEN_ARG:
5626 cd->external_flags |= PCRE_HASTHEN;
5627 break;
5628
5629 case OP_PRUNE:
5630 case OP_PRUNE_ARG:
5631 case OP_SKIP:
5632 case OP_SKIP_ARG:
5633 cd->had_pruneorskip = TRUE;
5634 break;
5635 }
5636
5637 break; /* Found verb, exit loop */
5638 }
5639
5640 vn += verbs[i].len + 1;
5641 }
5642
5643 if (i < verbcount) continue; /* Successfully handled a verb */
5644 *errorcodeptr = ERR60; /* Verb not recognized */
5645 goto FAILED;
5646 }
5647
5648 /* Deal with the extended parentheses; all are introduced by '?', and the
5649 appearance of any of them means that this is not a capturing group. */
5650
5651 else if (*ptr == CHAR_QUESTION_MARK)
5652 {
5653 int i, set, unset, namelen;
5654 int *optset;
5655 const pcre_uchar *name;
5656 pcre_uchar *slot;
5657
5658 switch (*(++ptr))
5659 {
5660 case CHAR_NUMBER_SIGN: /* Comment; skip to ket */
5661 ptr++;
5662 while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
5663 if (*ptr == 0)
5664 {
5665 *errorcodeptr = ERR18;
5666 goto FAILED;
5667 }
5668 continue;
5669
5670
5671 /* ------------------------------------------------------------ */
5672 case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */
5673 reset_bracount = TRUE;
5674 /* Fall through */
5675
5676 /* ------------------------------------------------------------ */
5677 case CHAR_COLON: /* Non-capturing bracket */
5678 bravalue = OP_BRA;
5679 ptr++;
5680 break;
5681
5682
5683 /* ------------------------------------------------------------ */
5684 case CHAR_LEFT_PARENTHESIS:
5685 bravalue = OP_COND; /* Conditional group */
5686
5687 /* A condition can be an assertion, a number (referring to a numbered
5688 group), a name (referring to a named group), or 'R', referring to
5689 recursion. R<digits> and R&name are also permitted for recursion tests.
5690
5691 There are several syntaxes for testing a named group: (?(name)) is used
5692 by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')).
5693
5694 There are two unfortunate ambiguities, caused by history. (a) 'R' can
5695 be the recursive thing or the name 'R' (and similarly for 'R' followed
5696 by digits), and (b) a number could be a name that consists of digits.
5697 In both cases, we look for a name first; if not found, we try the other
5698 cases. */
5699
5700 /* For conditions that are assertions, check the syntax, and then exit
5701 the switch. This will take control down to where bracketed groups,
5702 including assertions, are processed. */
5703
5704 if (ptr[1] == CHAR_QUESTION_MARK && (ptr[2] == CHAR_EQUALS_SIGN ||
5705 ptr[2] == CHAR_EXCLAMATION_MARK || ptr[2] == CHAR_LESS_THAN_SIGN))
5706 break;
5707
5708 /* Most other conditions use OP_CREF (a couple change to OP_RREF
5709 below), and all need to skip 1+IMM2_SIZE bytes at the start of the group. */
5710
5711 code[1+LINK_SIZE] = OP_CREF;
5712 skipbytes = 1+IMM2_SIZE;
5713 refsign = -1;
5714
5715 /* Check for a test for recursion in a named group. */
5716
5717 if (ptr[1] == CHAR_R && ptr[2] == CHAR_AMPERSAND)
5718 {
5719 terminator = -1;
5720 ptr += 2;
5721 code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */
5722 }
5723
5724 /* Check for a test for a named group's having been set, using the Perl
5725 syntax (?(<name>) or (?('name') */
5726
5727 else if (ptr[1] == CHAR_LESS_THAN_SIGN)
5728 {
5729 terminator = CHAR_GREATER_THAN_SIGN;
5730 ptr++;
5731 }
5732 else if (ptr[1] == CHAR_APOSTROPHE)
5733 {
5734 terminator = CHAR_APOSTROPHE;
5735 ptr++;
5736 }
5737 else
5738 {
5739 terminator = 0;
5740 if (ptr[1] == CHAR_MINUS || ptr[1] == CHAR_PLUS) refsign = *(++ptr);
5741 }
5742
5743 /* We now expect to read a name; any thing else is an error */
5744
5745 if (!MAX_255(ptr[1]) || (cd->ctypes[ptr[1]] & ctype_word) == 0)
5746 {
5747 ptr += 1; /* To get the right offset */
5748 *errorcodeptr = ERR28;
5749 goto FAILED;
5750 }
5751
5752 /* Read the name, but also get it as a number if it's all digits */
5753
5754 recno = 0;
5755 name = ++ptr;
5756 while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0)
5757 {
5758 if (recno >= 0)
5759 recno = (IS_DIGIT(*ptr))? recno * 10 + *ptr - CHAR_0 : -1;
5760 ptr++;
5761 }
5762 namelen = (int)(ptr - name);
5763
5764 if ((terminator > 0 && *ptr++ != terminator) ||
5765 *ptr++ != CHAR_RIGHT_PARENTHESIS)
5766 {
5767 ptr--; /* Error offset */
5768 *errorcodeptr = ERR26;
5769 goto FAILED;
5770 }
5771
5772 /* Do no further checking in the pre-compile phase. */
5773
5774 if (lengthptr != NULL) break;
5775
5776 /* In the real compile we do the work of looking for the actual
5777 reference. If the string started with "+" or "-" we require the rest to
5778 be digits, in which case recno will be set. */
5779
5780 if (refsign > 0)
5781 {
5782 if (recno <= 0)
5783 {
5784 *errorcodeptr = ERR58;
5785 goto FAILED;
5786 }
5787 recno = (refsign == CHAR_MINUS)?
