Parent Directory
|
Revision Log
pcre32: Add 32-bit library Create libpcre32 that operates on 32-bit characters (UTF-32). This turned out to be surprisingly simple after the UTF-16 support was introduced; mostly just extra ifdefs and adjusting and adding some tests.
1 | /************************************************* |
2 | * Perl-Compatible Regular Expressions * |
3 | *************************************************/ |
4 | |
5 | /* PCRE is a library of functions to support regular expressions whose syntax |
6 | and semantics are as close as possible to those of the Perl 5 language. |
7 | |
8 | Written by Philip Hazel |
9 | Copyright (c) 1997-2012 University of Cambridge |
10 | |
11 | ----------------------------------------------------------------------------- |
12 | Redistribution and use in source and binary forms, with or without |
13 | modification, are permitted provided that the following conditions are met: |
14 | |
15 | * Redistributions of source code must retain the above copyright notice, |
16 | this list of conditions and the following disclaimer. |
17 | |
18 | * Redistributions in binary form must reproduce the above copyright |
19 | notice, this list of conditions and the following disclaimer in the |
20 | documentation and/or other materials provided with the distribution. |
21 | |
22 | * Neither the name of the University of Cambridge nor the names of its |
23 | contributors may be used to endorse or promote products derived from |
24 | this software without specific prior written permission. |
25 | |
26 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
27 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
28 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
29 | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
30 | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
31 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
32 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
33 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
34 | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
35 | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
36 | POSSIBILITY OF SUCH DAMAGE. |
37 | ----------------------------------------------------------------------------- |
38 | */ |
39 | |
40 | |
41 | /* This module contains the external function pcre_compile(), along with |
42 | supporting internal functions that are not used by other modules. */ |
43 | |
44 | |
45 | #ifdef HAVE_CONFIG_H |
46 | #include "config.h" |
47 | #endif |
48 | |
49 | #define NLBLOCK cd /* Block containing newline information */ |
50 | #define PSSTART start_pattern /* Field containing processed string start */ |
51 | #define PSEND end_pattern /* Field containing processed string end */ |
52 | |
53 | #include "pcre_internal.h" |
54 | |
55 | |
56 | /* When PCRE_DEBUG is defined, we need the pcre(16|32)_printint() function, which |
57 | is also used by pcretest. PCRE_DEBUG is not defined when building a production |
58 | library. We do not need to select pcre16_printint.c specially, because the |
59 | COMPILE_PCREx macro will already be appropriately set. */ |
60 | |
61 | #ifdef PCRE_DEBUG |
62 | /* pcre_printint.c should not include any headers */ |
63 | #define PCRE_INCLUDED |
64 | #include "pcre_printint.c" |
65 | #undef PCRE_INCLUDED |
66 | #endif |
67 | |
68 | |
69 | /* Macro for setting individual bits in class bitmaps. */ |
70 | |
71 | #define SETBIT(a,b) a[(b)/8] |= (1 << ((b)&7)) |
72 | |
73 | /* Maximum length value to check against when making sure that the integer that |
74 | holds the compiled pattern length does not overflow. We make it a bit less than |
75 | INT_MAX to allow for adding in group terminating bytes, so that we don't have |
76 | to check them every time. */ |
77 | |
78 | #define OFLOW_MAX (INT_MAX - 20) |
79 | |
80 | /* Definitions to allow mutual recursion */ |
81 | |
82 | static int |
83 | add_list_to_class(pcre_uint8 *, pcre_uchar **, int, compile_data *, |
84 | const pcre_uint32 *, unsigned int); |
85 | |
86 | static BOOL |
87 | compile_regex(int, pcre_uchar **, const pcre_uchar **, int *, BOOL, BOOL, |
88 | int, int, int *, int *, branch_chain *, compile_data *, int *); |
89 | |
90 | |
91 | |
92 | /************************************************* |
93 | * Code parameters and static tables * |
94 | *************************************************/ |
95 | |
96 | /* This value specifies the size of stack workspace that is used during the |
97 | first pre-compile phase that determines how much memory is required. The regex |
98 | is partly compiled into this space, but the compiled parts are discarded as |
99 | soon as they can be, so that hopefully there will never be an overrun. The code |
100 | does, however, check for an overrun. The largest amount I've seen used is 218, |
101 | so this number is very generous. |
102 | |
103 | The same workspace is used during the second, actual compile phase for |
104 | remembering forward references to groups so that they can be filled in at the |
105 | end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE |
106 | is 4 there is plenty of room for most patterns. However, the memory can get |
107 | filled up by repetitions of forward references, for example patterns like |
108 | /(?1){0,1999}(b)/, and one user did hit the limit. The code has been changed so |
109 | that the workspace is expanded using malloc() in this situation. The value |
110 | below is therefore a minimum, and we put a maximum on it for safety. The |
111 | minimum is now also defined in terms of LINK_SIZE so that the use of malloc() |
112 | kicks in at the same number of forward references in all cases. */ |
113 | |
114 | #define COMPILE_WORK_SIZE (2048*LINK_SIZE) |
115 | #define COMPILE_WORK_SIZE_MAX (100*COMPILE_WORK_SIZE) |
116 | |
117 | /* The overrun tests check for a slightly smaller size so that they detect the |
118 | overrun before it actually does run off the end of the data block. */ |
119 | |
120 | #define WORK_SIZE_SAFETY_MARGIN (100) |
121 | |
122 | /* Private flags added to firstchar and reqchar. */ |
123 | |
124 | #define REQ_CASELESS 0x10000000l /* Indicates caselessness */ |
125 | #define REQ_VARY 0x20000000l /* Reqchar followed non-literal item */ |
126 | #define REQ_MASK (REQ_CASELESS | REQ_VARY) |
127 | |
128 | /* Repeated character flags. */ |
129 | |
130 | #define UTF_LENGTH 0x10000000l /* The char contains its length. */ |
131 | |
132 | /* Table for handling escaped characters in the range '0'-'z'. Positive returns |
133 | are simple data values; negative values are for special things like \d and so |
134 | on. Zero means further processing is needed (for things like \x), or the escape |
135 | is invalid. */ |
136 | |
137 | #ifndef EBCDIC |
138 | |
139 | /* This is the "normal" table for ASCII systems or for EBCDIC systems running |
140 | in UTF-8 mode. */ |
141 | |
142 | static const short int escapes[] = { |
143 | 0, 0, |
144 | 0, 0, |
145 | 0, 0, |
146 | 0, 0, |
147 | 0, 0, |
148 | CHAR_COLON, CHAR_SEMICOLON, |
149 | CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN, |
150 | CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK, |
151 | CHAR_COMMERCIAL_AT, -ESC_A, |
152 | -ESC_B, -ESC_C, |
153 | -ESC_D, -ESC_E, |
154 | 0, -ESC_G, |
155 | -ESC_H, 0, |
156 | 0, -ESC_K, |
157 | 0, 0, |
158 | -ESC_N, 0, |
159 | -ESC_P, -ESC_Q, |
160 | -ESC_R, -ESC_S, |
161 | 0, 0, |
162 | -ESC_V, -ESC_W, |
163 | -ESC_X, 0, |
164 | -ESC_Z, CHAR_LEFT_SQUARE_BRACKET, |
165 | CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET, |
166 | CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE, |
167 | CHAR_GRAVE_ACCENT, 7, |
168 | -ESC_b, 0, |
169 | -ESC_d, ESC_e, |
170 | ESC_f, 0, |
171 | -ESC_h, 0, |
172 | 0, -ESC_k, |
173 | 0, 0, |
174 | ESC_n, 0, |
175 | -ESC_p, 0, |
176 | ESC_r, -ESC_s, |
177 | ESC_tee, 0, |
178 | -ESC_v, -ESC_w, |
179 | 0, 0, |
180 | -ESC_z |
181 | }; |
182 | |
183 | #else |
184 | |
185 | /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */ |
186 | |
187 | static const short int escapes[] = { |
188 | /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|', |
189 | /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0, |
190 | /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~', |
191 | /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0, |
192 | /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?', |
193 | /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0, |
194 | /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"', |
195 | /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, |
196 | /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0, |
197 | /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p, |
198 | /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0, |
199 | /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0, |
200 | /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0, |
201 | /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
202 | /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-', |
203 | /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G, |
204 | /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0, |
205 | /* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P, |
206 | /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0, |
207 | /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X, |
208 | /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0, |
209 | /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
210 | /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0 |
211 | }; |
212 | #endif |
213 | |
214 | |
215 | /* Table of special "verbs" like (*PRUNE). This is a short table, so it is |
216 | searched linearly. Put all the names into a single string, in order to reduce |
217 | the number of relocations when a shared library is dynamically linked. The |
218 | string is built from string macros so that it works in UTF-8 mode on EBCDIC |
219 | platforms. */ |
220 | |
221 | typedef struct verbitem { |
222 | int len; /* Length of verb name */ |
223 | int op; /* Op when no arg, or -1 if arg mandatory */ |
224 | int op_arg; /* Op when arg present, or -1 if not allowed */ |
225 | } verbitem; |
226 | |
227 | static const char verbnames[] = |
228 | "\0" /* Empty name is a shorthand for MARK */ |
229 | STRING_MARK0 |
230 | STRING_ACCEPT0 |
231 | STRING_COMMIT0 |
232 | STRING_F0 |
233 | STRING_FAIL0 |
234 | STRING_PRUNE0 |
235 | STRING_SKIP0 |
236 | STRING_THEN; |
237 | |
238 | static const verbitem verbs[] = { |
239 | { 0, -1, OP_MARK }, |
240 | { 4, -1, OP_MARK }, |
241 | { 6, OP_ACCEPT, -1 }, |
242 | { 6, OP_COMMIT, -1 }, |
243 | { 1, OP_FAIL, -1 }, |
244 | { 4, OP_FAIL, -1 }, |
245 | { 5, OP_PRUNE, OP_PRUNE_ARG }, |
246 | { 4, OP_SKIP, OP_SKIP_ARG }, |
247 | { 4, OP_THEN, OP_THEN_ARG } |
248 | }; |
249 | |
250 | static const int verbcount = sizeof(verbs)/sizeof(verbitem); |
251 | |
252 | |
253 | /* Tables of names of POSIX character classes and their lengths. The names are |
254 | now all in a single string, to reduce the number of relocations when a shared |
255 | library is dynamically loaded. The list of lengths is terminated by a zero |
256 | length entry. The first three must be alpha, lower, upper, as this is assumed |
257 | for handling case independence. */ |
258 | |
259 | static const char posix_names[] = |
260 | STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0 |
261 | STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0 |
262 | STRING_graph0 STRING_print0 STRING_punct0 STRING_space0 |
263 | STRING_word0 STRING_xdigit; |
264 | |
265 | static const pcre_uint8 posix_name_lengths[] = { |
266 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 }; |
267 | |
268 | /* Table of class bit maps for each POSIX class. Each class is formed from a |
269 | base map, with an optional addition or removal of another map. Then, for some |
270 | classes, there is some additional tweaking: for [:blank:] the vertical space |
271 | characters are removed, and for [:alpha:] and [:alnum:] the underscore |
272 | character is removed. The triples in the table consist of the base map offset, |
273 | second map offset or -1 if no second map, and a non-negative value for map |
274 | addition or a negative value for map subtraction (if there are two maps). The |
275 | absolute value of the third field has these meanings: 0 => no tweaking, 1 => |
276 | remove vertical space characters, 2 => remove underscore. */ |
277 | |
278 | static const int posix_class_maps[] = { |
279 | cbit_word, cbit_digit, -2, /* alpha */ |
280 | cbit_lower, -1, 0, /* lower */ |
281 | cbit_upper, -1, 0, /* upper */ |
282 | cbit_word, -1, 2, /* alnum - word without underscore */ |
283 | cbit_print, cbit_cntrl, 0, /* ascii */ |
284 | cbit_space, -1, 1, /* blank - a GNU extension */ |
285 | cbit_cntrl, -1, 0, /* cntrl */ |
286 | cbit_digit, -1, 0, /* digit */ |
287 | cbit_graph, -1, 0, /* graph */ |
288 | cbit_print, -1, 0, /* print */ |
289 | cbit_punct, -1, 0, /* punct */ |
290 | cbit_space, -1, 0, /* space */ |
291 | cbit_word, -1, 0, /* word - a Perl extension */ |
292 | cbit_xdigit,-1, 0 /* xdigit */ |
293 | }; |
294 | |
295 | /* Table of substitutes for \d etc when PCRE_UCP is set. The POSIX class |
296 | substitutes must be in the order of the names, defined above, and there are |
297 | both positive and negative cases. NULL means no substitute. */ |
298 | |
299 | #ifdef SUPPORT_UCP |
300 | static const pcre_uchar string_PNd[] = { |
301 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
302 | CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
303 | static const pcre_uchar string_pNd[] = { |
304 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
305 | CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
306 | static const pcre_uchar string_PXsp[] = { |
307 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
308 | CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
309 | static const pcre_uchar string_pXsp[] = { |
310 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
311 | CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
312 | static const pcre_uchar string_PXwd[] = { |
313 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
314 | CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
315 | static const pcre_uchar string_pXwd[] = { |
316 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
317 | CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
318 | |
319 | static const pcre_uchar *substitutes[] = { |
320 | string_PNd, /* \D */ |
321 | string_pNd, /* \d */ |
322 | string_PXsp, /* \S */ /* NOTE: Xsp is Perl space */ |
323 | string_pXsp, /* \s */ |
324 | string_PXwd, /* \W */ |
325 | string_pXwd /* \w */ |
326 | }; |
327 | |
328 | static const pcre_uchar string_pL[] = { |
329 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
330 | CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
331 | static const pcre_uchar string_pLl[] = { |
332 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
333 | CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
334 | static const pcre_uchar string_pLu[] = { |
335 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
336 | CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
337 | static const pcre_uchar string_pXan[] = { |
338 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
339 | CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
340 | static const pcre_uchar string_h[] = { |
341 | CHAR_BACKSLASH, CHAR_h, '\0' }; |
342 | static const pcre_uchar string_pXps[] = { |
343 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
344 | CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
345 | static const pcre_uchar string_PL[] = { |
346 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
347 | CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
348 | static const pcre_uchar string_PLl[] = { |
349 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
350 | CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
351 | static const pcre_uchar string_PLu[] = { |
352 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
353 | CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
354 | static const pcre_uchar string_PXan[] = { |
355 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
356 | CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
357 | static const pcre_uchar string_H[] = { |
358 | CHAR_BACKSLASH, CHAR_H, '\0' }; |
359 | static const pcre_uchar string_PXps[] = { |
360 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
361 | CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
362 | |
363 | static const pcre_uchar *posix_substitutes[] = { |
364 | string_pL, /* alpha */ |
365 | string_pLl, /* lower */ |
366 | string_pLu, /* upper */ |
367 | string_pXan, /* alnum */ |
368 | NULL, /* ascii */ |
369 | string_h, /* blank */ |
370 | NULL, /* cntrl */ |
371 | string_pNd, /* digit */ |
372 | NULL, /* graph */ |
373 | NULL, /* print */ |
374 | NULL, /* punct */ |
375 | string_pXps, /* space */ /* NOTE: Xps is POSIX space */ |
376 | string_pXwd, /* word */ |
377 | NULL, /* xdigit */ |
378 | /* Negated cases */ |
379 | string_PL, /* ^alpha */ |
380 | string_PLl, /* ^lower */ |
381 | string_PLu, /* ^upper */ |
382 | string_PXan, /* ^alnum */ |
383 | NULL, /* ^ascii */ |
384 | string_H, /* ^blank */ |
385 | NULL, /* ^cntrl */ |
386 | string_PNd, /* ^digit */ |
387 | NULL, /* ^graph */ |
388 | NULL, /* ^print */ |
389 | NULL, /* ^punct */ |
390 | string_PXps, /* ^space */ /* NOTE: Xps is POSIX space */ |
391 | string_PXwd, /* ^word */ |
392 | NULL /* ^xdigit */ |
393 | }; |
394 | #define POSIX_SUBSIZE (sizeof(posix_substitutes) / sizeof(pcre_uchar *)) |
395 | #endif |
396 | |
397 | #define STRING(a) # a |
398 | #define XSTRING(s) STRING(s) |
399 | |
400 | /* The texts of compile-time error messages. These are "char *" because they |
401 | are passed to the outside world. Do not ever re-use any error number, because |
402 | they are documented. Always add a new error instead. Messages marked DEAD below |
403 | are no longer used. This used to be a table of strings, but in order to reduce |
404 | the number of relocations needed when a shared library is loaded dynamically, |
405 | it is now one long string. We cannot use a table of offsets, because the |
406 | lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we |
407 | simply count through to the one we want - this isn't a performance issue |
408 | because these strings are used only when there is a compilation error. |
409 | |
410 | Each substring ends with \0 to insert a null character. This includes the final |
411 | substring, so that the whole string ends with \0\0, which can be detected when |
412 | counting through. */ |
413 | |
414 | static const char error_texts[] = |
415 | "no error\0" |
416 | "\\ at end of pattern\0" |
417 | "\\c at end of pattern\0" |
418 | "unrecognized character follows \\\0" |
419 | "numbers out of order in {} quantifier\0" |
420 | /* 5 */ |
421 | "number too big in {} quantifier\0" |
422 | "missing terminating ] for character class\0" |
423 | "invalid escape sequence in character class\0" |
424 | "range out of order in character class\0" |
425 | "nothing to repeat\0" |
426 | /* 10 */ |
427 | "operand of unlimited repeat could match the empty string\0" /** DEAD **/ |
428 | "internal error: unexpected repeat\0" |
429 | "unrecognized character after (? or (?-\0" |
430 | "POSIX named classes are supported only within a class\0" |
431 | "missing )\0" |
432 | /* 15 */ |
433 | "reference to non-existent subpattern\0" |
434 | "erroffset passed as NULL\0" |
435 | "unknown option bit(s) set\0" |
436 | "missing ) after comment\0" |
437 | "parentheses nested too deeply\0" /** DEAD **/ |
438 | /* 20 */ |
439 | "regular expression is too large\0" |
440 | "failed to get memory\0" |
441 | "unmatched parentheses\0" |
442 | "internal error: code overflow\0" |
443 | "unrecognized character after (?<\0" |
444 | /* 25 */ |
445 | "lookbehind assertion is not fixed length\0" |
446 | "malformed number or name after (?(\0" |
447 | "conditional group contains more than two branches\0" |
448 | "assertion expected after (?(\0" |
449 | "(?R or (?[+-]digits must be followed by )\0" |
450 | /* 30 */ |
451 | "unknown POSIX class name\0" |
452 | "POSIX collating elements are not supported\0" |
453 | "this version of PCRE is compiled without UTF support\0" |
454 | "spare error\0" /** DEAD **/ |
455 | "character value in \\x{...} sequence is too large\0" |
456 | /* 35 */ |
457 | "invalid condition (?(0)\0" |
458 | "\\C not allowed in lookbehind assertion\0" |
459 | "PCRE does not support \\L, \\l, \\N{name}, \\U, or \\u\0" |
460 | "number after (?C is > 255\0" |
461 | "closing ) for (?C expected\0" |
462 | /* 40 */ |
463 | "recursive call could loop indefinitely\0" |
464 | "unrecognized character after (?P\0" |
465 | "syntax error in subpattern name (missing terminator)\0" |
466 | "two named subpatterns have the same name\0" |
467 | "invalid UTF-8 string\0" |
468 | /* 45 */ |
469 | "support for \\P, \\p, and \\X has not been compiled\0" |
470 | "malformed \\P or \\p sequence\0" |
471 | "unknown property name after \\P or \\p\0" |
472 | "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0" |
473 | "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0" |
474 | /* 50 */ |
475 | "repeated subpattern is too long\0" /** DEAD **/ |
476 | "octal value is greater than \\377 in 8-bit non-UTF-8 mode\0" |
477 | "internal error: overran compiling workspace\0" |
478 | "internal error: previously-checked referenced subpattern not found\0" |
479 | "DEFINE group contains more than one branch\0" |
480 | /* 55 */ |
481 | "repeating a DEFINE group is not allowed\0" /** DEAD **/ |
482 | "inconsistent NEWLINE options\0" |
483 | "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0" |
484 | "a numbered reference must not be zero\0" |
485 | "an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0" |
486 | /* 60 */ |
487 | "(*VERB) not recognized\0" |
488 | "number is too big\0" |
489 | "subpattern name expected\0" |
490 | "digit expected after (?+\0" |
491 | "] is an invalid data character in JavaScript compatibility mode\0" |
492 | /* 65 */ |
493 | "different names for subpatterns of the same number are not allowed\0" |
494 | "(*MARK) must have an argument\0" |
495 | "this version of PCRE is not compiled with Unicode property support\0" |
496 | "\\c must be followed by an ASCII character\0" |
497 | "\\k is not followed by a braced, angle-bracketed, or quoted name\0" |
498 | /* 70 */ |
499 | "internal error: unknown opcode in find_fixedlength()\0" |
500 | "\\N is not supported in a class\0" |
501 | "too many forward references\0" |
502 | "disallowed Unicode code point (>= 0xd800 && <= 0xdfff)\0" |
503 | "invalid UTF-16 string\0" |
504 | /* 75 */ |
505 | "name is too long in (*MARK), (*PRUNE), (*SKIP), or (*THEN)\0" |
506 | "character value in \\u.... sequence is too large\0" |
507 | "invalid UTF-32 string\0" |
508 | ; |
509 | |
510 | /* Table to identify digits and hex digits. This is used when compiling |
511 | patterns. Note that the tables in chartables are dependent on the locale, and |
512 | may mark arbitrary characters as digits - but the PCRE compiling code expects |
513 | to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have |
514 | a private table here. It costs 256 bytes, but it is a lot faster than doing |
515 | character value tests (at least in some simple cases I timed), and in some |
516 | applications one wants PCRE to compile efficiently as well as match |
517 | efficiently. |
518 | |
519 | For convenience, we use the same bit definitions as in chartables: |
520 | |
521 | 0x04 decimal digit |
522 | 0x08 hexadecimal digit |
523 | |
524 | Then we can use ctype_digit and ctype_xdigit in the code. */ |
525 | |
526 | /* Using a simple comparison for decimal numbers rather than a memory read |
527 | is much faster, and the resulting code is simpler (the compiler turns it |
528 | into a subtraction and unsigned comparison). */ |
529 | |
530 | #define IS_DIGIT(x) ((x) >= CHAR_0 && (x) <= CHAR_9) |
531 | |
532 | #ifndef EBCDIC |
533 | |
534 | /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in |
535 | UTF-8 mode. */ |
536 | |
537 | static const pcre_uint8 digitab[] = |
538 | { |
539 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */ |
540 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
541 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */ |
542 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
543 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */ |
544 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */ |
545 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */ |
546 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */ |
547 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */ |
548 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */ |
549 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */ |
550 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */ |
551 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */ |
552 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */ |
553 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */ |
554 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */ |
555 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */ |
556 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */ |
557 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */ |
558 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */ |
559 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */ |
560 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */ |
561 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */ |
562 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
563 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */ |
564 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */ |
565 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */ |
566 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */ |
567 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */ |
568 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */ |
569 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */ |
570 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */ |
571 | |
572 | #else |
573 | |
574 | /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */ |
575 | |
576 | static const pcre_uint8 digitab[] = |
577 | { |
578 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */ |
579 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
580 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */ |
581 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
582 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */ |
583 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
584 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */ |
585 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
586 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */ |
587 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */ |
588 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */ |
589 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */ |
590 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */ |
591 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */ |
592 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */ |
593 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
594 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */ |
595 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
596 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */ |
597 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
598 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */ |
599 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
600 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */ |
601 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
602 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */ |
603 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
604 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */ |
605 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
606 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */ |
607 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
608 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */ |
609 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
610 | |
611 | static const pcre_uint8 ebcdic_chartab[] = { /* chartable partial dup */ |
612 | 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */ |
613 | 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */ |
614 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */ |
615 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
616 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */ |
617 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
618 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */ |
619 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
620 | 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */ |
621 | 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */ |
622 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */ |
623 | 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */ |
624 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */ |
625 | 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */ |
626 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */ |
627 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
628 | 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */ |
629 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
630 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */ |
631 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
632 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */ |
633 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
634 | 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */ |
635 | 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
636 | 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */ |
637 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
638 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */ |
639 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
640 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */ |
641 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
642 | 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */ |
643 | 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
644 | #endif |
645 | |
646 | |
647 | |
648 | |
649 | /************************************************* |
650 | * Find an error text * |
651 | *************************************************/ |
652 | |
653 | /* The error texts are now all in one long string, to save on relocations. As |
654 | some of the text is of unknown length, we can't use a table of offsets. |
655 | Instead, just count through the strings. This is not a performance issue |
656 | because it happens only when there has been a compilation error. |
657 | |
658 | Argument: the error number |
659 | Returns: pointer to the error string |
660 | */ |
661 | |
662 | static const char * |
663 | find_error_text(int n) |
664 | { |
665 | const char *s = error_texts; |
666 | for (; n > 0; n--) |
667 | { |
668 | while (*s++ != 0) {}; |
669 | if (*s == 0) return "Error text not found (please report)"; |
670 | } |
671 | return s; |
672 | } |
673 | |
674 | |
675 | /************************************************* |
676 | * Expand the workspace * |
677 | *************************************************/ |
678 | |
679 | /* This function is called during the second compiling phase, if the number of |
680 | forward references fills the existing workspace, which is originally a block on |
681 | the stack. A larger block is obtained from malloc() unless the ultimate limit |
682 | has been reached or the increase will be rather small. |
683 | |
684 | Argument: pointer to the compile data block |
685 | Returns: 0 if all went well, else an error number |
686 | */ |
687 | |
688 | static int |
689 | expand_workspace(compile_data *cd) |
690 | { |
691 | pcre_uchar *newspace; |
692 | int newsize = cd->workspace_size * 2; |
693 | |
694 | if (newsize > COMPILE_WORK_SIZE_MAX) newsize = COMPILE_WORK_SIZE_MAX; |
695 | if (cd->workspace_size >= COMPILE_WORK_SIZE_MAX || |
696 | newsize - cd->workspace_size < WORK_SIZE_SAFETY_MARGIN) |
697 | return ERR72; |
698 | |
699 | newspace = (PUBL(malloc))(IN_UCHARS(newsize)); |
700 | if (newspace == NULL) return ERR21; |
701 | memcpy(newspace, cd->start_workspace, cd->workspace_size * sizeof(pcre_uchar)); |
702 | cd->hwm = (pcre_uchar *)newspace + (cd->hwm - cd->start_workspace); |
703 | if (cd->workspace_size > COMPILE_WORK_SIZE) |
704 | (PUBL(free))((void *)cd->start_workspace); |
705 | cd->start_workspace = newspace; |
706 | cd->workspace_size = newsize; |
707 | return 0; |
708 | } |
709 | |
710 | |
711 | |
712 | /************************************************* |
713 | * Check for counted repeat * |
714 | *************************************************/ |
715 | |
716 | /* This function is called when a '{' is encountered in a place where it might |
717 | start a quantifier. It looks ahead to see if it really is a quantifier or not. |
718 | It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd} |
719 | where the ddds are digits. |
720 | |
721 | Arguments: |
722 | p pointer to the first char after '{' |
723 | |
724 | Returns: TRUE or FALSE |
725 | */ |
726 | |
727 | static BOOL |
728 | is_counted_repeat(const pcre_uchar *p) |
729 | { |
730 | if (!IS_DIGIT(*p)) return FALSE; |
731 | p++; |
732 | while (IS_DIGIT(*p)) p++; |
733 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
734 | |
735 | if (*p++ != CHAR_COMMA) return FALSE; |
736 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
737 | |
738 | if (!IS_DIGIT(*p)) return FALSE; |
739 | p++; |
740 | while (IS_DIGIT(*p)) p++; |
741 | |
742 | return (*p == CHAR_RIGHT_CURLY_BRACKET); |
743 | } |
744 | |
745 | |
746 | |
747 | /************************************************* |
748 | * Handle escapes * |
749 | *************************************************/ |
750 | |
751 | /* This function is called when a \ has been encountered. It either returns a |
752 | positive value for a simple escape such as \n, or a negative value which |
753 | encodes one of the more complicated things such as \d. A backreference to group |
754 | n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When |
755 | UTF-8 is enabled, a positive value greater than 255 may be returned. On entry, |
756 | ptr is pointing at the \. On exit, it is on the final character of the escape |
757 | sequence. |
758 | |
759 | Arguments: |
760 | ptrptr points to the pattern position pointer |
761 | errorcodeptr points to the errorcode variable |
762 | bracount number of previous extracting brackets |
763 | options the options bits |
764 | isclass TRUE if inside a character class |
765 | |
766 | Returns: zero or positive => a data character |
767 | negative => a special escape sequence |
768 | on error, errorcodeptr is set |
769 | */ |
770 | |
771 | static int |
772 | check_escape(const pcre_uchar **ptrptr, int *errorcodeptr, int bracount, |
773 | int options, BOOL isclass) |
774 | { |
775 | /* PCRE_UTF16 has the same value as PCRE_UTF8. */ |
776 | BOOL utf = (options & PCRE_UTF8) != 0; |
777 | const pcre_uchar *ptr = *ptrptr + 1; |
778 | pcre_int32 c; |
779 | int i; |
780 | |
781 | GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */ |
782 | ptr--; /* Set pointer back to the last byte */ |
783 | |
784 | /* If backslash is at the end of the pattern, it's an error. */ |
785 | |
786 | if (c == 0) *errorcodeptr = ERR1; |
787 | |
788 | /* Non-alphanumerics are literals. For digits or letters, do an initial lookup |
789 | in a table. A non-zero result is something that can be returned immediately. |
790 | Otherwise further processing may be required. */ |
791 | |
792 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
793 | /* Not alphanumeric */ |
794 | else if (c < CHAR_0 || c > CHAR_z) {} |
795 | else if ((i = escapes[c - CHAR_0]) != 0) c = i; |
796 | |
797 | #else /* EBCDIC coding */ |
798 | /* Not alphanumeric */ |
799 | else if (c < CHAR_a || (!MAX_255(c) || (ebcdic_chartab[c] & 0x0E) == 0)) {} |
800 | else if ((i = escapes[c - 0x48]) != 0) c = i; |
801 | #endif |
802 | |
803 | /* Escapes that need further processing, or are illegal. */ |
804 | |
805 | else |
806 | { |
807 | const pcre_uchar *oldptr; |
808 | BOOL braced, negated; |
809 | |
810 | switch (c) |
811 | { |
812 | /* A number of Perl escapes are not handled by PCRE. We give an explicit |
813 | error. */ |
814 | |
815 | case CHAR_l: |
816 | case CHAR_L: |
817 | *errorcodeptr = ERR37; |
818 | break; |
819 | |
820 | case CHAR_u: |
821 | if ((options & PCRE_JAVASCRIPT_COMPAT) != 0) |
822 | { |
823 | /* In JavaScript, \u must be followed by four hexadecimal numbers. |
824 | Otherwise it is a lowercase u letter. */ |
825 | if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0 |
826 | && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0 |
827 | && MAX_255(ptr[3]) && (digitab[ptr[3]] & ctype_xdigit) != 0 |
828 | && MAX_255(ptr[4]) && (digitab[ptr[4]] & ctype_xdigit) != 0) |
829 | { |
830 | c = 0; |
831 | for (i = 0; i < 4; ++i) |
832 | { |
833 | register int cc = *(++ptr); |
834 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
835 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
836 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
837 | #else /* EBCDIC coding */ |
838 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
839 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
840 | #endif |
841 | } |
842 | |
843 | #if defined COMPILE_PCRE8 |
844 | if (c > (utf ? 0x10ffff : 0xff)) |
845 | #elif defined COMPILE_PCRE16 |
846 | if (c > (utf ? 0x10ffff : 0xffff)) |
847 | #elif defined COMPILE_PCRE32 |
848 | if (utf && c > 0x10ffff) |
849 | #endif |
850 | { |
851 | *errorcodeptr = ERR76; |
852 | } |
853 | else if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73; |
854 | } |
855 | } |
856 | else |
857 | *errorcodeptr = ERR37; |
858 | break; |
859 | |
860 | case CHAR_U: |
861 | /* In JavaScript, \U is an uppercase U letter. */ |
862 | if ((options & PCRE_JAVASCRIPT_COMPAT) == 0) *errorcodeptr = ERR37; |
863 | break; |
864 | |
865 | /* In a character class, \g is just a literal "g". Outside a character |
866 | class, \g must be followed by one of a number of specific things: |
867 | |
868 | (1) A number, either plain or braced. If positive, it is an absolute |
869 | backreference. If negative, it is a relative backreference. This is a Perl |
870 | 5.10 feature. |
871 | |
872 | (2) Perl 5.10 also supports \g{name} as a reference to a named group. This |
873 | is part of Perl's movement towards a unified syntax for back references. As |
874 | this is synonymous with \k{name}, we fudge it up by pretending it really |
875 | was \k. |
876 | |
877 | (3) For Oniguruma compatibility we also support \g followed by a name or a |
878 | number either in angle brackets or in single quotes. However, these are |
879 | (possibly recursive) subroutine calls, _not_ backreferences. Just return |
880 | the -ESC_g code (cf \k). */ |
881 | |
882 | case CHAR_g: |
883 | if (isclass) break; |
884 | if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE) |
885 | { |
886 | c = -ESC_g; |
887 | break; |
888 | } |
889 | |
890 | /* Handle the Perl-compatible cases */ |
891 | |
892 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
893 | { |
894 | const pcre_uchar *p; |
895 | for (p = ptr+2; *p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET; p++) |
896 | if (*p != CHAR_MINUS && !IS_DIGIT(*p)) break; |
897 | if (*p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET) |
898 | { |
899 | c = -ESC_k; |
900 | break; |
901 | } |
902 | braced = TRUE; |
903 | ptr++; |
904 | } |
905 | else braced = FALSE; |
906 | |
907 | if (ptr[1] == CHAR_MINUS) |
908 | { |
909 | negated = TRUE; |
910 | ptr++; |
911 | } |
912 | else negated = FALSE; |
913 | |
914 | /* The integer range is limited by the machine's int representation. */ |
915 | c = 0; |
916 | while (IS_DIGIT(ptr[1])) |
917 | { |
918 | if (((unsigned int)c) > INT_MAX / 10) /* Integer overflow */ |
919 | { |
920 | c = -1; |
921 | break; |
922 | } |
923 | c = c * 10 + *(++ptr) - CHAR_0; |
924 | } |
925 | if (((unsigned int)c) > INT_MAX) /* Integer overflow */ |
926 | { |
927 | while (IS_DIGIT(ptr[1])) |
928 | ptr++; |
929 | *errorcodeptr = ERR61; |
930 | break; |
931 | } |
932 | |
933 | if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET) |
934 | { |
935 | *errorcodeptr = ERR57; |
936 | break; |
937 | } |
938 | |
939 | if (c == 0) |
940 | { |
941 | *errorcodeptr = ERR58; |
942 | break; |
943 | } |
944 | |
945 | if (negated) |
946 | { |
947 | if (c > bracount) |
948 | { |
949 | *errorcodeptr = ERR15; |
950 | break; |
951 | } |
952 | c = bracount - (c - 1); |
953 | } |
954 | |
955 | c = -(ESC_REF + c); |
956 | break; |
957 | |
958 | /* The handling of escape sequences consisting of a string of digits |
959 | starting with one that is not zero is not straightforward. By experiment, |
960 | the way Perl works seems to be as follows: |
961 | |
962 | Outside a character class, the digits are read as a decimal number. If the |
963 | number is less than 10, or if there are that many previous extracting |
964 | left brackets, then it is a back reference. Otherwise, up to three octal |
965 | digits are read to form an escaped byte. Thus \123 is likely to be octal |
966 | 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal |
967 | value is greater than 377, the least significant 8 bits are taken. Inside a |
968 | character class, \ followed by a digit is always an octal number. */ |
969 | |
970 | case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5: |
971 | case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
972 | |
973 | if (!isclass) |
974 | { |
975 | oldptr = ptr; |
976 | /* The integer range is limited by the machine's int representation. */ |
977 | c -= CHAR_0; |
978 | while (IS_DIGIT(ptr[1])) |
979 | { |
980 | if (((unsigned int)c) > INT_MAX / 10) /* Integer overflow */ |
981 | { |
982 | c = -1; |
983 | break; |
984 | } |
985 | c = c * 10 + *(++ptr) - CHAR_0; |
986 | } |
987 | if (((unsigned int)c) > INT_MAX) /* Integer overflow */ |
988 | { |
989 | while (IS_DIGIT(ptr[1])) |
990 | ptr++; |
991 | *errorcodeptr = ERR61; |
992 | break; |
993 | } |
994 | if (c < 10 || c <= bracount) |
995 | { |
996 | c = -(ESC_REF + c); |
997 | break; |
998 | } |
999 | ptr = oldptr; /* Put the pointer back and fall through */ |
1000 | } |
1001 | |
1002 | /* Handle an octal number following \. If the first digit is 8 or 9, Perl |
1003 | generates a binary zero byte and treats the digit as a following literal. |
1004 | Thus we have to pull back the pointer by one. */ |
1005 | |
1006 | if ((c = *ptr) >= CHAR_8) |
1007 | { |
1008 | ptr--; |
1009 | c = 0; |
1010 | break; |
1011 | } |
1012 | |
1013 | /* \0 always starts an octal number, but we may drop through to here with a |
1014 | larger first octal digit. The original code used just to take the least |
1015 | significant 8 bits of octal numbers (I think this is what early Perls used |
1016 | to do). Nowadays we allow for larger numbers in UTF-8 mode and 16-bit mode, |
1017 | but no more than 3 octal digits. */ |
1018 | |
1019 | case CHAR_0: |
1020 | c -= CHAR_0; |
1021 | while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7) |
1022 | c = c * 8 + *(++ptr) - CHAR_0; |
1023 | #ifdef COMPILE_PCRE8 |
1024 | if (!utf && c > 0xff) *errorcodeptr = ERR51; |
1025 | #endif |
1026 | break; |
1027 | |
1028 | /* \x is complicated. \x{ddd} is a character number which can be greater |
1029 | than 0xff in utf or non-8bit mode, but only if the ddd are hex digits. |
1030 | If not, { is treated as a data character. */ |
1031 | |
1032 | case CHAR_x: |
1033 | if ((options & PCRE_JAVASCRIPT_COMPAT) != 0) |
1034 | { |
1035 | /* In JavaScript, \x must be followed by two hexadecimal numbers. |
1036 | Otherwise it is a lowercase x letter. */ |
1037 | if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0 |
1038 | && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0) |
1039 | { |
1040 | c = 0; |
1041 | for (i = 0; i < 2; ++i) |
1042 | { |
1043 | register int cc = *(++ptr); |
1044 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1045 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
1046 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
1047 | #else /* EBCDIC coding */ |
1048 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
1049 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
1050 | #endif |
1051 | } |
1052 | } |
1053 | break; |
1054 | } |
1055 | |
1056 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
1057 | { |
1058 | const pcre_uchar *pt = ptr + 2; |
1059 | |
1060 | c = 0; |
1061 | while (MAX_255(*pt) && (digitab[*pt] & ctype_xdigit) != 0) |
1062 | { |
1063 | register int cc = *pt++; |
1064 | if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */ |
1065 | |
1066 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1067 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
1068 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
1069 | #else /* EBCDIC coding */ |
1070 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
1071 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
1072 | #endif |
1073 | |
1074 | #if defined COMPILE_PCRE8 |
1075 | if (c > (utf ? 0x10ffff : 0xff)) { c = -1; break; } |
1076 | #elif defined COMPILE_PCRE16 |
1077 | if (c > (utf ? 0x10ffff : 0xffff)) { c = -1; break; } |
1078 | #elif defined COMPILE_PCRE32 |
1079 | if (utf && c > 0x10ffff) { c = -1; break; } |
1080 | #endif |
1081 | } |
1082 | |
1083 | if (c < 0) |
1084 | { |
1085 | while (MAX_255(*pt) && (digitab[*pt] & ctype_xdigit) != 0) pt++; |
1086 | *errorcodeptr = ERR34; |
1087 | } |
1088 | |
1089 | if (*pt == CHAR_RIGHT_CURLY_BRACKET) |
1090 | { |
1091 | if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73; |
1092 | ptr = pt; |
1093 | break; |
1094 | } |
1095 | |
1096 | /* If the sequence of hex digits does not end with '}', then we don't |
1097 | recognize this construct; fall through to the normal \x handling. */ |
1098 | } |
1099 | |
1100 | /* Read just a single-byte hex-defined char */ |
1101 | |
1102 | c = 0; |
1103 | while (i++ < 2 && MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0) |
1104 | { |
1105 | int cc; /* Some compilers don't like */ |
1106 | cc = *(++ptr); /* ++ in initializers */ |
1107 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1108 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
1109 | c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
1110 | #else /* EBCDIC coding */ |
1111 | if (cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
1112 | c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
1113 | #endif |
1114 | } |
1115 | break; |
1116 | |
1117 | /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped. |
1118 | An error is given if the byte following \c is not an ASCII character. This |
1119 | coding is ASCII-specific, but then the whole concept of \cx is |
1120 | ASCII-specific. (However, an EBCDIC equivalent has now been added.) */ |
1121 | |
1122 | case CHAR_c: |
1123 | c = *(++ptr); |
1124 | if (c == 0) |
1125 | { |
1126 | *errorcodeptr = ERR2; |
1127 | break; |
1128 | } |
1129 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1130 | if (c > 127) /* Excludes all non-ASCII in either mode */ |
1131 | { |
1132 | *errorcodeptr = ERR68; |
1133 | break; |
1134 | } |
1135 | if (c >= CHAR_a && c <= CHAR_z) c -= 32; |
1136 | c ^= 0x40; |
1137 | #else /* EBCDIC coding */ |
1138 | if (c >= CHAR_a && c <= CHAR_z) c += 64; |
1139 | c ^= 0xC0; |
1140 | #endif |
1141 | break; |
1142 | |
1143 | /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any |
1144 | other alphanumeric following \ is an error if PCRE_EXTRA was set; |
1145 | otherwise, for Perl compatibility, it is a literal. This code looks a bit |
1146 | odd, but there used to be some cases other than the default, and there may |
1147 | be again in future, so I haven't "optimized" it. */ |
1148 | |
1149 | default: |
1150 | if ((options & PCRE_EXTRA) != 0) switch(c) |
1151 | { |
1152 | default: |
1153 | *errorcodeptr = ERR3; |
1154 | break; |
1155 | } |
1156 | break; |
1157 | } |
1158 | } |
1159 | |
1160 | /* Perl supports \N{name} for character names, as well as plain \N for "not |
1161 | newline". PCRE does not support \N{name}. However, it does support |
1162 | quantification such as \N{2,3}. */ |
1163 | |
1164 | if (c == -ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET && |
1165 | !is_counted_repeat(ptr+2)) |
1166 | *errorcodeptr = ERR37; |
1167 | |
1168 | /* If PCRE_UCP is set, we change the values for \d etc. */ |
1169 | |
1170 | if ((options & PCRE_UCP) != 0 && c <= -ESC_D && c >= -ESC_w) |
1171 | c -= (ESC_DU - ESC_D); |
1172 | |
1173 | /* Set the pointer to the final character before returning. */ |
1174 | |
1175 | *ptrptr = ptr; |
1176 | return c; |
1177 | } |
1178 | |
1179 | |
1180 | |
1181 | #ifdef SUPPORT_UCP |
1182 | /************************************************* |
1183 | * Handle \P and \p * |
1184 | *************************************************/ |
1185 | |
1186 | /* This function is called after \P or \p has been encountered, provided that |
1187 | PCRE is compiled with support for Unicode properties. On entry, ptrptr is |
1188 | pointing at the P or p. On exit, it is pointing at the final character of the |
1189 | escape sequence. |
1190 | |
1191 | Argument: |
1192 | ptrptr points to the pattern position pointer |
1193 | negptr points to a boolean that is set TRUE for negation else FALSE |
1194 | dptr points to an int that is set to the detailed property value |
1195 | errorcodeptr points to the error code variable |
1196 | |
1197 | Returns: type value from ucp_type_table, or -1 for an invalid type |
1198 | */ |
1199 | |
1200 | static int |
1201 | get_ucp(const pcre_uchar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr) |
1202 | { |
1203 | int c, i, bot, top; |
1204 | const pcre_uchar *ptr = *ptrptr; |
1205 | pcre_uchar name[32]; |
1206 | |
1207 | c = *(++ptr); |
1208 | if (c == 0) goto ERROR_RETURN; |
1209 | |
1210 | *negptr = FALSE; |
1211 | |
1212 | /* \P or \p can be followed by a name in {}, optionally preceded by ^ for |
1213 | negation. */ |
1214 | |
1215 | if (c == CHAR_LEFT_CURLY_BRACKET) |
1216 | { |
1217 | if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
1218 | { |
1219 | *negptr = TRUE; |
1220 | ptr++; |
1221 | } |
1222 | for (i = 0; i < (int)(sizeof(name) / sizeof(pcre_uchar)) - 1; i++) |
1223 | { |
1224 | c = *(++ptr); |
1225 | if (c == 0) goto ERROR_RETURN; |
1226 | if (c == CHAR_RIGHT_CURLY_BRACKET) break; |
1227 | name[i] = c; |
1228 | } |
1229 | if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN; |
1230 | name[i] = 0; |
1231 | } |
1232 | |
1233 | /* Otherwise there is just one following character */ |
1234 | |
1235 | else |
1236 | { |
1237 | name[0] = c; |
1238 | name[1] = 0; |
1239 | } |
1240 | |
1241 | *ptrptr = ptr; |
1242 | |
1243 | /* Search for a recognized property name using binary chop */ |
1244 | |
1245 | bot = 0; |
1246 | top = PRIV(utt_size); |
1247 | |
1248 | while (bot < top) |
1249 | { |
1250 | i = (bot + top) >> 1; |
1251 | c = STRCMP_UC_C8(name, PRIV(utt_names) + PRIV(utt)[i].name_offset); |
1252 | if (c == 0) |
1253 | { |
1254 | *dptr = PRIV(utt)[i].value; |
1255 | return PRIV(utt)[i].type; |
1256 | } |
1257 | if (c > 0) bot = i + 1; else top = i; |
1258 | } |
1259 | |
1260 | *errorcodeptr = ERR47; |
1261 | *ptrptr = ptr; |
1262 | return -1; |
1263 | |
1264 | ERROR_RETURN: |
1265 | *errorcodeptr = ERR46; |
1266 | *ptrptr = ptr; |
1267 | return -1; |
1268 | } |
1269 | #endif |
1270 | |
1271 | |
1272 | |
1273 | |
1274 | /************************************************* |
1275 | * Read repeat counts * |
1276 | *************************************************/ |
1277 | |
1278 | /* Read an item of the form {n,m} and return the values. This is called only |
1279 | after is_counted_repeat() has confirmed that a repeat-count quantifier exists, |
1280 | so the syntax is guaranteed to be correct, but we need to check the values. |
1281 | |
1282 | Arguments: |
1283 | p pointer to first char after '{' |
1284 | minp pointer to int for min |
1285 | maxp pointer to int for max |
1286 | returned as -1 if no max |
1287 | errorcodeptr points to error code variable |
1288 | |
1289 | Returns: pointer to '}' on success; |
1290 | current ptr on error, with errorcodeptr set non-zero |
1291 | */ |
1292 | |
1293 | static const pcre_uchar * |
1294 | read_repeat_counts(const pcre_uchar *p, int *minp, int *maxp, int *errorcodeptr) |
1295 | { |
1296 | int min = 0; |
1297 | int max = -1; |
1298 | |
1299 | /* Read the minimum value and do a paranoid check: a negative value indicates |
1300 | an integer overflow. */ |
1301 | |
1302 | while (IS_DIGIT(*p)) min = min * 10 + *p++ - CHAR_0; |
1303 | if (min < 0 || min > 65535) |
1304 | { |
1305 | *errorcodeptr = ERR5; |
1306 | return p; |
1307 | } |
1308 | |
1309 | /* Read the maximum value if there is one, and again do a paranoid on its size. |
1310 | Also, max must not be less than min. */ |
1311 | |
1312 | if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else |
1313 | { |
1314 | if (*(++p) != CHAR_RIGHT_CURLY_BRACKET) |
1315 | { |
1316 | max = 0; |
1317 | while(IS_DIGIT(*p)) max = max * 10 + *p++ - CHAR_0; |
1318 | if (max < 0 || max > 65535) |
1319 | { |
1320 | *errorcodeptr = ERR5; |
1321 | return p; |
1322 | } |
1323 | if (max < min) |
1324 | { |
1325 | *errorcodeptr = ERR4; |
1326 | return p; |
1327 | } |
1328 | } |
1329 | } |
1330 | |
1331 | /* Fill in the required variables, and pass back the pointer to the terminating |
1332 | '}'. */ |
1333 | |
1334 | *minp = min; |
1335 | *maxp = max; |
1336 | return p; |
1337 | } |
1338 | |
1339 | |
1340 | |
1341 | /************************************************* |
1342 | * Subroutine for finding forward reference * |
1343 | *************************************************/ |
1344 | |
1345 | /* This recursive function is called only from find_parens() below. The |
1346 | top-level call starts at the beginning of the pattern. All other calls must |
1347 | start at a parenthesis. It scans along a pattern's text looking for capturing |
1348 | subpatterns, and counting them. If it finds a named pattern that matches the |
1349 | name it is given, it returns its number. Alternatively, if the name is NULL, it |
1350 | returns when it reaches a given numbered subpattern. Recursion is used to keep |
1351 | track of subpatterns that reset the capturing group numbers - the (?| feature. |
1352 | |
1353 | This function was originally called only from the second pass, in which we know |
1354 | that if (?< or (?' or (?P< is encountered, the name will be correctly |
1355 | terminated because that is checked in the first pass. There is now one call to |
1356 | this function in the first pass, to check for a recursive back reference by |
1357 | name (so that we can make the whole group atomic). In this case, we need check |
1358 | only up to the current position in the pattern, and that is still OK because |
1359 | and previous occurrences will have been checked. To make this work, the test |
1360 | for "end of pattern" is a check against cd->end_pattern in the main loop, |
1361 | instead of looking for a binary zero. This means that the special first-pass |
1362 | call can adjust cd->end_pattern temporarily. (Checks for binary zero while |
1363 | processing items within the loop are OK, because afterwards the main loop will |
1364 | terminate.) |
1365 | |
1366 | Arguments: |
1367 | ptrptr address of the current character pointer (updated) |
1368 | cd compile background data |
1369 | name name to seek, or NULL if seeking a numbered subpattern |
1370 | lorn name length, or subpattern number if name is NULL |
1371 | xmode TRUE if we are in /x mode |
1372 | utf TRUE if we are in UTF-8 / UTF-16 / UTF-32 mode |
1373 | count pointer to the current capturing subpattern number (updated) |
1374 | |
1375 | Returns: the number of the named subpattern, or -1 if not found |
1376 | */ |
1377 | |
1378 | static int |
1379 | find_parens_sub(pcre_uchar **ptrptr, compile_data *cd, const pcre_uchar *name, int lorn, |
1380 | BOOL xmode, BOOL utf, int *count) |
1381 | { |
1382 | pcre_uchar *ptr = *ptrptr; |
1383 | int start_count = *count; |
1384 | int hwm_count = start_count; |
1385 | BOOL dup_parens = FALSE; |
1386 | |
1387 | /* If the first character is a parenthesis, check on the type of group we are |
1388 | dealing with. The very first call may not start with a parenthesis. */ |
1389 | |
1390 | if (ptr[0] == CHAR_LEFT_PARENTHESIS) |
1391 | { |
1392 | /* Handle specials such as (*SKIP) or (*UTF8) etc. */ |
1393 | |
1394 | if (ptr[1] == CHAR_ASTERISK) ptr += 2; |
1395 | |
1396 | /* Handle a normal, unnamed capturing parenthesis. */ |
1397 | |
1398 | else if (ptr[1] != CHAR_QUESTION_MARK) |
1399 | { |
1400 | *count += 1; |
1401 | if (name == NULL && *count == lorn) return *count; |
1402 | ptr++; |
1403 | } |
1404 | |
1405 | /* All cases now have (? at the start. Remember when we are in a group |
1406 | where the parenthesis numbers are duplicated. */ |
1407 | |
1408 | else if (ptr[2] == CHAR_VERTICAL_LINE) |
1409 | { |
1410 | ptr += 3; |
1411 | dup_parens = TRUE; |
1412 | } |
1413 | |
1414 | /* Handle comments; all characters are allowed until a ket is reached. */ |
1415 | |
1416 | else if (ptr[2] == CHAR_NUMBER_SIGN) |
1417 | { |
1418 | for (ptr += 3; *ptr != 0; ptr++) if (*ptr == CHAR_RIGHT_PARENTHESIS) break; |
1419 | goto FAIL_EXIT; |
1420 | } |
1421 | |
1422 | /* Handle a condition. If it is an assertion, just carry on so that it |
1423 | is processed as normal. If not, skip to the closing parenthesis of the |
1424 | condition (there can't be any nested parens). */ |
1425 | |
1426 | else if (ptr[2] == CHAR_LEFT_PARENTHESIS) |
1427 | { |
1428 | ptr += 2; |
1429 | if (ptr[1] != CHAR_QUESTION_MARK) |
1430 | { |
1431 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
1432 | if (*ptr != 0) ptr++; |
1433 | } |
1434 | } |
1435 | |
1436 | /* Start with (? but not a condition. */ |
1437 | |
1438 | else |
1439 | { |
1440 | ptr += 2; |
1441 | if (*ptr == CHAR_P) ptr++; /* Allow optional P */ |
1442 | |
1443 | /* We have to disambiguate (?<! and (?<= from (?<name> for named groups */ |
1444 | |
1445 | if ((*ptr == CHAR_LESS_THAN_SIGN && ptr[1] != CHAR_EXCLAMATION_MARK && |
1446 | ptr[1] != CHAR_EQUALS_SIGN) || *ptr == CHAR_APOSTROPHE) |
1447 | { |
1448 | int term; |
1449 | const pcre_uchar *thisname; |
1450 | *count += 1; |
1451 | if (name == NULL && *count == lorn) return *count; |
1452 | term = *ptr++; |
1453 | if (term == CHAR_LESS_THAN_SIGN) term = CHAR_GREATER_THAN_SIGN; |
1454 | thisname = ptr; |
1455 | while (*ptr != term) ptr++; |
1456 | if (name != NULL && lorn == ptr - thisname && |
1457 | STRNCMP_UC_UC(name, thisname, lorn) == 0) |
1458 | return *count; |
1459 | term++; |
1460 | } |
1461 | } |
1462 | } |
1463 | |
1464 | /* Past any initial parenthesis handling, scan for parentheses or vertical |
1465 | bars. Stop if we get to cd->end_pattern. Note that this is important for the |
1466 | first-pass call when this value is temporarily adjusted to stop at the current |
1467 | position. So DO NOT change this to a test for binary zero. */ |
1468 | |
1469 | for (; ptr < cd->end_pattern; ptr++) |
1470 | { |
1471 | /* Skip over backslashed characters and also entire \Q...\E */ |
1472 | |
1473 | if (*ptr == CHAR_BACKSLASH) |
1474 | { |
1475 | if (*(++ptr) == 0) goto FAIL_EXIT; |
1476 | if (*ptr == CHAR_Q) for (;;) |
1477 | { |
1478 | while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {}; |
1479 | if (*ptr == 0) goto FAIL_EXIT; |
1480 | if (*(++ptr) == CHAR_E) break; |
1481 | } |
1482 | continue; |
1483 | } |
1484 | |
1485 | /* Skip over character classes; this logic must be similar to the way they |
1486 | are handled for real. If the first character is '^', skip it. Also, if the |
1487 | first few characters (either before or after ^) are \Q\E or \E we skip them |
1488 | too. This makes for compatibility with Perl. Note the use of STR macros to |
1489 | encode "Q\\E" so that it works in UTF-8 on EBCDIC platforms. */ |
1490 | |
1491 | if (*ptr == CHAR_LEFT_SQUARE_BRACKET) |
