/[pcre]/code/trunk/doc/pcre.txt
ViewVC logotype

Diff of /code/trunk/doc/pcre.txt

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 47 by nigel, Sat Feb 24 21:39:29 2007 UTC revision 211 by ph10, Thu Aug 9 09:52:43 2007 UTC
# Line 1  Line 1 
1    -----------------------------------------------------------------------------
2    This file contains a concatenation of the PCRE man pages, converted to plain
3    text format for ease of searching with a text editor, or for use on systems
4    that do not have a man page processor. The small individual files that give
5    synopses of each function in the library have not been included. There are
6    separate text files for the pcregrep and pcretest commands.
7    -----------------------------------------------------------------------------
8    
9    
10    PCRE(3)                                                                PCRE(3)
11    
12    
13  NAME  NAME
14       pcre - Perl-compatible regular expressions.         PCRE - Perl-compatible regular expressions
15    
16    
17    INTRODUCTION
18    
19  SYNOPSIS         The  PCRE  library is a set of functions that implement regular expres-
20       #include <pcre.h>         sion pattern matching using the same syntax and semantics as Perl, with
21           just  a  few differences. (Certain features that appeared in Python and
22           PCRE before they appeared in Perl are also available using  the  Python
23           syntax.)
24    
25           The  current  implementation of PCRE (release 7.x) corresponds approxi-
26           mately with Perl 5.10, including support for UTF-8 encoded strings  and
27           Unicode general category properties. However, UTF-8 and Unicode support
28           has to be explicitly enabled; it is not the default. The Unicode tables
29           correspond to Unicode release 5.0.0.
30    
31           In  addition to the Perl-compatible matching function, PCRE contains an
32           alternative matching function that matches the same  compiled  patterns
33           in  a different way. In certain circumstances, the alternative function
34           has some advantages. For a discussion of the two  matching  algorithms,
35           see the pcrematching page.
36    
37           PCRE  is  written  in C and released as a C library. A number of people
38           have written wrappers and interfaces of various kinds.  In  particular,
39           Google  Inc.   have  provided  a comprehensive C++ wrapper. This is now
40           included as part of the PCRE distribution. The pcrecpp page has details
41           of  this  interface.  Other  people's contributions can be found in the
42           Contrib directory at the primary FTP site, which is:
43    
44           ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre
45    
46           Details of exactly which Perl regular expression features are  and  are
47           not supported by PCRE are given in separate documents. See the pcrepat-
48           tern and pcrecompat pages. There is a syntax summary in the  pcresyntax
49           page.
50    
51           Some  features  of  PCRE can be included, excluded, or changed when the
52           library is built. The pcre_config() function makes it  possible  for  a
53           client  to  discover  which  features are available. The features them-
54           selves are described in the pcrebuild page. Documentation about  build-
55           ing  PCRE for various operating systems can be found in the README file
56           in the source distribution.
57    
58           The library contains a number of undocumented  internal  functions  and
59           data  tables  that  are  used by more than one of the exported external
60           functions, but which are not intended  for  use  by  external  callers.
61           Their  names  all begin with "_pcre_", which hopefully will not provoke
62           any name clashes. In some environments, it is possible to control which
63           external  symbols  are  exported when a shared library is built, and in
64           these cases the undocumented symbols are not exported.
65    
66    
67    USER DOCUMENTATION
68    
69           The user documentation for PCRE comprises a number  of  different  sec-
70           tions.  In the "man" format, each of these is a separate "man page". In
71           the HTML format, each is a separate page, linked from the  index  page.
72           In  the  plain text format, all the sections are concatenated, for ease
73           of searching. The sections are as follows:
74    
75             pcre              this document
76             pcre-config       show PCRE installation configuration information
77             pcreapi           details of PCRE's native C API
78             pcrebuild         options for building PCRE
79             pcrecallout       details of the callout feature
80             pcrecompat        discussion of Perl compatibility
81             pcrecpp           details of the C++ wrapper
82             pcregrep          description of the pcregrep command
83             pcrematching      discussion of the two matching algorithms
84             pcrepartial       details of the partial matching facility
85             pcrepattern       syntax and semantics of supported
86                                 regular expressions
87             pcresyntax        quick syntax reference
88             pcreperform       discussion of performance issues
89             pcreposix         the POSIX-compatible C API
90             pcreprecompile    details of saving and re-using precompiled patterns
91             pcresample        discussion of the sample program
92             pcrestack         discussion of stack usage
93             pcretest          description of the pcretest testing command
94    
95       pcre *pcre_compile(const char *pattern, int options,         In  addition,  in the "man" and HTML formats, there is a short page for
96            const char **errptr, int *erroffset,         each C library function, listing its arguments and results.
           const unsigned char *tableptr);  
97    
      pcre_extra *pcre_study(const pcre *code, int options,  
           const char **errptr);  
98    
99       int pcre_exec(const pcre *code, const pcre_extra *extra,  LIMITATIONS
           const char *subject, int length, int startoffset,  
           int options, int *ovector, int ovecsize);  
100    
101       int pcre_copy_substring(const char *subject, int *ovector,         There are some size limitations in PCRE but it is hoped that they  will
102            int stringcount, int stringnumber, char *buffer,         never in practice be relevant.
           int buffersize);  
103    
104       int pcre_get_substring(const char *subject, int *ovector,         The  maximum  length of a compiled pattern is 65539 (sic) bytes if PCRE
105            int stringcount, int stringnumber,         is compiled with the default internal linkage size of 2. If you want to
106            const char **stringptr);         process  regular  expressions  that are truly enormous, you can compile
107           PCRE with an internal linkage size of 3 or 4 (see the  README  file  in
108           the  source  distribution and the pcrebuild documentation for details).
109           In these cases the limit is substantially larger.  However,  the  speed
110           of execution is slower.
111    
112           All values in repeating quantifiers must be less than 65536.
113    
114           There is no limit to the number of parenthesized subpatterns, but there
115           can be no more than 65535 capturing subpatterns.
116    
117           The maximum length of name for a named subpattern is 32 characters, and
118           the maximum number of named subpatterns is 10000.
119    
120           The  maximum  length of a subject string is the largest positive number
121           that an integer variable can hold. However, when using the  traditional
122           matching function, PCRE uses recursion to handle subpatterns and indef-
123           inite repetition.  This means that the available stack space may  limit
124           the size of a subject string that can be processed by certain patterns.
125           For a discussion of stack issues, see the pcrestack documentation.
126    
127    
128    UTF-8 AND UNICODE PROPERTY SUPPORT
129    
130           From release 3.3, PCRE has  had  some  support  for  character  strings
131           encoded  in the UTF-8 format. For release 4.0 this was greatly extended
132           to cover most common requirements, and in release 5.0  additional  sup-
133           port for Unicode general category properties was added.
134    
135           In  order  process  UTF-8 strings, you must build PCRE to include UTF-8
136           support in the code, and, in addition,  you  must  call  pcre_compile()
137           with  the PCRE_UTF8 option flag. When you do this, both the pattern and
138           any subject strings that are matched against it are  treated  as  UTF-8
139           strings instead of just strings of bytes.
140    
141           If  you compile PCRE with UTF-8 support, but do not use it at run time,
142           the library will be a bit bigger, but the additional run time  overhead
143           is limited to testing the PCRE_UTF8 flag occasionally, so should not be
144           very big.
145    
146           If PCRE is built with Unicode character property support (which implies
147           UTF-8  support),  the  escape sequences \p{..}, \P{..}, and \X are sup-
148           ported.  The available properties that can be tested are limited to the
149           general  category  properties such as Lu for an upper case letter or Nd
150           for a decimal number, the Unicode script names such as Arabic  or  Han,
151           and  the  derived  properties  Any  and L&. A full list is given in the
152           pcrepattern documentation. Only the short names for properties are sup-
153           ported.  For example, \p{L} matches a letter. Its Perl synonym, \p{Let-
154           ter}, is not supported.  Furthermore,  in  Perl,  many  properties  may
155           optionally  be  prefixed by "Is", for compatibility with Perl 5.6. PCRE
156           does not support this.
157    
158       Validity of UTF-8 strings
159    
160           When you set the PCRE_UTF8 flag, the strings  passed  as  patterns  and
161           subjects are (by default) checked for validity on entry to the relevant
162           functions. From release 7.3 of PCRE, the check is according  the  rules
163           of  RFC  3629, which are themselves derived from the Unicode specifica-
164           tion. Earlier releases of PCRE followed the rules of  RFC  2279,  which
165           allows  the  full range of 31-bit values (0 to 0x7FFFFFFF). The current
166           check allows only values in the range U+0 to U+10FFFF, excluding U+D800
167           to U+DFFF.
168    
169           The  excluded  code  points are the "Low Surrogate Area" of Unicode, of
170           which the Unicode Standard says this: "The Low Surrogate Area does  not
171           contain  any  character  assignments,  consequently  no  character code
172           charts or namelists are provided for this area. Surrogates are reserved
173           for  use  with  UTF-16 and then must be used in pairs." The code points
174           that are encoded by UTF-16 pairs  are  available  as  independent  code
175           points  in  the  UTF-8  encoding.  (In other words, the whole surrogate
176           thing is a fudge for UTF-16 which unfortunately messes up UTF-8.)
177    
178           If an  invalid  UTF-8  string  is  passed  to  PCRE,  an  error  return
179           (PCRE_ERROR_BADUTF8) is given. In some situations, you may already know
180           that your strings are valid, and therefore want to skip these checks in
181           order to improve performance. If you set the PCRE_NO_UTF8_CHECK flag at
182           compile time or at run time, PCRE assumes that the pattern  or  subject
183           it  is  given  (respectively)  contains only valid UTF-8 codes. In this
184           case, it does not diagnose an invalid UTF-8 string.
185    
186           If you pass an invalid UTF-8 string  when  PCRE_NO_UTF8_CHECK  is  set,
187           what  happens  depends on why the string is invalid. If the string con-
188           forms to the "old" definition of UTF-8 (RFC 2279), it is processed as a
189           string  of  characters  in  the  range 0 to 0x7FFFFFFF. In other words,
190           apart from the initial validity test, PCRE (when in UTF-8 mode) handles
191           strings  according  to  the more liberal rules of RFC 2279. However, if
192           the string does not even conform to RFC 2279, the result is  undefined.
193           Your program may crash.
194    
195           If  you  want  to  process  strings  of  values  in the full range 0 to
196           0x7FFFFFFF, encoded in a UTF-8-like manner as per the old RFC, you  can
197           set PCRE_NO_UTF8_CHECK to bypass the more restrictive test. However, in
198           this situation, you will have to apply your own validity check.
199    
200       General comments about UTF-8 mode
201    
202           1. An unbraced hexadecimal escape sequence (such  as  \xb3)  matches  a
203           two-byte UTF-8 character if the value is greater than 127.
204    
205           2.  Octal  numbers  up to \777 are recognized, and match two-byte UTF-8
206           characters for values greater than \177.
207    
208           3. Repeat quantifiers apply to complete UTF-8 characters, not to  indi-
209           vidual bytes, for example: \x{100}{3}.
210    
211           4.  The dot metacharacter matches one UTF-8 character instead of a sin-
212           gle byte.
213    
214           5. The escape sequence \C can be used to match a single byte  in  UTF-8
215           mode,  but  its  use can lead to some strange effects. This facility is
216           not available in the alternative matching function, pcre_dfa_exec().
217    
218           6. The character escapes \b, \B, \d, \D, \s, \S, \w, and  \W  correctly
219           test  characters of any code value, but the characters that PCRE recog-
220           nizes as digits, spaces, or word characters  remain  the  same  set  as
221           before, all with values less than 256. This remains true even when PCRE
222           includes Unicode property support, because to do otherwise  would  slow
223           down  PCRE in many common cases. If you really want to test for a wider
224           sense of, say, "digit", you must use Unicode  property  tests  such  as
225           \p{Nd}.
226    
227           7.  Similarly,  characters that match the POSIX named character classes
228           are all low-valued characters.
229    
230           8. However, the Perl 5.10 horizontal and vertical  whitespace  matching
231           escapes (\h, \H, \v, and \V) do match all the appropriate Unicode char-
232           acters.
233    
234           9. Case-insensitive matching applies only to  characters  whose  values
235           are  less than 128, unless PCRE is built with Unicode property support.
236           Even when Unicode property support is available, PCRE  still  uses  its
237           own  character  tables when checking the case of low-valued characters,
238           so as not to degrade performance.  The Unicode property information  is
239           used only for characters with higher values. Even when Unicode property
240           support is available, PCRE supports case-insensitive matching only when
241           there  is  a  one-to-one  mapping between a letter's cases. There are a
242           small number of many-to-one mappings in Unicode;  these  are  not  sup-
243           ported by PCRE.
244    
      int pcre_get_substring_list(const char *subject,  
           int *ovector, int stringcount, const char ***listptr);  
245    
246       const unsigned char *pcre_maketables(void);  AUTHOR
247    
248       int pcre_fullinfo(const pcre *code, const pcre_extra *extra,         Philip Hazel
249            int what, void *where);         University Computing Service
250           Cambridge CB2 3QH, England.
251    
252       int pcre_info(const pcre *code, int *optptr, *firstcharptr);         Putting  an actual email address here seems to have been a spam magnet,
253           so I've taken it away. If you want to email me, use  my  two  initials,
254           followed by the two digits 10, at the domain cam.ac.uk.
255    
      char *pcre_version(void);  
256    
257       void *(*pcre_malloc)(size_t);  REVISION
258    
259       void (*pcre_free)(void *);         Last updated: 09 August 2007
260           Copyright (c) 1997-2007 University of Cambridge.
261    ------------------------------------------------------------------------------
262    
263    
264    PCREBUILD(3)                                                      PCREBUILD(3)
265    
266    
267  DESCRIPTION  NAME
268       The PCRE library is a set of functions that implement  regu-         PCRE - Perl-compatible regular expressions
269       lar  expression  pattern  matching using the same syntax and  
270       semantics as Perl  5,  with  just  a  few  differences  (see  
271       below).  The  current  implementation  corresponds  to  Perl  PCRE BUILD-TIME OPTIONS
272       5.005, with some additional features from the Perl  develop-  
273       ment release.         This  document  describes  the  optional  features  of PCRE that can be
274           selected when the library is compiled. They are all selected, or  dese-
275       PCRE has its own native API,  which  is  described  in  this         lected, by providing options to the configure script that is run before
276       document.  There  is  also  a  set of wrapper functions that         the make command. The complete list of  options  for  configure  (which
277       correspond to the POSIX regular expression API.   These  are         includes  the  standard  ones such as the selection of the installation
278       described in the pcreposix documentation.         directory) can be obtained by running
279    
280       The native API function prototypes are defined in the header           ./configure --help
281       file  pcre.h,  and  on  Unix  systems  the library itself is  
282       called libpcre.a, so can be accessed by adding -lpcre to the         The following sections include  descriptions  of  options  whose  names
283       command  for  linking  an  application  which  calls it. The         begin with --enable or --disable. These settings specify changes to the
284       header file defines the macros PCRE_MAJOR and PCRE_MINOR  to         defaults for the configure command. Because of the way  that  configure
285       contain the major and minor release numbers for the library.         works,  --enable  and --disable always come in pairs, so the complemen-
286       Applications can use these to include support for  different         tary option always exists as well, but as it specifies the default,  it
287       releases.         is not described.
288    
289       The functions pcre_compile(), pcre_study(), and  pcre_exec()  
290       are  used  for  compiling  and matching regular expressions,  C++ SUPPORT
291       while   pcre_copy_substring(),   pcre_get_substring(),   and  
292       pcre_get_substring_list()   are  convenience  functions  for         By default, the configure script will search for a C++ compiler and C++
293       extracting  captured  substrings  from  a  matched   subject         header files. If it finds them, it automatically builds the C++ wrapper
294       string.  The function pcre_maketables() is used (optionally)         library for PCRE. You can disable this by adding
295       to build a set of character tables in the current locale for  
296       passing to pcre_compile().           --disable-cpp
297    
298       The function pcre_fullinfo() is used to find out information         to the configure command.
299       about a compiled pattern; pcre_info() is an obsolete version  
300       which returns only some of the available information, but is  
301       retained   for   backwards   compatibility.    The  function  UTF-8 SUPPORT
302       pcre_version() returns a pointer to a string containing  the  
303       version of PCRE and its date of release.         To build PCRE with support for UTF-8 character strings, add
304    
305       The global variables  pcre_malloc  and  pcre_free  initially           --enable-utf8
306       contain the entry points of the standard malloc() and free()  
307       functions respectively. PCRE  calls  the  memory  management         to  the  configure  command.  Of  itself, this does not make PCRE treat
308       functions  via  these  variables,  so  a calling program can         strings as UTF-8. As well as compiling PCRE with this option, you  also
309       replace them if it  wishes  to  intercept  the  calls.  This         have  have to set the PCRE_UTF8 option when you call the pcre_compile()
310       should be done before calling any PCRE functions.         function.
311    
312    
313    UNICODE CHARACTER PROPERTY SUPPORT
314    
315           UTF-8 support allows PCRE to process character values greater than  255
316           in  the  strings that it handles. On its own, however, it does not pro-
317           vide any facilities for accessing the properties of such characters. If
318           you  want  to  be able to use the pattern escapes \P, \p, and \X, which
319           refer to Unicode character properties, you must add
320    
321             --enable-unicode-properties
322    
323           to the configure command. This implies UTF-8 support, even if you  have
324           not explicitly requested it.
325    
326           Including  Unicode  property  support  adds around 30K of tables to the
327           PCRE library. Only the general category properties such as  Lu  and  Nd
328           are supported. Details are given in the pcrepattern documentation.
329    
330    
331    CODE VALUE OF NEWLINE
332    
333           By  default,  PCRE interprets character 10 (linefeed, LF) as indicating
334           the end of a line. This is the normal newline  character  on  Unix-like
335           systems. You can compile PCRE to use character 13 (carriage return, CR)
336           instead, by adding
337    
338             --enable-newline-is-cr
339    
340           to the  configure  command.  There  is  also  a  --enable-newline-is-lf
341           option, which explicitly specifies linefeed as the newline character.
342    
343           Alternatively, you can specify that line endings are to be indicated by
344           the two character sequence CRLF. If you want this, add
345    
346             --enable-newline-is-crlf
347    
348           to the configure command. There is a fourth option, specified by
349    
350             --enable-newline-is-anycrlf
351    
352           which causes PCRE to recognize any of the three sequences  CR,  LF,  or
353           CRLF as indicating a line ending. Finally, a fifth option, specified by
354    
355             --enable-newline-is-any
356    
357           causes PCRE to recognize any Unicode newline sequence.
358    
359           Whatever line ending convention is selected when PCRE is built  can  be
360           overridden  when  the library functions are called. At build time it is
361           conventional to use the standard for your operating system.
362    
363    
364    BUILDING SHARED AND STATIC LIBRARIES
365    
366           The PCRE building process uses libtool to build both shared and  static
367           Unix  libraries by default. You can suppress one of these by adding one
368           of
369    
370             --disable-shared
371             --disable-static
372    
373           to the configure command, as required.
374    
375    
376    POSIX MALLOC USAGE
377    
378           When PCRE is called through the POSIX interface (see the pcreposix doc-
379           umentation),  additional  working  storage  is required for holding the
380           pointers to capturing substrings, because PCRE requires three  integers
381           per  substring,  whereas  the POSIX interface provides only two. If the
382           number of expected substrings is small, the wrapper function uses space
383           on the stack, because this is faster than using malloc() for each call.
384           The default threshold above which the stack is no longer used is 10; it
385           can be changed by adding a setting such as
386    
387             --with-posix-malloc-threshold=20
388    
389           to the configure command.
390    
391    
392    HANDLING VERY LARGE PATTERNS
393    
394           Within  a  compiled  pattern,  offset values are used to point from one
395           part to another (for example, from an opening parenthesis to an  alter-
396           nation  metacharacter).  By default, two-byte values are used for these
397           offsets, leading to a maximum size for a  compiled  pattern  of  around
398           64K.  This  is sufficient to handle all but the most gigantic patterns.
399           Nevertheless, some people do want to process enormous patterns,  so  it
400           is  possible  to compile PCRE to use three-byte or four-byte offsets by
401           adding a setting such as
402    
403             --with-link-size=3
404    
405           to the configure command. The value given must be 2,  3,  or  4.  Using
406           longer  offsets slows down the operation of PCRE because it has to load
407           additional bytes when handling them.
408    
409    
410    AVOIDING EXCESSIVE STACK USAGE
411    
412           When matching with the pcre_exec() function, PCRE implements backtrack-
413           ing  by  making recursive calls to an internal function called match().
414           In environments where the size of the stack is limited,  this  can  se-
415           verely  limit  PCRE's operation. (The Unix environment does not usually
416           suffer from this problem, but it may sometimes be necessary to increase
417           the  maximum  stack size.  There is a discussion in the pcrestack docu-
418           mentation.) An alternative approach to recursion that uses memory  from
419           the  heap  to remember data, instead of using recursive function calls,
420           has been implemented to work round the problem of limited  stack  size.
421           If you want to build a version of PCRE that works this way, add
422    
423             --disable-stack-for-recursion
424    
425           to  the  configure  command. With this configuration, PCRE will use the
426           pcre_stack_malloc and pcre_stack_free variables to call memory  manage-
427           ment  functions. By default these point to malloc() and free(), but you
428           can replace the pointers so that your own functions are used.
429    
430           Separate functions are  provided  rather  than  using  pcre_malloc  and
431           pcre_free  because  the  usage  is  very  predictable:  the block sizes
432           requested are always the same, and  the  blocks  are  always  freed  in
433           reverse  order.  A calling program might be able to implement optimized
434           functions that perform better  than  malloc()  and  free().  PCRE  runs
435           noticeably more slowly when built in this way. This option affects only
436           the  pcre_exec()  function;  it   is   not   relevant   for   the   the
437           pcre_dfa_exec() function.
438    
439    
440    LIMITING PCRE RESOURCE USAGE
441    
442           Internally,  PCRE has a function called match(), which it calls repeat-
443           edly  (sometimes  recursively)  when  matching  a  pattern   with   the
444           pcre_exec()  function.  By controlling the maximum number of times this
445           function may be called during a single matching operation, a limit  can
446           be  placed  on  the resources used by a single call to pcre_exec(). The
447           limit can be changed at run time, as described in the pcreapi  documen-
448           tation.  The default is 10 million, but this can be changed by adding a
449           setting such as
450    
451             --with-match-limit=500000
452    
453           to  the  configure  command.  This  setting  has  no  effect   on   the
454           pcre_dfa_exec() matching function.
455    
456           In  some  environments  it is desirable to limit the depth of recursive
457           calls of match() more strictly than the total number of calls, in order
458           to  restrict  the maximum amount of stack (or heap, if --disable-stack-
459           for-recursion is specified) that is used. A second limit controls this;
460           it  defaults  to  the  value  that is set for --with-match-limit, which
461           imposes no additional constraints. However, you can set a  lower  limit
462           by adding, for example,
463    
464             --with-match-limit-recursion=10000
465    
466           to  the  configure  command.  This  value can also be overridden at run
467           time.
468    
469    
470    CREATING CHARACTER TABLES AT BUILD TIME
471    
472           PCRE uses fixed tables for processing characters whose code values  are
473           less  than 256. By default, PCRE is built with a set of tables that are
474           distributed in the file pcre_chartables.c.dist. These  tables  are  for
475           ASCII codes only. If you add
476    
477             --enable-rebuild-chartables
478    
479           to  the  configure  command, the distributed tables are no longer used.
480           Instead, a program called dftables is compiled and  run.  This  outputs
481           the source for new set of tables, created in the default locale of your
482           C runtime system. (This method of replacing the tables does not work if
483           you  are cross compiling, because dftables is run on the local host. If
484           you need to create alternative tables when cross  compiling,  you  will
485           have to do so "by hand".)
486    
487    
488    USING EBCDIC CODE
489    
490           PCRE  assumes  by  default that it will run in an environment where the
491           character code is ASCII (or Unicode, which is  a  superset  of  ASCII).
492           This  is  the  case for most computer operating systems. PCRE can, how-
493           ever, be compiled to run in an EBCDIC environment by adding
494    
495             --enable-ebcdic
496    
497           to the configure command. This setting implies --enable-rebuild-charta-
498           bles.  You  should  only  use  it if you know that you are in an EBCDIC
499           environment (for example, an IBM mainframe operating system).
500    
501    
502    SEE ALSO
503    
504           pcreapi(3), pcre_config(3).
505    
506    
507    AUTHOR
508    
509           Philip Hazel
510           University Computing Service
511           Cambridge CB2 3QH, England.
512    
513    
514    REVISION
515    
516           Last updated: 30 July 2007
517           Copyright (c) 1997-2007 University of Cambridge.
518    ------------------------------------------------------------------------------
519    
520    
521    PCREMATCHING(3)                                                PCREMATCHING(3)
522    
523    
524    NAME
525           PCRE - Perl-compatible regular expressions
526    
527    
528    PCRE MATCHING ALGORITHMS
529    
530           This document describes the two different algorithms that are available
531           in PCRE for matching a compiled regular expression against a given sub-
532           ject  string.  The  "standard"  algorithm  is  the  one provided by the
533           pcre_exec() function.  This works in the same was  as  Perl's  matching
534           function, and provides a Perl-compatible matching operation.
535    
536           An  alternative  algorithm is provided by the pcre_dfa_exec() function;
537           this operates in a different way, and is not  Perl-compatible.  It  has
538           advantages  and disadvantages compared with the standard algorithm, and
539           these are described below.
540    
541           When there is only one possible way in which a given subject string can
542           match  a pattern, the two algorithms give the same answer. A difference
543           arises, however, when there are multiple possibilities. For example, if
544           the pattern
545    
546             ^<.*>
547    
548           is matched against the string
549    
550             <something> <something else> <something further>
551    
552           there are three possible answers. The standard algorithm finds only one
553           of them, whereas the alternative algorithm finds all three.
554    
555    
556    REGULAR EXPRESSIONS AS TREES
557    
558           The set of strings that are matched by a regular expression can be rep-
559           resented  as  a  tree structure. An unlimited repetition in the pattern
560           makes the tree of infinite size, but it is still a tree.  Matching  the
561           pattern  to a given subject string (from a given starting point) can be
562           thought of as a search of the tree.  There are two  ways  to  search  a
563           tree:  depth-first  and  breadth-first, and these correspond to the two
564           matching algorithms provided by PCRE.
565    
566    
567    THE STANDARD MATCHING ALGORITHM
568    
569           In the terminology of Jeffrey Friedl's book "Mastering Regular  Expres-
570           sions",  the  standard  algorithm  is an "NFA algorithm". It conducts a
571           depth-first search of the pattern tree. That is, it  proceeds  along  a
572           single path through the tree, checking that the subject matches what is
573           required. When there is a mismatch, the algorithm  tries  any  alterna-
574           tives  at  the  current point, and if they all fail, it backs up to the
575           previous branch point in the  tree,  and  tries  the  next  alternative
576           branch  at  that  level.  This often involves backing up (moving to the
577           left) in the subject string as well.  The  order  in  which  repetition
578           branches  are  tried  is controlled by the greedy or ungreedy nature of
579           the quantifier.
580    
581           If a leaf node is reached, a matching string has  been  found,  and  at
582           that  point the algorithm stops. Thus, if there is more than one possi-
583           ble match, this algorithm returns the first one that it finds.  Whether
584           this  is the shortest, the longest, or some intermediate length depends
585           on the way the greedy and ungreedy repetition quantifiers are specified
586           in the pattern.
587    
588           Because  it  ends  up  with a single path through the tree, it is rela-
589           tively straightforward for this algorithm to keep  track  of  the  sub-
590           strings  that  are  matched  by portions of the pattern in parentheses.
591           This provides support for capturing parentheses and back references.
592    
593    
594    THE ALTERNATIVE MATCHING ALGORITHM
595    
596           This algorithm conducts a breadth-first search of  the  tree.  Starting
597           from  the  first  matching  point  in the subject, it scans the subject
598           string from left to right, once, character by character, and as it does
599           this,  it remembers all the paths through the tree that represent valid
600           matches. In Friedl's terminology, this is a kind  of  "DFA  algorithm",
601           though  it is not implemented as a traditional finite state machine (it
602           keeps multiple states active simultaneously).
603    
604           The scan continues until either the end of the subject is  reached,  or
605           there  are  no more unterminated paths. At this point, terminated paths
606           represent the different matching possibilities (if there are none,  the
607           match  has  failed).   Thus,  if there is more than one possible match,
608           this algorithm finds all of them, and in particular, it finds the long-
609           est.  In PCRE, there is an option to stop the algorithm after the first
610           match (which is necessarily the shortest) has been found.
611    
612           Note that all the matches that are found start at the same point in the
613           subject. If the pattern
614    
615             cat(er(pillar)?)
616    
617           is  matched  against the string "the caterpillar catchment", the result
618           will be the three strings "cat", "cater", and "caterpillar" that  start
619           at the fourth character of the subject. The algorithm does not automat-
620           ically move on to find matches that start at later positions.
621    
622           There are a number of features of PCRE regular expressions that are not
623           supported by the alternative matching algorithm. They are as follows:
624    
625           1.  Because  the  algorithm  finds  all possible matches, the greedy or
626           ungreedy nature of repetition quantifiers is not relevant.  Greedy  and
627           ungreedy quantifiers are treated in exactly the same way. However, pos-
628           sessive quantifiers can make a difference when what follows could  also
629           match what is quantified, for example in a pattern like this:
630    
631             ^a++\w!
632    
633           This  pattern matches "aaab!" but not "aaa!", which would be matched by
634           a non-possessive quantifier. Similarly, if an atomic group is  present,
635           it  is matched as if it were a standalone pattern at the current point,
636           and the longest match is then "locked in" for the rest of  the  overall
637           pattern.
638    
639           2. When dealing with multiple paths through the tree simultaneously, it
640           is not straightforward to keep track of  captured  substrings  for  the
641           different  matching  possibilities,  and  PCRE's implementation of this
642           algorithm does not attempt to do this. This means that no captured sub-
643           strings are available.
644    
645           3.  Because no substrings are captured, back references within the pat-
646           tern are not supported, and cause errors if encountered.
647    
648           4. For the same reason, conditional expressions that use  a  backrefer-
649           ence  as  the  condition or test for a specific group recursion are not
650           supported.
651    
652           5. Because many paths through the tree may be  active,  the  \K  escape
653           sequence, which resets the start of the match when encountered (but may
654           be on some paths and not on others), is not  supported.  It  causes  an
655           error if encountered.
656    
657           6.  Callouts  are  supported, but the value of the capture_top field is
658           always 1, and the value of the capture_last field is always -1.
659    
660           7. The \C escape sequence, which (in the standard algorithm) matches  a
661           single  byte, even in UTF-8 mode, is not supported because the alterna-
662           tive algorithm moves through the subject  string  one  character  at  a
663           time, for all active paths through the tree.
664    
665  MULTI-THREADING         8.  None  of  the  backtracking control verbs such as (*PRUNE) are sup-
666       The PCRE functions can be used in  multi-threading  applica-         ported.
      tions, with the proviso that the memory management functions  
      pointed to by pcre_malloc and pcre_free are  shared  by  all  
      threads.  
   
