/[pcre]/code/trunk/doc/pcre.txt
ViewVC logotype

Diff of /code/trunk/doc/pcre.txt

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 51 by nigel, Sat Feb 24 21:39:37 2007 UTC revision 202 by ph10, Fri Aug 3 09:44:26 2007 UTC
# Line 1  Line 1 
1    -----------------------------------------------------------------------------
2    This file contains a concatenation of the PCRE man pages, converted to plain
3    text format for ease of searching with a text editor, or for use on systems
4    that do not have a man page processor. The small individual files that give
5    synopses of each function in the library have not been included. There are
6    separate text files for the pcregrep and pcretest commands.
7    -----------------------------------------------------------------------------
8    
9    
10    PCRE(3)                                                                PCRE(3)
11    
12    
13  NAME  NAME
14       pcre - Perl-compatible regular expressions.         PCRE - Perl-compatible regular expressions
15    
16    
17    INTRODUCTION
18    
19  SYNOPSIS         The  PCRE  library is a set of functions that implement regular expres-
20       #include <pcre.h>         sion pattern matching using the same syntax and semantics as Perl, with
21           just  a  few differences. (Certain features that appeared in Python and
22           PCRE before they appeared in Perl are also available using  the  Python
23           syntax.)
24    
25           The  current  implementation of PCRE (release 7.x) corresponds approxi-
26           mately with Perl 5.10, including support for UTF-8 encoded strings  and
27           Unicode general category properties. However, UTF-8 and Unicode support
28           has to be explicitly enabled; it is not the default. The Unicode tables
29           correspond to Unicode release 5.0.0.
30    
31           In  addition to the Perl-compatible matching function, PCRE contains an
32           alternative matching function that matches the same  compiled  patterns
33           in  a different way. In certain circumstances, the alternative function
34           has some advantages. For a discussion of the two  matching  algorithms,
35           see the pcrematching page.
36    
37           PCRE  is  written  in C and released as a C library. A number of people
38           have written wrappers and interfaces of various kinds.  In  particular,
39           Google  Inc.   have  provided  a comprehensive C++ wrapper. This is now
40           included as part of the PCRE distribution. The pcrecpp page has details
41           of  this  interface.  Other  people's contributions can be found in the
42           Contrib directory at the primary FTP site, which is:
43    
44           ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre
45    
46           Details of exactly which Perl regular expression features are  and  are
47           not supported by PCRE are given in separate documents. See the pcrepat-
48           tern and pcrecompat pages.
49    
50           Some features of PCRE can be included, excluded, or  changed  when  the
51           library  is  built.  The pcre_config() function makes it possible for a
52           client to discover which features are  available.  The  features  them-
53           selves  are described in the pcrebuild page. Documentation about build-
54           ing PCRE for various operating systems can be found in the README  file
55           in the source distribution.
56    
57           The  library  contains  a number of undocumented internal functions and
58           data tables that are used by more than one  of  the  exported  external
59           functions,  but  which  are  not  intended for use by external callers.
60           Their names all begin with "_pcre_", which hopefully will  not  provoke
61           any name clashes. In some environments, it is possible to control which
62           external symbols are exported when a shared library is  built,  and  in
63           these cases the undocumented symbols are not exported.
64    
65    
66    USER DOCUMENTATION
67    
68           The  user  documentation  for PCRE comprises a number of different sec-
69           tions. In the "man" format, each of these is a separate "man page".  In
70           the  HTML  format, each is a separate page, linked from the index page.
71           In the plain text format, all the sections are concatenated,  for  ease
72           of searching. The sections are as follows:
73    
74             pcre              this document
75             pcre-config       show PCRE installation configuration information
76             pcreapi           details of PCRE's native C API
77             pcrebuild         options for building PCRE
78             pcrecallout       details of the callout feature
79             pcrecompat        discussion of Perl compatibility
80             pcrecpp           details of the C++ wrapper
81             pcregrep          description of the pcregrep command
82             pcrematching      discussion of the two matching algorithms
83             pcrepartial       details of the partial matching facility
84             pcrepattern       syntax and semantics of supported
85                                 regular expressions
86             pcreperform       discussion of performance issues
87             pcreposix         the POSIX-compatible C API
88             pcreprecompile    details of saving and re-using precompiled patterns
89             pcresample        discussion of the sample program
90             pcrestack         discussion of stack usage
91             pcretest          description of the pcretest testing command
92    
93       pcre *pcre_compile(const char *pattern, int options,         In addition, in the "man" and HTML formats, there is a short  page  for
94            const char **errptr, int *erroffset,         each C library function, listing its arguments and results.
           const unsigned char *tableptr);  
95    
      pcre_extra *pcre_study(const pcre *code, int options,  
           const char **errptr);  
96    
97       int pcre_exec(const pcre *code, const pcre_extra *extra,  LIMITATIONS
           const char *subject, int length, int startoffset,  
           int options, int *ovector, int ovecsize);  
98    
99       int pcre_copy_substring(const char *subject, int *ovector,         There  are some size limitations in PCRE but it is hoped that they will
100            int stringcount, int stringnumber, char *buffer,         never in practice be relevant.
           int buffersize);  
101    
102       int pcre_get_substring(const char *subject, int *ovector,         The maximum length of a compiled pattern is 65539 (sic) bytes  if  PCRE
103            int stringcount, int stringnumber,         is compiled with the default internal linkage size of 2. If you want to
104            const char **stringptr);         process regular expressions that are truly enormous,  you  can  compile
105           PCRE  with  an  internal linkage size of 3 or 4 (see the README file in
106           the source distribution and the pcrebuild documentation  for  details).
107           In  these  cases the limit is substantially larger.  However, the speed
108           of execution is slower.
109    
110           All values in repeating quantifiers must be less than 65536. The  maxi-
111           mum  compiled  length  of  subpattern  with an explicit repeat count is
112           30000 bytes. The maximum number of capturing subpatterns is 65535.
113    
114           There is no limit to the number of parenthesized subpatterns, but there
115           can be no more than 65535 capturing subpatterns.
116    
117           If  a  non-capturing subpattern with an unlimited repetition quantifier
118           can match an empty string, there is a limit of 1000 on  the  number  of
119           times  it  can  be  repeated while not matching an empty string - if it
120           does match an empty string, the loop is immediately broken.
121    
122           The maximum length of name for a named subpattern is 32 characters, and
123           the maximum number of named subpatterns is 10000.
124    
125           The  maximum  length of a subject string is the largest positive number
126           that an integer variable can hold. However, when using the  traditional
127           matching function, PCRE uses recursion to handle subpatterns and indef-
128           inite repetition.  This means that the available stack space may  limit
129           the size of a subject string that can be processed by certain patterns.
130           For a discussion of stack issues, see the pcrestack documentation.
131    
132    
133    UTF-8 AND UNICODE PROPERTY SUPPORT
134    
135           From release 3.3, PCRE has  had  some  support  for  character  strings
136           encoded  in the UTF-8 format. For release 4.0 this was greatly extended
137           to cover most common requirements, and in release 5.0  additional  sup-
138           port for Unicode general category properties was added.
139    
140           In  order  process  UTF-8 strings, you must build PCRE to include UTF-8
141           support in the code, and, in addition,  you  must  call  pcre_compile()
142           with  the PCRE_UTF8 option flag. When you do this, both the pattern and
143           any subject strings that are matched against it are  treated  as  UTF-8
144           strings instead of just strings of bytes.
145    
146           If  you compile PCRE with UTF-8 support, but do not use it at run time,
147           the library will be a bit bigger, but the additional run time  overhead
148           is limited to testing the PCRE_UTF8 flag occasionally, so should not be
149           very big.
150    
151           If PCRE is built with Unicode character property support (which implies
152           UTF-8  support),  the  escape sequences \p{..}, \P{..}, and \X are sup-
153           ported.  The available properties that can be tested are limited to the
154           general  category  properties such as Lu for an upper case letter or Nd
155           for a decimal number, the Unicode script names such as Arabic  or  Han,
156           and  the  derived  properties  Any  and L&. A full list is given in the
157           pcrepattern documentation. Only the short names for properties are sup-
158           ported.  For example, \p{L} matches a letter. Its Perl synonym, \p{Let-
159           ter}, is not supported.  Furthermore,  in  Perl,  many  properties  may
160           optionally  be  prefixed by "Is", for compatibility with Perl 5.6. PCRE
161           does not support this.
162    
163           The following comments apply when PCRE is running in UTF-8 mode:
164    
165           1. When you set the PCRE_UTF8 flag, the strings passed as patterns  and
166           subjects  are  checked for validity on entry to the relevant functions.
167           If an invalid UTF-8 string is passed, an error return is given. In some
168           situations,  you  may  already  know  that  your strings are valid, and
169           therefore want to skip these checks in order to improve performance. If
170           you  set  the  PCRE_NO_UTF8_CHECK  flag at compile time or at run time,
171           PCRE assumes that the pattern or subject  it  is  given  (respectively)
172           contains  only valid UTF-8 codes. In this case, it does not diagnose an
173           invalid UTF-8 string. If you pass an invalid UTF-8 string to PCRE  when
174           PCRE_NO_UTF8_CHECK  is set, the results are undefined. Your program may
175           crash.
176    
177           2. An unbraced hexadecimal escape sequence (such  as  \xb3)  matches  a
178           two-byte UTF-8 character if the value is greater than 127.
179    
180           3.  Octal  numbers  up to \777 are recognized, and match two-byte UTF-8
181           characters for values greater than \177.
182    
183           4. Repeat quantifiers apply to complete UTF-8 characters, not to  indi-
184           vidual bytes, for example: \x{100}{3}.
185    
186           5.  The dot metacharacter matches one UTF-8 character instead of a sin-
187           gle byte.
188    
189           6. The escape sequence \C can be used to match a single byte  in  UTF-8
190           mode,  but  its  use can lead to some strange effects. This facility is
191           not available in the alternative matching function, pcre_dfa_exec().
192    
193           7. The character escapes \b, \B, \d, \D, \s, \S, \w, and  \W  correctly
194           test  characters of any code value, but the characters that PCRE recog-
195           nizes as digits, spaces, or word characters  remain  the  same  set  as
196           before, all with values less than 256. This remains true even when PCRE
197           includes Unicode property support, because to do otherwise  would  slow
198           down  PCRE in many common cases. If you really want to test for a wider
199           sense of, say, "digit", you must use Unicode  property  tests  such  as
200           \p{Nd}.
201    
202           8.  Similarly,  characters that match the POSIX named character classes
203           are all low-valued characters.
204    
205           9. However, the Perl 5.10 horizontal and vertical  whitespace  matching
206           escapes (\h, \H, \v, and \V) do match all the appropriate Unicode char-
207           acters.
208    
209           10. Case-insensitive matching applies only to characters  whose  values
210           are  less than 128, unless PCRE is built with Unicode property support.
211           Even when Unicode property support is available, PCRE  still  uses  its
212           own  character  tables when checking the case of low-valued characters,
213           so as not to degrade performance.  The Unicode property information  is
214           used only for characters with higher values. Even when Unicode property
215           support is available, PCRE supports case-insensitive matching only when
216           there  is  a  one-to-one  mapping between a letter's cases. There are a
217           small number of many-to-one mappings in Unicode;  these  are  not  sup-
218           ported by PCRE.
219    
      int pcre_get_substring_list(const char *subject,  
           int *ovector, int stringcount, const char ***listptr);  
220    
221       void pcre_free_substring(const char *stringptr);  AUTHOR
222    
223       void pcre_free_substring_list(const char **stringptr);         Philip Hazel
224           University Computing Service
225           Cambridge CB2 3QH, England.
226    
227       const unsigned char *pcre_maketables(void);         Putting  an actual email address here seems to have been a spam magnet,
228           so I've taken it away. If you want to email me, use  my  two  initials,
229           followed by the two digits 10, at the domain cam.ac.uk.
230    
      int pcre_fullinfo(const pcre *code, const pcre_extra *extra,  
           int what, void *where);  
231    
232       int pcre_info(const pcre *code, int *optptr, *firstcharptr);  REVISION
233    
234       char *pcre_version(void);         Last updated: 30 July 2007
235           Copyright (c) 1997-2007 University of Cambridge.
236    ------------------------------------------------------------------------------
237    
      void *(*pcre_malloc)(size_t);  
238    
239       void (*pcre_free)(void *);  PCREBUILD(3)                                                      PCREBUILD(3)
240    
241    
242    NAME
243           PCRE - Perl-compatible regular expressions
244    
245    
246  DESCRIPTION  PCRE BUILD-TIME OPTIONS
247       The PCRE library is a set of functions that implement  regu-  
248       lar  expression  pattern  matching using the same syntax and         This  document  describes  the  optional  features  of PCRE that can be
249       semantics as Perl  5,  with  just  a  few  differences  (see         selected when the library is compiled. They are all selected, or  dese-
250           lected, by providing options to the configure script that is run before
251           the make command. The complete list of  options  for  configure  (which
252           includes  the  standard  ones such as the selection of the installation
253           directory) can be obtained by running
254    
255             ./configure --help
256    
257           The following sections include  descriptions  of  options  whose  names
258           begin with --enable or --disable. These settings specify changes to the
259           defaults for the configure command. Because of the way  that  configure
260           works,  --enable  and --disable always come in pairs, so the complemen-
261           tary option always exists as well, but as it specifies the default,  it
262           is not described.
263    
264    
265    C++ SUPPORT
266    
267           By default, the configure script will search for a C++ compiler and C++
268           header files. If it finds them, it automatically builds the C++ wrapper
269           library for PCRE. You can disable this by adding
270    
271             --disable-cpp
272    
273           to the configure command.
274    
275    
276    UTF-8 SUPPORT
277    
278           To build PCRE with support for UTF-8 character strings, add
279    
280             --enable-utf8
281    
282           to  the  configure  command.  Of  itself, this does not make PCRE treat
283           strings as UTF-8. As well as compiling PCRE with this option, you  also
284           have  have to set the PCRE_UTF8 option when you call the pcre_compile()
285           function.
286    
287    
288    UNICODE CHARACTER PROPERTY SUPPORT
289    
290           UTF-8 support allows PCRE to process character values greater than  255
291           in  the  strings that it handles. On its own, however, it does not pro-
292           vide any facilities for accessing the properties of such characters. If
293           you  want  to  be able to use the pattern escapes \P, \p, and \X, which
294           refer to Unicode character properties, you must add
295    
296             --enable-unicode-properties
297    
298           to the configure command. This implies UTF-8 support, even if you  have
299           not explicitly requested it.
300    
301           Including  Unicode  property  support  adds around 30K of tables to the
302           PCRE library. Only the general category properties such as  Lu  and  Nd
303           are supported. Details are given in the pcrepattern documentation.
304    
305    
306    CODE VALUE OF NEWLINE
307    
308           By  default,  PCRE interprets character 10 (linefeed, LF) as indicating
309           the end of a line. This is the normal newline  character  on  Unix-like
310           systems. You can compile PCRE to use character 13 (carriage return, CR)
311           instead, by adding
312    
313             --enable-newline-is-cr
314    
315           to the  configure  command.  There  is  also  a  --enable-newline-is-lf
316           option, which explicitly specifies linefeed as the newline character.
317    
318           Alternatively, you can specify that line endings are to be indicated by
319           the two character sequence CRLF. If you want this, add
320    
321             --enable-newline-is-crlf
322    
323           to the configure command. There is a fourth option, specified by
324    
325             --enable-newline-is-anycrlf
326    
327           which causes PCRE to recognize any of the three sequences  CR,  LF,  or
328           CRLF as indicating a line ending. Finally, a fifth option, specified by
329    
330             --enable-newline-is-any
331    
332           causes PCRE to recognize any Unicode newline sequence.
333    
334           Whatever line ending convention is selected when PCRE is built  can  be
335           overridden  when  the library functions are called. At build time it is
336           conventional to use the standard for your operating system.
337    
338    
339    BUILDING SHARED AND STATIC LIBRARIES
340    
341           The PCRE building process uses libtool to build both shared and  static
342           Unix  libraries by default. You can suppress one of these by adding one
343           of
344    
345             --disable-shared
346             --disable-static
347    
348           to the configure command, as required.
349    
350    
351    POSIX MALLOC USAGE
352    
353           When PCRE is called through the POSIX interface (see the pcreposix doc-
354           umentation),  additional  working  storage  is required for holding the
355           pointers to capturing substrings, because PCRE requires three  integers
356           per  substring,  whereas  the POSIX interface provides only two. If the
357           number of expected substrings is small, the wrapper function uses space
358           on the stack, because this is faster than using malloc() for each call.
359           The default threshold above which the stack is no longer used is 10; it
360           can be changed by adding a setting such as
361    
362             --with-posix-malloc-threshold=20
363    
364           to the configure command.
365    
366    
367    HANDLING VERY LARGE PATTERNS
368    
369           Within  a  compiled  pattern,  offset values are used to point from one
370           part to another (for example, from an opening parenthesis to an  alter-
371           nation  metacharacter).  By default, two-byte values are used for these
372           offsets, leading to a maximum size for a  compiled  pattern  of  around
373           64K.  This  is sufficient to handle all but the most gigantic patterns.
374           Nevertheless, some people do want to process enormous patterns,  so  it
375           is  possible  to compile PCRE to use three-byte or four-byte offsets by
376           adding a setting such as
377    
378             --with-link-size=3
379    
380           to the configure command. The value given must be 2,  3,  or  4.  Using
381           longer  offsets slows down the operation of PCRE because it has to load
382           additional bytes when handling them.
383    
384    
385    AVOIDING EXCESSIVE STACK USAGE
386    
387           When matching with the pcre_exec() function, PCRE implements backtrack-
388           ing  by  making recursive calls to an internal function called match().
389           In environments where the size of the stack is limited,  this  can  se-
390           verely  limit  PCRE's operation. (The Unix environment does not usually
391           suffer from this problem, but it may sometimes be necessary to increase
392           the  maximum  stack size.  There is a discussion in the pcrestack docu-
393           mentation.) An alternative approach to recursion that uses memory  from
394           the  heap  to remember data, instead of using recursive function calls,
395           has been implemented to work round the problem of limited  stack  size.
396           If you want to build a version of PCRE that works this way, add
397    
398             --disable-stack-for-recursion
399    
400           to  the  configure  command. With this configuration, PCRE will use the
401           pcre_stack_malloc and pcre_stack_free variables to call memory  manage-
402           ment  functions. By default these point to malloc() and free(), but you
403           can replace the pointers so that your own functions are used.
404    
405           Separate functions are  provided  rather  than  using  pcre_malloc  and
406           pcre_free  because  the  usage  is  very  predictable:  the block sizes
407           requested are always the same, and  the  blocks  are  always  freed  in
408           reverse  order.  A calling program might be able to implement optimized
409           functions that perform better  than  malloc()  and  free().  PCRE  runs
410           noticeably more slowly when built in this way. This option affects only
411           the  pcre_exec()  function;  it   is   not   relevant   for   the   the
412           pcre_dfa_exec() function.
413    
414    
415    LIMITING PCRE RESOURCE USAGE
416    
417           Internally,  PCRE has a function called match(), which it calls repeat-
418           edly  (sometimes  recursively)  when  matching  a  pattern   with   the
419           pcre_exec()  function.  By controlling the maximum number of times this
420           function may be called during a single matching operation, a limit  can
421           be  placed  on  the resources used by a single call to pcre_exec(). The
422           limit can be changed at run time, as described in the pcreapi  documen-
423           tation.  The default is 10 million, but this can be changed by adding a
424           setting such as
425    
426             --with-match-limit=500000
427    
428           to  the  configure  command.  This  setting  has  no  effect   on   the
429           pcre_dfa_exec() matching function.
430    
431           In  some  environments  it is desirable to limit the depth of recursive
432           calls of match() more strictly than the total number of calls, in order
433           to  restrict  the maximum amount of stack (or heap, if --disable-stack-
434           for-recursion is specified) that is used. A second limit controls this;
435           it  defaults  to  the  value  that is set for --with-match-limit, which
436           imposes no additional constraints. However, you can set a  lower  limit
437           by adding, for example,
438    
439             --with-match-limit-recursion=10000
440    
441           to  the  configure  command.  This  value can also be overridden at run
442           time.
443    
444    
445    CREATING CHARACTER TABLES AT BUILD TIME
446    
447           PCRE uses fixed tables for processing characters whose code values  are
448           less  than 256. By default, PCRE is built with a set of tables that are
449           distributed in the file pcre_chartables.c.dist. These  tables  are  for
450           ASCII codes only. If you add
451    
452             --enable-rebuild-chartables
453    
454           to  the  configure  command, the distributed tables are no longer used.
455           Instead, a program called dftables is compiled and  run.  This  outputs
456           the source for new set of tables, created in the default locale of your
457           C runtime system. (This method of replacing the tables does not work if
458           you  are cross compiling, because dftables is run on the local host. If
459           you need to create alternative tables when cross  compiling,  you  will
460           have to do so "by hand".)
461    
462    
463    USING EBCDIC CODE
464    
465           PCRE  assumes  by  default that it will run in an environment where the
466           character code is ASCII (or Unicode, which is  a  superset  of  ASCII).
467           This  is  the  case for most computer operating systems. PCRE can, how-
468           ever, be compiled to run in an EBCDIC environment by adding
469    
470             --enable-ebcdic
471    
472           to the configure command. This setting implies --enable-rebuild-charta-
473           bles.  You  should  only  use  it if you know that you are in an EBCDIC
474           environment (for example, an IBM mainframe operating system).
475    
476    
477    SEE ALSO
478    
479           pcreapi(3), pcre_config(3).
480    
481    
482    AUTHOR
483    
484           Philip Hazel
485           University Computing Service
486           Cambridge CB2 3QH, England.
487    
488    
489    REVISION
490    
491           Last updated: 30 July 2007
492           Copyright (c) 1997-2007 University of Cambridge.
493    ------------------------------------------------------------------------------
494    
495    
496    PCREMATCHING(3)                                                PCREMATCHING(3)
497    
498    
499    NAME
500           PCRE - Perl-compatible regular expressions
501    
502    
503    PCRE MATCHING ALGORITHMS
504    
505           This document describes the two different algorithms that are available
506           in PCRE for matching a compiled regular expression against a given sub-
507           ject  string.  The  "standard"  algorithm  is  the  one provided by the
508           pcre_exec() function.  This works in the same was  as  Perl's  matching
509           function, and provides a Perl-compatible matching operation.
510    
511           An  alternative  algorithm is provided by the pcre_dfa_exec() function;
512           this operates in a different way, and is not  Perl-compatible.  It  has
513           advantages  and disadvantages compared with the standard algorithm, and
514           these are described below.
515    
516           When there is only one possible way in which a given subject string can
517           match  a pattern, the two algorithms give the same answer. A difference
518           arises, however, when there are multiple possibilities. For example, if
519           the pattern
520    
521             ^<.*>
522    
523           is matched against the string
524    
525             <something> <something else> <something further>
526    
527           there are three possible answers. The standard algorithm finds only one
528           of them, whereas the alternative algorithm finds all three.
529    
530    
531    REGULAR EXPRESSIONS AS TREES
532    
533           The set of strings that are matched by a regular expression can be rep-
534           resented  as  a  tree structure. An unlimited repetition in the pattern
535           makes the tree of infinite size, but it is still a tree.  Matching  the
536           pattern  to a given subject string (from a given starting point) can be
537           thought of as a search of the tree.  There are two  ways  to  search  a
538           tree:  depth-first  and  breadth-first, and these correspond to the two
539           matching algorithms provided by PCRE.
540    
541    
542    THE STANDARD MATCHING ALGORITHM
543    
544           In the terminology of Jeffrey Friedl's book "Mastering Regular  Expres-
545           sions",  the  standard  algorithm  is an "NFA algorithm". It conducts a
546           depth-first search of the pattern tree. That is, it  proceeds  along  a
547           single path through the tree, checking that the subject matches what is
548           required. When there is a mismatch, the algorithm  tries  any  alterna-
549           tives  at  the  current point, and if they all fail, it backs up to the
550           previous branch point in the  tree,  and  tries  the  next  alternative
551           branch  at  that  level.  This often involves backing up (moving to the
552           left) in the subject string as well.  The  order  in  which  repetition
553           branches  are  tried  is controlled by the greedy or ungreedy nature of
554           the quantifier.
555    
556           If a leaf node is reached, a matching string has  been  found,  and  at
557           that  point the algorithm stops. Thus, if there is more than one possi-
558           ble match, this algorithm returns the first one that it finds.  Whether
559           this  is the shortest, the longest, or some intermediate length depends
560           on the way the greedy and ungreedy repetition quantifiers are specified
561           in the pattern.
562    
563           Because  it  ends  up  with a single path through the tree, it is rela-
564           tively straightforward for this algorithm to keep  track  of  the  sub-
565           strings  that  are  matched  by portions of the pattern in parentheses.
566           This provides support for capturing parentheses and back references.
567    
568    
569    THE ALTERNATIVE MATCHING ALGORITHM
570    
571           This algorithm conducts a breadth-first search of  the  tree.  Starting
572           from  the  first  matching  point  in the subject, it scans the subject
573           string from left to right, once, character by character, and as it does
574           this,  it remembers all the paths through the tree that represent valid
575           matches. In Friedl's terminology, this is a kind  of  "DFA  algorithm",
576           though  it is not implemented as a traditional finite state machine (it
577           keeps multiple states active simultaneously).
578    
579           The scan continues until either the end of the subject is  reached,  or
580           there  are  no more unterminated paths. At this point, terminated paths
581           represent the different matching possibilities (if there are none,  the
582           match  has  failed).   Thus,  if there is more than one possible match,
583           this algorithm finds all of them, and in particular, it finds the long-
584           est.  In PCRE, there is an option to stop the algorithm after the first
585           match (which is necessarily the shortest) has been found.
586    
587           Note that all the matches that are found start at the same point in the
588           subject. If the pattern
589    
590             cat(er(pillar)?)
591    
592           is  matched  against the string "the caterpillar catchment", the result
593           will be the three strings "cat", "cater", and "caterpillar" that  start
594           at the fourth character of the subject. The algorithm does not automat-
595           ically move on to find matches that start at later positions.
596    
597           There are a number of features of PCRE regular expressions that are not
598           supported by the alternative matching algorithm. They are as follows:
599    
600           1.  Because  the  algorithm  finds  all possible matches, the greedy or
601           ungreedy nature of repetition quantifiers is not relevant.  Greedy  and
602           ungreedy quantifiers are treated in exactly the same way. However, pos-
603           sessive quantifiers can make a difference when what follows could  also
604           match what is quantified, for example in a pattern like this:
605    
606             ^a++\w!
607    
608           This  pattern matches "aaab!" but not "aaa!", which would be matched by
609           a non-possessive quantifier. Similarly, if an atomic group is  present,
610           it  is matched as if it were a standalone pattern at the current point,
611           and the longest match is then "locked in" for the rest of  the  overall
612           pattern.
613    
614           2. When dealing with multiple paths through the tree simultaneously, it
615           is not straightforward to keep track of  captured  substrings  for  the
616           different  matching  possibilities,  and  PCRE's implementation of this
617           algorithm does not attempt to do this. This means that no captured sub-
618           strings are available.
619    
620           3.  Because no substrings are captured, back references within the pat-
621           tern are not supported, and cause errors if encountered.
622    
623           4. For the same reason, conditional expressions that use  a  backrefer-
624           ence  as  the  condition or test for a specific group recursion are not
625           supported.
626    
627           5. Because many paths through the tree may be  active,  the  \K  escape
628           sequence, which resets the start of the match when encountered (but may
629           be on some paths and not on others), is not  supported.  It  causes  an
630           error if encountered.
631    
632           6.  Callouts  are  supported, but the value of the capture_top field is
633           always 1, and the value of the capture_last field is always -1.
634    
635       below).  The  current  implementation  corresponds  to  Perl         7.  The \C escape sequence, which (in the standard algorithm) matches a
636       5.005, with some additional features  from  later  versions.         single  byte, even in UTF-8 mode, is not supported because the alterna-
637       This  includes  some  experimental,  incomplete  support for         tive algorithm moves through the subject  string  one  character  at  a
638       UTF-8 encoded strings. Details of exactly what is  and  what         time, for all active paths through the tree.
      is not supported are given below.  
639    
      PCRE has its own native API,  which  is  described  in  this  
      document.  There  is  also  a  set of wrapper functions that  
      correspond to the POSIX regular expression API.   These  are  
      described in the pcreposix documentation.  
640    
641       The native API function prototypes are defined in the header  ADVANTAGES OF THE ALTERNATIVE ALGORITHM
      file  pcre.h,  and  on  Unix  systems  the library itself is  
      called libpcre.a, so can be accessed by adding -lpcre to the  
      command  for  linking  an  application  which  calls it. The  
      header file defines the macros PCRE_MAJOR and PCRE_MINOR  to  
      contain the major and minor release numbers for the library.  
      Applications can use these to include support for  different  
      releases.  
642    
643       The functions pcre_compile(), pcre_study(), and  pcre_exec()         Using  the alternative matching algorithm provides the following advan-
644       are used for compiling and matching regular expressions.         tages:
645    
646       The functions  pcre_copy_substring(),  pcre_get_substring(),         1. All possible matches (at a single point in the subject) are automat-
647       and  pcre_get_substring_list() are convenience functions for         ically  found,  and  in particular, the longest match is found. To find
648       extracting  captured  substrings  from  a  matched   subject         more than one match using the standard algorithm, you have to do kludgy
649       string; pcre_free_substring() and pcre_free_substring_list()         things with callouts.
      are also provided, to free the  memory  used  for  extracted  
      strings.  
650    
651       The function pcre_maketables() is used (optionally) to build         2.  There is much better support for partial matching. The restrictions
652       a  set of character tables in the current locale for passing         on the content of the pattern that apply when using the standard  algo-
653       to pcre_compile().         rithm  for  partial matching do not apply to the alternative algorithm.
654           For non-anchored patterns, the starting position of a partial match  is
655           available.
656    
657       The function pcre_fullinfo() is used to find out information         3.  Because  the  alternative  algorithm  scans the subject string just
658       about a compiled pattern; pcre_info() is an obsolete version         once, and never needs to backtrack, it is possible to  pass  very  long
659       which returns only some of the available information, but is         subject  strings  to  the matching function in several pieces, checking
660       retained   for   backwards   compatibility.    The  function         for partial matching each time.
      pcre_version() returns a pointer to a string containing  the  
      version of PCRE and its date of release.  
661    
      The global variables  pcre_malloc  and  pcre_free  initially  
      contain the entry points of the standard malloc() and free()  
      functions respectively. PCRE  calls  the  memory  management  
      functions  via  these  variables,  so  a calling program can  
      replace them if it  wishes  to  intercept  the  calls.  This  
      should be done before calling any PCRE functions.  
662    
663    DISADVANTAGES OF THE ALTERNATIVE ALGORITHM
664    
665           The alternative algorithm suffers from a number of disadvantages:
666    
667  MULTI-THREADING         1. It is substantially slower than  the  standard  algorithm.  This  is
668       The  PCRE  functions  can   be   used   in   multi-threading         partly  because  it has to search for all possible matches, but is also
669           because it is less susceptible to optimization.
670    
671           2. Capturing parentheses and back references are not supported.
672    
673           3. Although atomic groups are supported, their use does not provide the
674           performance advantage that it does for the standard algorithm.
675    
676    
677    AUTHOR
678    
679           Philip Hazel
680           University Computing Service
681           Cambridge CB2 3QH, England.
682    
683    
684    REVISION
685    
686           Last updated: 29 May 2007
687           Copyright (c) 1997-2007 University of Cambridge.
688    ------------------------------------------------------------------------------
689    
690    
691    PCREAPI(3)                                                          PCREAPI(3)
692    
693    
694    NAME
695           PCRE - Perl-compatible regular expressions
696    
697    
698    PCRE NATIVE API
699    
700           #include <pcre.h>
701    
702           pcre *pcre_compile(const char *pattern, int options,
703                const char **errptr, int *erroffset,
704                const unsigned char *tableptr);
705    
706           pcre *pcre_compile2(const char *pattern, int options,
707                int *errorcodeptr,
708                const char **errptr, int *erroffset,
709                const unsigned char *tableptr);
710    
711           pcre_extra *pcre_study(const pcre *code, int options,
712                const char **errptr);
713    
714           int pcre_exec(const pcre *code, const pcre_extra *extra,
715                const char *subject, int length, int startoffset,
716                int options, int *ovector, int ovecsize);
717    
718           int pcre_dfa_exec(const pcre *code, const pcre_extra *extra,
719                const char *subject, int length, int startoffset,
720                int options, int *ovector, int ovecsize,
721                int *workspace, int wscount);
722    
723           int pcre_copy_named_substring(const pcre *code,
724                const char *subject, int *ovector,
725                int stringcount, const char *stringname,
726                char *buffer, int buffersize);
727    
728           int pcre_copy_substring(const char *subject, int *ovector,
729                int stringcount, int stringnumber, char *buffer,
730                int buffersize);
731    
732           int pcre_get_named_substring(const pcre *code,
733                const char *subject, int *ovector,
734                int stringcount, const char *stringname,
735                const char **stringptr);
736    
737           int pcre_get_stringnumber(const pcre *code,
738                const char *name);
739    
740           int pcre_get_stringtable_entries(const pcre *code,
741                const char *name, char **first, char **last);
742    
743           int pcre_get_substring(const char *subject, int *ovector,
744                int stringcount, int stringnumber,
745                const char **stringptr);
746    
747           int pcre_get_substring_list(const char *subject,
748                int *ovector, int stringcount, const char ***listptr);
749    
750           void pcre_free_substring(const char *stringptr);
751    
752           void pcre_free_substring_list(const char **stringptr);
753    
754           const unsigned char *pcre_maketables(void);
755    
756           int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
757                int what, void *where);
758    
759           int pcre_info(const pcre *code, int *optptr, int *firstcharptr);
760    
761           int pcre_refcount(pcre *code, int adjust);
762    
763           int pcre_config(int what, void *where);
764    
765           char *pcre_version(void);
766    
767           void *(*pcre_malloc)(size_t);
768    
769           void (*pcre_free)(void *);
770    
771           void *(*pcre_stack_malloc)(size_t);
772    
773           void (*pcre_stack_free)(void *);
774    
775           int (*pcre_callout)(pcre_callout_block *);
776    
777    
778    PCRE API OVERVIEW
779    
780           PCRE has its own native API, which is described in this document. There
781           are also some wrapper functions that correspond to  the  POSIX  regular
782           expression  API.  These  are  described in the pcreposix documentation.
783           Both of these APIs define a set of C function calls. A C++  wrapper  is
784           distributed with PCRE. It is documented in the pcrecpp page.
785    
786           The  native  API  C  function prototypes are defined in the header file
787           pcre.h, and on Unix systems the library itself is called  libpcre.   It
788           can normally be accessed by adding -lpcre to the command for linking an
789           application  that  uses  PCRE.  The  header  file  defines  the  macros
790           PCRE_MAJOR  and  PCRE_MINOR to contain the major and minor release num-
791           bers for the library.  Applications can use these  to  include  support
792           for different releases of PCRE.
793    
794           The   functions   pcre_compile(),  pcre_compile2(),  pcre_study(),  and
795           pcre_exec() are used for compiling and matching regular expressions  in
796           a  Perl-compatible  manner. A sample program that demonstrates the sim-
797           plest way of using them is provided in the file  called  pcredemo.c  in
798           the  source distribution. The pcresample documentation describes how to
799           run it.
800    
801           A second matching function, pcre_dfa_exec(), which is not Perl-compati-
802           ble,  is  also provided. This uses a different algorithm for the match-
803           ing. The alternative algorithm finds all possible matches (at  a  given
804           point  in  the subject), and scans the subject just once. However, this
805           algorithm does not return captured substrings. A description of the two
806           matching  algorithms and their advantages and disadvantages is given in
807           the pcrematching documentation.
808    
809           In addition to the main compiling and  matching  functions,  there  are
810           convenience functions for extracting captured substrings from a subject
811           string that is matched by pcre_exec(). They are:
812    
813             pcre_copy_substring()
814             pcre_copy_named_substring()
815             pcre_get_substring()
816             pcre_get_named_substring()
817             pcre_get_substring_list()
818             pcre_get_stringnumber()
819             pcre_get_stringtable_entries()
820    
821           pcre_free_substring() and pcre_free_substring_list() are also provided,
822           to free the memory used for extracted strings.
823    
824           The  function  pcre_maketables()  is  used  to build a set of character
825           tables  in  the  current  locale   for   passing   to   pcre_compile(),
826           pcre_exec(),  or  pcre_dfa_exec(). This is an optional facility that is
827           provided for specialist use.  Most  commonly,  no  special  tables  are
828           passed,  in  which case internal tables that are generated when PCRE is
829           built are used.
830    
831           The function pcre_fullinfo() is used to find out  information  about  a
832           compiled  pattern; pcre_info() is an obsolete version that returns only
833           some of the available information, but is retained for  backwards  com-
834           patibility.   The function pcre_version() returns a pointer to a string
835           containing the version of PCRE and its date of release.
836    
837           The function pcre_refcount() maintains a  reference  count  in  a  data
838           block  containing  a compiled pattern. This is provided for the benefit
839           of object-oriented applications.
840    
841           The global variables pcre_malloc and pcre_free  initially  contain  the
842           entry  points  of  the  standard malloc() and free() functions, respec-
843           tively. PCRE calls the memory management functions via these variables,
844           so  a  calling  program  can replace them if it wishes to intercept the
845           calls. This should be done before calling any PCRE functions.
846    
847           The global variables pcre_stack_malloc  and  pcre_stack_free  are  also
848           indirections  to  memory  management functions. These special functions
849           are used only when PCRE is compiled to use  the  heap  for  remembering
850           data, instead of recursive function calls, when running the pcre_exec()
851           function. See the pcrebuild documentation for  details  of  how  to  do
852           this.  It  is  a non-standard way of building PCRE, for use in environ-
853           ments that have limited stacks. Because of the greater  use  of  memory
854           management,  it  runs  more  slowly. Separate functions are provided so
855           that special-purpose external code can be  used  for  this  case.  When
856           used,  these  functions  are always called in a stack-like manner (last
857           obtained, first freed), and always for memory blocks of the same  size.
858           There  is  a discussion about PCRE's stack usage in the pcrestack docu-
859           mentation.
860    
861           The global variable pcre_callout initially contains NULL. It can be set
862           by  the  caller  to  a "callout" function, which PCRE will then call at
863           specified points during a matching operation. Details are given in  the
864           pcrecallout documentation.
865    
866    
867    NEWLINES
868    
869           PCRE  supports five different conventions for indicating line breaks in
870           strings: a single CR (carriage return) character, a  single  LF  (line-
871           feed) character, the two-character sequence CRLF, any of the three pre-
872           ceding, or any Unicode newline sequence. The Unicode newline  sequences
873           are  the  three just mentioned, plus the single characters VT (vertical
874           tab, U+000B), FF (formfeed, U+000C), NEL (next line, U+0085), LS  (line
875           separator, U+2028), and PS (paragraph separator, U+2029).
876    
877           Each  of  the first three conventions is used by at least one operating
878           system as its standard newline sequence. When PCRE is built, a  default
879           can  be  specified.  The default default is LF, which is the Unix stan-
880           dard. When PCRE is run, the default can be overridden,  either  when  a
881           pattern is compiled, or when it is matched.
882    
883           In the PCRE documentation the word "newline" is used to mean "the char-
884           acter or pair of characters that indicate a line break". The choice  of
885           newline  convention  affects  the  handling of the dot, circumflex, and
886           dollar metacharacters, the handling of #-comments in /x mode, and, when
887           CRLF  is a recognized line ending sequence, the match position advance-
888           ment for a non-anchored pattern. The choice of newline convention  does
889           not affect the interpretation of the \n or \r escape sequences.
890    
891    
892    MULTITHREADING
893    
894           The  PCRE  functions  can be used in multi-threading applications, with
895           the  proviso  that  the  memory  management  functions  pointed  to  by
896           pcre_malloc, pcre_free, pcre_stack_malloc, and pcre_stack_free, and the
897           callout function pointed to by pcre_callout, are shared by all threads.
898    
899           The  compiled form of a regular expression is not altered during match-
900           ing, so the same compiled pattern can safely be used by several threads
901           at once.
902    
903    
904    SAVING PRECOMPILED PATTERNS FOR LATER USE
905    
906  SunOS 5.8                 Last change:                          2         The compiled form of a regular expression can be saved and re-used at a
907           later time, possibly by a different program, and even on a  host  other
908           than  the  one  on  which  it  was  compiled.  Details are given in the
909           pcreprecompile documentation. However, compiling a  regular  expression
910           with  one version of PCRE for use with a different version is not guar-
911           anteed to work and may cause crashes.
912    
913    
914    CHECKING BUILD-TIME OPTIONS
915    
916       applications,  with  the  proviso that the memory management         int pcre_config(int what, void *where);
      functions pointed to by pcre_malloc and pcre_free are shared  
      by all threads.  
917    
918       The compiled form of a regular  expression  is  not  altered         The function pcre_config() makes it possible for a PCRE client to  dis-
919       during  matching, so the same compiled pattern can safely be         cover which optional features have been compiled into the PCRE library.
920       used by several threads at once.         The pcrebuild documentation has more details about these optional  fea-
921           tures.
922    
923           The  first  argument  for pcre_config() is an integer, specifying which
924           information is required; the second argument is a pointer to a variable
925           into  which  the  information  is  placed. The following information is
926           available:
927    
928             PCRE_CONFIG_UTF8
929    
930           The output is an integer that is set to one if UTF-8 support is  avail-
931           able; otherwise it is set to zero.
932    
933             PCRE_CONFIG_UNICODE_PROPERTIES
934    
935           The  output  is  an  integer  that is set to one if support for Unicode
936           character properties is available; otherwise it is set to zero.
937    
938             PCRE_CONFIG_NEWLINE
939    
940           The output is an integer whose value specifies  the  default  character
941           sequence  that is recognized as meaning "newline". The four values that
942           are supported are: 10 for LF, 13 for CR, 3338 for CRLF, -2 for ANYCRLF,
943           and  -1  for  ANY. The default should normally be the standard sequence
944           for your operating system.
945    
946             PCRE_CONFIG_LINK_SIZE
947    
948           The output is an integer that contains the number  of  bytes  used  for
949           internal linkage in compiled regular expressions. The value is 2, 3, or
950           4. Larger values allow larger regular expressions to  be  compiled,  at
951           the  expense  of  slower matching. The default value of 2 is sufficient
952           for all but the most massive patterns, since  it  allows  the  compiled
953           pattern to be up to 64K in size.
954    
955             PCRE_CONFIG_POSIX_MALLOC_THRESHOLD
956    
957           The  output  is  an integer that contains the threshold above which the
958           POSIX interface uses malloc() for output vectors. Further  details  are
959           given in the pcreposix documentation.
960    
961             PCRE_CONFIG_MATCH_LIMIT
962    
963           The output is an integer that gives the default limit for the number of
964           internal matching function calls in a  pcre_exec()  execution.  Further
965           details are given with pcre_exec() below.
966    
967             PCRE_CONFIG_MATCH_LIMIT_RECURSION
968    
969           The  output is an integer that gives the default limit for the depth of
970           recursion when calling the internal matching function in a  pcre_exec()
971           execution. Further details are given with pcre_exec() below.
972    
973             PCRE_CONFIG_STACKRECURSE
974    
975           The  output is an integer that is set to one if internal recursion when
976           running pcre_exec() is implemented by recursive function calls that use
977           the  stack  to remember their state. This is the usual way that PCRE is
978           compiled. The output is zero if PCRE was compiled to use blocks of data
979           on  the  heap  instead  of  recursive  function  calls.  In  this case,
980           pcre_stack_malloc and  pcre_stack_free  are  called  to  manage  memory
981           blocks on the heap, thus avoiding the use of the stack.
982    
983    
984  COMPILING A PATTERN  COMPILING A PATTERN
      The function pcre_compile() is called to compile  a  pattern  
      into  an internal form. The pattern is a C string terminated  
      by a binary zero, and is passed in the argument  pattern.  A  
      pointer  to  a  single  block of memory that is obtained via  
      pcre_malloc is returned. This contains the compiled code and  
      related data. The pcre type is defined for this for conveni-  
      ence, but in fact pcre is just a typedef for void, since the  
      contents  of  the block are not externally defined. It is up  
      to the caller to free  the  memory  when  it  is  no  longer  
      required.  
   
