/[pcre]/code/trunk/pcre_compile.c
ViewVC logotype

Contents of /code/trunk/pcre_compile.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1221 - (show annotations)
Sun Nov 11 20:27:03 2012 UTC (7 years ago) by ph10
File MIME type: text/plain
File size: 276591 byte(s)
Error occurred while calculating annotation data.
File tidies, preparing for 8.32-RC1.
1 /*************************************************
2 * Perl-Compatible Regular Expressions *
3 *************************************************/
4
5 /* PCRE is a library of functions to support regular expressions whose syntax
6 and semantics are as close as possible to those of the Perl 5 language.
7
8 Written by Philip Hazel
9 Copyright (c) 1997-2012 University of Cambridge
10
11 -----------------------------------------------------------------------------
12 Redistribution and use in source and binary forms, with or without
13 modification, are permitted provided that the following conditions are met:
14
15 * Redistributions of source code must retain the above copyright notice,
16 this list of conditions and the following disclaimer.
17
18 * Redistributions in binary form must reproduce the above copyright
19 notice, this list of conditions and the following disclaimer in the
20 documentation and/or other materials provided with the distribution.
21
22 * Neither the name of the University of Cambridge nor the names of its
23 contributors may be used to endorse or promote products derived from
24 this software without specific prior written permission.
25
26 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
27 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
30 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 POSSIBILITY OF SUCH DAMAGE.
37 -----------------------------------------------------------------------------
38 */
39
40
41 /* This module contains the external function pcre_compile(), along with
42 supporting internal functions that are not used by other modules. */
43
44
45 #ifdef HAVE_CONFIG_H
46 #include "config.h"
47 #endif
48
49 #define NLBLOCK cd /* Block containing newline information */
50 #define PSSTART start_pattern /* Field containing processed string start */
51 #define PSEND end_pattern /* Field containing processed string end */
52
53 #include "pcre_internal.h"
54
55
56 /* When PCRE_DEBUG is defined, we need the pcre(16|32)_printint() function, which
57 is also used by pcretest. PCRE_DEBUG is not defined when building a production
58 library. We do not need to select pcre16_printint.c specially, because the
59 COMPILE_PCREx macro will already be appropriately set. */
60
61 #ifdef PCRE_DEBUG
62 /* pcre_printint.c should not include any headers */
63 #define PCRE_INCLUDED
64 #include "pcre_printint.c"
65 #undef PCRE_INCLUDED
66 #endif
67
68
69 /* Macro for setting individual bits in class bitmaps. */
70
71 #define SETBIT(a,b) a[(b)/8] |= (1 << ((b)&7))
72
73 /* Maximum length value to check against when making sure that the integer that
74 holds the compiled pattern length does not overflow. We make it a bit less than
75 INT_MAX to allow for adding in group terminating bytes, so that we don't have
76 to check them every time. */
77
78 #define OFLOW_MAX (INT_MAX - 20)
79
80 /* Definitions to allow mutual recursion */
81
82 static int
83 add_list_to_class(pcre_uint8 *, pcre_uchar **, int, compile_data *,
84 const pcre_uint32 *, unsigned int);
85
86 static BOOL
87 compile_regex(int, pcre_uchar **, const pcre_uchar **, int *, BOOL, BOOL, int, int,
88 pcre_uint32 *, pcre_int32 *, pcre_uint32 *, pcre_int32 *, branch_chain *,
89 compile_data *, int *);
90
91
92
93 /*************************************************
94 * Code parameters and static tables *
95 *************************************************/
96
97 /* This value specifies the size of stack workspace that is used during the
98 first pre-compile phase that determines how much memory is required. The regex
99 is partly compiled into this space, but the compiled parts are discarded as
100 soon as they can be, so that hopefully there will never be an overrun. The code
101 does, however, check for an overrun. The largest amount I've seen used is 218,
102 so this number is very generous.