      The compiled form of a regular  expression  is  not  altered  
      during  matching, so the same compiled pattern can safely be  
      used by several threads at once.  
667    
668    
669    ADVANTAGES OF THE ALTERNATIVE ALGORITHM
670    
671           Using the alternative matching algorithm provides the following  advan-
672           tages:
673    
674           1. All possible matches (at a single point in the subject) are automat-
675           ically found, and in particular, the longest match is  found.  To  find
676           more than one match using the standard algorithm, you have to do kludgy
677           things with callouts.
678    
679           2. There is much better support for partial matching. The  restrictions
680           on  the content of the pattern that apply when using the standard algo-
681           rithm for partial matching do not apply to the  alternative  algorithm.
682           For  non-anchored patterns, the starting position of a partial match is
683           available.
684    
685           3. Because the alternative algorithm  scans  the  subject  string  just
686           once,  and  never  needs to backtrack, it is possible to pass very long
687           subject strings to the matching function in  several  pieces,  checking
688           for partial matching each time.
689    
690    
691    DISADVANTAGES OF THE ALTERNATIVE ALGORITHM
692    
693           The alternative algorithm suffers from a number of disadvantages:
694    
695           1.  It  is  substantially  slower  than the standard algorithm. This is
696           partly because it has to search for all possible matches, but  is  also
697           because it is less susceptible to optimization.
698    
699           2. Capturing parentheses and back references are not supported.
700    
701           3. Although atomic groups are supported, their use does not provide the
702           performance advantage that it does for the standard algorithm.
703    
704    
705    AUTHOR
706    
707           Philip Hazel
708           University Computing Service
709           Cambridge CB2 3QH, England.
710    
711    
712    REVISION
713    
714           Last updated: 08 August 2007
715           Copyright (c) 1997-2007 University of Cambridge.
716    ------------------------------------------------------------------------------
717    
718    
719    PCREAPI(3)                                                          PCREAPI(3)
720    
721    
722    NAME
723           PCRE - Perl-compatible regular expressions
724    
725    
726    PCRE NATIVE API
727    
728           #include <pcre.h>
729    
730           pcre *pcre_compile(const char *pattern, int options,
731                const char **errptr, int *erroffset,
732                const unsigned char *tableptr);
733    
734           pcre *pcre_compile2(const char *pattern, int options,
735                int *errorcodeptr,
736                const char **errptr, int *erroffset,
737                const unsigned char *tableptr);
738    
739           pcre_extra *pcre_study(const pcre *code, int options,
740                const char **errptr);
741    
742           int pcre_exec(const pcre *code, const pcre_extra *extra,
743                const char *subject, int length, int startoffset,
744                int options, int *ovector, int ovecsize);
745    
746           int pcre_dfa_exec(const pcre *code, const pcre_extra *extra,
747                const char *subject, int length, int startoffset,
748                int options, int *ovector, int ovecsize,
749                int *workspace, int wscount);
750    
751           int pcre_copy_named_substring(const pcre *code,
752                const char *subject, int *ovector,
753                int stringcount, const char *stringname,
754                char *buffer, int buffersize);
755    
756           int pcre_copy_substring(const char *subject, int *ovector,
757                int stringcount, int stringnumber, char *buffer,
758                int buffersize);
759    
760           int pcre_get_named_substring(const pcre *code,
761                const char *subject, int *ovector,
762                int stringcount, const char *stringname,
763                const char **stringptr);
764    
765           int pcre_get_stringnumber(const pcre *code,
766                const char *name);
767    
768           int pcre_get_stringtable_entries(const pcre *code,
769                const char *name, char **first, char **last);
770    
771           int pcre_get_substring(const char *subject, int *ovector,
772                int stringcount, int stringnumber,
773                const char **stringptr);
774    
775           int pcre_get_substring_list(const char *subject,
776                int *ovector, int stringcount, const char ***listptr);
777    
778           void pcre_free_substring(const char *stringptr);
779    
780           void pcre_free_substring_list(const char **stringptr);
781    
782           const unsigned char *pcre_maketables(void);
783    
784           int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
785                int what, void *where);
786    
787           int pcre_info(const pcre *code, int *optptr, int *firstcharptr);
788    
789           int pcre_refcount(pcre *code, int adjust);
790    
791           int pcre_config(int what, void *where);
792    
793           char *pcre_version(void);
794    
795           void *(*pcre_malloc)(size_t);
796    
797           void (*pcre_free)(void *);
798    
799           void *(*pcre_stack_malloc)(size_t);
800    
801           void (*pcre_stack_free)(void *);
802    
803           int (*pcre_callout)(pcre_callout_block *);
804    
805    
806    PCRE API OVERVIEW
807    
808           PCRE has its own native API, which is described in this document. There
809           are also some wrapper functions that correspond to  the  POSIX  regular
810           expression  API.  These  are  described in the pcreposix documentation.
811           Both of these APIs define a set of C function calls. A C++  wrapper  is
812           distributed with PCRE. It is documented in the pcrecpp page.
813    
814           The  native  API  C  function prototypes are defined in the header file
815           pcre.h, and on Unix systems the library itself is called  libpcre.   It
816           can normally be accessed by adding -lpcre to the command for linking an
817           application  that  uses  PCRE.  The  header  file  defines  the  macros
818           PCRE_MAJOR  and  PCRE_MINOR to contain the major and minor release num-
819           bers for the library.  Applications can use these  to  include  support
820           for different releases of PCRE.
821    
822           The   functions   pcre_compile(),  pcre_compile2(),  pcre_study(),  and
823           pcre_exec() are used for compiling and matching regular expressions  in
824           a  Perl-compatible  manner. A sample program that demonstrates the sim-
825           plest way of using them is provided in the file  called  pcredemo.c  in
826           the  source distribution. The pcresample documentation describes how to
827           run it.
828    
829           A second matching function, pcre_dfa_exec(), which is not Perl-compati-
830           ble,  is  also provided. This uses a different algorithm for the match-
831           ing. The alternative algorithm finds all possible matches (at  a  given
832           point  in  the subject), and scans the subject just once. However, this
833           algorithm does not return captured substrings. A description of the two
834           matching  algorithms and their advantages and disadvantages is given in
835           the pcrematching documentation.
836    
837           In addition to the main compiling and  matching  functions,  there  are
838           convenience functions for extracting captured substrings from a subject
839           string that is matched by pcre_exec(). They are:
840    
841             pcre_copy_substring()
842             pcre_copy_named_substring()
843             pcre_get_substring()
844             pcre_get_named_substring()
845             pcre_get_substring_list()
846             pcre_get_stringnumber()
847             pcre_get_stringtable_entries()
848    
849           pcre_free_substring() and pcre_free_substring_list() are also provided,
850           to free the memory used for extracted strings.
851    
852           The  function  pcre_maketables()  is  used  to build a set of character
853           tables  in  the  current  locale   for   passing   to   pcre_compile(),
854           pcre_exec(),  or  pcre_dfa_exec(). This is an optional facility that is
855           provided for specialist use.  Most  commonly,  no  special  tables  are
856           passed,  in  which case internal tables that are generated when PCRE is
857           built are used.
858    
859           The function pcre_fullinfo() is used to find out  information  about  a
860           compiled  pattern; pcre_info() is an obsolete version that returns only
861           some of the available information, but is retained for  backwards  com-
862           patibility.   The function pcre_version() returns a pointer to a string
863           containing the version of PCRE and its date of release.
864    
865           The function pcre_refcount() maintains a  reference  count  in  a  data
866           block  containing  a compiled pattern. This is provided for the benefit
867           of object-oriented applications.
868    
869           The global variables pcre_malloc and pcre_free  initially  contain  the
870           entry  points  of  the  standard malloc() and free() functions, respec-
871           tively. PCRE calls the memory management functions via these variables,
872           so  a  calling  program  can replace them if it wishes to intercept the
873           calls. This should be done before calling any PCRE functions.
874    
875           The global variables pcre_stack_malloc  and  pcre_stack_free  are  also
876           indirections  to  memory  management functions. These special functions
877           are used only when PCRE is compiled to use  the  heap  for  remembering
878           data, instead of recursive function calls, when running the pcre_exec()
879           function. See the pcrebuild documentation for  details  of  how  to  do
880           this.  It  is  a non-standard way of building PCRE, for use in environ-
881           ments that have limited stacks. Because of the greater  use  of  memory
882           management,  it  runs  more  slowly. Separate functions are provided so
883           that special-purpose external code can be  used  for  this  case.  When
884           used,  these  functions  are always called in a stack-like manner (last
885           obtained, first freed), and always for memory blocks of the same  size.
886           There  is  a discussion about PCRE's stack usage in the pcrestack docu-
887           mentation.
888    
889           The global variable pcre_callout initially contains NULL. It can be set
890           by  the  caller  to  a "callout" function, which PCRE will then call at
891           specified points during a matching operation. Details are given in  the
892           pcrecallout documentation.
893    
894    
895    NEWLINES
896    
897           PCRE  supports five different conventions for indicating line breaks in
898           strings: a single CR (carriage return) character, a  single  LF  (line-
899           feed) character, the two-character sequence CRLF, any of the three pre-
900           ceding, or any Unicode newline sequence. The Unicode newline  sequences
901           are  the  three just mentioned, plus the single characters VT (vertical
902           tab, U+000B), FF (formfeed, U+000C), NEL (next line, U+0085), LS  (line
903           separator, U+2028), and PS (paragraph separator, U+2029).
904    
905           Each  of  the first three conventions is used by at least one operating
906           system as its standard newline sequence. When PCRE is built, a  default
907           can  be  specified.  The default default is LF, which is the Unix stan-
908           dard. When PCRE is run, the default can be overridden,  either  when  a
909           pattern is compiled, or when it is matched.
910    
911           In the PCRE documentation the word "newline" is used to mean "the char-
912           acter or pair of characters that indicate a line break". The choice  of
913           newline  convention  affects  the  handling of the dot, circumflex, and
914           dollar metacharacters, the handling of #-comments in /x mode, and, when
915           CRLF  is a recognized line ending sequence, the match position advance-
916           ment for a non-anchored pattern. The choice of newline convention  does
917           not affect the interpretation of the \n or \r escape sequences.
918    
919    
920    MULTITHREADING
921    
922           The  PCRE  functions  can be used in multi-threading applications, with
923           the  proviso  that  the  memory  management  functions  pointed  to  by
924           pcre_malloc, pcre_free, pcre_stack_malloc, and pcre_stack_free, and the
925           callout function pointed to by pcre_callout, are shared by all threads.
926    
927           The  compiled form of a regular expression is not altered during match-
928           ing, so the same compiled pattern can safely be used by several threads
929           at once.
930    
931    
932    SAVING PRECOMPILED PATTERNS FOR LATER USE
933    
934           The compiled form of a regular expression can be saved and re-used at a
935           later time, possibly by a different program, and even on a  host  other
936           than  the  one  on  which  it  was  compiled.  Details are given in the
937           pcreprecompile documentation. However, compiling a  regular  expression
938           with  one version of PCRE for use with a different version is not guar-
939           anteed to work and may cause crashes.
940    
941    
942    CHECKING BUILD-TIME OPTIONS
943    
944           int pcre_config(int what, void *where);
945    
946           The function pcre_config() makes it possible for a PCRE client to  dis-
947           cover which optional features have been compiled into the PCRE library.
948           The pcrebuild documentation has more details about these optional  fea-
949           tures.
950    
951           The  first  argument  for pcre_config() is an integer, specifying which
952           information is required; the second argument is a pointer to a variable
953           into  which  the  information  is  placed. The following information is
954           available:
955    
956             PCRE_CONFIG_UTF8
957    
958           The output is an integer that is set to one if UTF-8 support is  avail-
959           able; otherwise it is set to zero.
960    
961             PCRE_CONFIG_UNICODE_PROPERTIES
962    
963           The  output  is  an  integer  that is set to one if support for Unicode
964           character properties is available; otherwise it is set to zero.
965    
966             PCRE_CONFIG_NEWLINE
967    
968           The output is an integer whose value specifies  the  default  character
969           sequence  that is recognized as meaning "newline". The four values that
970           are supported are: 10 for LF, 13 for CR, 3338 for CRLF, -2 for ANYCRLF,
971           and  -1  for  ANY. The default should normally be the standard sequence
972           for your operating system.
973    
974             PCRE_CONFIG_LINK_SIZE
975    
976           The output is an integer that contains the number  of  bytes  used  for
977           internal linkage in compiled regular expressions. The value is 2, 3, or
978           4. Larger values allow larger regular expressions to  be  compiled,  at
979           the  expense  of  slower matching. The default value of 2 is sufficient
980           for all but the most massive patterns, since  it  allows  the  compiled
981           pattern to be up to 64K in size.
982    
983             PCRE_CONFIG_POSIX_MALLOC_THRESHOLD
984    
985           The  output  is  an integer that contains the threshold above which the
986           POSIX interface uses malloc() for output vectors. Further  details  are
987           given in the pcreposix documentation.
988    
989             PCRE_CONFIG_MATCH_LIMIT
990    
991           The output is an integer that gives the default limit for the number of
992           internal matching function calls in a  pcre_exec()  execution.  Further
993           details are given with pcre_exec() below.
994    
995             PCRE_CONFIG_MATCH_LIMIT_RECURSION
996    
997           The  output is an integer that gives the default limit for the depth of
998           recursion when calling the internal matching function in a  pcre_exec()
999           execution. Further details are given with pcre_exec() below.
1000    
1001             PCRE_CONFIG_STACKRECURSE
1002    
1003           The  output is an integer that is set to one if internal recursion when
1004           running pcre_exec() is implemented by recursive function calls that use
1005           the  stack  to remember their state. This is the usual way that PCRE is
1006           compiled. The output is zero if PCRE was compiled to use blocks of data
1007           on  the  heap  instead  of  recursive  function  calls.  In  this case,
1008           pcre_stack_malloc and  pcre_stack_free  are  called  to  manage  memory
1009           blocks on the heap, thus avoiding the use of the stack.
1010    
1011    
1012  COMPILING A PATTERN  COMPILING A PATTERN
      The function pcre_compile() is called to compile  a  pattern  
      into  an internal form. The pattern is a C string terminated  
      by a binary zero, and is passed in the argument  pattern.  A  
      pointer  to  a  single  block of memory that is obtained via  
      pcre_malloc is returned. This contains the compiled code and  
      related data. The pcre type is defined for this for conveni-  
      ence, but in fact pcre is just a typedef for void, since the  
      contents  of  the block are not externally defined. It is up  
      to the caller to free  the  memory  when  it  is  no  longer  
      required.  
   