1492 | { |
1493 | BOOL negate_class = FALSE; |
1494 | for (;;) |
1495 | { |
1496 | if (ptr[1] == CHAR_BACKSLASH) |
1497 | { |
1498 | if (ptr[2] == CHAR_E) |
1499 | ptr+= 2; |
1500 | else if (STRNCMP_UC_C8(ptr + 2, |
1501 | STR_Q STR_BACKSLASH STR_E, 3) == 0) |
1502 | ptr += 4; |
1503 | else |
1504 | break; |
1505 | } |
1506 | else if (!negate_class && ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
1507 | { |
1508 | negate_class = TRUE; |
1509 | ptr++; |
1510 | } |
1511 | else break; |
1512 | } |
1513 | |
1514 | /* If the next character is ']', it is a data character that must be |
1515 | skipped, except in JavaScript compatibility mode. */ |
1516 | |
1517 | if (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET && |
1518 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) == 0) |
1519 | ptr++; |
1520 | |
1521 | while (*(++ptr) != CHAR_RIGHT_SQUARE_BRACKET) |
1522 | { |
1523 | if (*ptr == 0) return -1; |
1524 | if (*ptr == CHAR_BACKSLASH) |
1525 | { |
1526 | if (*(++ptr) == 0) goto FAIL_EXIT; |
1527 | if (*ptr == CHAR_Q) for (;;) |
1528 | { |
1529 | while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {}; |
1530 | if (*ptr == 0) goto FAIL_EXIT; |
1531 | if (*(++ptr) == CHAR_E) break; |
1532 | } |
1533 | continue; |
1534 | } |
1535 | } |
1536 | continue; |
1537 | } |
1538 | |
1539 | /* Skip comments in /x mode */ |
1540 | |
1541 | if (xmode && *ptr == CHAR_NUMBER_SIGN) |
1542 | { |
1543 | ptr++; |
1544 | while (*ptr != 0) |
1545 | { |
1546 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; } |
1547 | ptr++; |
1548 | #ifdef SUPPORT_UTF |
1549 | if (utf) FORWARDCHAR(ptr); |
1550 | #endif |
1551 | } |
1552 | if (*ptr == 0) goto FAIL_EXIT; |
1553 | continue; |
1554 | } |
1555 | |
1556 | /* Check for the special metacharacters */ |
1557 | |
1558 | if (*ptr == CHAR_LEFT_PARENTHESIS) |
1559 | { |
1560 | int rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf, count); |
1561 | if (rc > 0) return rc; |
1562 | if (*ptr == 0) goto FAIL_EXIT; |
1563 | } |
1564 | |
1565 | else if (*ptr == CHAR_RIGHT_PARENTHESIS) |
1566 | { |
1567 | if (dup_parens && *count < hwm_count) *count = hwm_count; |
1568 | goto FAIL_EXIT; |
1569 | } |
1570 | |
1571 | else if (*ptr == CHAR_VERTICAL_LINE && dup_parens) |
1572 | { |
1573 | if (*count > hwm_count) hwm_count = *count; |
1574 | *count = start_count; |
1575 | } |
1576 | } |
1577 | |
1578 | FAIL_EXIT: |
1579 | *ptrptr = ptr; |
1580 | return -1; |
1581 | } |
1582 | |
1583 | |
1584 | |
1585 | |
1586 | /************************************************* |
1587 | * Find forward referenced subpattern * |
1588 | *************************************************/ |
1589 | |
1590 | /* This function scans along a pattern's text looking for capturing |
1591 | subpatterns, and counting them. If it finds a named pattern that matches the |
1592 | name it is given, it returns its number. Alternatively, if the name is NULL, it |
1593 | returns when it reaches a given numbered subpattern. This is used for forward |
1594 | references to subpatterns. We used to be able to start this scan from the |
1595 | current compiling point, using the current count value from cd->bracount, and |
1596 | do it all in a single loop, but the addition of the possibility of duplicate |
1597 | subpattern numbers means that we have to scan from the very start, in order to |
1598 | take account of such duplicates, and to use a recursive function to keep track |
1599 | of the different types of group. |
1600 | |
1601 | Arguments: |
1602 | cd compile background data |
1603 | name name to seek, or NULL if seeking a numbered subpattern |
1604 | lorn name length, or subpattern number if name is NULL |
1605 | xmode TRUE if we are in /x mode |
1606 | utf TRUE if we are in UTF-8 / UTF-16 / UTF-32 mode |
1607 | |
1608 | Returns: the number of the found subpattern, or -1 if not found |
1609 | */ |
1610 | |
1611 | static int |
1612 | find_parens(compile_data *cd, const pcre_uchar *name, int lorn, BOOL xmode, |
1613 | BOOL utf) |
1614 | { |
1615 | pcre_uchar *ptr = (pcre_uchar *)cd->start_pattern; |
1616 | int count = 0; |
1617 | int rc; |
1618 | |
1619 | /* If the pattern does not start with an opening parenthesis, the first call |
1620 | to find_parens_sub() will scan right to the end (if necessary). However, if it |
1621 | does start with a parenthesis, find_parens_sub() will return when it hits the |
1622 | matching closing parens. That is why we have to have a loop. */ |
1623 | |
1624 | for (;;) |
1625 | { |
1626 | rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf, &count); |
1627 | if (rc > 0 || *ptr++ == 0) break; |
1628 | } |
1629 | |
1630 | return rc; |
1631 | } |
1632 | |
1633 | |
1634 | |
1635 | |
1636 | /************************************************* |
1637 | * Find first significant op code * |
1638 | *************************************************/ |
1639 | |
1640 | /* This is called by several functions that scan a compiled expression looking |
1641 | for a fixed first character, or an anchoring op code etc. It skips over things |
1642 | that do not influence this. For some calls, it makes sense to skip negative |
1643 | forward and all backward assertions, and also the \b assertion; for others it |
1644 | does not. |
1645 | |
1646 | Arguments: |
1647 | code pointer to the start of the group |
1648 | skipassert TRUE if certain assertions are to be skipped |
1649 | |
1650 | Returns: pointer to the first significant opcode |
1651 | */ |
1652 | |
1653 | static const pcre_uchar* |
1654 | first_significant_code(const pcre_uchar *code, BOOL skipassert) |
1655 | { |
1656 | for (;;) |
1657 | { |
1658 | switch ((int)*code) |
1659 | { |
1660 | case OP_ASSERT_NOT: |
1661 | case OP_ASSERTBACK: |
1662 | case OP_ASSERTBACK_NOT: |
1663 | if (!skipassert) return code; |
1664 | do code += GET(code, 1); while (*code == OP_ALT); |
1665 | code += PRIV(OP_lengths)[*code]; |
1666 | break; |
1667 | |
1668 | case OP_WORD_BOUNDARY: |
1669 | case OP_NOT_WORD_BOUNDARY: |
1670 | if (!skipassert) return code; |
1671 | /* Fall through */ |
1672 | |
1673 | case OP_CALLOUT: |
1674 | case OP_CREF: |
1675 | case OP_NCREF: |
1676 | case OP_RREF: |
1677 | case OP_NRREF: |
1678 | case OP_DEF: |
1679 | code += PRIV(OP_lengths)[*code]; |
1680 | break; |
1681 | |
1682 | default: |
1683 | return code; |
1684 | } |
1685 | } |
1686 | /* Control never reaches here */ |
1687 | } |
1688 | |
1689 | |
1690 | |
1691 | |
1692 | /************************************************* |
1693 | * Find the fixed length of a branch * |
1694 | *************************************************/ |
1695 | |
1696 | /* Scan a branch and compute the fixed length of subject that will match it, |
1697 | if the length is fixed. This is needed for dealing with backward assertions. |
1698 | In UTF8 mode, the result is in characters rather than bytes. The branch is |
1699 | temporarily terminated with OP_END when this function is called. |
1700 | |
1701 | This function is called when a backward assertion is encountered, so that if it |
1702 | fails, the error message can point to the correct place in the pattern. |
1703 | However, we cannot do this when the assertion contains subroutine calls, |
1704 | because they can be forward references. We solve this by remembering this case |
1705 | and doing the check at the end; a flag specifies which mode we are running in. |
1706 | |
1707 | Arguments: |
1708 | code points to the start of the pattern (the bracket) |
1709 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
1710 | atend TRUE if called when the pattern is complete |
1711 | cd the "compile data" structure |
1712 | |
1713 | Returns: the fixed length, |
1714 | or -1 if there is no fixed length, |
1715 | or -2 if \C was encountered (in UTF-8 mode only) |
1716 | or -3 if an OP_RECURSE item was encountered and atend is FALSE |
1717 | or -4 if an unknown opcode was encountered (internal error) |
1718 | */ |
1719 | |
1720 | static int |
1721 | find_fixedlength(pcre_uchar *code, BOOL utf, BOOL atend, compile_data *cd) |
1722 | { |
1723 | int length = -1; |
1724 | |
1725 | register int branchlength = 0; |
1726 | register pcre_uchar *cc = code + 1 + LINK_SIZE; |
1727 | |
1728 | /* Scan along the opcodes for this branch. If we get to the end of the |
1729 | branch, check the length against that of the other branches. */ |
1730 | |
1731 | for (;;) |
1732 | { |
1733 | int d; |
1734 | pcre_uchar *ce, *cs; |
1735 | register int op = *cc; |
1736 | |
1737 | switch (op) |
1738 | { |
1739 | /* We only need to continue for OP_CBRA (normal capturing bracket) and |
1740 | OP_BRA (normal non-capturing bracket) because the other variants of these |
1741 | opcodes are all concerned with unlimited repeated groups, which of course |
1742 | are not of fixed length. */ |
1743 | |
1744 | case OP_CBRA: |
1745 | case OP_BRA: |
1746 | case OP_ONCE: |
1747 | case OP_ONCE_NC: |
1748 | case OP_COND: |
1749 | d = find_fixedlength(cc + ((op == OP_CBRA)? IMM2_SIZE : 0), utf, atend, cd); |
1750 | if (d < 0) return d; |
1751 | branchlength += d; |
1752 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1753 | cc += 1 + LINK_SIZE; |
1754 | break; |
1755 | |
1756 | /* Reached end of a branch; if it's a ket it is the end of a nested call. |
1757 | If it's ALT it is an alternation in a nested call. An ACCEPT is effectively |
1758 | an ALT. If it is END it's the end of the outer call. All can be handled by |
1759 | the same code. Note that we must not include the OP_KETRxxx opcodes here, |
1760 | because they all imply an unlimited repeat. */ |
1761 | |
1762 | case OP_ALT: |
1763 | case OP_KET: |
1764 | case OP_END: |
1765 | case OP_ACCEPT: |
1766 | case OP_ASSERT_ACCEPT: |
1767 | if (length < 0) length = branchlength; |
1768 | else if (length != branchlength) return -1; |
1769 | if (*cc != OP_ALT) return length; |
1770 | cc += 1 + LINK_SIZE; |
1771 | branchlength = 0; |
1772 | break; |
1773 | |
1774 | /* A true recursion implies not fixed length, but a subroutine call may |
1775 | be OK. If the subroutine is a forward reference, we can't deal with |
1776 | it until the end of the pattern, so return -3. */ |
1777 | |
1778 | case OP_RECURSE: |
1779 | if (!atend) return -3; |
1780 | cs = ce = (pcre_uchar *)cd->start_code + GET(cc, 1); /* Start subpattern */ |
1781 | do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */ |
1782 | if (cc > cs && cc < ce) return -1; /* Recursion */ |
1783 | d = find_fixedlength(cs + IMM2_SIZE, utf, atend, cd); |
1784 | if (d < 0) return d; |
1785 | branchlength += d; |
1786 | cc += 1 + LINK_SIZE; |
1787 | break; |
1788 | |
1789 | /* Skip over assertive subpatterns */ |
1790 | |
1791 | case OP_ASSERT: |
1792 | case OP_ASSERT_NOT: |
1793 | case OP_ASSERTBACK: |
1794 | case OP_ASSERTBACK_NOT: |
1795 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1796 | cc += PRIV(OP_lengths)[*cc]; |
1797 | break; |
1798 | |
1799 | /* Skip over things that don't match chars */ |
1800 | |
1801 | case OP_MARK: |
1802 | case OP_PRUNE_ARG: |
1803 | case OP_SKIP_ARG: |
1804 | case OP_THEN_ARG: |
1805 | cc += cc[1] + PRIV(OP_lengths)[*cc]; |
1806 | break; |
1807 | |
1808 | case OP_CALLOUT: |
1809 | case OP_CIRC: |
1810 | case OP_CIRCM: |
1811 | case OP_CLOSE: |
1812 | case OP_COMMIT: |
1813 | case OP_CREF: |
1814 | case OP_DEF: |
1815 | case OP_DOLL: |
1816 | case OP_DOLLM: |
1817 | case OP_EOD: |
1818 | case OP_EODN: |
1819 | case OP_FAIL: |
1820 | case OP_NCREF: |
1821 | case OP_NRREF: |
1822 | case OP_NOT_WORD_BOUNDARY: |
1823 | case OP_PRUNE: |
1824 | case OP_REVERSE: |
1825 | case OP_RREF: |
1826 | case OP_SET_SOM: |
1827 | case OP_SKIP: |
1828 | case OP_SOD: |
1829 | case OP_SOM: |
1830 | case OP_THEN: |
1831 | case OP_WORD_BOUNDARY: |
1832 | cc += PRIV(OP_lengths)[*cc]; |
1833 | break; |
1834 | |
1835 | /* Handle literal characters */ |
1836 | |
1837 | case OP_CHAR: |
1838 | case OP_CHARI: |
1839 | case OP_NOT: |
1840 | case OP_NOTI: |
1841 | branchlength++; |
1842 | cc += 2; |
1843 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
1844 | if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]); |
1845 | #endif |
1846 | break; |
1847 | |
1848 | /* Handle exact repetitions. The count is already in characters, but we |
1849 | need to skip over a multibyte character in UTF8 mode. */ |
1850 | |
1851 | case OP_EXACT: |
1852 | case OP_EXACTI: |
1853 | case OP_NOTEXACT: |
1854 | case OP_NOTEXACTI: |
1855 | branchlength += GET2(cc,1); |
1856 | cc += 2 + IMM2_SIZE; |
1857 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
1858 | if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]); |
1859 | #endif |
1860 | break; |
1861 | |
1862 | case OP_TYPEEXACT: |
1863 | branchlength += GET2(cc,1); |
1864 | if (cc[1 + IMM2_SIZE] == OP_PROP || cc[1 + IMM2_SIZE] == OP_NOTPROP) |
1865 | cc += 2; |
1866 | cc += 1 + IMM2_SIZE + 1; |
1867 | break; |
1868 | |
1869 | /* Handle single-char matchers */ |
1870 | |
1871 | case OP_PROP: |
1872 | case OP_NOTPROP: |
1873 | cc += 2; |
1874 | /* Fall through */ |
1875 | |
1876 | case OP_HSPACE: |
1877 | case OP_VSPACE: |
1878 | case OP_NOT_HSPACE: |
1879 | case OP_NOT_VSPACE: |
1880 | case OP_NOT_DIGIT: |
1881 | case OP_DIGIT: |
1882 | case OP_NOT_WHITESPACE: |
1883 | case OP_WHITESPACE: |
1884 | case OP_NOT_WORDCHAR: |
1885 | case OP_WORDCHAR: |
1886 | case OP_ANY: |
1887 | case OP_ALLANY: |
1888 | branchlength++; |
1889 | cc++; |
1890 | break; |
1891 | |
1892 | /* The single-byte matcher isn't allowed. This only happens in UTF-8 mode; |
1893 | otherwise \C is coded as OP_ALLANY. */ |
1894 | |
1895 | case OP_ANYBYTE: |
1896 | return -2; |
1897 | |
1898 | /* Check a class for variable quantification */ |
1899 | |
1900 | #if defined SUPPORT_UTF || defined COMPILE_PCRE16 || defined COMPILE_PCRE32 |
1901 | case OP_XCLASS: |
1902 | cc += GET(cc, 1) - PRIV(OP_lengths)[OP_CLASS]; |
1903 | /* Fall through */ |
1904 | #endif |
1905 | |
1906 | case OP_CLASS: |
1907 | case OP_NCLASS: |
1908 | cc += PRIV(OP_lengths)[OP_CLASS]; |
1909 | |
1910 | switch (*cc) |
1911 | { |
1912 | case OP_CRPLUS: |
1913 | case OP_CRMINPLUS: |
1914 | case OP_CRSTAR: |
1915 | case OP_CRMINSTAR: |
1916 | case OP_CRQUERY: |
1917 | case OP_CRMINQUERY: |
1918 | return -1; |
1919 | |
1920 | case OP_CRRANGE: |
1921 | case OP_CRMINRANGE: |
1922 | if (GET2(cc,1) != GET2(cc,1+IMM2_SIZE)) return -1; |
1923 | branchlength += GET2(cc,1); |
1924 | cc += 1 + 2 * IMM2_SIZE; |
1925 | break; |
1926 | |
1927 | default: |
1928 | branchlength++; |
1929 | } |
1930 | break; |
1931 | |
1932 | /* Anything else is variable length */ |
1933 | |
1934 | case OP_ANYNL: |
1935 | case OP_BRAMINZERO: |
1936 | case OP_BRAPOS: |
1937 | case OP_BRAPOSZERO: |
1938 | case OP_BRAZERO: |
1939 | case OP_CBRAPOS: |
1940 | case OP_EXTUNI: |
1941 | case OP_KETRMAX: |
1942 | case OP_KETRMIN: |
1943 | case OP_KETRPOS: |
1944 | case OP_MINPLUS: |
1945 | case OP_MINPLUSI: |
1946 | case OP_MINQUERY: |
1947 | case OP_MINQUERYI: |
1948 | case OP_MINSTAR: |
1949 | case OP_MINSTARI: |
1950 | case OP_MINUPTO: |
1951 | case OP_MINUPTOI: |
1952 | case OP_NOTMINPLUS: |
1953 | case OP_NOTMINPLUSI: |
1954 | case OP_NOTMINQUERY: |
1955 | case OP_NOTMINQUERYI: |
1956 | case OP_NOTMINSTAR: |
1957 | case OP_NOTMINSTARI: |
1958 | case OP_NOTMINUPTO: |
1959 | case OP_NOTMINUPTOI: |
1960 | case OP_NOTPLUS: |
1961 | case OP_NOTPLUSI: |
1962 | case OP_NOTPOSPLUS: |
1963 | case OP_NOTPOSPLUSI: |
1964 | case OP_NOTPOSQUERY: |
1965 | case OP_NOTPOSQUERYI: |
1966 | case OP_NOTPOSSTAR: |
1967 | case OP_NOTPOSSTARI: |
1968 | case OP_NOTPOSUPTO: |
1969 | case OP_NOTPOSUPTOI: |
1970 | case OP_NOTQUERY: |
1971 | case OP_NOTQUERYI: |
1972 | case OP_NOTSTAR: |
1973 | case OP_NOTSTARI: |
1974 | case OP_NOTUPTO: |
1975 | case OP_NOTUPTOI: |
1976 | case OP_PLUS: |
1977 | case OP_PLUSI: |
1978 | case OP_POSPLUS: |
1979 | case OP_POSPLUSI: |
1980 | case OP_POSQUERY: |
1981 | case OP_POSQUERYI: |
1982 | case OP_POSSTAR: |
1983 | case OP_POSSTARI: |
1984 | case OP_POSUPTO: |
1985 | case OP_POSUPTOI: |
1986 | case OP_QUERY: |
1987 | case OP_QUERYI: |
1988 | case OP_REF: |
1989 | case OP_REFI: |
1990 | case OP_SBRA: |
1991 | case OP_SBRAPOS: |
1992 | case OP_SCBRA: |
1993 | case OP_SCBRAPOS: |
1994 | case OP_SCOND: |
1995 | case OP_SKIPZERO: |
1996 | case OP_STAR: |
1997 | case OP_STARI: |
1998 | case OP_TYPEMINPLUS: |
1999 | case OP_TYPEMINQUERY: |
2000 | case OP_TYPEMINSTAR: |
2001 | case OP_TYPEMINUPTO: |
2002 | case OP_TYPEPLUS: |
2003 | case OP_TYPEPOSPLUS: |
2004 | case OP_TYPEPOSQUERY: |
2005 | case OP_TYPEPOSSTAR: |
2006 | case OP_TYPEPOSUPTO: |
2007 | case OP_TYPEQUERY: |
2008 | case OP_TYPESTAR: |
2009 | case OP_TYPEUPTO: |
2010 | case OP_UPTO: |
2011 | case OP_UPTOI: |
2012 | return -1; |
2013 | |
2014 | /* Catch unrecognized opcodes so that when new ones are added they |
2015 | are not forgotten, as has happened in the past. */ |
2016 | |
2017 | default: |
2018 | return -4; |
2019 | } |
2020 | } |
2021 | /* Control never gets here */ |
2022 | } |
2023 | |
2024 | |
2025 | |
2026 | |
2027 | /************************************************* |
2028 | * Scan compiled regex for specific bracket * |
2029 | *************************************************/ |
2030 | |
2031 | /* This little function scans through a compiled pattern until it finds a |
2032 | capturing bracket with the given number, or, if the number is negative, an |
2033 | instance of OP_REVERSE for a lookbehind. The function is global in the C sense |
2034 | so that it can be called from pcre_study() when finding the minimum matching |
2035 | length. |
2036 | |
2037 | Arguments: |
2038 | code points to start of expression |
2039 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
2040 | number the required bracket number or negative to find a lookbehind |
2041 | |
2042 | Returns: pointer to the opcode for the bracket, or NULL if not found |
2043 | */ |
2044 | |
2045 | const pcre_uchar * |
2046 | PRIV(find_bracket)(const pcre_uchar *code, BOOL utf, int number) |
2047 | { |
2048 | for (;;) |
2049 | { |
2050 | register int c = *code; |
2051 | |
2052 | if (c == OP_END) return NULL; |
2053 | |
2054 | /* XCLASS is used for classes that cannot be represented just by a bit |
2055 | map. This includes negated single high-valued characters. The length in |
2056 | the table is zero; the actual length is stored in the compiled code. */ |
2057 | |
2058 | if (c == OP_XCLASS) code += GET(code, 1); |
2059 | |
2060 | /* Handle recursion */ |
2061 | |
2062 | else if (c == OP_REVERSE) |
2063 | { |
2064 | if (number < 0) return (pcre_uchar *)code; |
2065 | code += PRIV(OP_lengths)[c]; |
2066 | } |
2067 | |
2068 | /* Handle capturing bracket */ |
2069 | |
2070 | else if (c == OP_CBRA || c == OP_SCBRA || |
2071 | c == OP_CBRAPOS || c == OP_SCBRAPOS) |
2072 | { |
2073 | int n = GET2(code, 1+LINK_SIZE); |
2074 | if (n == number) return (pcre_uchar *)code; |
2075 | code += PRIV(OP_lengths)[c]; |
2076 | } |
2077 | |
2078 | /* Otherwise, we can get the item's length from the table, except that for |
2079 | repeated character types, we have to test for \p and \P, which have an extra |
2080 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
2081 | must add in its length. */ |
2082 | |
2083 | else |
2084 | { |
2085 | switch(c) |
2086 | { |
2087 | case OP_TYPESTAR: |
2088 | case OP_TYPEMINSTAR: |
2089 | case OP_TYPEPLUS: |
2090 | case OP_TYPEMINPLUS: |
2091 | case OP_TYPEQUERY: |
2092 | case OP_TYPEMINQUERY: |
2093 | case OP_TYPEPOSSTAR: |
2094 | case OP_TYPEPOSPLUS: |
2095 | case OP_TYPEPOSQUERY: |
2096 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2097 | break; |
2098 | |
2099 | case OP_TYPEUPTO: |
2100 | case OP_TYPEMINUPTO: |
2101 | case OP_TYPEEXACT: |
2102 | case OP_TYPEPOSUPTO: |
2103 | if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP) |
2104 | code += 2; |
2105 | break; |
2106 | |
2107 | case OP_MARK: |
2108 | case OP_PRUNE_ARG: |
2109 | case OP_SKIP_ARG: |
2110 | code += code[1]; |
2111 | break; |
2112 | |
2113 | case OP_THEN_ARG: |
2114 | code += code[1]; |
2115 | break; |
2116 | } |
2117 | |
2118 | /* Add in the fixed length from the table */ |
2119 | |
2120 | code += PRIV(OP_lengths)[c]; |
2121 | |
2122 | /* In UTF-8 mode, opcodes that are followed by a character may be followed by |
2123 | a multi-byte character. The length in the table is a minimum, so we have to |
2124 | arrange to skip the extra bytes. */ |
2125 | |
2126 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
2127 | if (utf) switch(c) |
2128 | { |
2129 | case OP_CHAR: |
2130 | case OP_CHARI: |
2131 | case OP_EXACT: |
2132 | case OP_EXACTI: |
2133 | case OP_UPTO: |
2134 | case OP_UPTOI: |
2135 | case OP_MINUPTO: |
2136 | case OP_MINUPTOI: |
2137 | case OP_POSUPTO: |
2138 | case OP_POSUPTOI: |
2139 | case OP_STAR: |
2140 | case OP_STARI: |
2141 | case OP_MINSTAR: |
2142 | case OP_MINSTARI: |
2143 | case OP_POSSTAR: |
2144 | case OP_POSSTARI: |
2145 | case OP_PLUS: |
2146 | case OP_PLUSI: |
2147 | case OP_MINPLUS: |
2148 | case OP_MINPLUSI: |
2149 | case OP_POSPLUS: |
2150 | case OP_POSPLUSI: |
2151 | case OP_QUERY: |
2152 | case OP_QUERYI: |
2153 | case OP_MINQUERY: |
2154 | case OP_MINQUERYI: |
2155 | case OP_POSQUERY: |
2156 | case OP_POSQUERYI: |
2157 | if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]); |
2158 | break; |
2159 | } |
2160 | #else |
2161 | (void)(utf); /* Keep compiler happy by referencing function argument */ |
2162 | #endif |
2163 | } |
2164 | } |
2165 | } |
2166 | |
2167 | |
2168 | |
2169 | /************************************************* |
2170 | * Scan compiled regex for recursion reference * |
2171 | *************************************************/ |
2172 | |
2173 | /* This little function scans through a compiled pattern until it finds an |
2174 | instance of OP_RECURSE. |
2175 | |
2176 | Arguments: |
2177 | code points to start of expression |
2178 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
2179 | |
2180 | Returns: pointer to the opcode for OP_RECURSE, or NULL if not found |
2181 | */ |
2182 | |
2183 | static const pcre_uchar * |
2184 | find_recurse(const pcre_uchar *code, BOOL utf) |
2185 | { |
2186 | for (;;) |
2187 | { |
2188 | register int c = *code; |
2189 | if (c == OP_END) return NULL; |
2190 | if (c == OP_RECURSE) return code; |
2191 | |
2192 | /* XCLASS is used for classes that cannot be represented just by a bit |
2193 | map. This includes negated single high-valued characters. The length in |
2194 | the table is zero; the actual length is stored in the compiled code. */ |
2195 | |
2196 | if (c == OP_XCLASS) code += GET(code, 1); |
2197 | |
2198 | /* Otherwise, we can get the item's length from the table, except that for |
2199 | repeated character types, we have to test for \p and \P, which have an extra |
2200 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
2201 | must add in its length. */ |
2202 | |
2203 | else |
2204 | { |
2205 | switch(c) |
2206 | { |
2207 | case OP_TYPESTAR: |
2208 | case OP_TYPEMINSTAR: |
2209 | case OP_TYPEPLUS: |
2210 | case OP_TYPEMINPLUS: |
2211 | case OP_TYPEQUERY: |
2212 | case OP_TYPEMINQUERY: |
2213 | case OP_TYPEPOSSTAR: |
2214 | case OP_TYPEPOSPLUS: |
2215 | case OP_TYPEPOSQUERY: |
2216 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2217 | break; |
2218 | |
2219 | case OP_TYPEPOSUPTO: |
2220 | case OP_TYPEUPTO: |
2221 | case OP_TYPEMINUPTO: |
2222 | case OP_TYPEEXACT: |
2223 | if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP) |
2224 | code += 2; |
2225 | break; |
2226 | |
2227 | case OP_MARK: |
2228 | case OP_PRUNE_ARG: |
2229 | case OP_SKIP_ARG: |
2230 | code += code[1]; |
2231 | break; |
2232 | |
2233 | case OP_THEN_ARG: |
2234 | code += code[1]; |
2235 | break; |
2236 | } |
2237 | |
2238 | /* Add in the fixed length from the table */ |
2239 | |
2240 | code += PRIV(OP_lengths)[c]; |
2241 | |
2242 | /* In UTF-8 mode, opcodes that are followed by a character may be followed |
2243 | by a multi-byte character. The length in the table is a minimum, so we have |
2244 | to arrange to skip the extra bytes. */ |
2245 | |
2246 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
2247 | if (utf) switch(c) |
2248 | { |
2249 | case OP_CHAR: |
2250 | case OP_CHARI: |
2251 | case OP_NOT: |
2252 | case OP_NOTI: |
2253 | case OP_EXACT: |
2254 | case OP_EXACTI: |
2255 | case OP_NOTEXACT: |
2256 | case OP_NOTEXACTI: |
2257 | case OP_UPTO: |
2258 | case OP_UPTOI: |
2259 | case OP_NOTUPTO: |
2260 | case OP_NOTUPTOI: |
2261 | case OP_MINUPTO: |
2262 | case OP_MINUPTOI: |
2263 | case OP_NOTMINUPTO: |
2264 | case OP_NOTMINUPTOI: |
2265 | case OP_POSUPTO: |
2266 | case OP_POSUPTOI: |
2267 | case OP_NOTPOSUPTO: |
2268 | case OP_NOTPOSUPTOI: |
2269 | case OP_STAR: |
2270 | case OP_STARI: |
2271 | case OP_NOTSTAR: |
2272 | case OP_NOTSTARI: |
2273 | case OP_MINSTAR: |
2274 | case OP_MINSTARI: |
2275 | case OP_NOTMINSTAR: |
2276 | case OP_NOTMINSTARI: |
2277 | case OP_POSSTAR: |
2278 | case OP_POSSTARI: |
2279 | case OP_NOTPOSSTAR: |
2280 | case OP_NOTPOSSTARI: |
2281 | case OP_PLUS: |
2282 | case OP_PLUSI: |
2283 | case OP_NOTPLUS: |
2284 | case OP_NOTPLUSI: |
2285 | case OP_MINPLUS: |
2286 | case OP_MINPLUSI: |
2287 | case OP_NOTMINPLUS: |
2288 | case OP_NOTMINPLUSI: |
2289 | case OP_POSPLUS: |
2290 | case OP_POSPLUSI: |
2291 | case OP_NOTPOSPLUS: |
2292 | case OP_NOTPOSPLUSI: |
2293 | case OP_QUERY: |
2294 | case OP_QUERYI: |
2295 | case OP_NOTQUERY: |
2296 | case OP_NOTQUERYI: |
2297 | case OP_MINQUERY: |
2298 | case OP_MINQUERYI: |
2299 | case OP_NOTMINQUERY: |
2300 | case OP_NOTMINQUERYI: |
2301 | case OP_POSQUERY: |
2302 | case OP_POSQUERYI: |
2303 | case OP_NOTPOSQUERY: |
2304 | case OP_NOTPOSQUERYI: |
2305 | if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]); |
2306 | break; |
2307 | } |
2308 | #else |
2309 | (void)(utf); /* Keep compiler happy by referencing function argument */ |
2310 | #endif |
2311 | } |
2312 | } |
2313 | } |
2314 | |
2315 | |
2316 | |
2317 | /************************************************* |
2318 | * Scan compiled branch for non-emptiness * |
2319 | *************************************************/ |
2320 | |
2321 | /* This function scans through a branch of a compiled pattern to see whether it |
2322 | can match the empty string or not. It is called from could_be_empty() |
2323 | below and from compile_branch() when checking for an unlimited repeat of a |
2324 | group that can match nothing. Note that first_significant_code() skips over |
2325 | backward and negative forward assertions when its final argument is TRUE. If we |
2326 | hit an unclosed bracket, we return "empty" - this means we've struck an inner |
2327 | bracket whose current branch will already have been scanned. |
2328 | |
2329 | Arguments: |
2330 | code points to start of search |
2331 | endcode points to where to stop |
2332 | utf TRUE if in UTF-8 / UTF-16 / UTF-32 mode |
2333 | cd contains pointers to tables etc. |
2334 | |
2335 | Returns: TRUE if what is matched could be empty |
2336 | */ |
2337 | |
2338 | static BOOL |
2339 | could_be_empty_branch(const pcre_uchar *code, const pcre_uchar *endcode, |
2340 | BOOL utf, compile_data *cd) |
2341 | { |
2342 | register int c; |
2343 | for (code = first_significant_code(code + PRIV(OP_lengths)[*code], TRUE); |
2344 | code < endcode; |
2345 | code = first_significant_code(code + PRIV(OP_lengths)[c], TRUE)) |
2346 | { |
2347 | const pcre_uchar *ccode; |
2348 | |
2349 | c = *code; |
2350 | |
2351 | /* Skip over forward assertions; the other assertions are skipped by |
2352 | first_significant_code() with a TRUE final argument. */ |
2353 | |
2354 | if (c == OP_ASSERT) |
2355 | { |
2356 | do code += GET(code, 1); while (*code == OP_ALT); |
2357 | c = *code; |
2358 | continue; |
2359 | } |
2360 | |
2361 | /* For a recursion/subroutine call, if its end has been reached, which |
2362 | implies a backward reference subroutine call, we can scan it. If it's a |
2363 | forward reference subroutine call, we can't. To detect forward reference |
2364 | we have to scan up the list that is kept in the workspace. This function is |
2365 | called only when doing the real compile, not during the pre-compile that |
2366 | measures the size of the compiled pattern. */ |
2367 | |
2368 | if (c == OP_RECURSE) |
2369 | { |
2370 | const pcre_uchar *scode; |
2371 | BOOL empty_branch; |
2372 | |
2373 | /* Test for forward reference */ |
2374 | |
2375 | for (scode = cd->start_workspace; scode < cd->hwm; scode += LINK_SIZE) |
2376 | if (GET(scode, 0) == code + 1 - cd->start_code) return TRUE; |
2377 | |
2378 | /* Not a forward reference, test for completed backward reference */ |
2379 | |
2380 | empty_branch = FALSE; |
2381 | scode = cd->start_code + GET(code, 1); |
2382 | if (GET(scode, 1) == 0) return TRUE; /* Unclosed */ |
2383 | |
2384 | /* Completed backwards reference */ |
2385 | |
2386 | do |
2387 | { |
2388 | if (could_be_empty_branch(scode, endcode, utf, cd)) |
2389 | { |
2390 | empty_branch = TRUE; |
2391 | break; |
2392 | } |
2393 | scode += GET(scode, 1); |
2394 | } |
2395 | while (*scode == OP_ALT); |
2396 | |
2397 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
2398 | continue; |
2399 | } |
2400 | |
2401 | /* Groups with zero repeats can of course be empty; skip them. */ |
2402 | |
2403 | if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO || |
2404 | c == OP_BRAPOSZERO) |
2405 | { |
2406 | code += PRIV(OP_lengths)[c]; |
2407 | do code += GET(code, 1); while (*code == OP_ALT); |
2408 | c = *code; |
2409 | continue; |
2410 | } |
2411 | |
2412 | /* A nested group that is already marked as "could be empty" can just be |
2413 | skipped. */ |
2414 | |
2415 | if (c == OP_SBRA || c == OP_SBRAPOS || |
2416 | c == OP_SCBRA || c == OP_SCBRAPOS) |
2417 | { |
2418 | do code += GET(code, 1); while (*code == OP_ALT); |
2419 | c = *code; |
2420 | continue; |
2421 | } |
2422 | |
2423 | /* For other groups, scan the branches. */ |
2424 | |
2425 | if (c == OP_BRA || c == OP_BRAPOS || |
2426 | c == OP_CBRA || c == OP_CBRAPOS || |
2427 | c == OP_ONCE || c == OP_ONCE_NC || |
2428 | c == OP_COND) |
2429 | { |
2430 | BOOL empty_branch; |
2431 | if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */ |
2432 | |
2433 | /* If a conditional group has only one branch, there is a second, implied, |