      The size of a compiled pattern is  roughly  proportional  to  
      the length of the pattern string, except that each character  
      class (other than those containing just a single  character,  
      negated  or  not)  requires 33 bytes, and repeat quantifiers  
      with a minimum greater than one or a bounded  maximum  cause  
      the  relevant  portions of the compiled pattern to be repli-  
      cated.  
   
      The options argument contains independent bits  that  affect  
      the  compilation.  It  should  be  zero  if  no  options are  
      required. Some of the options, in particular, those that are  
      compatible  with Perl, can also be set and unset from within  
      the pattern (see the detailed description of regular expres-  
      sions below). For these options, the contents of the options  
      argument specifies their initial settings at  the  start  of  
      compilation  and  execution. The PCRE_ANCHORED option can be  
      set at the time of matching as well as at compile time.  
   
      If errptr is NULL, pcre_compile() returns NULL  immediately.  
      Otherwise, if compilation of a pattern fails, pcre_compile()  
      returns NULL, and sets the variable pointed to by errptr  to  
      point  to a textual error message. The offset from the start  
      of  the  pattern  to  the  character  where  the  error  was  
      discovered   is   placed  in  the  variable  pointed  to  by  
      erroffset, which must not be NULL. If it  is,  an  immediate  
      error is given.  
   
      If the final  argument,  tableptr,  is  NULL,  PCRE  uses  a  
      default  set  of character tables which are built when it is  
      compiled, using the default C  locale.  Otherwise,  tableptr  
      must  be  the result of a call to pcre_maketables(). See the  
      section on locale support below.  
   
      The following option bits are defined in the header file:  
   
        PCRE_ANCHORED  
   
      If this bit is set, the pattern is forced to be  "anchored",  
      that is, it is constrained to match only at the start of the  
      string which is being searched (the "subject string").  This  
      effect can also be achieved by appropriate constructs in the  
      pattern itself, which is the only way to do it in Perl.  
   
        PCRE_CASELESS  
   
      If this bit is set, letters in the pattern match both  upper  
      and  lower  case  letters.  It  is  equivalent  to Perl's /i  
      option.  
   
        PCRE_DOLLAR_ENDONLY  
   
      If this bit is set, a dollar metacharacter  in  the  pattern  
      matches  only at the end of the subject string. Without this  
      option, a dollar also matches immediately before  the  final  
      character  if it is a newline (but not before any other new-  
      lines).  The  PCRE_DOLLAR_ENDONLY  option  is   ignored   if  
      PCRE_MULTILINE is set. There is no equivalent to this option  
      in Perl.  
   
        PCRE_DOTALL  
   
      If this bit is  set,  a  dot  metacharater  in  the  pattern  
      matches all characters, including newlines. Without it, new-  
      lines are excluded. This option is equivalent to  Perl's  /s  
      option.  A negative class such as [^a] always matches a new-  
      line character, independent of the setting of this option.  
   
        PCRE_EXTENDED  
   
      If this bit is set, whitespace data characters in  the  pat-  
      tern  are  totally  ignored  except when escaped or inside a  
      character class, and characters between an unescaped #  out-  
      side  a  character  class  and  the  next newline character,  
      inclusive, are also ignored. This is equivalent to Perl's /x  
      option,  and  makes  it  possible to include comments inside  
      complicated patterns. Note, however, that this applies  only  
      to  data  characters. Whitespace characters may never appear  
      within special character sequences in a pattern, for example  
      within  the sequence (?( which introduces a conditional sub-  
      pattern.  
   
        PCRE_EXTRA  
   
      This option was invented in  order  to  turn  on  additional  
      functionality of PCRE that is incompatible with Perl, but it  
      is currently of very little use. When set, any backslash  in  
      a  pattern  that is followed by a letter that has no special  
      meaning causes an error, thus reserving  these  combinations  
      for  future  expansion.  By default, as in Perl, a backslash  
      followed by a letter with no special meaning is treated as a  
      literal.  There  are at present no other features controlled  
      by this option. It can also be set by a (?X) option  setting  
      within a pattern.  
   
        PCRE_MULTILINE  
   
      By default, PCRE treats the subject string as consisting  of  
      a  single "line" of characters (even if it actually contains  
      several newlines). The "start  of  line"  metacharacter  (^)  
      matches  only  at the start of the string, while the "end of  
      line" metacharacter ($) matches  only  at  the  end  of  the  
      string,    or   before   a   terminating   newline   (unless  
      PCRE_DOLLAR_ENDONLY is set). This is the same as Perl.  
   
      When PCRE_MULTILINE it is set, the "start of line" and  "end  
      of  line"  constructs match immediately following or immedi-  
      ately before any newline  in  the  subject  string,  respec-  
      tively,  as  well  as  at  the  very  start and end. This is  
      equivalent to Perl's /m option. If there are no "\n" charac-  
      ters  in  a subject string, or no occurrences of ^ or $ in a  
      pattern, setting PCRE_MULTILINE has no effect.  
   
        PCRE_UNGREEDY  
   
      This option inverts the "greediness" of the  quantifiers  so  
      that  they  are  not greedy by default, but become greedy if  
      followed by "?". It is not compatible with Perl. It can also  
      be set by a (?U) option setting within the pattern.  
   
        PCRE_UTF8  
   
      This option causes PCRE to regard both the pattern  and  the  
      subject  as strings of UTF-8 characters instead of just byte  
      strings. However, it is available  only  if  PCRE  has  been  
      built  to  include  UTF-8  support.  If not, the use of this  
      option provokes an error. Support for UTF-8 is new,  experi-  
      mental,  and incomplete.  Details of exactly what it entails  
      are given below.  
985    
986           pcre *pcre_compile(const char *pattern, int options,
987                const char **errptr, int *erroffset,
988                const unsigned char *tableptr);
989    
990           pcre *pcre_compile2(const char *pattern, int options,
991                int *errorcodeptr,
992                const char **errptr, int *erroffset,
993                const unsigned char *tableptr);
994    
995           Either of the functions pcre_compile() or pcre_compile2() can be called
996           to compile a pattern into an internal form. The only difference between
997           the  two interfaces is that pcre_compile2() has an additional argument,
998           errorcodeptr, via which a numerical error code can be returned.
999    
1000           The pattern is a C string terminated by a binary zero, and is passed in
1001           the  pattern  argument.  A  pointer to a single block of memory that is
1002           obtained via pcre_malloc is returned. This contains the  compiled  code
1003           and related data. The pcre type is defined for the returned block; this
1004           is a typedef for a structure whose contents are not externally defined.
1005           It is up to the caller to free the memory (via pcre_free) when it is no
1006           longer required.
1007    
1008           Although the compiled code of a PCRE regex is relocatable, that is,  it
1009           does not depend on memory location, the complete pcre data block is not
1010           fully relocatable, because it may contain a copy of the tableptr  argu-
1011           ment, which is an address (see below).
1012    
1013           The options argument contains various bit settings that affect the com-
1014           pilation. It should be zero if no options are required.  The  available
1015           options  are  described  below. Some of them, in particular, those that
1016           are compatible with Perl, can also be set and  unset  from  within  the
1017           pattern  (see  the  detailed  description in the pcrepattern documenta-
1018           tion). For these options, the contents of the options  argument  speci-
1019           fies  their initial settings at the start of compilation and execution.
1020           The PCRE_ANCHORED and PCRE_NEWLINE_xxx options can be set at  the  time
1021           of matching as well as at compile time.
1022    
1023           If errptr is NULL, pcre_compile() returns NULL immediately.  Otherwise,
1024           if compilation of a pattern fails,  pcre_compile()  returns  NULL,  and
1025           sets the variable pointed to by errptr to point to a textual error mes-
1026           sage. This is a static string that is part of the library. You must not
1027           try to free it. The offset from the start of the pattern to the charac-
1028           ter where the error was discovered is placed in the variable pointed to
1029           by  erroffset,  which must not be NULL. If it is, an immediate error is
1030           given.
1031    
1032           If pcre_compile2() is used instead of pcre_compile(),  and  the  error-
1033           codeptr  argument is not NULL, a non-zero error code number is returned
1034           via this argument in the event of an error. This is in addition to  the
1035           textual error message. Error codes and messages are listed below.
1036    
1037           If  the  final  argument, tableptr, is NULL, PCRE uses a default set of
1038           character tables that are  built  when  PCRE  is  compiled,  using  the
1039           default  C  locale.  Otherwise, tableptr must be an address that is the
1040           result of a call to pcre_maketables(). This value is  stored  with  the
1041           compiled  pattern,  and used again by pcre_exec(), unless another table
1042           pointer is passed to it. For more discussion, see the section on locale
1043           support below.
1044    
1045           This  code  fragment  shows a typical straightforward call to pcre_com-
1046           pile():
1047    
1048             pcre *re;
1049             const char *error;
1050             int erroffset;
1051             re = pcre_compile(
1052               "^A.*Z",          /* the pattern */
1053               0,                /* default options */
1054               &error,           /* for error message */
1055               &erroffset,       /* for error offset */
1056               NULL);            /* use default character tables */
1057    
1058           The following names for option bits are defined in  the  pcre.h  header
1059           file:
1060    
1061             PCRE_ANCHORED
1062    
1063           If this bit is set, the pattern is forced to be "anchored", that is, it
1064           is constrained to match only at the first matching point in the  string
1065           that  is being searched (the "subject string"). This effect can also be
1066           achieved by appropriate constructs in the pattern itself, which is  the
1067           only way to do it in Perl.
1068    
1069             PCRE_AUTO_CALLOUT
1070    
1071           If this bit is set, pcre_compile() automatically inserts callout items,
1072           all with number 255, before each pattern item. For  discussion  of  the
1073           callout facility, see the pcrecallout documentation.
1074    
1075             PCRE_CASELESS
1076    
1077           If  this  bit is set, letters in the pattern match both upper and lower
1078           case letters. It is equivalent to Perl's  /i  option,  and  it  can  be
1079           changed  within a pattern by a (?i) option setting. In UTF-8 mode, PCRE
1080           always understands the concept of case for characters whose values  are
1081           less  than 128, so caseless matching is always possible. For characters
1082           with higher values, the concept of case is supported if  PCRE  is  com-
1083           piled  with Unicode property support, but not otherwise. If you want to
1084           use caseless matching for characters 128 and  above,  you  must  ensure
1085           that  PCRE  is  compiled  with Unicode property support as well as with
1086           UTF-8 support.
1087    
1088             PCRE_DOLLAR_ENDONLY
1089    
1090           If this bit is set, a dollar metacharacter in the pattern matches  only
1091           at  the  end  of the subject string. Without this option, a dollar also
1092           matches immediately before a newline at the end of the string (but  not
1093           before  any  other newlines). The PCRE_DOLLAR_ENDONLY option is ignored
1094           if PCRE_MULTILINE is set.  There is no equivalent  to  this  option  in
1095           Perl, and no way to set it within a pattern.
1096    
1097             PCRE_DOTALL
1098    
1099           If this bit is set, a dot metacharater in the pattern matches all char-
1100           acters, including those that indicate newline. Without it, a  dot  does
1101           not  match  when  the  current position is at a newline. This option is
1102           equivalent to Perl's /s option, and it can be changed within a  pattern
1103           by  a (?s) option setting. A negative class such as [^a] always matches
1104           newline characters, independent of the setting of this option.
1105    
1106             PCRE_DUPNAMES
1107    
1108           If this bit is set, names used to identify capturing  subpatterns  need
1109           not be unique. This can be helpful for certain types of pattern when it
1110           is known that only one instance of the named  subpattern  can  ever  be
1111           matched.  There  are  more details of named subpatterns below; see also
1112           the pcrepattern documentation.
1113    
1114             PCRE_EXTENDED
1115    
1116           If this bit is set, whitespace  data  characters  in  the  pattern  are
1117           totally ignored except when escaped or inside a character class. White-
1118           space does not include the VT character (code 11). In addition, charac-
1119           ters between an unescaped # outside a character class and the next new-
1120           line, inclusive, are also ignored. This  is  equivalent  to  Perl's  /x
1121           option,  and  it  can be changed within a pattern by a (?x) option set-
1122           ting.
1123    
1124           This option makes it possible to include  comments  inside  complicated
1125           patterns.   Note,  however,  that this applies only to data characters.
1126           Whitespace  characters  may  never  appear  within  special   character
1127           sequences  in  a  pattern,  for  example  within the sequence (?( which
1128           introduces a conditional subpattern.
1129    
1130             PCRE_EXTRA
1131    
1132           This option was invented in order to turn on  additional  functionality
1133           of  PCRE  that  is  incompatible with Perl, but it is currently of very
1134           little use. When set, any backslash in a pattern that is followed by  a
1135           letter  that  has  no  special  meaning causes an error, thus reserving
1136           these combinations for future expansion. By  default,  as  in  Perl,  a
1137           backslash  followed by a letter with no special meaning is treated as a
1138           literal. (Perl can, however, be persuaded to give a warning for  this.)
1139           There  are  at  present no other features controlled by this option. It
1140           can also be set by a (?X) option setting within a pattern.
1141    
1142             PCRE_FIRSTLINE
1143    
1144           If this option is set, an  unanchored  pattern  is  required  to  match
1145           before  or  at  the  first  newline  in  the subject string, though the
1146           matched text may continue over the newline.
1147    
1148             PCRE_MULTILINE
1149    
1150           By default, PCRE treats the subject string as consisting  of  a  single
1151           line  of characters (even if it actually contains newlines). The "start
1152           of line" metacharacter (^) matches only at the  start  of  the  string,
1153           while  the  "end  of line" metacharacter ($) matches only at the end of
1154           the string, or before a terminating newline (unless PCRE_DOLLAR_ENDONLY
1155           is set). This is the same as Perl.
1156    
1157           When  PCRE_MULTILINE  it  is set, the "start of line" and "end of line"
1158           constructs match immediately following or immediately  before  internal
1159           newlines  in  the  subject string, respectively, as well as at the very
1160           start and end. This is equivalent to Perl's /m option, and  it  can  be
1161           changed within a pattern by a (?m) option setting. If there are no new-
1162           lines in a subject string, or no occurrences of ^ or $  in  a  pattern,
1163           setting PCRE_MULTILINE has no effect.
1164    
1165             PCRE_NEWLINE_CR
1166             PCRE_NEWLINE_LF
1167             PCRE_NEWLINE_CRLF
1168             PCRE_NEWLINE_ANYCRLF
1169             PCRE_NEWLINE_ANY
1170    
1171           These  options  override the default newline definition that was chosen
1172           when PCRE was built. Setting the first or the second specifies  that  a
1173           newline  is  indicated  by a single character (CR or LF, respectively).
1174           Setting PCRE_NEWLINE_CRLF specifies that a newline is indicated by  the
1175           two-character  CRLF  sequence.  Setting  PCRE_NEWLINE_ANYCRLF specifies
1176           that any of the three preceding sequences should be recognized. Setting
1177           PCRE_NEWLINE_ANY  specifies that any Unicode newline sequence should be
1178           recognized. The Unicode newline sequences are the three just mentioned,
1179           plus  the  single  characters  VT (vertical tab, U+000B), FF (formfeed,
1180           U+000C), NEL (next line, U+0085), LS (line separator, U+2028),  and  PS
1181           (paragraph  separator,  U+2029).  The  last  two are recognized only in
1182           UTF-8 mode.
1183    
1184           The newline setting in the  options  word  uses  three  bits  that  are
1185           treated as a number, giving eight possibilities. Currently only six are
1186           used (default plus the five values above). This means that if  you  set
1187           more  than one newline option, the combination may or may not be sensi-
1188           ble. For example, PCRE_NEWLINE_CR with PCRE_NEWLINE_LF is equivalent to
1189           PCRE_NEWLINE_CRLF,  but other combinations may yield unused numbers and
1190           cause an error.
1191    
1192           The only time that a line break is specially recognized when  compiling
1193           a  pattern  is  if  PCRE_EXTENDED  is set, and an unescaped # outside a
1194           character class is encountered. This indicates  a  comment  that  lasts
1195           until  after the next line break sequence. In other circumstances, line
1196           break  sequences  are  treated  as  literal  data,   except   that   in
1197           PCRE_EXTENDED mode, both CR and LF are treated as whitespace characters
1198           and are therefore ignored.
1199    
1200           The newline option that is set at compile time becomes the default that
1201           is  used for pcre_exec() and pcre_dfa_exec(), but it can be overridden.
1202    
1203             PCRE_NO_AUTO_CAPTURE
1204    
1205           If this option is set, it disables the use of numbered capturing paren-
1206           theses  in the pattern. Any opening parenthesis that is not followed by
1207           ? behaves as if it were followed by ?: but named parentheses can  still
1208           be  used  for  capturing  (and  they acquire numbers in the usual way).
1209           There is no equivalent of this option in Perl.
1210    
1211             PCRE_UNGREEDY
1212    
1213           This option inverts the "greediness" of the quantifiers  so  that  they
1214           are  not greedy by default, but become greedy if followed by "?". It is
1215           not compatible with Perl. It can also be set by a (?U)  option  setting
1216           within the pattern.
1217    
1218             PCRE_UTF8
1219    
1220           This  option  causes PCRE to regard both the pattern and the subject as
1221           strings of UTF-8 characters instead of single-byte  character  strings.
1222           However,  it is available only when PCRE is built to include UTF-8 sup-
1223           port. If not, the use of this option provokes an error. Details of  how
1224           this  option  changes the behaviour of PCRE are given in the section on
1225           UTF-8 support in the main pcre page.
1226    
1227             PCRE_NO_UTF8_CHECK
1228    
1229           When PCRE_UTF8 is set, the validity of the pattern as a UTF-8 string is
1230           automatically  checked. If an invalid UTF-8 sequence of bytes is found,
1231           pcre_compile() returns an error. If you already know that your  pattern
1232           is  valid, and you want to skip this check for performance reasons, you
1233           can set the PCRE_NO_UTF8_CHECK option. When it is set,  the  effect  of
1234           passing an invalid UTF-8 string as a pattern is undefined. It may cause
1235           your program to crash.  Note that this option can  also  be  passed  to
1236           pcre_exec()  and pcre_dfa_exec(), to suppress the UTF-8 validity check-
1237           ing of subject strings.
1238    
1239    
1240    COMPILATION ERROR CODES
1241    
1242           The following table lists the error  codes  than  may  be  returned  by
1243           pcre_compile2(),  along with the error messages that may be returned by
1244           both compiling functions. As PCRE has developed, some error codes  have
1245           fallen out of use. To avoid confusion, they have not been re-used.
1246    
1247              0  no error
1248              1  \ at end of pattern
1249              2  \c at end of pattern
1250              3  unrecognized character follows \
1251              4  numbers out of order in {} quantifier
1252              5  number too big in {} quantifier
1253              6  missing terminating ] for character class
1254              7  invalid escape sequence in character class
1255              8  range out of order in character class
1256              9  nothing to repeat
1257             10  [this code is not in use]
1258             11  internal error: unexpected repeat
1259             12  unrecognized character after (?
1260             13  POSIX named classes are supported only within a class
1261             14  missing )
1262             15  reference to non-existent subpattern
1263             16  erroffset passed as NULL
1264             17  unknown option bit(s) set
1265             18  missing ) after comment
1266             19  [this code is not in use]
1267             20  regular expression too large
1268             21  failed to get memory
1269             22  unmatched parentheses
1270             23  internal error: code overflow
1271             24  unrecognized character after (?<
1272             25  lookbehind assertion is not fixed length
1273             26  malformed number or name after (?(
1274             27  conditional group contains more than two branches
1275             28  assertion expected after (?(
1276             29  (?R or (?[+-]digits must be followed by )
1277             30  unknown POSIX class name
1278             31  POSIX collating elements are not supported
1279             32  this version of PCRE is not compiled with PCRE_UTF8 support
1280             33  [this code is not in use]
1281             34  character value in \x{...} sequence is too large
1282             35  invalid condition (?(0)
1283             36  \C not allowed in lookbehind assertion
1284             37  PCRE does not support \L, \l, \N, \U, or \u
1285             38  number after (?C is > 255
1286             39  closing ) for (?C expected
1287             40  recursive call could loop indefinitely
1288             41  unrecognized character after (?P
1289             42  syntax error in subpattern name (missing terminator)
1290             43  two named subpatterns have the same name
1291             44  invalid UTF-8 string
1292             45  support for \P, \p, and \X has not been compiled
1293             46  malformed \P or \p sequence
1294             47  unknown property name after \P or \p
1295             48  subpattern name is too long (maximum 32 characters)
1296             49  too many named subpatterns (maximum 10,000)
1297             50  [this code is not in use]
1298             51  octal value is greater than \377 (not in UTF-8 mode)
1299             52  internal error: overran compiling workspace
1300             53   internal  error:  previously-checked  referenced  subpattern not
1301           found
1302             54  DEFINE group contains more than one branch
1303             55  repeating a DEFINE group is not allowed
1304             56  inconsistent NEWLINE options"
1305             57  \g is not followed by a braced name or an optionally braced
1306                   non-zero number
1307             58  (?+ or (?- or (?(+ or (?(- must be followed by a non-zero number
1308    
1309    
1310  STUDYING A PATTERN  STUDYING A PATTERN
      When a pattern is going to be  used  several  times,  it  is  
      worth  spending  more time analyzing it in order to speed up  
      the time taken for matching. The function pcre_study() takes  
   
      a  pointer  to a compiled pattern as its first argument, and  
      returns a  pointer  to  a  pcre_extra  block  (another  void  
      typedef)  containing  additional  information about the pat-  
      tern; this can be passed to pcre_exec().  If  no  additional  
      information is available, NULL is returned.  
   