      The size of a compiled pattern is  roughly  proportional  to  
      the length of the pattern string, except that each character  
      class (other than those containing just a single  character,  
      negated  or  not)  requires 33 bytes, and repeat quantifiers  
      with a minimum greater than one or a bounded  maximum  cause  
      the  relevant  portions of the compiled pattern to be repli-  
      cated.  
   
      The options argument contains independent bits  that  affect  
      the  compilation.  It  should  be  zero  if  no  options are  
      required. Some of the options, in particular, those that are  
      compatible  with Perl, can also be set and unset from within  
      the pattern (see the detailed description of regular expres-  
      sions below). For these options, the contents of the options  
      argument specifies their initial settings at  the  start  of  
      compilation  and  execution. The PCRE_ANCHORED option can be  
      set at the time of matching as well as at compile time.  
   
      If errptr is NULL, pcre_compile() returns NULL  immediately.  
      Otherwise, if compilation of a pattern fails, pcre_compile()  
      returns NULL, and sets the variable pointed to by errptr  to  
      point  to a textual error message. The offset from the start  
      of  the  pattern  to  the  character  where  the  error  was  
      discovered   is   placed  in  the  variable  pointed  to  by  
      erroffset, which must not be NULL. If it  is,  an  immediate  
      error is given.  
   
      If the final  argument,  tableptr,  is  NULL,  PCRE  uses  a  
      default  set  of character tables which are built when it is  
      compiled, using the default C  locale.  Otherwise,  tableptr  
      must  be  the result of a call to pcre_maketables(). See the  
      section on locale support below.  
   
      The following option bits are defined in the header file:  
   
        PCRE_ANCHORED  
   
      If this bit is set, the pattern is forced to be  "anchored",  
      that is, it is constrained to match only at the start of the  
      string which is being searched (the "subject string").  This  
      effect can also be achieved by appropriate constructs in the  
      pattern itself, which is the only way to do it in Perl.  
   
        PCRE_CASELESS  
   
      If this bit is set, letters in the pattern match both  upper  
      and  lower  case  letters.  It  is  equivalent  to Perl's /i  
      option.  
   
        PCRE_DOLLAR_ENDONLY  
   
      If this bit is set, a dollar metacharacter  in  the  pattern  
      matches  only at the end of the subject string. Without this  
      option, a dollar also matches immediately before  the  final  
      character  if it is a newline (but not before any other new-  
      lines).  The  PCRE_DOLLAR_ENDONLY  option  is   ignored   if  
      PCRE_MULTILINE is set. There is no equivalent to this option  
      in Perl.  
   
        PCRE_DOTALL  
   
      If this bit is  set,  a  dot  metacharater  in  the  pattern  
      matches all characters, including newlines. Without it, new-  
      lines are excluded. This option is equivalent to  Perl's  /s  
      option.  A negative class such as [^a] always matches a new-  
      line character, independent of the setting of this option.  
   
        PCRE_EXTENDED  
   
      If this bit is set, whitespace data characters in  the  pat-  
      tern  are  totally  ignored  except when escaped or inside a  
      character class, and characters between an unescaped #  out-  
      side  a  character  class  and  the  next newline character,  
      inclusive, are also ignored. This is equivalent to Perl's /x  
      option,  and  makes  it  possible to include comments inside  
      complicated patterns. Note, however, that this applies  only  
      to  data  characters. Whitespace characters may never appear  
      within special character sequences in a pattern, for example  
      within  the sequence (?( which introduces a conditional sub-  
      pattern.  
   
        PCRE_EXTRA  
   
      This option was invented in  order  to  turn  on  additional  
      functionality of PCRE that is incompatible with Perl, but it  
      is currently of very little use. When set, any backslash  in  
      a  pattern  that is followed by a letter that has no special  
      meaning causes an error, thus reserving  these  combinations  
      for  future  expansion.  By default, as in Perl, a backslash  
      followed by a letter with no special meaning is treated as a  
      literal.  There  are at present no other features controlled  
      by this option. It can also be set by a (?X) option  setting  
      within a pattern.  
   
        PCRE_MULTILINE  
   
      By default, PCRE treats the subject string as consisting  of  
      a  single "line" of characters (even if it actually contains  
      several newlines). The "start  of  line"  metacharacter  (^)  
      matches  only  at the start of the string, while the "end of  
      line" metacharacter ($) matches  only  at  the  end  of  the  
      string,    or   before   a   terminating   newline   (unless  
      PCRE_DOLLAR_ENDONLY is set). This is the same as Perl.  
   
      When PCRE_MULTILINE it is set, the "start of line" and  "end  
      of  line"  constructs match immediately following or immedi-  
      ately before any newline  in  the  subject  string,  respec-  
      tively,  as  well  as  at  the  very  start and end. This is  
      equivalent to Perl's /m option. If there are no "\n" charac-  
      ters  in  a subject string, or no occurrences of ^ or $ in a  
      pattern, setting PCRE_MULTILINE has no effect.  
   
        PCRE_UNGREEDY  
   
      This option inverts the "greediness" of the  quantifiers  so  
      that  they  are  not greedy by default, but become greedy if  
      followed by "?". It is not compatible with Perl. It can also  
      be set by a (?U) option setting within the pattern.  
1013    
1014           pcre *pcre_compile(const char *pattern, int options,
1015                const char **errptr, int *erroffset,
1016                const unsigned char *tableptr);
1017    
1018           pcre *pcre_compile2(const char *pattern, int options,
1019                int *errorcodeptr,
1020                const char **errptr, int *erroffset,
1021                const unsigned char *tableptr);
1022    
1023           Either of the functions pcre_compile() or pcre_compile2() can be called
1024           to compile a pattern into an internal form. The only difference between
1025           the  two interfaces is that pcre_compile2() has an additional argument,
1026           errorcodeptr, via which a numerical error code can be returned.
1027    
1028           The pattern is a C string terminated by a binary zero, and is passed in
1029           the  pattern  argument.  A  pointer to a single block of memory that is
1030           obtained via pcre_malloc is returned. This contains the  compiled  code
1031           and related data. The pcre type is defined for the returned block; this
1032           is a typedef for a structure whose contents are not externally defined.
1033           It is up to the caller to free the memory (via pcre_free) when it is no
1034           longer required.
1035    
1036           Although the compiled code of a PCRE regex is relocatable, that is,  it
1037           does not depend on memory location, the complete pcre data block is not
1038           fully relocatable, because it may contain a copy of the tableptr  argu-
1039           ment, which is an address (see below).
1040    
1041           The options argument contains various bit settings that affect the com-
1042           pilation. It should be zero if no options are required.  The  available
1043           options  are  described  below. Some of them, in particular, those that
1044           are compatible with Perl, can also be set and  unset  from  within  the
1045           pattern  (see  the  detailed  description in the pcrepattern documenta-
1046           tion). For these options, the contents of the options  argument  speci-
1047           fies  their initial settings at the start of compilation and execution.
1048           The PCRE_ANCHORED and PCRE_NEWLINE_xxx options can be set at  the  time
1049           of matching as well as at compile time.
1050    
1051           If errptr is NULL, pcre_compile() returns NULL immediately.  Otherwise,
1052           if compilation of a pattern fails,  pcre_compile()  returns  NULL,  and
1053           sets the variable pointed to by errptr to point to a textual error mes-
1054           sage. This is a static string that is part of the library. You must not
1055           try to free it. The offset from the start of the pattern to the charac-
1056           ter where the error was discovered is placed in the variable pointed to
1057           by  erroffset,  which must not be NULL. If it is, an immediate error is
1058           given.
1059    
1060           If pcre_compile2() is used instead of pcre_compile(),  and  the  error-
1061           codeptr  argument is not NULL, a non-zero error code number is returned
1062           via this argument in the event of an error. This is in addition to  the
1063           textual error message. Error codes and messages are listed below.
1064    
1065           If  the  final  argument, tableptr, is NULL, PCRE uses a default set of
1066           character tables that are  built  when  PCRE  is  compiled,  using  the
1067           default  C  locale.  Otherwise, tableptr must be an address that is the
1068           result of a call to pcre_maketables(). This value is  stored  with  the
1069           compiled  pattern,  and used again by pcre_exec(), unless another table
1070           pointer is passed to it. For more discussion, see the section on locale
1071           support below.
1072    
1073           This  code  fragment  shows a typical straightforward call to pcre_com-
1074           pile():
1075    
1076             pcre *re;
1077             const char *error;
1078             int erroffset;
1079             re = pcre_compile(
1080               "^A.*Z",          /* the pattern */
1081               0,                /* default options */
1082               &error,           /* for error message */
1083               &erroffset,       /* for error offset */
1084               NULL);            /* use default character tables */
1085    
1086           The following names for option bits are defined in  the  pcre.h  header
1087           file:
1088    
1089             PCRE_ANCHORED
1090    
1091           If this bit is set, the pattern is forced to be "anchored", that is, it
1092           is constrained to match only at the first matching point in the  string
1093           that  is being searched (the "subject string"). This effect can also be
1094           achieved by appropriate constructs in the pattern itself, which is  the
1095           only way to do it in Perl.
1096    
1097             PCRE_AUTO_CALLOUT
1098    
1099           If this bit is set, pcre_compile() automatically inserts callout items,
1100           all with number 255, before each pattern item. For  discussion  of  the
1101           callout facility, see the pcrecallout documentation.
1102    
1103             PCRE_CASELESS
1104    
1105           If  this  bit is set, letters in the pattern match both upper and lower
1106           case letters. It is equivalent to Perl's  /i  option,  and  it  can  be
1107           changed  within a pattern by a (?i) option setting. In UTF-8 mode, PCRE
1108           always understands the concept of case for characters whose values  are
1109           less  than 128, so caseless matching is always possible. For characters
1110           with higher values, the concept of case is supported if  PCRE  is  com-
1111           piled  with Unicode property support, but not otherwise. If you want to
1112           use caseless matching for characters 128 and  above,  you  must  ensure
1113           that  PCRE  is  compiled  with Unicode property support as well as with
1114           UTF-8 support.
1115    
1116             PCRE_DOLLAR_ENDONLY
1117    
1118           If this bit is set, a dollar metacharacter in the pattern matches  only
1119           at  the  end  of the subject string. Without this option, a dollar also
1120           matches immediately before a newline at the end of the string (but  not
1121           before  any  other newlines). The PCRE_DOLLAR_ENDONLY option is ignored
1122           if PCRE_MULTILINE is set.  There is no equivalent  to  this  option  in
1123           Perl, and no way to set it within a pattern.
1124    
1125             PCRE_DOTALL
1126    
1127           If this bit is set, a dot metacharater in the pattern matches all char-
1128           acters, including those that indicate newline. Without it, a  dot  does
1129           not  match  when  the  current position is at a newline. This option is
1130           equivalent to Perl's /s option, and it can be changed within a  pattern
1131           by  a (?s) option setting. A negative class such as [^a] always matches
1132           newline characters, independent of the setting of this option.
1133    
1134             PCRE_DUPNAMES
1135    
1136           If this bit is set, names used to identify capturing  subpatterns  need
1137           not be unique. This can be helpful for certain types of pattern when it
1138           is known that only one instance of the named  subpattern  can  ever  be
1139           matched.  There  are  more details of named subpatterns below; see also
1140           the pcrepattern documentation.
1141    
1142             PCRE_EXTENDED
1143    
1144           If this bit is set, whitespace  data  characters  in  the  pattern  are
1145           totally ignored except when escaped or inside a character class. White-
1146           space does not include the VT character (code 11). In addition, charac-
1147           ters between an unescaped # outside a character class and the next new-
1148           line, inclusive, are also ignored. This  is  equivalent  to  Perl's  /x
1149           option,  and  it  can be changed within a pattern by a (?x) option set-
1150           ting.
1151    
1152           This option makes it possible to include  comments  inside  complicated
1153           patterns.   Note,  however,  that this applies only to data characters.
1154           Whitespace  characters  may  never  appear  within  special   character
1155           sequences  in  a  pattern,  for  example  within the sequence (?( which
1156           introduces a conditional subpattern.
1157    
1158             PCRE_EXTRA
1159    
1160           This option was invented in order to turn on  additional  functionality
1161           of  PCRE  that  is  incompatible with Perl, but it is currently of very
1162           little use. When set, any backslash in a pattern that is followed by  a
1163           letter  that  has  no  special  meaning causes an error, thus reserving
1164           these combinations for future expansion. By  default,  as  in  Perl,  a
1165           backslash  followed by a letter with no special meaning is treated as a
1166           literal. (Perl can, however, be persuaded to give a warning for  this.)
1167           There  are  at  present no other features controlled by this option. It
1168           can also be set by a (?X) option setting within a pattern.
1169    
1170             PCRE_FIRSTLINE
1171    
1172           If this option is set, an  unanchored  pattern  is  required  to  match
1173           before  or  at  the  first  newline  in  the subject string, though the
1174           matched text may continue over the newline.
1175    
1176             PCRE_MULTILINE
1177    
1178           By default, PCRE treats the subject string as consisting  of  a  single
1179           line  of characters (even if it actually contains newlines). The "start
1180           of line" metacharacter (^) matches only at the  start  of  the  string,
1181           while  the  "end  of line" metacharacter ($) matches only at the end of
1182           the string, or before a terminating newline (unless PCRE_DOLLAR_ENDONLY
1183           is set). This is the same as Perl.
1184    
1185           When  PCRE_MULTILINE  it  is set, the "start of line" and "end of line"
1186           constructs match immediately following or immediately  before  internal
1187           newlines  in  the  subject string, respectively, as well as at the very
1188           start and end. This is equivalent to Perl's /m option, and  it  can  be
1189           changed within a pattern by a (?m) option setting. If there are no new-
1190           lines in a subject string, or no occurrences of ^ or $  in  a  pattern,
1191           setting PCRE_MULTILINE has no effect.
1192    
1193             PCRE_NEWLINE_CR
1194             PCRE_NEWLINE_LF
1195             PCRE_NEWLINE_CRLF
1196             PCRE_NEWLINE_ANYCRLF
1197             PCRE_NEWLINE_ANY
1198    
1199           These  options  override the default newline definition that was chosen
1200           when PCRE was built. Setting the first or the second specifies  that  a
1201           newline  is  indicated  by a single character (CR or LF, respectively).
1202           Setting PCRE_NEWLINE_CRLF specifies that a newline is indicated by  the
1203           two-character  CRLF  sequence.  Setting  PCRE_NEWLINE_ANYCRLF specifies
1204           that any of the three preceding sequences should be recognized. Setting
1205           PCRE_NEWLINE_ANY  specifies that any Unicode newline sequence should be
1206           recognized. The Unicode newline sequences are the three just mentioned,
1207           plus  the  single  characters  VT (vertical tab, U+000B), FF (formfeed,
1208           U+000C), NEL (next line, U+0085), LS (line separator, U+2028),  and  PS
1209           (paragraph  separator,  U+2029).  The  last  two are recognized only in
1210           UTF-8 mode.
1211    
1212           The newline setting in the  options  word  uses  three  bits  that  are
1213           treated as a number, giving eight possibilities. Currently only six are
1214           used (default plus the five values above). This means that if  you  set
1215           more  than one newline option, the combination may or may not be sensi-
1216           ble. For example, PCRE_NEWLINE_CR with PCRE_NEWLINE_LF is equivalent to
1217           PCRE_NEWLINE_CRLF,  but other combinations may yield unused numbers and
1218           cause an error.
1219    
1220           The only time that a line break is specially recognized when  compiling
1221           a  pattern  is  if  PCRE_EXTENDED  is set, and an unescaped # outside a
1222           character class is encountered. This indicates  a  comment  that  lasts
1223           until  after the next line break sequence. In other circumstances, line
1224           break  sequences  are  treated  as  literal  data,   except   that   in
1225           PCRE_EXTENDED mode, both CR and LF are treated as whitespace characters
1226           and are therefore ignored.
1227    
1228           The newline option that is set at compile time becomes the default that
1229           is  used for pcre_exec() and pcre_dfa_exec(), but it can be overridden.
1230    
1231             PCRE_NO_AUTO_CAPTURE
1232    
1233           If this option is set, it disables the use of numbered capturing paren-
1234           theses  in the pattern. Any opening parenthesis that is not followed by
1235           ? behaves as if it were followed by ?: but named parentheses can  still
1236           be  used  for  capturing  (and  they acquire numbers in the usual way).
1237           There is no equivalent of this option in Perl.
1238    
1239             PCRE_UNGREEDY
1240    
1241           This option inverts the "greediness" of the quantifiers  so  that  they
1242           are  not greedy by default, but become greedy if followed by "?". It is
1243           not compatible with Perl. It can also be set by a (?U)  option  setting
1244           within the pattern.
1245    
1246             PCRE_UTF8
1247    
1248           This  option  causes PCRE to regard both the pattern and the subject as
1249           strings of UTF-8 characters instead of single-byte  character  strings.
1250           However,  it is available only when PCRE is built to include UTF-8 sup-
1251           port. If not, the use of this option provokes an error. Details of  how
1252           this  option  changes the behaviour of PCRE are given in the section on
1253           UTF-8 support in the main pcre page.
1254    
1255             PCRE_NO_UTF8_CHECK
1256    
1257           When PCRE_UTF8 is set, the validity of the pattern as a UTF-8 string is
1258           automatically  checked.  There  is  a  discussion about the validity of
1259           UTF-8 strings in the main pcre page. If an invalid  UTF-8  sequence  of
1260           bytes  is  found,  pcre_compile() returns an error. If you already know
1261           that your pattern is valid, and you want to skip this check for perfor-
1262           mance  reasons,  you  can set the PCRE_NO_UTF8_CHECK option. When it is
1263           set, the effect of passing an invalid UTF-8  string  as  a  pattern  is
1264           undefined.  It  may  cause your program to crash. Note that this option
1265           can also be passed to pcre_exec() and pcre_dfa_exec(), to suppress  the
1266           UTF-8 validity checking of subject strings.
1267    
1268    
1269    COMPILATION ERROR CODES
1270    
1271           The  following  table  lists  the  error  codes than may be returned by
1272           pcre_compile2(), along with the error messages that may be returned  by
1273           both  compiling functions. As PCRE has developed, some error codes have
1274           fallen out of use. To avoid confusion, they have not been re-used.
1275    
1276              0  no error
1277              1  \ at end of pattern
1278              2  \c at end of pattern
1279              3  unrecognized character follows \
1280              4  numbers out of order in {} quantifier
1281              5  number too big in {} quantifier
1282              6  missing terminating ] for character class
1283              7  invalid escape sequence in character class
1284              8  range out of order in character class
1285              9  nothing to repeat
1286             10  [this code is not in use]
1287             11  internal error: unexpected repeat
1288             12  unrecognized character after (?
1289             13  POSIX named classes are supported only within a class
1290             14  missing )
1291             15  reference to non-existent subpattern
1292             16  erroffset passed as NULL
1293             17  unknown option bit(s) set
1294             18  missing ) after comment
1295             19  [this code is not in use]
1296             20  regular expression too large
1297             21  failed to get memory
1298             22  unmatched parentheses
1299             23  internal error: code overflow
1300             24  unrecognized character after (?<
1301             25  lookbehind assertion is not fixed length
1302             26  malformed number or name after (?(
1303             27  conditional group contains more than two branches
1304             28  assertion expected after (?(
1305             29  (?R or (?[+-]digits must be followed by )
1306             30  unknown POSIX class name
1307             31  POSIX collating elements are not supported
1308             32  this version of PCRE is not compiled with PCRE_UTF8 support
1309             33  [this code is not in use]
1310             34  character value in \x{...} sequence is too large
1311             35  invalid condition (?(0)
1312             36  \C not allowed in lookbehind assertion
1313             37  PCRE does not support \L, \l, \N, \U, or \u
1314             38  number after (?C is > 255
1315             39  closing ) for (?C expected
1316             40  recursive call could loop indefinitely
1317             41  unrecognized character after (?P
1318             42  syntax error in subpattern name (missing terminator)
1319             43  two named subpatterns have the same name
1320             44  invalid UTF-8 string
1321             45  support for \P, \p, and \X has not been compiled
1322             46  malformed \P or \p sequence
1323             47  unknown property name after \P or \p
1324             48  subpattern name is too long (maximum 32 characters)
1325             49  too many named subpatterns (maximum 10,000)
1326             50  [this code is not in use]
1327             51  octal value is greater than \377 (not in UTF-8 mode)
1328             52  internal error: overran compiling workspace
1329             53  internal  error:  previously-checked  referenced  subpattern  not
1330           found
1331             54  DEFINE group contains more than one branch
1332             55  repeating a DEFINE group is not allowed
1333             56  inconsistent NEWLINE options"
1334             57  \g is not followed by a braced name or an optionally braced
1335                   non-zero number
1336             58  (?+ or (?- or (?(+ or (?(- must be followed by a non-zero number
1337    
1338    
1339  STUDYING A PATTERN  STUDYING A PATTERN
      When a pattern is going to be  used  several  times,  it  is  
      worth  spending  more time analyzing it in order to speed up  
      the time taken for matching. The function pcre_study() takes  
      a  pointer  to a compiled pattern as its first argument, and  
      returns a  pointer  to  a  pcre_extra  block  (another  void  
      typedef)  containing  additional  information about the pat-  
      tern; this can be passed to pcre_exec().  If  no  additional  
      information is available, NULL is returned.  
   