103
104 The same workspace is used during the second, actual compile phase for
105 remembering forward references to groups so that they can be filled in at the
106 end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE
107 is 4 there is plenty of room for most patterns. However, the memory can get
108 filled up by repetitions of forward references, for example patterns like
109 /(?1){0,1999}(b)/, and one user did hit the limit. The code has been changed so
110 that the workspace is expanded using malloc() in this situation. The value
111 below is therefore a minimum, and we put a maximum on it for safety. The
112 minimum is now also defined in terms of LINK_SIZE so that the use of malloc()
113 kicks in at the same number of forward references in all cases. */
114
115 #define COMPILE_WORK_SIZE (2048*LINK_SIZE)
116 #define COMPILE_WORK_SIZE_MAX (100*COMPILE_WORK_SIZE)
117
118 /* The overrun tests check for a slightly smaller size so that they detect the
119 overrun before it actually does run off the end of the data block. */
120
121 #define WORK_SIZE_SAFETY_MARGIN (100)
122
123 /* Private flags added to firstchar and reqchar. */
124
125 #define REQ_CASELESS (1 << 0) /* Indicates caselessness */
126 #define REQ_VARY (1 << 1) /* Reqchar followed non-literal item */
127 /* Negative values for the firstchar and reqchar flags */
128 #define REQ_UNSET (-2)
129 #define REQ_NONE (-1)
130
131 /* Repeated character flags. */
132
133 #define UTF_LENGTH 0x10000000l /* The char contains its length. */
134
135 /* Table for handling escaped characters in the range '0'-'z'. Positive returns
136 are simple data values; negative values are for special things like \d and so
137 on. Zero means further processing is needed (for things like \x), or the escape
138 is invalid. */
139
140 #ifndef EBCDIC
141
142 /* This is the "normal" table for ASCII systems or for EBCDIC systems running
143 in UTF-8 mode. */
144
145 static const short int escapes[] = {
146 0, 0,
147 0, 0,
148 0, 0,
149 0, 0,
150 0, 0,
151 CHAR_COLON, CHAR_SEMICOLON,
152 CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN,
153 CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK,
154 CHAR_COMMERCIAL_AT, -ESC_A,
155 -ESC_B, -ESC_C,
156 -ESC_D, -ESC_E,
157 0, -ESC_G,
158 -ESC_H, 0,
159 0, -ESC_K,
160 0, 0,
161 -ESC_N, 0,
162 -ESC_P, -ESC_Q,
163 -ESC_R, -ESC_S,
164 0, 0,
165 -ESC_V, -ESC_W,
166 -ESC_X, 0,
167 -ESC_Z, CHAR_LEFT_SQUARE_BRACKET,
168 CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET,
169 CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE,
170 CHAR_GRAVE_ACCENT, 7,
171 -ESC_b, 0,
172 -ESC_d, ESC_e,
173 ESC_f, 0,
174 -ESC_h, 0,
175 0, -ESC_k,
176 0, 0,
177 ESC_n, 0,
178 -ESC_p, 0,
179 ESC_r, -ESC_s,
180 ESC_tee, 0,
181 -ESC_v, -ESC_w,
182 0, 0,
183 -ESC_z
184 };
185
186 #else
187
188 /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */
189
190 static const short int escapes[] = {
191 /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|',
192 /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0,
193 /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~',
194 /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0,
195 /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?',
196 /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0,
197 /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"',
198 /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0,
199 /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0,
200 /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p,
201 /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0,
202 /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0,
203 /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0,
204 /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0,
205 /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-',
206 /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G,
207 /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0,
208 /* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P,
209 /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0,
210 /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X,
211 /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0,
212 /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0,
213 /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0
214 };
215 #endif
216
217
218 /* Table of special "verbs" like (*PRUNE). This is a short table, so it is
219 searched linearly. Put all the names into a single string, in order to reduce
220 the number of relocations when a shared library is dynamically linked. The
221 string is built from string macros so that it works in UTF-8 mode on EBCDIC
222 platforms. */
223
224 typedef struct verbitem {
225 int len; /* Length of verb name */
226 int op; /* Op when no arg, or -1 if arg mandatory */
227 int op_arg; /* Op when arg present, or -1 if not allowed */
228 } verbitem;
229
230 static const char verbnames[] =
231 "\0" /* Empty name is a shorthand for MARK */
232 STRING_MARK0
233 STRING_ACCEPT0
234 STRING_COMMIT0
235 STRING_F0
236 STRING_FAIL0
237 STRING_PRUNE0
238 STRING_SKIP0
239 STRING_THEN;
240
241 static const verbitem verbs[] = {
242 { 0, -1, OP_MARK },
243 { 4, -1, OP_MARK },
244 { 6, OP_ACCEPT, -1 },
245 { 6, OP_COMMIT, -1 },
246 { 1, OP_FAIL, -1 },
247 { 4, OP_FAIL, -1 },
248 { 5, OP_PRUNE, OP_PRUNE_ARG },
249 { 4, OP_SKIP, OP_SKIP_ARG },
250 { 4, OP_THEN, OP_THEN_ARG }
251 };
252
253 static const int verbcount = sizeof(verbs)/sizeof(verbitem);
254
255
256 /* Tables of names of POSIX character classes and their lengths. The names are
257 now all in a single string, to reduce the number of relocations when a shared
258 library is dynamically loaded. The list of lengths is terminated by a zero
259 length entry. The first three must be alpha, lower, upper, as this is assumed
260 for handling case independence. */
261
262 static const char posix_names[] =
263 STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0
264 STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0
265 STRING_graph0 STRING_print0 STRING_punct0 STRING_space0
266 STRING_word0 STRING_xdigit;
267
268 static const pcre_uint8 posix_name_lengths[] = {
269 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 };
270
271 /* Table of class bit maps for each POSIX class. Each class is formed from a