      The second argument contains option  bits.  At  present,  no  
      options  are  defined  for  pcre_study(),  and this argument  
      should always be zero.  
   
      The third argument for pcre_study() is a pointer to an error  
      message. If studying succeeds (even if no data is returned),  
      the variable it points to  is  set  to  NULL.  Otherwise  it  
      points to a textual error message.  
   
      At present, studying a  pattern  is  useful  only  for  non-  
      anchored  patterns  that do not have a single fixed starting  
      character. A  bitmap  of  possible  starting  characters  is  
      created.  
1311    
1312           pcre_extra *pcre_study(const pcre *code, int options
1313                const char **errptr);
1314    
1315           If a compiled pattern is going to be used several times,  it  is  worth
1316           spending more time analyzing it in order to speed up the time taken for
1317           matching. The function pcre_study() takes a pointer to a compiled  pat-
1318           tern as its first argument. If studying the pattern produces additional
1319           information that will help speed up matching,  pcre_study()  returns  a
1320           pointer  to a pcre_extra block, in which the study_data field points to
1321           the results of the study.
1322    
1323           The  returned  value  from  pcre_study()  can  be  passed  directly  to
1324           pcre_exec().  However,  a  pcre_extra  block also contains other fields
1325           that can be set by the caller before the block  is  passed;  these  are
1326           described below in the section on matching a pattern.
1327    
1328           If  studying  the  pattern  does not produce any additional information
1329           pcre_study() returns NULL. In that circumstance, if the calling program
1330           wants  to  pass  any of the other fields to pcre_exec(), it must set up
1331           its own pcre_extra block.
1332    
1333           The second argument of pcre_study() contains option bits.  At  present,
1334           no options are defined, and this argument should always be zero.
1335    
1336           The  third argument for pcre_study() is a pointer for an error message.
1337           If studying succeeds (even if no data is  returned),  the  variable  it
1338           points  to  is  set  to NULL. Otherwise it is set to point to a textual
1339           error message. This is a static string that is part of the library. You
1340           must  not  try  to  free it. You should test the error pointer for NULL
1341           after calling pcre_study(), to be sure that it has run successfully.
1342    
1343           This is a typical call to pcre_study():
1344    
1345             pcre_extra *pe;
1346             pe = pcre_study(
1347               re,             /* result of pcre_compile() */
1348               0,              /* no options exist */
1349               &error);        /* set to NULL or points to a message */
1350    
1351           At present, studying a pattern is useful only for non-anchored patterns
1352           that  do not have a single fixed starting character. A bitmap of possi-
1353           ble starting bytes is created.
1354    
1355    
1356  LOCALE SUPPORT  LOCALE SUPPORT
      PCRE handles caseless matching, and determines whether char-  
      acters  are  letters, digits, or whatever, by reference to a  
      set of tables. The library contains a default set of  tables  
      which  is  created in the default C locale when PCRE is com-  
      piled.  This  is   used   when   the   final   argument   of  
      pcre_compile()  is NULL, and is sufficient for many applica-  
      tions.  
   
      An alternative set of tables can, however, be supplied. Such  
      tables  are built by calling the pcre_maketables() function,  
      which has no arguments, in the relevant locale.  The  result  
      can  then be passed to pcre_compile() as often as necessary.  
      For example, to build and use tables  that  are  appropriate  
      for  the French locale (where accented characters with codes  
      greater than 128 are treated as letters), the following code  
      could be used:  
   
        setlocale(LC_CTYPE, "fr");  
        tables = pcre_maketables();  
        re = pcre_compile(..., tables);  
   
      The  tables  are  built  in  memory  that  is  obtained  via  
      pcre_malloc.  The  pointer that is passed to pcre_compile is  
      saved with the compiled pattern, and  the  same  tables  are  
      used  via this pointer by pcre_study() and pcre_exec(). Thus  
      for any single pattern, compilation, studying  and  matching  
      all happen in the same locale, but different patterns can be  
      compiled in different locales. It is the caller's  responsi-  
      bility  to  ensure  that  the  memory  containing the tables  
      remains available for as long as it is needed.  
1357    
1358           PCRE handles caseless matching, and determines whether  characters  are
1359           letters,  digits, or whatever, by reference to a set of tables, indexed
1360           by character value. When running in UTF-8 mode, this  applies  only  to
1361           characters  with  codes  less than 128. Higher-valued codes never match
1362           escapes such as \w or \d, but can be tested with \p if  PCRE  is  built
1363           with  Unicode  character property support. The use of locales with Uni-
1364           code is discouraged. If you are handling characters with codes  greater
1365           than  128, you should either use UTF-8 and Unicode, or use locales, but
1366           not try to mix the two.
1367    
1368           PCRE contains an internal set of tables that are used  when  the  final
1369           argument  of  pcre_compile()  is  NULL.  These  are sufficient for many
1370           applications.  Normally, the internal tables recognize only ASCII char-
1371           acters. However, when PCRE is built, it is possible to cause the inter-
1372           nal tables to be rebuilt in the default "C" locale of the local system,
1373           which may cause them to be different.
1374    
1375           The  internal tables can always be overridden by tables supplied by the
1376           application that calls PCRE. These may be created in a different locale
1377           from  the  default.  As more and more applications change to using Uni-
1378           code, the need for this locale support is expected to die away.
1379    
1380           External tables are built by calling  the  pcre_maketables()  function,
1381           which  has no arguments, in the relevant locale. The result can then be
1382           passed to pcre_compile() or pcre_exec()  as  often  as  necessary.  For
1383           example,  to  build  and use tables that are appropriate for the French
1384           locale (where accented characters with  values  greater  than  128  are
1385           treated as letters), the following code could be used:
1386    
1387             setlocale(LC_CTYPE, "fr_FR");
1388             tables = pcre_maketables();
1389             re = pcre_compile(..., tables);
1390    
1391           The  locale  name "fr_FR" is used on Linux and other Unix-like systems;
1392           if you are using Windows, the name for the French locale is "french".
1393    
1394           When pcre_maketables() runs, the tables are built  in  memory  that  is
1395           obtained  via  pcre_malloc. It is the caller's responsibility to ensure
1396           that the memory containing the tables remains available for as long  as
1397           it is needed.
1398    
1399           The pointer that is passed to pcre_compile() is saved with the compiled
1400           pattern, and the same tables are used via this pointer by  pcre_study()
1401           and normally also by pcre_exec(). Thus, by default, for any single pat-
1402           tern, compilation, studying and matching all happen in the same locale,
1403           but different patterns can be compiled in different locales.
1404    
1405           It  is  possible to pass a table pointer or NULL (indicating the use of
1406           the internal tables) to pcre_exec(). Although  not  intended  for  this
1407           purpose,  this facility could be used to match a pattern in a different
1408           locale from the one in which it was compiled. Passing table pointers at
1409           run time is discussed below in the section on matching a pattern.
1410    
1411    
1412  INFORMATION ABOUT A PATTERN  INFORMATION ABOUT A PATTERN
      The pcre_fullinfo() function  returns  information  about  a  
      compiled pattern. It replaces the obsolete pcre_info() func-  
      tion, which is nevertheless retained for backwards compabil-  
      ity (and is documented below).  
   
      The first argument for pcre_fullinfo() is a pointer  to  the  
      compiled  pattern.  The  second  argument  is  the result of  
      pcre_study(), or NULL if the pattern was  not  studied.  The  
      third  argument  specifies  which  piece  of  information is  
      required, while the fourth argument is a pointer to a  vari-  
      able  to receive the data. The yield of the function is zero  
      for success, or one of the following negative numbers:  
   
        PCRE_ERROR_NULL       the argument code was NULL  
                              the argument where was NULL  
        PCRE_ERROR_BADMAGIC   the "magic number" was not found  
        PCRE_ERROR_BADOPTION  the value of what was invalid  
   
      The possible values for the third argument  are  defined  in  
      pcre.h, and are as follows:  
   
        PCRE_INFO_OPTIONS  
   
      Return a copy of the options with which the pattern was com-  
      piled.  The fourth argument should point to au unsigned long  
      int variable. These option bits are those specified  in  the  
      call  to  pcre_compile(),  modified  by any top-level option  
      settings  within  the   pattern   itself,   and   with   the  
      PCRE_ANCHORED  bit  forcibly  set if the form of the pattern  
      implies that it can match only at the  start  of  a  subject  
      string.  
   
        PCRE_INFO_SIZE  
   
      Return the size of the compiled pattern, that is, the  value  
      that  was  passed as the argument to pcre_malloc() when PCRE  
      was getting memory in which to place the compiled data.  The  
      fourth argument should point to a size_t variable.  
   
        PCRE_INFO_CAPTURECOUNT  
   
      Return the number of capturing subpatterns in  the  pattern.  
      The fourth argument should point to an int variable.  
   
        PCRE_INFO_BACKREFMAX  
   
      Return the number of  the  highest  back  reference  in  the  
      pattern.  The  fourth  argument should point to an int vari-  
      able. Zero is returned if there are no back references.  
   
        PCRE_INFO_FIRSTCHAR  
   
      Return information about the first character of any  matched  
      string,  for  a  non-anchored  pattern.  If there is a fixed  
      first   character,   e.g.   from   a   pattern    such    as  
      (cat|cow|coyote),  it  is returned in the integer pointed to  
      by where. Otherwise, if either  
   
      (a) the pattern was compiled with the PCRE_MULTILINE option,  
      and every branch starts with "^", or  
   
      (b) every  branch  of  the  pattern  starts  with  ".*"  and  
      PCRE_DOTALL is not set (if it were set, the pattern would be  
      anchored),  
   
      -1 is returned, indicating that the pattern matches only  at  
      the  start  of a subject string or after any "\n" within the  
      string. Otherwise -2 is returned.  For anchored patterns, -2  
      is returned.  
   
        PCRE_INFO_FIRSTTABLE  
   
      If the pattern was studied, and this resulted  in  the  con-  
      struction of a 256-bit table indicating a fixed set of char-  
      acters for the first character in  any  matching  string,  a  
      pointer   to  the  table  is  returned.  Otherwise  NULL  is  
      returned. The fourth argument should point  to  an  unsigned  
      char * variable.  
   
        PCRE_INFO_LASTLITERAL  
   
      For a non-anchored pattern, return the value of  the  right-  
      most  literal  character  which  must  exist  in any matched  
      string, other than at its start. The fourth argument  should  
      point  to an int variable. If there is no such character, or  
      if the pattern is anchored, -1 is returned. For example, for  
      the pattern /a\d+z\d+/ the returned value is 'z'.  
   
      The pcre_info() function is now obsolete because its  inter-  
      face  is  too  restrictive  to return all the available data  
      about  a  compiled  pattern.   New   programs   should   use  
      pcre_fullinfo()  instead.  The  yield  of pcre_info() is the  
      number of capturing subpatterns, or  one  of  the  following  
      negative numbers:  
   
        PCRE_ERROR_NULL       the argument code was NULL  
        PCRE_ERROR_BADMAGIC   the "magic number" was not found  
   
      If the optptr argument is not NULL, a copy  of  the  options  
      with which the pattern was compiled is placed in the integer  
      it points to (see PCRE_INFO_OPTIONS above).  
   