2434 | empty branch, so just skip over the conditional, because it could be empty. |
2435 | Otherwise, scan the individual branches of the group. */ |
2436 | |
2437 | if (c == OP_COND && code[GET(code, 1)] != OP_ALT) |
2438 | code += GET(code, 1); |
2439 | else |
2440 | { |
2441 | empty_branch = FALSE; |
2442 | do |
2443 | { |
2444 | if (!empty_branch && could_be_empty_branch(code, endcode, utf, cd)) |
2445 | empty_branch = TRUE; |
2446 | code += GET(code, 1); |
2447 | } |
2448 | while (*code == OP_ALT); |
2449 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
2450 | } |
2451 | |
2452 | c = *code; |
2453 | continue; |
2454 | } |
2455 | |
2456 | /* Handle the other opcodes */ |
2457 | |
2458 | switch (c) |
2459 | { |
2460 | /* Check for quantifiers after a class. XCLASS is used for classes that |
2461 | cannot be represented just by a bit map. This includes negated single |
2462 | high-valued characters. The length in PRIV(OP_lengths)[] is zero; the |
2463 | actual length is stored in the compiled code, so we must update "code" |
2464 | here. */ |
2465 | |
2466 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
2467 | case OP_XCLASS: |
2468 | ccode = code += GET(code, 1); |
2469 | goto CHECK_CLASS_REPEAT; |
2470 | #endif |
2471 | |
2472 | case OP_CLASS: |
2473 | case OP_NCLASS: |
2474 | ccode = code + PRIV(OP_lengths)[OP_CLASS]; |
2475 | |
2476 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
2477 | CHECK_CLASS_REPEAT: |
2478 | #endif |
2479 | |
2480 | switch (*ccode) |
2481 | { |
2482 | case OP_CRSTAR: /* These could be empty; continue */ |
2483 | case OP_CRMINSTAR: |
2484 | case OP_CRQUERY: |
2485 | case OP_CRMINQUERY: |
2486 | break; |
2487 | |
2488 | default: /* Non-repeat => class must match */ |
2489 | case OP_CRPLUS: /* These repeats aren't empty */ |
2490 | case OP_CRMINPLUS: |
2491 | return FALSE; |
2492 | |
2493 | case OP_CRRANGE: |
2494 | case OP_CRMINRANGE: |
2495 | if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */ |
2496 | break; |
2497 | } |
2498 | break; |
2499 | |
2500 | /* Opcodes that must match a character */ |
2501 | |
2502 | case OP_PROP: |
2503 | case OP_NOTPROP: |
2504 | case OP_EXTUNI: |
2505 | case OP_NOT_DIGIT: |
2506 | case OP_DIGIT: |
2507 | case OP_NOT_WHITESPACE: |
2508 | case OP_WHITESPACE: |
2509 | case OP_NOT_WORDCHAR: |
2510 | case OP_WORDCHAR: |
2511 | case OP_ANY: |
2512 | case OP_ALLANY: |
2513 | case OP_ANYBYTE: |
2514 | case OP_CHAR: |
2515 | case OP_CHARI: |
2516 | case OP_NOT: |
2517 | case OP_NOTI: |
2518 | case OP_PLUS: |
2519 | case OP_MINPLUS: |
2520 | case OP_POSPLUS: |
2521 | case OP_EXACT: |
2522 | case OP_NOTPLUS: |
2523 | case OP_NOTMINPLUS: |
2524 | case OP_NOTPOSPLUS: |
2525 | case OP_NOTEXACT: |
2526 | case OP_TYPEPLUS: |
2527 | case OP_TYPEMINPLUS: |
2528 | case OP_TYPEPOSPLUS: |
2529 | case OP_TYPEEXACT: |
2530 | return FALSE; |
2531 | |
2532 | /* These are going to continue, as they may be empty, but we have to |
2533 | fudge the length for the \p and \P cases. */ |
2534 | |
2535 | case OP_TYPESTAR: |
2536 | case OP_TYPEMINSTAR: |
2537 | case OP_TYPEPOSSTAR: |
2538 | case OP_TYPEQUERY: |
2539 | case OP_TYPEMINQUERY: |
2540 | case OP_TYPEPOSQUERY: |
2541 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2542 | break; |
2543 | |
2544 | /* Same for these */ |
2545 | |
2546 | case OP_TYPEUPTO: |
2547 | case OP_TYPEMINUPTO: |
2548 | case OP_TYPEPOSUPTO: |
2549 | if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP) |
2550 | code += 2; |
2551 | break; |
2552 | |
2553 | /* End of branch */ |
2554 | |
2555 | case OP_KET: |
2556 | case OP_KETRMAX: |
2557 | case OP_KETRMIN: |
2558 | case OP_KETRPOS: |
2559 | case OP_ALT: |
2560 | return TRUE; |
2561 | |
2562 | /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO, |
2563 | MINUPTO, and POSUPTO may be followed by a multibyte character */ |
2564 | |
2565 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
2566 | case OP_STAR: |
2567 | case OP_STARI: |
2568 | case OP_MINSTAR: |
2569 | case OP_MINSTARI: |
2570 | case OP_POSSTAR: |
2571 | case OP_POSSTARI: |
2572 | case OP_QUERY: |
2573 | case OP_QUERYI: |
2574 | case OP_MINQUERY: |
2575 | case OP_MINQUERYI: |
2576 | case OP_POSQUERY: |
2577 | case OP_POSQUERYI: |
2578 | if (utf && HAS_EXTRALEN(code[1])) code += GET_EXTRALEN(code[1]); |
2579 | break; |
2580 | |
2581 | case OP_UPTO: |
2582 | case OP_UPTOI: |
2583 | case OP_MINUPTO: |
2584 | case OP_MINUPTOI: |
2585 | case OP_POSUPTO: |
2586 | case OP_POSUPTOI: |
2587 | if (utf && HAS_EXTRALEN(code[1 + IMM2_SIZE])) code += GET_EXTRALEN(code[1 + IMM2_SIZE]); |
2588 | break; |
2589 | #endif |
2590 | |
2591 | /* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument |
2592 | string. */ |
2593 | |
2594 | case OP_MARK: |
2595 | case OP_PRUNE_ARG: |
2596 | case OP_SKIP_ARG: |
2597 | code += code[1]; |
2598 | break; |
2599 | |
2600 | case OP_THEN_ARG: |
2601 | code += code[1]; |
2602 | break; |
2603 | |
2604 | /* None of the remaining opcodes are required to match a character. */ |
2605 | |
2606 | default: |
2607 | break; |
2608 | } |
2609 | } |
2610 | |
2611 | return TRUE; |
2612 | } |
2613 | |
2614 | |
2615 | |
2616 | /************************************************* |
2617 | * Scan compiled regex for non-emptiness * |
2618 | *************************************************/ |
2619 | |
2620 | /* This function is called to check for left recursive calls. We want to check |
2621 | the current branch of the current pattern to see if it could match the empty |
2622 | string. If it could, we must look outwards for branches at other levels, |
2623 | stopping when we pass beyond the bracket which is the subject of the recursion. |
2624 | This function is called only during the real compile, not during the |
2625 | pre-compile. |
2626 | |
2627 | Arguments: |
2628 | code points to start of the recursion |
2629 | endcode points to where to stop (current RECURSE item) |
2630 | bcptr points to the chain of current (unclosed) branch starts |
2631 | utf TRUE if in UTF-8 / UTF-16 / UTF-32 mode |
2632 | cd pointers to tables etc |
2633 | |
2634 | Returns: TRUE if what is matched could be empty |
2635 | */ |
2636 | |
2637 | static BOOL |
2638 | could_be_empty(const pcre_uchar *code, const pcre_uchar *endcode, |
2639 | branch_chain *bcptr, BOOL utf, compile_data *cd) |
2640 | { |
2641 | while (bcptr != NULL && bcptr->current_branch >= code) |
2642 | { |
2643 | if (!could_be_empty_branch(bcptr->current_branch, endcode, utf, cd)) |
2644 | return FALSE; |
2645 | bcptr = bcptr->outer; |
2646 | } |
2647 | return TRUE; |
2648 | } |
2649 | |
2650 | |
2651 | |
2652 | /************************************************* |
2653 | * Check for POSIX class syntax * |
2654 | *************************************************/ |
2655 | |
2656 | /* This function is called when the sequence "[:" or "[." or "[=" is |
2657 | encountered in a character class. It checks whether this is followed by a |
2658 | sequence of characters terminated by a matching ":]" or ".]" or "=]". If we |
2659 | reach an unescaped ']' without the special preceding character, return FALSE. |
2660 | |
2661 | Originally, this function only recognized a sequence of letters between the |
2662 | terminators, but it seems that Perl recognizes any sequence of characters, |
2663 | though of course unknown POSIX names are subsequently rejected. Perl gives an |
2664 | "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE |
2665 | didn't consider this to be a POSIX class. Likewise for [:1234:]. |
2666 | |
2667 | The problem in trying to be exactly like Perl is in the handling of escapes. We |
2668 | have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX |
2669 | class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code |
2670 | below handles the special case of \], but does not try to do any other escape |
2671 | processing. This makes it different from Perl for cases such as [:l\ower:] |
2672 | where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize |
2673 | "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does, |
2674 | I think. |
2675 | |
2676 | A user pointed out that PCRE was rejecting [:a[:digit:]] whereas Perl was not. |
2677 | It seems that the appearance of a nested POSIX class supersedes an apparent |
2678 | external class. For example, [:a[:digit:]b:] matches "a", "b", ":", or |
2679 | a digit. |
2680 | |
2681 | In Perl, unescaped square brackets may also appear as part of class names. For |
2682 | example, [:a[:abc]b:] gives unknown POSIX class "[:abc]b:]". However, for |
2683 | [:a[:abc]b][b:] it gives unknown POSIX class "[:abc]b][b:]", which does not |
2684 | seem right at all. PCRE does not allow closing square brackets in POSIX class |
2685 | names. |
2686 | |
2687 | Arguments: |
2688 | ptr pointer to the initial [ |
2689 | endptr where to return the end pointer |
2690 | |
2691 | Returns: TRUE or FALSE |
2692 | */ |
2693 | |
2694 | static BOOL |
2695 | check_posix_syntax(const pcre_uchar *ptr, const pcre_uchar **endptr) |
2696 | { |
2697 | int terminator; /* Don't combine these lines; the Solaris cc */ |
2698 | terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */ |
2699 | for (++ptr; *ptr != 0; ptr++) |
2700 | { |
2701 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
2702 | ptr++; |
2703 | else if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE; |
2704 | else |
2705 | { |
2706 | if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
2707 | { |
2708 | *endptr = ptr; |
2709 | return TRUE; |
2710 | } |
2711 | if (*ptr == CHAR_LEFT_SQUARE_BRACKET && |
2712 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
2713 | ptr[1] == CHAR_EQUALS_SIGN) && |
2714 | check_posix_syntax(ptr, endptr)) |
2715 | return FALSE; |
2716 | } |
2717 | } |
2718 | return FALSE; |
2719 | } |
2720 | |
2721 | |
2722 | |
2723 | |
2724 | /************************************************* |
2725 | * Check POSIX class name * |
2726 | *************************************************/ |
2727 | |
2728 | /* This function is called to check the name given in a POSIX-style class entry |
2729 | such as [:alnum:]. |
2730 | |
2731 | Arguments: |
2732 | ptr points to the first letter |
2733 | len the length of the name |
2734 | |
2735 | Returns: a value representing the name, or -1 if unknown |
2736 | */ |
2737 | |
2738 | static int |
2739 | check_posix_name(const pcre_uchar *ptr, int len) |
2740 | { |
2741 | const char *pn = posix_names; |
2742 | register int yield = 0; |
2743 | while (posix_name_lengths[yield] != 0) |
2744 | { |
2745 | if (len == posix_name_lengths[yield] && |
2746 | STRNCMP_UC_C8(ptr, pn, len) == 0) return yield; |
2747 | pn += posix_name_lengths[yield] + 1; |
2748 | yield++; |
2749 | } |
2750 | return -1; |
2751 | } |
2752 | |
2753 | |
2754 | /************************************************* |
2755 | * Adjust OP_RECURSE items in repeated group * |
2756 | *************************************************/ |
2757 | |
2758 | /* OP_RECURSE items contain an offset from the start of the regex to the group |
2759 | that is referenced. This means that groups can be replicated for fixed |
2760 | repetition simply by copying (because the recursion is allowed to refer to |
2761 | earlier groups that are outside the current group). However, when a group is |
2762 | optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is |
2763 | inserted before it, after it has been compiled. This means that any OP_RECURSE |
2764 | items within it that refer to the group itself or any contained groups have to |
2765 | have their offsets adjusted. That one of the jobs of this function. Before it |
2766 | is called, the partially compiled regex must be temporarily terminated with |
2767 | OP_END. |
2768 | |
2769 | This function has been extended with the possibility of forward references for |
2770 | recursions and subroutine calls. It must also check the list of such references |
2771 | for the group we are dealing with. If it finds that one of the recursions in |
2772 | the current group is on this list, it adjusts the offset in the list, not the |
2773 | value in the reference (which is a group number). |
2774 | |
2775 | Arguments: |
2776 | group points to the start of the group |
2777 | adjust the amount by which the group is to be moved |
2778 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
2779 | cd contains pointers to tables etc. |
2780 | save_hwm the hwm forward reference pointer at the start of the group |
2781 | |
2782 | Returns: nothing |
2783 | */ |
2784 | |
2785 | static void |
2786 | adjust_recurse(pcre_uchar *group, int adjust, BOOL utf, compile_data *cd, |
2787 | pcre_uchar *save_hwm) |
2788 | { |
2789 | pcre_uchar *ptr = group; |
2790 | |
2791 | while ((ptr = (pcre_uchar *)find_recurse(ptr, utf)) != NULL) |
2792 | { |
2793 | int offset; |
2794 | pcre_uchar *hc; |
2795 | |
2796 | /* See if this recursion is on the forward reference list. If so, adjust the |
2797 | reference. */ |
2798 | |
2799 | for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE) |
2800 | { |
2801 | offset = GET(hc, 0); |
2802 | if (cd->start_code + offset == ptr + 1) |
2803 | { |
2804 | PUT(hc, 0, offset + adjust); |
2805 | break; |
2806 | } |
2807 | } |
2808 | |
2809 | /* Otherwise, adjust the recursion offset if it's after the start of this |
2810 | group. */ |
2811 | |
2812 | if (hc >= cd->hwm) |
2813 | { |
2814 | offset = GET(ptr, 1); |
2815 | if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust); |
2816 | } |
2817 | |
2818 | ptr += 1 + LINK_SIZE; |
2819 | } |
2820 | } |
2821 | |
2822 | |
2823 | |
2824 | /************************************************* |
2825 | * Insert an automatic callout point * |
2826 | *************************************************/ |
2827 | |
2828 | /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert |
2829 | callout points before each pattern item. |
2830 | |
2831 | Arguments: |
2832 | code current code pointer |
2833 | ptr current pattern pointer |
2834 | cd pointers to tables etc |
2835 | |
2836 | Returns: new code pointer |
2837 | */ |
2838 | |
2839 | static pcre_uchar * |
2840 | auto_callout(pcre_uchar *code, const pcre_uchar *ptr, compile_data *cd) |
2841 | { |
2842 | *code++ = OP_CALLOUT; |
2843 | *code++ = 255; |
2844 | PUT(code, 0, (int)(ptr - cd->start_pattern)); /* Pattern offset */ |
2845 | PUT(code, LINK_SIZE, 0); /* Default length */ |
2846 | return code + 2 * LINK_SIZE; |
2847 | } |
2848 | |
2849 | |
2850 | |
2851 | /************************************************* |
2852 | * Complete a callout item * |
2853 | *************************************************/ |
2854 | |
2855 | /* A callout item contains the length of the next item in the pattern, which |
2856 | we can't fill in till after we have reached the relevant point. This is used |
2857 | for both automatic and manual callouts. |
2858 | |
2859 | Arguments: |
2860 | previous_callout points to previous callout item |
2861 | ptr current pattern pointer |
2862 | cd pointers to tables etc |
2863 | |
2864 | Returns: nothing |
2865 | */ |
2866 | |
2867 | static void |
2868 | complete_callout(pcre_uchar *previous_callout, const pcre_uchar *ptr, compile_data *cd) |
2869 | { |
2870 | int length = (int)(ptr - cd->start_pattern - GET(previous_callout, 2)); |
2871 | PUT(previous_callout, 2 + LINK_SIZE, length); |
2872 | } |
2873 | |
2874 | |
2875 | |
2876 | #ifdef SUPPORT_UCP |
2877 | /************************************************* |
2878 | * Get othercase range * |
2879 | *************************************************/ |
2880 | |
2881 | /* This function is passed the start and end of a class range, in UTF-8 mode |
2882 | with UCP support. It searches up the characters, looking for ranges of |
2883 | characters in the "other" case. Each call returns the next one, updating the |
2884 | start address. A character with multiple other cases is returned on its own |
2885 | with a special return value. |
2886 | |
2887 | Arguments: |
2888 | cptr points to starting character value; updated |
2889 | d end value |
2890 | ocptr where to put start of othercase range |
2891 | odptr where to put end of othercase range |
2892 | |
2893 | Yield: -1 when no more |
2894 | 0 when a range is returned |
2895 | >0 the CASESET offset for char with multiple other cases |
2896 | in this case, ocptr contains the original |
2897 | */ |
2898 | |
2899 | static int |
2900 | get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr, |
2901 | unsigned int *odptr) |
2902 | { |
2903 | unsigned int c, othercase, next; |
2904 | int co; |
2905 | |
2906 | /* Find the first character that has an other case. If it has multiple other |
2907 | cases, return its case offset value. */ |
2908 | |
2909 | for (c = *cptr; c <= d; c++) |
2910 | { |
2911 | if ((co = UCD_CASESET(c)) != 0) |
2912 | { |
2913 | *ocptr = c++; /* Character that has the set */ |
2914 | *cptr = c; /* Rest of input range */ |
2915 | return co; |
2916 | } |
2917 | if ((othercase = UCD_OTHERCASE(c)) != c) break; |
2918 | } |
2919 | |
2920 | if (c > d) return -1; /* Reached end of range */ |
2921 | |
2922 | *ocptr = othercase; |
2923 | next = othercase + 1; |
2924 | |
2925 | for (++c; c <= d; c++) |
2926 | { |
2927 | if (UCD_OTHERCASE(c) != next) break; |
2928 | next++; |
2929 | } |
2930 | |
2931 | *odptr = next - 1; /* End of othercase range */ |
2932 | *cptr = c; /* Rest of input range */ |
2933 | return 0; |
2934 | } |
2935 | |
2936 | |
2937 | |
2938 | /************************************************* |
2939 | * Check a character and a property * |
2940 | *************************************************/ |
2941 | |
2942 | /* This function is called by check_auto_possessive() when a property item |
2943 | is adjacent to a fixed character. |
2944 | |
2945 | Arguments: |
2946 | c the character |
2947 | ptype the property type |
2948 | pdata the data for the type |
2949 | negated TRUE if it's a negated property (\P or \p{^) |
2950 | |
2951 | Returns: TRUE if auto-possessifying is OK |
2952 | */ |
2953 | |
2954 | static BOOL |
2955 | check_char_prop(int c, int ptype, int pdata, BOOL negated) |
2956 | { |
2957 | #ifdef SUPPORT_UCP |
2958 | const pcre_uint32 *p; |
2959 | #endif |
2960 | |
2961 | const ucd_record *prop = GET_UCD(c); |
2962 | |
2963 | switch(ptype) |
2964 | { |
2965 | case PT_LAMP: |
2966 | return (prop->chartype == ucp_Lu || |
2967 | prop->chartype == ucp_Ll || |
2968 | prop->chartype == ucp_Lt) == negated; |
2969 | |
2970 | case PT_GC: |
2971 | return (pdata == PRIV(ucp_gentype)[prop->chartype]) == negated; |
2972 | |
2973 | case PT_PC: |
2974 | return (pdata == prop->chartype) == negated; |
2975 | |
2976 | case PT_SC: |
2977 | return (pdata == prop->script) == negated; |
2978 | |
2979 | /* These are specials */ |
2980 | |
2981 | case PT_ALNUM: |
2982 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_L || |
2983 | PRIV(ucp_gentype)[prop->chartype] == ucp_N) == negated; |
2984 | |
2985 | case PT_SPACE: /* Perl space */ |
2986 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_Z || |
2987 | c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR) |
2988 | == negated; |
2989 | |
2990 | case PT_PXSPACE: /* POSIX space */ |
2991 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_Z || |
2992 | c == CHAR_HT || c == CHAR_NL || c == CHAR_VT || |
2993 | c == CHAR_FF || c == CHAR_CR) |
2994 | == negated; |
2995 | |
2996 | case PT_WORD: |
2997 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_L || |
2998 | PRIV(ucp_gentype)[prop->chartype] == ucp_N || |
2999 | c == CHAR_UNDERSCORE) == negated; |
3000 | |
3001 | #ifdef SUPPORT_UCP |
3002 | case PT_CLIST: |
3003 | p = PRIV(ucd_caseless_sets) + prop->caseset; |
3004 | for (;;) |
3005 | { |
3006 | if ((unsigned int)c < *p) return !negated; |
3007 | if ((unsigned int)c == *p++) return negated; |
3008 | } |
3009 | break; /* Control never reaches here */ |
3010 | #endif |
3011 | } |
3012 | |
3013 | return FALSE; |
3014 | } |
3015 | #endif /* SUPPORT_UCP */ |
3016 | |
3017 | |
3018 | |
3019 | /************************************************* |
3020 | * Check if auto-possessifying is possible * |
3021 | *************************************************/ |
3022 | |
3023 | /* This function is called for unlimited repeats of certain items, to see |
3024 | whether the next thing could possibly match the repeated item. If not, it makes |
3025 | sense to automatically possessify the repeated item. |
3026 | |
3027 | Arguments: |
3028 | previous pointer to the repeated opcode |
3029 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
3030 | ptr next character in pattern |
3031 | options options bits |
3032 | cd contains pointers to tables etc. |
3033 | |
3034 | Returns: TRUE if possessifying is wanted |
3035 | */ |
3036 | |
3037 | static BOOL |
3038 | check_auto_possessive(const pcre_uchar *previous, BOOL utf, |
3039 | const pcre_uchar *ptr, int options, compile_data *cd) |
3040 | { |
3041 | pcre_int32 c = NOTACHAR; |
3042 | pcre_int32 next; |
3043 | int op_code = *previous++; |
3044 | |
3045 | /* Skip whitespace and comments in extended mode */ |
3046 | |
3047 | if ((options & PCRE_EXTENDED) != 0) |
3048 | { |
3049 | for (;;) |
3050 | { |
3051 | while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_space) != 0) ptr++; |
3052 | if (*ptr == CHAR_NUMBER_SIGN) |
3053 | { |
3054 | ptr++; |
3055 | while (*ptr != 0) |
3056 | { |
3057 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } |
3058 | ptr++; |
3059 | #ifdef SUPPORT_UTF |
3060 | if (utf) FORWARDCHAR(ptr); |
3061 | #endif |
3062 | } |
3063 | } |
3064 | else break; |
3065 | } |
3066 | } |
3067 | |
3068 | /* If the next item is one that we can handle, get its value. A non-negative |
3069 | value is a character, a negative value is an escape value. */ |
3070 | |
3071 | if (*ptr == CHAR_BACKSLASH) |
3072 | { |
3073 | int temperrorcode = 0; |
3074 | next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE); |
3075 | if (temperrorcode != 0) return FALSE; |
3076 | ptr++; /* Point after the escape sequence */ |
3077 | } |
3078 | else if (!MAX_255(*ptr) || (cd->ctypes[*ptr] & ctype_meta) == 0) |
3079 | { |
3080 | #ifdef SUPPORT_UTF |
3081 | if (utf) { GETCHARINC(next, ptr); } else |
3082 | #endif |
3083 | next = *ptr++; |
3084 | } |
3085 | else return FALSE; |
3086 | |
3087 | /* Skip whitespace and comments in extended mode */ |
3088 | |
3089 | if ((options & PCRE_EXTENDED) != 0) |
3090 | { |
3091 | for (;;) |
3092 | { |
3093 | while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_space) != 0) ptr++; |
3094 | if (*ptr == CHAR_NUMBER_SIGN) |
3095 | { |
3096 | ptr++; |
3097 | while (*ptr != 0) |
3098 | { |
3099 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } |
3100 | ptr++; |
3101 | #ifdef SUPPORT_UTF |
3102 | if (utf) FORWARDCHAR(ptr); |
3103 | #endif |
3104 | } |
3105 | } |
3106 | else break; |
3107 | } |
3108 | } |
3109 | |
3110 | /* If the next thing is itself optional, we have to give up. */ |
3111 | |
3112 | if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK || |
3113 | STRNCMP_UC_C8(ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0) |
3114 | return FALSE; |
3115 | |
3116 | /* If the previous item is a character, get its value. */ |
3117 | |
3118 | if (op_code == OP_CHAR || op_code == OP_CHARI || |
3119 | op_code == OP_NOT || op_code == OP_NOTI) |
3120 | { |
3121 | #ifdef SUPPORT_UTF |
3122 | GETCHARTEST(c, previous); |
3123 | #else |
3124 | c = *previous; |
3125 | #endif |
3126 | } |
3127 | |
3128 | /* Now compare the next item with the previous opcode. First, handle cases when |
3129 | the next item is a character. */ |
3130 | |
3131 | if (next >= 0) |
3132 | { |
3133 | /* For a caseless UTF match, the next character may have more than one other |
3134 | case, which maps to the special PT_CLIST property. Check this first. */ |
3135 | |
3136 | #ifdef SUPPORT_UCP |
3137 | if (utf && (unsigned int)c != NOTACHAR && (options & PCRE_CASELESS) != 0) |
3138 | { |
3139 | int ocs = UCD_CASESET(next); |
3140 | if (ocs > 0) return check_char_prop(c, PT_CLIST, ocs, op_code >= OP_NOT); |
3141 | } |
3142 | #endif |
3143 | |
3144 | switch(op_code) |
3145 | { |
3146 | case OP_CHAR: |
3147 | return c != next; |
3148 | |
3149 | /* For CHARI (caseless character) we must check the other case. If we have |
3150 | Unicode property support, we can use it to test the other case of |
3151 | high-valued characters. We know that next can have only one other case, |
3152 | because multi-other-case characters are dealt with above. */ |
3153 | |
3154 | case OP_CHARI: |
3155 | if (c == next) return FALSE; |
3156 | #ifdef SUPPORT_UTF |
3157 | if (utf) |
3158 | { |
3159 | unsigned int othercase; |
3160 | if (next < 128) othercase = cd->fcc[next]; else |
3161 | #ifdef SUPPORT_UCP |
3162 | othercase = UCD_OTHERCASE((unsigned int)next); |
3163 | #else |
3164 | othercase = NOTACHAR; |
3165 | #endif |
3166 | return (unsigned int)c != othercase; |
3167 | } |
3168 | else |
3169 | #endif /* SUPPORT_UTF */ |
3170 | return (c != TABLE_GET((unsigned int)next, cd->fcc, next)); /* Not UTF */ |
3171 | |
3172 | case OP_NOT: |
3173 | return c == next; |
3174 | |
3175 | case OP_NOTI: |
3176 | if (c == next) return TRUE; |
3177 | #ifdef SUPPORT_UTF |
3178 | if (utf) |
3179 | { |
3180 | unsigned int othercase; |
3181 | if (next < 128) othercase = cd->fcc[next]; else |
3182 | #ifdef SUPPORT_UCP |
3183 | othercase = UCD_OTHERCASE((unsigned int)next); |
3184 | #else |
3185 | othercase = NOTACHAR; |
3186 | #endif |
3187 | return (unsigned int)c == othercase; |
3188 | } |
3189 | else |
3190 | #endif /* SUPPORT_UTF */ |
3191 | return (c == TABLE_GET((unsigned int)next, cd->fcc, next)); /* Not UTF */ |
3192 | |
3193 | /* Note that OP_DIGIT etc. are generated only when PCRE_UCP is *not* set. |
3194 | When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */ |
3195 | |
3196 | case OP_DIGIT: |
3197 | return next > 255 || (cd->ctypes[next] & ctype_digit) == 0; |
3198 | |
3199 | case OP_NOT_DIGIT: |
3200 | return next <= 255 && (cd->ctypes[next] & ctype_digit) != 0; |
3201 | |
3202 | case OP_WHITESPACE: |
3203 | return next > 255 || (cd->ctypes[next] & ctype_space) == 0; |
3204 | |
3205 | case OP_NOT_WHITESPACE: |
3206 | return next <= 255 && (cd->ctypes[next] & ctype_space) != 0; |
3207 | |
3208 | case OP_WORDCHAR: |
3209 | return next > 255 || (cd->ctypes[next] & ctype_word) == 0; |
3210 | |
3211 | case OP_NOT_WORDCHAR: |
3212 | return next <= 255 && (cd->ctypes[next] & ctype_word) != 0; |
3213 | |
3214 | case OP_HSPACE: |
3215 | case OP_NOT_HSPACE: |
3216 | switch(next) |
3217 | { |
3218 | HSPACE_CASES: |
3219 | return op_code == OP_NOT_HSPACE; |
3220 | |
3221 | default: |
3222 | return op_code != OP_NOT_HSPACE; |
3223 | } |
3224 | |
3225 | case OP_ANYNL: |
3226 | case OP_VSPACE: |
3227 | case OP_NOT_VSPACE: |
3228 | switch(next) |
3229 | { |
3230 | VSPACE_CASES: |
3231 | return op_code == OP_NOT_VSPACE; |
3232 | |
3233 | default: |
3234 | return op_code != OP_NOT_VSPACE; |
3235 | } |
3236 | |
3237 | #ifdef SUPPORT_UCP |
3238 | case OP_PROP: |
3239 | return check_char_prop(next, previous[0], previous[1], FALSE); |
3240 | |
3241 | case OP_NOTPROP: |
3242 | return check_char_prop(next, previous[0], previous[1], TRUE); |
3243 | #endif |
3244 | |
3245 | default: |
3246 | return FALSE; |
3247 | } |
3248 | } |
3249 | |
3250 | /* Handle the case when the next item is \d, \s, etc. Note that when PCRE_UCP |
3251 | is set, \d turns into ESC_du rather than ESC_d, etc., so ESC_d etc. are |
3252 | generated only when PCRE_UCP is *not* set, that is, when only ASCII |
3253 | characteristics are recognized. Similarly, the opcodes OP_DIGIT etc. are |
3254 | replaced by OP_PROP codes when PCRE_UCP is set. */ |
3255 | |
3256 | switch(op_code) |
3257 | { |
3258 | case OP_CHAR: |
3259 | case OP_CHARI: |
3260 | switch(-next) |
3261 | { |
3262 | case ESC_d: |
3263 | return c > 255 || (cd->ctypes[c] & ctype_digit) == 0; |
3264 | |
3265 | case ESC_D: |
3266 | return c <= 255 && (cd->ctypes[c] & ctype_digit) != 0; |
3267 | |
3268 | case ESC_s: |
3269 | return c > 255 || (cd->ctypes[c] & ctype_space) == 0; |
3270 | |
3271 | case ESC_S: |
3272 | return c <= 255 && (cd->ctypes[c] & ctype_space) != 0; |
3273 | |
3274 | case ESC_w: |
3275 | return c > 255 || (cd->ctypes[c] & ctype_word) == 0; |
3276 | |
3277 | case ESC_W: |
3278 | return c <= 255 && (cd->ctypes[c] & ctype_word) != 0; |
3279 | |
3280 | case ESC_h: |
3281 | case ESC_H: |
3282 | switch(c) |
3283 | { |
3284 | HSPACE_CASES: |
3285 | return -next != ESC_h; |
3286 | |
3287 | default: |
3288 | return -next == ESC_h; |
3289 | } |
3290 | |
3291 | case ESC_v: |
3292 | case ESC_V: |
3293 | switch(c) |
3294 | { |
3295 | VSPACE_CASES: |
3296 | return -next != ESC_v; |
3297 | |
3298 | default: |
3299 | return -next == ESC_v; |
3300 | } |
3301 | |
3302 | /* When PCRE_UCP is set, these values get generated for \d etc. Find |
3303 | their substitutions and process them. The result will always be either |
3304 | -ESC_p or -ESC_P. Then fall through to process those values. */ |
3305 | |
3306 | #ifdef SUPPORT_UCP |
3307 | case ESC_du: |
3308 | case ESC_DU: |
3309 | case ESC_wu: |
3310 | case ESC_WU: |
3311 | case ESC_su: |
3312 | case ESC_SU: |
3313 | { |
3314 | int temperrorcode = 0; |
3315 | ptr = substitutes[-next - ESC_DU]; |
3316 | next = check_escape(&ptr, &temperrorcode, 0, options, FALSE); |
3317 | if (temperrorcode != 0) return FALSE; |
3318 | ptr++; /* For compatibility */ |
3319 | } |
3320 | /* Fall through */ |
3321 | |
3322 | case ESC_p: |
3323 | case ESC_P: |
3324 | { |
3325 | int ptype, pdata, errorcodeptr; |
3326 | BOOL negated; |
3327 | |
3328 | ptr--; /* Make ptr point at the p or P */ |
3329 | ptype = get_ucp(&ptr, &negated, &pdata, &errorcodeptr); |
3330 | if (ptype < 0) return FALSE; |
3331 | ptr++; /* Point past the final curly ket */ |
3332 | |
3333 | /* If the property item is optional, we have to give up. (When generated |
3334 | from \d etc by PCRE_UCP, this test will have been applied much earlier, |
3335 | to the original \d etc. At this point, ptr will point to a zero byte. */ |
3336 | |
3337 | if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK || |
3338 | STRNCMP_UC_C8(ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0) |