272 base map, with an optional addition or removal of another map. Then, for some
273 classes, there is some additional tweaking: for [:blank:] the vertical space
274 characters are removed, and for [:alpha:] and [:alnum:] the underscore
275 character is removed. The triples in the table consist of the base map offset,
276 second map offset or -1 if no second map, and a non-negative value for map
277 addition or a negative value for map subtraction (if there are two maps). The
278 absolute value of the third field has these meanings: 0 => no tweaking, 1 =>
279 remove vertical space characters, 2 => remove underscore. */
280
281 static const int posix_class_maps[] = {
282 cbit_word, cbit_digit, -2, /* alpha */
283 cbit_lower, -1, 0, /* lower */
284 cbit_upper, -1, 0, /* upper */
285 cbit_word, -1, 2, /* alnum - word without underscore */
286 cbit_print, cbit_cntrl, 0, /* ascii */
287 cbit_space, -1, 1, /* blank - a GNU extension */
288 cbit_cntrl, -1, 0, /* cntrl */
289 cbit_digit, -1, 0, /* digit */
290 cbit_graph, -1, 0, /* graph */
291 cbit_print, -1, 0, /* print */
292 cbit_punct, -1, 0, /* punct */
293 cbit_space, -1, 0, /* space */
294 cbit_word, -1, 0, /* word - a Perl extension */
295 cbit_xdigit,-1, 0 /* xdigit */
296 };
297
298 /* Table of substitutes for \d etc when PCRE_UCP is set. The POSIX class
299 substitutes must be in the order of the names, defined above, and there are
300 both positive and negative cases. NULL means no substitute. */
301
302 #ifdef SUPPORT_UCP
303 static const pcre_uchar string_PNd[] = {
304 CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
305 CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
306 static const pcre_uchar string_pNd[] = {
307 CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
308 CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
309 static const pcre_uchar string_PXsp[] = {
310 CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
311 CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' };
312 static const pcre_uchar string_pXsp[] = {
313 CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
314 CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' };
315 static const pcre_uchar string_PXwd[] = {
316 CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
317 CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
318 static const pcre_uchar string_pXwd[] = {
319 CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
320 CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
321
322 static const pcre_uchar *substitutes[] = {
323 string_PNd, /* \D */
324 string_pNd, /* \d */
325 string_PXsp, /* \S */ /* NOTE: Xsp is Perl space */
326 string_pXsp, /* \s */
327 string_PXwd, /* \W */
328 string_pXwd /* \w */
329 };
330
331 static const pcre_uchar string_pL[] = {
332 CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
333 CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' };
334 static const pcre_uchar string_pLl[] = {
335 CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
336 CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' };
337 static const pcre_uchar string_pLu[] = {
338 CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
339 CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' };
340 static const pcre_uchar string_pXan[] = {
341 CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
342 CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' };
343 static const pcre_uchar string_h[] = {
344 CHAR_BACKSLASH, CHAR_h, '\0' };
345 static const pcre_uchar string_pXps[] = {
346 CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
347 CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' };
348 static const pcre_uchar string_PL[] = {
349 CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
350 CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' };
351 static const pcre_uchar string_PLl[] = {
352 CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
353 CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' };
354 static const pcre_uchar string_PLu[] = {
355 CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
356 CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' };
357 static const pcre_uchar string_PXan[] = {
358 CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
359 CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' };
360 static const pcre_uchar string_H[] = {
361 CHAR_BACKSLASH, CHAR_H, '\0' };
362 static const pcre_uchar string_PXps[] = {
363 CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
364 CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' };
365
366 static const pcre_uchar *posix_substitutes[] = {
367 string_pL, /* alpha */
368 string_pLl, /* lower */
369 string_pLu, /* upper */
370 string_pXan, /* alnum */
371 NULL, /* ascii */
372 string_h, /* blank */
373 NULL, /* cntrl */
374 string_pNd, /* digit */
375 NULL, /* graph */
376 NULL, /* print */
377 NULL, /* punct */
378 string_pXps, /* space */ /* NOTE: Xps is POSIX space */
379 string_pXwd, /* word */
380 NULL, /* xdigit */
381 /* Negated cases */
382 string_PL, /* ^alpha */
383 string_PLl, /* ^lower */
384 string_PLu, /* ^upper */
385 string_PXan, /* ^alnum */
386 NULL, /* ^ascii */
387 string_H, /* ^blank */
388 NULL, /* ^cntrl */
389 string_PNd, /* ^digit */
390 NULL, /* ^graph */
391 NULL, /* ^print */
392 NULL, /* ^punct */
393 string_PXps, /* ^space */ /* NOTE: Xps is POSIX space */
394 string_PXwd, /* ^word */
395 NULL /* ^xdigit */
396 };
397 #define POSIX_SUBSIZE (sizeof(posix_substitutes) / sizeof(pcre_uchar *))
398 #endif
399
400 #define STRING(a) # a
401 #define XSTRING(s) STRING(s)
402
403 /* The texts of compile-time error messages. These are "char *" because they
404 are passed to the outside world. Do not ever re-use any error number, because
405 they are documented. Always add a new error instead. Messages marked DEAD below
406 are no longer used. This used to be a table of strings, but in order to reduce
407 the number of relocations needed when a shared library is loaded dynamically,
408 it is now one long string. We cannot use a table of offsets, because the
409 lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we
410 simply count through to the one we want - this isn't a performance issue
411 because these strings are used only when there is a compilation error.