      If the pattern is not anchored and the firstcharptr argument  
      is  not  NULL, it is used to pass back information about the  
      first    character    of    any    matched    string    (see  
      PCRE_INFO_FIRSTCHAR above).  
1413    
1414           int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
1415                int what, void *where);
1416    
1417           The  pcre_fullinfo() function returns information about a compiled pat-
1418           tern. It replaces the obsolete pcre_info() function, which is neverthe-
1419           less retained for backwards compability (and is documented below).
1420    
1421           The  first  argument  for  pcre_fullinfo() is a pointer to the compiled
1422           pattern. The second argument is the result of pcre_study(), or NULL  if
1423           the  pattern  was not studied. The third argument specifies which piece
1424           of information is required, and the fourth argument is a pointer  to  a
1425           variable  to  receive  the  data. The yield of the function is zero for
1426           success, or one of the following negative numbers:
1427    
1428             PCRE_ERROR_NULL       the argument code was NULL
1429                                   the argument where was NULL
1430             PCRE_ERROR_BADMAGIC   the "magic number" was not found
1431             PCRE_ERROR_BADOPTION  the value of what was invalid
1432    
1433           The "magic number" is placed at the start of each compiled  pattern  as
1434           an  simple check against passing an arbitrary memory pointer. Here is a
1435           typical call of pcre_fullinfo(), to obtain the length of  the  compiled
1436           pattern:
1437    
1438             int rc;
1439             size_t length;
1440             rc = pcre_fullinfo(
1441               re,               /* result of pcre_compile() */
1442               pe,               /* result of pcre_study(), or NULL */
1443               PCRE_INFO_SIZE,   /* what is required */
1444               &length);         /* where to put the data */
1445    
1446           The  possible  values for the third argument are defined in pcre.h, and
1447           are as follows:
1448    
1449             PCRE_INFO_BACKREFMAX
1450    
1451           Return the number of the highest back reference  in  the  pattern.  The
1452           fourth  argument  should  point to an int variable. Zero is returned if
1453           there are no back references.
1454    
1455             PCRE_INFO_CAPTURECOUNT
1456    
1457           Return the number of capturing subpatterns in the pattern.  The  fourth
1458           argument should point to an int variable.
1459    
1460             PCRE_INFO_DEFAULT_TABLES
1461    
1462           Return  a pointer to the internal default character tables within PCRE.
1463           The fourth argument should point to an unsigned char *  variable.  This
1464           information call is provided for internal use by the pcre_study() func-
1465           tion. External callers can cause PCRE to use  its  internal  tables  by
1466           passing a NULL table pointer.
1467    
1468             PCRE_INFO_FIRSTBYTE
1469    
1470           Return  information  about  the first byte of any matched string, for a
1471           non-anchored pattern. The fourth argument should point to an int  vari-
1472           able.  (This option used to be called PCRE_INFO_FIRSTCHAR; the old name
1473           is still recognized for backwards compatibility.)
1474    
1475           If there is a fixed first byte, for example, from  a  pattern  such  as
1476           (cat|cow|coyote), its value is returned. Otherwise, if either
1477    
1478           (a)  the pattern was compiled with the PCRE_MULTILINE option, and every
1479           branch starts with "^", or
1480    
1481           (b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not
1482           set (if it were set, the pattern would be anchored),
1483    
1484           -1  is  returned, indicating that the pattern matches only at the start
1485           of a subject string or after any newline within the  string.  Otherwise
1486           -2 is returned. For anchored patterns, -2 is returned.
1487    
1488             PCRE_INFO_FIRSTTABLE
1489    
1490           If  the pattern was studied, and this resulted in the construction of a
1491           256-bit table indicating a fixed set of bytes for the first byte in any
1492           matching  string, a pointer to the table is returned. Otherwise NULL is
1493           returned. The fourth argument should point to an unsigned char *  vari-
1494           able.
1495    
1496             PCRE_INFO_JCHANGED
1497    
1498           Return  1  if the (?J) option setting is used in the pattern, otherwise
1499           0. The fourth argument should point to an int variable. The (?J) inter-
1500           nal option setting changes the local PCRE_DUPNAMES option.
1501    
1502             PCRE_INFO_LASTLITERAL
1503    
1504           Return  the  value of the rightmost literal byte that must exist in any
1505           matched string, other than at its  start,  if  such  a  byte  has  been
1506           recorded. The fourth argument should point to an int variable. If there
1507           is no such byte, -1 is returned. For anchored patterns, a last  literal
1508           byte  is  recorded only if it follows something of variable length. For
1509           example, for the pattern /^a\d+z\d+/ the returned value is "z", but for
1510           /^a\dz\d/ the returned value is -1.
1511    
1512             PCRE_INFO_NAMECOUNT
1513             PCRE_INFO_NAMEENTRYSIZE
1514             PCRE_INFO_NAMETABLE
1515    
1516           PCRE  supports the use of named as well as numbered capturing parenthe-
1517           ses. The names are just an additional way of identifying the  parenthe-
1518           ses, which still acquire numbers. Several convenience functions such as
1519           pcre_get_named_substring() are provided for  extracting  captured  sub-
1520           strings  by  name. It is also possible to extract the data directly, by
1521           first converting the name to a number in order to  access  the  correct
1522           pointers in the output vector (described with pcre_exec() below). To do
1523           the conversion, you need  to  use  the  name-to-number  map,  which  is
1524           described by these three values.
1525    
1526           The map consists of a number of fixed-size entries. PCRE_INFO_NAMECOUNT
1527           gives the number of entries, and PCRE_INFO_NAMEENTRYSIZE gives the size
1528           of  each  entry;  both  of  these  return  an int value. The entry size
1529           depends on the length of the longest name. PCRE_INFO_NAMETABLE  returns
1530           a  pointer  to  the  first  entry of the table (a pointer to char). The
1531           first two bytes of each entry are the number of the capturing parenthe-
1532           sis,  most  significant byte first. The rest of the entry is the corre-
1533           sponding name, zero terminated. The names are  in  alphabetical  order.
1534           When PCRE_DUPNAMES is set, duplicate names are in order of their paren-
1535           theses numbers. For example, consider  the  following  pattern  (assume
1536           PCRE_EXTENDED  is  set,  so  white  space  -  including  newlines  - is
1537           ignored):
1538    
1539             (?<date> (?<year>(\d\d)?\d\d) -
1540             (?<month>\d\d) - (?<day>\d\d) )
1541    
1542           There are four named subpatterns, so the table has  four  entries,  and
1543           each  entry  in the table is eight bytes long. The table is as follows,
1544           with non-printing bytes shows in hexadecimal, and undefined bytes shown
1545           as ??:
1546    
1547             00 01 d  a  t  e  00 ??
1548             00 05 d  a  y  00 ?? ??
1549             00 04 m  o  n  t  h  00
1550             00 02 y  e  a  r  00 ??
1551    
1552           When  writing  code  to  extract  data from named subpatterns using the
1553           name-to-number map, remember that the length of the entries  is  likely
1554           to be different for each compiled pattern.
1555    
1556             PCRE_INFO_OKPARTIAL
1557    
1558           Return  1 if the pattern can be used for partial matching, otherwise 0.
1559           The fourth argument should point to an int  variable.  The  pcrepartial
1560           documentation  lists  the restrictions that apply to patterns when par-
1561           tial matching is used.
1562    
1563             PCRE_INFO_OPTIONS
1564    
1565           Return a copy of the options with which the pattern was  compiled.  The
1566           fourth  argument  should  point to an unsigned long int variable. These
1567           option bits are those specified in the call to pcre_compile(), modified
1568           by any top-level option settings at the start of the pattern itself. In
1569           other words, they are the options that will be in force  when  matching
1570           starts.  For  example, if the pattern /(?im)abc(?-i)d/ is compiled with
1571           the PCRE_EXTENDED option, the result is PCRE_CASELESS,  PCRE_MULTILINE,
1572           and PCRE_EXTENDED.
1573    
1574           A  pattern  is  automatically  anchored by PCRE if all of its top-level
1575           alternatives begin with one of the following:
1576    
1577             ^     unless PCRE_MULTILINE is set
1578             \A    always
1579             \G    always
1580             .*    if PCRE_DOTALL is set and there are no back
1581                     references to the subpattern in which .* appears
1582    
1583           For such patterns, the PCRE_ANCHORED bit is set in the options returned
1584           by pcre_fullinfo().
1585    
1586             PCRE_INFO_SIZE
1587    
1588           Return  the  size  of the compiled pattern, that is, the value that was
1589           passed as the argument to pcre_malloc() when PCRE was getting memory in
1590           which to place the compiled data. The fourth argument should point to a
1591           size_t variable.
1592    
1593             PCRE_INFO_STUDYSIZE
1594    
1595           Return the size of the data block pointed to by the study_data field in
1596           a  pcre_extra  block.  That  is,  it  is  the  value that was passed to
1597           pcre_malloc() when PCRE was getting memory into which to place the data
1598           created  by  pcre_study(). The fourth argument should point to a size_t
1599           variable.
1600    
1601    
1602    OBSOLETE INFO FUNCTION
1603    
1604           int pcre_info(const pcre *code, int *optptr, int *firstcharptr);
1605    
1606           The pcre_info() function is now obsolete because its interface  is  too
1607           restrictive  to return all the available data about a compiled pattern.
1608           New  programs  should  use  pcre_fullinfo()  instead.  The   yield   of
1609           pcre_info()  is the number of capturing subpatterns, or one of the fol-
1610           lowing negative numbers:
1611    
1612             PCRE_ERROR_NULL       the argument code was NULL
1613             PCRE_ERROR_BADMAGIC   the "magic number" was not found
1614    
1615           If the optptr argument is not NULL, a copy of the  options  with  which
1616           the  pattern  was  compiled  is placed in the integer it points to (see
1617           PCRE_INFO_OPTIONS above).
1618    
1619           If the pattern is not anchored and the  firstcharptr  argument  is  not
1620           NULL,  it is used to pass back information about the first character of
1621           any matched string (see PCRE_INFO_FIRSTBYTE above).
1622    
1623    
1624    REFERENCE COUNTS
1625    
1626           int pcre_refcount(pcre *code, int adjust);
1627    
1628           The pcre_refcount() function is used to maintain a reference  count  in
1629           the data block that contains a compiled pattern. It is provided for the
1630           benefit of applications that  operate  in  an  object-oriented  manner,
1631           where different parts of the application may be using the same compiled
1632           pattern, but you want to free the block when they are all done.
1633    
1634           When a pattern is compiled, the reference count field is initialized to
1635           zero.   It is changed only by calling this function, whose action is to
1636           add the adjust value (which may be positive or  negative)  to  it.  The
1637           yield of the function is the new value. However, the value of the count
1638           is constrained to lie between 0 and 65535, inclusive. If the new  value
1639           is outside these limits, it is forced to the appropriate limit value.
1640    
1641           Except  when it is zero, the reference count is not correctly preserved
1642           if a pattern is compiled on one host and then  transferred  to  a  host
1643           whose byte-order is different. (This seems a highly unlikely scenario.)
1644    
1645    
1646    MATCHING A PATTERN: THE TRADITIONAL FUNCTION
1647    
1648           int pcre_exec(const pcre *code, const pcre_extra *extra,
1649                const char *subject, int length, int startoffset,
1650                int options, int *ovector, int ovecsize);
1651    
1652           The function pcre_exec() is called to match a subject string against  a
1653           compiled  pattern, which is passed in the code argument. If the pattern
1654           has been studied, the result of the study should be passed in the extra
1655           argument.  This  function is the main matching facility of the library,
1656           and it operates in a Perl-like manner. For specialist use there is also
1657           an  alternative matching function, which is described below in the sec-
1658           tion about the pcre_dfa_exec() function.
1659    
1660           In most applications, the pattern will have been compiled (and  option-
1661           ally  studied)  in the same process that calls pcre_exec(). However, it
1662           is possible to save compiled patterns and study data, and then use them
1663           later  in  different processes, possibly even on different hosts. For a
1664           discussion about this, see the pcreprecompile documentation.
1665    
1666           Here is an example of a simple call to pcre_exec():
1667    
1668             int rc;
1669             int ovector[30];
1670             rc = pcre_exec(
1671               re,             /* result of pcre_compile() */
1672               NULL,           /* we didn't study the pattern */
1673               "some string",  /* the subject string */
1674               11,             /* the length of the subject string */
1675               0,              /* start at offset 0 in the subject */
1676               0,              /* default options */
1677               ovector,        /* vector of integers for substring information */
1678               30);            /* number of elements (NOT size in bytes) */
1679    
1680       Extra data for pcre_exec()
1681    
1682           If the extra argument is not NULL, it must point to a  pcre_extra  data
1683           block.  The pcre_study() function returns such a block (when it doesn't
1684           return NULL), but you can also create one for yourself, and pass  addi-
1685           tional  information  in it. The pcre_extra block contains the following
1686           fields (not necessarily in this order):
1687    
1688             unsigned long int flags;
1689             void *study_data;
1690             unsigned long int match_limit;
1691             unsigned long int match_limit_recursion;
1692             void *callout_data;
1693             const unsigned char *tables;
1694    
1695           The flags field is a bitmap that specifies which of  the  other  fields
1696           are set. The flag bits are:
1697    
1698             PCRE_EXTRA_STUDY_DATA
1699             PCRE_EXTRA_MATCH_LIMIT
1700             PCRE_EXTRA_MATCH_LIMIT_RECURSION
1701             PCRE_EXTRA_CALLOUT_DATA
1702             PCRE_EXTRA_TABLES
1703    
1704           Other  flag  bits should be set to zero. The study_data field is set in
1705           the pcre_extra block that is returned by  pcre_study(),  together  with
1706           the appropriate flag bit. You should not set this yourself, but you may
1707           add to the block by setting the other fields  and  their  corresponding
1708           flag bits.
1709    
1710           The match_limit field provides a means of preventing PCRE from using up
1711           a vast amount of resources when running patterns that are not going  to
1712           match,  but  which  have  a very large number of possibilities in their
1713           search trees. The classic  example  is  the  use  of  nested  unlimited
1714           repeats.
1715    
1716           Internally,  PCRE uses a function called match() which it calls repeat-
1717           edly (sometimes recursively). The limit set by match_limit  is  imposed
1718           on  the  number  of times this function is called during a match, which
1719           has the effect of limiting the amount of  backtracking  that  can  take
1720           place. For patterns that are not anchored, the count restarts from zero
1721           for each position in the subject string.
1722    
1723           The default value for the limit can be set  when  PCRE  is  built;  the
1724           default  default  is 10 million, which handles all but the most extreme
1725           cases. You can override the default  by  suppling  pcre_exec()  with  a
1726           pcre_extra     block    in    which    match_limit    is    set,    and
1727           PCRE_EXTRA_MATCH_LIMIT is set in the  flags  field.  If  the  limit  is
1728           exceeded, pcre_exec() returns PCRE_ERROR_MATCHLIMIT.
1729    
1730           The  match_limit_recursion field is similar to match_limit, but instead
1731           of limiting the total number of times that match() is called, it limits
1732           the  depth  of  recursion. The recursion depth is a smaller number than
1733           the total number of calls, because not all calls to match() are  recur-
1734           sive.  This limit is of use only if it is set smaller than match_limit.
1735    
1736           Limiting the recursion depth limits the amount of  stack  that  can  be
1737           used, or, when PCRE has been compiled to use memory on the heap instead
1738           of the stack, the amount of heap memory that can be used.
1739    
1740           The default value for match_limit_recursion can be  set  when  PCRE  is
1741           built;  the  default  default  is  the  same  value  as the default for
1742           match_limit. You can override the default by suppling pcre_exec()  with
1743           a   pcre_extra   block  in  which  match_limit_recursion  is  set,  and
1744           PCRE_EXTRA_MATCH_LIMIT_RECURSION is set in  the  flags  field.  If  the
1745           limit is exceeded, pcre_exec() returns PCRE_ERROR_RECURSIONLIMIT.
1746    
1747           The  pcre_callout  field is used in conjunction with the "callout" fea-
1748           ture, which is described in the pcrecallout documentation.
1749    
1750           The tables field  is  used  to  pass  a  character  tables  pointer  to
1751           pcre_exec();  this overrides the value that is stored with the compiled
1752           pattern. A non-NULL value is stored with the compiled pattern  only  if
1753           custom  tables  were  supplied to pcre_compile() via its tableptr argu-
1754           ment.  If NULL is passed to pcre_exec() using this mechanism, it forces
1755           PCRE's  internal  tables  to be used. This facility is helpful when re-
1756           using patterns that have been saved after compiling  with  an  external
1757           set  of  tables,  because  the  external tables might be at a different
1758           address when pcre_exec() is called. See the  pcreprecompile  documenta-
1759           tion for a discussion of saving compiled patterns for later use.
1760    
1761       Option bits for pcre_exec()
1762    
1763           The  unused  bits of the options argument for pcre_exec() must be zero.
1764           The only bits that may  be  set  are  PCRE_ANCHORED,  PCRE_NEWLINE_xxx,
1765           PCRE_NOTBOL,   PCRE_NOTEOL,   PCRE_NOTEMPTY,   PCRE_NO_UTF8_CHECK   and
1766           PCRE_PARTIAL.
1767    
1768             PCRE_ANCHORED
1769    
1770           The PCRE_ANCHORED option limits pcre_exec() to matching  at  the  first
1771           matching  position.  If  a  pattern was compiled with PCRE_ANCHORED, or
1772           turned out to be anchored by virtue of its contents, it cannot be  made
1773           unachored at matching time.
1774    
1775             PCRE_NEWLINE_CR
1776             PCRE_NEWLINE_LF
1777             PCRE_NEWLINE_CRLF
1778             PCRE_NEWLINE_ANYCRLF
1779             PCRE_NEWLINE_ANY
1780    
1781           These  options  override  the  newline  definition  that  was chosen or
1782           defaulted when the pattern was compiled. For details, see the  descrip-
1783           tion  of  pcre_compile()  above.  During  matching,  the newline choice
1784           affects the behaviour of the dot, circumflex,  and  dollar  metacharac-
1785           ters.  It may also alter the way the match position is advanced after a
1786           match  failure  for  an  unanchored  pattern.  When  PCRE_NEWLINE_CRLF,
1787           PCRE_NEWLINE_ANYCRLF,  or  PCRE_NEWLINE_ANY is set, and a match attempt
1788           fails when the current position is at a CRLF sequence, the match  posi-
1789           tion  is  advanced by two characters instead of one, in other words, to
1790           after the CRLF.
1791    
1792             PCRE_NOTBOL
1793    
1794           This option specifies that first character of the subject string is not
1795           the  beginning  of  a  line, so the circumflex metacharacter should not
1796           match before it. Setting this without PCRE_MULTILINE (at compile  time)
1797           causes  circumflex  never to match. This option affects only the behav-
1798           iour of the circumflex metacharacter. It does not affect \A.
1799    
1800             PCRE_NOTEOL
1801    
1802           This option specifies that the end of the subject string is not the end
1803           of  a line, so the dollar metacharacter should not match it nor (except
1804           in multiline mode) a newline immediately before it. Setting this  with-
1805           out PCRE_MULTILINE (at compile time) causes dollar never to match. This
1806           option affects only the behaviour of the dollar metacharacter. It  does
1807           not affect \Z or \z.
1808    
1809             PCRE_NOTEMPTY
1810    
1811           An empty string is not considered to be a valid match if this option is
1812           set. If there are alternatives in the pattern, they are tried.  If  all
1813           the  alternatives  match  the empty string, the entire match fails. For
1814           example, if the pattern
1815    
1816             a?b?
1817    
1818           is applied to a string not beginning with "a" or "b",  it  matches  the
1819           empty  string at the start of the subject. With PCRE_NOTEMPTY set, this
1820           match is not valid, so PCRE searches further into the string for occur-
1821           rences of "a" or "b".
1822    
1823           Perl has no direct equivalent of PCRE_NOTEMPTY, but it does make a spe-
1824           cial case of a pattern match of the empty  string  within  its  split()
1825           function,  and  when  using  the /g modifier. It is possible to emulate
1826           Perl's behaviour after matching a null string by first trying the match
1827           again at the same offset with PCRE_NOTEMPTY and PCRE_ANCHORED, and then
1828           if that fails by advancing the starting offset (see below)  and  trying
1829           an ordinary match again. There is some code that demonstrates how to do
1830           this in the pcredemo.c sample program.
1831    
1832             PCRE_NO_UTF8_CHECK
1833    
1834           When PCRE_UTF8 is set at compile time, the validity of the subject as a
1835           UTF-8  string is automatically checked when pcre_exec() is subsequently
1836           called.  The value of startoffset is also checked  to  ensure  that  it
1837           points  to the start of a UTF-8 character. If an invalid UTF-8 sequence
1838           of bytes is found, pcre_exec() returns the error PCRE_ERROR_BADUTF8. If
1839           startoffset  contains  an  invalid  value, PCRE_ERROR_BADUTF8_OFFSET is
1840           returned.
1841    
1842           If you already know that your subject is valid, and you  want  to  skip
1843           these    checks    for   performance   reasons,   you   can   set   the
1844           PCRE_NO_UTF8_CHECK option when calling pcre_exec(). You might  want  to
1845           do  this  for the second and subsequent calls to pcre_exec() if you are
1846           making repeated calls to find all  the  matches  in  a  single  subject
1847           string.  However,  you  should  be  sure  that the value of startoffset
1848           points to the start of a UTF-8 character.  When  PCRE_NO_UTF8_CHECK  is
1849           set,  the  effect of passing an invalid UTF-8 string as a subject, or a
1850           value of startoffset that does not point to the start of a UTF-8  char-
1851           acter, is undefined. Your program may crash.
1852    
1853             PCRE_PARTIAL
1854    
1855           This  option  turns  on  the  partial  matching feature. If the subject
1856           string fails to match the pattern, but at some point during the  match-
1857           ing  process  the  end of the subject was reached (that is, the subject
1858           partially matches the pattern and the failure to  match  occurred  only
1859           because  there were not enough subject characters), pcre_exec() returns
1860           PCRE_ERROR_PARTIAL instead of PCRE_ERROR_NOMATCH. When PCRE_PARTIAL  is
1861           used,  there  are restrictions on what may appear in the pattern. These
1862           are discussed in the pcrepartial documentation.
1863    
1864       The string to be matched by pcre_exec()
1865    
1866           The subject string is passed to pcre_exec() as a pointer in subject,  a
1867           length  in  length, and a starting byte offset in startoffset. In UTF-8
1868           mode, the byte offset must point to the start  of  a  UTF-8  character.
1869           Unlike  the  pattern string, the subject may contain binary zero bytes.
1870           When the starting offset is zero, the search for a match starts at  the
1871           beginning of the subject, and this is by far the most common case.
1872    
1873           A  non-zero  starting offset is useful when searching for another match
1874           in the same subject by calling pcre_exec() again after a previous  suc-
1875           cess.   Setting  startoffset differs from just passing over a shortened
1876           string and setting PCRE_NOTBOL in the case of  a  pattern  that  begins
1877           with any kind of lookbehind. For example, consider the pattern
1878    
1879             \Biss\B
1880    
1881           which  finds  occurrences  of "iss" in the middle of words. (\B matches
1882           only if the current position in the subject is not  a  word  boundary.)
1883           When  applied  to the string "Mississipi" the first call to pcre_exec()
1884           finds the first occurrence. If pcre_exec() is called  again  with  just
1885           the  remainder  of  the  subject,  namely  "issipi", it does not match,
1886           because \B is always false at the start of the subject, which is deemed
1887           to  be  a  word  boundary. However, if pcre_exec() is passed the entire
1888           string again, but with startoffset set to 4, it finds the second occur-
1889           rence  of "iss" because it is able to look behind the starting point to
1890           discover that it is preceded by a letter.
1891    
1892           If a non-zero starting offset is passed when the pattern  is  anchored,
1893           one attempt to match at the given offset is made. This can only succeed
1894           if the pattern does not require the match to be at  the  start  of  the
1895           subject.
1896    
1897       How pcre_exec() returns captured substrings
1898    
1899           In  general, a pattern matches a certain portion of the subject, and in
1900           addition, further substrings from the subject  may  be  picked  out  by
1901           parts  of  the  pattern.  Following the usage in Jeffrey Friedl's book,
1902           this is called "capturing" in what follows, and the  phrase  "capturing
1903           subpattern"  is  used for a fragment of a pattern that picks out a sub-