      The second argument contains option  bits.  At  present,  no  
      options  are  defined  for  pcre_study(),  and this argument  
      should always be zero.  
   
      The third argument for pcre_study() is a pointer to an error  
      message. If studying succeeds (even if no data is returned),  
      the variable it points to  is  set  to  NULL.  Otherwise  it  
      points to a textual error message.  
   
      At present, studying a  pattern  is  useful  only  for  non-  
      anchored  patterns  that do not have a single fixed starting  
      character. A  bitmap  of  possible  starting  characters  is  
      created.  
1340    
1341           pcre_extra *pcre_study(const pcre *code, int options
1342                const char **errptr);
1343    
1344           If  a  compiled  pattern is going to be used several times, it is worth
1345           spending more time analyzing it in order to speed up the time taken for
1346           matching.  The function pcre_study() takes a pointer to a compiled pat-
1347           tern as its first argument. If studying the pattern produces additional
1348           information  that  will  help speed up matching, pcre_study() returns a
1349           pointer to a pcre_extra block, in which the study_data field points  to
1350           the results of the study.
1351    
1352           The  returned  value  from  pcre_study()  can  be  passed  directly  to
1353           pcre_exec(). However, a pcre_extra block  also  contains  other  fields
1354           that  can  be  set  by the caller before the block is passed; these are
1355           described below in the section on matching a pattern.
1356    
1357           If studying the pattern does not  produce  any  additional  information
1358           pcre_study() returns NULL. In that circumstance, if the calling program
1359           wants to pass any of the other fields to pcre_exec(), it  must  set  up
1360           its own pcre_extra block.
1361    
1362           The  second  argument of pcre_study() contains option bits. At present,
1363           no options are defined, and this argument should always be zero.
1364    
1365           The third argument for pcre_study() is a pointer for an error  message.
1366           If  studying  succeeds  (even  if no data is returned), the variable it
1367           points to is set to NULL. Otherwise it is set to  point  to  a  textual
1368           error message. This is a static string that is part of the library. You
1369           must not try to free it. You should test the  error  pointer  for  NULL
1370           after calling pcre_study(), to be sure that it has run successfully.
1371    
1372           This is a typical call to pcre_study():
1373    
1374             pcre_extra *pe;
1375             pe = pcre_study(
1376               re,             /* result of pcre_compile() */
1377               0,              /* no options exist */
1378               &error);        /* set to NULL or points to a message */
1379    
1380           At present, studying a pattern is useful only for non-anchored patterns
1381           that do not have a single fixed starting character. A bitmap of  possi-
1382           ble starting bytes is created.
1383    
1384    
1385  LOCALE SUPPORT  LOCALE SUPPORT
      PCRE handles caseless matching, and determines whether char-  
      acters  are  letters, digits, or whatever, by reference to a  
      set of tables. The library contains a default set of  tables  
      which  is  created in the default C locale when PCRE is com-  
      piled.  This  is   used   when   the   final   argument   of  
      pcre_compile()  is NULL, and is sufficient for many applica-  
      tions.  
   
      An alternative set of tables can, however, be supplied. Such  
      tables  are built by calling the pcre_maketables() function,  
      which has no arguments, in the relevant locale.  The  result  
      can  then be passed to pcre_compile() as often as necessary.  
      For example, to build and use tables  that  are  appropriate  
      for  the French locale (where accented characters with codes  
      greater than 128 are treated as letters), the following code  
      could be used:  
   
        setlocale(LC_CTYPE, "fr");  
        tables = pcre_maketables();  
        re = pcre_compile(..., tables);  
   
      The  tables  are  built  in  memory  that  is  obtained  via  
      pcre_malloc.  The  pointer that is passed to pcre_compile is  
      saved with the compiled pattern, and  the  same  tables  are  
      used  via this pointer by pcre_study() and pcre_exec(). Thus  
      for any single pattern, compilation, studying  and  matching  
      all happen in the same locale, but different patterns can be  
      compiled in different locales. It is the caller's  responsi-  
      bility  to  ensure  that  the  memory  containing the tables  
      remains available for as long as it is needed.  
1386    
1387           PCRE  handles  caseless matching, and determines whether characters are
1388           letters, digits, or whatever, by reference to a set of tables,  indexed
1389           by  character  value.  When running in UTF-8 mode, this applies only to
1390           characters with codes less than 128. Higher-valued  codes  never  match
1391           escapes  such  as  \w or \d, but can be tested with \p if PCRE is built
1392           with Unicode character property support. The use of locales  with  Uni-
1393           code  is discouraged. If you are handling characters with codes greater
1394           than 128, you should either use UTF-8 and Unicode, or use locales,  but
1395           not try to mix the two.
1396    
1397           PCRE  contains  an  internal set of tables that are used when the final
1398           argument of pcre_compile() is  NULL.  These  are  sufficient  for  many
1399           applications.  Normally, the internal tables recognize only ASCII char-
1400           acters. However, when PCRE is built, it is possible to cause the inter-
1401           nal tables to be rebuilt in the default "C" locale of the local system,
1402           which may cause them to be different.
1403    
1404           The internal tables can always be overridden by tables supplied by  the
1405           application that calls PCRE. These may be created in a different locale
1406           from the default. As more and more applications change  to  using  Uni-
1407           code, the need for this locale support is expected to die away.
1408    
1409           External  tables  are  built by calling the pcre_maketables() function,
1410           which has no arguments, in the relevant locale. The result can then  be
1411           passed  to  pcre_compile()  or  pcre_exec()  as often as necessary. For
1412           example, to build and use tables that are appropriate  for  the  French
1413           locale  (where  accented  characters  with  values greater than 128 are
1414           treated as letters), the following code could be used:
1415    
1416             setlocale(LC_CTYPE, "fr_FR");
1417             tables = pcre_maketables();
1418             re = pcre_compile(..., tables);
1419    
1420           The locale name "fr_FR" is used on Linux and other  Unix-like  systems;
1421           if you are using Windows, the name for the French locale is "french".
1422    
1423           When  pcre_maketables()  runs,  the  tables are built in memory that is
1424           obtained via pcre_malloc. It is the caller's responsibility  to  ensure
1425           that  the memory containing the tables remains available for as long as
1426           it is needed.
1427    
1428           The pointer that is passed to pcre_compile() is saved with the compiled
1429           pattern,  and the same tables are used via this pointer by pcre_study()
1430           and normally also by pcre_exec(). Thus, by default, for any single pat-
1431           tern, compilation, studying and matching all happen in the same locale,
1432           but different patterns can be compiled in different locales.
1433    
1434           It is possible to pass a table pointer or NULL (indicating the  use  of
1435           the  internal  tables)  to  pcre_exec(). Although not intended for this
1436           purpose, this facility could be used to match a pattern in a  different
1437           locale from the one in which it was compiled. Passing table pointers at
1438           run time is discussed below in the section on matching a pattern.
1439    
1440    
1441  INFORMATION ABOUT A PATTERN  INFORMATION ABOUT A PATTERN
      The pcre_fullinfo() function  returns  information  about  a  
      compiled pattern. It replaces the obsolete pcre_info() func-  
      tion, which is nevertheless retained for backwards compabil-  
      ity (and is documented below).  
   
      The first argument for pcre_fullinfo() is a pointer  to  the  
      compiled  pattern.  The  second  argument  is  the result of  
      pcre_study(), or NULL if the pattern was  not  studied.  The  
      third  argument  specifies  which  piece  of  information is  
      required, while the fourth argument is a pointer to a  vari-  
      able  to receive the data. The yield of the function is zero  
      for success, or one of the following negative numbers:  
   
        PCRE_ERROR_NULL       the argument code was NULL  
                              the argument where was NULL  
        PCRE_ERROR_BADMAGIC   the "magic number" was not found  
        PCRE_ERROR_BADOPTION  the value of what was invalid  
   
      The possible values for the third argument  are  defined  in  
      pcre.h, and are as follows:  
   
        PCRE_INFO_OPTIONS  
   
      Return a copy of the options with which the pattern was com-  
      piled.  The fourth argument should point to au unsigned long  
      int variable. These option bits are those specified  in  the  
      call  to  pcre_compile(),  modified  by any top-level option  
      settings  within  the   pattern   itself,   and   with   the  
      PCRE_ANCHORED  bit  forcibly  set if the form of the pattern  
      implies that it can match only at the  start  of  a  subject  
      string.  
   
        PCRE_INFO_SIZE  
   
      Return the size of the compiled pattern, that is, the  value  
      that  was  passed as the argument to pcre_malloc() when PCRE  
      was getting memory in which to place the compiled data.  The  
      fourth argument should point to a size_t variable.  
   
        PCRE_INFO_CAPTURECOUNT  
   
      Return the number of capturing subpatterns in  the  pattern.  
      The fourth argument should point to an int variable.  
   
        PCRE_INFO_BACKREFMAX  
   
      Return the number of the highest back reference in the  pat-  
      tern.  The  fourth argument should point to an int variable.  
      Zero is returned if there are no back references.  
   
        PCRE_INFO_FIRSTCHAR  
   
      Return information about the first character of any  matched  
      string,  for  a  non-anchored  pattern.  If there is a fixed  
      first   character,   e.g.   from   a   pattern    such    as  
      (cat|cow|coyote),  it  is returned in the integer pointed to  
      by where. Otherwise, if either  
   
      (a) the pattern was compiled with the PCRE_MULTILINE option,  
      and every branch starts with "^", or  
   
      (b) every  branch  of  the  pattern  starts  with  ".*"  and  
      PCRE_DOTALL is not set (if it were set, the pattern would be  
      anchored),  
   
      -1 is returned, indicating that the pattern matches only  at  
      the  start  of a subject string or after any "\n" within the  
      string. Otherwise -2 is returned.  For anchored patterns, -2  
      is returned.  
   
        PCRE_INFO_FIRSTTABLE  
   
      If the pattern was studied, and this resulted  in  the  con-  
      struction of a 256-bit table indicating a fixed set of char-  
      acters for the first character in  any  matching  string,  a  
      pointer   to  the  table  is  returned.  Otherwise  NULL  is  
      returned. The fourth argument should point  to  an  unsigned  
      char * variable.  
   
        PCRE_INFO_LASTLITERAL  
   
      For a non-anchored pattern, return the value of  the  right-  
      most  literal  character  which  must  exist  in any matched  
      string, other than at its start. The fourth argument  should  
      point  to an int variable. If there is no such character, or  
      if the pattern is anchored, -1 is returned. For example, for  
      the pattern /a\d+z\d+/ the returned value is 'z'.  
   
      The pcre_info() function is now obsolete because its  inter-  
      face  is  too  restrictive  to return all the available data  
      about  a  compiled  pattern.   New   programs   should   use  
      pcre_fullinfo()  instead.  The  yield  of pcre_info() is the  
      number of capturing subpatterns, or  one  of  the  following  
      negative numbers:  
   
        PCRE_ERROR_NULL       the argument code was NULL  
        PCRE_ERROR_BADMAGIC   the "magic number" was not found  
   
      If the optptr argument is not NULL, a copy  of  the  options  
      with which the pattern was compiled is placed in the integer  
      it points to (see PCRE_INFO_OPTIONS above).  
   