412
413 Each substring ends with \0 to insert a null character. This includes the final
414 substring, so that the whole string ends with \0\0, which can be detected when
415 counting through. */
416
417 static const char error_texts[] =
418 "no error\0"
419 "\\ at end of pattern\0"
420 "\\c at end of pattern\0"
421 "unrecognized character follows \\\0"
422 "numbers out of order in {} quantifier\0"
423 /* 5 */
424 "number too big in {} quantifier\0"
425 "missing terminating ] for character class\0"
426 "invalid escape sequence in character class\0"
427 "range out of order in character class\0"
428 "nothing to repeat\0"
429 /* 10 */
430 "operand of unlimited repeat could match the empty string\0" /** DEAD **/
431 "internal error: unexpected repeat\0"
432 "unrecognized character after (? or (?-\0"
433 "POSIX named classes are supported only within a class\0"
434 "missing )\0"
435 /* 15 */
436 "reference to non-existent subpattern\0"
437 "erroffset passed as NULL\0"
438 "unknown option bit(s) set\0"
439 "missing ) after comment\0"
440 "parentheses nested too deeply\0" /** DEAD **/
441 /* 20 */
442 "regular expression is too large\0"
443 "failed to get memory\0"
444 "unmatched parentheses\0"
445 "internal error: code overflow\0"
446 "unrecognized character after (?<\0"
447 /* 25 */
448 "lookbehind assertion is not fixed length\0"
449 "malformed number or name after (?(\0"
450 "conditional group contains more than two branches\0"
451 "assertion expected after (?(\0"
452 "(?R or (?[+-]digits must be followed by )\0"
453 /* 30 */
454 "unknown POSIX class name\0"
455 "POSIX collating elements are not supported\0"
456 "this version of PCRE is compiled without UTF support\0"
457 "spare error\0" /** DEAD **/
458 "character value in \\x{...} sequence is too large\0"
459 /* 35 */
460 "invalid condition (?(0)\0"
461 "\\C not allowed in lookbehind assertion\0"
462 "PCRE does not support \\L, \\l, \\N{name}, \\U, or \\u\0"
463 "number after (?C is > 255\0"
464 "closing ) for (?C expected\0"
465 /* 40 */
466 "recursive call could loop indefinitely\0"
467 "unrecognized character after (?P\0"
468 "syntax error in subpattern name (missing terminator)\0"
469 "two named subpatterns have the same name\0"
470 "invalid UTF-8 string\0"
471 /* 45 */
472 "support for \\P, \\p, and \\X has not been compiled\0"
473 "malformed \\P or \\p sequence\0"
474 "unknown property name after \\P or \\p\0"
475 "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0"
476 "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0"
477 /* 50 */
478 "repeated subpattern is too long\0" /** DEAD **/
479 "octal value is greater than \\377 in 8-bit non-UTF-8 mode\0"
480 "internal error: overran compiling workspace\0"
481 "internal error: previously-checked referenced subpattern not found\0"
482 "DEFINE group contains more than one branch\0"
483 /* 55 */
484 "repeating a DEFINE group is not allowed\0" /** DEAD **/
485 "inconsistent NEWLINE options\0"
486 "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0"
487 "a numbered reference must not be zero\0"
488 "an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0"
489 /* 60 */
490 "(*VERB) not recognized\0"
491 "number is too big\0"
492 "subpattern name expected\0"
493 "digit expected after (?+\0"
494 "] is an invalid data character in JavaScript compatibility mode\0"
495 /* 65 */
496 "different names for subpatterns of the same number are not allowed\0"
497 "(*MARK) must have an argument\0"
498 "this version of PCRE is not compiled with Unicode property support\0"
499 "\\c must be followed by an ASCII character\0"
500 "\\k is not followed by a braced, angle-bracketed, or quoted name\0"
501 /* 70 */
502 "internal error: unknown opcode in find_fixedlength()\0"
503 "\\N is not supported in a class\0"
504 "too many forward references\0"
505 "disallowed Unicode code point (>= 0xd800 && <= 0xdfff)\0"
506 "invalid UTF-16 string\0"
507 /* 75 */
508 "name is too long in (*MARK), (*PRUNE), (*SKIP), or (*THEN)\0"
509 "character value in \\u.... sequence is too large\0"
510 "invalid UTF-32 string\0"
511 ;
512
513 /* Table to identify digits and hex digits. This is used when compiling
514 patterns. Note that the tables in chartables are dependent on the locale, and
515 may mark arbitrary characters as digits - but the PCRE compiling code expects
516 to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have
517 a private table here. It costs 256 bytes, but it is a lot faster than doing
518 character value tests (at least in some simple cases I timed), and in some
519 applications one wants PCRE to compile efficiently as well as match
520 efficiently.
521
522 For convenience, we use the same bit definitions as in chartables:
523
524 0x04 decimal digit
525 0x08 hexadecimal digit
526
527 Then we can use ctype_digit and ctype_xdigit in the code. */
528
529 /* Using a simple comparison for decimal numbers rather than a memory read
530 is much faster, and the resulting code is simpler (the compiler turns it
531 into a subtraction and unsigned comparison). */
532
533 #define IS_DIGIT(x) ((x) >= CHAR_0 && (x) <= CHAR_9)
534
535 #ifndef EBCDIC
536
537 /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in
538 UTF-8 mode. */
539
540 static const pcre_uint8 digitab[] =
541 {
542 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */
543 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
544 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */
545 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
546 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */
547 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */
548 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */
549 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */
550 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */
551 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */
552 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */
553 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */
554 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */
555 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */
556 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */
557 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */
558 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */
559 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */
560 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */
561 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */
562 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */
563 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */
564 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */
565 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
566 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */
567 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */
568 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */
569 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */
570 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */
571 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */
572 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */
573 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */
574
575 #else
576
577 /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */
578
579 static const pcre_uint8 digitab[] =
580 {
581 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */
582 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
583 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */
584 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
585 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */
586 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
587 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */
588 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
589 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */
590 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */
591 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */
592 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */
593 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */
594 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */
595 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */
596 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
597 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */
598 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
599 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */
600 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
601 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */
602 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
603 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */
604 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
605 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */
606 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
607 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */
608 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
609 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */
610 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
611 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */
612 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
613
614 static const pcre_uint8 ebcdic_chartab[] = { /* chartable partial dup */
615 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */
616 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */
617 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */
618 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
619 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */
620 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
621 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */
622 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
623 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */
624 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */
625 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */
626 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */
627 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */
628 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */
629 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */
630 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
631 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */
632 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
633 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */
634 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
635 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */
636 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
637 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */
638 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
639 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */
640 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
641 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */
642 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
643 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */
644 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
645 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */
646 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
647 #endif
648
649
650
651 /*************************************************
652 * Find an error text *
653 *************************************************/
654
655 /* The error texts are now all in one long string, to save on relocations. As
656 some of the text is of unknown length, we can't use a table of offsets.