1904           string. PCRE supports several other kinds of  parenthesized  subpattern
1905           that do not cause substrings to be captured.
1906    
1907           Captured  substrings are returned to the caller via a vector of integer
1908           offsets whose address is passed in ovector. The number of  elements  in
1909           the  vector is passed in ovecsize, which must be a non-negative number.
1910           Note: this argument is NOT the size of ovector in bytes.
1911    
1912           The first two-thirds of the vector is used to pass back  captured  sub-
1913           strings,  each  substring using a pair of integers. The remaining third
1914           of the vector is used as workspace by pcre_exec() while  matching  cap-
1915           turing  subpatterns, and is not available for passing back information.
1916           The length passed in ovecsize should always be a multiple of three.  If
1917           it is not, it is rounded down.
1918    
1919           When  a  match  is successful, information about captured substrings is
1920           returned in pairs of integers, starting at the  beginning  of  ovector,
1921           and  continuing  up  to two-thirds of its length at the most. The first
1922           element of a pair is set to the offset of the first character in a sub-
1923           string,  and  the  second  is  set to the offset of the first character
1924           after the end of a substring. The  first  pair,  ovector[0]  and  ovec-
1925           tor[1],  identify  the  portion  of  the  subject string matched by the
1926           entire pattern. The next pair is used for the first  capturing  subpat-
1927           tern, and so on. The value returned by pcre_exec() is one more than the
1928           highest numbered pair that has been set. For example, if two substrings
1929           have  been captured, the returned value is 3. If there are no capturing
1930           subpatterns, the return value from a successful match is 1,  indicating
1931           that just the first pair of offsets has been set.
1932    
1933           If a capturing subpattern is matched repeatedly, it is the last portion
1934           of the string that it matched that is returned.
1935    
1936           If the vector is too small to hold all the captured substring  offsets,
1937           it is used as far as possible (up to two-thirds of its length), and the
1938           function returns a value of zero. In particular, if the substring  off-
1939           sets are not of interest, pcre_exec() may be called with ovector passed
1940           as NULL and ovecsize as zero. However, if  the  pattern  contains  back
1941           references  and  the  ovector is not big enough to remember the related
1942           substrings, PCRE has to get additional memory for use during  matching.
1943           Thus it is usually advisable to supply an ovector.
1944    
1945           The  pcre_info()  function  can  be used to find out how many capturing
1946           subpatterns there are in a compiled  pattern.  The  smallest  size  for
1947           ovector  that  will allow for n captured substrings, in addition to the
1948           offsets of the substring matched by the whole pattern, is (n+1)*3.
1949    
1950           It is possible for capturing subpattern number n+1 to match  some  part
1951           of the subject when subpattern n has not been used at all. For example,
1952           if the string "abc" is matched  against  the  pattern  (a|(z))(bc)  the
1953           return from the function is 4, and subpatterns 1 and 3 are matched, but
1954           2 is not. When this happens, both values in  the  offset  pairs  corre-
1955           sponding to unused subpatterns are set to -1.
1956    
1957           Offset  values  that correspond to unused subpatterns at the end of the
1958           expression are also set to -1. For example,  if  the  string  "abc"  is
1959           matched  against the pattern (abc)(x(yz)?)? subpatterns 2 and 3 are not
1960           matched. The return from the function is 2, because  the  highest  used
1961           capturing subpattern number is 1. However, you can refer to the offsets
1962           for the second and third capturing subpatterns if  you  wish  (assuming
1963           the vector is large enough, of course).
1964    
1965           Some  convenience  functions  are  provided for extracting the captured
1966           substrings as separate strings. These are described below.
1967    
1968       Error return values from pcre_exec()
1969    
1970           If pcre_exec() fails, it returns a negative number. The  following  are
1971           defined in the header file:
1972    
1973             PCRE_ERROR_NOMATCH        (-1)
1974    
1975           The subject string did not match the pattern.
1976    
1977             PCRE_ERROR_NULL           (-2)
1978    
1979           Either  code  or  subject  was  passed as NULL, or ovector was NULL and
1980           ovecsize was not zero.
1981    
1982             PCRE_ERROR_BADOPTION      (-3)
1983    
1984           An unrecognized bit was set in the options argument.
1985    
1986             PCRE_ERROR_BADMAGIC       (-4)
1987    
1988           PCRE stores a 4-byte "magic number" at the start of the compiled  code,
1989           to catch the case when it is passed a junk pointer and to detect when a
1990           pattern that was compiled in an environment of one endianness is run in
1991           an  environment  with the other endianness. This is the error that PCRE
1992           gives when the magic number is not present.
1993    
1994             PCRE_ERROR_UNKNOWN_OPCODE (-5)
1995    
1996           While running the pattern match, an unknown item was encountered in the
1997           compiled  pattern.  This  error  could be caused by a bug in PCRE or by
1998           overwriting of the compiled pattern.
1999    
2000             PCRE_ERROR_NOMEMORY       (-6)
2001    
2002           If a pattern contains back references, but the ovector that  is  passed
2003           to pcre_exec() is not big enough to remember the referenced substrings,
2004           PCRE gets a block of memory at the start of matching to  use  for  this
2005           purpose.  If the call via pcre_malloc() fails, this error is given. The
2006           memory is automatically freed at the end of matching.
2007    
2008             PCRE_ERROR_NOSUBSTRING    (-7)
2009    
2010           This error is used by the pcre_copy_substring(),  pcre_get_substring(),
2011           and  pcre_get_substring_list()  functions  (see  below).  It  is  never
2012           returned by pcre_exec().
2013    
2014             PCRE_ERROR_MATCHLIMIT     (-8)
2015    
2016           The backtracking limit, as specified by  the  match_limit  field  in  a
2017           pcre_extra  structure  (or  defaulted) was reached. See the description
2018           above.
2019    
2020             PCRE_ERROR_CALLOUT        (-9)
2021    
2022           This error is never generated by pcre_exec() itself. It is provided for
2023           use  by  callout functions that want to yield a distinctive error code.
2024           See the pcrecallout documentation for details.
2025    
2026             PCRE_ERROR_BADUTF8        (-10)
2027    
2028           A string that contains an invalid UTF-8 byte sequence was passed  as  a
2029           subject.
2030    
2031             PCRE_ERROR_BADUTF8_OFFSET (-11)
2032    
2033           The UTF-8 byte sequence that was passed as a subject was valid, but the
2034           value of startoffset did not point to the beginning of a UTF-8  charac-
2035           ter.
2036    
2037             PCRE_ERROR_PARTIAL        (-12)
2038    
2039           The  subject  string did not match, but it did match partially. See the
2040           pcrepartial documentation for details of partial matching.
2041    
2042             PCRE_ERROR_BADPARTIAL     (-13)
2043    
2044           The PCRE_PARTIAL option was used with  a  compiled  pattern  containing
2045           items  that are not supported for partial matching. See the pcrepartial
2046           documentation for details of partial matching.
2047    
2048             PCRE_ERROR_INTERNAL       (-14)
2049    
2050           An unexpected internal error has occurred. This error could  be  caused
2051           by a bug in PCRE or by overwriting of the compiled pattern.
2052    
2053             PCRE_ERROR_BADCOUNT       (-15)
2054    
2055           This  error is given if the value of the ovecsize argument is negative.
2056    
2057             PCRE_ERROR_RECURSIONLIMIT (-21)
2058    
2059           The internal recursion limit, as specified by the match_limit_recursion
2060           field  in  a  pcre_extra  structure (or defaulted) was reached. See the
2061           description above.
2062    
2063             PCRE_ERROR_BADNEWLINE     (-23)
2064    
2065           An invalid combination of PCRE_NEWLINE_xxx options was given.
2066    
2067           Error numbers -16 to -20 and -22 are not used by pcre_exec().
2068    
2069    
2070    EXTRACTING CAPTURED SUBSTRINGS BY NUMBER
2071    
2072           int pcre_copy_substring(const char *subject, int *ovector,
2073                int stringcount, int stringnumber, char *buffer,
2074                int buffersize);
2075    
2076           int pcre_get_substring(const char *subject, int *ovector,
2077                int stringcount, int stringnumber,
2078                const char **stringptr);
2079    
2080           int pcre_get_substring_list(const char *subject,
2081                int *ovector, int stringcount, const char ***listptr);
2082    
2083           Captured substrings can be  accessed  directly  by  using  the  offsets
2084           returned  by  pcre_exec()  in  ovector.  For convenience, the functions
2085           pcre_copy_substring(),    pcre_get_substring(),    and    pcre_get_sub-
2086           string_list()  are  provided for extracting captured substrings as new,
2087           separate, zero-terminated strings. These functions identify  substrings
2088           by  number.  The  next section describes functions for extracting named
2089           substrings.
2090    
2091           A substring that contains a binary zero is correctly extracted and  has
2092           a  further zero added on the end, but the result is not, of course, a C
2093           string.  However, you can process such a string  by  referring  to  the
2094           length  that  is  returned  by  pcre_copy_substring() and pcre_get_sub-
2095           string().  Unfortunately, the interface to pcre_get_substring_list() is
2096           not  adequate for handling strings containing binary zeros, because the
2097           end of the final string is not independently indicated.
2098    
2099           The first three arguments are the same for all  three  of  these  func-
2100           tions:  subject  is  the subject string that has just been successfully
2101           matched, ovector is a pointer to the vector of integer offsets that was
2102           passed to pcre_exec(), and stringcount is the number of substrings that
2103           were captured by the match, including the substring  that  matched  the
2104           entire regular expression. This is the value returned by pcre_exec() if
2105           it is greater than zero. If pcre_exec() returned zero, indicating  that
2106           it  ran out of space in ovector, the value passed as stringcount should
2107           be the number of elements in the vector divided by three.
2108    
2109           The functions pcre_copy_substring() and pcre_get_substring() extract  a
2110           single  substring,  whose  number  is given as stringnumber. A value of
2111           zero extracts the substring that matched the  entire  pattern,  whereas
2112           higher  values  extract  the  captured  substrings.  For pcre_copy_sub-
2113           string(), the string is placed in buffer,  whose  length  is  given  by
2114           buffersize,  while  for  pcre_get_substring()  a new block of memory is
2115           obtained via pcre_malloc, and its address is  returned  via  stringptr.
2116           The  yield  of  the function is the length of the string, not including
2117           the terminating zero, or one of these error codes:
2118    
2119             PCRE_ERROR_NOMEMORY       (-6)
2120    
2121           The buffer was too small for pcre_copy_substring(), or the  attempt  to
2122           get memory failed for pcre_get_substring().
2123    
2124             PCRE_ERROR_NOSUBSTRING    (-7)
2125    
2126           There is no substring whose number is stringnumber.
2127    
2128           The  pcre_get_substring_list()  function  extracts  all  available sub-
2129           strings and builds a list of pointers to them. All this is  done  in  a
2130           single block of memory that is obtained via pcre_malloc. The address of
2131           the memory block is returned via listptr, which is also  the  start  of
2132           the  list  of  string pointers. The end of the list is marked by a NULL
2133           pointer. The yield of the function is zero if all  went  well,  or  the
2134           error code
2135    
2136             PCRE_ERROR_NOMEMORY       (-6)
2137    
2138           if the attempt to get the memory block failed.
2139    
2140           When  any of these functions encounter a substring that is unset, which
2141           can happen when capturing subpattern number n+1 matches  some  part  of
2142           the  subject, but subpattern n has not been used at all, they return an
2143           empty string. This can be distinguished from a genuine zero-length sub-
2144           string  by inspecting the appropriate offset in ovector, which is nega-
2145           tive for unset substrings.
2146    
2147           The two convenience functions pcre_free_substring() and  pcre_free_sub-
2148           string_list()  can  be  used  to free the memory returned by a previous
2149           call  of  pcre_get_substring()  or  pcre_get_substring_list(),  respec-
2150           tively.  They  do  nothing  more  than  call the function pointed to by
2151           pcre_free, which of course could be called directly from a  C  program.
2152           However,  PCRE is used in some situations where it is linked via a spe-
2153           cial  interface  to  another  programming  language  that  cannot   use
2154           pcre_free  directly;  it is for these cases that the functions are pro-
2155           vided.
2156    
2157    
2158    EXTRACTING CAPTURED SUBSTRINGS BY NAME
2159    
2160           int pcre_get_stringnumber(const pcre *code,
2161                const char *name);
2162    
2163           int pcre_copy_named_substring(const pcre *code,
2164                const char *subject, int *ovector,
2165                int stringcount, const char *stringname,
2166                char *buffer, int buffersize);
2167    
2168           int pcre_get_named_substring(const pcre *code,
2169                const char *subject, int *ovector,
2170                int stringcount, const char *stringname,
2171                const char **stringptr);
2172    
2173           To extract a substring by name, you first have to find associated  num-
2174           ber.  For example, for this pattern
2175    
2176             (a+)b(?<xxx>\d+)...
2177    
2178           the number of the subpattern called "xxx" is 2. If the name is known to
2179           be unique (PCRE_DUPNAMES was not set), you can find the number from the
2180           name by calling pcre_get_stringnumber(). The first argument is the com-
2181           piled pattern, and the second is the name. The yield of the function is
2182           the  subpattern  number,  or PCRE_ERROR_NOSUBSTRING (-7) if there is no
2183           subpattern of that name.
2184    
2185           Given the number, you can extract the substring directly, or use one of
2186           the functions described in the previous section. For convenience, there
2187           are also two functions that do the whole job.
2188    
2189           Most   of   the   arguments    of    pcre_copy_named_substring()    and
2190           pcre_get_named_substring()  are  the  same  as  those for the similarly
2191           named functions that extract by number. As these are described  in  the
2192           previous  section,  they  are not re-described here. There are just two
2193           differences:
2194    
2195           First, instead of a substring number, a substring name is  given.  Sec-
2196           ond, there is an extra argument, given at the start, which is a pointer
2197           to the compiled pattern. This is needed in order to gain access to  the
2198           name-to-number translation table.
2199    
2200           These  functions call pcre_get_stringnumber(), and if it succeeds, they
2201           then call pcre_copy_substring() or pcre_get_substring(),  as  appropri-
2202           ate.  NOTE:  If PCRE_DUPNAMES is set and there are duplicate names, the
2203           behaviour may not be what you want (see the next section).
2204    
2205    
2206    DUPLICATE SUBPATTERN NAMES
2207    
2208           int pcre_get_stringtable_entries(const pcre *code,
2209                const char *name, char **first, char **last);
2210    
2211           When a pattern is compiled with the  PCRE_DUPNAMES  option,  names  for
2212           subpatterns  are  not  required  to  be unique. Normally, patterns with
2213           duplicate names are such that in any one match, only one of  the  named
2214           subpatterns  participates. An example is shown in the pcrepattern docu-
2215           mentation. When duplicates are present, pcre_copy_named_substring() and
2216           pcre_get_named_substring()  return the first substring corresponding to
2217           the given name that is set.  If  none  are  set,  an  empty  string  is
2218           returned.  The pcre_get_stringnumber() function returns one of the num-
2219           bers that are associated with the name, but it is not defined which  it
2220           is.
2221    
2222           If  you want to get full details of all captured substrings for a given
2223           name, you must use  the  pcre_get_stringtable_entries()  function.  The
2224           first argument is the compiled pattern, and the second is the name. The
2225           third and fourth are pointers to variables which  are  updated  by  the
2226           function. After it has run, they point to the first and last entries in
2227           the name-to-number table  for  the  given  name.  The  function  itself
2228           returns  the  length  of  each entry, or PCRE_ERROR_NOSUBSTRING (-7) if
2229           there are none. The format of the table is described above in the  sec-
2230           tion  entitled  Information  about  a  pattern.  Given all the relevant
2231           entries for the name, you can extract each of their numbers, and  hence
2232           the captured data, if any.
2233    
2234    
2235    FINDING ALL POSSIBLE MATCHES
2236    
2237           The  traditional  matching  function  uses a similar algorithm to Perl,
2238           which stops when it finds the first match, starting at a given point in
2239           the  subject.  If you want to find all possible matches, or the longest
2240           possible match, consider using the alternative matching  function  (see
2241           below)  instead.  If you cannot use the alternative function, but still
2242           need to find all possible matches, you can kludge it up by  making  use
2243           of the callout facility, which is described in the pcrecallout documen-
2244           tation.
2245    
2246           What you have to do is to insert a callout right at the end of the pat-
2247           tern.   When your callout function is called, extract and save the cur-
2248           rent matched substring. Then return  1,  which  forces  pcre_exec()  to
2249           backtrack  and  try other alternatives. Ultimately, when it runs out of
2250           matches, pcre_exec() will yield PCRE_ERROR_NOMATCH.
2251    
2252    
2253    MATCHING A PATTERN: THE ALTERNATIVE FUNCTION
2254    
2255           int pcre_dfa_exec(const pcre *code, const pcre_extra *extra,
2256                const char *subject, int length, int startoffset,
2257                int options, int *ovector, int ovecsize,
2258                int *workspace, int wscount);
2259    
2260           The function pcre_dfa_exec()  is  called  to  match  a  subject  string
2261           against  a  compiled pattern, using a matching algorithm that scans the
2262           subject string just once, and does not backtrack.  This  has  different
2263           characteristics  to  the  normal  algorithm, and is not compatible with
2264           Perl. Some of the features of PCRE patterns are not  supported.  Never-
2265           theless,  there are times when this kind of matching can be useful. For
2266           a discussion of the two matching algorithms, see the pcrematching docu-
2267           mentation.
2268    
2269           The  arguments  for  the  pcre_dfa_exec()  function are the same as for
2270           pcre_exec(), plus two extras. The ovector argument is used in a differ-
2271           ent  way,  and  this is described below. The other common arguments are
2272           used in the same way as for pcre_exec(), so their  description  is  not
2273           repeated here.
2274    
2275           The  two  additional  arguments provide workspace for the function. The
2276           workspace vector should contain at least 20 elements. It  is  used  for
2277           keeping  track  of  multiple  paths  through  the  pattern  tree.  More
2278           workspace will be needed for patterns and subjects where  there  are  a
2279           lot of potential matches.
2280    
2281           Here is an example of a simple call to pcre_dfa_exec():
2282    
2283             int rc;
2284             int ovector[10];
2285             int wspace[20];
2286             rc = pcre_dfa_exec(
2287               re,             /* result of pcre_compile() */
2288               NULL,           /* we didn't study the pattern */
2289               "some string",  /* the subject string */
2290               11,             /* the length of the subject string */
2291               0,              /* start at offset 0 in the subject */
2292               0,              /* default options */
2293               ovector,        /* vector of integers for substring information */
2294               10,             /* number of elements (NOT size in bytes) */
2295               wspace,         /* working space vector */
2296               20);            /* number of elements (NOT size in bytes) */
2297    
2298       Option bits for pcre_dfa_exec()
2299    
2300           The  unused  bits  of  the options argument for pcre_dfa_exec() must be
2301           zero. The only bits  that  may  be  set  are  PCRE_ANCHORED,  PCRE_NEW-
2302           LINE_xxx,  PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NO_UTF8_CHECK,
2303           PCRE_PARTIAL, PCRE_DFA_SHORTEST, and PCRE_DFA_RESTART. All but the last
2304           three of these are the same as for pcre_exec(), so their description is
2305           not repeated here.
2306    
2307             PCRE_PARTIAL
2308    
2309           This has the same general effect as it does for  pcre_exec(),  but  the
2310           details   are   slightly   different.  When  PCRE_PARTIAL  is  set  for
2311           pcre_dfa_exec(), the return code PCRE_ERROR_NOMATCH is  converted  into
2312           PCRE_ERROR_PARTIAL  if  the  end  of the subject is reached, there have
2313           been no complete matches, but there is still at least one matching pos-
2314           sibility.  The portion of the string that provided the partial match is
2315           set as the first matching string.
2316    
2317             PCRE_DFA_SHORTEST
2318    
2319           Setting the PCRE_DFA_SHORTEST option causes the matching  algorithm  to
2320           stop as soon as it has found one match. Because of the way the alterna-
2321           tive algorithm works, this is necessarily the shortest  possible  match
2322           at the first possible matching point in the subject string.
2323    
2324             PCRE_DFA_RESTART
2325    
2326           When  pcre_dfa_exec()  is  called  with  the  PCRE_PARTIAL  option, and
2327           returns a partial match, it is possible to call it  again,  with  addi-
2328           tional  subject  characters,  and have it continue with the same match.
2329           The PCRE_DFA_RESTART option requests this action; when it is  set,  the
2330           workspace  and wscount options must reference the same vector as before
2331           because data about the match so far is left in  them  after  a  partial
2332           match.  There  is  more  discussion of this facility in the pcrepartial
2333           documentation.
2334    
2335       Successful returns from pcre_dfa_exec()
2336    
2337           When pcre_dfa_exec() succeeds, it may have matched more than  one  sub-
2338           string in the subject. Note, however, that all the matches from one run
2339           of the function start at the same point in  the  subject.  The  shorter
2340           matches  are all initial substrings of the longer matches. For example,
2341           if the pattern
2342    
2343             <.*>
2344    
2345           is matched against the string
2346    
2347             This is <something> <something else> <something further> no more
2348    
2349           the three matched strings are
2350    
2351             <something>
2352             <something> <something else>
2353             <something> <something else> <something further>
2354    
2355           On success, the yield of the function is a number  greater  than  zero,
2356           which  is  the  number of matched substrings. The substrings themselves
2357           are returned in ovector. Each string uses two elements;  the  first  is
2358           the  offset  to  the start, and the second is the offset to the end. In
2359           fact, all the strings have the same start  offset.  (Space  could  have
2360           been  saved by giving this only once, but it was decided to retain some
2361           compatibility with the way pcre_exec() returns data,  even  though  the
2362           meaning of the strings is different.)
2363    
2364           The strings are returned in reverse order of length; that is, the long-
2365           est matching string is given first. If there were too many  matches  to
2366           fit  into ovector, the yield of the function is zero, and the vector is
2367           filled with the longest matches.
2368    
2369       Error returns from pcre_dfa_exec()
2370    
2371           The pcre_dfa_exec() function returns a negative number when  it  fails.
2372           Many  of  the  errors  are  the  same as for pcre_exec(), and these are
2373           described above.  There are in addition the following errors  that  are
2374           specific to pcre_dfa_exec():
2375    
2376             PCRE_ERROR_DFA_UITEM      (-16)
2377    
2378           This  return is given if pcre_dfa_exec() encounters an item in the pat-
2379           tern that it does not support, for instance, the use of \C  or  a  back
2380           reference.
2381    
2382             PCRE_ERROR_DFA_UCOND      (-17)
2383    
2384           This  return  is  given  if pcre_dfa_exec() encounters a condition item
2385           that uses a back reference for the condition, or a test  for  recursion
2386           in a specific group. These are not supported.
2387    
2388             PCRE_ERROR_DFA_UMLIMIT    (-18)
2389    
2390           This  return  is given if pcre_dfa_exec() is called with an extra block
2391           that contains a setting of the match_limit field. This is not supported
2392           (it is meaningless).
2393    
2394             PCRE_ERROR_DFA_WSSIZE     (-19)
2395    
2396           This  return  is  given  if  pcre_dfa_exec()  runs  out of space in the
2397           workspace vector.
2398    
2399             PCRE_ERROR_DFA_RECURSE    (-20)
2400    
2401           When a recursive subpattern is processed, the matching  function  calls
2402           itself  recursively,  using  private vectors for ovector and workspace.
2403           This error is given if the output vector  is  not  large  enough.  This
2404           should be extremely rare, as a vector of size 1000 is used.
2405    
 MATCHING A PATTERN  
      The function pcre_exec() is called to match a subject string  
      against  a pre-compiled pattern, which is passed in the code  
      argument. If the pattern has been studied, the result of the  
      study should be passed in the extra argument. Otherwise this  
      must be NULL.  
   