3339 | return FALSE; |
3340 | |
3341 | /* Do the property check. */ |
3342 | |
3343 | return check_char_prop(c, ptype, pdata, (next == -ESC_P) != negated); |
3344 | } |
3345 | #endif |
3346 | |
3347 | default: |
3348 | return FALSE; |
3349 | } |
3350 | |
3351 | /* In principle, support for Unicode properties should be integrated here as |
3352 | well. It means re-organizing the above code so as to get hold of the property |
3353 | values before switching on the op-code. However, I wonder how many patterns |
3354 | combine ASCII \d etc with Unicode properties? (Note that if PCRE_UCP is set, |
3355 | these op-codes are never generated.) */ |
3356 | |
3357 | case OP_DIGIT: |
3358 | return next == -ESC_D || next == -ESC_s || next == -ESC_W || |
3359 | next == -ESC_h || next == -ESC_v || next == -ESC_R; |
3360 | |
3361 | case OP_NOT_DIGIT: |
3362 | return next == -ESC_d; |
3363 | |
3364 | case OP_WHITESPACE: |
3365 | return next == -ESC_S || next == -ESC_d || next == -ESC_w; |
3366 | |
3367 | case OP_NOT_WHITESPACE: |
3368 | return next == -ESC_s || next == -ESC_h || next == -ESC_v || next == -ESC_R; |
3369 | |
3370 | case OP_HSPACE: |
3371 | return next == -ESC_S || next == -ESC_H || next == -ESC_d || |
3372 | next == -ESC_w || next == -ESC_v || next == -ESC_R; |
3373 | |
3374 | case OP_NOT_HSPACE: |
3375 | return next == -ESC_h; |
3376 | |
3377 | /* Can't have \S in here because VT matches \S (Perl anomaly) */ |
3378 | case OP_ANYNL: |
3379 | case OP_VSPACE: |
3380 | return next == -ESC_V || next == -ESC_d || next == -ESC_w; |
3381 | |
3382 | case OP_NOT_VSPACE: |
3383 | return next == -ESC_v || next == -ESC_R; |
3384 | |
3385 | case OP_WORDCHAR: |
3386 | return next == -ESC_W || next == -ESC_s || next == -ESC_h || |
3387 | next == -ESC_v || next == -ESC_R; |
3388 | |
3389 | case OP_NOT_WORDCHAR: |
3390 | return next == -ESC_w || next == -ESC_d; |
3391 | |
3392 | default: |
3393 | return FALSE; |
3394 | } |
3395 | |
3396 | /* Control does not reach here */ |
3397 | } |
3398 | |
3399 | |
3400 | |
3401 | /************************************************* |
3402 | * Add a character or range to a class * |
3403 | *************************************************/ |
3404 | |
3405 | /* This function packages up the logic of adding a character or range of |
3406 | characters to a class. The character values in the arguments will be within the |
3407 | valid values for the current mode (8-bit, 16-bit, UTF, etc). This function is |
3408 | mutually recursive with the function immediately below. |
3409 | |
3410 | Arguments: |
3411 | classbits the bit map for characters < 256 |
3412 | uchardptr points to the pointer for extra data |
3413 | options the options word |
3414 | cd contains pointers to tables etc. |
3415 | start start of range character |
3416 | end end of range character |
3417 | |
3418 | Returns: the number of < 256 characters added |
3419 | the pointer to extra data is updated |
3420 | */ |
3421 | |
3422 | static int |
3423 | add_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, int options, |
3424 | compile_data *cd, unsigned int start, unsigned int end) |
3425 | { |
3426 | unsigned int c; |
3427 | int n8 = 0; |
3428 | |
3429 | /* If caseless matching is required, scan the range and process alternate |
3430 | cases. In Unicode, there are 8-bit characters that have alternate cases that |
3431 | are greater than 255 and vice-versa. Sometimes we can just extend the original |
3432 | range. */ |
3433 | |
3434 | if ((options & PCRE_CASELESS) != 0) |
3435 | { |
3436 | #ifdef SUPPORT_UCP |
3437 | if ((options & PCRE_UTF8) != 0) |
3438 | { |
3439 | int rc; |
3440 | unsigned int oc, od; |
3441 | |
3442 | options &= ~PCRE_CASELESS; /* Remove for recursive calls */ |
3443 | c = start; |
3444 | |
3445 | while ((rc = get_othercase_range(&c, end, &oc, &od)) >= 0) |
3446 | { |
3447 | /* Handle a single character that has more than one other case. */ |
3448 | |
3449 | if (rc > 0) n8 += add_list_to_class(classbits, uchardptr, options, cd, |
3450 | PRIV(ucd_caseless_sets) + rc, oc); |
3451 | |
3452 | /* Do nothing if the other case range is within the original range. */ |
3453 | |
3454 | else if (oc >= start && od <= end) continue; |
3455 | |
3456 | /* Extend the original range if there is overlap, noting that if oc < c, we |
3457 | can't have od > end because a subrange is always shorter than the basic |
3458 | range. Otherwise, use a recursive call to add the additional range. */ |
3459 | |
3460 | else if (oc < start && od >= start - 1) start = oc; /* Extend downwards */ |
3461 | else if (od > end && oc <= end + 1) end = od; /* Extend upwards */ |
3462 | else n8 += add_to_class(classbits, uchardptr, options, cd, oc, od); |
3463 | } |
3464 | } |
3465 | else |
3466 | #endif /* SUPPORT_UCP */ |
3467 | |
3468 | /* Not UTF-mode, or no UCP */ |
3469 | |
3470 | for (c = start; c <= end && c < 256; c++) |
3471 | { |
3472 | SETBIT(classbits, cd->fcc[c]); |
3473 | n8++; |
3474 | } |
3475 | } |
3476 | |
3477 | /* Now handle the original range. Adjust the final value according to the bit |
3478 | length - this means that the same lists of (e.g.) horizontal spaces can be used |
3479 | in all cases. */ |
3480 | |
3481 | #if defined COMPILE_PCRE8 |
3482 | #ifdef SUPPORT_UTF |
3483 | if ((options & PCRE_UTF8) == 0) |
3484 | #endif |
3485 | if (end > 0xff) end = 0xff; |
3486 | |
3487 | #elif defined COMPILE_PCRE16 |
3488 | #ifdef SUPPORT_UTF |
3489 | if ((options & PCRE_UTF16) == 0) |
3490 | #endif |
3491 | if (end > 0xffff) end = 0xffff; |
3492 | |
3493 | #elif defined COMPILE_PCRE32 |
3494 | #ifdef SUPPORT_UTF |
3495 | if ((options & PCRE_UTF32) == 0) |
3496 | if (end > 0xffffu) end = 0xffffu; // FIXMEchpe rebase fix this |
3497 | #endif |
3498 | #endif /* COMPILE_PCRE[8|16|32] */ |
3499 | |
3500 | /* If all characters are less than 256, use the bit map. Otherwise use extra |
3501 | data. */ |
3502 | |
3503 | if (end < 0x100) |
3504 | { |
3505 | for (c = start; c <= end; c++) |
3506 | { |
3507 | n8++; |
3508 | SETBIT(classbits, c); |
3509 | } |
3510 | } |
3511 | |
3512 | else |
3513 | { |
3514 | pcre_uchar *uchardata = *uchardptr; |
3515 | |
3516 | #ifdef SUPPORT_UTF |
3517 | if ((options & PCRE_UTF8) != 0) /* All UTFs use the same flag bit */ |
3518 | { |
3519 | if (start < end) |
3520 | { |
3521 | *uchardata++ = XCL_RANGE; |
3522 | uchardata += PRIV(ord2utf)(start, uchardata); |
3523 | uchardata += PRIV(ord2utf)(end, uchardata); |
3524 | } |
3525 | else if (start == end) |
3526 | { |
3527 | *uchardata++ = XCL_SINGLE; |
3528 | uchardata += PRIV(ord2utf)(start, uchardata); |
3529 | } |
3530 | } |
3531 | else |
3532 | #endif /* SUPPORT_UTF */ |
3533 | |
3534 | /* Without UTF support, character values are constrained by the bit length, |
3535 | and can only be > 256 for 16-bit and 32-bit libraries. */ |
3536 | |
3537 | #ifdef COMPILE_PCRE8 |
3538 | {} |
3539 | #else |
3540 | if (start < end) |
3541 | { |
3542 | *uchardata++ = XCL_RANGE; |
3543 | *uchardata++ = start; |
3544 | *uchardata++ = end; |
3545 | } |
3546 | else if (start == end) |
3547 | { |
3548 | *uchardata++ = XCL_SINGLE; |
3549 | *uchardata++ = start; |
3550 | } |
3551 | #endif |
3552 | |
3553 | *uchardptr = uchardata; /* Updata extra data pointer */ |
3554 | } |
3555 | |
3556 | return n8; /* Number of 8-bit characters */ |
3557 | } |
3558 | |
3559 | |
3560 | |
3561 | |
3562 | /************************************************* |
3563 | * Add a list of characters to a class * |
3564 | *************************************************/ |
3565 | |
3566 | /* This function is used for adding a list of case-equivalent characters to a |
3567 | class, and also for adding a list of horizontal or vertical whitespace. If the |
3568 | list is in order (which it should be), ranges of characters are detected and |
3569 | handled appropriately. This function is mutually recursive with the function |
3570 | above. |
3571 | |
3572 | Arguments: |
3573 | classbits the bit map for characters < 256 |
3574 | uchardptr points to the pointer for extra data |
3575 | options the options word |
3576 | cd contains pointers to tables etc. |
3577 | p points to row of 32-bit values, terminated by NOTACHAR |
3578 | except character to omit; this is used when adding lists of |
3579 | case-equivalent characters to avoid including the one we |
3580 | already know about |
3581 | |
3582 | Returns: the number of < 256 characters added |
3583 | the pointer to extra data is updated |
3584 | */ |
3585 | |
3586 | static int |
3587 | add_list_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, int options, |
3588 | compile_data *cd, const pcre_uint32 *p, unsigned int except) |
3589 | { |
3590 | int n8 = 0; |
3591 | while (p[0] < NOTACHAR) |
3592 | { |
3593 | int n = 0; |
3594 | if (p[0] != except) |
3595 | { |
3596 | while(p[n+1] == p[0] + n + 1) n++; |
3597 | n8 += add_to_class(classbits, uchardptr, options, cd, p[0], p[n]); |
3598 | } |
3599 | p += n + 1; |
3600 | } |
3601 | return n8; |
3602 | } |
3603 | |
3604 | |
3605 | |
3606 | /************************************************* |
3607 | * Add characters not in a list to a class * |
3608 | *************************************************/ |
3609 | |
3610 | /* This function is used for adding the complement of a list of horizontal or |
3611 | vertical whitespace to a class. The list must be in order. |
3612 | |
3613 | Arguments: |
3614 | classbits the bit map for characters < 256 |
3615 | uchardptr points to the pointer for extra data |
3616 | options the options word |
3617 | cd contains pointers to tables etc. |
3618 | p points to row of 32-bit values, terminated by NOTACHAR |
3619 | |
3620 | Returns: the number of < 256 characters added |
3621 | the pointer to extra data is updated |
3622 | */ |
3623 | |
3624 | static int |
3625 | add_not_list_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, |
3626 | int options, compile_data *cd, const pcre_uint32 *p) |
3627 | { |
3628 | int n8 = 0; |
3629 | if (p[0] > 0) |
3630 | n8 += add_to_class(classbits, uchardptr, options, cd, 0, p[0] - 1); |
3631 | while (p[0] < NOTACHAR) |
3632 | { |
3633 | while (p[1] == p[0] + 1) p++; |
3634 | n8 += add_to_class(classbits, uchardptr, options, cd, p[0] + 1, |
3635 | (p[1] == NOTACHAR)? 0x10ffff : p[1] - 1); |
3636 | p++; |
3637 | } |
3638 | return n8; |
3639 | } |
3640 | |
3641 | |
3642 | |
3643 | /************************************************* |
3644 | * Compile one branch * |
3645 | *************************************************/ |
3646 | |
3647 | /* Scan the pattern, compiling it into the a vector. If the options are |
3648 | changed during the branch, the pointer is used to change the external options |
3649 | bits. This function is used during the pre-compile phase when we are trying |
3650 | to find out the amount of memory needed, as well as during the real compile |
3651 | phase. The value of lengthptr distinguishes the two phases. |
3652 | |
3653 | Arguments: |
3654 | optionsptr pointer to the option bits |
3655 | codeptr points to the pointer to the current code point |
3656 | ptrptr points to the current pattern pointer |
3657 | errorcodeptr points to error code variable |
3658 | firstcharptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE) |
3659 | reqcharptr set to the last literal character required, else < 0 |
3660 | bcptr points to current branch chain |
3661 | cond_depth conditional nesting depth |
3662 | cd contains pointers to tables etc. |
3663 | lengthptr NULL during the real compile phase |
3664 | points to length accumulator during pre-compile phase |
3665 | |
3666 | Returns: TRUE on success |
3667 | FALSE, with *errorcodeptr set non-zero on error |
3668 | */ |
3669 | |
3670 | static BOOL |
3671 | compile_branch(int *optionsptr, pcre_uchar **codeptr, |
3672 | const pcre_uchar **ptrptr, int *errorcodeptr, pcre_int32 *firstcharptr, |
3673 | pcre_int32 *reqcharptr, branch_chain *bcptr, int cond_depth, |
3674 | compile_data *cd, int *lengthptr) |
3675 | { |
3676 | int repeat_type, op_type; |
3677 | int repeat_min = 0, repeat_max = 0; /* To please picky compilers */ |
3678 | int bravalue = 0; |
3679 | int greedy_default, greedy_non_default; |
3680 | pcre_int32 firstchar, reqchar; |
3681 | pcre_int32 zeroreqchar, zerofirstchar; |
3682 | pcre_int32 req_caseopt, reqvary, tempreqvary; |
3683 | int options = *optionsptr; /* May change dynamically */ |
3684 | int after_manual_callout = 0; |
3685 | int length_prevgroup = 0; |
3686 | register int c; |
3687 | register pcre_uchar *code = *codeptr; |
3688 | pcre_uchar *last_code = code; |
3689 | pcre_uchar *orig_code = code; |
3690 | pcre_uchar *tempcode; |
3691 | BOOL inescq = FALSE; |
3692 | BOOL groupsetfirstchar = FALSE; |
3693 | const pcre_uchar *ptr = *ptrptr; |
3694 | const pcre_uchar *tempptr; |
3695 | const pcre_uchar *nestptr = NULL; |
3696 | pcre_uchar *previous = NULL; |
3697 | pcre_uchar *previous_callout = NULL; |
3698 | pcre_uchar *save_hwm = NULL; |
3699 | pcre_uint8 classbits[32]; |
3700 | |
3701 | /* We can fish out the UTF-8 setting once and for all into a BOOL, but we |
3702 | must not do this for other options (e.g. PCRE_EXTENDED) because they may change |
3703 | dynamically as we process the pattern. */ |
3704 | |
3705 | #ifdef SUPPORT_UTF |
3706 | /* PCRE_UTF(16|32) have the same value as PCRE_UTF8. */ |
3707 | BOOL utf = (options & PCRE_UTF8) != 0; |
3708 | pcre_uchar utf_chars[6]; |
3709 | #else |
3710 | BOOL utf = FALSE; |
3711 | #endif |
3712 | |
3713 | /* Helper variables for OP_XCLASS opcode (for characters > 255). We define |
3714 | class_uchardata always so that it can be passed to add_to_class() always, |
3715 | though it will not be used in non-UTF 8-bit cases. This avoids having to supply |
3716 | alternative calls for the different cases. */ |
3717 | |
3718 | pcre_uchar *class_uchardata; |
3719 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3720 | BOOL xclass; |
3721 | pcre_uchar *class_uchardata_base; |
3722 | #endif |
3723 | |
3724 | #ifdef PCRE_DEBUG |
3725 | if (lengthptr != NULL) DPRINTF((">> start branch\n")); |
3726 | #endif |
3727 | |
3728 | /* Set up the default and non-default settings for greediness */ |
3729 | |
3730 | greedy_default = ((options & PCRE_UNGREEDY) != 0); |
3731 | greedy_non_default = greedy_default ^ 1; |
3732 | |
3733 | /* Initialize no first byte, no required byte. REQ_UNSET means "no char |
3734 | matching encountered yet". It gets changed to REQ_NONE if we hit something that |
3735 | matches a non-fixed char first char; reqchar just remains unset if we never |
3736 | find one. |
3737 | |
3738 | When we hit a repeat whose minimum is zero, we may have to adjust these values |
3739 | to take the zero repeat into account. This is implemented by setting them to |
3740 | zerofirstbyte and zeroreqchar when such a repeat is encountered. The individual |
3741 | item types that can be repeated set these backoff variables appropriately. */ |
3742 | |
3743 | firstchar = reqchar = zerofirstchar = zeroreqchar = REQ_UNSET; |
3744 | |
3745 | /* The variable req_caseopt contains either the REQ_CASELESS value |
3746 | or zero, according to the current setting of the caseless flag. The |
3747 | REQ_CASELESS leaves the lower 28 bit empty. It is added into the |
3748 | firstchar or reqchar variables to record the case status of the |
3749 | value. This is used only for ASCII characters. */ |
3750 | |
3751 | req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS:0; |
3752 | |
3753 | /* Switch on next character until the end of the branch */ |
3754 | |
3755 | for (;; ptr++) |
3756 | { |
3757 | BOOL negate_class; |
3758 | BOOL should_flip_negation; |
3759 | BOOL possessive_quantifier; |
3760 | BOOL is_quantifier; |
3761 | BOOL is_recurse; |
3762 | BOOL reset_bracount; |
3763 | int class_has_8bitchar; |
3764 | int class_one_char; |
3765 | int newoptions; |
3766 | int recno; |
3767 | int refsign; |
3768 | int skipbytes; |
3769 | int subreqchar; |
3770 | int subfirstchar; |
3771 | int terminator; |
3772 | int mclength; |
3773 | int tempbracount; |
3774 | pcre_uchar mcbuffer[8]; |
3775 | |
3776 | /* Get next character in the pattern */ |
3777 | |
3778 | c = *ptr; |
3779 | |
3780 | /* If we are at the end of a nested substitution, revert to the outer level |
3781 | string. Nesting only happens one level deep. */ |
3782 | |
3783 | if (c == 0 && nestptr != NULL) |
3784 | { |
3785 | ptr = nestptr; |
3786 | nestptr = NULL; |
3787 | c = *ptr; |
3788 | } |
3789 | |
3790 | /* If we are in the pre-compile phase, accumulate the length used for the |
3791 | previous cycle of this loop. */ |
3792 | |
3793 | if (lengthptr != NULL) |
3794 | { |
3795 | #ifdef PCRE_DEBUG |
3796 | if (code > cd->hwm) cd->hwm = code; /* High water info */ |
3797 | #endif |
3798 | if (code > cd->start_workspace + cd->workspace_size - |
3799 | WORK_SIZE_SAFETY_MARGIN) /* Check for overrun */ |
3800 | { |
3801 | *errorcodeptr = ERR52; |
3802 | goto FAILED; |
3803 | } |
3804 | |
3805 | /* There is at least one situation where code goes backwards: this is the |
3806 | case of a zero quantifier after a class (e.g. [ab]{0}). At compile time, |
3807 | the class is simply eliminated. However, it is created first, so we have to |
3808 | allow memory for it. Therefore, don't ever reduce the length at this point. |
3809 | */ |
3810 | |
3811 | if (code < last_code) code = last_code; |
3812 | |
3813 | /* Paranoid check for integer overflow */ |
3814 | |
3815 | if (OFLOW_MAX - *lengthptr < code - last_code) |
3816 | { |
3817 | *errorcodeptr = ERR20; |
3818 | goto FAILED; |
3819 | } |
3820 | |
3821 | *lengthptr += (int)(code - last_code); |
3822 | DPRINTF(("length=%d added %d c=%c (0x%x)\n", *lengthptr, |
3823 | (int)(code - last_code), c, c)); |
3824 | |
3825 | /* If "previous" is set and it is not at the start of the work space, move |
3826 | it back to there, in order to avoid filling up the work space. Otherwise, |
3827 | if "previous" is NULL, reset the current code pointer to the start. */ |
3828 | |
3829 | if (previous != NULL) |
3830 | { |
3831 | if (previous > orig_code) |
3832 | { |
3833 | memmove(orig_code, previous, IN_UCHARS(code - previous)); |
3834 | code -= previous - orig_code; |
3835 | previous = orig_code; |
3836 | } |
3837 | } |
3838 | else code = orig_code; |
3839 | |
3840 | /* Remember where this code item starts so we can pick up the length |
3841 | next time round. */ |
3842 | |
3843 | last_code = code; |
3844 | } |
3845 | |
3846 | /* In the real compile phase, just check the workspace used by the forward |
3847 | reference list. */ |
3848 | |
3849 | else if (cd->hwm > cd->start_workspace + cd->workspace_size - |
3850 | WORK_SIZE_SAFETY_MARGIN) |
3851 | { |
3852 | *errorcodeptr = ERR52; |
3853 | goto FAILED; |
3854 | } |
3855 | |
3856 | /* If in \Q...\E, check for the end; if not, we have a literal */ |
3857 | |
3858 | if (inescq && c != 0) |
3859 | { |
3860 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
3861 | { |
3862 | inescq = FALSE; |
3863 | ptr++; |
3864 | continue; |
3865 | } |
3866 | else |
3867 | { |
3868 | if (previous_callout != NULL) |
3869 | { |
3870 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
3871 | complete_callout(previous_callout, ptr, cd); |
3872 | previous_callout = NULL; |
3873 | } |
3874 | if ((options & PCRE_AUTO_CALLOUT) != 0) |
3875 | { |
3876 | previous_callout = code; |
3877 | code = auto_callout(code, ptr, cd); |
3878 | } |
3879 | goto NORMAL_CHAR; |
3880 | } |
3881 | } |
3882 | |
3883 | /* Fill in length of a previous callout, except when the next thing is |
3884 | a quantifier. */ |
3885 | |
3886 | is_quantifier = |
3887 | c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK || |
3888 | (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1)); |
3889 | |
3890 | if (!is_quantifier && previous_callout != NULL && |
3891 | after_manual_callout-- <= 0) |
3892 | { |
3893 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
3894 | complete_callout(previous_callout, ptr, cd); |
3895 | previous_callout = NULL; |
3896 | } |
3897 | |
3898 | /* In extended mode, skip white space and comments. */ |
3899 | |
3900 | if ((options & PCRE_EXTENDED) != 0) |
3901 | { |
3902 | if (MAX_255(*ptr) && (cd->ctypes[c] & ctype_space) != 0) continue; |
3903 | if (c == CHAR_NUMBER_SIGN) |
3904 | { |
3905 | ptr++; |
3906 | while (*ptr != 0) |
3907 | { |
3908 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; } |
3909 | ptr++; |
3910 | #ifdef SUPPORT_UTF |
3911 | if (utf) FORWARDCHAR(ptr); |
3912 | #endif |
3913 | } |
3914 | if (*ptr != 0) continue; |
3915 | |
3916 | /* Else fall through to handle end of string */ |
3917 | c = 0; |
3918 | } |
3919 | } |
3920 | |
3921 | /* No auto callout for quantifiers. */ |
3922 | |
3923 | if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier) |
3924 | { |
3925 | previous_callout = code; |
3926 | code = auto_callout(code, ptr, cd); |
3927 | } |
3928 | |
3929 | switch(c) |
3930 | { |
3931 | /* ===================================================================*/ |
3932 | case 0: /* The branch terminates at string end */ |
3933 | case CHAR_VERTICAL_LINE: /* or | or ) */ |
3934 | case CHAR_RIGHT_PARENTHESIS: |
3935 | *firstcharptr = firstchar; |
3936 | *reqcharptr = reqchar; |
3937 | *codeptr = code; |
3938 | *ptrptr = ptr; |
3939 | if (lengthptr != NULL) |
3940 | { |
3941 | if (OFLOW_MAX - *lengthptr < code - last_code) |
3942 | { |
3943 | *errorcodeptr = ERR20; |
3944 | goto FAILED; |
3945 | } |
3946 | *lengthptr += (int)(code - last_code); /* To include callout length */ |
3947 | DPRINTF((">> end branch\n")); |
3948 | } |
3949 | return TRUE; |
3950 | |
3951 | |
3952 | /* ===================================================================*/ |
3953 | /* Handle single-character metacharacters. In multiline mode, ^ disables |
3954 | the setting of any following char as a first character. */ |
3955 | |
3956 | case CHAR_CIRCUMFLEX_ACCENT: |
3957 | previous = NULL; |
3958 | if ((options & PCRE_MULTILINE) != 0) |
3959 | { |
3960 | if (firstchar == REQ_UNSET) firstchar = REQ_NONE; |
3961 | *code++ = OP_CIRCM; |
3962 | } |
3963 | else *code++ = OP_CIRC; |
3964 | break; |
3965 | |
3966 | case CHAR_DOLLAR_SIGN: |
3967 | previous = NULL; |
3968 | *code++ = ((options & PCRE_MULTILINE) != 0)? OP_DOLLM : OP_DOLL; |
3969 | break; |
3970 | |
3971 | /* There can never be a first char if '.' is first, whatever happens about |
3972 | repeats. The value of reqchar doesn't change either. */ |
3973 | |
3974 | case CHAR_DOT: |
3975 | if (firstchar == REQ_UNSET) firstchar = REQ_NONE; |
3976 | zerofirstchar = firstchar; |
3977 | zeroreqchar = reqchar; |
3978 | previous = code; |
3979 | *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY; |
3980 | break; |
3981 | |
3982 | |
3983 | /* ===================================================================*/ |
3984 | /* Character classes. If the included characters are all < 256, we build a |
3985 | 32-byte bitmap of the permitted characters, except in the special case |
3986 | where there is only one such character. For negated classes, we build the |
3987 | map as usual, then invert it at the end. However, we use a different opcode |
3988 | so that data characters > 255 can be handled correctly. |
3989 | |
3990 | If the class contains characters outside the 0-255 range, a different |
3991 | opcode is compiled. It may optionally have a bit map for characters < 256, |
3992 | but those above are are explicitly listed afterwards. A flag byte tells |
3993 | whether the bitmap is present, and whether this is a negated class or not. |
3994 | |
3995 | In JavaScript compatibility mode, an isolated ']' causes an error. In |
3996 | default (Perl) mode, it is treated as a data character. */ |
3997 | |
3998 | case CHAR_RIGHT_SQUARE_BRACKET: |
3999 | if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
4000 | { |
4001 | *errorcodeptr = ERR64; |
4002 | goto FAILED; |
4003 | } |
4004 | goto NORMAL_CHAR; |
4005 | |
4006 | case CHAR_LEFT_SQUARE_BRACKET: |
4007 | previous = code; |
4008 | |
4009 | /* PCRE supports POSIX class stuff inside a class. Perl gives an error if |
4010 | they are encountered at the top level, so we'll do that too. */ |
4011 | |
4012 | if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
4013 | ptr[1] == CHAR_EQUALS_SIGN) && |
4014 | check_posix_syntax(ptr, &tempptr)) |
4015 | { |
4016 | *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31; |
4017 | goto FAILED; |
4018 | } |
4019 | |
4020 | /* If the first character is '^', set the negation flag and skip it. Also, |
4021 | if the first few characters (either before or after ^) are \Q\E or \E we |
4022 | skip them too. This makes for compatibility with Perl. */ |
4023 | |
4024 | negate_class = FALSE; |
4025 | for (;;) |
4026 | { |
4027 | c = *(++ptr); |
4028 | if (c == CHAR_BACKSLASH) |
4029 | { |
4030 | if (ptr[1] == CHAR_E) |
4031 | ptr++; |
4032 | else if (STRNCMP_UC_C8(ptr + 1, STR_Q STR_BACKSLASH STR_E, 3) == 0) |
4033 | ptr += 3; |
4034 | else |
4035 | break; |
4036 | } |
4037 | else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT) |
4038 | negate_class = TRUE; |
4039 | else break; |
4040 | } |
4041 | |
4042 | /* Empty classes are allowed in JavaScript compatibility mode. Otherwise, |
4043 | an initial ']' is taken as a data character -- the code below handles |
4044 | that. In JS mode, [] must always fail, so generate OP_FAIL, whereas |
4045 | [^] must match any character, so generate OP_ALLANY. */ |
4046 | |
4047 | if (c == CHAR_RIGHT_SQUARE_BRACKET && |
4048 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
4049 | { |
4050 | *code++ = negate_class? OP_ALLANY : OP_FAIL; |
4051 | if (firstchar == REQ_UNSET) firstchar = REQ_NONE; |
4052 | zerofirstchar = firstchar; |
4053 | break; |
4054 | } |
4055 | |
4056 | /* If a class contains a negative special such as \S, we need to flip the |
4057 | negation flag at the end, so that support for characters > 255 works |
4058 | correctly (they are all included in the class). */ |
4059 | |
4060 | should_flip_negation = FALSE; |
4061 | |
4062 | /* For optimization purposes, we track some properties of the class: |
4063 | class_has_8bitchar will be non-zero if the class contains at least one < |
4064 | 256 character; class_one_char will be 1 if the class contains just one |
4065 | character. */ |
4066 | |
4067 | class_has_8bitchar = 0; |
4068 | class_one_char = 0; |
4069 | |
4070 | /* Initialize the 32-char bit map to all zeros. We build the map in a |
4071 | temporary bit of memory, in case the class contains fewer than two |
4072 | 8-bit characters because in that case the compiled code doesn't use the bit |
4073 | map. */ |
4074 | |
4075 | memset(classbits, 0, 32 * sizeof(pcre_uint8)); |
4076 | |
4077 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4078 | xclass = FALSE; |
4079 | class_uchardata = code + LINK_SIZE + 2; /* For XCLASS items */ |
4080 | class_uchardata_base = class_uchardata; /* Save the start */ |
4081 | #endif |
4082 | |
4083 | /* Process characters until ] is reached. By writing this as a "do" it |
4084 | means that an initial ] is taken as a data character. At the start of the |
4085 | loop, c contains the first byte of the character. */ |
4086 | |
4087 | if (c != 0) do |
4088 | { |
4089 | const pcre_uchar *oldptr; |
4090 | |
4091 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
4092 | if (utf && HAS_EXTRALEN(c)) |
4093 | { /* Braces are required because the */ |
4094 | GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */ |
4095 | } |
4096 | #endif |
4097 | |
4098 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4099 | /* In the pre-compile phase, accumulate the length of any extra |
4100 | data and reset the pointer. This is so that very large classes that |
4101 | contain a zillion > 255 characters no longer overwrite the work space |
4102 | (which is on the stack). We have to remember that there was XCLASS data, |
4103 | however. */ |
4104 | |
4105 | if (lengthptr != NULL && class_uchardata > class_uchardata_base) |
4106 | { |
4107 | xclass = TRUE; |
4108 | *lengthptr += class_uchardata - class_uchardata_base; |
4109 | class_uchardata = class_uchardata_base; |
4110 | } |
4111 | #endif |
4112 | |
4113 | /* Inside \Q...\E everything is literal except \E */ |
4114 | |
4115 | if (inescq) |
4116 | { |
4117 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */ |
4118 | { |
4119 | inescq = FALSE; /* Reset literal state */ |
4120 | ptr++; /* Skip the 'E' */ |
4121 | continue; /* Carry on with next */ |
4122 | } |
4123 | goto CHECK_RANGE; /* Could be range if \E follows */ |
4124 | } |
4125 | |
4126 | /* Handle POSIX class names. Perl allows a negation extension of the |
4127 | form [:^name:]. A square bracket that doesn't match the syntax is |
4128 | treated as a literal. We also recognize the POSIX constructions |
4129 | [.ch.] and [=ch=] ("collating elements") and fault them, as Perl |
4130 | 5.6 and 5.8 do. */ |
4131 | |
4132 | if (c == CHAR_LEFT_SQUARE_BRACKET && |
4133 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
4134 | ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr)) |
4135 | { |
4136 | BOOL local_negate = FALSE; |
4137 | int posix_class, taboffset, tabopt; |
4138 | register const pcre_uint8 *cbits = cd->cbits; |
4139 | pcre_uint8 pbits[32]; |
4140 | |
4141 | if (ptr[1] != CHAR_COLON) |
4142 | { |
4143 | *errorcodeptr = ERR31; |
4144 | goto FAILED; |
4145 | } |
4146 | |
4147 | ptr += 2; |
4148 | if (*ptr == CHAR_CIRCUMFLEX_ACCENT) |
4149 | { |
4150 | local_negate = TRUE; |
4151 | should_flip_negation = TRUE; /* Note negative special */ |
4152 | ptr++; |
4153 | } |
4154 | |
4155 | posix_class = check_posix_name(ptr, (int)(tempptr - ptr)); |
4156 | if (posix_class < 0) |
4157 | { |
4158 | *errorcodeptr = ERR30; |
4159 | goto FAILED; |
4160 | } |
4161 | |
4162 | /* If matching is caseless, upper and lower are converted to |
4163 | alpha. This relies on the fact that the class table starts with |
4164 | alpha, lower, upper as the first 3 entries. */ |
4165 | |
4166 | if ((options & PCRE_CASELESS) != 0 && posix_class <= 2) |
4167 | posix_class = 0; |
4168 | |
4169 | /* When PCRE_UCP is set, some of the POSIX classes are converted to |