657 Instead, just count through the strings. This is not a performance issue
658 because it happens only when there has been a compilation error.
659
660 Argument: the error number
661 Returns: pointer to the error string
662 */
663
664 static const char *
665 find_error_text(int n)
666 {
667 const char *s = error_texts;
668 for (; n > 0; n--)
669 {
670 while (*s++ != CHAR_NULL) {};
671 if (*s == CHAR_NULL) return "Error text not found (please report)";
672 }
673 return s;
674 }
675
676
677 /*************************************************
678 * Expand the workspace *
679 *************************************************/
680
681 /* This function is called during the second compiling phase, if the number of
682 forward references fills the existing workspace, which is originally a block on
683 the stack. A larger block is obtained from malloc() unless the ultimate limit
684 has been reached or the increase will be rather small.
685
686 Argument: pointer to the compile data block
687 Returns: 0 if all went well, else an error number
688 */
689
690 static int
691 expand_workspace(compile_data *cd)
692 {
693 pcre_uchar *newspace;
694 int newsize = cd->workspace_size * 2;
695
696 if (newsize > COMPILE_WORK_SIZE_MAX) newsize = COMPILE_WORK_SIZE_MAX;
697 if (cd->workspace_size >= COMPILE_WORK_SIZE_MAX ||
698 newsize - cd->workspace_size < WORK_SIZE_SAFETY_MARGIN)
699 return ERR72;
700
701 newspace = (PUBL(malloc))(IN_UCHARS(newsize));
702 if (newspace == NULL) return ERR21;
703 memcpy(newspace, cd->start_workspace, cd->workspace_size * sizeof(pcre_uchar));
704 cd->hwm = (pcre_uchar *)newspace + (cd->hwm - cd->start_workspace);
705 if (cd->workspace_size > COMPILE_WORK_SIZE)
706 (PUBL(free))((void *)cd->start_workspace);
707 cd->start_workspace = newspace;
708 cd->workspace_size = newsize;
709 return 0;
710 }
711
712
713
714 /*************************************************
715 * Check for counted repeat *
716 *************************************************/
717
718 /* This function is called when a '{' is encountered in a place where it might
719 start a quantifier. It looks ahead to see if it really is a quantifier or not.
720 It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd}
721 where the ddds are digits.
722
723 Arguments:
724 p pointer to the first char after '{'
725
726 Returns: TRUE or FALSE
727 */
728
729 static BOOL
730 is_counted_repeat(const pcre_uchar *p)
731 {
732 if (!IS_DIGIT(*p)) return FALSE;
733 p++;
734 while (IS_DIGIT(*p)) p++;
735 if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
736
737 if (*p++ != CHAR_COMMA) return FALSE;
738 if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
739
740 if (!IS_DIGIT(*p)) return FALSE;
741 p++;
742 while (IS_DIGIT(*p)) p++;
743
744 return (*p == CHAR_RIGHT_CURLY_BRACKET);
745 }
746
747
748
749 /*************************************************
750 * Handle escapes *
751 *************************************************/
752
753 /* This function is called when a \ has been encountered. It either returns a
754 positive value for a simple escape such as \n, or 0 for a data character
755 which will be placed in chptr. A backreference to group n is returned as
756 negative n. When UTF-8 is enabled, a positive value greater than 255 may
757 be returned in chptr.
758 On entry,ptr is pointing at the \. On exit, it is on the final character of the
759 escape sequence.
760
761 Arguments:
762 ptrptr points to the pattern position pointer
763 chptr points to the data character
764 errorcodeptr points to the errorcode variable
765 bracount number of previous extracting brackets
766 options the options bits
767 isclass TRUE if inside a character class
768
769 Returns: zero => a data character
770 positive => a special escape sequence
771 negative => a back reference
772 on error, errorcodeptr is set
773 */
774
775 static int
776 check_escape(const pcre_uchar **ptrptr, pcre_uint32 *chptr, int *errorcodeptr,
777 int bracount, int options, BOOL isclass)
778 {
779 /* PCRE_UTF16 has the same value as PCRE_UTF8. */
780 BOOL utf = (options & PCRE_UTF8) != 0;
781 const pcre_uchar *ptr = *ptrptr + 1;
782 pcre_uint32 c;
783 int escape = 0;
784 int i;
785
786 GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */
787 ptr--; /* Set pointer back to the last byte */
788
789 /* If backslash is at the end of the pattern, it's an error. */
790
791 if (c == CHAR_NULL) *errorcodeptr = ERR1;
792
793 /* Non-alphanumerics are literals. For digits or letters, do an initial lookup
794 in a table. A non-zero result is something that can be returned immediately.