      If the pattern is not anchored and the firstcharptr argument  
      is  not  NULL, it is used to pass back information about the  
      first    character    of    any    matched    string    (see  
      PCRE_INFO_FIRSTCHAR above).  
1442    
1443           int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
1444                int what, void *where);
1445    
1446           The pcre_fullinfo() function returns information about a compiled  pat-
1447           tern. It replaces the obsolete pcre_info() function, which is neverthe-
1448           less retained for backwards compability (and is documented below).
1449    
1450           The first argument for pcre_fullinfo() is a  pointer  to  the  compiled
1451           pattern.  The second argument is the result of pcre_study(), or NULL if
1452           the pattern was not studied. The third argument specifies  which  piece
1453           of  information  is required, and the fourth argument is a pointer to a
1454           variable to receive the data. The yield of the  function  is  zero  for
1455           success, or one of the following negative numbers:
1456    
1457             PCRE_ERROR_NULL       the argument code was NULL
1458                                   the argument where was NULL
1459             PCRE_ERROR_BADMAGIC   the "magic number" was not found
1460             PCRE_ERROR_BADOPTION  the value of what was invalid
1461    
1462           The  "magic  number" is placed at the start of each compiled pattern as
1463           an simple check against passing an arbitrary memory pointer. Here is  a
1464           typical  call  of pcre_fullinfo(), to obtain the length of the compiled
1465           pattern:
1466    
1467             int rc;
1468             size_t length;
1469             rc = pcre_fullinfo(
1470               re,               /* result of pcre_compile() */
1471               pe,               /* result of pcre_study(), or NULL */
1472               PCRE_INFO_SIZE,   /* what is required */
1473               &length);         /* where to put the data */
1474    
1475           The possible values for the third argument are defined in  pcre.h,  and
1476           are as follows:
1477    
1478             PCRE_INFO_BACKREFMAX
1479    
1480           Return  the  number  of  the highest back reference in the pattern. The
1481           fourth argument should point to an int variable. Zero  is  returned  if
1482           there are no back references.
1483    
1484             PCRE_INFO_CAPTURECOUNT
1485    
1486           Return  the  number of capturing subpatterns in the pattern. The fourth
1487           argument should point to an int variable.
1488    
1489             PCRE_INFO_DEFAULT_TABLES
1490    
1491           Return a pointer to the internal default character tables within  PCRE.
1492           The  fourth  argument should point to an unsigned char * variable. This
1493           information call is provided for internal use by the pcre_study() func-
1494           tion.  External  callers  can  cause PCRE to use its internal tables by
1495           passing a NULL table pointer.
1496    
1497             PCRE_INFO_FIRSTBYTE
1498    
1499           Return information about the first byte of any matched  string,  for  a
1500           non-anchored  pattern. The fourth argument should point to an int vari-
1501           able. (This option used to be called PCRE_INFO_FIRSTCHAR; the old  name
1502           is still recognized for backwards compatibility.)
1503    
1504           If  there  is  a  fixed first byte, for example, from a pattern such as
1505           (cat|cow|coyote), its value is returned. Otherwise, if either
1506    
1507           (a) the pattern was compiled with the PCRE_MULTILINE option, and  every
1508           branch starts with "^", or
1509    
1510           (b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not
1511           set (if it were set, the pattern would be anchored),
1512    
1513           -1 is returned, indicating that the pattern matches only at  the  start
1514           of  a  subject string or after any newline within the string. Otherwise
1515           -2 is returned. For anchored patterns, -2 is returned.
1516    
1517             PCRE_INFO_FIRSTTABLE
1518    
1519           If the pattern was studied, and this resulted in the construction of  a
1520           256-bit table indicating a fixed set of bytes for the first byte in any
1521           matching string, a pointer to the table is returned. Otherwise NULL  is
1522           returned.  The fourth argument should point to an unsigned char * vari-
1523           able.
1524    
1525             PCRE_INFO_JCHANGED
1526    
1527           Return 1 if the (?J) option setting is used in the  pattern,  otherwise
1528           0. The fourth argument should point to an int variable. The (?J) inter-
1529           nal option setting changes the local PCRE_DUPNAMES option.
1530    
1531             PCRE_INFO_LASTLITERAL
1532    
1533           Return the value of the rightmost literal byte that must exist  in  any
1534           matched  string,  other  than  at  its  start,  if such a byte has been
1535           recorded. The fourth argument should point to an int variable. If there
1536           is  no such byte, -1 is returned. For anchored patterns, a last literal
1537           byte is recorded only if it follows something of variable  length.  For
1538           example, for the pattern /^a\d+z\d+/ the returned value is "z", but for
1539           /^a\dz\d/ the returned value is -1.
1540    
1541             PCRE_INFO_NAMECOUNT
1542             PCRE_INFO_NAMEENTRYSIZE
1543             PCRE_INFO_NAMETABLE
1544    
1545           PCRE supports the use of named as well as numbered capturing  parenthe-
1546           ses.  The names are just an additional way of identifying the parenthe-
1547           ses, which still acquire numbers. Several convenience functions such as
1548           pcre_get_named_substring()  are  provided  for extracting captured sub-
1549           strings by name. It is also possible to extract the data  directly,  by
1550           first  converting  the  name to a number in order to access the correct
1551           pointers in the output vector (described with pcre_exec() below). To do
1552           the  conversion,  you  need  to  use  the  name-to-number map, which is
1553           described by these three values.
1554    
1555           The map consists of a number of fixed-size entries. PCRE_INFO_NAMECOUNT
1556           gives the number of entries, and PCRE_INFO_NAMEENTRYSIZE gives the size
1557           of each entry; both of these  return  an  int  value.  The  entry  size
1558           depends  on the length of the longest name. PCRE_INFO_NAMETABLE returns
1559           a pointer to the first entry of the table  (a  pointer  to  char).  The
1560           first two bytes of each entry are the number of the capturing parenthe-
1561           sis, most significant byte first. The rest of the entry is  the  corre-
1562           sponding  name,  zero  terminated. The names are in alphabetical order.
1563           When PCRE_DUPNAMES is set, duplicate names are in order of their paren-
1564           theses  numbers.  For  example,  consider the following pattern (assume
1565           PCRE_EXTENDED is  set,  so  white  space  -  including  newlines  -  is
1566           ignored):
1567    
1568             (?<date> (?<year>(\d\d)?\d\d) -
1569             (?<month>\d\d) - (?<day>\d\d) )
1570    
1571           There  are  four  named subpatterns, so the table has four entries, and
1572           each entry in the table is eight bytes long. The table is  as  follows,
1573           with non-printing bytes shows in hexadecimal, and undefined bytes shown
1574           as ??:
1575    
1576             00 01 d  a  t  e  00 ??
1577             00 05 d  a  y  00 ?? ??
1578             00 04 m  o  n  t  h  00
1579             00 02 y  e  a  r  00 ??
1580    
1581           When writing code to extract data  from  named  subpatterns  using  the
1582           name-to-number  map,  remember that the length of the entries is likely
1583           to be different for each compiled pattern.
1584    
1585             PCRE_INFO_OKPARTIAL
1586    
1587           Return 1 if the pattern can be used for partial matching, otherwise  0.
1588           The  fourth  argument  should point to an int variable. The pcrepartial
1589           documentation lists the restrictions that apply to patterns  when  par-
1590           tial matching is used.
1591    
1592             PCRE_INFO_OPTIONS
1593    
1594           Return  a  copy of the options with which the pattern was compiled. The
1595           fourth argument should point to an unsigned long  int  variable.  These
1596           option bits are those specified in the call to pcre_compile(), modified
1597           by any top-level option settings at the start of the pattern itself. In
1598           other  words,  they are the options that will be in force when matching
1599           starts. For example, if the pattern /(?im)abc(?-i)d/ is  compiled  with
1600           the  PCRE_EXTENDED option, the result is PCRE_CASELESS, PCRE_MULTILINE,
1601           and PCRE_EXTENDED.
1602    
1603           A pattern is automatically anchored by PCRE if  all  of  its  top-level
1604           alternatives begin with one of the following:
1605    
1606             ^     unless PCRE_MULTILINE is set
1607             \A    always
1608             \G    always
1609             .*    if PCRE_DOTALL is set and there are no back
1610                     references to the subpattern in which .* appears
1611    
1612           For such patterns, the PCRE_ANCHORED bit is set in the options returned
1613           by pcre_fullinfo().
1614    
1615             PCRE_INFO_SIZE
1616    
1617           Return the size of the compiled pattern, that is, the  value  that  was
1618           passed as the argument to pcre_malloc() when PCRE was getting memory in
1619           which to place the compiled data. The fourth argument should point to a
1620           size_t variable.
1621    
1622             PCRE_INFO_STUDYSIZE
1623    
1624           Return the size of the data block pointed to by the study_data field in
1625           a pcre_extra block. That is,  it  is  the  value  that  was  passed  to
1626           pcre_malloc() when PCRE was getting memory into which to place the data
1627           created by pcre_study(). The fourth argument should point to  a  size_t
1628           variable.
1629    
1630    
1631    OBSOLETE INFO FUNCTION
1632    
1633           int pcre_info(const pcre *code, int *optptr, int *firstcharptr);
1634    
1635           The  pcre_info()  function is now obsolete because its interface is too
1636           restrictive to return all the available data about a compiled  pattern.
1637           New   programs   should  use  pcre_fullinfo()  instead.  The  yield  of
1638           pcre_info() is the number of capturing subpatterns, or one of the  fol-
1639           lowing negative numbers:
1640    
1641             PCRE_ERROR_NULL       the argument code was NULL
1642             PCRE_ERROR_BADMAGIC   the "magic number" was not found
1643    
1644           If  the  optptr  argument is not NULL, a copy of the options with which
1645           the pattern was compiled is placed in the integer  it  points  to  (see
1646           PCRE_INFO_OPTIONS above).
1647    
1648           If  the  pattern  is  not anchored and the firstcharptr argument is not
1649           NULL, it is used to pass back information about the first character  of
1650           any matched string (see PCRE_INFO_FIRSTBYTE above).
1651    
1652    
1653    REFERENCE COUNTS
1654    
1655           int pcre_refcount(pcre *code, int adjust);
1656    
1657           The  pcre_refcount()  function is used to maintain a reference count in
1658           the data block that contains a compiled pattern. It is provided for the
1659           benefit  of  applications  that  operate  in an object-oriented manner,
1660           where different parts of the application may be using the same compiled
1661           pattern, but you want to free the block when they are all done.
1662    
1663           When a pattern is compiled, the reference count field is initialized to
1664           zero.  It is changed only by calling this function, whose action is  to
1665           add  the  adjust  value  (which may be positive or negative) to it. The
1666           yield of the function is the new value. However, the value of the count
1667           is  constrained to lie between 0 and 65535, inclusive. If the new value
1668           is outside these limits, it is forced to the appropriate limit value.
1669    
1670           Except when it is zero, the reference count is not correctly  preserved
1671           if  a  pattern  is  compiled on one host and then transferred to a host
1672           whose byte-order is different. (This seems a highly unlikely scenario.)
1673    
1674    
1675    MATCHING A PATTERN: THE TRADITIONAL FUNCTION
1676    
1677           int pcre_exec(const pcre *code, const pcre_extra *extra,
1678                const char *subject, int length, int startoffset,
1679                int options, int *ovector, int ovecsize);
1680    
1681           The  function pcre_exec() is called to match a subject string against a
1682           compiled pattern, which is passed in the code argument. If the  pattern
1683           has been studied, the result of the study should be passed in the extra
1684           argument. This function is the main matching facility of  the  library,
1685           and it operates in a Perl-like manner. For specialist use there is also
1686           an alternative matching function, which is described below in the  sec-
1687           tion about the pcre_dfa_exec() function.
1688    
1689           In  most applications, the pattern will have been compiled (and option-
1690           ally studied) in the same process that calls pcre_exec().  However,  it
1691           is possible to save compiled patterns and study data, and then use them
1692           later in different processes, possibly even on different hosts.  For  a
1693           discussion about this, see the pcreprecompile documentation.
1694    
1695           Here is an example of a simple call to pcre_exec():
1696    
1697             int rc;
1698             int ovector[30];
1699             rc = pcre_exec(
1700               re,             /* result of pcre_compile() */
1701               NULL,           /* we didn't study the pattern */
1702               "some string",  /* the subject string */
1703               11,             /* the length of the subject string */
1704               0,              /* start at offset 0 in the subject */
1705               0,              /* default options */
1706               ovector,        /* vector of integers for substring information */
1707               30);            /* number of elements (NOT size in bytes) */
1708    
1709       Extra data for pcre_exec()
1710    
1711           If  the  extra argument is not NULL, it must point to a pcre_extra data
1712           block. The pcre_study() function returns such a block (when it  doesn't
1713           return  NULL), but you can also create one for yourself, and pass addi-
1714           tional information in it. The pcre_extra block contains  the  following
1715           fields (not necessarily in this order):
1716    
1717             unsigned long int flags;
1718             void *study_data;
1719             unsigned long int match_limit;
1720             unsigned long int match_limit_recursion;
1721             void *callout_data;
1722             const unsigned char *tables;
1723    
1724           The  flags  field  is a bitmap that specifies which of the other fields
1725           are set. The flag bits are:
1726    
1727             PCRE_EXTRA_STUDY_DATA
1728             PCRE_EXTRA_MATCH_LIMIT
1729             PCRE_EXTRA_MATCH_LIMIT_RECURSION
1730             PCRE_EXTRA_CALLOUT_DATA
1731             PCRE_EXTRA_TABLES
1732    
1733           Other flag bits should be set to zero. The study_data field is  set  in
1734           the  pcre_extra  block  that is returned by pcre_study(), together with
1735           the appropriate flag bit. You should not set this yourself, but you may
1736           add  to  the  block by setting the other fields and their corresponding
1737           flag bits.
1738    
1739           The match_limit field provides a means of preventing PCRE from using up
1740           a  vast amount of resources when running patterns that are not going to
1741           match, but which have a very large number  of  possibilities  in  their
1742           search  trees.  The  classic  example  is  the  use of nested unlimited
1743           repeats.
1744    
1745           Internally, PCRE uses a function called match() which it calls  repeat-
1746           edly  (sometimes  recursively). The limit set by match_limit is imposed
1747           on the number of times this function is called during  a  match,  which
1748           has  the  effect  of  limiting the amount of backtracking that can take
1749           place. For patterns that are not anchored, the count restarts from zero
1750           for each position in the subject string.
1751    
1752           The  default  value  for  the  limit can be set when PCRE is built; the
1753           default default is 10 million, which handles all but the  most  extreme
1754           cases.  You  can  override  the  default by suppling pcre_exec() with a
1755           pcre_extra    block    in    which    match_limit    is    set,     and
1756           PCRE_EXTRA_MATCH_LIMIT  is  set  in  the  flags  field. If the limit is
1757           exceeded, pcre_exec() returns PCRE_ERROR_MATCHLIMIT.
1758    
1759           The match_limit_recursion field is similar to match_limit, but  instead
1760           of limiting the total number of times that match() is called, it limits
1761           the depth of recursion. The recursion depth is a  smaller  number  than
1762           the  total number of calls, because not all calls to match() are recur-
1763           sive.  This limit is of use only if it is set smaller than match_limit.
1764    
1765           Limiting  the  recursion  depth  limits the amount of stack that can be
1766           used, or, when PCRE has been compiled to use memory on the heap instead
1767           of the stack, the amount of heap memory that can be used.
1768    
1769           The  default  value  for  match_limit_recursion can be set when PCRE is
1770           built; the default default  is  the  same  value  as  the  default  for
1771           match_limit.  You can override the default by suppling pcre_exec() with
1772           a  pcre_extra  block  in  which  match_limit_recursion  is   set,   and
1773           PCRE_EXTRA_MATCH_LIMIT_RECURSION  is  set  in  the  flags field. If the
1774           limit is exceeded, pcre_exec() returns PCRE_ERROR_RECURSIONLIMIT.
1775    
1776           The pcre_callout field is used in conjunction with the  "callout"  fea-
1777           ture, which is described in the pcrecallout documentation.
1778    
1779           The  tables  field  is  used  to  pass  a  character  tables pointer to
1780           pcre_exec(); this overrides the value that is stored with the  compiled
1781           pattern.  A  non-NULL value is stored with the compiled pattern only if
1782           custom tables were supplied to pcre_compile() via  its  tableptr  argu-
1783           ment.  If NULL is passed to pcre_exec() using this mechanism, it forces
1784           PCRE's internal tables to be used. This facility is  helpful  when  re-
1785           using  patterns  that  have been saved after compiling with an external
1786           set of tables, because the external tables  might  be  at  a  different
1787           address  when  pcre_exec() is called. See the pcreprecompile documenta-
1788           tion for a discussion of saving compiled patterns for later use.
1789    
1790       Option bits for pcre_exec()
1791    
1792           The unused bits of the options argument for pcre_exec() must  be  zero.
1793           The  only  bits  that  may  be set are PCRE_ANCHORED, PCRE_NEWLINE_xxx,
1794           PCRE_NOTBOL,   PCRE_NOTEOL,   PCRE_NOTEMPTY,   PCRE_NO_UTF8_CHECK   and
1795           PCRE_PARTIAL.
1796    
1797             PCRE_ANCHORED
1798    
1799           The  PCRE_ANCHORED  option  limits pcre_exec() to matching at the first
1800           matching position. If a pattern was  compiled  with  PCRE_ANCHORED,  or
1801           turned  out to be anchored by virtue of its contents, it cannot be made
1802           unachored at matching time.
1803    
1804             PCRE_NEWLINE_CR
1805             PCRE_NEWLINE_LF
1806             PCRE_NEWLINE_CRLF
1807             PCRE_NEWLINE_ANYCRLF
1808             PCRE_NEWLINE_ANY
1809    
1810           These options override  the  newline  definition  that  was  chosen  or
1811           defaulted  when the pattern was compiled. For details, see the descrip-
1812           tion of pcre_compile()  above.  During  matching,  the  newline  choice
1813           affects  the  behaviour  of the dot, circumflex, and dollar metacharac-
1814           ters. It may also alter the way the match position is advanced after  a
1815           match  failure  for  an  unanchored  pattern.  When  PCRE_NEWLINE_CRLF,
1816           PCRE_NEWLINE_ANYCRLF, or PCRE_NEWLINE_ANY is set, and a  match  attempt
1817           fails  when the current position is at a CRLF sequence, the match posi-
1818           tion is advanced by two characters instead of one, in other  words,  to
1819           after the CRLF.
1820    
1821             PCRE_NOTBOL
1822    
1823           This option specifies that first character of the subject string is not
1824           the beginning of a line, so the  circumflex  metacharacter  should  not
1825           match  before it. Setting this without PCRE_MULTILINE (at compile time)
1826           causes circumflex never to match. This option affects only  the  behav-
1827           iour of the circumflex metacharacter. It does not affect \A.
1828    
1829             PCRE_NOTEOL
1830    
1831           This option specifies that the end of the subject string is not the end
1832           of a line, so the dollar metacharacter should not match it nor  (except
1833           in  multiline mode) a newline immediately before it. Setting this with-
1834           out PCRE_MULTILINE (at compile time) causes dollar never to match. This
1835           option  affects only the behaviour of the dollar metacharacter. It does
1836           not affect \Z or \z.
1837    
1838             PCRE_NOTEMPTY
1839    
1840           An empty string is not considered to be a valid match if this option is
1841           set.  If  there are alternatives in the pattern, they are tried. If all
1842           the alternatives match the empty string, the entire  match  fails.  For
1843           example, if the pattern
1844    
1845             a?b?
1846    
1847           is  applied  to  a string not beginning with "a" or "b", it matches the
1848           empty string at the start of the subject. With PCRE_NOTEMPTY set,  this
1849           match is not valid, so PCRE searches further into the string for occur-
1850           rences of "a" or "b".
1851    
1852           Perl has no direct equivalent of PCRE_NOTEMPTY, but it does make a spe-
1853           cial  case  of  a  pattern match of the empty string within its split()
1854           function, and when using the /g modifier. It  is  possible  to  emulate
1855           Perl's behaviour after matching a null string by first trying the match
1856           again at the same offset with PCRE_NOTEMPTY and PCRE_ANCHORED, and then
1857           if  that  fails by advancing the starting offset (see below) and trying
1858           an ordinary match again. There is some code that demonstrates how to do
1859           this in the pcredemo.c sample program.
1860    
1861             PCRE_NO_UTF8_CHECK
1862    
1863           When PCRE_UTF8 is set at compile time, the validity of the subject as a
1864           UTF-8 string is automatically checked when pcre_exec() is  subsequently
1865           called.   The  value  of  startoffset is also checked to ensure that it
1866           points to the start of a UTF-8 character. There is a  discussion  about
1867           the  validity  of  UTF-8 strings in the section on UTF-8 support in the
1868           main pcre page. If  an  invalid  UTF-8  sequence  of  bytes  is  found,
1869           pcre_exec()  returns  the error PCRE_ERROR_BADUTF8. If startoffset con-
1870           tains an invalid value, PCRE_ERROR_BADUTF8_OFFSET is returned.
1871    
1872           If you already know that your subject is valid, and you  want  to  skip
1873           these    checks    for   performance   reasons,   you   can   set   the
1874           PCRE_NO_UTF8_CHECK option when calling pcre_exec(). You might  want  to
1875           do  this  for the second and subsequent calls to pcre_exec() if you are
1876           making repeated calls to find all  the  matches  in  a  single  subject
1877           string.  However,  you  should  be  sure  that the value of startoffset
1878           points to the start of a UTF-8 character.  When  PCRE_NO_UTF8_CHECK  is
1879           set,  the  effect of passing an invalid UTF-8 string as a subject, or a
1880           value of startoffset that does not point to the start of a UTF-8  char-
1881           acter, is undefined. Your program may crash.
1882    
1883             PCRE_PARTIAL
1884    
1885           This  option  turns  on  the  partial  matching feature. If the subject
1886           string fails to match the pattern, but at some point during the  match-
1887           ing  process  the  end of the subject was reached (that is, the subject
1888           partially matches the pattern and the failure to  match  occurred  only
1889           because  there were not enough subject characters), pcre_exec() returns
1890           PCRE_ERROR_PARTIAL instead of PCRE_ERROR_NOMATCH. When PCRE_PARTIAL  is
1891           used,  there  are restrictions on what may appear in the pattern. These
1892           are discussed in the pcrepartial documentation.
1893    
1894       The string to be matched by pcre_exec()
1895    
1896           The subject string is passed to pcre_exec() as a pointer in subject,  a
1897           length  in  length, and a starting byte offset in startoffset. In UTF-8
1898           mode, the byte offset must point to the start  of  a  UTF-8  character.
1899           Unlike  the  pattern string, the subject may contain binary zero bytes.
1900           When the starting offset is zero, the search for a match starts at  the
1901           beginning of the subject, and this is by far the most common case.
1902    
1903           A  non-zero  starting offset is useful when searching for another match
1904           in the same subject by calling pcre_exec() again after a previous  suc-
1905           cess.   Setting  startoffset differs from just passing over a shortened
1906           string and setting PCRE_NOTBOL in the case of  a  pattern  that  begins
1907           with any kind of lookbehind. For example, consider the pattern
1908    
1909             \Biss\B
1910    
1911           which  finds  occurrences  of "iss" in the middle of words. (\B matches
1912           only if the current position in the subject is not  a  word  boundary.)
1913           When  applied  to the string "Mississipi" the first call to pcre_exec()
1914           finds the first occurrence. If pcre_exec() is called  again  with  just
1915           the  remainder  of  the  subject,  namely  "issipi", it does not match,
1916           because \B is always false at the start of the subject, which is deemed
1917           to  be  a  word  boundary. However, if pcre_exec() is passed the entire
1918           string again, but with startoffset set to 4, it finds the second occur-
1919           rence  of "iss" because it is able to look behind the starting point to
1920           discover that it is preceded by a letter.
1921    
1922           If a non-zero starting offset is passed when the pattern  is  anchored,
1923           one attempt to match at the given offset is made. This can only succeed
1924           if the pattern does not require the match to be at  the  start  of  the
1925           subject.
1926    
1927       How pcre_exec() returns captured substrings
1928    
1929           In  general, a pattern matches a certain portion of the subject, and in
1930           addition, further substrings from the subject  may  be  picked  out  by
1931           parts  of  the  pattern.  Following the usage in Jeffrey Friedl's book,
1932           this is called "capturing" in what follows, and the  phrase  "capturing
1933           subpattern"  is  used for a fragment of a pattern that picks out a sub-
1934           string. PCRE supports several other kinds of  parenthesized  subpattern
1935           that do not cause substrings to be captured.
1936    
1937           Captured  substrings are returned to the caller via a vector of integer
1938           offsets whose address is passed in ovector. The number of  elements  in
1939           the  vector is passed in ovecsize, which must be a non-negative number.
1940           Note: this argument is NOT the size of ovector in bytes.
1941    
1942           The first two-thirds of the vector is used to pass back  captured  sub-
1943           strings,  each  substring using a pair of integers. The remaining third
1944           of the vector is used as workspace by pcre_exec() while  matching  cap-
1945           turing  subpatterns, and is not available for passing back information.
1946           The length passed in ovecsize should always be a multiple of three.  If
1947           it is not, it is rounded down.
1948    
1949           When  a  match  is successful, information about captured substrings is
1950           returned in pairs of integers, starting at the  beginning  of  ovector,
1951           and  continuing  up  to two-thirds of its length at the most. The first
1952           element of a pair is set to the offset of the first character in a sub-
1953           string,  and  the  second  is  set to the offset of the first character
1954           after the end of a substring. The  first  pair,  ovector[0]  and  ovec-
1955           tor[1],  identify  the  portion  of  the  subject string matched by the
1956           entire pattern. The next pair is used for the first  capturing  subpat-
1957           tern, and so on. The value returned by pcre_exec() is one more than the
1958           highest numbered pair that has been set. For example, if two substrings
1959           have  been captured, the returned value is 3. If there are no capturing
1960           subpatterns, the return value from a successful match is 1,  indicating
1961           that just the first pair of offsets has been set.
1962    
1963           If a capturing subpattern is matched repeatedly, it is the last portion
1964           of the string that it matched that is returned.
1965    
1966           If the vector is too small to hold all the captured substring  offsets,
1967           it is used as far as possible (up to two-thirds of its length), and the
1968           function returns a value of zero. In particular, if the substring  off-
1969           sets are not of interest, pcre_exec() may be called with ovector passed
1970           as NULL and ovecsize as zero. However, if  the  pattern  contains  back
1971           references  and  the  ovector is not big enough to remember the related
1972           substrings, PCRE has to get additional memory for use during  matching.
1973           Thus it is usually advisable to supply an ovector.
1974    
1975           The  pcre_info()  function  can  be used to find out how many capturing
1976           subpatterns there are in a compiled  pattern.  The  smallest  size  for
1977           ovector  that  will allow for n captured substrings, in addition to the
1978           offsets of the substring matched by the whole pattern, is (n+1)*3.
1979    
1980           It is possible for capturing subpattern number n+1 to match  some  part
1981           of the subject when subpattern n has not been used at all. For example,
1982           if the string "abc" is matched  against  the  pattern  (a|(z))(bc)  the
1983           return from the function is 4, and subpatterns 1 and 3 are matched, but
1984           2 is not. When this happens, both values in  the  offset  pairs  corre-
1985           sponding to unused subpatterns are set to -1.
1986    
1987           Offset  values  that correspond to unused subpatterns at the end of the
1988           expression are also set to -1. For example,  if  the  string  "abc"  is
1989           matched  against the pattern (abc)(x(yz)?)? subpatterns 2 and 3 are not
1990           matched. The return from the function is 2, because  the  highest  used
1991           capturing subpattern number is 1. However, you can refer to the offsets
1992           for the second and third capturing subpatterns if  you  wish  (assuming
1993           the vector is large enough, of course).
1994    
1995           Some  convenience  functions  are  provided for extracting the captured
1996           substrings as separate strings. These are described below.
1997    
1998       Error return values from pcre_exec()
1999    
2000           If pcre_exec() fails, it returns a negative number. The  following  are
2001           defined in the header file:
2002    
2003             PCRE_ERROR_NOMATCH        (-1)
2004    
2005           The subject string did not match the pattern.
2006    
2007             PCRE_ERROR_NULL           (-2)
2008    
2009           Either  code  or  subject  was  passed as NULL, or ovector was NULL and
2010           ovecsize was not zero.
2011    
2012             PCRE_ERROR_BADOPTION      (-3)
2013    
2014           An unrecognized bit was set in the options argument.
2015    
2016             PCRE_ERROR_BADMAGIC       (-4)
2017    
2018           PCRE stores a 4-byte "magic number" at the start of the compiled  code,
2019           to catch the case when it is passed a junk pointer and to detect when a
2020           pattern that was compiled in an environment of one endianness is run in
2021           an  environment  with the other endianness. This is the error that PCRE
2022           gives when the magic number is not present.
2023    
2024             PCRE_ERROR_UNKNOWN_OPCODE (-5)
2025    
2026           While running the pattern match, an unknown item was encountered in the
2027           compiled  pattern.  This  error  could be caused by a bug in PCRE or by
2028           overwriting of the compiled pattern.
2029    
2030             PCRE_ERROR_NOMEMORY       (-6)
2031    
2032           If a pattern contains back references, but the ovector that  is  passed
2033           to pcre_exec() is not big enough to remember the referenced substrings,
2034           PCRE gets a block of memory at the start of matching to  use  for  this
2035           purpose.  If the call via pcre_malloc() fails, this error is given. The
2036           memory is automatically freed at the end of matching.
2037    
2038             PCRE_ERROR_NOSUBSTRING    (-7)
2039    
2040           This error is used by the pcre_copy_substring(),  pcre_get_substring(),
2041           and  pcre_get_substring_list()  functions  (see  below).  It  is  never
2042           returned by pcre_exec().
2043    
2044             PCRE_ERROR_MATCHLIMIT     (-8)
2045    
2046           The backtracking limit, as specified by  the  match_limit  field  in  a
2047           pcre_extra  structure  (or  defaulted) was reached. See the description
2048           above.
2049    
2050             PCRE_ERROR_CALLOUT        (-9)
2051    
2052           This error is never generated by pcre_exec() itself. It is provided for
2053           use  by  callout functions that want to yield a distinctive error code.
2054           See the pcrecallout documentation for details.
2055    
2056             PCRE_ERROR_BADUTF8        (-10)
2057    
2058           A string that contains an invalid UTF-8 byte sequence was passed  as  a
2059           subject.
2060    
2061             PCRE_ERROR_BADUTF8_OFFSET (-11)
2062    
2063           The UTF-8 byte sequence that was passed as a subject was valid, but the
2064           value of startoffset did not point to the beginning of a UTF-8  charac-
2065           ter.
2066    
2067             PCRE_ERROR_PARTIAL        (-12)
2068    
2069           The  subject  string did not match, but it did match partially. See the
2070           pcrepartial documentation for details of partial matching.
2071    
2072             PCRE_ERROR_BADPARTIAL     (-13)
2073    
2074           The PCRE_PARTIAL option was used with  a  compiled  pattern  containing
2075           items  that are not supported for partial matching. See the pcrepartial
2076           documentation for details of partial matching.
2077    
2078             PCRE_ERROR_INTERNAL       (-14)
2079    
2080           An unexpected internal error has occurred. This error could  be  caused
2081           by a bug in PCRE or by overwriting of the compiled pattern.
2082    
2083             PCRE_ERROR_BADCOUNT       (-15)
2084    
2085           This  error is given if the value of the ovecsize argument is negative.
2086    
2087             PCRE_ERROR_RECURSIONLIMIT (-21)
2088    
2089           The internal recursion limit, as specified by the match_limit_recursion
2090           field  in  a  pcre_extra  structure (or defaulted) was reached. See the
2091           description above.
2092    
2093             PCRE_ERROR_BADNEWLINE     (-23)
2094    
2095           An invalid combination of PCRE_NEWLINE_xxx options was given.
2096    
2097           Error numbers -16 to -20 and -22 are not used by pcre_exec().
2098    
2099    
2100    EXTRACTING CAPTURED SUBSTRINGS BY NUMBER
2101    
2102           int pcre_copy_substring(const char *subject, int *ovector,
2103                int stringcount, int stringnumber, char *buffer,
2104                int buffersize);
2105    
2106           int pcre_get_substring(const char *subject, int *ovector,
2107                int stringcount, int stringnumber,
2108                const char **stringptr);
2109    
2110           int pcre_get_substring_list(const char *subject,
2111                int *ovector, int stringcount, const char ***listptr);
2112    
2113           Captured substrings can be  accessed  directly  by  using  the  offsets
2114           returned  by  pcre_exec()  in  ovector.  For convenience, the functions
2115           pcre_copy_substring(),    pcre_get_substring(),    and    pcre_get_sub-
2116           string_list()  are  provided for extracting captured substrings as new,
2117           separate, zero-terminated strings. These functions identify  substrings
2118           by  number.  The  next section describes functions for extracting named
2119           substrings.
2120    
2121           A substring that contains a binary zero is correctly extracted and  has
2122           a  further zero added on the end, but the result is not, of course, a C
2123           string.  However, you can process such a string  by  referring  to  the
2124           length  that  is  returned  by  pcre_copy_substring() and pcre_get_sub-
2125           string().  Unfortunately, the interface to pcre_get_substring_list() is
2126           not  adequate for handling strings containing binary zeros, because the
2127           end of the final string is not independently indicated.
2128    
2129           The first three arguments are the same for all  three  of  these  func-
2130           tions:  subject  is  the subject string that has just been successfully
2131           matched, ovector is a pointer to the vector of integer offsets that was
2132           passed to pcre_exec(), and stringcount is the number of substrings that
2133           were captured by the match, including the substring  that  matched  the
2134           entire regular expression. This is the value returned by pcre_exec() if
2135           it is greater than zero. If pcre_exec() returned zero, indicating  that
2136           it  ran out of space in ovector, the value passed as stringcount should
2137           be the number of elements in the vector divided by three.
2138    
2139           The functions pcre_copy_substring() and pcre_get_substring() extract  a
2140           single  substring,  whose  number  is given as stringnumber. A value of
2141           zero extracts the substring that matched the  entire  pattern,  whereas
2142           higher  values  extract  the  captured  substrings.  For pcre_copy_sub-
2143           string(), the string is placed in buffer,  whose  length  is  given  by
2144           buffersize,  while  for  pcre_get_substring()  a new block of memory is
2145           obtained via pcre_malloc, and its address is  returned  via  stringptr.
2146           The  yield  of  the function is the length of the string, not including
2147           the terminating zero, or one of these error codes:
2148    
2149             PCRE_ERROR_NOMEMORY       (-6)
2150    
2151           The buffer was too small for pcre_copy_substring(), or the  attempt  to
2152           get memory failed for pcre_get_substring().
2153    
2154             PCRE_ERROR_NOSUBSTRING    (-7)
2155    
2156           There is no substring whose number is stringnumber.
2157    
2158           The  pcre_get_substring_list()  function  extracts  all  available sub-
2159           strings and builds a list of pointers to them. All this is  done  in  a
2160           single block of memory that is obtained via pcre_malloc. The address of
2161           the memory block is returned via listptr, which is also  the  start  of
2162           the  list  of  string pointers. The end of the list is marked by a NULL
2163           pointer. The yield of the function is zero if all  went  well,  or  the
2164           error code
2165    
2166             PCRE_ERROR_NOMEMORY       (-6)
2167    
2168           if the attempt to get the memory block failed.
2169    
2170           When  any of these functions encounter a substring that is unset, which
2171           can happen when capturing subpattern number n+1 matches  some  part  of
2172           the  subject, but subpattern n has not been used at all, they return an
2173           empty string. This can be distinguished from a genuine zero-length sub-
2174           string  by inspecting the appropriate offset in ovector, which is nega-
2175           tive for unset substrings.
2176    
2177           The two convenience functions pcre_free_substring() and  pcre_free_sub-
2178           string_list()  can  be  used  to free the memory returned by a previous
2179           call  of  pcre_get_substring()  or  pcre_get_substring_list(),  respec-
2180           tively.  They  do  nothing  more  than  call the function pointed to by
2181           pcre_free, which of course could be called directly from a  C  program.
2182           However,  PCRE is used in some situations where it is linked via a spe-
2183           cial  interface  to  another  programming  language  that  cannot   use
2184           pcre_free  directly;  it is for these cases that the functions are pro-
2185           vided.
2186    
2187    
2188    EXTRACTING CAPTURED SUBSTRINGS BY NAME
2189    
2190           int pcre_get_stringnumber(const pcre *code,
2191                const char *name);
2192    
2193           int pcre_copy_named_substring(const pcre *code,
2194                const char *subject, int *ovector,
2195                int stringcount, const char *stringname,
2196                char *buffer, int buffersize);
2197    
2198           int pcre_get_named_substring(const pcre *code,
2199                const char *subject, int *ovector,
2200                int stringcount, const char *stringname,
2201                const char **stringptr);
2202    
2203           To extract a substring by name, you first have to find associated  num-
2204           ber.  For example, for this pattern
2205    
2206             (a+)b(?<xxx>\d+)...
2207    
2208           the number of the subpattern called "xxx" is 2. If the name is known to
2209           be unique (PCRE_DUPNAMES was not set), you can find the number from the
2210           name by calling pcre_get_stringnumber(). The first argument is the com-
2211           piled pattern, and the second is the name. The yield of the function is
2212           the  subpattern  number,  or PCRE_ERROR_NOSUBSTRING (-7) if there is no
2213           subpattern of that name.
2214    
2215           Given the number, you can extract the substring directly, or use one of
2216           the functions described in the previous section. For convenience, there
2217           are also two functions that do the whole job.
2218    
2219           Most   of   the   arguments    of    pcre_copy_named_substring()    and
2220           pcre_get_named_substring()  are  the  same  as  those for the similarly
2221           named functions that extract by number. As these are described  in  the
2222           previous  section,  they  are not re-described here. There are just two
2223           differences:
2224    
2225           First, instead of a substring number, a substring name is  given.  Sec-
2226           ond, there is an extra argument, given at the start, which is a pointer
2227           to the compiled pattern. This is needed in order to gain access to  the
2228           name-to-number translation table.
2229    
2230           These  functions call pcre_get_stringnumber(), and if it succeeds, they
2231           then call pcre_copy_substring() or pcre_get_substring(),  as  appropri-
2232           ate.  NOTE:  If PCRE_DUPNAMES is set and there are duplicate names, the
2233           behaviour may not be what you want (see the next section).
2234    
2235    
2236    DUPLICATE SUBPATTERN NAMES
2237    
2238           int pcre_get_stringtable_entries(const pcre *code,
2239                const char *name, char **first, char **last);
2240    
2241           When a pattern is compiled with the  PCRE_DUPNAMES  option,  names  for
2242           subpatterns  are  not  required  to  be unique. Normally, patterns with
2243           duplicate names are such that in any one match, only one of  the  named
2244           subpatterns  participates. An example is shown in the pcrepattern docu-
2245           mentation.
2246    
2247           When   duplicates   are   present,   pcre_copy_named_substring()    and
2248           pcre_get_named_substring()  return the first substring corresponding to
2249           the given name that is set. If  none  are  set,  PCRE_ERROR_NOSUBSTRING
2250           (-7)  is  returned;  no  data  is returned. The pcre_get_stringnumber()
2251           function returns one of the numbers that are associated with the  name,
2252           but it is not defined which it is.
2253    
2254           If  you want to get full details of all captured substrings for a given
2255           name, you must use  the  pcre_get_stringtable_entries()  function.  The
2256           first argument is the compiled pattern, and the second is the name. The
2257           third and fourth are pointers to variables which  are  updated  by  the
2258           function. After it has run, they point to the first and last entries in
2259           the name-to-number table  for  the  given  name.  The  function  itself
2260           returns  the  length  of  each entry, or PCRE_ERROR_NOSUBSTRING (-7) if
2261           there are none. The format of the table is described above in the  sec-
2262           tion  entitled  Information  about  a  pattern.  Given all the relevant
2263           entries for the name, you can extract each of their numbers, and  hence
2264           the captured data, if any.
2265    
2266    
2267    FINDING ALL POSSIBLE MATCHES
2268    
2269           The  traditional  matching  function  uses a similar algorithm to Perl,
2270           which stops when it finds the first match, starting at a given point in
2271           the  subject.  If you want to find all possible matches, or the longest
2272           possible match, consider using the alternative matching  function  (see
2273           below)  instead.  If you cannot use the alternative function, but still
2274           need to find all possible matches, you can kludge it up by  making  use
2275           of the callout facility, which is described in the pcrecallout documen-
2276           tation.
2277    
2278           What you have to do is to insert a callout right at the end of the pat-
2279           tern.   When your callout function is called, extract and save the cur-
2280           rent matched substring. Then return  1,  which  forces  pcre_exec()  to
2281           backtrack  and  try other alternatives. Ultimately, when it runs out of
2282           matches, pcre_exec() will yield PCRE_ERROR_NOMATCH.
2283    
2284    
2285    MATCHING A PATTERN: THE ALTERNATIVE FUNCTION
2286    
2287           int pcre_dfa_exec(const pcre *code, const pcre_extra *extra,
2288                const char *subject, int length, int startoffset,
2289                int options, int *ovector, int ovecsize,
2290                int *workspace, int wscount);
2291    
2292           The function pcre_dfa_exec()  is  called  to  match  a  subject  string
2293           against  a  compiled pattern, using a matching algorithm that scans the
2294           subject string just once, and does not backtrack.  This  has  different
2295           characteristics  to  the  normal  algorithm, and is not compatible with
2296           Perl. Some of the features of PCRE patterns are not  supported.  Never-
2297           theless,  there are times when this kind of matching can be useful. For
2298           a discussion of the two matching algorithms, see the pcrematching docu-
2299           mentation.
2300    
2301           The  arguments  for  the  pcre_dfa_exec()  function are the same as for
2302           pcre_exec(), plus two extras. The ovector argument is used in a differ-
2303           ent  way,  and  this is described below. The other common arguments are
2304           used in the same way as for pcre_exec(), so their  description  is  not
2305           repeated here.
2306    
2307           The  two  additional  arguments provide workspace for the function. The
2308           workspace vector should contain at least 20 elements. It  is  used  for
2309           keeping  track  of  multiple  paths  through  the  pattern  tree.  More
2310           workspace will be needed for patterns and subjects where  there  are  a
2311           lot of potential matches.
2312    
2313           Here is an example of a simple call to pcre_dfa_exec():
2314    
2315             int rc;
2316             int ovector[10];
2317             int wspace[20];
2318             rc = pcre_dfa_exec(
2319               re,             /* result of pcre_compile() */
2320               NULL,           /* we didn't study the pattern */
2321               "some string",  /* the subject string */
2322               11,             /* the length of the subject string */
2323               0,              /* start at offset 0 in the subject */
2324               0,              /* default options */
2325               ovector,        /* vector of integers for substring information */
2326               10,             /* number of elements (NOT size in bytes) */
2327               wspace,         /* working space vector */
2328               20);            /* number of elements (NOT size in bytes) */
2329    
2330       Option bits for pcre_dfa_exec()
2331    
2332           The  unused  bits  of  the options argument for pcre_dfa_exec() must be
2333           zero. The only bits  that  may  be  set  are  PCRE_ANCHORED,  PCRE_NEW-
2334           LINE_xxx,  PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NO_UTF8_CHECK,
2335           PCRE_PARTIAL, PCRE_DFA_SHORTEST, and PCRE_DFA_RESTART. All but the last
2336           three of these are the same as for pcre_exec(), so their description is
2337           not repeated here.
2338    
2339             PCRE_PARTIAL
2340    
2341           This has the same general effect as it does for  pcre_exec(),  but  the
2342           details   are   slightly   different.  When  PCRE_PARTIAL  is  set  for
2343           pcre_dfa_exec(), the return code PCRE_ERROR_NOMATCH is  converted  into
2344           PCRE_ERROR_PARTIAL  if  the  end  of the subject is reached, there have
2345           been no complete matches, but there is still at least one matching pos-
2346           sibility.  The portion of the string that provided the partial match is
2347           set as the first matching string.
2348    
2349             PCRE_DFA_SHORTEST
2350    
2351           Setting the PCRE_DFA_SHORTEST option causes the matching  algorithm  to
2352           stop as soon as it has found one match. Because of the way the alterna-
2353           tive algorithm works, this is necessarily the shortest  possible  match
2354           at the first possible matching point in the subject string.
2355    
2356             PCRE_DFA_RESTART
2357    
2358           When  pcre_dfa_exec()  is  called  with  the  PCRE_PARTIAL  option, and
2359           returns a partial match, it is possible to call it  again,  with  addi-
2360           tional  subject  characters,  and have it continue with the same match.
2361           The PCRE_DFA_RESTART option requests this action; when it is  set,  the
2362           workspace  and wscount options must reference the same vector as before
2363           because data about the match so far is left in  them  after  a  partial
2364           match.  There  is  more  discussion of this facility in the pcrepartial
2365           documentation.
2366    
2367       Successful returns from pcre_dfa_exec()
2368    
2369           When pcre_dfa_exec() succeeds, it may have matched more than  one  sub-
2370           string in the subject. Note, however, that all the matches from one run
2371           of the function start at the same point in  the  subject.  The  shorter
2372           matches  are all initial substrings of the longer matches. For example,
2373           if the pattern
2374    
2375             <.*>
2376    
2377           is matched against the string
2378    
2379             This is <something> <something else> <something further> no more
2380    
2381           the three matched strings are
2382    
2383             <something>
2384             <something> <something else>
2385             <something> <something else> <something further>
2386    
2387           On success, the yield of the function is a number  greater  than  zero,
2388           which  is  the  number of matched substrings. The substrings themselves
2389           are returned in ovector. Each string uses two elements;  the  first  is
2390           the  offset  to  the start, and the second is the offset to the end. In
2391           fact, all the strings have the same start  offset.  (Space  could  have
2392           been  saved by giving this only once, but it was decided to retain some
2393           compatibility with the way pcre_exec() returns data,  even  though  the
2394           meaning of the strings is different.)
2395    
2396           The strings are returned in reverse order of length; that is, the long-
2397           est matching string is given first. If there were too many  matches  to
2398           fit  into ovector, the yield of the function is zero, and the vector is
2399           filled with the longest matches.
2400    
2401       Error returns from pcre_dfa_exec()
2402    
2403           The pcre_dfa_exec() function returns a negative number when  it  fails.
2404           Many  of  the  errors  are  the  same as for pcre_exec(), and these are
2405           described above.  There are in addition the following errors  that  are
2406           specific to pcre_dfa_exec():
2407    
2408             PCRE_ERROR_DFA_UITEM      (-16)
2409    
2410           This  return is given if pcre_dfa_exec() encounters an item in the pat-
2411           tern that it does not support, for instance, the use of \C  or  a  back
2412           reference.
2413    
2414             PCRE_ERROR_DFA_UCOND      (-17)
2415    
2416           This  return  is  given  if pcre_dfa_exec() encounters a condition item
2417           that uses a back reference for the condition, or a test  for  recursion
2418           in a specific group. These are not supported.
2419    
2420             PCRE_ERROR_DFA_UMLIMIT    (-18)
2421    
2422           This  return  is given if pcre_dfa_exec() is called with an extra block
2423           that contains a setting of the match_limit field. This is not supported
2424           (it is meaningless).
2425    
2426             PCRE_ERROR_DFA_WSSIZE     (-19)
2427    
2428           This  return  is  given  if  pcre_dfa_exec()  runs  out of space in the
2429           workspace vector.
2430    
2431             PCRE_ERROR_DFA_RECURSE    (-20)
2432    
2433           When a recursive subpattern is processed, the matching  function  calls
2434           itself  recursively,  using  private vectors for ovector and workspace.
2435           This error is given if the output vector  is  not  large  enough.  This
2436           should be extremely rare, as a vector of size 1000 is used.
2437    
 MATCHING A PATTERN  
      The function pcre_exec() is called to match a subject string  
      against  a pre-compiled pattern, which is passed in the code  
      argument. If the pattern has been studied, the result of the  
      study should be passed in the extra argument. Otherwise this  
      must be NULL.  
   