      The PCRE_ANCHORED option can be passed in the options  argu-  
      ment,  whose unused bits must be zero. However, if a pattern  
      was  compiled  with  PCRE_ANCHORED,  or  turned  out  to  be  
      anchored  by  virtue  of  its  contents,  it  cannot be made  
      unachored at matching time.  
   
      There are also three further options that can be set only at  
      matching time:  
   
        PCRE_NOTBOL  
   
      The first character of the string is not the beginning of  a  
      line,  so  the  circumflex  metacharacter  should  not match  
      before it. Setting this without PCRE_MULTILINE  (at  compile  
      time) causes circumflex never to match.  
   
        PCRE_NOTEOL  
   
      The end of the string is not the end of a line, so the  dol-  
      lar  metacharacter should not match it nor (except in multi-  
      line mode) a newline immediately  before  it.  Setting  this  
      without PCRE_MULTILINE (at compile time) causes dollar never  
      to match.  
   
        PCRE_NOTEMPTY  
   
      An empty string is not considered to be  a  valid  match  if  
      this  option  is  set. If there are alternatives in the pat-  
      tern, they are tried. If  all  the  alternatives  match  the  
      empty  string,  the  entire match fails. For example, if the  
      pattern  
   
        a?b?  
   
      is applied to a string not beginning with  "a"  or  "b",  it  
      matches  the  empty string at the start of the subject. With  
      PCRE_NOTEMPTY set, this match is not valid, so PCRE searches  
      further into the string for occurrences of "a" or "b".  
   
      Perl has no direct equivalent of PCRE_NOTEMPTY, but it  does  
      make  a  special case of a pattern match of the empty string  
      within its split() function, and when using the /g modifier.  
      It  is possible to emulate Perl's behaviour after matching a  
      null string by first trying the  match  again  at  the  same  
      offset  with  PCRE_NOTEMPTY  set,  and then if that fails by  
      advancing the starting offset  (see  below)  and  trying  an  
      ordinary match again.  
   
      The subject string is passed as  a  pointer  in  subject,  a  
      length  in  length,  and  a  starting offset in startoffset.  
      Unlike the pattern string, it may contain binary zero  char-  
      acters.  When  the starting offset is zero, the search for a  
      match starts at the beginning of the subject, and this is by  
      far the most common case.  
   
      A non-zero starting offset  is  useful  when  searching  for  
      another  match  in  the  same subject by calling pcre_exec()  
      again after a previous success.  Setting startoffset differs  
      from  just  passing  over  a  shortened  string  and setting  
      PCRE_NOTBOL in the case of a pattern that  begins  with  any  
      kind of lookbehind. For example, consider the pattern  
   
        \Biss\B  
   
      which finds occurrences of "iss" in the middle of words. (\B  
      matches only if the current position in the subject is not a  
      word boundary.) When applied to the string "Mississipi"  the  
      first  call  to  pcre_exec()  finds the first occurrence. If  
      pcre_exec() is called again with just the remainder  of  the  
      subject,  namely  "issipi", it does not match, because \B is  
      always false at the start of the subject, which is deemed to  
      be  a  word  boundary. However, if pcre_exec() is passed the  
      entire string again, but with startoffset set to 4, it finds  
      the  second  occurrence  of "iss" because it is able to look  
      behind the starting point to discover that it is preceded by  
      a letter.  
   
      If a non-zero starting offset is passed when the pattern  is  
      anchored, one attempt to match at the given offset is tried.  
      This can only succeed if the pattern does  not  require  the  
      match to be at the start of the subject.  
   
      In general, a pattern matches a certain portion of the  sub-  
      ject,  and  in addition, further substrings from the subject  
      may be picked out by parts of  the  pattern.  Following  the  
      usage  in  Jeffrey Friedl's book, this is called "capturing"  
      in what follows, and the phrase  "capturing  subpattern"  is  
      used for a fragment of a pattern that picks out a substring.  
      PCRE supports several other kinds of  parenthesized  subpat-  
      tern that do not cause substrings to be captured.  
   
      Captured substrings are returned to the caller via a  vector  
      of  integer  offsets whose address is passed in ovector. The  
      number of elements in the vector is passed in ovecsize.  The  
      first two-thirds of the vector is used to pass back captured  
      substrings, each substring using a  pair  of  integers.  The  
      remaining  third  of  the  vector  is  used  as workspace by  
      pcre_exec() while matching capturing subpatterns, and is not  
      available for passing back information. The length passed in  
      ovecsize should always be a multiple of three. If it is not,  
      it is rounded down.  
   
      When a match has been successful, information about captured  
      substrings is returned in pairs of integers, starting at the  
      beginning of ovector, and continuing up to two-thirds of its  
      length  at  the  most. The first element of a pair is set to  
      the offset of the first character in a  substring,  and  the  
      second is set to the offset of the first character after the  
      end of a substring. The first  pair,  ovector[0]  and  ovec-  
      tor[1],  identify  the portion of the subject string matched  
      by the entire pattern. The next pair is used for  the  first  
      capturing  subpattern,  and  so  on.  The  value returned by  
      pcre_exec() is the number of pairs that have  been  set.  If  
      there  are no capturing subpatterns, the return value from a  
      successful match is 1, indicating that just the  first  pair  
      of offsets has been set.  
   
      Some convenience functions are provided for  extracting  the  
      captured substrings as separate strings. These are described  
      in the following section.  
   
      It is possible for an capturing  subpattern  number  n+1  to  
      match  some  part  of  the subject when subpattern n has not  
      been used at all.  For  example,  if  the  string  "abc"  is  
      matched  against the pattern (a|(z))(bc) subpatterns 1 and 3  
      are matched, but 2 is not. When this  happens,  both  offset  
      values corresponding to the unused subpattern are set to -1.  
   
      If a capturing subpattern is matched repeatedly, it  is  the  
      last  portion  of  the  string  that  it  matched  that gets  
      returned.  
   
      If the vector is too small to hold  all  the  captured  sub-  
      strings,  it is used as far as possible (up to two-thirds of  
      its length), and the function returns a value  of  zero.  In  
      particular,  if  the  substring offsets are not of interest,  
      pcre_exec() may be called with ovector passed  as  NULL  and  
      ovecsize  as  zero.  However,  if  the pattern contains back  
      references and the ovector isn't big enough to remember  the  
      related  substrings,  PCRE  has to get additional memory for  
      use during matching. Thus it is usually advisable to  supply  
      an ovector.  
   
      Note that pcre_info() can be used to find out how many  cap-  
      turing  subpatterns  there  are  in  a compiled pattern. The  
      smallest size for ovector that will  allow  for  n  captured  
      substrings  in  addition  to  the  offsets  of the substring  
      matched by the whole pattern is (n+1)*3.  
   