5788 cd->bracount - recno + 1 : recno +cd->bracount;
5789 if (recno <= 0 || recno > cd->final_bracount)
5790 {
5791 *errorcodeptr = ERR15;
5792 goto FAILED;
5793 }
5794 PUT2(code, 2+LINK_SIZE, recno);
5795 break;
5796 }
5797
5798 /* Otherwise (did not start with "+" or "-"), start by looking for the
5799 name. If we find a name, add one to the opcode to change OP_CREF or
5800 OP_RREF into OP_NCREF or OP_NRREF. These behave exactly the same,
5801 except they record that the reference was originally to a name. The
5802 information is used to check duplicate names. */
5803
5804 slot = cd->name_table;
5805 for (i = 0; i < cd->names_found; i++)
5806 {
5807 if (STRNCMP_UC_UC(name, slot+IMM2_SIZE, namelen) == 0) break;
5808 slot += cd->name_entry_size;
5809 }
5810
5811 /* Found a previous named subpattern */
5812
5813 if (i < cd->names_found)
5814 {
5815 recno = GET2(slot, 0);
5816 PUT2(code, 2+LINK_SIZE, recno);
5817 code[1+LINK_SIZE]++;
5818 }
5819
5820 /* Search the pattern for a forward reference */
5821
5822 else if ((i = find_parens(cd, name, namelen,
5823 (options & PCRE_EXTENDED) != 0, utf)) > 0)
5824 {
5825 PUT2(code, 2+LINK_SIZE, i);
5826 code[1+LINK_SIZE]++;
5827 }
5828
5829 /* If terminator == 0 it means that the name followed directly after
5830 the opening parenthesis [e.g. (?(abc)...] and in this case there are
5831 some further alternatives to try. For the cases where terminator != 0
5832 [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have
5833 now checked all the possibilities, so give an error. */
5834
5835 else if (terminator != 0)
5836 {
5837 *errorcodeptr = ERR15;
5838 goto FAILED;
5839 }
5840
5841 /* Check for (?(R) for recursion. Allow digits after R to specify a
5842 specific group number. */
5843
5844 else if (*name == CHAR_R)
5845 {
5846 recno = 0;
5847 for (i = 1; i < namelen; i++)
5848 {
5849 if (!IS_DIGIT(name[i]))
5850 {
5851 *errorcodeptr = ERR15;
5852 goto FAILED;
5853 }
5854 recno = recno * 10 + name[i] - CHAR_0;
5855 }
5856 if (recno == 0) recno = RREF_ANY;
5857 code[1+LINK_SIZE] = OP_RREF; /* Change test type */
5858 PUT2(code, 2+LINK_SIZE, recno);
5859 }
5860
5861 /* Similarly, check for the (?(DEFINE) "condition", which is always
5862 false. */
5863
5864 else if (namelen == 6 && STRNCMP_UC_C8(name, STRING_DEFINE, 6) == 0)
5865 {
5866 code[1+LINK_SIZE] = OP_DEF;
5867 skipbytes = 1;
5868 }
5869
5870 /* Check for the "name" actually being a subpattern number. We are
5871 in the second pass here, so final_bracount is set. */
5872
5873 else if (recno > 0 && recno <= cd->final_bracount)
5874 {
5875 PUT2(code, 2+LINK_SIZE, recno);
5876 }
5877
5878 /* Either an unidentified subpattern, or a reference to (?(0) */
5879
5880 else
5881 {
5882 *errorcodeptr = (recno == 0)? ERR35: ERR15;
5883 goto FAILED;
5884 }
5885 break;
5886
5887
5888 /* ------------------------------------------------------------ */
5889 case CHAR_EQUALS_SIGN: /* Positive lookahead */