      The PCRE_ANCHORED option can be passed in the options  argu-  
      ment,  whose unused bits must be zero. However, if a pattern  
      was  compiled  with  PCRE_ANCHORED,  or  turned  out  to  be  
      anchored  by  virtue  of  its  contents,  it  cannot be made  
      unachored at matching time.  
   
      There are also three further options that can be set only at  
      matching time:  
   
        PCRE_NOTBOL  
   
      The first character of the string is not the beginning of  a  
      line,  so  the  circumflex  metacharacter  should  not match  
      before it. Setting this without PCRE_MULTILINE  (at  compile  
      time) causes circumflex never to match.  
   
        PCRE_NOTEOL  
   
      The end of the string is not the end of a line, so the  dol-  
      lar  metacharacter should not match it nor (except in multi-  
      line mode) a newline immediately  before  it.  Setting  this  
      without PCRE_MULTILINE (at compile time) causes dollar never  
      to match.  
   
        PCRE_NOTEMPTY  
   
      An empty string is not considered to be  a  valid  match  if  
      this  option  is  set. If there are alternatives in the pat-  
      tern, they are tried. If  all  the  alternatives  match  the  
      empty  string,  the  entire match fails. For example, if the  
      pattern  
   
        a?b?  
   
      is applied to a string not beginning with  "a"  or  "b",  it  
      matches  the  empty string at the start of the subject. With  
      PCRE_NOTEMPTY set, this match is not valid, so PCRE searches  
      further into the string for occurrences of "a" or "b".  
   
      Perl has no direct equivalent of PCRE_NOTEMPTY, but it  does  
      make  a  special case of a pattern match of the empty string  
      within its split() function, and when using the /g modifier.  
      It  is possible to emulate Perl's behaviour after matching a  
      null string by first trying the  match  again  at  the  same  
      offset  with  PCRE_NOTEMPTY  set,  and then if that fails by  
      advancing the starting offset  (see  below)  and  trying  an  
      ordinary match again.  
   
      The subject string is passed as  a  pointer  in  subject,  a  
      length  in  length,  and  a  starting offset in startoffset.  
      Unlike the pattern string, it may contain binary zero  char-  
      acters.  When  the starting offset is zero, the search for a  
      match starts at the beginning of the subject, and this is by  
      far the most common case.  
   
      A non-zero starting offset  is  useful  when  searching  for  
      another  match  in  the  same subject by calling pcre_exec()  
      again after a previous success.  Setting startoffset differs  
      from  just  passing  over  a  shortened  string  and setting  
      PCRE_NOTBOL in the case of a pattern that  begins  with  any  
      kind of lookbehind. For example, consider the pattern  
   
        \Biss\B  
   
      which finds occurrences of "iss" in the middle of words. (\B  
      matches only if the current position in the subject is not a  
      word boundary.) When applied to the string "Mississipi"  the  
      first  call  to  pcre_exec()  finds the first occurrence. If  
      pcre_exec() is called again with just the remainder  of  the  
      subject,  namely  "issipi", it does not match, because \B is  
      always false at the start of the subject, which is deemed to  
      be  a  word  boundary. However, if pcre_exec() is passed the  
      entire string again, but with startoffset set to 4, it finds  
      the  second  occurrence  of "iss" because it is able to look  
      behind the starting point to discover that it is preceded by  
      a letter.  
   
      If a non-zero starting offset is passed when the pattern  is  
      anchored, one attempt to match at the given offset is tried.  
      This can only succeed if the pattern does  not  require  the  
      match to be at the start of the subject.  
   
      In general, a pattern matches a certain portion of the  sub-  
      ject,  and  in addition, further substrings from the subject  
      may be picked out by parts of  the  pattern.  Following  the  
      usage  in  Jeffrey Friedl's book, this is called "capturing"  
      in what follows, and the phrase  "capturing  subpattern"  is  
      used for a fragment of a pattern that picks out a substring.  
      PCRE supports several other kinds of  parenthesized  subpat-  
      tern that do not cause substrings to be captured.  
   
      Captured substrings are returned to the caller via a  vector  
      of  integer  offsets whose address is passed in ovector. The  
      number of elements in the vector is passed in ovecsize.  The  
      first two-thirds of the vector is used to pass back captured  
      substrings, each substring using a  pair  of  integers.  The  
      remaining  third  of  the  vector  is  used  as workspace by  
      pcre_exec() while matching capturing subpatterns, and is not  
      available for passing back information. The length passed in  
      ovecsize should always be a multiple of three. If it is not,  
      it is rounded down.  
   