795 Otherwise further processing may be required. */
796
797 #ifndef EBCDIC /* ASCII/UTF-8 coding */
798 /* Not alphanumeric */
799 else if (c < CHAR_0 || c > CHAR_z) {}
800 else if ((i = escapes[c - CHAR_0]) != 0) { if (i > 0) c = (pcre_uint32)i; else escape = -i; }
801
802 #else /* EBCDIC coding */
803 /* Not alphanumeric */
804 else if (c < CHAR_a || (!MAX_255(c) || (ebcdic_chartab[c] & 0x0E) == 0)) {}
805 else if ((i = escapes[c - 0x48]) != 0) { if (i > 0) c = (pcre_uint32)i; else escape = -i; }
806 #endif
807
808 /* Escapes that need further processing, or are illegal. */
809
810 else
811 {
812 const pcre_uchar *oldptr;
813 BOOL braced, negated, overflow;
814 int s;
815
816 switch (c)
817 {
818 /* A number of Perl escapes are not handled by PCRE. We give an explicit
819 error. */
820
821 case CHAR_l:
822 case CHAR_L:
823 *errorcodeptr = ERR37;
824 break;
825
826 case CHAR_u:
827 if ((options & PCRE_JAVASCRIPT_COMPAT) != 0)
828 {
829 /* In JavaScript, \u must be followed by four hexadecimal numbers.
830 Otherwise it is a lowercase u letter. */
831 if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0
832 && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0
833 && MAX_255(ptr[3]) && (digitab[ptr[3]] & ctype_xdigit) != 0
834 && MAX_255(ptr[4]) && (digitab[ptr[4]] & ctype_xdigit) != 0)
835 {
836 c = 0;
837 for (i = 0; i < 4; ++i)
838 {
839 register pcre_uint32 cc = *(++ptr);
840 #ifndef EBCDIC /* ASCII/UTF-8 coding */
841 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
842 c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
843 #else /* EBCDIC coding */
844 if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
845 c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
846 #endif
847 }
848
849 #if defined COMPILE_PCRE8
850 if (c > (utf ? 0x10ffff : 0xff))
851 #elif defined COMPILE_PCRE16
852 if (c > (utf ? 0x10ffff : 0xffff))
853 #elif defined COMPILE_PCRE32
854 if (utf && c > 0x10ffff)
855 #endif
856 {
857 *errorcodeptr = ERR76;
858 }
859 else if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73;
860 }
861 }
862 else
863 *errorcodeptr = ERR37;
864 break;
865
866 case CHAR_U:
867 /* In JavaScript, \U is an uppercase U letter. */
868 if ((options & PCRE_JAVASCRIPT_COMPAT) == 0) *errorcodeptr = ERR37;
869 break;
870
871 /* In a character class, \g is just a literal "g". Outside a character
872 class, \g must be followed by one of a number of specific things:
873
874 (1) A number, either plain or braced. If positive, it is an absolute
875 backreference. If negative, it is a relative backreference. This is a Perl
876 5.10 feature.
877
878 (2) Perl 5.10 also supports \g{name} as a reference to a named group. This
879 is part of Perl's movement towards a unified syntax for back references. As
880 this is synonymous with \k{name}, we fudge it up by pretending it really
881 was \k.
882
883 (3) For Oniguruma compatibility we also support \g followed by a name or a
884 number either in angle brackets or in single quotes. However, these are
885 (possibly recursive) subroutine calls, _not_ backreferences. Just return
886 the ESC_g code (cf \k). */
887
888 case CHAR_g:
889 if (isclass) break;
890 if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE)
891 {
892 escape = ESC_g;
893 break;
894 }
895
896 /* Handle the Perl-compatible cases */
897
898 if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
899 {
900 const pcre_uchar *p;
901 for (p = ptr+2; *p != CHAR_NULL && *p != CHAR_RIGHT_CURLY_BRACKET; p++)
902 if (*p != CHAR_MINUS && !IS_DIGIT(*p)) break;
903 if (*p != CHAR_NULL && *p != CHAR_RIGHT_CURLY_BRACKET)
904 {
905 escape = ESC_k;
906 break;
907 }
908 braced = TRUE;
909 ptr++;
910 }
911 else braced = FALSE;
912
913 if (ptr[1] == CHAR_MINUS)
914 {
915 negated = TRUE;
916 ptr++;
917 }
918 else negated = FALSE;
919
920 /* The integer range is limited by the machine's int representation. */
921 s = 0;
922 overflow = FALSE;
923 while (IS_DIGIT(ptr[1]))
924 {
925 if (s > INT_MAX / 10 - 1) /* Integer overflow */
926 {
927 overflow = TRUE;
928 break;
929 }
930 s = s * 10 + (int)(*(++ptr) - CHAR_0);
931 }
932 if (overflow) /* Integer overflow */
933 {
934 while (IS_DIGIT(ptr[1]))
935 ptr++;
936 *errorcodeptr = ERR61;
937 break;
938 }
939
940 if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET)
941 {
942 *errorcodeptr = ERR57;
943 break;
944 }
945
946 if (s == 0)
947 {
948 *errorcodeptr = ERR58;
949 break;
950 }
951
952 if (negated)
953 {
954 if (s > bracount)
955 {
956 *errorcodeptr = ERR15;
957 break;
958 }
959 s = bracount - (s - 1);
960 }
961
962 escape = -s;
963 break;
964
965 /* The handling of escape sequences consisting of a string of digits
966 starting with one that is not zero is not straightforward. By experiment,
967 the way Perl works seems to be as follows:
968
969 Outside a character class, the digits are read as a decimal number. If the
970 number is less than 10, or if there are that many previous extracting
971 left brackets, then it is a back reference. Otherwise, up to three octal
972 digits are read to form an escaped byte. Thus \123 is likely to be octal