      If pcre_exec() fails, it returns a negative number. The fol-  
      lowing are defined in the header file:  
   
        PCRE_ERROR_NOMATCH        (-1)  
   
      The subject string did not match the pattern.  
   
        PCRE_ERROR_NULL           (-2)  
   
      Either code or subject was passed as NULL,  or  ovector  was  
      NULL and ovecsize was not zero.  
   
        PCRE_ERROR_BADOPTION      (-3)  
   
      An unrecognized bit was set in the options argument.  
   
        PCRE_ERROR_BADMAGIC       (-4)  
   
      PCRE stores a 4-byte "magic number" at the start of the com-  
      piled  code,  to  catch  the  case  when it is passed a junk  
      pointer. This is the error it gives when  the  magic  number  
      isn't present.  
   
        PCRE_ERROR_UNKNOWN_NODE   (-5)  
   
      While running the pattern match, an unknown item was encoun-  
      tered in the compiled pattern. This error could be caused by  
      a bug in PCRE or by overwriting of the compiled pattern.  
   
        PCRE_ERROR_NOMEMORY       (-6)  
   
      If a pattern contains back references, but the ovector  that  
      is  passed  to pcre_exec() is not big enough to remember the  
      referenced substrings, PCRE gets a block of  memory  at  the  
      start  of  matching to use for this purpose. If the call via  
      pcre_malloc() fails, this error  is  given.  The  memory  is  
      freed at the end of matching.  
   
   
   
 EXTRACTING CAPTURED SUBSTRINGS  
      Captured substrings can be accessed directly  by  using  the  
   
   
   
   
   
 SunOS 5.8                 Last change:                         12  
   
   
   
      offsets returned by pcre_exec() in ovector. For convenience,  
      the functions  pcre_copy_substring(),  pcre_get_substring(),  
      and  pcre_get_substring_list()  are  provided for extracting  
      captured  substrings  as  new,   separate,   zero-terminated  
      strings.   A  substring  that  contains  a  binary  zero  is  
      correctly extracted and has a further zero added on the end,  
      but the result does not, of course, function as a C string.  
   
      The first three arguments are the same for all  three  func-  
      tions:  subject  is  the  subject string which has just been  
      successfully matched, ovector is a pointer to the vector  of  
      integer   offsets   that  was  passed  to  pcre_exec(),  and  
      stringcount is the number of substrings that  were  captured  
      by  the  match,  including  the  substring  that matched the  
      entire regular expression. This is  the  value  returned  by  
      pcre_exec  if  it  is  greater  than  zero.  If  pcre_exec()  
      returned zero, indicating that it ran out of space in  ovec-  
      tor,  the  value passed as stringcount should be the size of  
      the vector divided by three.  
   
      The functions pcre_copy_substring() and pcre_get_substring()  
      extract a single substring, whose number is given as string-  
      number. A value of zero extracts the substring that  matched  
      the entire pattern, while higher values extract the captured  
      substrings. For pcre_copy_substring(), the string is  placed  
      in  buffer,  whose  length is given by buffersize, while for  
      pcre_get_substring() a new block of memory is  obtained  via  
      pcre_malloc,  and its address is returned via stringptr. The  
      yield of the function is  the  length  of  the  string,  not  
      including the terminating zero, or one of  
   
        PCRE_ERROR_NOMEMORY       (-6)  
   
      The buffer was too small for pcre_copy_substring(),  or  the  
      attempt to get memory failed for pcre_get_substring().  
   
        PCRE_ERROR_NOSUBSTRING    (-7)  
   
      There is no substring whose number is stringnumber.  
   
      The pcre_get_substring_list() function extracts  all  avail-  
      able  substrings  and builds a list of pointers to them. All  
      this is done in a single block of memory which  is  obtained  
      via pcre_malloc. The address of the memory block is returned  
      via listptr, which is also the start of the list  of  string  
      pointers.  The  end of the list is marked by a NULL pointer.  
      The yield of the function is zero if all went well, or  
   
        PCRE_ERROR_NOMEMORY       (-6)  
   
      if the attempt to get the memory block failed.  
   
      When any of these functions encounter a  substring  that  is  
      unset, which can happen when capturing subpattern number n+1  
      matches some part of the subject, but subpattern n  has  not  
      been  used  at all, they return an empty string. This can be  
      distinguished  from  a  genuine  zero-length  substring   by  
      inspecting the appropriate offset in ovector, which is nega-  
      tive for unset substrings.  
   
      The  two  convenience  functions  pcre_free_substring()  and  
      pcre_free_substring_list()  can  be  used to free the memory  
      returned by  a  previous  call  of  pcre_get_substring()  or  
      pcre_get_substring_list(),  respectively.  They  do  nothing  
      more than call the function pointed to by  pcre_free,  which  
      of  course  could  be called directly from a C program. How-  
      ever, PCRE is used in some situations where it is linked via  
      a  special  interface  to another programming language which  
      cannot use pcre_free directly; it is for  these  cases  that  
      the functions are provided.  
2406    
2407    SEE ALSO
2408    
2409           pcrebuild(3),  pcrecallout(3), pcrecpp(3)(3), pcrematching(3), pcrepar-
2410           tial(3), pcreposix(3), pcreprecompile(3), pcresample(3),  pcrestack(3).
2411    
 LIMITATIONS  
      There are some size limitations in PCRE but it is hoped that  
      they will never in practice be relevant.  The maximum length  
      of a compiled pattern is 65539 (sic) bytes.  All  values  in  
      repeating  quantifiers must be less than 65536.  The maximum  
      number of capturing subpatterns is 99.  The  maximum  number  
      of  all  parenthesized subpatterns, including capturing sub-  
      patterns, assertions, and other types of subpattern, is 200.  
   
      The maximum length of a subject string is the largest  posi-  
      tive number that an integer variable can hold. However, PCRE  
      uses recursion to handle subpatterns and indefinite  repeti-  
      tion.  This  means  that the available stack space may limit  
      the size of a subject string that can be processed  by  cer-  
      tain patterns.  
   
   
   
 DIFFERENCES FROM PERL  
      The differences described here  are  with  respect  to  Perl  
      5.005.  
   
      1. By default, a whitespace character is any character  that  
      the  C  library  function isspace() recognizes, though it is  
      possible to compile PCRE  with  alternative  character  type  
      tables. Normally isspace() matches space, formfeed, newline,  
      carriage return, horizontal tab, and vertical tab. Perl 5 no  
      longer  includes vertical tab in its set of whitespace char-  
      acters. The \v escape that was in the Perl documentation for  
      a long time was never in fact recognized. However, the char-  
      acter itself was treated as whitespace at least up to 5.002.  
      In 5.004 and 5.005 it does not match \s.  
   
      2. PCRE does  not  allow  repeat  quantifiers  on  lookahead  
      assertions. Perl permits them, but they do not mean what you  
      might think. For example, (?!a){3} does not assert that  the  
      next  three characters are not "a". It just asserts that the  
      next character is not "a" three times.  
   
      3. Capturing subpatterns that occur inside  negative  looka-  
      head  assertions  are  counted,  but  their  entries  in the  
      offsets vector are never set. Perl sets its numerical  vari-  
      ables  from  any  such  patterns that are matched before the  
      assertion fails to match something (thereby succeeding), but  
      only  if  the negative lookahead assertion contains just one  
      branch.  
   
      4. Though binary zero characters are supported in  the  sub-  
      ject  string,  they  are  not  allowed  in  a pattern string  
      because it is passed as a normal  C  string,  terminated  by  
      zero. The escape sequence "\0" can be used in the pattern to  
      represent a binary zero.  
   
      5. The following Perl escape sequences  are  not  supported:  
      \l,  \u,  \L,  \U,  \E, \Q. In fact these are implemented by  
      Perl's general string-handling and are not part of its  pat-  
      tern matching engine.  
   
      6. The Perl \G assertion is  not  supported  as  it  is  not  
      relevant to single pattern matches.  
   
      7. Fairly obviously, PCRE does not support the (?{code}) and  
      (?p{code})  constructions. However, there is some experimen-  
      tal support for recursive patterns using the  non-Perl  item  
      (?R).  
   
      8. There are at the time of writing some  oddities  in  Perl  
      5.005_02  concerned  with  the  settings of captured strings  
      when part of a pattern is repeated.  For  example,  matching  
      "aba"  against the pattern /^(a(b)?)+$/ sets $2 to the value  
      "b", but matching "aabbaa" against /^(aa(bb)?)+$/ leaves  $2  
      unset.    However,    if   the   pattern   is   changed   to  
      /^(aa(b(b))?)+$/ then $2 (and $3) are set.  
   
      In Perl 5.004 $2 is set in both cases, and that is also true  
      of PCRE. If in the future Perl changes to a consistent state  
      that is different, PCRE may change to follow.  
   
      9. Another as yet unresolved discrepancy  is  that  in  Perl  
      5.005_02  the  pattern /^(a)?(?(1)a|b)+$/ matches the string  
      "a", whereas in PCRE it does not.  However, in both Perl and  
      PCRE /^(a)?a/ matched against "a" leaves $1 unset.  
   
      10. PCRE  provides  some  extensions  to  the  Perl  regular  
      expression facilities:  
   
      (a) Although lookbehind assertions must match  fixed  length  
      strings,  each  alternative branch of a lookbehind assertion  
      can match a different length of string. Perl 5.005  requires  
      them all to have the same length.  
   
      (b) If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is  not  
      set,  the  $ meta- character matches only at the very end of  
      the string.  
   
      (c) If PCRE_EXTRA is set, a backslash followed by  a  letter  
      with no special meaning is faulted.  
   
      (d) If PCRE_UNGREEDY is set, the greediness of  the  repeti-  
      tion  quantifiers  is inverted, that is, by default they are  
      not greedy, but if followed by a question mark they are.  
   
      (e) PCRE_ANCHORED can be used to force a pattern to be tried  
      only at the start of the subject.  
   
      (f) The PCRE_NOTBOL, PCRE_NOTEOL, and PCRE_NOTEMPTY  options  
      for pcre_exec() have no Perl equivalents.  
   
      (g) The (?R) construct allows for recursive pattern matching  
      (Perl  5.6 can do this using the (?p{code}) construct, which  
      PCRE cannot of course support.)  
   
   
   
 REGULAR EXPRESSION DETAILS  
      The syntax and semantics of  the  regular  expressions  sup-  
      ported  by PCRE are described below. Regular expressions are  
      also described in the Perl documentation and in a number  of  
      other  books,  some  of which have copious examples. Jeffrey  
      Friedl's  "Mastering  Regular  Expressions",  published   by  
      O'Reilly (ISBN 1-56592-257), covers them in great detail.  
   
      The description here is intended as reference documentation.  
      The basic operation of PCRE is on strings of bytes. However,  
      there is the beginnings of some support for UTF-8  character  
      strings.  To  use  this  support  you must configure PCRE to  
      include it, and then call pcre_compile() with the  PCRE_UTF8  
      option.  How  this affects the pattern matching is described  
      in the final section of this document.  
   
      A regular expression is a pattern that is matched against  a  
      subject string from left to right. Most characters stand for  
      themselves in a pattern, and match the corresponding charac-  
      ters in the subject. As a trivial example, the pattern  
   
        The quick brown fox  
   
      matches a portion of a subject string that is  identical  to  
      itself.  The  power  of  regular  expressions comes from the  
      ability to include alternatives and repetitions in the  pat-  
      tern.  These  are encoded in the pattern by the use of meta-  
      characters, which do not stand for  themselves  but  instead  
      are interpreted in some special way.  
   
      There are two different sets of meta-characters: those  that  
      are  recognized anywhere in the pattern except within square  
      brackets, and those that are recognized in square  brackets.  
      Outside square brackets, the meta-characters are as follows:  
   
        \      general escape character with several uses  
        ^      assert start of  subject  (or  line,  in  multiline  
      mode)  
        $      assert end of subject (or line, in multiline mode)  
        .      match any character except newline (by default)  
        [      start character class definition  
        |      start of alternative branch  
        (      start subpattern  
        )      end subpattern  
        ?      extends the meaning of (  
               also 0 or 1 quantifier  
               also quantifier minimizer  
        *      0 or more quantifier  
        +      1 or more quantifier  
        {      start min/max quantifier  
   
      Part of a pattern that is in square  brackets  is  called  a  
      "character  class".  In  a  character  class  the only meta-  
      characters are:  
   
        \      general escape character  
        ^      negate the class, but only if the first character  
        -      indicates character range  
        ]      terminates the character class  
2412    
2413       The following sections describe  the  use  of  each  of  the  AUTHOR
      meta-characters.  
2414    
2415           Philip Hazel
2416           University Computing Service
2417           Cambridge CB2 3QH, England.
2418    
2419    
2420  BACKSLASH  REVISION
      The backslash character has several uses. Firstly, if it  is  
      followed  by  a  non-alphameric character, it takes away any  
      special  meaning  that  character  may  have.  This  use  of  
      backslash  as  an  escape  character applies both inside and  
      outside character classes.  
   
      For example, if you want to match a "*" character, you write  
      "\*" in the pattern. This applies whether or not the follow-  
      ing character would otherwise  be  interpreted  as  a  meta-  
      character,  so it is always safe to precede a non-alphameric  
      with "\" to specify that it stands for itself.  In  particu-  
      lar, if you want to match a backslash, you write "\\".  
   
      If a pattern is compiled with the PCRE_EXTENDED option, whi-  
      tespace in the pattern (other than in a character class) and  
      characters between a "#" outside a character class  and  the  
      next  newline  character  are ignored. An escaping backslash  
      can be used to include a whitespace or "#" character as part  
      of the pattern.  
   
      A second use of backslash provides a way  of  encoding  non-  
      printing  characters  in patterns in a visible manner. There  
      is no restriction on the appearance of non-printing  charac-  
      ters,  apart from the binary zero that terminates a pattern,  
      but when a pattern is being prepared by text editing, it  is  
      usually  easier to use one of the following escape sequences  
      than the binary character it represents:  
   
        \a     alarm, that is, the BEL character (hex 07)  
        \cx    "control-x", where x is any character  
        \e     escape (hex 1B)  
        \f     formfeed (hex 0C)  
        \n     newline (hex 0A)  
        \r     carriage return (hex 0D)  
        \t     tab (hex 09)  
        \xhh   character with hex code hh  
        \ddd   character with octal code ddd, or backreference  
   
      The precise effect of "\cx" is as follows: if "x" is a lower  
      case  letter,  it  is converted to upper case. Then bit 6 of  
      the character (hex 40) is inverted.  Thus "\cz" becomes  hex  
      1A, but "\c{" becomes hex 3B, while "\c;" becomes hex 7B.  
   
      After "\x", up to two hexadecimal digits are  read  (letters  
      can be in upper or lower case).  
   
      After "\0" up to two further octal digits are read. In  both  
      cases,  if  there are fewer than two digits, just those that  
      are present are used. Thus the sequence "\0\x\07"  specifies  
      two binary zeros followed by a BEL character.  Make sure you  
      supply two digits after the initial zero  if  the  character  
      that follows is itself an octal digit.  
   
      The handling of a backslash followed by a digit other than 0  
      is  complicated.   Outside  a character class, PCRE reads it  
      and any following digits as a decimal number. If the  number  
      is  less  than  10, or if there have been at least that many  
      previous capturing left parentheses in the  expression,  the  
      entire  sequence is taken as a back reference. A description  
      of how this works is given later, following  the  discussion  
      of parenthesized subpatterns.  
   
      Inside a character  class,  or  if  the  decimal  number  is  
      greater  than  9 and there have not been that many capturing  
      subpatterns, PCRE re-reads up to three octal digits  follow-  
      ing  the  backslash,  and  generates  a single byte from the  
      least significant 8 bits of the value. Any subsequent digits  
      stand for themselves.  For example:  
   
        \040   is another way of writing a space  
        \40    is the same, provided there are fewer than 40  
                  previous capturing subpatterns  
        \7     is always a back reference  
        \11    might be a back reference, or another way of  
                  writing a tab  
        \011   is always a tab  
        \0113  is a tab followed by the character "3"  
        \113   is the character with octal code 113 (since there  
                  can be no more than 99 back references)  
        \377   is a byte consisting entirely of 1 bits  
        \81    is either a back reference, or a binary zero  
                  followed by the two characters "8" and "1"  
   
      Note that octal values of 100 or greater must not be  intro-  
      duced  by  a  leading zero, because no more than three octal  
      digits are ever read.  
   
      All the sequences that define a single  byte  value  can  be  
      used both inside and outside character classes. In addition,  
      inside a character class, the sequence "\b"  is  interpreted  
      as  the  backspace  character  (hex 08). Outside a character  
      class it has a different meaning (see below).  
   
      The third use of backslash is for specifying generic charac-  
      ter types:  
   
        \d     any decimal digit  
        \D     any character that is not a decimal digit  
        \s     any whitespace character  
        \S     any character that is not a whitespace character  
        \w     any "word" character  
        \W     any "non-word" character  
   
      Each pair of escape sequences partitions the complete set of  
      characters  into  two  disjoint  sets.  Any  given character  
      matches one, and only one, of each pair.  
   
      A "word" character is any letter or digit or the  underscore  
      character,  that  is,  any  character which can be part of a  
      Perl "word". The definition of letters and  digits  is  con-  
      trolled  by PCRE's character tables, and may vary if locale-  
      specific matching is  taking  place  (see  "Locale  support"  
      above). For example, in the "fr" (French) locale, some char-  
      acter codes greater than 128 are used for accented  letters,  
      and these are matched by \w.  
   
      These character type sequences can appear  both  inside  and  
      outside  character classes. They each match one character of  
      the appropriate type. If the current matching  point  is  at  
      the end of the subject string, all of them fail, since there  
      is no character to match.  
   
      The fourth use of backslash is  for  certain  simple  asser-  
      tions. An assertion specifies a condition that has to be met  
      at a particular point in  a  match,  without  consuming  any  
      characters  from  the subject string. The use of subpatterns  
      for more complicated  assertions  is  described  below.  The  
      backslashed assertions are  
   
        \b     word boundary  
        \B     not a word boundary  
        \A     start of subject (independent of multiline mode)  
        \Z     end of subject or newline at  end  (independent  of  
      multiline mode)  
        \z     end of subject (independent of multiline mode)  
   
      These assertions may not appear in  character  classes  (but  
      note that "\b" has a different meaning, namely the backspace  
      character, inside a character class).  
   
      A word boundary is a position in the  subject  string  where  
      the current character and the previous character do not both  
      match \w or \W (i.e. one matches \w and  the  other  matches  
      \W),  or the start or end of the string if the first or last  
      character matches \w, respectively.  
   
      The \A, \Z, and \z assertions differ  from  the  traditional  
      circumflex  and  dollar  (described below) in that they only  
      ever match at the very start and end of the subject  string,  
      whatever  options  are  set.  They  are  not affected by the  
      PCRE_NOTBOL or PCRE_NOTEOL options. If the startoffset argu-  
      ment  of  pcre_exec()  is  non-zero, \A can never match. The  
      difference between \Z and \z is that  \Z  matches  before  a  
      newline  that is the last character of the string as well as  
      at the end of the string, whereas \z  matches  only  at  the  
      end.  
2421    
2422           Last updated: 30 July 2007
2423           Copyright (c) 1997-2007 University of Cambridge.
2424    ------------------------------------------------------------------------------
2425    
2426    
2427  CIRCUMFLEX AND DOLLAR  PCRECALLOUT(3)                                                  PCRECALLOUT(3)
      Outside a character class, in the default matching mode, the  
      circumflex  character  is an assertion which is true only if  
      the current matching point is at the start  of  the  subject  
   
      string.  If  the startoffset argument of pcre_exec() is non-  
      zero, circumflex can never match. Inside a character  class,  
      circumflex has an entirely different meaning (see below).  
   
      Circumflex need not be the first character of the pattern if  
      a  number of alternatives are involved, but it should be the  
      first thing in each alternative in which it appears  if  the  
      pattern is ever to match that branch. If all possible alter-  
      natives start with a circumflex, that is, if the pattern  is  
      constrained to match only at the start of the subject, it is  
      said to be an "anchored" pattern. (There are also other con-  
      structs that can cause a pattern to be anchored.)  
   
      A dollar character is an assertion which is true only if the  
      current  matching point is at the end of the subject string,  
      or immediately before a newline character that is  the  last  
      character in the string (by default). Dollar need not be the  
      last character of the pattern if a  number  of  alternatives  
      are  involved,  but it should be the last item in any branch  
      in which it appears.  Dollar has no  special  meaning  in  a  
      character class.  
   
      The meaning of dollar can be changed so that it matches only  
      at   the   very   end   of   the   string,  by  setting  the  
      PCRE_DOLLAR_ENDONLY option at compile or matching time. This  
      does not affect the \Z assertion.  
   
      The meanings of the circumflex  and  dollar  characters  are  
      changed  if  the  PCRE_MULTILINE option is set. When this is  
      the case,  they  match  immediately  after  and  immediately  
      before an internal "\n" character, respectively, in addition  
      to matching at the start and end of the subject string.  For  
      example,  the  pattern  /^abc$/  matches  the subject string  
      "def\nabc" in multiline  mode,  but  not  otherwise.  Conse-  
      quently,  patterns  that  are  anchored  in single line mode  
      because all branches start with "^" are not anchored in mul-  
      tiline mode, and a match for circumflex is possible when the  
      startoffset  argument  of  pcre_exec()  is   non-zero.   The  
      PCRE_DOLLAR_ENDONLY  option  is ignored if PCRE_MULTILINE is  
      set.  
   
      Note that the sequences \A, \Z, and \z can be used to  match  
      the  start  and end of the subject in both modes, and if all  
      branches of a pattern start with \A is it  always  anchored,  
      whether PCRE_MULTILINE is set or not.  
2428    
2429    
2430    NAME
2431           PCRE - Perl-compatible regular expressions
2432    
 FULL STOP (PERIOD, DOT)  
      Outside a character class, a dot in the pattern matches  any  
      one character in the subject, including a non-printing char-  
      acter, but not (by default)  newline.   If  the  PCRE_DOTALL  
   
      option  is set, dots match newlines as well. The handling of  
      dot is entirely independent of the  handling  of  circumflex  
      and  dollar,  the  only  relationship  being  that they both  
      involve newline characters. Dot has no special meaning in  a  
      character class.  
   