5890 bravalue = OP_ASSERT;
5891 cd->assert_depth += 1;
5892 ptr++;
5893 break;
5894
5895
5896 /* ------------------------------------------------------------ */
5897 case CHAR_EXCLAMATION_MARK: /* Negative lookahead */
5898 ptr++;
5899 if (*ptr == CHAR_RIGHT_PARENTHESIS) /* Optimize (?!) */
5900 {
5901 *code++ = OP_FAIL;
5902 previous = NULL;
5903 continue;
5904 }
5905 bravalue = OP_ASSERT_NOT;
5906 cd->assert_depth += 1;
5907 break;
5908
5909
5910 /* ------------------------------------------------------------ */
5911 case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */
5912 switch (ptr[1])
5913 {
5914 case CHAR_EQUALS_SIGN: /* Positive lookbehind */
5915 bravalue = OP_ASSERTBACK;
5916 cd->assert_depth += 1;
5917 ptr += 2;
5918 break;
5919
5920 case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */
5921 bravalue = OP_ASSERTBACK_NOT;
5922 cd->assert_depth += 1;
5923 ptr += 2;
5924 break;
5925
5926 default: /* Could be name define, else bad */
5927 if (MAX_255(ptr[1]) && (cd->ctypes[ptr[1]] & ctype_word) != 0)
5928 goto DEFINE_NAME;
5929 ptr++; /* Correct offset for error */
5930 *errorcodeptr = ERR24;
5931 goto FAILED;
5932 }
5933 break;
5934
5935
5936 /* ------------------------------------------------------------ */
5937 case CHAR_GREATER_THAN_SIGN: /* One-time brackets */
5938 bravalue = OP_ONCE;
5939 ptr++;
5940 break;
5941
5942
5943 /* ------------------------------------------------------------ */
5944 case CHAR_C: /* Callout - may be followed by digits; */
5945 previous_callout = code; /* Save for later completion */
5946 after_manual_callout = 1; /* Skip one item before completing */
5947 *code++ = OP_CALLOUT;
5948 {
5949 int n = 0;
5950 ptr++;
5951 while(IS_DIGIT(*ptr))
5952 n = n * 10 + *ptr++ - CHAR_0;
5953 if (*ptr != CHAR_RIGHT_PARENTHESIS)
5954 {
5955 *errorcodeptr = ERR39;
5956 goto FAILED;
5957 }
5958 if (n > 255)
5959 {
5960 *errorcodeptr = ERR38;
5961 goto FAILED;
5962 }
5963 *code++ = n;
5964 PUT(code, 0, (int)(ptr - cd->start_pattern + 1)); /* Pattern offset */
5965 PUT(code, LINK_SIZE, 0); /* Default length */
5966 code += 2 * LINK_SIZE;
5967 }
5968 previous = NULL;
5969 continue;
5970
5971
5972 /* ------------------------------------------------------------ */
5973 case CHAR_P: /* Python-style named subpattern handling */
5974 if (*(++ptr) == CHAR_EQUALS_SIGN ||
5975 *ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */
5976 {
5977 is_recurse = *ptr == CHAR_GREATER_THAN_SIGN;
5978 terminator = CHAR_RIGHT_PARENTHESIS;
5979 goto NAMED_REF_OR_RECURSE;
5980 }
5981 else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */
5982 {
5983 *errorcodeptr = ERR41;
5984 goto FAILED;
5985 }
5986 /* Fall through to handle (?P< as (?< is handled */
5987
5988
5989 /* ------------------------------------------------------------ */
5990 DEFINE_NAME: /* Come here from (?< handling */
5991 case CHAR_APOSTROPHE:
5992 {
5993 terminator = (*ptr == CHAR_LESS_THAN_SIGN)?