973 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal
974 value is greater than 377, the least significant 8 bits are taken. Inside a
975 character class, \ followed by a digit is always an octal number. */
976
977 case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5:
978 case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
979
980 if (!isclass)
981 {
982 oldptr = ptr;
983 /* The integer range is limited by the machine's int representation. */
984 s = (int)(c -CHAR_0);
985 overflow = FALSE;
986 while (IS_DIGIT(ptr[1]))
987 {
988 if (s > INT_MAX / 10 - 1) /* Integer overflow */
989 {
990 overflow = TRUE;
991 break;
992 }
993 s = s * 10 + (int)(*(++ptr) - CHAR_0);
994 }
995 if (overflow) /* Integer overflow */
996 {
997 while (IS_DIGIT(ptr[1]))
998 ptr++;
999 *errorcodeptr = ERR61;
1000 break;
1001 }
1002 if (s < 10 || s <= bracount)
1003 {
1004 escape = -s;
1005 break;
1006 }
1007 ptr = oldptr; /* Put the pointer back and fall through */
1008 }
1009
1010 /* Handle an octal number following \. If the first digit is 8 or 9, Perl
1011 generates a binary zero byte and treats the digit as a following literal.
1012 Thus we have to pull back the pointer by one. */
1013
1014 if ((c = *ptr) >= CHAR_8)
1015 {
1016 ptr--;
1017 c = 0;
1018 break;
1019 }
1020
1021 /* \0 always starts an octal number, but we may drop through to here with a
1022 larger first octal digit. The original code used just to take the least
1023 significant 8 bits of octal numbers (I think this is what early Perls used
1024 to do). Nowadays we allow for larger numbers in UTF-8 mode and 16-bit mode,
1025 but no more than 3 octal digits. */
1026
1027 case CHAR_0:
1028 c -= CHAR_0;
1029 while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7)
1030 c = c * 8 + *(++ptr) - CHAR_0;
1031 #ifdef COMPILE_PCRE8
1032 if (!utf && c > 0xff) *errorcodeptr = ERR51;
1033 #endif
1034 break;
1035
1036 /* \x is complicated. \x{ddd} is a character number which can be greater
1037 than 0xff in utf or non-8bit mode, but only if the ddd are hex digits.
1038 If not, { is treated as a data character. */
1039
1040 case CHAR_x:
1041 if ((options & PCRE_JAVASCRIPT_COMPAT) != 0)
1042 {
1043 /* In JavaScript, \x must be followed by two hexadecimal numbers.
1044 Otherwise it is a lowercase x letter. */
1045 if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0
1046 && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0)
1047 {
1048 c = 0;
1049 for (i = 0; i < 2; ++i)
1050 {
1051 register pcre_uint32 cc = *(++ptr);
1052 #ifndef EBCDIC /* ASCII/UTF-8 coding */
1053 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
1054 c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
1055 #else /* EBCDIC coding */
1056 if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
1057 c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
1058 #endif
1059 }
1060 }
1061 break;
1062 }
1063
1064 if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
1065 {
1066 const pcre_uchar *pt = ptr + 2;
1067
1068 c = 0;
1069 overflow = FALSE;
1070 while (MAX_255(*pt) && (digitab[*pt] & ctype_xdigit) != 0)
1071 {
1072 register pcre_uint32 cc = *pt++;
1073 if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */
1074
1075 #ifdef COMPILE_PCRE32
1076 if (c >= 0x10000000l) { overflow = TRUE; break; }
1077 #endif
1078
1079 #ifndef EBCDIC /* ASCII/UTF-8 coding */
1080 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
1081 c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
1082 #else /* EBCDIC coding */
1083 if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
1084 c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
1085 #endif
1086
1087 #if defined COMPILE_PCRE8
1088 if (c > (utf ? 0x10ffff : 0xff)) { overflow = TRUE; break; }
1089 #elif defined COMPILE_PCRE16
1090 if (c > (utf ? 0x10ffff : 0xffff)) { overflow = TRUE; break; }
1091 #elif defined COMPILE_PCRE32
1092 if (utf && c > 0x10ffff) { overflow = TRUE; break; }
1093 #endif
1094 }
1095
1096 if (overflow)
1097 {
1098 while (MAX_255(*pt) && (digitab[*pt] & ctype_xdigit) != 0) pt++;
1099 *errorcodeptr = ERR34;
1100 }
1101
1102 if (*pt == CHAR_RIGHT_CURLY_BRACKET)
1103 {
1104 if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73;
1105 ptr = pt;
1106 break;
1107 }
1108
1109 /* If the sequence of hex digits does not end with '}', then we don't
1110 recognize this construct; fall through to the normal \x handling. */
1111 }
1112
1113 /* Read just a single-byte hex-defined char */
1114
1115 c = 0;
1116 while (i++ < 2 && MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0)
1117 {
1118 pcre_uint32 cc; /* Some compilers don't like */
1119 cc = *(++ptr); /* ++ in initializers */
1120 #ifndef EBCDIC /* ASCII/UTF-8 coding */
1121 if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
1122 c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
1123 #else /* EBCDIC coding */
1124 if (cc <= CHAR_z) cc += 64; /* Convert to upper case */
1125 c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
1126 #endif
1127 }
1128 break;
1129
1130 /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped.