   
   
 SQUARE BRACKETS  
      An opening square bracket introduces a character class, ter-  
      minated  by  a  closing  square  bracket.  A  closing square  
      bracket on its own is  not  special.  If  a  closing  square  
      bracket  is  required as a member of the class, it should be  
      the first data character in the class (after an initial cir-  
      cumflex, if present) or escaped with a backslash.  
   
      A character class matches a single character in the subject;  
      the  character  must  be in the set of characters defined by  
      the class, unless the first character in the class is a cir-  
      cumflex,  in which case the subject character must not be in  
      the set defined by the class. If a  circumflex  is  actually  
      required  as  a  member  of  the class, ensure it is not the  
      first character, or escape it with a backslash.  
   
      For example, the character class [aeiou] matches  any  lower  
      case vowel, while [^aeiou] matches any character that is not  
      a lower case vowel. Note that a circumflex is  just  a  con-  
      venient  notation for specifying the characters which are in  
      the class by enumerating those that are not. It  is  not  an  
      assertion:  it  still  consumes a character from the subject  
      string, and fails if the current pointer is at  the  end  of  
      the string.  
   
      When caseless matching  is  set,  any  letters  in  a  class  
      represent  both their upper case and lower case versions, so  
      for example, a caseless [aeiou] matches "A" as well as  "a",  
      and  a caseless [^aeiou] does not match "A", whereas a case-  
      ful version would.  
   
      The newline character is never treated in any special way in  
      character  classes,  whatever the setting of the PCRE_DOTALL  
      or PCRE_MULTILINE options is. A  class  such  as  [^a]  will  
      always match a newline.  
   
      The minus (hyphen) character can be used to specify a  range  
      of  characters  in  a  character  class.  For example, [d-m]  
      matches any letter between d and m, inclusive.  If  a  minus  
      character  is required in a class, it must be escaped with a  
      backslash or appear in a position where it cannot be  inter-  
      preted as indicating a range, typically as the first or last  
      character in the class.  
   
      It is not possible to have the literal character "]" as  the  
      end  character  of  a  range.  A  pattern such as [W-]46] is  
      interpreted as a class of two characters ("W" and "-")  fol-  
      lowed by a literal string "46]", so it would match "W46]" or  
      "-46]". However, if the "]" is escaped with a  backslash  it  
      is  interpreted  as  the end of range, so [W-\]46] is inter-  
      preted as a single class containing a range followed by  two  
      separate characters. The octal or hexadecimal representation  
      of "]" can also be used to end a range.  
   
      Ranges operate in ASCII collating sequence. They can also be  
      used  for  characters  specified  numerically,  for  example  
      [\000-\037]. If a range that includes letters is  used  when  
      caseless  matching  is set, it matches the letters in either  
      case. For example, [W-c] is equivalent  to  [][\^_`wxyzabc],  
      matched  caselessly,  and  if  character tables for the "fr"  
      locale are in use, [\xc8-\xcb] matches accented E characters  
      in both cases.  
   
      The character types \d, \D, \s, \S,  \w,  and  \W  may  also  
      appear  in  a  character  class, and add the characters that  
      they match to the class. For example, [\dABCDEF] matches any  
      hexadecimal  digit.  A  circumflex  can conveniently be used  
      with the upper case character types to specify a  more  res-  
      tricted set of characters than the matching lower case type.  
      For example, the class [^\W_] matches any letter  or  digit,  
      but not underscore.  
   
      All non-alphameric characters other than \,  -,  ^  (at  the  
      start)  and  the  terminating ] are non-special in character  
      classes, but it does no harm if they are escaped.  
2433    
2434    PCRE CALLOUTS
2435    
2436           int (*pcre_callout)(pcre_callout_block *);
2437    
2438  POSIX CHARACTER CLASSES         PCRE provides a feature called "callout", which is a means of temporar-
2439       Perl 5.6 (not yet released at the time of writing) is  going         ily passing control to the caller of PCRE  in  the  middle  of  pattern
2440       to  support  the POSIX notation for character classes, which         matching.  The  caller of PCRE provides an external function by putting
2441       uses names enclosed by  [:  and  :]   within  the  enclosing         its entry point in the global variable pcre_callout. By  default,  this
2442       square brackets. PCRE supports this notation. For example,         variable contains NULL, which disables all calling out.
2443    
2444         [01[:alpha:]%]         Within  a  regular  expression,  (?C) indicates the points at which the
2445           external function is to be called.  Different  callout  points  can  be
2446       matches "0", "1", any alphabetic character, or "%". The sup-         identified  by  putting  a number less than 256 after the letter C. The
2447       ported class names are         default value is zero.  For  example,  this  pattern  has  two  callout
2448           points:
2449         alnum    letters and digits  
2450         alpha    letters           (?C1)abc(?C2)def
2451         ascii    character codes 0 - 127  
2452         cntrl    control characters         If  the  PCRE_AUTO_CALLOUT  option  bit  is  set when pcre_compile() is
2453         digit    decimal digits (same as \d)         called, PCRE automatically  inserts  callouts,  all  with  number  255,
2454         graph    printing characters, excluding space         before  each  item in the pattern. For example, if PCRE_AUTO_CALLOUT is
2455         lower    lower case letters         used with the pattern
2456         print    printing characters, including space  
2457         punct    printing characters, excluding letters and digits           A(\d{2}|--)
2458         space    white space (same as \s)  
2459         upper    upper case letters         it is processed as if it were
2460         word     "word" characters (same as \w)  
2461         xdigit   hexadecimal digits         (?C255)A(?C255)((?C255)\d{2}(?C255)|(?C255)-(?C255)-(?C255))(?C255)
2462    
2463       The names "ascii" and "word" are  Perl  extensions.  Another         Notice that there is a callout before and after  each  parenthesis  and
2464       Perl  extension is negation, which is indicated by a ^ char-         alternation  bar.  Automatic  callouts  can  be  used  for tracking the
2465       acter after the colon. For example,         progress of pattern matching. The pcretest command has an  option  that
2466           sets  automatic callouts; when it is used, the output indicates how the
2467         [12[:^digit:]]         pattern is matched. This is useful information when you are  trying  to
2468           optimize the performance of a particular pattern.
2469       matches "1", "2", or any non-digit.  PCRE  (and  Perl)  also  
2470       recogize  the POSIX syntax [.ch.] and [=ch=] where "ch" is a  
2471       "collating element", but these are  not  supported,  and  an  MISSING CALLOUTS
2472       error is given if they are encountered.  
2473           You  should  be  aware  that,  because of optimizations in the way PCRE
2474           matches patterns, callouts sometimes do not happen. For example, if the
2475           pattern is
2476    
2477             ab(?C4)cd
2478    
2479           PCRE knows that any matching string must contain the letter "d". If the
2480           subject string is "abyz", the lack of "d" means that  matching  doesn't
2481           ever  start,  and  the  callout is never reached. However, with "abyd",
2482           though the result is still no match, the callout is obeyed.
2483    
2484    
2485    THE CALLOUT INTERFACE
2486    
2487           During matching, when PCRE reaches a callout point, the external  func-
2488           tion  defined by pcre_callout is called (if it is set). This applies to
2489           both the pcre_exec() and the pcre_dfa_exec()  matching  functions.  The
2490           only  argument  to  the callout function is a pointer to a pcre_callout
2491           block. This structure contains the following fields:
2492    
2493             int          version;
2494             int          callout_number;
2495             int         *offset_vector;
2496             const char  *subject;
2497             int          subject_length;
2498             int          start_match;
2499             int          current_position;
2500             int          capture_top;
2501             int          capture_last;
2502             void        *callout_data;
2503             int          pattern_position;
2504             int          next_item_length;
2505    
2506           The version field is an integer containing the version  number  of  the
2507           block  format. The initial version was 0; the current version is 1. The
2508           version number will change again in future  if  additional  fields  are
2509           added, but the intention is never to remove any of the existing fields.
2510    
2511           The callout_number field contains the number of the  callout,  as  com-
2512           piled  into  the pattern (that is, the number after ?C for manual call-
2513           outs, and 255 for automatically generated callouts).
2514    
2515           The offset_vector field is a pointer to the vector of offsets that  was
2516           passed   by   the   caller  to  pcre_exec()  or  pcre_dfa_exec().  When
2517           pcre_exec() is used, the contents can be inspected in order to  extract
2518           substrings  that  have  been  matched  so  far,  in the same way as for
2519           extracting substrings after a match has completed. For  pcre_dfa_exec()
2520           this field is not useful.
2521    
2522           The subject and subject_length fields contain copies of the values that
2523           were passed to pcre_exec().
2524    
2525           The start_match field normally contains the offset within  the  subject
2526           at  which  the  current  match  attempt started. However, if the escape
2527           sequence \K has been encountered, this value is changed to reflect  the
2528           modified  starting  point.  If the pattern is not anchored, the callout
2529           function may be called several times from the same point in the pattern
2530           for different starting points in the subject.
2531    
2532           The  current_position  field  contains the offset within the subject of
2533           the current match pointer.
2534    
2535           When the pcre_exec() function is used, the capture_top  field  contains
2536           one  more than the number of the highest numbered captured substring so
2537           far. If no substrings have been captured, the value of  capture_top  is
2538           one.  This  is always the case when pcre_dfa_exec() is used, because it
2539           does not support captured substrings.
2540    
2541           The capture_last field contains the number of the  most  recently  cap-
2542           tured  substring. If no substrings have been captured, its value is -1.
2543           This is always the case when pcre_dfa_exec() is used.
2544    
2545           The callout_data field contains a value that is passed  to  pcre_exec()
2546           or  pcre_dfa_exec() specifically so that it can be passed back in call-
2547           outs. It is passed in the pcre_callout field  of  the  pcre_extra  data
2548           structure.  If  no such data was passed, the value of callout_data in a
2549           pcre_callout block is NULL. There is a description  of  the  pcre_extra
2550           structure in the pcreapi documentation.
2551    
2552           The  pattern_position field is present from version 1 of the pcre_call-
2553           out structure. It contains the offset to the next item to be matched in
2554           the pattern string.
2555    
2556           The  next_item_length field is present from version 1 of the pcre_call-
2557           out structure. It contains the length of the next item to be matched in
2558           the  pattern  string. When the callout immediately precedes an alterna-
2559           tion bar, a closing parenthesis, or the end of the pattern, the  length
2560           is  zero.  When the callout precedes an opening parenthesis, the length
2561           is that of the entire subpattern.
2562    
2563           The pattern_position and next_item_length fields are intended  to  help
2564           in  distinguishing between different automatic callouts, which all have
2565           the same callout number. However, they are set for all callouts.
2566    
2567    
2568    RETURN VALUES
2569    
2570           The external callout function returns an integer to PCRE. If the  value
2571           is  zero,  matching  proceeds  as  normal. If the value is greater than
2572           zero, matching fails at the current point, but  the  testing  of  other
2573           matching possibilities goes ahead, just as if a lookahead assertion had
2574           failed. If the value is less than zero, the  match  is  abandoned,  and
2575           pcre_exec() (or pcre_dfa_exec()) returns the negative value.
2576    
2577           Negative   values   should   normally   be   chosen  from  the  set  of
2578           PCRE_ERROR_xxx values. In particular, PCRE_ERROR_NOMATCH forces a stan-
2579           dard  "no  match"  failure.   The  error  number  PCRE_ERROR_CALLOUT is
2580           reserved for use by callout functions; it will never be  used  by  PCRE
2581           itself.
2582    
2583    
2584    AUTHOR
2585    
2586  VERTICAL BAR         Philip Hazel
2587       Vertical bar characters are  used  to  separate  alternative         University Computing Service
2588       patterns. For example, the pattern         Cambridge CB2 3QH, England.
2589    
        gilbert|sullivan  
2590    
2591       matches either "gilbert" or "sullivan". Any number of alter-  REVISION
      natives  may  appear,  and an empty alternative is permitted  
      (matching the empty string).   The  matching  process  tries  
      each  alternative in turn, from left to right, and the first  
      one that succeeds is used. If the alternatives are within  a  
      subpattern  (defined  below),  "succeeds" means matching the  
      rest of the main pattern as well as the alternative  in  the  
      subpattern.  
2592    
2593           Last updated: 29 May 2007
2594           Copyright (c) 1997-2007 University of Cambridge.
2595    ------------------------------------------------------------------------------
2596    
2597    
2598  INTERNAL OPTION SETTING  PCRECOMPAT(3)                                                    PCRECOMPAT(3)
      The settings of PCRE_CASELESS, PCRE_MULTILINE,  PCRE_DOTALL,  
      and  PCRE_EXTENDED can be changed from within the pattern by  
      a sequence of Perl option letters enclosed between "(?"  and  
      ")". The option letters are  
   
        i  for PCRE_CASELESS  
        m  for PCRE_MULTILINE  
        s  for PCRE_DOTALL  
        x  for PCRE_EXTENDED  
   
      For example, (?im) sets caseless, multiline matching. It  is  
      also possible to unset these options by preceding the letter  
      with a hyphen, and a combined setting and unsetting such  as  
      (?im-sx),  which sets PCRE_CASELESS and PCRE_MULTILINE while  
      unsetting PCRE_DOTALL and PCRE_EXTENDED, is also  permitted.  
      If  a  letter  appears both before and after the hyphen, the  
      option is unset.  
   
      The scope of these option changes depends on  where  in  the  
      pattern  the  setting  occurs. For settings that are outside  
      any subpattern (defined below), the effect is the same as if  
      the  options were set or unset at the start of matching. The  
      following patterns all behave in exactly the same way:  
   
        (?i)abc  
        a(?i)bc  
        ab(?i)c  
        abc(?i)  
   
      which in turn is the same as compiling the pattern abc  with  
      PCRE_CASELESS  set.   In  other words, such "top level" set-  
      tings apply to the whole pattern  (unless  there  are  other  
      changes  inside subpatterns). If there is more than one set-  
      ting of the same option at top level, the rightmost  setting  
      is used.  
   
      If an option change occurs inside a subpattern,  the  effect  
      is  different.  This is a change of behaviour in Perl 5.005.  
      An option change inside a subpattern affects only that  part  
      of the subpattern that follows it, so  
   
        (a(?i)b)c  
   
      matches  abc  and  aBc  and  no  other   strings   (assuming  
      PCRE_CASELESS  is  not used).  By this means, options can be  
      made to have different settings in different  parts  of  the  
      pattern.  Any  changes  made  in one alternative do carry on  
      into subsequent branches within  the  same  subpattern.  For  
      example,  
   
        (a(?i)b|c)  
   
      matches "ab", "aB", "c", and "C", even though when  matching  
      "C" the first branch is abandoned before the option setting.  
      This is because the effects of  option  settings  happen  at  
      compile  time. There would be some very weird behaviour oth-  
      erwise.  
   
      The PCRE-specific options PCRE_UNGREEDY and  PCRE_EXTRA  can  
      be changed in the same way as the Perl-compatible options by  
      using the characters U and X  respectively.  The  (?X)  flag  
      setting  is  special in that it must always occur earlier in  
      the pattern than any of the additional features it turns on,  
      even when it is at top level. It is best put at the start.  
2599    
2600    
2601    NAME
2602           PCRE - Perl-compatible regular expressions
2603    
 SUBPATTERNS  
      Subpatterns are delimited by parentheses  (round  brackets),  
      which can be nested.  Marking part of a pattern as a subpat-  
      tern does two things:  
   
      1. It localizes a set of alternatives. For example, the pat-  
      tern  
   
        cat(aract|erpillar|)  
   
      matches one of the words "cat",  "cataract",  or  "caterpil-  
      lar".  Without  the  parentheses, it would match "cataract",  
      "erpillar" or the empty string.  
   
      2. It sets up the subpattern as a capturing  subpattern  (as  
      defined  above).   When the whole pattern matches, that por-  
      tion of the subject string that matched  the  subpattern  is  
      passed  back  to  the  caller  via  the  ovector argument of  
      pcre_exec(). Opening parentheses are counted  from  left  to  
      right (starting from 1) to obtain the numbers of the captur-  
      ing subpatterns.  
   
      For example, if the string "the red king" is matched against  
      the pattern  
   
        the ((red|white) (king|queen))  
   
      the captured substrings are "red king", "red",  and  "king",  
      and are numbered 1, 2, and 3.  
   
      The fact that plain parentheses fulfil two functions is  not  
      always  helpful.  There are often times when a grouping sub-  
      pattern is required without a capturing requirement.  If  an  
      opening parenthesis is followed by "?:", the subpattern does  
      not do any capturing, and is not counted when computing  the  
      number of any subsequent capturing subpatterns. For example,  
      if the string "the white queen" is matched against the  pat-  
      tern  
   
        the ((?:red|white) (king|queen))  
   
      the captured substrings are "white queen" and  "queen",  and  
      are  numbered  1  and 2. The maximum number of captured sub-  
      strings is 99, and the maximum number  of  all  subpatterns,  
      both capturing and non-capturing, is 200.  
   
      As a  convenient  shorthand,  if  any  option  settings  are  
      required  at  the  start  of a non-capturing subpattern, the  
      option letters may appear between the "?" and the ":".  Thus  
      the two patterns  
   
        (?i:saturday|sunday)  
        (?:(?i)saturday|sunday)  
   
      match exactly the same set of strings.  Because  alternative  
      branches  are  tried from left to right, and options are not  
      reset until the end of the subpattern is reached, an  option  
      setting  in  one  branch does affect subsequent branches, so  
      the above patterns match "SUNDAY" as well as "Saturday".  
2604    
2605    DIFFERENCES BETWEEN PCRE AND PERL
2606    
2607           This  document describes the differences in the ways that PCRE and Perl
2608           handle regular expressions. The differences described here  are  mainly
2609           with  respect  to  Perl 5.8, though PCRE versions 7.0 and later contain
2610           some features that are expected to be in the forthcoming Perl 5.10.
2611    
2612           1. PCRE has only a subset of Perl's UTF-8 and Unicode support.  Details
2613           of  what  it does have are given in the section on UTF-8 support in the
2614           main pcre page.
2615    
2616           2. PCRE does not allow repeat quantifiers on lookahead assertions. Perl
2617           permits  them,  but they do not mean what you might think. For example,
2618           (?!a){3} does not assert that the next three characters are not "a". It
2619           just asserts that the next character is not "a" three times.
2620    
2621           3.  Capturing  subpatterns  that occur inside negative lookahead asser-
2622           tions are counted, but their entries in the offsets  vector  are  never
2623           set.  Perl sets its numerical variables from any such patterns that are
2624           matched before the assertion fails to match something (thereby succeed-
2625           ing),  but  only  if the negative lookahead assertion contains just one
2626           branch.
2627    
2628           4. Though binary zero characters are supported in the  subject  string,
2629           they are not allowed in a pattern string because it is passed as a nor-
2630           mal C string, terminated by zero. The escape sequence \0 can be used in
2631           the pattern to represent a binary zero.
2632    
2633           5.  The  following Perl escape sequences are not supported: \l, \u, \L,
2634           \U, and \N. In fact these are implemented by Perl's general string-han-
2635           dling  and are not part of its pattern matching engine. If any of these
2636           are encountered by PCRE, an error is generated.
2637    
2638           6. The Perl escape sequences \p, \P, and \X are supported only if  PCRE
2639           is  built  with Unicode character property support. The properties that
2640           can be tested with \p and \P are limited to the general category  prop-
2641           erties  such  as  Lu and Nd, script names such as Greek or Han, and the
2642           derived properties Any and L&.
2643    
2644           7. PCRE does support the \Q...\E escape for quoting substrings. Charac-
2645           ters  in  between  are  treated as literals. This is slightly different
2646           from Perl in that $ and @ are  also  handled  as  literals  inside  the
2647           quotes.  In Perl, they cause variable interpolation (but of course PCRE
2648           does not have variables). Note the following examples:
2649    
2650               Pattern            PCRE matches      Perl matches
2651    
2652               \Qabc$xyz\E        abc$xyz           abc followed by the
2653                                                      contents of $xyz
2654               \Qabc\$xyz\E       abc\$xyz          abc\$xyz
2655               \Qabc\E\$\Qxyz\E   abc$xyz           abc$xyz
2656    
2657           The \Q...\E sequence is recognized both inside  and  outside  character
2658           classes.
2659    
2660           8. Fairly obviously, PCRE does not support the (?{code}) and (??{code})
2661           constructions. However, there is support for recursive  patterns.  This
2662           is  not available in Perl 5.8, but will be in Perl 5.10. Also, the PCRE
2663           "callout" feature allows an external function to be called during  pat-
2664           tern matching. See the pcrecallout documentation for details.
2665    
2666           9.  Subpatterns  that  are  called  recursively or as "subroutines" are
2667           always treated as atomic groups in  PCRE.  This  is  like  Python,  but
2668           unlike Perl.
2669    
2670           10.  There are some differences that are concerned with the settings of
2671           captured strings when part of  a  pattern  is  repeated.  For  example,
2672           matching  "aba"  against  the  pattern  /^(a(b)?)+$/  in Perl leaves $2
2673           unset, but in PCRE it is set to "b".
2674    
2675           11. PCRE provides some extensions to the Perl regular expression facil-
2676           ities.   Perl  5.10  will  include new features that are not in earlier
2677           versions, some of which (such as named parentheses) have been  in  PCRE
2678           for some time. This list is with respect to Perl 5.10:
2679    
2680           (a)  Although  lookbehind  assertions  must match fixed length strings,
2681           each alternative branch of a lookbehind assertion can match a different
2682           length of string. Perl requires them all to have the same length.
2683    
2684           (b)  If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is not set, the $
2685           meta-character matches only at the very end of the string.
2686    
2687           (c) If PCRE_EXTRA is set, a backslash followed by a letter with no spe-
2688           cial meaning is faulted. Otherwise, like Perl, the backslash is quietly
2689           ignored.  (Perl can be made to issue a warning.)
2690    
2691           (d) If PCR