5994 CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE;
5995 name = ++ptr;
5996
5997 while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
5998 namelen = (int)(ptr - name);
5999
6000 /* In the pre-compile phase, just do a syntax check. */
6001
6002 if (lengthptr != NULL)
6003 {
6004 if (*ptr != terminator)
6005 {
6006 *errorcodeptr = ERR42;
6007 goto FAILED;
6008 }
6009 if (cd->names_found >= MAX_NAME_COUNT)
6010 {
6011 *errorcodeptr = ERR49;
6012 goto FAILED;
6013 }
6014 if (namelen + IMM2_SIZE + 1 > cd->name_entry_size)
6015 {
6016 cd->name_entry_size = namelen + IMM2_SIZE + 1;
6017 if (namelen > MAX_NAME_SIZE)
6018 {
6019 *errorcodeptr = ERR48;
6020 goto FAILED;
6021 }
6022 }
6023 }
6024
6025 /* In the real compile, create the entry in the table, maintaining
6026 alphabetical order. Duplicate names for different numbers are
6027 permitted only if PCRE_DUPNAMES is set. Duplicate names for the same
6028 number are always OK. (An existing number can be re-used if (?|
6029 appears in the pattern.) In either event, a duplicate name results in
6030 a duplicate entry in the table, even if the number is the same. This
6031 is because the number of names, and hence the table size, is computed
6032 in the pre-compile, and it affects various numbers and pointers which
6033 would all have to be modified, and the compiled code moved down, if
6034 duplicates with the same number were omitted from the table. This
6035 doesn't seem worth the hassle. However, *different* names for the
6036 same number are not permitted. */
6037
6038 else
6039 {
6040 BOOL dupname = FALSE;
6041 slot = cd->name_table;
6042
6043 for (i = 0; i < cd->names_found; i++)
6044 {
6045 int crc = memcmp(name, slot+IMM2_SIZE, IN_UCHARS(namelen));
6046 if (crc == 0)
6047 {
6048 if (slot[IMM2_SIZE+namelen] == 0)
6049 {
6050 if (GET2(slot, 0) != cd->bracount + 1 &&
6051 (options & PCRE_DUPNAMES) == 0)
6052 {
6053 *errorcodeptr = ERR43;
6054 goto FAILED;
6055 }
6056 else dupname = TRUE;
6057 }
6058 else crc = -1; /* Current name is a substring */
6059 }
6060
6061 /* Make space in the table and break the loop for an earlier
6062 name. For a duplicate or later name, carry on. We do this for
6063 duplicates so that in the simple case (when ?(| is not used) they
6064 are in order of their numbers. */
6065
6066 if (crc < 0)
6067 {
6068 memmove(slot + cd->name_entry_size, slot,
6069 IN_UCHARS((cd->names_found - i) * cd->name_entry_size));
6070 break;
6071 }
6072
6073 /* Continue the loop for a later or duplicate name */
6074
6075 slot += cd->name_entry_size;
6076 }
6077
6078 /* For non-duplicate names, check for a duplicate number before
6079 adding the new name. */
6080
6081 if (!dupname)
6082 {
6083 pcre_uchar *cslot = cd->name_table;
6084 for (i = 0; i < cd->names_found; i++)
6085 {
6086 if (cslot != slot)
6087 {
6088 if (GET2(cslot, 0) == cd->bracount + 1)
6089 {
6090 *errorcodeptr = ERR65;
6091 goto FAILED;
6092 }
6093 }
6094 else i--;
6095 cslot += cd->name_entry_size;
6096 }
6097 }
6098
6099 PUT2(slot, 0, cd->bracount + 1);
6100 memcpy(slot + IMM2_SIZE, name, IN_UCHARS(namelen));
6101 slot[IMM2_SIZE + namelen] = 0;
6102 }
6103 }
6104
6105 /* In both pre-compile and compile, count the number of names we've
6106 encountered. */
6107
6108 cd->names_found++;
6109 ptr++; /* Move past > or ' */
6110 goto NUMBERED_GROUP;
6111
6112
6113 /* ------------------------------------------------------------ */
6114 case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */
6115 terminator = CHAR_RIGHT_PARENTHESIS;
6116 is_recurse = TRUE;
6117 /* Fall through */
6118
6119 /* We come here from the Python syntax above that handles both
6120 references (?P=name) and recursion (?P>name), as well as falling
6121 through from the Perl recursion syntax (?&name). We also come here from
6122 the Perl \k<name> or \k'name' back reference syntax and the \k{name}
6123 .NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */
6124
6125 NAMED_REF_OR_RECURSE:
6126 name = ++ptr;
6127 while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
6128 namelen = (int)(ptr - name);
6129
6130 /* In the pre-compile phase, do a syntax check. We used to just set
6131 a dummy reference number, because it was not used in the first pass.