4170 | different escape sequences that use Unicode properties. */ |
4171 | |
4172 | #ifdef SUPPORT_UCP |
4173 | if ((options & PCRE_UCP) != 0) |
4174 | { |
4175 | int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0); |
4176 | if (posix_substitutes[pc] != NULL) |
4177 | { |
4178 | nestptr = tempptr + 1; |
4179 | ptr = posix_substitutes[pc] - 1; |
4180 | continue; |
4181 | } |
4182 | } |
4183 | #endif |
4184 | /* In the non-UCP case, we build the bit map for the POSIX class in a |
4185 | chunk of local store because we may be adding and subtracting from it, |
4186 | and we don't want to subtract bits that may be in the main map already. |
4187 | At the end we or the result into the bit map that is being built. */ |
4188 | |
4189 | posix_class *= 3; |
4190 | |
4191 | /* Copy in the first table (always present) */ |
4192 | |
4193 | memcpy(pbits, cbits + posix_class_maps[posix_class], |
4194 | 32 * sizeof(pcre_uint8)); |
4195 | |
4196 | /* If there is a second table, add or remove it as required. */ |
4197 | |
4198 | taboffset = posix_class_maps[posix_class + 1]; |
4199 | tabopt = posix_class_maps[posix_class + 2]; |
4200 | |
4201 | if (taboffset >= 0) |
4202 | { |
4203 | if (tabopt >= 0) |
4204 | for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset]; |
4205 | else |
4206 | for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset]; |
4207 | } |
4208 | |
4209 | /* Now see if we need to remove any special characters. An option |
4210 | value of 1 removes vertical space and 2 removes underscore. */ |
4211 | |
4212 | if (tabopt < 0) tabopt = -tabopt; |
4213 | if (tabopt == 1) pbits[1] &= ~0x3c; |
4214 | else if (tabopt == 2) pbits[11] &= 0x7f; |
4215 | |
4216 | /* Add the POSIX table or its complement into the main table that is |
4217 | being built and we are done. */ |
4218 | |
4219 | if (local_negate) |
4220 | for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c]; |
4221 | else |
4222 | for (c = 0; c < 32; c++) classbits[c] |= pbits[c]; |
4223 | |
4224 | ptr = tempptr + 1; |
4225 | /* Every class contains at least one < 256 character. */ |
4226 | class_has_8bitchar = 1; |
4227 | /* Every class contains at least two characters. */ |
4228 | class_one_char = 2; |
4229 | continue; /* End of POSIX syntax handling */ |
4230 | } |
4231 | |
4232 | /* Backslash may introduce a single character, or it may introduce one |
4233 | of the specials, which just set a flag. The sequence \b is a special |
4234 | case. Inside a class (and only there) it is treated as backspace. We |
4235 | assume that other escapes have more than one character in them, so |
4236 | speculatively set both class_has_8bitchar and class_one_char bigger |
4237 | than one. Unrecognized escapes fall through and are either treated |
4238 | as literal characters (by default), or are faulted if |
4239 | PCRE_EXTRA is set. */ |
4240 | |
4241 | if (c == CHAR_BACKSLASH) |
4242 | { |
4243 | c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE); |
4244 | if (*errorcodeptr != 0) goto FAILED; |
4245 | |
4246 | if (-c == ESC_b) c = CHAR_BS; /* \b is backspace in a class */ |
4247 | else if (-c == ESC_N) /* \N is not supported in a class */ |
4248 | { |
4249 | *errorcodeptr = ERR71; |
4250 | goto FAILED; |
4251 | } |
4252 | else if (-c == ESC_Q) /* Handle start of quoted string */ |
4253 | { |
4254 | if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
4255 | { |
4256 | ptr += 2; /* avoid empty string */ |
4257 | } |
4258 | else inescq = TRUE; |
4259 | continue; |
4260 | } |
4261 | else if (-c == ESC_E) continue; /* Ignore orphan \E */ |
4262 | |
4263 | if (c < 0) |
4264 | { |
4265 | register const pcre_uint8 *cbits = cd->cbits; |
4266 | /* Every class contains at least two < 256 characters. */ |
4267 | class_has_8bitchar++; |
4268 | /* Every class contains at least two characters. */ |
4269 | class_one_char += 2; |
4270 | |
4271 | switch (-c) |
4272 | { |
4273 | #ifdef SUPPORT_UCP |
4274 | case ESC_du: /* These are the values given for \d etc */ |
4275 | case ESC_DU: /* when PCRE_UCP is set. We replace the */ |
4276 | case ESC_wu: /* escape sequence with an appropriate \p */ |
4277 | case ESC_WU: /* or \P to test Unicode properties instead */ |
4278 | case ESC_su: /* of the default ASCII testing. */ |
4279 | case ESC_SU: |
4280 | nestptr = ptr; |
4281 | ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */ |
4282 | class_has_8bitchar--; /* Undo! */ |
4283 | continue; |
4284 | #endif |
4285 | case ESC_d: |
4286 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit]; |
4287 | continue; |
4288 | |
4289 | case ESC_D: |
4290 | should_flip_negation = TRUE; |
4291 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit]; |
4292 | continue; |
4293 | |
4294 | case ESC_w: |
4295 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word]; |
4296 | continue; |
4297 | |
4298 | case ESC_W: |
4299 | should_flip_negation = TRUE; |
4300 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word]; |
4301 | continue; |
4302 | |
4303 | /* Perl 5.004 onwards omits VT from \s, but we must preserve it |
4304 | if it was previously set by something earlier in the character |
4305 | class. Luckily, the value of CHAR_VT is 0x0b in both ASCII and |
4306 | EBCDIC, so we lazily just adjust the appropriate bit. */ |
4307 | |
4308 | case ESC_s: |
4309 | classbits[0] |= cbits[cbit_space]; |
4310 | classbits[1] |= cbits[cbit_space+1] & ~0x08; |
4311 | for (c = 2; c < 32; c++) classbits[c] |= cbits[c+cbit_space]; |
4312 | continue; |
4313 | |
4314 | case ESC_S: |
4315 | should_flip_negation = TRUE; |
4316 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space]; |
4317 | classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */ |
4318 | continue; |
4319 | |
4320 | /* The rest apply in both UCP and non-UCP cases. */ |
4321 | |
4322 | case ESC_h: |
4323 | (void)add_list_to_class(classbits, &class_uchardata, options, cd, |
4324 | PRIV(hspace_list), NOTACHAR); |
4325 | continue; |
4326 | |
4327 | case ESC_H: |
4328 | (void)add_not_list_to_class(classbits, &class_uchardata, options, |
4329 | cd, PRIV(hspace_list)); |
4330 | continue; |
4331 | |
4332 | case ESC_v: |
4333 | (void)add_list_to_class(classbits, &class_uchardata, options, cd, |
4334 | PRIV(vspace_list), NOTACHAR); |
4335 | continue; |
4336 | |
4337 | case ESC_V: |
4338 | (void)add_not_list_to_class(classbits, &class_uchardata, options, |
4339 | cd, PRIV(vspace_list)); |
4340 | continue; |
4341 | |
4342 | #ifdef SUPPORT_UCP |
4343 | case ESC_p: |
4344 | case ESC_P: |
4345 | { |
4346 | BOOL negated; |
4347 | int pdata; |
4348 | int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr); |
4349 | if (ptype < 0) goto FAILED; |
4350 | *class_uchardata++ = ((-c == ESC_p) != negated)? |
4351 | XCL_PROP : XCL_NOTPROP; |
4352 | *class_uchardata++ = ptype; |
4353 | *class_uchardata++ = pdata; |
4354 | class_has_8bitchar--; /* Undo! */ |
4355 | continue; |
4356 | } |
4357 | #endif |
4358 | /* Unrecognized escapes are faulted if PCRE is running in its |
4359 | strict mode. By default, for compatibility with Perl, they are |
4360 | treated as literals. */ |
4361 | |
4362 | default: |
4363 | if ((options & PCRE_EXTRA) != 0) |
4364 | { |
4365 | *errorcodeptr = ERR7; |
4366 | goto FAILED; |
4367 | } |
4368 | class_has_8bitchar--; /* Undo the speculative increase. */ |
4369 | class_one_char -= 2; /* Undo the speculative increase. */ |
4370 | c = *ptr; /* Get the final character and fall through */ |
4371 | break; |
4372 | } |
4373 | } |
4374 | |
4375 | /* Fall through if the escape just defined a single character (c >= 0). |
4376 | This may be greater than 256. */ |
4377 | |
4378 | } /* End of backslash handling */ |
4379 | |
4380 | /* A character may be followed by '-' to form a range. However, Perl does |
4381 | not permit ']' to be the end of the range. A '-' character at the end is |
4382 | treated as a literal. Perl ignores orphaned \E sequences entirely. The |
4383 | code for handling \Q and \E is messy. */ |
4384 | |
4385 | CHECK_RANGE: |
4386 | while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
4387 | { |
4388 | inescq = FALSE; |
4389 | ptr += 2; |
4390 | } |
4391 | oldptr = ptr; |
4392 | |
4393 | /* Remember if \r or \n were explicitly used */ |
4394 | |
4395 | if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
4396 | |
4397 | /* Check for range */ |
4398 | |
4399 | if (!inescq && ptr[1] == CHAR_MINUS) |
4400 | { |
4401 | int d; |
4402 | ptr += 2; |
4403 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2; |
4404 | |
4405 | /* If we hit \Q (not followed by \E) at this point, go into escaped |
4406 | mode. */ |
4407 | |
4408 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q) |
4409 | { |
4410 | ptr += 2; |
4411 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
4412 | { ptr += 2; continue; } |
4413 | inescq = TRUE; |
4414 | break; |
4415 | } |
4416 | |
4417 | /* Minus (hyphen) at the end of a class is treated as a literal, so put |
4418 | back the pointer and jump to handle the character that preceded it. */ |
4419 | |
4420 | if (*ptr == 0 || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET)) |
4421 | { |
4422 | ptr = oldptr; |
4423 | goto CLASS_SINGLE_CHARACTER; |
4424 | } |
4425 | |
4426 | /* Otherwise, we have a potential range; pick up the next character */ |
4427 | |
4428 | #ifdef SUPPORT_UTF |
4429 | if (utf) |
4430 | { /* Braces are required because the */ |
4431 | GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */ |
4432 | } |
4433 | else |
4434 | #endif |
4435 | d = *ptr; /* Not UTF-8 mode */ |
4436 | |
4437 | /* The second part of a range can be a single-character escape, but |
4438 | not any of the other escapes. Perl 5.6 treats a hyphen as a literal |
4439 | in such circumstances. */ |
4440 | |
4441 | if (!inescq && d == CHAR_BACKSLASH) |
4442 | { |
4443 | d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE); |
4444 | if (*errorcodeptr != 0) goto FAILED; |
4445 | |
4446 | /* \b is backspace; any other special means the '-' was literal. */ |
4447 | |
4448 | if (d < 0) |
4449 | { |
4450 | if (d == -ESC_b) d = CHAR_BS; else |
4451 | { |
4452 | ptr = oldptr; |
4453 | goto CLASS_SINGLE_CHARACTER; /* A few lines below */ |
4454 | } |
4455 | } |
4456 | } |
4457 | |
4458 | /* Check that the two values are in the correct order. Optimize |
4459 | one-character ranges. */ |
4460 | |
4461 | if (d < c) |
4462 | { |
4463 | *errorcodeptr = ERR8; |
4464 | goto FAILED; |
4465 | } |
4466 | if (d == c) goto CLASS_SINGLE_CHARACTER; /* A few lines below */ |
4467 | |
4468 | /* We have found a character range, so single character optimizations |
4469 | cannot be done anymore. Any value greater than 1 indicates that there |
4470 | is more than one character. */ |
4471 | |
4472 | class_one_char = 2; |
4473 | |
4474 | /* Remember an explicit \r or \n, and add the range to the class. */ |
4475 | |
4476 | if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
4477 | |
4478 | class_has_8bitchar += |
4479 | add_to_class(classbits, &class_uchardata, options, cd, c, d); |
4480 | |
4481 | continue; /* Go get the next char in the class */ |
4482 | } |
4483 | |
4484 | /* Handle a single character - we can get here for a normal non-escape |
4485 | char, or after \ that introduces a single character or for an apparent |
4486 | range that isn't. Only the value 1 matters for class_one_char, so don't |
4487 | increase it if it is already 2 or more ... just in case there's a class |
4488 | with a zillion characters in it. */ |
4489 | |
4490 | CLASS_SINGLE_CHARACTER: |
4491 | if (class_one_char < 2) class_one_char++; |
4492 | |
4493 | /* If class_one_char is 1, we have the first single character in the |
4494 | class, and there have been no prior ranges, or XCLASS items generated by |
4495 | escapes. If this is the final character in the class, we can optimize by |
4496 | turning the item into a 1-character OP_CHAR[I] if it's positive, or |
4497 | OP_NOT[I] if it's negative. In the positive case, it can cause firstchar |
4498 | to be set. Otherwise, there can be no first char if this item is first, |
4499 | whatever repeat count may follow. In the case of reqchar, save the |
4500 | previous value for reinstating. */ |
4501 | |
4502 | if (class_one_char == 1 && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
4503 | { |
4504 | ptr++; |
4505 | zeroreqchar = reqchar; |
4506 | |
4507 | if (negate_class) |
4508 | { |
4509 | #ifdef SUPPORT_UCP |
4510 | // FIXMEchpe pcreuint32? |
4511 | int d; |
4512 | #endif |
4513 | if (firstchar == REQ_UNSET) firstchar = REQ_NONE; |
4514 | zerofirstchar = firstchar; |
4515 | |
4516 | /* For caseless UTF-8 mode when UCP support is available, check |
4517 | whether this character has more than one other case. If so, generate |
4518 | a special OP_NOTPROP item instead of OP_NOTI. */ |
4519 | |
4520 | #ifdef SUPPORT_UCP |
4521 | if (utf && (options & PCRE_CASELESS) != 0 && |
4522 | (d = UCD_CASESET(c)) != 0) |
4523 | { |
4524 | *code++ = OP_NOTPROP; |
4525 | *code++ = PT_CLIST; |
4526 | *code++ = d; |
4527 | } |
4528 | else |
4529 | #endif |
4530 | /* Char has only one other case, or UCP not available */ |
4531 | |
4532 | { |
4533 | *code++ = ((options & PCRE_CASELESS) != 0)? OP_NOTI: OP_NOT; |
4534 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
4535 | if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR) |
4536 | code += PRIV(ord2utf)(c, code); |
4537 | else |
4538 | #endif |
4539 | *code++ = c; |
4540 | } |
4541 | |
4542 | /* We are finished with this character class */ |
4543 | |
4544 | goto END_CLASS; |
4545 | } |
4546 | |
4547 | /* For a single, positive character, get the value into mcbuffer, and |
4548 | then we can handle this with the normal one-character code. */ |
4549 | |
4550 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
4551 | if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR) |
4552 | mclength = PRIV(ord2utf)(c, mcbuffer); |
4553 | else |
4554 | #endif |
4555 | { |
4556 | mcbuffer[0] = c; |
4557 | mclength = 1; |
4558 | } |
4559 | goto ONE_CHAR; |
4560 | } /* End of 1-char optimization */ |
4561 | |
4562 | /* There is more than one character in the class, or an XCLASS item |
4563 | has been generated. Add this character to the class. */ |
4564 | |
4565 | class_has_8bitchar += |
4566 | add_to_class(classbits, &class_uchardata, options, cd, c, c); |
4567 | } |
4568 | |
4569 | /* Loop until ']' reached. This "while" is the end of the "do" far above. |
4570 | If we are at the end of an internal nested string, revert to the outer |
4571 | string. */ |
4572 | |
4573 | while (((c = *(++ptr)) != 0 || |
4574 | (nestptr != NULL && |
4575 | (ptr = nestptr, nestptr = NULL, c = *(++ptr)) != 0)) && |
4576 | (c != CHAR_RIGHT_SQUARE_BRACKET || inescq)); |
4577 | |
4578 | /* Check for missing terminating ']' */ |
4579 | |
4580 | if (c == 0) |
4581 | { |
4582 | *errorcodeptr = ERR6; |
4583 | goto FAILED; |
4584 | } |
4585 | |
4586 | /* We will need an XCLASS if data has been placed in class_uchardata. In |
4587 | the second phase this is a sufficient test. However, in the pre-compile |
4588 | phase, class_uchardata gets emptied to prevent workspace overflow, so it |
4589 | only if the very last character in the class needs XCLASS will it contain |
4590 | anything at this point. For this reason, xclass gets set TRUE above when |
4591 | uchar_classdata is emptied, and that's why this code is the way it is here |
4592 | instead of just doing a test on class_uchardata below. */ |
4593 | |
4594 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4595 | if (class_uchardata > class_uchardata_base) xclass = TRUE; |
4596 | #endif |
4597 | |
4598 | /* If this is the first thing in the branch, there can be no first char |
4599 | setting, whatever the repeat count. Any reqchar setting must remain |
4600 | unchanged after any kind of repeat. */ |
4601 | |
4602 | if (firstchar == REQ_UNSET) firstchar = REQ_NONE; |
4603 | zerofirstchar = firstchar; |
4604 | zeroreqchar = reqchar; |
4605 | |
4606 | /* If there are characters with values > 255, we have to compile an |
4607 | extended class, with its own opcode, unless there was a negated special |
4608 | such as \S in the class, and PCRE_UCP is not set, because in that case all |
4609 | characters > 255 are in the class, so any that were explicitly given as |
4610 | well can be ignored. If (when there are explicit characters > 255 that must |
4611 | be listed) there are no characters < 256, we can omit the bitmap in the |
4612 | actual compiled code. */ |
4613 | |
4614 | #ifdef SUPPORT_UTF |
4615 | if (xclass && (!should_flip_negation || (options & PCRE_UCP) != 0)) |
4616 | #elif !defined COMPILE_PCRE8 |
4617 | if (xclass && !should_flip_negation) |
4618 | #endif |
4619 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4620 | { |
4621 | *class_uchardata++ = XCL_END; /* Marks the end of extra data */ |
4622 | *code++ = OP_XCLASS; |
4623 | code += LINK_SIZE; |
4624 | *code = negate_class? XCL_NOT:0; |
4625 | |
4626 | /* If the map is required, move up the extra data to make room for it; |
4627 | otherwise just move the code pointer to the end of the extra data. */ |
4628 | |
4629 | if (class_has_8bitchar > 0) |
4630 | { |
4631 | *code++ |= XCL_MAP; |
4632 | memmove(code + (32 / sizeof(pcre_uchar)), code, |
4633 | IN_UCHARS(class_uchardata - code)); |
4634 | memcpy(code, classbits, 32); |
4635 | code = class_uchardata + (32 / sizeof(pcre_uchar)); |
4636 | } |
4637 | else code = class_uchardata; |
4638 | |
4639 | /* Now fill in the complete length of the item */ |
4640 | |
4641 | PUT(previous, 1, (int)(code - previous)); |
4642 | break; /* End of class handling */ |
4643 | } |
4644 | #endif |
4645 | |
4646 | /* If there are no characters > 255, or they are all to be included or |
4647 | excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the |
4648 | whole class was negated and whether there were negative specials such as \S |
4649 | (non-UCP) in the class. Then copy the 32-byte map into the code vector, |
4650 | negating it if necessary. */ |
4651 | |
4652 | *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS; |
4653 | if (lengthptr == NULL) /* Save time in the pre-compile phase */ |
4654 | { |
4655 | if (negate_class) |
4656 | for (c = 0; c < 32; c++) classbits[c] = ~classbits[c]; |
4657 | memcpy(code, classbits, 32); |
4658 | } |
4659 | code += 32 / sizeof(pcre_uchar); |
4660 | |
4661 | END_CLASS: |
4662 | break; |
4663 | |
4664 | |
4665 | /* ===================================================================*/ |
4666 | /* Various kinds of repeat; '{' is not necessarily a quantifier, but this |
4667 | has been tested above. */ |
4668 | |
4669 | case CHAR_LEFT_CURLY_BRACKET: |
4670 | if (!is_quantifier) goto NORMAL_CHAR; |
4671 | ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr); |
4672 | if (*errorcodeptr != 0) goto FAILED; |
4673 | goto REPEAT; |
4674 | |
4675 | case CHAR_ASTERISK: |
4676 | repeat_min = 0; |
4677 | repeat_max = -1; |
4678 | goto REPEAT; |
4679 | |
4680 | case CHAR_PLUS: |
4681 | repeat_min = 1; |
4682 | repeat_max = -1; |
4683 | goto REPEAT; |
4684 | |
4685 | case CHAR_QUESTION_MARK: |
4686 | repeat_min = 0; |
4687 | repeat_max = 1; |
4688 | |
4689 | REPEAT: |
4690 | if (previous == NULL) |
4691 | { |
4692 | *errorcodeptr = ERR9; |
4693 | goto FAILED; |
4694 | } |
4695 | |
4696 | if (repeat_min == 0) |
4697 | { |
4698 | firstchar = zerofirstchar; /* Adjust for zero repeat */ |
4699 | reqchar = zeroreqchar; /* Ditto */ |
4700 | } |
4701 | |
4702 | /* Remember whether this is a variable length repeat */ |
4703 | |
4704 | reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY; |
4705 | |
4706 | op_type = 0; /* Default single-char op codes */ |
4707 | possessive_quantifier = FALSE; /* Default not possessive quantifier */ |
4708 | |
4709 | /* Save start of previous item, in case we have to move it up in order to |
4710 | insert something before it. */ |
4711 | |
4712 | tempcode = previous; |
4713 | |
4714 | /* If the next character is '+', we have a possessive quantifier. This |
4715 | implies greediness, whatever the setting of the PCRE_UNGREEDY option. |
4716 | If the next character is '?' this is a minimizing repeat, by default, |
4717 | but if PCRE_UNGREEDY is set, it works the other way round. We change the |
4718 | repeat type to the non-default. */ |
4719 | |
4720 | if (ptr[1] == CHAR_PLUS) |
4721 | { |
4722 | repeat_type = 0; /* Force greedy */ |
4723 | possessive_quantifier = TRUE; |
4724 | ptr++; |
4725 | } |
4726 | else if (ptr[1] == CHAR_QUESTION_MARK) |
4727 | { |
4728 | repeat_type = greedy_non_default; |
4729 | ptr++; |
4730 | } |
4731 | else repeat_type = greedy_default; |
4732 | |
4733 | /* If previous was a recursion call, wrap it in atomic brackets so that |
4734 | previous becomes the atomic group. All recursions were so wrapped in the |
4735 | past, but it no longer happens for non-repeated recursions. In fact, the |
4736 | repeated ones could be re-implemented independently so as not to need this, |
4737 | but for the moment we rely on the code for repeating groups. */ |
4738 | |
4739 | if (*previous == OP_RECURSE) |
4740 | { |
4741 | memmove(previous + 1 + LINK_SIZE, previous, IN_UCHARS(1 + LINK_SIZE)); |
4742 | *previous = OP_ONCE; |
4743 | PUT(previous, 1, 2 + 2*LINK_SIZE); |
4744 | previous[2 + 2*LINK_SIZE] = OP_KET; |
4745 | PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE); |
4746 | code += 2 + 2 * LINK_SIZE; |
4747 | length_prevgroup = 3 + 3*LINK_SIZE; |
4748 | |
4749 | /* When actually compiling, we need to check whether this was a forward |
4750 | reference, and if so, adjust the offset. */ |
4751 | |
4752 | if (lengthptr == NULL && cd->hwm >= cd->start_workspace + LINK_SIZE) |
4753 | { |
4754 | int offset = GET(cd->hwm, -LINK_SIZE); |
4755 | if (offset == previous + 1 - cd->start_code) |
4756 | PUT(cd->hwm, -LINK_SIZE, offset + 1 + LINK_SIZE); |
4757 | } |
4758 | } |
4759 | |
4760 | /* Now handle repetition for the different types of item. */ |
4761 | |
4762 | /* If previous was a character or negated character match, abolish the item |
4763 | and generate a repeat item instead. If a char item has a minimum of more |
4764 | than one, ensure that it is set in reqchar - it might not be if a sequence |
4765 | such as x{3} is the first thing in a branch because the x will have gone |
4766 | into firstchar instead. */ |
4767 | |
4768 | if (*previous == OP_CHAR || *previous == OP_CHARI |
4769 | || *previous == OP_NOT || *previous == OP_NOTI) |
4770 | { |
4771 | switch (*previous) |
4772 | { |
4773 | default: /* Make compiler happy. */ |
4774 | case OP_CHAR: op_type = OP_STAR - OP_STAR; break; |
4775 | case OP_CHARI: op_type = OP_STARI - OP_STAR; break; |
4776 | case OP_NOT: op_type = OP_NOTSTAR - OP_STAR; break; |
4777 | case OP_NOTI: op_type = OP_NOTSTARI - OP_STAR; break; |
4778 | } |
4779 | |
4780 | /* Deal with UTF characters that take up more than one character. It's |
4781 | easier to write this out separately than try to macrify it. Use c to |
4782 | hold the length of the character in bytes, plus UTF_LENGTH to flag that |
4783 | it's a length rather than a small character. */ |
4784 | |
4785 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
4786 | if (utf && NOT_FIRSTCHAR(code[-1])) |
4787 | { |
4788 | pcre_uchar *lastchar = code - 1; |
4789 | BACKCHAR(lastchar); |
4790 | c = (int)(code - lastchar); /* Length of UTF-8 character */ |
4791 | memcpy(utf_chars, lastchar, IN_UCHARS(c)); /* Save the char */ |
4792 | c |= UTF_LENGTH; /* Flag c as a length */ |
4793 | } |
4794 | else |
4795 | #endif /* SUPPORT_UTF */ |
4796 | |
4797 | /* Handle the case of a single charater - either with no UTF support, or |
4798 | with UTF disabled, or for a single character UTF character. */ |
4799 | { |
4800 | c = code[-1]; |
4801 | if (*previous <= OP_CHARI && repeat_min > 1) |
4802 | reqchar = c | req_caseopt | cd->req_varyopt; |
4803 | } |
4804 | |
4805 | /* If the repetition is unlimited, it pays to see if the next thing on |
4806 | the line is something that cannot possibly match this character. If so, |
4807 | automatically possessifying this item gains some performance in the case |
4808 | where the match fails. */ |
4809 | |
4810 | if (!possessive_quantifier && |
4811 | repeat_max < 0 && |
4812 | check_auto_possessive(previous, utf, ptr + 1, options, cd)) |
4813 | { |
4814 | repeat_type = 0; /* Force greedy */ |
4815 | possessive_quantifier = TRUE; |
4816 | } |
4817 | |
4818 | goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */ |
4819 | } |
4820 | |
4821 | /* If previous was a character type match (\d or similar), abolish it and |
4822 | create a suitable repeat item. The code is shared with single-character |
4823 | repeats by setting op_type to add a suitable offset into repeat_type. Note |
4824 | the the Unicode property types will be present only when SUPPORT_UCP is |
4825 | defined, but we don't wrap the little bits of code here because it just |
4826 | makes it horribly messy. */ |
4827 | |
4828 | else if (*previous < OP_EODN) |
4829 | { |
4830 | pcre_uchar *oldcode; |
4831 | int prop_type, prop_value; |
4832 | op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ |
4833 | c = *previous; |
4834 | |
4835 | if (!possessive_quantifier && |
4836 | repeat_max < 0 && |
4837 | check_auto_possessive(previous, utf, ptr + 1, options, cd)) |
4838 | { |
4839 | repeat_type = 0; /* Force greedy */ |
4840 | possessive_quantifier = TRUE; |
4841 | } |
4842 | |
4843 | OUTPUT_SINGLE_REPEAT: |
4844 | if (*previous == OP_PROP || *previous == OP_NOTPROP) |
4845 | { |
4846 | prop_type = previous[1]; |
4847 | prop_value = previous[2]; |
4848 | } |
4849 | else prop_type = prop_value = -1; |
4850 | |
4851 | oldcode = code; |
4852 | code = previous; /* Usually overwrite previous item */ |
4853 | |
4854 | /* If the maximum is zero then the minimum must also be zero; Perl allows |
4855 | this case, so we do too - by simply omitting the item altogether. */ |
4856 | |
4857 | if (repeat_max == 0) goto END_REPEAT; |
4858 | |
4859 | /*--------------------------------------------------------------------*/ |
4860 | /* This code is obsolete from release 8.00; the restriction was finally |
4861 | removed: */ |
4862 | |
4863 | /* All real repeats make it impossible to handle partial matching (maybe |
4864 | one day we will be able to remove this restriction). */ |
4865 | |
4866 | /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ |
4867 | /*--------------------------------------------------------------------*/ |
4868 | |
4869 | /* Combine the op_type with the repeat_type */ |
4870 | |
4871 | repeat_type += op_type; |
4872 | |
4873 | /* A minimum of zero is handled either as the special case * or ?, or as |
4874 | an UPTO, with the maximum given. */ |
4875 | |
4876 | if (repeat_min == 0) |
4877 | { |
4878 | if (repeat_max == -1) *code++ = OP_STAR + repeat_type; |
4879 | else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type; |
4880 | else |
4881 | { |
4882 | *code++ = OP_UPTO + repeat_type; |
4883 | PUT2INC(code, 0, repeat_max); |
4884 | } |
4885 | } |
4886 | |
4887 | /* A repeat minimum of 1 is optimized into some special cases. If the |
4888 | maximum is unlimited, we use OP_PLUS. Otherwise, the original item is |
4889 | left in place and, if the maximum is greater than 1, we use OP_UPTO with |
4890 | one less than the maximum. */ |
4891 | |
4892 | else if (repeat_min == 1) |
4893 | { |
4894 | if (repeat_max == -1) |
4895 | *code++ = OP_PLUS + repeat_type; |
4896 | else |
4897 | { |
4898 | code = oldcode; /* leave previous item in place */ |
4899 | if (repeat_max == 1) goto END_REPEAT; |
4900 | *code++ = OP_UPTO + repeat_type; |
4901 | PUT2INC(code, 0, repeat_max - 1); |
4902 | } |
4903 | } |
4904 | |
4905 | /* The case {n,n} is just an EXACT, while the general case {n,m} is |
4906 | handled as an EXACT followed by an UPTO. */ |
4907 | |
4908 | else |
4909 | { |
4910 | *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */ |
4911 | PUT2INC(code, 0, repeat_min); |
4912 | |
4913 | /* If the maximum is unlimited, insert an OP_STAR. Before doing so, |
4914 | we have to insert the character for the previous code. For a repeated |
4915 | Unicode property match, there are two extra bytes that define the |
4916 | required property. In UTF-8 mode, long characters have their length in |
4917 | c, with the UTF_LENGTH bit as a flag. */ |
4918 | |
4919 | if (repeat_max < 0) |
4920 | { |
4921 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
4922 | if (utf && (c & UTF_LENGTH) != 0) |
4923 | { |
4924 | memcpy(code, utf_chars, IN_UCHARS(c & 7)); |
4925 | code += c & 7; |
4926 | } |
4927 | else |
4928 | #endif |
4929 | { |
4930 | *code++ = c; |
4931 | if (prop_type >= 0) |
4932 | { |
4933 | *code++ = prop_type; |
4934 | *code++ = prop_value; |
4935 | } |
4936 | } |
4937 | *code++ = OP_STAR + repeat_type; |
4938 | } |
4939 | |
4940 | /* Else insert an UPTO if the max is greater than the min, again |
4941 | preceded by the character, for the previously inserted code. If the |
4942 | UPTO is just for 1 instance, we can use QUERY instead. */ |
4943 | |
4944 | else if (repeat_max != repeat_min) |
4945 | { |
4946 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
4947 | if (utf && (c & UTF_LENGTH) != 0) |
4948 | { |
4949 | memcpy(code, utf_chars, IN_UCHARS(c & 7)); |
4950 | code += c & 7; |
4951 | } |
4952 | else |
4953 | #endif |
4954 | *code++ = c; |
4955 | if (prop_type >= 0) |
4956 | { |
4957 | *code++ = prop_type; |
4958 | *code++ = prop_value; |
4959 | } |
4960 | repeat_max -= repeat_min; |
4961 | |
4962 | if (repeat_max == 1) |
4963 | { |
4964 | *code++ = OP_QUERY + repeat_type; |
4965 | } |
4966 | else |
4967 | { |
4968 | *code++ = OP_UPTO + repeat_type; |
4969 | PUT2INC(code, 0, repeat_max); |
4970 | } |
4971 | } |
4972 | } |
4973 | |
4974 | /* The character or character type itself comes last in all cases. */ |
4975 | |
4976 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
4977 | if (utf && (c & UTF_LENGTH) != 0) |
4978 | { |
4979 | memcpy(code, utf_chars, IN_UCHARS(c & 7)); |
4980 | code += c & 7; |
4981 | } |
4982 | else |
4983 | #endif |
4984 | *code++ = c; |
4985 | |
4986 | /* For a repeated Unicode property match, there are two extra bytes that |