      When a match has been successful, information about captured  
      substrings is returned in pairs of integers, starting at the  
      beginning of ovector, and continuing up to two-thirds of its  
      length  at  the  most. The first element of a pair is set to  
      the offset of the first character in a  substring,  and  the  
      second is set to the offset of the first character after the  
      end of a substring. The first  pair,  ovector[0]  and  ovec-  
      tor[1],  identify  the portion of the subject string matched  
      by the entire pattern. The next pair is used for  the  first  
      capturing  subpattern,  and  so  on.  The  value returned by  
      pcre_exec() is the number of pairs that have  been  set.  If  
      there  are no capturing subpatterns, the return value from a  
      successful match is 1, indicating that just the  first  pair  
      of offsets has been set.  
   
      Some convenience functions are provided for  extracting  the  
      captured substrings as separate strings. These are described  
      in the following section.  
   
      It is possible for an capturing  subpattern  number  n+1  to  
      match  some  part  of  the subject when subpattern n has not  
      been used at all.  For  example,  if  the  string  "abc"  is  
      matched  against the pattern (a|(z))(bc) subpatterns 1 and 3  
      are matched, but 2 is not. When this  happens,  both  offset  
      values corresponding to the unused subpattern are set to -1.  
   
      If a capturing subpattern is matched repeatedly, it  is  the  
      last  portion  of  the  string  that  it  matched  that gets  
      returned.  
   
      If the vector is too small to hold  all  the  captured  sub-  
      strings,  it is used as far as possible (up to two-thirds of  
      its length), and the function returns a value  of  zero.  In  
      particular,  if  the  substring offsets are not of interest,  
      pcre_exec() may be called with ovector passed  as  NULL  and  
      ovecsize  as  zero.  However,  if  the pattern contains back  
      references and the ovector isn't big enough to remember  the  
      related  substrings,  PCRE  has to get additional memory for  
      use during matching. Thus it is usually advisable to  supply  
      an ovector.  
   
      Note that pcre_info() can be used to find out how many  cap-  
      turing  subpatterns  there  are  in  a compiled pattern. The  
      smallest size for ovector that will  allow  for  n  captured  
      substrings  in  addition  to  the  offsets  of the substring  
      matched by the whole pattern is (n+1)*3.  
   
      If pcre_exec() fails, it returns a negative number. The fol-  
      lowing are defined in the header file:  
   
        PCRE_ERROR_NOMATCH        (-1)  
   
      The subject string did not match the pattern.  
   
        PCRE_ERROR_NULL           (-2)  
   
      Either code or subject was passed as NULL,  or  ovector  was  
      NULL and ovecsize was not zero.  
   
        PCRE_ERROR_BADOPTION      (-3)  
   
      An unrecognized bit was set in the options argument.  
   
        PCRE_ERROR_BADMAGIC       (-4)  
   
      PCRE stores a 4-byte "magic number" at the start of the com-  
      piled  code,  to  catch  the  case  when it is passed a junk  
      pointer. This is the error it gives when  the  magic  number  
      isn't present.  
   
        PCRE_ERROR_UNKNOWN_NODE   (-5)  
   
      While running the pattern match, an unknown item was encoun-  
      tered in the compiled pattern. This error could be caused by  
      a bug in PCRE or by overwriting of the compiled pattern.  
   
        PCRE_ERROR_NOMEMORY       (-6)  
   
      If a pattern contains back references, but the ovector  that  
      is  passed  to pcre_exec() is not big enough to remember the  
      referenced substrings, PCRE gets a block of  memory  at  the  
      start  of  matching to use for this purpose. If the call via  
      pcre_malloc() fails, this error  is  given.  The  memory  is  
      freed at the end of matching.  
   
   
   
 EXTRACTING CAPTURED SUBSTRINGS  
      Captured substrings can be accessed directly  by  using  the  
      offsets returned by pcre_exec() in ovector. For convenience,  
      the functions  pcre_copy_substring(),  pcre_get_substring(),  
      and  pcre_get_substring_list()  are  provided for extracting  
      captured  substrings  as  new,   separate,   zero-terminated  
      strings.   A  substring  that  contains  a  binary  zero  is  
      correctly extracted and has a further zero added on the end,  
      but the result does not, of course, function as a C string.  
   
      The first three arguments are the same for all  three  func-  
      tions:  subject  is  the  subject string which has just been  
      successfully matched, ovector is a pointer to the vector  of  
      integer   offsets   that  was  passed  to  pcre_exec(),  and  
      stringcount is the number of substrings that  were  captured  
      by  the  match,  including  the  substring  that matched the  
      entire regular expression. This is  the  value  returned  by  
      pcre_exec  if  it  is  greater  than  zero.  If  pcre_exec()  
      returned zero, indicating that it ran out of space in  ovec-  
      tor,  the  value passed as stringcount should be the size of  
      the vector divided by three.  
   
      The functions pcre_copy_substring() and pcre_get_substring()  
      extract a single substring, whose number is given as string-  
      number. A value of zero extracts the substring that  matched  
      the entire pattern, while higher values extract the captured  
      substrings. For pcre_copy_substring(), the string is  placed  
      in  buffer,  whose  length is given by buffersize, while for  
      pcre_get_substring() a new block of store  is  obtained  via  
      pcre_malloc,  and its address is returned via stringptr. The  
      yield of the function is  the  length  of  the  string,  not  
      including the terminating zero, or one of  
   
        PCRE_ERROR_NOMEMORY       (-6)  
   
      The buffer was too small for pcre_copy_substring(),  or  the  
      attempt to get memory failed for pcre_get_substring().  
   
        PCRE_ERROR_NOSUBSTRING    (-7)  
   
      There is no substring whose number is stringnumber.  
   
      The pcre_get_substring_list() function extracts  all  avail-  
      able  substrings  and builds a list of pointers to them. All  
      this is done in a single block of memory which  is  obtained  
      via pcre_malloc. The address of the memory block is returned  
      via listptr, which is also the start of the list  of  string  
      pointers.  The  end of the list is marked by a NULL pointer.  
      The yield of the function is zero if all went well, or  
   
        PCRE_ERROR_NOMEMORY       (-6)  
   
      if the attempt to get the memory block failed.  
   
      When any of these functions encounter a  substring  that  is  
      unset, which can happen when capturing subpattern number n+1  
      matches some part of the subject, but subpattern n  has  not  
      been  used  at all, they return an empty string. This can be  
      distinguished  from  a  genuine  zero-length  substring   by  
      inspecting the appropriate offset in ovector, which is nega-  
      tive for unset substrings.  
2438    
2439    SEE ALSO
2440    
2441           pcrebuild(3),  pcrecallout(3), pcrecpp(3)(3), pcrematching(3), pcrepar-
2442           tial(3), pcreposix(3), pcreprecompile(3), pcresample(3),  pcrestack(3).
2443    
2444    
2445  LIMITATIONS  AUTHOR
      There are some size limitations in PCRE but it is hoped that  
      they will never in practice be relevant.  The maximum length  
      of a compiled pattern is 65539 (sic) bytes.  All  values  in  
      repeating  quantifiers must be less than 65536.  The maximum  
      number of capturing subpatterns is 99.  The  maximum  number  
      of  all  parenthesized subpatterns, including capturing sub-  
      patterns, assertions, and other types of subpattern, is 200.  
   
      The maximum length of a subject string is the largest  posi-  
      tive number that an integer variable can hold. However, PCRE  
      uses recursion to handle subpatterns and indefinite  repeti-  
      tion.  This  means  that the available stack space may limit  
      the size of a subject string that can be processed  by  cer-  
      tain patterns.  
   
   
   
 DIFFERENCES FROM PERL  
      The differences described here  are  with  respect  to  Perl  
      5.005.  
   
      1. By default, a whitespace character is any character  that  
      the  C  library  function isspace() recognizes, though it is  
      possible to compile PCRE  with  alternative  character  type  
      tables. Normally isspace() matches space, formfeed, newline,  
      carriage return, horizontal tab, and vertical tab. Perl 5 no  
      longer  includes vertical tab in its set of whitespace char-  
      acters. The \v escape that was in the Perl documentation for  
      a long time was never in fact recognized. However, the char-  
      acter itself was treated as whitespace at least up to 5.002.  
      In 5.004 and 5.005 it does not match \s.  
   
      2. PCRE does  not  allow  repeat  quantifiers  on  lookahead  
      assertions. Perl permits them, but they do not mean what you  
      might think. For example, (?!a){3} does not assert that  the  
      next  three characters are not "a". It just asserts that the  
      next character is not "a" three times.  
   
      3. Capturing subpatterns that occur inside  negative  looka-  
      head  assertions  are  counted,  but  their  entries  in the  
      offsets vector are never set. Perl sets its numerical  vari-  
      ables  from  any  such  patterns that are matched before the  
      assertion fails to match something (thereby succeeding), but  
      only  if  the negative lookahead assertion contains just one  
      branch.  
   
      4. Though binary zero characters are supported in  the  sub-  
      ject  string,  they  are  not  allowed  in  a pattern string  
      because it is passed as a normal  C  string,  terminated  by  
      zero. The escape sequence "\0" can be used in the pattern to  
      represent a binary zero.  
   
      5. The following Perl escape sequences  are  not  supported:  
      \l,  \u,  \L,  \U,  \E, \Q. In fact these are implemented by  
      Perl's general string-handling and are not part of its  pat-  
      tern matching engine.  
   
      6. The Perl \G assertion is  not  supported  as  it  is  not  
      relevant to single pattern matches.  
   
      7. Fairly obviously, PCRE does not support the (?{code}) and  
      (?p{code})  constructions. However, there is some experimen-  
      tal support for recursive patterns using the  non-Perl  item  
      (?R).  
      8. There are at the time of writing some  oddities  in  Perl  
      5.005_02  concerned  with  the  settings of captured strings  
      when part of a pattern is repeated.  For  example,  matching  
      "aba"  against the pattern /^(a(b)?)+$/ sets $2 to the value  
      "b", but matching "aabbaa" against /^(aa(bb)?)+$/ leaves  $2  
      unset.    However,    if   the   pattern   is   changed   to  
      /^(aa(b(b))?)+$/ then $2 (and $3) are set.  
   
      In Perl 5.004 $2 is set in both cases, and that is also true  
      of PCRE. If in the future Perl changes to a consistent state  
      that is different, PCRE may change to follow.  
   
      9. Another as yet unresolved discrepancy  is  that  in  Perl  
      5.005_02  the  pattern /^(a)?(?(1)a|b)+$/ matches the string  
      "a", whereas in PCRE it does not.  However, in both Perl and  
      PCRE /^(a)?a/ matched against "a" leaves $1 unset.  
   
      10. PCRE  provides  some  extensions  to  the  Perl  regular  
      expression facilities:  
   
      (a) Although lookbehind assertions must match  fixed  length  
      strings,  each  alternative branch of a lookbehind assertion  
      can match a different length of string. Perl 5.005  requires  
      them all to have the same length.  
   
      (b) If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is  not  
      set,  the  $ meta- character matches only at the very end of  
      the string.  
   
      (c) If PCRE_EXTRA is set, a backslash followed by  a  letter  
      with no special meaning is faulted.  
   
      (d) If PCRE_UNGREEDY is set, the greediness of  the  repeti-  
      tion  quantifiers  is inverted, that is, by default they are  
      not greedy, but if followed by a question mark they are.  
   
      (e) PCRE_ANCHORED can be used to force a pattern to be tried  
      only at the start of the subject.  
   
      (f) The PCRE_NOTBOL, PCRE_NOTEOL, and PCRE_NOTEMPTY  options  
      for pcre_exec() have no Perl equivalents.  
   
      (g) The (?R) construct allows for recursive pattern matching  
      (Perl  5.6 can do this using the (?p{code}) construct, which  
      PCRE cannot of course support.)  
   
   
   
 REGULAR EXPRESSION DETAILS  
      The syntax and semantics of  the  regular  expressions  sup-  
      ported  by PCRE are described below. Regular expressions are  
      also described in the Perl documentation and in a number  of  
   
      other  books,  some  of which have copious examples. Jeffrey  
      Friedl's  "Mastering  Regular  Expressions",  published   by  
      O'Reilly  (ISBN  1-56592-257),  covers them in great detail.  
      The description here is intended as reference documentation.  
   
      A regular expression is a pattern that is matched against  a  
      subject string from left to right. Most characters stand for  
      themselves in a pattern, and match the corresponding charac-  
      ters in the subject. As a trivial example, the pattern  
   
        The quick brown fox  
   
      matches a portion of a subject string that is  identical  to  
      itself.  The  power  of  regular  expressions comes from the  
      ability to include alternatives and repetitions in the  pat-  
      tern.  These  are encoded in the pattern by the use of meta-  
      characters, which do not stand for  themselves  but  instead  
      are interpreted in some special way.  
   
      There are two different sets of meta-characters: those  that  
      are  recognized anywhere in the pattern except within square  
      brackets, and those that are recognized in square  brackets.  
      Outside square brackets, the meta-characters are as follows:  
   
        \      general escape character with several uses  
        ^      assert start of  subject  (or  line,  in  multiline  
      mode)  
        $      assert end of subject (or line, in multiline mode)  
        .      match any character except newline (by default)  
        [      start character class definition  
        |      start of alternative branch  
        (      start subpattern  
        )      end subpattern  
        ?      extends the meaning of (  
               also 0 or 1 quantifier  
               also quantifier minimizer  
        *      0 or more quantifier  
        +      1 or more quantifier  
        {      start min/max quantifier  
   
      Part of a pattern that is in square  brackets  is  called  a  
      "character  class".  In  a  character  class  the only meta-  
      characters are:  
   
        \      general escape character  
        ^      negate the class, but only if the first character  
        -      indicates character range  
        ]      terminates the character class  
2446    
2447       The following sections describe  the  use  of  each  of  the         Philip Hazel
2448       meta-characters.         University Computing Service
2449           Cambridge CB2 3QH, England.
2450    
2451    
2452    REVISION
2453    
2454  BACKSLASH         Last updated: 09 August 2007
2455       The backslash character has several uses. Firstly, if it  is         Copyright (c) 1997-2007 University of Cambridge.
2456       followed  by  a  non-alphameric character, it takes away any  ------------------------------------------------------------------------------
      special  meaning  that  character  may  have.  This  use  of  
      backslash  as  an  escape  character applies both inside and  
      outside character classes.  
   
      For example, if you want to match a "*" character, you write  
      "\*" in the pattern. This applies whether or not the follow-  
      ing character would otherwise  be  interpreted  as  a  meta-  
      character,  so it is always safe to precede a non-alphameric  
      with "\" to specify that it stands for itself.  In  particu-  
      lar, if you want to match a backslash, you write "\\".  
   
      If a pattern is compiled with the PCRE_EXTENDED option, whi-  
      tespace in the pattern (other than in a character class) and  
      characters between a "#" outside a character class  and  the  
      next  newline  character  are ignored. An escaping backslash  
      can be used to include a whitespace or "#" character as part  
      of the pattern.  
   
      A second use of backslash provides a way  of  encoding  non-  
      printing  characters  in patterns in a visible manner. There  
      is no restriction on the appearance of non-printing  charac-  
      ters,  apart from the binary zero that terminates a pattern,  
      but when a pattern is being prepared by text editing, it  is  
      usually  easier to use one of the following escape sequences  
      than the binary character it represents:  
   
        \a     alarm, that is, the BEL character (hex 07)  
        \cx    "control-x", where x is any character  
        \e     escape (hex 1B)  
        \f     formfeed (hex 0C)  
        \n     newline (hex 0A)  
        \r     carriage return (hex 0D)  
        \t     tab (hex 09)  
        \xhh   character with hex code hh  
        \ddd   character with octal code ddd, or backreference  
   
      The precise effect of "\cx" is as follows: if "x" is a lower  
      case  letter,  it  is converted to upper case. Then bit 6 of  
      the character (hex 40) is inverted.  Thus "\cz" becomes  hex  
      1A, but "\c{" becomes hex 3B, while "\c;" becomes hex 7B.  
   
      After "\x", up to two hexadecimal digits are  read  (letters  
      can be in upper or lower case).  
   
      After "\0" up to two further octal digits are read. In  both  
      cases,  if  there are fewer than two digits, just those that  
      are present are used. Thus the sequence "\0\x\07"  specifies  
      two binary zeros followed by a BEL character.  Make sure you  
      supply two digits after the initial zero  if  the  character  
      that follows is itself an octal digit.  
   
      The handling of a backslash followed by a digit other than 0  
      is  complicated.   Outside  a character class, PCRE reads it  
      and any following digits as a decimal number. If the  number  
      is  less  than  10, or if there have been at least that many  
      previous capturing left parentheses in the  expression,  the  
      entire  sequence is taken as a back reference. A description  
      of how this works is given later, following  the  discussion  
      of parenthesized subpatterns.  
   
      Inside a character  class,  or  if  the  decimal  number  is  
      greater  than  9 and there have not been that many capturing  
      subpatterns, PCRE re-reads up to three octal digits  follow-  
      ing  the  backslash,  and  generates  a single byte from the  
      least significant 8 bits of the value. Any subsequent digits  
      stand for themselves.  For example:  
   
        \040   is another way of writing a space  
        \40    is the same, provided there are fewer than 40  
                  previous capturing subpatterns  
        \7     is always a back reference  
        \11    might be a back reference, or another way of  
                  writing a tab  
        \011   is always a tab  
        \0113  is a tab followed by the character "3"  
        \113   is the character with octal code 113 (since there  
                  can be no more than 99 back references)  
        \377   is a byte consisting entirely of 1 bits  
        \81    is either a back reference, or a binary zero  
                  followed by the two characters "8" and "1"  
   
      Note that octal values of 100 or greater must not be  intro-  
      duced  by  a  leading zero, because no more than three octal  
      digits are ever read.  
   
      All the sequences that define a single  byte  value  can  be  
      used both inside and outside character classes. In addition,  
      inside a character class, the sequence "\b"  is  interpreted  
      as  the  backspace  character  (hex 08). Outside a character  
      class it has a different meaning (see below).  
   
      The third use of backslash is for specifying generic charac-  
      ter types:  
   
        \d     any decimal digit  
        \D     any character that is not a decimal digit  
        \s     any whitespace character  
        \S     any character that is not a whitespace character  
        \w     any "word" character  
        \W     any "non-word" character  
   
      Each pair of escape sequences partitions the complete set of  
      characters  into  two  disjoint  sets.  Any  given character  
      matches one, and only one, of each pair.  
   
      A "word" character is any letter or digit or the  underscore  
      character,  that  is,  any  character which can be part of a  
      Perl "word". The definition of letters and  digits  is  con-  
      trolled  by PCRE's character tables, and may vary if locale-  
      specific matching is  taking  place  (see  "Locale  support"  
      above). For example, in the "fr" (French) locale, some char-  
      acter codes greater than 128 are used for accented  letters,  
      and these are matched by \w.  
   
      These character type sequences can appear  both  inside  and  
      outside  character classes. They each match one character of  
      the appropriate type. If the current matching  point  is  at  
      the end of the subject string, all of them fail, since there  
      is no character to match.  
   
      The fourth use of backslash is  for  certain  simple  asser-  
      tions. An assertion specifies a condition that has to be met  
      at a particular point in  a  match,  without  consuming  any  
      characters  from  the subject string. The use of subpatterns  
      for more complicated  assertions  is  described  below.  The  
      backslashed assertions are  
   
        \b     word boundary  
        \B     not a word boundary  
        \A     start of subject (independent of multiline mode)  
        \Z     end of subject or newline at  end  (independent  of  
      multiline mode)  
        \z     end of subject (independent of multiline mode)  
   
      These assertions may not appear in  character  classes  (but  
      note that "\b" has a different meaning, namely the backspace  
      character, inside a character class).  
   
      A word boundary is a position in the  subject  string  where  
      the current character and the previous character do not both  
      match \w or \W (i.e. one matches \w and  the  other  matches  
      \W),  or the start or end of the string if the first or last  
      character matches \w, respectively.  
   
      The \A, \Z, and \z assertions differ  from  the  traditional  
      circumflex  and  dollar  (described below) in that they only  
      ever match at the very start and end of the subject  string,  
      whatever  options  are  set.  They  are  not affected by the  
      PCRE_NOTBOL or PCRE_NOTEOL options. If the startoffset argu-  
      ment  of  pcre_exec()  is  non-zero, \A can never match. The  
      difference between \Z and \z is that  \Z  matches  before  a  
      newline  that is the last character of the string as well as  
      at the end of the string, whereas \z  matches  only  at  the  
      end.  
2457    
2458    
2459    PCRECALLOUT(3)                                                  PCRECALLOUT(3)
2460    
 CIRCUMFLEX AND DOLLAR  
      Outside a character class, in the default matching mode, the  
      circumflex  character  is an assertion which is true only if  
      the current matching point is at the start  of  the  subject  
      string.  If  the startoffset argument of pcre_exec() is non-  
      zero, circumflex can never match. Inside a character  class,  
      circumflex has an entirely different meaning (see below).  
   
      Circumflex need not be the first character of the pattern if  
      a  number of alternatives are involved, but it should be the  
      first thing in each alternative in which it appears  if  the  
      pattern is ever to match that branch. If all possible alter-  
      natives start with a circumflex, that is, if the pattern  is  
      constrained to match only at the start of the subject, it is  
      said to be an "anchored" pattern. (There are also other con-  
      structs that can cause a pattern to be anchored.)  
   
      A dollar character is an assertion which is true only if the  
      current  matching point is at the end of the subject string,  
      or immediately before a newline character that is  the  last  
      character in the string (by default). Dollar need not be the  
      last character of the pattern if a  number  of  alternatives  
      are  involved,  but it should be the last item in any branch  
      in which it appears.  Dollar has no  special  meaning  in  a  
      character class.  
   