6132 However, with the change of recursive back references to be atomic,
6133 we have to look for the number so that this state can be identified, as
6134 otherwise the incorrect length is computed. If it's not a backwards
6135 reference, the dummy number will do. */
6136
6137 if (lengthptr != NULL)
6138 {
6139 const pcre_uchar *temp;
6140
6141 if (namelen == 0)
6142 {
6143 *errorcodeptr = ERR62;
6144 goto FAILED;
6145 }
6146 if (*ptr != terminator)
6147 {
6148 *errorcodeptr = ERR42;
6149 goto FAILED;
6150 }
6151 if (namelen > MAX_NAME_SIZE)
6152 {
6153 *errorcodeptr = ERR48;
6154 goto FAILED;
6155 }
6156
6157 /* The name table does not exist in the first pass, so we cannot
6158 do a simple search as in the code below. Instead, we have to scan the
6159 pattern to find the number. It is important that we scan it only as
6160 far as we have got because the syntax of named subpatterns has not
6161 been checked for the rest of the pattern, and find_parens() assumes
6162 correct syntax. In any case, it's a waste of resources to scan
6163 further. We stop the scan at the current point by temporarily
6164 adjusting the value of cd->endpattern. */
6165
6166 temp = cd->end_pattern;
6167 cd->end_pattern = ptr;
6168 recno = find_parens(cd, name, namelen,
6169 (options & PCRE_EXTENDED) != 0, utf);
6170 cd->end_pattern = temp;
6171 if (recno < 0) recno = 0; /* Forward ref; set dummy number */
6172 }
6173
6174 /* In the real compile, seek the name in the table. We check the name
6175 first, and then check that we have reached the end of the name in the
6176 table. That way, if the name that is longer than any in the table,
6177 the comparison will fail without reading beyond the table entry. */
6178
6179 else
6180 {
6181 slot = cd->name_table;
6182 for (i = 0; i < cd->names_found; i++)
6183 {
6184 if (STRNCMP_UC_UC(name, slot+IMM2_SIZE, namelen) == 0 &&
6185 slot[IMM2_SIZE+namelen] == 0)
6186 break;
6187 slot += cd->name_entry_size;
6188 }
6189
6190 if (i < cd->names_found) /* Back reference */
6191 {
6192 recno = GET2(slot, 0);
6193 }
6194 else if ((recno = /* Forward back reference */
6195 find_parens(cd, name, namelen,
6196 (options & PCRE_EXTENDED) != 0, utf)) <= 0)
6197 {
6198 *errorcodeptr = ERR15;
6199 goto FAILED;
6200 }
6201 }
6202
6203 /* In both phases, we can now go to the code than handles numerical
6204 recursion or backreferences. */
6205
6206 if (is_recurse) goto HANDLE_RECURSION;
6207 else goto HANDLE_REFERENCE;
6208
6209
6210 /* ------------------------------------------------------------ */
6211 case CHAR_R: /* Recursion */
6212 ptr++; /* Same as (?0) */
6213 /* Fall through */
6214
6215
6216 /* ------------------------------------------------------------ */
6217 case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */
6218 case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4:
6219 case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
6220 {
6221 const pcre_uchar *called;
6222 terminator = CHAR_RIGHT_PARENTHESIS;
6223
6224 /* Come here from the \g<...> and \g'...' code (Oniguruma
6225 compatibility). However, the syntax has been checked to ensure that
6226 the ... are a (signed) number, so that neither ERR63 nor ERR29 will
6227 be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY
6228 ever be taken. */
6229
6230 HANDLE_NUMERICAL_RECURSION:
6231
6232 if ((refsign = *ptr) == CHAR_PLUS)
6233 {
6234 ptr++;
6235 if (!IS_DIGIT(*ptr))
6236 {
6237 *errorcodeptr = ERR63;
6238 goto FAILED;
6239 }
6240 }
6241 else if (refsign == CHAR_MINUS)
6242 {
6243 if (!IS_DIGIT(ptr[1]))
6244 goto OTHER_CHAR_AFTER_QUERY;
6245 ptr++;
6246 }
6247
6248 recno = 0;
6249 while(IS_DIGIT(*ptr))
6250 recno = recno * 10 + *ptr++ - CHAR_0;
6251
6252 if (*ptr != terminator)
6253 {
6254 *errorcodeptr = ERR29;
6255 goto FAILED;
6256 }
6257
6258 if (refsign == CHAR_MINUS)
6259 {
6260 if (recno == 0)
6261 {
6262 *errorcodeptr = ERR58;
6263 goto FAILED;
6264 }
6265 recno = cd->bracount - recno + 1;
6266 if (recno <= 0)
6267 {
6268 *errorcodeptr = ERR15;
6269 goto FAILED;
6270 }
6271 }
6272 else if (refsign == CHAR_PLUS)
6273 {
6274 if (recno == 0)
6275 {
6276 *errorcodeptr = ERR58;