4987 | define the required property. */ |
4988 | |
4989 | #ifdef SUPPORT_UCP |
4990 | if (prop_type >= 0) |
4991 | { |
4992 | *code++ = prop_type; |
4993 | *code++ = prop_value; |
4994 | } |
4995 | #endif |
4996 | } |
4997 | |
4998 | /* If previous was a character class or a back reference, we put the repeat |
4999 | stuff after it, but just skip the item if the repeat was {0,0}. */ |
5000 | |
5001 | else if (*previous == OP_CLASS || |
5002 | *previous == OP_NCLASS || |
5003 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
5004 | *previous == OP_XCLASS || |
5005 | #endif |
5006 | *previous == OP_REF || |
5007 | *previous == OP_REFI) |
5008 | { |
5009 | if (repeat_max == 0) |
5010 | { |
5011 | code = previous; |
5012 | goto END_REPEAT; |
5013 | } |
5014 | |
5015 | /*--------------------------------------------------------------------*/ |
5016 | /* This code is obsolete from release 8.00; the restriction was finally |
5017 | removed: */ |
5018 | |
5019 | /* All real repeats make it impossible to handle partial matching (maybe |
5020 | one day we will be able to remove this restriction). */ |
5021 | |
5022 | /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ |
5023 | /*--------------------------------------------------------------------*/ |
5024 | |
5025 | if (repeat_min == 0 && repeat_max == -1) |
5026 | *code++ = OP_CRSTAR + repeat_type; |
5027 | else if (repeat_min == 1 && repeat_max == -1) |
5028 | *code++ = OP_CRPLUS + repeat_type; |
5029 | else if (repeat_min == 0 && repeat_max == 1) |
5030 | *code++ = OP_CRQUERY + repeat_type; |
5031 | else |
5032 | { |
5033 | *code++ = OP_CRRANGE + repeat_type; |
5034 | PUT2INC(code, 0, repeat_min); |
5035 | if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */ |
5036 | PUT2INC(code, 0, repeat_max); |
5037 | } |
5038 | } |
5039 | |
5040 | /* If previous was a bracket group, we may have to replicate it in certain |
5041 | cases. Note that at this point we can encounter only the "basic" bracket |
5042 | opcodes such as BRA and CBRA, as this is the place where they get converted |
5043 | into the more special varieties such as BRAPOS and SBRA. A test for >= |
5044 | OP_ASSERT and <= OP_COND includes ASSERT, ASSERT_NOT, ASSERTBACK, |
5045 | ASSERTBACK_NOT, ONCE, BRA, CBRA, and COND. Originally, PCRE did not allow |
5046 | repetition of assertions, but now it does, for Perl compatibility. */ |
5047 | |
5048 | else if (*previous >= OP_ASSERT && *previous <= OP_COND) |
5049 | { |
5050 | register int i; |
5051 | int len = (int)(code - previous); |
5052 | pcre_uchar *bralink = NULL; |
5053 | pcre_uchar *brazeroptr = NULL; |
5054 | |
5055 | /* Repeating a DEFINE group is pointless, but Perl allows the syntax, so |
5056 | we just ignore the repeat. */ |
5057 | |
5058 | if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF) |
5059 | goto END_REPEAT; |
5060 | |
5061 | /* There is no sense in actually repeating assertions. The only potential |
5062 | use of repetition is in cases when the assertion is optional. Therefore, |
5063 | if the minimum is greater than zero, just ignore the repeat. If the |
5064 | maximum is not not zero or one, set it to 1. */ |
5065 | |
5066 | if (*previous < OP_ONCE) /* Assertion */ |
5067 | { |
5068 | if (repeat_min > 0) goto END_REPEAT; |
5069 | if (repeat_max < 0 || repeat_max > 1) repeat_max = 1; |
5070 | } |
5071 | |
5072 | /* The case of a zero minimum is special because of the need to stick |
5073 | OP_BRAZERO in front of it, and because the group appears once in the |
5074 | data, whereas in other cases it appears the minimum number of times. For |
5075 | this reason, it is simplest to treat this case separately, as otherwise |
5076 | the code gets far too messy. There are several special subcases when the |
5077 | minimum is zero. */ |
5078 | |
5079 | if (repeat_min == 0) |
5080 | { |
5081 | /* If the maximum is also zero, we used to just omit the group from the |
5082 | output altogether, like this: |
5083 | |
5084 | ** if (repeat_max == 0) |
5085 | ** { |
5086 | ** code = previous; |
5087 | ** goto END_REPEAT; |
5088 | ** } |
5089 | |
5090 | However, that fails when a group or a subgroup within it is referenced |
5091 | as a subroutine from elsewhere in the pattern, so now we stick in |
5092 | OP_SKIPZERO in front of it so that it is skipped on execution. As we |
5093 | don't have a list of which groups are referenced, we cannot do this |
5094 | selectively. |
5095 | |
5096 | If the maximum is 1 or unlimited, we just have to stick in the BRAZERO |
5097 | and do no more at this point. However, we do need to adjust any |
5098 | OP_RECURSE calls inside the group that refer to the group itself or any |
5099 | internal or forward referenced group, because the offset is from the |
5100 | start of the whole regex. Temporarily terminate the pattern while doing |
5101 | this. */ |
5102 | |
5103 | if (repeat_max <= 1) /* Covers 0, 1, and unlimited */ |
5104 | { |
5105 | *code = OP_END; |
5106 | adjust_recurse(previous, 1, utf, cd, save_hwm); |
5107 | memmove(previous + 1, previous, IN_UCHARS(len)); |
5108 | code++; |
5109 | if (repeat_max == 0) |
5110 | { |
5111 | *previous++ = OP_SKIPZERO; |
5112 | goto END_REPEAT; |
5113 | } |
5114 | brazeroptr = previous; /* Save for possessive optimizing */ |
5115 | *previous++ = OP_BRAZERO + repeat_type; |
5116 | } |
5117 | |
5118 | /* If the maximum is greater than 1 and limited, we have to replicate |
5119 | in a nested fashion, sticking OP_BRAZERO before each set of brackets. |
5120 | The first one has to be handled carefully because it's the original |
5121 | copy, which has to be moved up. The remainder can be handled by code |
5122 | that is common with the non-zero minimum case below. We have to |
5123 | adjust the value or repeat_max, since one less copy is required. Once |
5124 | again, we may have to adjust any OP_RECURSE calls inside the group. */ |
5125 | |
5126 | else |
5127 | { |
5128 | int offset; |
5129 | *code = OP_END; |
5130 | adjust_recurse(previous, 2 + LINK_SIZE, utf, cd, save_hwm); |
5131 | memmove(previous + 2 + LINK_SIZE, previous, IN_UCHARS(len)); |
5132 | code += 2 + LINK_SIZE; |
5133 | *previous++ = OP_BRAZERO + repeat_type; |
5134 | *previous++ = OP_BRA; |
5135 | |
5136 | /* We chain together the bracket offset fields that have to be |
5137 | filled in later when the ends of the brackets are reached. */ |
5138 | |
5139 | offset = (bralink == NULL)? 0 : (int)(previous - bralink); |
5140 | bralink = previous; |
5141 | PUTINC(previous, 0, offset); |
5142 | } |
5143 | |
5144 | repeat_max--; |
5145 | } |
5146 | |
5147 | /* If the minimum is greater than zero, replicate the group as many |
5148 | times as necessary, and adjust the maximum to the number of subsequent |
5149 | copies that we need. If we set a first char from the group, and didn't |
5150 | set a required char, copy the latter from the former. If there are any |
5151 | forward reference subroutine calls in the group, there will be entries on |
5152 | the workspace list; replicate these with an appropriate increment. */ |
5153 | |
5154 | else |
5155 | { |
5156 | if (repeat_min > 1) |
5157 | { |
5158 | /* In the pre-compile phase, we don't actually do the replication. We |
5159 | just adjust the length as if we had. Do some paranoid checks for |
5160 | potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit |
5161 | integer type when available, otherwise double. */ |
5162 | |
5163 | if (lengthptr != NULL) |
5164 | { |
5165 | int delta = (repeat_min - 1)*length_prevgroup; |
5166 | if ((INT64_OR_DOUBLE)(repeat_min - 1)* |
5167 | (INT64_OR_DOUBLE)length_prevgroup > |
5168 | (INT64_OR_DOUBLE)INT_MAX || |
5169 | OFLOW_MAX - *lengthptr < delta) |
5170 | { |
5171 | *errorcodeptr = ERR20; |
5172 | goto FAILED; |
5173 | } |
5174 | *lengthptr += delta; |
5175 | } |
5176 | |
5177 | /* This is compiling for real. If there is a set first byte for |
5178 | the group, and we have not yet set a "required byte", set it. Make |
5179 | sure there is enough workspace for copying forward references before |
5180 | doing the copy. */ |
5181 | |
5182 | else |
5183 | { |
5184 | if (groupsetfirstchar && reqchar < 0) reqchar = firstchar; |
5185 | |
5186 | for (i = 1; i < repeat_min; i++) |
5187 | { |
5188 | pcre_uchar *hc; |
5189 | pcre_uchar *this_hwm = cd->hwm; |
5190 | memcpy(code, previous, IN_UCHARS(len)); |
5191 | |
5192 | while (cd->hwm > cd->start_workspace + cd->workspace_size - |
5193 | WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm)) |
5194 | { |
5195 | int save_offset = save_hwm - cd->start_workspace; |
5196 | int this_offset = this_hwm - cd->start_workspace; |
5197 | *errorcodeptr = expand_workspace(cd); |
5198 | if (*errorcodeptr != 0) goto FAILED; |
5199 | save_hwm = (pcre_uchar *)cd->start_workspace + save_offset; |
5200 | this_hwm = (pcre_uchar *)cd->start_workspace + this_offset; |
5201 | } |
5202 | |
5203 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
5204 | { |
5205 | PUT(cd->hwm, 0, GET(hc, 0) + len); |
5206 | cd->hwm += LINK_SIZE; |
5207 | } |
5208 | save_hwm = this_hwm; |
5209 | code += len; |
5210 | } |
5211 | } |
5212 | } |
5213 | |
5214 | if (repeat_max > 0) repeat_max -= repeat_min; |
5215 | } |
5216 | |
5217 | /* This code is common to both the zero and non-zero minimum cases. If |
5218 | the maximum is limited, it replicates the group in a nested fashion, |
5219 | remembering the bracket starts on a stack. In the case of a zero minimum, |
5220 | the first one was set up above. In all cases the repeat_max now specifies |
5221 | the number of additional copies needed. Again, we must remember to |
5222 | replicate entries on the forward reference list. */ |
5223 | |
5224 | if (repeat_max >= 0) |
5225 | { |
5226 | /* In the pre-compile phase, we don't actually do the replication. We |
5227 | just adjust the length as if we had. For each repetition we must add 1 |
5228 | to the length for BRAZERO and for all but the last repetition we must |
5229 | add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some |
5230 | paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is |
5231 | a 64-bit integer type when available, otherwise double. */ |
5232 | |
5233 | if (lengthptr != NULL && repeat_max > 0) |
5234 | { |
5235 | int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) - |
5236 | 2 - 2*LINK_SIZE; /* Last one doesn't nest */ |
5237 | if ((INT64_OR_DOUBLE)repeat_max * |
5238 | (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE) |
5239 | > (INT64_OR_DOUBLE)INT_MAX || |
5240 | OFLOW_MAX - *lengthptr < delta) |
5241 | { |
5242 | *errorcodeptr = ERR20; |
5243 | goto FAILED; |
5244 | } |
5245 | *lengthptr += delta; |
5246 | } |
5247 | |
5248 | /* This is compiling for real */ |
5249 | |
5250 | else for (i = repeat_max - 1; i >= 0; i--) |
5251 | { |
5252 | pcre_uchar *hc; |
5253 | pcre_uchar *this_hwm = cd->hwm; |
5254 | |
5255 | *code++ = OP_BRAZERO + repeat_type; |
5256 | |
5257 | /* All but the final copy start a new nesting, maintaining the |
5258 | chain of brackets outstanding. */ |
5259 | |
5260 | if (i != 0) |
5261 | { |
5262 | int offset; |
5263 | *code++ = OP_BRA; |
5264 | offset = (bralink == NULL)? 0 : (int)(code - bralink); |
5265 | bralink = code; |
5266 | PUTINC(code, 0, offset); |
5267 | } |
5268 | |
5269 | memcpy(code, previous, IN_UCHARS(len)); |
5270 | |
5271 | /* Ensure there is enough workspace for forward references before |
5272 | copying them. */ |
5273 | |
5274 | while (cd->hwm > cd->start_workspace + cd->workspace_size - |
5275 | WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm)) |
5276 | { |
5277 | int save_offset = save_hwm - cd->start_workspace; |
5278 | int this_offset = this_hwm - cd->start_workspace; |
5279 | *errorcodeptr = expand_workspace(cd); |
5280 | if (*errorcodeptr != 0) goto FAILED; |
5281 | save_hwm = (pcre_uchar *)cd->start_workspace + save_offset; |
5282 | this_hwm = (pcre_uchar *)cd->start_workspace + this_offset; |
5283 | } |
5284 | |
5285 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
5286 | { |
5287 | PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1)); |
5288 | cd->hwm += LINK_SIZE; |
5289 | } |
5290 | save_hwm = this_hwm; |
5291 | code += len; |
5292 | } |
5293 | |
5294 | /* Now chain through the pending brackets, and fill in their length |
5295 | fields (which are holding the chain links pro tem). */ |
5296 | |
5297 | while (bralink != NULL) |
5298 | { |
5299 | int oldlinkoffset; |
5300 | int offset = (int)(code - bralink + 1); |
5301 | pcre_uchar *bra = code - offset; |
5302 | oldlinkoffset = GET(bra, 1); |
5303 | bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset; |
5304 | *code++ = OP_KET; |
5305 | PUTINC(code, 0, offset); |
5306 | PUT(bra, 1, offset); |
5307 | } |
5308 | } |
5309 | |
5310 | /* If the maximum is unlimited, set a repeater in the final copy. For |
5311 | ONCE brackets, that's all we need to do. However, possessively repeated |
5312 | ONCE brackets can be converted into non-capturing brackets, as the |
5313 | behaviour of (?:xx)++ is the same as (?>xx)++ and this saves having to |
5314 | deal with possessive ONCEs specially. |
5315 | |
5316 | Otherwise, when we are doing the actual compile phase, check to see |
5317 | whether this group is one that could match an empty string. If so, |
5318 | convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so |
5319 | that runtime checking can be done. [This check is also applied to ONCE |
5320 | groups at runtime, but in a different way.] |
5321 | |
5322 | Then, if the quantifier was possessive and the bracket is not a |
5323 | conditional, we convert the BRA code to the POS form, and the KET code to |
5324 | KETRPOS. (It turns out to be convenient at runtime to detect this kind of |
5325 | subpattern at both the start and at the end.) The use of special opcodes |
5326 | makes it possible to reduce greatly the stack usage in pcre_exec(). If |
5327 | the group is preceded by OP_BRAZERO, convert this to OP_BRAPOSZERO. |
5328 | |
5329 | Then, if the minimum number of matches is 1 or 0, cancel the possessive |
5330 | flag so that the default action below, of wrapping everything inside |
5331 | atomic brackets, does not happen. When the minimum is greater than 1, |
5332 | there will be earlier copies of the group, and so we still have to wrap |
5333 | the whole thing. */ |
5334 | |
5335 | else |
5336 | { |
5337 | pcre_uchar *ketcode = code - 1 - LINK_SIZE; |
5338 | pcre_uchar *bracode = ketcode - GET(ketcode, 1); |
5339 | |
5340 | /* Convert possessive ONCE brackets to non-capturing */ |
5341 | |
5342 | if ((*bracode == OP_ONCE || *bracode == OP_ONCE_NC) && |
5343 | possessive_quantifier) *bracode = OP_BRA; |
5344 | |
5345 | /* For non-possessive ONCE brackets, all we need to do is to |
5346 | set the KET. */ |
5347 | |
5348 | if (*bracode == OP_ONCE || *bracode == OP_ONCE_NC) |
5349 | *ketcode = OP_KETRMAX + repeat_type; |
5350 | |
5351 | /* Handle non-ONCE brackets and possessive ONCEs (which have been |
5352 | converted to non-capturing above). */ |
5353 | |
5354 | else |
5355 | { |
5356 | /* In the compile phase, check for empty string matching. */ |
5357 | |
5358 | if (lengthptr == NULL) |
5359 | { |
5360 | pcre_uchar *scode = bracode; |
5361 | do |
5362 | { |
5363 | if (could_be_empty_branch(scode, ketcode, utf, cd)) |
5364 | { |
5365 | *bracode += OP_SBRA - OP_BRA; |
5366 | break; |
5367 | } |
5368 | scode += GET(scode, 1); |
5369 | } |
5370 | while (*scode == OP_ALT); |
5371 | } |
5372 | |
5373 | /* Handle possessive quantifiers. */ |
5374 | |
5375 | if (possessive_quantifier) |
5376 | { |
5377 | /* For COND brackets, we wrap the whole thing in a possessively |
5378 | repeated non-capturing bracket, because we have not invented POS |
5379 | versions of the COND opcodes. Because we are moving code along, we |
5380 | must ensure that any pending recursive references are updated. */ |
5381 | |
5382 | if (*bracode == OP_COND || *bracode == OP_SCOND) |
5383 | { |
5384 | int nlen = (int)(code - bracode); |
5385 | *code = OP_END; |
5386 | adjust_recurse(bracode, 1 + LINK_SIZE, utf, cd, save_hwm); |
5387 | memmove(bracode + 1 + LINK_SIZE, bracode, IN_UCHARS(nlen)); |
5388 | code += 1 + LINK_SIZE; |
5389 | nlen += 1 + LINK_SIZE; |
5390 | *bracode = OP_BRAPOS; |
5391 | *code++ = OP_KETRPOS; |
5392 | PUTINC(code, 0, nlen); |
5393 | PUT(bracode, 1, nlen); |
5394 | } |
5395 | |
5396 | /* For non-COND brackets, we modify the BRA code and use KETRPOS. */ |
5397 | |
5398 | else |
5399 | { |
5400 | *bracode += 1; /* Switch to xxxPOS opcodes */ |
5401 | *ketcode = OP_KETRPOS; |
5402 | } |
5403 | |
5404 | /* If the minimum is zero, mark it as possessive, then unset the |
5405 | possessive flag when the minimum is 0 or 1. */ |
5406 | |
5407 | if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO; |
5408 | if (repeat_min < 2) possessive_quantifier = FALSE; |
5409 | } |
5410 | |
5411 | /* Non-possessive quantifier */ |
5412 | |
5413 | else *ketcode = OP_KETRMAX + repeat_type; |
5414 | } |
5415 | } |
5416 | } |
5417 | |
5418 | /* If previous is OP_FAIL, it was generated by an empty class [] in |
5419 | JavaScript mode. The other ways in which OP_FAIL can be generated, that is |
5420 | by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat" |
5421 | error above. We can just ignore the repeat in JS case. */ |
5422 | |
5423 | else if (*previous == OP_FAIL) goto END_REPEAT; |
5424 | |
5425 | /* Else there's some kind of shambles */ |
5426 | |
5427 | else |
5428 | { |
5429 | *errorcodeptr = ERR11; |
5430 | goto FAILED; |
5431 | } |
5432 | |
5433 | /* If the character following a repeat is '+', or if certain optimization |
5434 | tests above succeeded, possessive_quantifier is TRUE. For some opcodes, |
5435 | there are special alternative opcodes for this case. For anything else, we |
5436 | wrap the entire repeated item inside OP_ONCE brackets. Logically, the '+' |
5437 | notation is just syntactic sugar, taken from Sun's Java package, but the |
5438 | special opcodes can optimize it. |
5439 | |
5440 | Some (but not all) possessively repeated subpatterns have already been |
5441 | completely handled in the code just above. For them, possessive_quantifier |
5442 | is always FALSE at this stage. |
5443 | |
5444 | Note that the repeated item starts at tempcode, not at previous, which |
5445 | might be the first part of a string whose (former) last char we repeated. |
5446 | |
5447 | Possessifying an 'exact' quantifier has no effect, so we can ignore it. But |
5448 | an 'upto' may follow. We skip over an 'exact' item, and then test the |
5449 | length of what remains before proceeding. */ |
5450 | |
5451 | if (possessive_quantifier) |
5452 | { |
5453 | int len; |
5454 | |
5455 | if (*tempcode == OP_TYPEEXACT) |
5456 | tempcode += PRIV(OP_lengths)[*tempcode] + |
5457 | ((tempcode[1 + IMM2_SIZE] == OP_PROP |
5458 | || tempcode[1 + IMM2_SIZE] == OP_NOTPROP)? 2 : 0); |
5459 | |
5460 | else if (*tempcode == OP_EXACT || *tempcode == OP_NOTEXACT) |
5461 | { |
5462 | tempcode += PRIV(OP_lengths)[*tempcode]; |
5463 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
5464 | if (utf && HAS_EXTRALEN(tempcode[-1])) |
5465 | tempcode += GET_EXTRALEN(tempcode[-1]); |
5466 | #endif |
5467 | } |
5468 | |
5469 | len = (int)(code - tempcode); |
5470 | if (len > 0) switch (*tempcode) |
5471 | { |
5472 | case OP_STAR: *tempcode = OP_POSSTAR; break; |
5473 | case OP_PLUS: *tempcode = OP_POSPLUS; break; |
5474 | case OP_QUERY: *tempcode = OP_POSQUERY; break; |
5475 | case OP_UPTO: *tempcode = OP_POSUPTO; break; |
5476 | |
5477 | case OP_STARI: *tempcode = OP_POSSTARI; break; |
5478 | case OP_PLUSI: *tempcode = OP_POSPLUSI; break; |
5479 | case OP_QUERYI: *tempcode = OP_POSQUERYI; break; |
5480 | case OP_UPTOI: *tempcode = OP_POSUPTOI; break; |
5481 | |
5482 | case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break; |
5483 | case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break; |
5484 | case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break; |
5485 | case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break; |
5486 | |
5487 | case OP_NOTSTARI: *tempcode = OP_NOTPOSSTARI; break; |
5488 | case OP_NOTPLUSI: *tempcode = OP_NOTPOSPLUSI; break; |
5489 | case OP_NOTQUERYI: *tempcode = OP_NOTPOSQUERYI; break; |
5490 | case OP_NOTUPTOI: *tempcode = OP_NOTPOSUPTOI; break; |
5491 | |
5492 | case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break; |
5493 | case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break; |
5494 | case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break; |
5495 | case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break; |
5496 | |
5497 | /* Because we are moving code along, we must ensure that any |
5498 | pending recursive references are updated. */ |
5499 | |
5500 | default: |
5501 | *code = OP_END; |
5502 | adjust_recurse(tempcode, 1 + LINK_SIZE, utf, cd, save_hwm); |
5503 | memmove(tempcode + 1 + LINK_SIZE, tempcode, IN_UCHARS(len)); |
5504 | code += 1 + LINK_SIZE; |
5505 | len += 1 + LINK_SIZE; |
5506 | tempcode[0] = OP_ONCE; |
5507 | *code++ = OP_KET; |
5508 | PUTINC(code, 0, len); |
5509 | PUT(tempcode, 1, len); |
5510 | break; |
5511 | } |
5512 | } |
5513 | |
5514 | /* In all case we no longer have a previous item. We also set the |
5515 | "follows varying string" flag for subsequently encountered reqchars if |
5516 | it isn't already set and we have just passed a varying length item. */ |
5517 | |
5518 | END_REPEAT: |
5519 | previous = NULL; |
5520 | cd->req_varyopt |= reqvary; |
5521 | break; |
5522 | |
5523 | |
5524 | /* ===================================================================*/ |
5525 | /* Start of nested parenthesized sub-expression, or comment or lookahead or |
5526 | lookbehind or option setting or condition or all the other extended |
5527 | parenthesis forms. */ |
5528 | |
5529 | case CHAR_LEFT_PARENTHESIS: |
5530 | newoptions = options; |
5531 | skipbytes = 0; |
5532 | bravalue = OP_CBRA; |
5533 | save_hwm = cd->hwm; |
5534 | reset_bracount = FALSE; |
5535 | |
5536 | /* First deal with various "verbs" that can be introduced by '*'. */ |
5537 | |
5538 | ptr++; |
5539 | if (ptr[0] == CHAR_ASTERISK && (ptr[1] == ':' |
5540 | || (MAX_255(ptr[1]) && ((cd->ctypes[ptr[1]] & ctype_letter) != 0)))) |
5541 | { |
5542 | int i, namelen; |
5543 | int arglen = 0; |
5544 | const char *vn = verbnames; |
5545 | const pcre_uchar *name = ptr + 1; |
5546 | const pcre_uchar *arg = NULL; |
5547 | previous = NULL; |
5548 | ptr++; |
5549 | while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_letter) != 0) ptr++; |
5550 | namelen = (int)(ptr - name); |
5551 | |
5552 | /* It appears that Perl allows any characters whatsoever, other than |
5553 | a closing parenthesis, to appear in arguments, so we no longer insist on |
5554 | letters, digits, and underscores. */ |
5555 | |
5556 | if (*ptr == CHAR_COLON) |
5557 | { |
5558 | arg = ++ptr; |
5559 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
5560 | arglen = (int)(ptr - arg); |
5561 | if ((unsigned int)arglen > MAX_MARK) |
5562 | { |
5563 | *errorcodeptr = ERR75; |
5564 | goto FAILED; |
5565 | } |
5566 | } |
5567 | |
5568 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
5569 | { |
5570 | *errorcodeptr = ERR60; |
5571 | goto FAILED; |
5572 | } |
5573 | |
5574 | /* Scan the table of verb names */ |
5575 | |
5576 | for (i = 0; i < verbcount; i++) |
5577 | { |
5578 | if (namelen == verbs[i].len && |
5579 | STRNCMP_UC_C8(name, vn, namelen) == 0) |
5580 | { |
5581 | int setverb; |
5582 | |
5583 | /* Check for open captures before ACCEPT and convert it to |
5584 | ASSERT_ACCEPT if in an assertion. */ |
5585 | |
5586 | if (verbs[i].op == OP_ACCEPT) |
5587 | { |
5588 | open_capitem *oc; |
5589 | if (arglen != 0) |
5590 | { |
5591 | *errorcodeptr = ERR59; |
5592 | goto FAILED; |
5593 | } |
5594 | cd->had_accept = TRUE; |
5595 | for (oc = cd->open_caps; oc != NULL; oc = oc->next) |
5596 | { |
5597 | *code++ = OP_CLOSE; |
5598 | PUT2INC(code, 0, oc->number); |
5599 | } |
5600 | setverb = *code++ = |
5601 | (cd->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT; |
5602 | |
5603 | /* Do not set firstchar after *ACCEPT */ |
5604 | if (firstchar == REQ_UNSET) firstchar = REQ_NONE; |
5605 | } |
5606 | |
5607 | /* Handle other cases with/without an argument */ |
5608 | |
5609 | else if (arglen == 0) |
5610 | { |
5611 | if (verbs[i].op < 0) /* Argument is mandatory */ |
5612 | { |
5613 | *errorcodeptr = ERR66; |
5614 | goto FAILED; |
5615 | } |
5616 | setverb = *code++ = verbs[i].op; |
5617 | } |
5618 | |
5619 | else |
5620 | { |
5621 | if (verbs[i].op_arg < 0) /* Argument is forbidden */ |
5622 | { |
5623 | *errorcodeptr = ERR59; |
5624 | goto FAILED; |
5625 | } |
5626 | setverb = *code++ = verbs[i].op_arg; |
5627 | *code++ = arglen; |
5628 | memcpy(code, arg, IN_UCHARS(arglen)); |
5629 | code += arglen; |
5630 | *code++ = 0; |
5631 | } |
5632 | |
5633 | switch (setverb) |
5634 | { |
5635 | case OP_THEN: |
5636 | case OP_THEN_ARG: |
5637 | cd->external_flags |= PCRE_HASTHEN; |
5638 | break; |
5639 | |
5640 | case OP_PRUNE: |
5641 | case OP_PRUNE_ARG: |
5642 | case OP_SKIP: |
5643 | case OP_SKIP_ARG: |
5644 | cd->had_pruneorskip = TRUE; |
5645 | break; |
5646 | } |
5647 | |
5648 | break; /* Found verb, exit loop */ |
5649 | } |
5650 | |
5651 | vn += verbs[i].len + 1; |
5652 | } |
5653 | |
5654 | if (i < verbcount) continue; /* Successfully handled a verb */ |
5655 | *errorcodeptr = ERR60; /* Verb not recognized */ |
5656 | goto FAILED; |
5657 | } |
5658 | |
5659 | /* Deal with the extended parentheses; all are introduced by '?', and the |
5660 | appearance of any of them means that this is not a capturing group. */ |
5661 | |
5662 | else if (*ptr == CHAR_QUESTION_MARK) |
5663 | { |
5664 | int i, set, unset, namelen; |
5665 | int *optset; |
5666 | const pcre_uchar *name; |
5667 | pcre_uchar *slot; |
5668 | |
5669 | switch (*(++ptr)) |
5670 | { |
5671 | case CHAR_NUMBER_SIGN: /* Comment; skip to ket */ |
5672 | ptr++; |
5673 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
5674 | if (*ptr == 0) |
5675 | { |
5676 | *errorcodeptr = ERR18; |
5677 | goto FAILED; |
5678 | } |
5679 | continue; |
5680 | |
5681 | |
5682 | /* ------------------------------------------------------------ */ |
5683 | case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */ |
5684 | reset_bracount = TRUE; |
5685 | /* Fall through */ |
5686 | |
5687 | /* ------------------------------------------------------------ */ |
5688 | case CHAR_COLON: /* Non-capturing bracket */ |
5689 | bravalue = OP_BRA; |
5690 | ptr++; |
5691 | break; |
5692 | |
5693 | |
5694 | /* ------------------------------------------------------------ */ |
5695 | case CHAR_LEFT_PARENTHESIS: |
5696 | bravalue = OP_COND; /* Conditional group */ |
5697 | |
5698 | /* A condition can be an assertion, a number (referring to a numbered |
5699 | group), a name (referring to a named group), or 'R', referring to |
5700 | recursion. R<digits> and R&name are also permitted for recursion tests. |
5701 | |
5702 | There are several syntaxes for testing a named group: (?(name)) is used |
5703 | by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')). |
5704 | |
5705 | There are two unfortunate ambiguities, caused by history. (a) 'R' can |
5706 | be the recursive thing or the name 'R' (and similarly for 'R' followed |
5707 | by digits), and (b) a number could be a name that consists of digits. |
5708 | In both cases, we look for a name first; if not found, we try the other |
5709 | cases. */ |
5710 | |
5711 | /* For conditions that are assertions, check the syntax, and then exit |
5712 | the switch. This will take control down to where bracketed groups, |
5713 | including assertions, are processed. */ |
5714 | |
5715 | if (ptr[1] == CHAR_QUESTION_MARK && (ptr[2] == CHAR_EQUALS_SIGN || |
5716 | ptr[2] == CHAR_EXCLAMATION_MARK || ptr[2] == CHAR_LESS_THAN_SIGN)) |
5717 | break; |
5718 | |
5719 | /* Most other conditions use OP_CREF (a couple change to OP_RREF |
5720 | below), and all need to skip 1+IMM2_SIZE bytes at the start of the group. */ |
5721 | |
5722 | code[1+LINK_SIZE] = OP_CREF; |
5723 | skipbytes = 1+IMM2_SIZE; |
5724 | refsign = -1; |
5725 | |
5726 | /* Check for a test for recursion in a named group. */ |
5727 | |
5728 | if (ptr[1] == CHAR_R && ptr[2] == CHAR_AMPERSAND) |
5729 | { |
5730 | terminator = -1; |
5731 | ptr += 2; |
5732 | code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */ |
5733 | } |
5734 | |
5735 | /* Check for a test for a named group's having been set, using the Perl |
5736 | syntax (?(<name>) or (?('name') */ |
5737 | |
5738 | else if (ptr[1] == CHAR_LESS_THAN_SIGN) |
5739 | { |
5740 | terminator = CHAR_GREATER_THAN_SIGN; |
5741 | ptr++; |
5742 | } |
5743 | else if (ptr[1] == CHAR_APOSTROPHE) |
5744 | { |
5745 | terminator = CHAR_APOSTROPHE; |
5746 | ptr++; |
5747 | } |
5748 | else |
5749 | { |
5750 | terminator = 0; |
5751 | if (ptr[1] == CHAR_MINUS || ptr[1] == CHAR_PLUS) refsign = *(++ptr); |
5752 | } |
5753 | |
5754 | /* We now expect to read a name; any thing else is an error */ |
5755 | |
5756 | if (!MAX_255(ptr[1]) || (cd->ctypes[ptr[1]] & ctype_word) == 0) |
5757 | { |
5758 | ptr += 1; /* To get the right offset */ |
5759 | *errorcodeptr = ERR28; |
5760 | goto FAILED; |
5761 | } |
5762 | |
5763 | /* Read the name, but also get it as a number if it's all digits */ |
5764 | |
5765 | recno = 0; |
5766 | name = ++ptr; |
5767 | while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0) |
5768 | { |
5769 | if (recno >= 0) |
5770 | recno = (IS_DIGIT(*ptr))? recno * 10 + *ptr - CHAR_0 : -1; |
5771 | ptr++; |
5772 | } |
5773 | namelen = (int)(ptr - name); |
5774 | |
5775 | if ((terminator > 0 && *ptr++ != terminator) || |
5776 | *ptr++ != CHAR_RIGHT_PARENTHESIS) |
5777 | { |
5778 | ptr--; /* Error offset */ |
5779 | *errorcodeptr = ERR26; |
5780 | goto FAILED; |
5781 | } |
5782 | |
5783 | /* Do no further checking in the pre-compile phase. */ |
5784 | |
5785 | if (lengthptr != NULL) break; |
5786 | |
5787 | /* In the real compile we do the work of looking for the actual |
5788 | reference. If the string started with "+" or "-" we require the rest to |