      The meaning of dollar can be changed so that it matches only  
      at   the   very   end   of   the   string,  by  setting  the  
      PCRE_DOLLAR_ENDONLY option at compile or matching time. This  
      does not affect the \Z assertion.  
   
      The meanings of the circumflex  and  dollar  characters  are  
      changed  if  the  PCRE_MULTILINE option is set. When this is  
      the case,  they  match  immediately  after  and  immediately  
      before an internal "\n" character, respectively, in addition  
      to matching at the start and end of the subject string.  For  
      example,  the  pattern  /^abc$/  matches  the subject string  
      "def\nabc" in multiline  mode,  but  not  otherwise.  Conse-  
      quently,  patterns  that  are  anchored  in single line mode  
      because all branches start with "^" are not anchored in mul-  
      tiline mode, and a match for circumflex is possible when the  
      startoffset  argument  of  pcre_exec()  is   non-zero.   The  
      PCRE_DOLLAR_ENDONLY  option  is ignored if PCRE_MULTILINE is  
      set.  
   
      Note that the sequences \A, \Z, and \z can be used to  match  
      the  start  and end of the subject in both modes, and if all  
      branches of a pattern start with \A is it  always  anchored,  
      whether PCRE_MULTILINE is set or not.  
2461    
2462    NAME
2463           PCRE - Perl-compatible regular expressions
2464    
2465    
2466  FULL STOP (PERIOD, DOT)  PCRE CALLOUTS
      Outside a character class, a dot in the pattern matches  any  
      one character in the subject, including a non-printing char-  
      acter, but not (by default)  newline.   If  the  PCRE_DOTALL  
      option  is set, dots match newlines as well. The handling of  
      dot is entirely independent of the  handling  of  circumflex  
      and  dollar,  the  only  relationship  being  that they both  
      involve newline characters. Dot has no special meaning in  a  
      character class.  
   
   
   
 SQUARE BRACKETS  
      An opening square bracket introduces a character class, ter-  
      minated  by  a  closing  square  bracket.  A  closing square  
      bracket on its own is  not  special.  If  a  closing  square  
      bracket  is  required as a member of the class, it should be  
      the first data character in the class (after an initial cir-  
      cumflex, if present) or escaped with a backslash.  
   
      A character class matches a single character in the subject;  
      the  character  must  be in the set of characters defined by  
      the class, unless the first character in the class is a cir-  
      cumflex,  in which case the subject character must not be in  
      the set defined by the class. If a  circumflex  is  actually  
      required  as  a  member  of  the class, ensure it is not the  
      first character, or escape it with a backslash.  
   
      For example, the character class [aeiou] matches  any  lower  
      case vowel, while [^aeiou] matches any character that is not  
      a lower case vowel. Note that a circumflex is  just  a  con-  
      venient  notation for specifying the characters which are in  
      the class by enumerating those that are not. It  is  not  an  
      assertion:  it  still  consumes a character from the subject  
      string, and fails if the current pointer is at  the  end  of  
      the string.  
   
      When caseless matching  is  set,  any  letters  in  a  class  
      represent  both their upper case and lower case versions, so  
      for example, a caseless [aeiou] matches "A" as well as  "a",  
      and  a caseless [^aeiou] does not match "A", whereas a case-  
      ful version would.  
   
      The newline character is never treated in any special way in  
      character  classes,  whatever the setting of the PCRE_DOTALL  
      or PCRE_MULTILINE options is. A  class  such  as  [^a]  will  
      always match a newline.  
   
      The minus (hyphen) character can be used to specify a  range  
      of  characters  in  a  character  class.  For example, [d-m]  
      matches any letter between d and m, inclusive.  If  a  minus  
      character  is required in a class, it must be escaped with a  
      backslash or appear in a position where it cannot be  inter-  
      preted as indicating a range, typically as the first or last  
      character in the class.  
   
      It is not possible to have the literal character "]" as  the  
      end  character  of  a  range.  A  pattern such as [W-]46] is  
      interpreted as a class of two characters ("W" and "-")  fol-  
      lowed by a literal string "46]", so it would match "W46]" or  
      "-46]". However, if the "]" is escaped with a  backslash  it  
      is  interpreted  as  the end of range, so [W-\]46] is inter-  
      preted as a single class containing a range followed by  two  
      separate characters. The octal or hexadecimal representation  
      of "]" can also be used to end a range.  
   
      Ranges operate in ASCII collating sequence. They can also be  
      used  for  characters  specified  numerically,  for  example  
      [\000-\037]. If a range that includes letters is  used  when  
      caseless  matching  is set, it matches the letters in either  
      case. For example, [W-c] is equivalent  to  [][\^_`wxyzabc],  
      matched  caselessly,  and  if  character tables for the "fr"  
      locale are in use, [\xc8-\xcb] matches accented E characters  
      in both cases.  
   
      The character types \d, \D, \s, \S,  \w,  and  \W  may  also  
      appear  in  a  character  class, and add the characters that  
      they match to the class. For example, [\dABCDEF] matches any  
      hexadecimal  digit.  A  circumflex  can conveniently be used  
      with the upper case character types to specify a  more  res-  
      tricted set of characters than the matching lower case type.  
      For example, the class [^\W_] matches any letter  or  digit,  
      but not underscore.  
   
      All non-alphameric characters other than \,  -,  ^  (at  the  
      start)  and  the  terminating ] are non-special in character  
      classes, but it does no harm if they are escaped.  
2467    
2468           int (*pcre_callout)(pcre_callout_block *);
2469    
2470           PCRE provides a feature called "callout", which is a means of temporar-
2471           ily passing control to the caller of PCRE  in  the  middle  of  pattern
2472           matching.  The  caller of PCRE provides an external function by putting
2473           its entry point in the global variable pcre_callout. By  default,  this
2474           variable contains NULL, which disables all calling out.
2475    
2476           Within  a  regular  expression,  (?C) indicates the points at which the
2477           external function is to be called.  Different  callout  points  can  be
2478           identified  by  putting  a number less than 256 after the letter C. The
2479           default value is zero.  For  example,  this  pattern  has  two  callout
2480           points:
2481    
2482             (?C1)abc(?C2)def
2483    
2484           If  the  PCRE_AUTO_CALLOUT  option  bit  is  set when pcre_compile() is
2485           called, PCRE automatically  inserts  callouts,  all  with  number  255,
2486           before  each  item in the pattern. For example, if PCRE_AUTO_CALLOUT is
2487           used with the pattern
2488    
2489             A(\d{2}|--)
2490    
2491           it is processed as if it were
2492    
2493           (?C255)A(?C255)((?C255)\d{2}(?C255)|(?C255)-(?C255)-(?C255))(?C255)
2494    
2495           Notice that there is a callout before and after  each  parenthesis  and
2496           alternation  bar.  Automatic  callouts  can  be  used  for tracking the
2497           progress of pattern matching. The pcretest command has an  option  that
2498           sets  automatic callouts; when it is used, the output indicates how the
2499           pattern is matched. This is useful information when you are  trying  to
2500           optimize the performance of a particular pattern.
2501    
2502    
2503    MISSING CALLOUTS
2504    
2505           You  should  be  aware  that,  because of optimizations in the way PCRE
2506           matches patterns, callouts sometimes do not happen. For example, if the
2507           pattern is
2508    
2509             ab(?C4)cd
2510    
2511           PCRE knows that any matching string must contain the letter "d". If the
2512           subject string is "abyz", the lack of "d" means that  matching  doesn't
2513           ever  start,  and  the  callout is never reached. However, with "abyd",
2514           though the result is still no match, the callout is obeyed.
2515    
2516    
2517    THE CALLOUT INTERFACE
2518    
2519           During matching, when PCRE reaches a callout point, the external  func-
2520           tion  defined by pcre_callout is called (if it is set). This applies to
2521           both the pcre_exec() and the pcre_dfa_exec()  matching  functions.  The
2522           only  argument  to  the callout function is a pointer to a pcre_callout
2523           block. This structure contains the following fields:
2524    
2525             int          version;
2526             int          callout_number;
2527             int         *offset_vector;
2528             const char  *subject;
2529             int          subject_length;
2530             int          start_match;
2531             int          current_position;
2532             int          capture_top;
2533             int          capture_last;
2534             void        *callout_data;
2535             int          pattern_position;
2536             int          next_item_length;
2537    
2538           The version field is an integer containing the version  number  of  the
2539           block  format. The initial version was 0; the current version is 1. The
2540           version number will change again in future  if  additional  fields  are
2541           added, but the intention is never to remove any of the existing fields.
2542    
2543           The callout_number field contains the number of the  callout,  as  com-
2544           piled  into  the pattern (that is, the number after ?C for manual call-
2545           outs, and 255 for automatically generated callouts).
2546    
2547           The offset_vector field is a pointer to the vector of offsets that  was
2548           passed   by   the   caller  to  pcre_exec()  or  pcre_dfa_exec().  When
2549           pcre_exec() is used, the contents can be inspected in order to  extract
2550           substrings  that  have  been  matched  so  far,  in the same way as for
2551           extracting substrings after a match has completed. For  pcre_dfa_exec()
2552           this field is not useful.
2553    
2554           The subject and subject_length fields contain copies of the values that
2555           were passed to pcre_exec().
2556    
2557           The start_match field normally contains the offset within  the  subject
2558           at  which  the  current  match  attempt started. However, if the escape
2559           sequence \K has been encountered, this value is changed to reflect  the
2560           modified  starting  point.  If the pattern is not anchored, the callout
2561           function may be called several times from the same point in the pattern
2562           for different starting points in the subject.
2563    
2564           The  current_position  field  contains the offset within the subject of
2565           the current match pointer.
2566    
2567           When the pcre_exec() function is used, the capture_top  field  contains
2568           one  more than the number of the highest numbered captured substring so
2569           far. If no substrings have been captured, the value of  capture_top  is
2570           one.  This  is always the case when pcre_dfa_exec() is used, because it
2571           does not support captured substrings.
2572    
2573           The capture_last field contains the number of the  most  recently  cap-
2574           tured  substring. If no substrings have been captured, its value is -1.
2575           This is always the case when pcre_dfa_exec() is used.
2576    
2577           The callout_data field contains a value that is passed  to  pcre_exec()
2578           or  pcre_dfa_exec() specifically so that it can be passed back in call-
2579           outs. It is passed in the pcre_callout field  of  the  pcre_extra  data
2580           structure.  If  no such data was passed, the value of callout_data in a
2581           pcre_callout block is NULL. There is a description  of  the  pcre_extra
2582           structure in the pcreapi documentation.
2583    
2584           The  pattern_position field is present from version 1 of the pcre_call-
2585           out structure. It contains the offset to the next item to be matched in
2586           the pattern string.
2587    
2588           The  next_item_length field is present from version 1 of the pcre_call-
2589           out structure. It contains the length of the next item to be matched in
2590           the  pattern  string. When the callout immediately precedes an alterna-
2591           tion bar, a closing parenthesis, or the end of the pattern, the  length
2592           is  zero.  When the callout precedes an opening parenthesis, the length
2593           is that of the entire subpattern.
2594    
2595           The pattern_position and next_item_length fields are intended  to  help
2596           in  distinguishing between different automatic callouts, which all have
2597           the same callout number. However, they are set for all callouts.
2598    
2599    
2600    RETURN VALUES
2601    
2602           The external callout function returns an integer to PCRE. If the  value
2603           is  zero,  matching  proceeds  as  normal. If the value is greater than
2604           zero, matching fails at the current point, but  the  testing  of  other
2605           matching possibilities goes ahead, just as if a lookahead assertion had
2606           failed. If the value is less than zero, the  match  is  abandoned,  and
2607           pcre_exec() (or pcre_dfa_exec()) returns the negative value.
2608    
2609           Negative   values   should   normally   be   chosen  from  the  set  of
2610           PCRE_ERROR_xxx values. In particular, PCRE_ERROR_NOMATCH forces a stan-
2611           dard  "no  match"  failure.   The  error  number  PCRE_ERROR_CALLOUT is
2612           reserved for use by callout functions; it will never be  used  by  PCRE
2613           itself.
2614    
 POSIX CHARACTER CLASSES  
      Perl 5.6 (not yet released at the time of writing) is  going  
      to  support  the POSIX notation for character classes, which  
      uses names enclosed by  [:  and  :]   within  the  enclosing  
      square brackets. PCRE supports this notation. For example,  
   
        [01[:alpha:]%]  
   
      matches "0", "1", any alphabetic character, or "%". The sup-  
      ported class names are  
   
        alnum    letters and digits  
        alpha    letters  
        ascii    character codes 0 - 127  
        cntrl    control characters  
        digit    decimal digits (same as \d)  
        graph    printing characters, excluding space  
        lower    lower case letters  
        print    printing characters, including space  
        punct    printing characters, excluding letters and digits  
        space    white space (same as \s)  
        upper    upper case letters  
        word     "word" characters (same as \w)  
        xdigit   hexadecimal digits  
   
      The names "ascii" and "word" are  Perl  extensions.  Another  
      Perl  extension is negation, which is indicated by a ^ char-  
      acter after the colon. For example,  
   
        [12[:^digit:]]  
   
      matches "1", "2", or any non-digit.  PCRE  (and  Perl)  also  
      recogize  the POSIX syntax [.ch.] and [=ch=] where "ch" is a  
      "collating element", but these are  not  supported,  and  an  
      error is given if they are encountered.  
2615    
2616    AUTHOR
2617    
2618           Philip Hazel
2619           University Computing Service
2620           Cambridge CB2 3QH, England.
2621    
 VERTICAL BAR  
      Vertical bar characters are  used  to  separate  alternative  
      patterns. For example, the pattern  
2622    
2623         gilbert|sullivan  REVISION
2624    
2625       matches either "gilbert" or "sullivan". Any number of alter-         Last updated: 29 May 2007
2626       natives  may  appear,  and an empty alternative is permitted         Copyright (c) 1997-2007 University of Cambridge.
2627       (matching the empty string).   The  matching  process  tries  ------------------------------------------------------------------------------
      each  alternative in turn, from left to right, and the first  
      one that succeeds is used. If the alternatives are within  a  
      subpattern  (defined  below),  "succeeds" means matching the  
      rest of the main pattern as well as the alternative  in  the  
      subpattern.  
2628    
2629    
2630    PCRECOMPAT(3)                                                    PCRECOMPAT(3)
2631    
 INTERNAL OPTION SETTING  
      The settings of PCRE_CASELESS, PCRE_MULTILINE,  PCRE_DOTALL,  
      and  PCRE_EXTENDED can be changed from within the pattern by  
      a sequence of Perl option letters enclosed between "(?"  and  
      ")". The option letters are  
   
        i  for PCRE_CASELESS  
        m  for PCRE_MULTILINE  
        s  for PCRE_DOTALL  
        x  for PCRE_EXTENDED  
   
      For example, (?im) sets caseless, multiline matching. It  is  
      also possible to unset these options by preceding the letter  
      with a hyphen, and a combined setting and unsetting such  as  
      (?im-sx),  which sets PCRE_CASELESS and PCRE_MULTILINE while  
      unsetting PCRE_DOTALL and PCRE_EXTENDED, is also  permitted.  
      If  a  letter  appears both before and after the hyphen, the  
      option is unset.  
   
      The scope of these option changes depends on  where  in  the  
      pattern  the  setting  occurs. For settings that are outside  
      any subpattern (defined below), the effect is the same as if  
      the  options were set or unset at the start of matching. The  
      following patterns all behave in exactly the same way:  
   
        (?i)abc  
        a(?i)bc  
        ab(?i)c  
        abc(?i)  
   
      which in turn is the same as compiling the pattern abc  with  
      PCRE_CASELESS  set.   In  other words, such "top level" set-  
      tings apply to the whole pattern  (unless  there  are  other  
      changes  inside subpatterns). If there is more than one set-  
      ting of the same option at top level, the rightmost  setting  
      is used.  
   
      If an option change occurs inside a subpattern,  the  effect  
      is  different.  This is a change of behaviour in Perl 5.005.  
      An option change inside a subpattern affects only that  part  
      of the subpattern that follows it, so  
   
        (a(?i)b)c  
   
      matches  abc  and  aBc  and  no  other   strings   (assuming  
      PCRE_CASELESS  is  not used).  By this means, options can be  
      made to have different settings in different  parts  of  the  
      pattern.  Any  changes  made  in one alternative do carry on  
      into subsequent branches within  the  same  subpattern.  For  
      example,  
   
        (a(?i)b|c)  
   
      matches "ab", "aB", "c", and "C", even though when  matching  
      "C" the first branch is abandoned before the option setting.  
      This is because the effects of  option  settings  happen  at  
      compile  time. There would be some very weird behaviour oth-  
      erwise.  
   
      The PCRE-specific options PCRE_UNGREEDY and  PCRE_EXTRA  can  
      be changed in the same way as the Perl-compatible options by  
      using the characters U and X  respectively.  The  (?X)  flag  
      setting  is  special in that it must always occur earlier in  
      the pattern than any of the additional features it turns on,  
      even when it is at top level. It is best put at the start.  
2632    
2633    NAME
2634           PCRE - Perl-compatible regular expressions
2635    
2636    
2637  SUBPATTERNS  DIFFERENCES BETWEEN PCRE AND PERL
      Subpatterns are delimited by parentheses  (round  brackets),  
      which can be nested.  Marking part of a pattern as a subpat-  
      tern does two things:  
   
      1. It localizes a set of alternatives. For example, the pat-  
      tern  
   
        cat(aract|erpillar|)  
   
      matches one of the words "cat",  "cataract",  or  "caterpil-  
      lar".  Without  the  parentheses, it would match "cataract",  
      "erpillar" or the empty string.  
   
      2. It sets up the subpattern as a capturing  subpattern  (as  
      defined  above).   When the whole pattern matches, that por-  
      tion of the subject string that matched  the  subpattern  is  
      passed  back  to  the  caller  via  the  ovector argument of  
      pcre_exec(). Opening parentheses are counted  from  left  to  
      right (starting from 1) to obtain the numbers of the captur-  
      ing subpatterns.  
   
      For example, if the string "the red king" is matched against  
      the pattern  
   
        the ((red|white) (king|queen))  
   
      the captured substrings are "red king", "red",  and  "king",  
      and are numbered 1, 2, and 3.  
   
      The fact that plain parentheses fulfil two functions is  not  
      always  helpful.  There are often times when a grouping sub-  
      pattern is required without a capturing requirement.  If  an  
      opening parenthesis is followed by "?:", the subpattern does  
      not do any capturing, and is not counted when computing  the  
      number of any subsequent capturing subpatterns. For example,  
      if the string "the white queen" is matched against the  pat-  
      tern  
   
        the ((?:red|white) (king|queen))  
   
      the captured substrings are "white queen" and  "queen",  and  
      are  numbered  1  and 2. The maximum number of captured sub-  
      strings is 99, and the maximum number  of  all  subpatterns,  
      both capturing and non-capturing, is 200.  
   
      As a  convenient  shorthand,  if  any  option  settings  are  
      required  at  the  start  of a non-capturing subpattern, the  
      option letters may appear between the "?" and the ":".  Thus  
      the two patterns  
   
        (?i:saturday|sunday)  
        (?:(?i)saturday|sunday)  
   
      match exactly the same set of strings.  Because  alternative  
      branches  are  tried from left to right, and options are not  
      reset until the end of the subpattern is reached, an  option  
      setting  in  one  branch does affect subsequent branches, so  
      the above patterns match "SUNDAY" as well as "Saturday".  
2638    
2639           This  document describes the differences in the ways that PCRE and Perl
2640           handle regular expressions. The differences described here  are  mainly
2641           with  respect  to  Perl 5.8, though PCRE versions 7.0 and later contain
2642           some features that are expected to be in the forthcoming Perl 5.10.
2643    
2644           1. PCRE has only a subset of Perl's UTF-8 and Unicode support.  Details
2645           of  what  it does have are given in the section on UTF-8 support in the
2646           main pcre page.
2647    
2648           2. PCRE does not allow repeat quantifiers on lookahead assertions. Perl
2649           permits  them,  but they do not mean what you might think. For example,
2650           (?!a){3} does not assert that the next three characters are not "a". It
2651           just asserts that the next character is not "a" three times.
2652    
2653           3.  Capturing  subpatterns  that occur inside negative lookahead asser-
2654           tions are counted, but their entries in the offsets  vector  are  never
2655           set.  Perl sets its numerical variables from any such patterns that are
2656           matched before the assertion fails to match something (thereby succeed-
2657           ing),  but  only  if the negative lookahead assertion contains just one
2658           branch.
2659    
2660           4. Though binary zero characters are supported in the  subject  string,
2661           they are not allowed in a pattern string because it is passed as a nor-
2662           mal C string, terminated by zero. The escape sequence \0 can be used in
2663           the pattern to represent a binary zero.
2664    
2665           5.  The  following Perl escape sequences are not supported: \l, \u, \L,
2666           \U, and \N. In fact these are implemented by Perl's general string-han-
2667           dling  and are not part of its pattern matching engine. If any of these
2668           are encountered by PCRE, an error is generated.
2669    
2670           6. The Perl escape sequences \p, \P, and \X are supported only if  PCRE
2671           is  built  with Unicode character property support. The properties that
2672           can be tested with \p and \P are limited to the general category  prop-
2673           erties  such  as  Lu and Nd, script names such as Greek or Han, and the
2674           derived properties Any and L&.
2675    
2676           7. PCRE does support the \Q...\E escape for quoting substrings. Charac-
2677           ters  in  between  are  treated as literals. This is slightly different
2678           from Perl in that $ and @ are  also  handled  as  literals  inside  the
2679           quotes.  In Perl, they cause variable interpolation (but of course PCRE
2680           does not have variables). Note the following examples:
2681    
2682               Pattern            PCRE matches      Perl matches
2683    
2684               \Qabc$xyz\E        abc$xyz           abc followed by the