6277 goto FAILED;
6278 }
6279 recno += cd->bracount;
6280 }
6281
6282 /* Come here from code above that handles a named recursion */
6283
6284 HANDLE_RECURSION:
6285
6286 previous = code;
6287 called = cd->start_code;
6288
6289 /* When we are actually compiling, find the bracket that is being
6290 referenced. Temporarily end the regex in case it doesn't exist before
6291 this point. If we end up with a forward reference, first check that
6292 the bracket does occur later so we can give the error (and position)
6293 now. Then remember this forward reference in the workspace so it can
6294 be filled in at the end. */
6295
6296 if (lengthptr == NULL)
6297 {
6298 *code = OP_END;
6299 if (recno != 0)
6300 called = PRIV(find_bracket)(cd->start_code, utf, recno);
6301
6302 /* Forward reference */
6303
6304 if (called == NULL)
6305 {
6306 if (find_parens(cd, NULL, recno,
6307 (options & PCRE_EXTENDED) != 0, utf) < 0)
6308 {
6309 *errorcodeptr = ERR15;
6310 goto FAILED;
6311 }
6312
6313 /* Fudge the value of "called" so that when it is inserted as an
6314 offset below, what it actually inserted is the reference number
6315 of the group. Then remember the forward reference. */
6316
6317 called = cd->start_code + recno;
6318 if (cd->hwm >= cd->start_workspace + cd->workspace_size -
6319 WORK_SIZE_SAFETY_MARGIN)
6320 {
6321 *errorcodeptr = expand_workspace(cd);
6322 if (*errorcodeptr != 0) goto FAILED;
6323 }
6324 PUTINC(cd->hwm, 0, (int)(code + 1 - cd->start_code));
6325 }
6326
6327 /* If not a forward reference, and the subpattern is still open,
6328 this is a recursive call. We check to see if this is a left
6329 recursion that could loop for ever, and diagnose that case. We
6330 must not, however, do this check if we are in a conditional
6331 subpattern because the condition might be testing for recursion in
6332 a pattern such as /(?(R)a+|(?R)b)/, which is perfectly valid.
6333 Forever loops are also detected at runtime, so those that occur in
6334 conditional subpatterns will be picked up then. */
6335
6336 else if (GET(called, 1) == 0 && cond_depth <= 0 &&
6337 could_be_empty(called, code, bcptr, utf, cd))
6338 {
6339 *errorcodeptr = ERR40;
6340 goto FAILED;
6341 }
6342 }
6343
6344 /* Insert the recursion/subroutine item. It does not have a set first
6345 character (relevant if it is repeated, because it will then be
6346 wrapped with ONCE brackets). */
6347
6348 *code = OP_RECURSE;
6349 PUT(code, 1, (int)(called - cd->start_code));
6350 code += 1 + LINK_SIZE;
6351 groupsetfirstchar = FALSE;
6352 }
6353
6354 /* Can't determine a first byte now */
6355
6356 if (firstchar == REQ_UNSET) firstchar = REQ_NONE;
6357 continue;
6358
6359
6360 /* ------------------------------------------------------------ */
6361 default: /* Other characters: check option setting */
6362 OTHER_CHAR_AFTER_QUERY:
6363 set = unset = 0;
6364 optset = &set;
6365
6366 while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON)
6367 {
6368 switch (*ptr++)
6369 {
6370 case CHAR_MINUS: optset = &unset; break;
6371
6372 case CHAR_J: /* Record that it changed in the external options */
6373 *optset |= PCRE_DUPNAMES;
6374 cd->external_flags |= PCRE_JCHANGED;
6375 break;
6376
6377 case CHAR_i: *optset |= PCRE_CASELESS; break;
6378 case CHAR_m: *optset |= PCRE_MULTILINE; break;
6379 case CHAR_s: *optset |= PCRE_DOTALL; break;
6380 case CHAR_x: *optset |= PCRE_EXTENDED; break;
6381 case CHAR_U: *optset |= PCRE_UNGREEDY; break;
6382 case CHAR_X: *optset |= PCRE_EXTRA; break;
6383
6384 default: *errorcodeptr = ERR12;
6385 ptr--; /* Correct the offset */
6386 goto FAILED;
6387 }
6388 }
6389
6390 /* Set up the changed option bits, but don't change anything yet. */
6391
6392 newoptions = (options | set) & (~unset);
6393
6394 /* If the options ended with ')' this is not the start of a nested
6395 group with option changes, so the options change at this level. If this
6396 item is right at the start of the pattern, the options can be
6397 abstracted and made external in the pre-compile phase, and ignored in
6398 the compile phase. This can be helpful when matching -- for instance in
6399 caseless checking of required bytes.