5789 | be digits, in which case recno will be set. */ |
5790 | |
5791 | if (refsign > 0) |
5792 | { |
5793 | if (recno <= 0) |
5794 | { |
5795 | *errorcodeptr = ERR58; |
5796 | goto FAILED; |
5797 | } |
5798 | recno = (refsign == CHAR_MINUS)? |
5799 | cd->bracount - recno + 1 : recno +cd->bracount; |
5800 | if (recno <= 0 || recno > cd->final_bracount) |
5801 | { |
5802 | *errorcodeptr = ERR15; |
5803 | goto FAILED; |
5804 | } |
5805 | PUT2(code, 2+LINK_SIZE, recno); |
5806 | break; |
5807 | } |
5808 | |
5809 | /* Otherwise (did not start with "+" or "-"), start by looking for the |
5810 | name. If we find a name, add one to the opcode to change OP_CREF or |
5811 | OP_RREF into OP_NCREF or OP_NRREF. These behave exactly the same, |
5812 | except they record that the reference was originally to a name. The |
5813 | information is used to check duplicate names. */ |
5814 | |
5815 | slot = cd->name_table; |
5816 | for (i = 0; i < cd->names_found; i++) |
5817 | { |
5818 | if (STRNCMP_UC_UC(name, slot+IMM2_SIZE, namelen) == 0) break; |
5819 | slot += cd->name_entry_size; |
5820 | } |
5821 | |
5822 | /* Found a previous named subpattern */ |
5823 | |
5824 | if (i < cd->names_found) |
5825 | { |
5826 | recno = GET2(slot, 0); |
5827 | PUT2(code, 2+LINK_SIZE, recno); |
5828 | code[1+LINK_SIZE]++; |
5829 | } |
5830 | |
5831 | /* Search the pattern for a forward reference */ |
5832 | |
5833 | else if ((i = find_parens(cd, name, namelen, |
5834 | (options & PCRE_EXTENDED) != 0, utf)) > 0) |
5835 | { |
5836 | PUT2(code, 2+LINK_SIZE, i); |
5837 | code[1+LINK_SIZE]++; |
5838 | } |
5839 | |
5840 | /* If terminator == 0 it means that the name followed directly after |
5841 | the opening parenthesis [e.g. (?(abc)...] and in this case there are |
5842 | some further alternatives to try. For the cases where terminator != 0 |
5843 | [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have |
5844 | now checked all the possibilities, so give an error. */ |
5845 | |
5846 | else if (terminator != 0) |
5847 | { |
5848 | *errorcodeptr = ERR15; |
5849 | goto FAILED; |
5850 | } |
5851 | |
5852 | /* Check for (?(R) for recursion. Allow digits after R to specify a |
5853 | specific group number. */ |
5854 | |
5855 | else if (*name == CHAR_R) |
5856 | { |
5857 | recno = 0; |
5858 | for (i = 1; i < namelen; i++) |
5859 | { |
5860 | if (!IS_DIGIT(name[i])) |
5861 | { |
5862 | *errorcodeptr = ERR15; |
5863 | goto FAILED; |
5864 | } |
5865 | recno = recno * 10 + name[i] - CHAR_0; |
5866 | } |
5867 | if (recno == 0) recno = RREF_ANY; |
5868 | code[1+LINK_SIZE] = OP_RREF; /* Change test type */ |
5869 | PUT2(code, 2+LINK_SIZE, recno); |
5870 | } |
5871 | |
5872 | /* Similarly, check for the (?(DEFINE) "condition", which is always |
5873 | false. */ |
5874 | |
5875 | else if (namelen == 6 && STRNCMP_UC_C8(name, STRING_DEFINE, 6) == 0) |
5876 | { |
5877 | code[1+LINK_SIZE] = OP_DEF; |
5878 | skipbytes = 1; |
5879 | } |
5880 | |
5881 | /* Check for the "name" actually being a subpattern number. We are |
5882 | in the second pass here, so final_bracount is set. */ |
5883 | |
5884 | else if (recno > 0 && recno <= cd->final_bracount) |
5885 | { |
5886 | PUT2(code, 2+LINK_SIZE, recno); |
5887 | } |
5888 | |
5889 | /* Either an unidentified subpattern, or a reference to (?(0) */ |
5890 | |
5891 | else |
5892 | { |
5893 | *errorcodeptr = (recno == 0)? ERR35: ERR15; |
5894 | goto FAILED; |
5895 | } |
5896 | break; |
5897 | |
5898 | |
5899 | /* ------------------------------------------------------------ */ |
5900 | case CHAR_EQUALS_SIGN: /* Positive lookahead */ |
5901 | bravalue = OP_ASSERT; |
5902 | cd->assert_depth += 1; |
5903 | ptr++; |
5904 | break; |
5905 | |
5906 | |
5907 | /* ------------------------------------------------------------ */ |
5908 | case CHAR_EXCLAMATION_MARK: /* Negative lookahead */ |
5909 | ptr++; |
5910 | if (*ptr == CHAR_RIGHT_PARENTHESIS) /* Optimize (?!) */ |
5911 | { |
5912 | *code++ = OP_FAIL; |
5913 | previous = NULL; |
5914 | continue; |
5915 | } |
5916 | bravalue = OP_ASSERT_NOT; |
5917 | cd->assert_depth += 1; |
5918 | break; |
5919 | |
5920 | |
5921 | /* ------------------------------------------------------------ */ |
5922 | case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */ |
5923 | switch (ptr[1]) |
5924 | { |
5925 | case CHAR_EQUALS_SIGN: /* Positive lookbehind */ |
5926 | bravalue = OP_ASSERTBACK; |
5927 | cd->assert_depth += 1; |
5928 | ptr += 2; |
5929 | break; |
5930 | |
5931 | case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */ |
5932 | bravalue = OP_ASSERTBACK_NOT; |
5933 | cd->assert_depth += 1; |
5934 | ptr += 2; |
5935 | break; |
5936 | |
5937 | default: /* Could be name define, else bad */ |
5938 | if (MAX_255(ptr[1]) && (cd->ctypes[ptr[1]] & ctype_word) != 0) |
5939 | goto DEFINE_NAME; |
5940 | ptr++; /* Correct offset for error */ |
5941 | *errorcodeptr = ERR24; |
5942 | goto FAILED; |
5943 | } |
5944 | break; |
5945 | |
5946 | |
5947 | /* ------------------------------------------------------------ */ |
5948 | case CHAR_GREATER_THAN_SIGN: /* One-time brackets */ |
5949 | bravalue = OP_ONCE; |
5950 | ptr++; |
5951 | break; |
5952 | |
5953 | |
5954 | /* ------------------------------------------------------------ */ |
5955 | case CHAR_C: /* Callout - may be followed by digits; */ |
5956 | previous_callout = code; /* Save for later completion */ |
5957 | after_manual_callout = 1; /* Skip one item before completing */ |
5958 | *code++ = OP_CALLOUT; |
5959 | { |
5960 | int n = 0; |
5961 | ptr++; |
5962 | while(IS_DIGIT(*ptr)) |
5963 | n = n * 10 + *ptr++ - CHAR_0; |
5964 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
5965 | { |
5966 | *errorcodeptr = ERR39; |
5967 | goto FAILED; |
5968 | } |
5969 | if (n > 255) |
5970 | { |
5971 | *errorcodeptr = ERR38; |
5972 | goto FAILED; |
5973 | } |
5974 | *code++ = n; |
5975 | PUT(code, 0, (int)(ptr - cd->start_pattern + 1)); /* Pattern offset */ |
5976 | PUT(code, LINK_SIZE, 0); /* Default length */ |
5977 | code += 2 * LINK_SIZE; |
5978 | } |
5979 | previous = NULL; |
5980 | continue; |
5981 | |
5982 | |
5983 | /* ------------------------------------------------------------ */ |
5984 | case CHAR_P: /* Python-style named subpattern handling */ |
5985 | if (*(++ptr) == CHAR_EQUALS_SIGN || |
5986 | *ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */ |
5987 | { |
5988 | is_recurse = *ptr == CHAR_GREATER_THAN_SIGN; |
5989 | terminator = CHAR_RIGHT_PARENTHESIS; |
5990 | goto NAMED_REF_OR_RECURSE; |
5991 | } |
5992 | else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */ |
5993 | { |
5994 | *errorcodeptr = ERR41; |
5995 | goto FAILED; |
5996 | } |
5997 | /* Fall through to handle (?P< as (?< is handled */ |
5998 | |
5999 | |
6000 | /* ------------------------------------------------------------ */ |
6001 | DEFINE_NAME: /* Come here from (?< handling */ |
6002 | case CHAR_APOSTROPHE: |
6003 | { |
6004 | terminator = (*ptr == CHAR_LESS_THAN_SIGN)? |
6005 | CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE; |
6006 | name = ++ptr; |
6007 | |
6008 | while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0) ptr++; |
6009 | namelen = (int)(ptr - name); |
6010 | |
6011 | /* In the pre-compile phase, just do a syntax check. */ |
6012 | |
6013 | if (lengthptr != NULL) |
6014 | { |
6015 | if (*ptr != terminator) |
6016 | { |
6017 | *errorcodeptr = ERR42; |
6018 | goto FAILED; |
6019 | } |
6020 | if (cd->names_found >= MAX_NAME_COUNT) |
6021 | { |
6022 | *errorcodeptr = ERR49; |
6023 | goto FAILED; |
6024 | } |
6025 | if (namelen + IMM2_SIZE + 1 > cd->name_entry_size) |
6026 | { |
6027 | cd->name_entry_size = namelen + IMM2_SIZE + 1; |
6028 | if (namelen > MAX_NAME_SIZE) |
6029 | { |
6030 | *errorcodeptr = ERR48; |
6031 | goto FAILED; |
6032 | } |
6033 | } |
6034 | } |
6035 | |
6036 | /* In the real compile, create the entry in the table, maintaining |
6037 | alphabetical order. Duplicate names for different numbers are |
6038 | permitted only if PCRE_DUPNAMES is set. Duplicate names for the same |
6039 | number are always OK. (An existing number can be re-used if (?| |
6040 | appears in the pattern.) In either event, a duplicate name results in |
6041 | a duplicate entry in the table, even if the number is the same. This |
6042 | is because the number of names, and hence the table size, is computed |
6043 | in the pre-compile, and it affects various numbers and pointers which |
6044 | would all have to be modified, and the compiled code moved down, if |
6045 | duplicates with the same number were omitted from the table. This |
6046 | doesn't seem worth the hassle. However, *different* names for the |
6047 | same number are not permitted. */ |
6048 | |
6049 | else |
6050 | { |
6051 | BOOL dupname = FALSE; |
6052 | slot = cd->name_table; |
6053 | |
6054 | for (i = 0; i < cd->names_found; i++) |
6055 | { |
6056 | int crc = memcmp(name, slot+IMM2_SIZE, IN_UCHARS(namelen)); |
6057 | if (crc == 0) |
6058 | { |
6059 | if (slot[IMM2_SIZE+namelen] == 0) |
6060 | { |
6061 | if (GET2(slot, 0) != cd->bracount + 1 && |
6062 | (options & PCRE_DUPNAMES) == 0) |
6063 | { |
6064 | *errorcodeptr = ERR43; |
6065 | goto FAILED; |
6066 | } |
6067 | else dupname = TRUE; |
6068 | } |
6069 | else crc = -1; /* Current name is a substring */ |
6070 | } |
6071 | |
6072 | /* Make space in the table and break the loop for an earlier |
6073 | name. For a duplicate or later name, carry on. We do this for |
6074 | duplicates so that in the simple case (when ?(| is not used) they |
6075 | are in order of their numbers. */ |
6076 | |
6077 | if (crc < 0) |
6078 | { |
6079 | memmove(slot + cd->name_entry_size, slot, |
6080 | IN_UCHARS((cd->names_found - i) * cd->name_entry_size)); |
6081 | break; |
6082 | } |
6083 | |
6084 | /* Continue the loop for a later or duplicate name */ |
6085 | |
6086 | slot += cd->name_entry_size; |
6087 | } |
6088 | |
6089 | /* For non-duplicate names, check for a duplicate number before |
6090 | adding the new name. */ |
6091 | |
6092 | if (!dupname) |
6093 | { |
6094 | pcre_uchar *cslot = cd->name_table; |
6095 | for (i = 0; i < cd->names_found; i++) |
6096 | { |
6097 | if (cslot != slot) |
6098 | { |
6099 | if (GET2(cslot, 0) == cd->bracount + 1) |
6100 | { |
6101 | *errorcodeptr = ERR65; |
6102 | goto FAILED; |
6103 | } |
6104 | } |
6105 | else i--; |
6106 | cslot += cd->name_entry_size; |
6107 | } |
6108 | } |
6109 | |
6110 | PUT2(slot, 0, cd->bracount + 1); |
6111 | memcpy(slot + IMM2_SIZE, name, IN_UCHARS(namelen)); |
6112 | slot[IMM2_SIZE + namelen] = 0; |
6113 | } |
6114 | } |
6115 | |
6116 | /* In both pre-compile and compile, count the number of names we've |
6117 | encountered. */ |
6118 | |
6119 | cd->names_found++; |
6120 | ptr++; /* Move past > or ' */ |
6121 | goto NUMBERED_GROUP; |
6122 | |
6123 | |
6124 | /* ------------------------------------------------------------ */ |
6125 | case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */ |
6126 | terminator = CHAR_RIGHT_PARENTHESIS; |
6127 | is_recurse = TRUE; |
6128 | /* Fall through */ |
6129 | |
6130 | /* We come here from the Python syntax above that handles both |
6131 | references (?P=name) and recursion (?P>name), as well as falling |
6132 | through from the Perl recursion syntax (?&name). We also come here from |
6133 | the Perl \k<name> or \k'name' back reference syntax and the \k{name} |
6134 | .NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */ |
6135 | |
6136 | NAMED_REF_OR_RECURSE: |
6137 | name = ++ptr; |
6138 | while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0) ptr++; |
6139 | namelen = (int)(ptr - name); |
6140 | |
6141 | /* In the pre-compile phase, do a syntax check. We used to just set |
6142 | a dummy reference number, because it was not used in the first pass. |
6143 | However, with the change of recursive back references to be atomic, |
6144 | we have to look for the number so that this state can be identified, as |
6145 | otherwise the incorrect length is computed. If it's not a backwards |
6146 | reference, the dummy number will do. */ |
6147 | |
6148 | if (lengthptr != NULL) |
6149 | { |
6150 | const pcre_uchar *temp; |
6151 | |
6152 | if (namelen == 0) |
6153 | { |
6154 | *errorcodeptr = ERR62; |
6155 | goto FAILED; |
6156 | } |
6157 | if (*ptr != terminator) |
6158 | { |
6159 | *errorcodeptr = ERR42; |
6160 | goto FAILED; |
6161 | } |
6162 | if (namelen > MAX_NAME_SIZE) |
6163 | { |
6164 | *errorcodeptr = ERR48; |
6165 | goto FAILED; |
6166 | } |
6167 | |
6168 | /* The name table does not exist in the first pass, so we cannot |
6169 | do a simple search as in the code below. Instead, we have to scan the |
6170 | pattern to find the number. It is important that we scan it only as |
6171 | far as we have got because the syntax of named subpatterns has not |
6172 | been checked for the rest of the pattern, and find_parens() assumes |
6173 | correct syntax. In any case, it's a waste of resources to scan |
6174 | further. We stop the scan at the current point by temporarily |
6175 | adjusting the value of cd->endpattern. */ |
6176 | |
6177 | temp = cd->end_pattern; |
6178 | cd->end_pattern = ptr; |
6179 | recno = find_parens(cd, name, namelen, |
6180 | (options & PCRE_EXTENDED) != 0, utf); |
6181 | cd->end_pattern = temp; |
6182 | if (recno < 0) recno = 0; /* Forward ref; set dummy number */ |
6183 | } |
6184 | |
6185 | /* In the real compile, seek the name in the table. We check the name |
6186 | first, and then check that we have reached the end of the name in the |
6187 | table. That way, if the name that is longer than any in the table, |
6188 | the comparison will fail without reading beyond the table entry. */ |
6189 | |
6190 | else |
6191 | { |
6192 | slot = cd->name_table; |
6193 | for (i = 0; i < cd->names_found; i++) |
6194 | { |
6195 | if (STRNCMP_UC_UC(name, slot+IMM2_SIZE, namelen) == 0 && |
6196 | slot[IMM2_SIZE+namelen] == 0) |
6197 | break; |
6198 | slot += cd->name_entry_size; |
6199 | } |
6200 | |
6201 | if (i < cd->names_found) /* Back reference */ |
6202 | { |
6203 | recno = GET2(slot, 0); |
6204 | } |
6205 | else if ((recno = /* Forward back reference */ |
6206 | find_parens(cd, name, namelen, |
6207 | (options & PCRE_EXTENDED) != 0, utf)) <= 0) |
6208 | { |
6209 | *errorcodeptr = ERR15; |
6210 | goto FAILED; |
6211 | } |
6212 | } |
6213 | |
6214 | /* In both phases, we can now go to the code than handles numerical |
6215 | recursion or backreferences. */ |
6216 | |
6217 | if (is_recurse) goto HANDLE_RECURSION; |
6218 | else goto HANDLE_REFERENCE; |
6219 | |
6220 | |
6221 | /* ------------------------------------------------------------ */ |
6222 | case CHAR_R: /* Recursion */ |
6223 | ptr++; /* Same as (?0) */ |
6224 | /* Fall through */ |
6225 | |
6226 | |
6227 | /* ------------------------------------------------------------ */ |
6228 | case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */ |
6229 | case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: |
6230 | case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
6231 | { |
6232 | const pcre_uchar *called; |
6233 | terminator = CHAR_RIGHT_PARENTHESIS; |
6234 | |
6235 | /* Come here from the \g<...> and \g'...' code (Oniguruma |
6236 | compatibility). However, the syntax has been checked to ensure that |
6237 | the ... are a (signed) number, so that neither ERR63 nor ERR29 will |
6238 | be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY |
6239 | ever be taken. */ |
6240 | |
6241 | HANDLE_NUMERICAL_RECURSION: |
6242 | |
6243 | if ((refsign = *ptr) == CHAR_PLUS) |
6244 | { |
6245 | ptr++; |
6246 | if (!IS_DIGIT(*ptr)) |
6247 | { |
6248 | *errorcodeptr = ERR63; |
6249 | goto FAILED; |
6250 | } |
6251 | } |
6252 | else if (refsign == CHAR_MINUS) |
6253 | { |
6254 | if (!IS_DIGIT(ptr[1])) |
6255 | goto OTHER_CHAR_AFTER_QUERY; |
6256 | ptr++; |
6257 | } |
6258 | |
6259 | recno = 0; |
6260 | while(IS_DIGIT(*ptr)) |
6261 | recno = recno * 10 + *ptr++ - CHAR_0; |
6262 | |
6263 | if (*ptr != terminator) |
6264 | { |
6265 | *errorcodeptr = ERR29; |
6266 | goto FAILED; |
6267 | } |
6268 | |
6269 | if (refsign == CHAR_MINUS) |
6270 | { |
6271 | if (recno == 0) |
6272 | { |
6273 | *errorcodeptr = ERR58; |
6274 | goto FAILED; |
6275 | } |
6276 | recno = cd->bracount - recno + 1; |
6277 | if (recno <= 0) |
6278 | { |
6279 | *errorcodeptr = ERR15; |
6280 | goto FAILED; |
6281 | } |
6282 | } |
6283 | else if (refsign == CHAR_PLUS) |
6284 | { |
6285 | if (recno == 0) |
6286 | { |
6287 | *errorcodeptr = ERR58; |
6288 | goto FAILED; |
6289 | } |
6290 | recno += cd->bracount; |
6291 | } |
6292 | |
6293 | /* Come here from code above that handles a named recursion */ |
6294 | |
6295 | HANDLE_RECURSION: |
6296 | |
6297 | previous = code; |
6298 | called = cd->start_code; |
6299 | |
6300 | /* When we are actually compiling, find the bracket that is being |
6301 | referenced. Temporarily end the regex in case it doesn't exist before |
6302 | this point. If we end up with a forward reference, first check that |
6303 | the bracket does occur later so we can give the error (and position) |
6304 | now. Then remember this forward reference in the workspace so it can |
6305 | be filled in at the end. */ |
6306 | |
6307 | if (lengthptr == NULL) |
6308 | { |
6309 | *code = OP_END; |
6310 | if (recno != 0) |
6311 | called = PRIV(find_bracket)(cd->start_code, utf, recno); |
6312 | |
6313 | /* Forward reference */ |
6314 | |
6315 | if (called == NULL) |
6316 | { |
6317 | if (find_parens(cd, NULL, recno, |
6318 | (options & PCRE_EXTENDED) != 0, utf) < 0) |
6319 | { |
6320 | *errorcodeptr = ERR15; |
6321 | goto FAILED; |
6322 | } |
6323 | |
6324 | /* Fudge the value of "called" so that when it is inserted as an |
6325 | offset below, what it actually inserted is the reference number |
6326 | of the group. Then remember the forward reference. */ |
6327 | |
6328 | called = cd->start_code + recno; |
6329 | if (cd->hwm >= cd->start_workspace + cd->workspace_size - |
6330 | WORK_SIZE_SAFETY_MARGIN) |
6331 | { |
6332 | *errorcodeptr = expand_workspace(cd); |
6333 | if (*errorcodeptr != 0) goto FAILED; |
6334 | } |
6335 | PUTINC(cd->hwm, 0, (int)(code + 1 - cd->start_code)); |
6336 | } |
6337 | |
6338 | /* If not a forward reference, and the subpattern is still open, |
6339 | this is a recursive call. We check to see if this is a left |
6340 | recursion that could loop for ever, and diagnose that case. We |
6341 | must not, however, do this check if we are in a conditional |
6342 | subpattern because the condition might be testing for recursion in |
6343 | a pattern such as /(?(R)a+|(?R)b)/, which is perfectly valid. |
6344 | Forever loops are also detected at runtime, so those that occur in |
6345 | conditional subpatterns will be picked up then. */ |
6346 | |
6347 | else if (GET(called, 1) == 0 && cond_depth <= 0 && |
6348 | could_be_empty(called, code, bcptr, utf, cd)) |
6349 | { |
6350 | *errorcodeptr = ERR40; |
6351 | goto FAILED; |
6352 | } |
6353 | } |
6354 | |
6355 | /* Insert the recursion/subroutine item. It does not have a set first |
6356 | character (relevant if it is repeated, because it will then be |
6357 | wrapped with ONCE brackets). */ |
6358 | |
6359 | *code = OP_RECURSE; |
6360 | PUT(code, 1, (int)(called - cd->start_code)); |
6361 | code += 1 + LINK_SIZE; |
6362 | groupsetfirstchar = FALSE; |
6363 | } |
6364 | |
6365 | /* Can't determine a first byte now */ |
6366 | |
6367 | if (firstchar == REQ_UNSET) firstchar = REQ_NONE; |
6368 | continue; |
6369 | |
6370 | |
6371 | /* ------------------------------------------------------------ */ |
6372 | default: /* Other characters: check option setting */ |
6373 | OTHER_CHAR_AFTER_QUERY: |
6374 | set = unset = 0; |
6375 | optset = &set; |
6376 | |
6377 | while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON) |
6378 | { |
6379 | switch (*ptr++) |
6380 | { |
6381 | case CHAR_MINUS: optset = &unset; break; |
6382 | |
6383 | case CHAR_J: /* Record that it changed in the external options */ |
6384 | *optset |= PCRE_DUPNAMES; |
6385 | cd->external_flags |= PCRE_JCHANGED; |
6386 | break; |
6387 | |
6388 | case CHAR_i: *optset |= PCRE_CASELESS; break; |
6389 | case CHAR_m: *optset |= PCRE_MULTILINE; break; |
6390 | case CHAR_s: *optset |= PCRE_DOTALL; break; |
6391 | case CHAR_x: *optset |= PCRE_EXTENDED; break; |
6392 | case CHAR_U: *optset |= PCRE_UNGREEDY; break; |
6393 | case CHAR_X: *optset |= PCRE_EXTRA; break; |
6394 | |
6395 | default: *errorcodeptr = ERR12; |
6396 | ptr--; /* Correct the offset */ |
6397 | goto FAILED; |
6398 | } |
6399 | } |
6400 | |
6401 | /* Set up the changed option bits, but don't change anything yet. */ |
6402 | |
6403 | newoptions = (options | set) & (~unset); |
6404 | |
6405 | /* If the options ended with ')' this is not the start of a nested |
6406 | group with option changes, so the options change at this level. If this |
6407 | item is right at the start of the pattern, the options can be |
6408 | abstracted and made external in the pre-compile phase, and ignored in |
6409 | the compile phase. This can be helpful when matching -- for instance in |
6410 | caseless checking of required bytes. |
6411 | |
6412 | If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are |
6413 | definitely *not* at the start of the pattern because something has been |
6414 | compiled. In the pre-compile phase, however, the code pointer can have |
6415 | that value after the start, because it gets reset as code is discarded |
6416 | during the pre-compile. However, this can happen only at top level - if |
6417 | we are within parentheses, the starting BRA will still be present. At |
6418 | any parenthesis level, the length value can be used to test if anything |
6419 | has been compiled at that level. Thus, a test for both these conditions |
6420 | is necessary to ensure we correctly detect the start of the pattern in |
6421 | both phases. |
6422 | |
6423 | If we are not at the pattern start, reset the greedy defaults and the |
6424 | case value for firstchar and reqchar. */ |
6425 | |
6426 | if (*ptr == CHAR_RIGHT_PARENTHESIS) |
6427 | { |
6428 | if (code == cd->start_code + 1 + LINK_SIZE && |
6429 | (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE)) |
6430 | { |
6431 | cd->external_options = newoptions; |
6432 | } |
6433 | else |
6434 | { |
6435 | greedy_default = ((newoptions & PCRE_UNGREEDY) != 0); |
6436 | greedy_non_default = greedy_default ^ 1; |
6437 | req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS:0; |
6438 | } |
6439 | |
6440 | /* Change options at this level, and pass them back for use |
6441 | in subsequent branches. */ |
6442 | |
6443 | *optionsptr = options = newoptions; |
6444 | previous = NULL; /* This item can't be repeated */ |
6445 | continue; /* It is complete */ |
6446 | } |
6447 | |
6448 | /* If the options ended with ':' we are heading into a nested group |
6449 | with possible change of options. Such groups are non-capturing and are |
6450 | not assertions of any kind. All we need to do is skip over the ':'; |
6451 | the newoptions value is handled below. */ |
6452 | |
6453 | bravalue = OP_BRA; |
6454 | ptr++; |
6455 | } /* End of switch for character following (? */ |
6456 | } /* End of (? handling */ |
6457 | |
6458 | /* Opening parenthesis not followed by '*' or '?'. If PCRE_NO_AUTO_CAPTURE |
6459 | is set, all unadorned brackets become non-capturing and behave like (?:...) |
6460 | brackets. */ |
6461 | |
6462 | else if ((options & PCRE_NO_AUTO_CAPTURE) != 0) |
6463 | { |
6464 | bravalue = OP_BRA; |
6465 | } |
6466 | |
6467 | /* Else we have a capturing group. */ |
6468 | |
6469 | else |
6470 | { |
6471 | NUMBERED_GROUP: |
6472 | cd->bracount += 1; |
6473 | PUT2(code, 1+LINK_SIZE, cd->bracount); |
6474 | skipbytes = IMM2_SIZE; |
6475 | } |
6476 | |
6477 | /* Process nested bracketed regex. Assertions used not to be repeatable, |
6478 | but this was changed for Perl compatibility, so all kinds can now be |
6479 | repeated. We copy code into a non-register variable (tempcode) in order to |
6480 | be able to pass its address because some compilers complain otherwise. */ |
6481 | |
6482 | previous = code; /* For handling repetition */ |
6483 | *code = bravalue; |
6484 | tempcode = code; |
6485 | tempreqvary = cd->req_varyopt; /* Save value before bracket */ |
6486 | tempbracount = cd->bracount; /* Save value before bracket */ |
6487 | length_prevgroup = 0; /* Initialize for pre-compile phase */ |
6488 | |
6489 | if (!compile_regex( |
6490 | newoptions, /* The complete new option state */ |
6491 | &tempcode, /* Where to put code (updated) */ |
6492 | &ptr, /* Input pointer (updated) */ |
6493 | errorcodeptr, /* Where to put an error message */ |
6494 | (bravalue == OP_ASSERTBACK || |
6495 | bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */ |
6496 | reset_bracount, /* True if (?| group */ |
6497 | skipbytes, /* Skip over bracket number */ |
6498 | cond_depth + |
6499 | ((bravalue == OP_COND)?1:0), /* Depth of condition subpatterns */ |
6500 | &subfirstchar, /* For possible first char */ |
6501 | &subreqchar, /* For possible last char */ |
6502 | bcptr, /* Current branch chain */ |
6503 | cd, /* Tables block */ |
6504 | (lengthptr == NULL)? NULL : /* Actual compile phase */ |
6505 | &length_prevgroup /* Pre-compile phase */ |
6506 | )) |
6507 | goto FAILED; |
6508 | |
6509 | /* If this was an atomic group and there are no capturing groups within it, |
6510 | generate OP_ONCE_NC instead of OP_ONCE. */ |
6511 | |
6512 | if (bravalue == OP_ONCE && cd->bracount <= tempbracount) |
6513 | *code = OP_ONCE_NC; |
6514 | |
6515 | if (bravalue >= OP_ASSERT && bravalue <= OP_ASSERTBACK_NOT) |
6516 | cd->assert_depth -= 1; |
6517 | |
6518 | /* At the end of compiling, code is still pointing to the start of the |
6519 | group, while tempcode has been updated to point past the end of the group. |
6520 | The pattern pointer (ptr) is on the bracket. |
6521 | |
6522 | If this is a conditional bracket, check that there are no more than |
6523 | two branches in the group, or just one if it's a DEFINE group. We do this |
6524 | in the real compile phase, not in the pre-pass, where the whole group may |
6525 | not be available. */ |
6526 | |
6527 | if (bravalue == OP_COND && lengthptr == NULL) |
6528 | { |
6529 | pcre_uchar *tc = code; |
6530 | int condcount = 0; |
6531 | |
6532 | do { |
6533 | condcount++; |
6534 | tc += GET(tc,1); |
6535 | } |
6536 | while (*tc != OP_KET); |
6537 | |
6538 | /* A DEFINE group is never obeyed inline (the "condition" is always |
6539 | false). It must have only one branch. */ |
6540 | |
6541 | if (code[LINK_SIZE+1] == OP_DEF) |
6542 | { |
6543 | if (condcount > 1) |
6544 | { |
6545 | *errorcodeptr = ERR54; |
6546 | goto FAILED; |
6547 | } |
6548 | bravalue = OP_DEF; /* Just a flag to suppress char handling below */ |
6549 | } |
6550 | |
6551 | /* A "normal" conditional group. If there is just one branch, we must not |
6552 | make use of its firstchar or reqchar, because this is equivalent to an |
6553 | empty second branch. */ |
6554 | |
6555 | else |
6556 | { |
6557 | if (condcount > 2) |
6558 | { |
6559 | *errorcodeptr = ERR27; |
6560 | goto FAILED; |
6561 | } |
6562 | if (condcount == 1) subfirstchar = subreqchar = REQ_NONE; |
6563 | } |
6564 | } |
6565 | |
6566 | /* Error if hit end of pattern */ |
6567 | |
6568 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
6569 | { |
6570 | *errorcodeptr = ERR14; |
6571 | goto FAILED; |
6572 | } |
6573 | |
6574 | /* In the pre-compile phase, update the length by the length of the group, |
6575 | less the brackets at either end. Then reduce the compiled code to just a |
6576 | set of non-capturing brackets so that it doesn't use much memory if it is |
6577 | duplicated by a quantifier.*/ |
6578 | |
6579 | if (lengthptr != NULL) |
6580 | { |
6581 | if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE) |
6582 | { |
6583 | *errorcodeptr = ERR20; |
6584 | goto FAILED; |
6585 | } |
6586 | *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE; |
6587 | code++; /* This already contains bravalue */ |
6588 | PUTINC(code, 0, 1 + LINK_SIZE); |
6589 | *code++ = OP_KET; |
6590 | PUTINC(code, 0, 1 + LINK_SIZE); |
6591 | break; /* No need to waste time with special character handling */ |
6592 | } |
6593 | |
6594 | /* Otherwise update the main code pointer to the end of the group. */ |
6595 | |
6596 | code = tempcode; |
6597 | |
6598 | /* For a DEFINE group, required and first character settings are not |
6599 | relevant. */ |
6600 | |
6601 | if (bravalue == OP_DEF) break; |
6602 | |
6603 | /* Handle updating of the required and first characters for other types of |
6604 | group. Update for normal brackets of all kinds, and conditions with two |
6605 | branches (see code above). If the bracket is followed by a quantifier with |
6606 | zero repeat, we have to back off. Hence the definition of zeroreqchar and |
6607 | zerofirstchar outside the main loop so that they can be accessed for the |
6608 | back off. */ |
6609 | |
6610 | zeroreqchar = reqchar; |
6611 | zerofirstchar = firstchar; |
6612 | groupsetfirstchar = FALSE; |
6613 | |
6614 | if (bravalue >= OP_ONCE) |
6615 | { |
6616 | /* If we have not yet set a firstchar in this branch, take it from the |
6617 | subpattern, remembering that it was set here so that a repeat of more |
6618 | than one can replicate it as reqchar if necessary. If the subpattern has |
6619 | no firstchar, set "none" for the whole branch. In both cases, a zero |
6620 | repeat forces firstchar to "none". */ |
6621 | |
6622 | if (firstchar == REQ_UNSET) |
6623 | { |
6624 | if (subfirstchar >= 0) |
6625 | { |
6626 | firstchar = subfirstchar; |
6627 | groupsetfirstchar = TRUE; |
6628 | } |
6629 | else firstchar = REQ_NONE; |
6630 | zerofirstchar = REQ_NONE; |
6631 | } |
6632 | |
6633 | /* If firstchar was previously set, convert the subpattern's firstchar |
6634 | into reqchar if there wasn't one, using the vary flag that was in |
6635 | existence beforehand. */ |
6636 | |
6637 | else if (subfirstchar >= 0 && subreqchar < 0) |
6638 | subreqchar = subfirstchar | tempreqvary; |
6639 | |
6640 | /* If the subpattern set a required b |