6400
6401 If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are
6402 definitely *not* at the start of the pattern because something has been
6403 compiled. In the pre-compile phase, however, the code pointer can have
6404 that value after the start, because it gets reset as code is discarded
6405 during the pre-compile. However, this can happen only at top level - if
6406 we are within parentheses, the starting BRA will still be present. At
6407 any parenthesis level, the length value can be used to test if anything
6408 has been compiled at that level. Thus, a test for both these conditions
6409 is necessary to ensure we correctly detect the start of the pattern in
6410 both phases.
6411
6412 If we are not at the pattern start, reset the greedy defaults and the
6413 case value for firstchar and reqchar. */
6414
6415 if (*ptr == CHAR_RIGHT_PARENTHESIS)
6416 {
6417 if (code == cd->start_code + 1 + LINK_SIZE &&
6418 (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE))
6419 {
6420 cd->external_options = newoptions;
6421 }
6422 else
6423 {
6424 greedy_default = ((newoptions & PCRE_UNGREEDY) != 0);
6425 greedy_non_default = greedy_default ^ 1;
6426 req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS:0;
6427 }
6428
6429 /* Change options at this level, and pass them back for use
6430 in subsequent branches. */
6431
6432 *optionsptr = options = newoptions;
6433 previous = NULL; /* This item can't be repeated */
6434 continue; /* It is complete */
6435 }
6436
6437 /* If the options ended with ':' we are heading into a nested group
6438 with possible change of options. Such groups are non-capturing and are
6439 not assertions of any kind. All we need to do is skip over the ':';
6440 the newoptions value is handled below. */
6441
6442 bravalue = OP_BRA;
6443 ptr++;
6444 } /* End of switch for character following (? */
6445 } /* End of (? handling */
6446
6447 /* Opening parenthesis not followed by '*' or '?'. If PCRE_NO_AUTO_CAPTURE
6448 is set, all unadorned brackets become non-capturing and behave like (?:...)
6449 brackets. */
6450
6451 else if ((options & PCRE_NO_AUTO_CAPTURE) != 0)
6452 {
6453 bravalue = OP_BRA;
6454 }
6455
6456 /* Else we have a capturing group. */
6457
6458 else
6459 {
6460 NUMBERED_GROUP:
6461 cd->bracount += 1;
6462 PUT2(code, 1+LINK_SIZE, cd->bracount);
6463 skipbytes = IMM2_SIZE;
6464 }
6465
6466 /* Process nested bracketed regex. Assertions used not to be repeatable,
6467 but this was changed for Perl compatibility, so all kinds can now be
6468 repeated. We copy code into a non-register variable (tempcode) in order to
6469 be able to pass its address because some compilers complain otherwise. */
6470
6471 previous = code; /* For handling repetition */
6472 *code = bravalue;
6473 tempcode = code;
6474 tempreqvary = cd->req_varyopt; /* Save value before bracket */
6475 tempbracount = cd->bracount; /* Save value before bracket */
6476 length_prevgroup = 0; /* Initialize for pre-compile phase */
6477
6478 if (!compile_regex(
6479 newoptions, /* The complete new option state */
6480 &tempcode, /* Where to put code (updated) */
6481 &ptr, /* Input pointer (updated) */
6482 errorcodeptr, /* Where to put an error message */
6483 (bravalue == OP_ASSERTBACK ||
6484 bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */
6485 reset_bracount, /* True if (?| group */
6486 skipbytes, /* Skip over bracket number */
6487 cond_depth +
6488 ((bravalue == OP_COND)?1:0), /* Depth of condition subpatterns */
6489 &subfirstchar, /* For possible first char */
6490 &subreqchar, /* For possible last char */
6491 bcptr, /* Current branch chain */
6492 cd, /* Tables block */
6493 (lengthptr == NULL)? NULL : /* Actual compile phase */
6494 &length_prevgroup /* Pre-compile phase */
6495 ))
6496 goto FAILED;
6497
6498 /* If this was an atomic group and there are no capturing groups within it,
6499 generate OP_ONCE_NC instead of OP_ONCE. */
6500
6501 if (bravalue == OP_ONCE && cd->bracount <= tempbracount)
6502 *code = OP_ONCE_NC;
6503
6504 if (bravalue >= OP_ASSERT && bravalue <= OP_ASSERTBACK_NOT)
6505 cd->assert_depth -= 1;
6506
6507 /* At the end of compiling, code is still pointing to the start of the
6508 group, while tempcode has been updated to point past the end of the group.
6509 The pattern pointer (ptr) is on the bracket.
6510
6511 If this is a conditional bracket, check that there are no more than
6512 two branches in the group, or just one if it's a DEFINE group. We do this
6513 in the real compile phase, not in the pre-pass, where the whole group may
6514 not be available. */
6515
6516 if (bravalue == OP_COND && lengthptr == NULL)
6517 {
6518 pcre_uchar *tc = code;
6519 int condcount = 0;
6520
6521 do {
6522 condcount++;
6523 tc += GET(tc,1);
6524 }
6525 while (*tc != OP_KET);
6526
6527 /* A DEFINE group is never obeyed inline (the "condition" is always
6528 false). It must have only one branch. */
6529
6530 if (code[LINK_SIZE+1] == OP_DEF)
6531 {
6532 if (condcount > 1)
6533 {
6534 *errorcodeptr = ERR54;
6535 goto FAILED;
6536 }
6537 bravalue = OP_DEF; /* Just a flag to suppress char handling below */
6538 }
6539
6540 /* A "normal" conditional group. If there is just one branch, we must not
6541 make use of its firstchar or reqchar, because this is equivalent to an
6542 empty second branch. */
6543
6544 else
6545 {
6546 if (condcount > 2)
6547 {
6548 *errorcodeptr = ERR27;
6549 goto FAILED;
6550 }
6551 if (condcount == 1) subfirstchar = subreqchar = REQ_NONE;
6552 }
6553 }
6554
6555 /* Error if hit end of pattern */
6556
6557 if (*ptr != CHAR_RIGHT_PARENTHESIS)
6558 {
6559 *errorcodeptr = ERR14;
6560 goto FAILED;
6561 }
6562
6563 /* In the pre-compile phase, update the length by the length of the group,
6564 less the brackets at either end. Then reduce the compiled code to just a
6565 set of non-capturing brackets so that it doesn't use much memory if it is
6566 duplicated by a quantifier.*/
6567
6568 if (lengthptr != NULL)
6569 {
6570 if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE)
6571 {
6572 *errorcodeptr = ERR20;
6573 goto FAILED;
6574 }
6575 *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE;
6576 code++; /* This already contains bravalue */
6577 PUTINC(code, 0, 1 + LINK_SIZE);
6578 *code++ = OP_KET;
6579 PUTINC(code, 0, 1 + LINK_SIZE);
6580 break; /* No need to waste time with special character handling */
6581 }
6582
6583 /* Otherwise update the main code pointer to the end of the group. */
6584
6585 code = tempcode;
6586
6587 /* For a DEFINE group, required and first character settings are not
6588 relevant. */
6589
6590 if (bravalue == OP_DEF) break;
6591
6592 /* Handle updating of the required and first characters for other types of
6593 group. Update for normal brackets of all kinds, and conditions with two
6594 branches (see code above). If the bracket is followed by a quantifier with
6595 zero repeat, we have to back off. Hence the definition of zeroreqchar and
6596 zerofirstchar outside the main loop so that they can be accessed for the
6597 back off. */
6598
6599 zeroreqchar = reqchar;
6600 zerofirstchar = firstchar;
6601 groupsetfirstchar = FALSE;
6602
6603 if (bravalue >= OP_ONCE)
6604 {
6605 /* If we have not yet set a firstchar in this branch, take it from the
6606 subpattern, remembering that it was set here so that a repeat of more
6607 than one can replicate it as reqchar if necessary. If the subpattern has
6608 no firstchar, set "none" for the whole branch. In both cases, a zero
6609 repeat forces firstchar to "none". */
6610
6611 if (firstchar == REQ_UNSET)
6612 {
6613 if (subfirstchar >= 0)
6614 {
6615 firstchar = subfirstchar;
6616 groupsetfirstchar = TRUE;
6617 }
6618 else firstchar = REQ_NONE;
6619 zerofirstchar = REQ_NONE;
6620 }
6621
6622 /* If firstchar was previously set, convert the subpattern's firstchar
6623 into reqchar if there wasn't one, using the vary flag that was in
6624 existence beforehand. */
6625
6626 else if (subfirstchar >= 0 && subreqchar < 0)
6627 subreqchar = subfirstchar | tempreqvary;
6628
6629 /* If the subpattern set a required byte (or set a first byte that isn't
6630 really the first byte - see above), set it. */
6631
6632 if (subreqchar >= 0) reqchar = subreqchar;
6633 }
6634
6635 /* For a forward assertion, we take the reqchar, if set. This can be
6636 helpful if the pattern that follows the assertion doesn't set a different
6637 char. For example, it's useful for /(?=abcde).+/. We can't set firstchar
6638 for an assertion, however because it leads to incorrect effect for patterns
6639 such as /(?=a)a.+/ when the "real" "a" would then become a reqchar instead
6640 of a firstchar. This is overcome by a scan at the end if there's no
6641 firstchar, looking for an asserted first char. */
6642