1131 An error is given if the byte following \c is not an ASCII character. This
1132 coding is ASCII-specific, but then the whole concept of \cx is
1133 ASCII-specific. (However, an EBCDIC equivalent has now been added.) */
1134
1135 case CHAR_c:
1136 c = *(++ptr);
1137 if (c == CHAR_NULL)
1138 {
1139 *errorcodeptr = ERR2;
1140 break;
1141 }
1142 #ifndef EBCDIC /* ASCII/UTF-8 coding */
1143 if (c > 127) /* Excludes all non-ASCII in either mode */
1144 {
1145 *errorcodeptr = ERR68;
1146 break;
1147 }
1148 if (c >= CHAR_a && c <= CHAR_z) c -= 32;
1149 c ^= 0x40;
1150 #else /* EBCDIC coding */
1151 if (c >= CHAR_a && c <= CHAR_z) c += 64;
1152 c ^= 0xC0;
1153 #endif
1154 break;
1155
1156 /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any
1157 other alphanumeric following \ is an error if PCRE_EXTRA was set;
1158 otherwise, for Perl compatibility, it is a literal. This code looks a bit
1159 odd, but there used to be some cases other than the default, and there may
1160 be again in future, so I haven't "optimized" it. */
1161
1162 default:
1163 if ((options & PCRE_EXTRA) != 0) switch(c)
1164 {
1165 default:
1166 *errorcodeptr = ERR3;
1167 break;
1168 }
1169 break;
1170 }
1171 }
1172
1173 /* Perl supports \N{name} for character names, as well as plain \N for "not
1174 newline". PCRE does not support \N{name}. However, it does support
1175 quantification such as \N{2,3}. */
1176
1177 if (escape == ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET &&
1178 !is_counted_repeat(ptr+2))
1179 *errorcodeptr = ERR37;
1180
1181 /* If PCRE_UCP is set, we change the values for \d etc. */
1182
1183 if ((options & PCRE_UCP) != 0 && escape >= ESC_D && escape <= ESC_w)
1184 escape += (ESC_DU - ESC_D);
1185
1186 /* Set the pointer to the final character before returning. */
1187
1188 *ptrptr = ptr;
1189 *chptr = c;
1190 return escape;
1191 }
1192
1193 #ifdef SUPPORT_UCP
1194 /*************************************************
1195 * Handle \P and \p *
1196 *************************************************/
1197
1198 /* This function is called after \P or \p has been encountered, provided that
1199 PCRE is compiled with support for Unicode properties. On entry, ptrptr is
1200 pointing at the P or p. On exit, it is pointing at the final character of the
1201 escape sequence.
1202
1203 Argument:
1204 ptrptr points to the pattern position pointer
1205 negptr points to a boolean that is set TRUE for negation else FALSE
1206 ptypeptr points to an unsigned int that is set to the type value
1207 pdataptr points to an unsigned int that is set to the detailed property value
1208 errorcodeptr points to the error code variable
1209
1210 Returns: TRUE if the type value was found, or FALSE for an invalid type
1211 */
1212
1213 static BOOL
1214 get_ucp(const pcre_uchar **ptrptr, BOOL *negptr, unsigned int *ptypeptr,
1215 unsigned int *pdataptr, int *errorcodeptr)
1216 {
1217 pcre_uchar c;
1218 int i, bot, top;
1219 const pcre_uchar *ptr = *ptrptr;
1220 pcre_uchar name[32];
1221
1222 c = *(++ptr);
1223 if (c == CHAR_NULL) goto ERROR_RETURN;
1224
1225 *negptr = FALSE;
1226
1227 /* \P or \p can be followed by a name in {}, optionally preceded by ^ for
1228 negation. */
1229
1230 if (c == CHAR_LEFT_CURLY_BRACKET)
1231 {
1232 if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT)
1233 {
1234 *negptr = TRUE;
1235 ptr++;
1236 }
1237 for (i = 0; i < (int)(sizeof(name) / sizeof(pcre_uchar)) - 1; i++)
1238 {
1239 c = *(++ptr);
1240 if (c == CHAR_NULL) goto ERROR_RETURN;
1241 if (c == CHAR_RIGHT_CURLY_BRACKET) break;
1242 name[i] = c;
1243 }
1244 if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN;
1245 name[i] = 0;
1246 }
1247
1248 /* Otherwise there is just one following character */
1249
1250 else
1251 {
1252 name[0] = c;
1253 name[1] = 0;
1254 }
1255
1256 *ptrptr = ptr;
1257
1258 /* Search for a recognized property name using binary chop */
1259
1260 bot = 0;
1261 top = PRIV(utt_size);
1262
1263 while (bot < top)
1264 {
1265 int r;
1266 i = (bot + top) >> 1;
1267 r = STRCMP_UC_C8(name, PRIV(utt_names) + PRIV(utt)[i].name_offset);
1268 if (r == 0)
1269 {
1270 *ptypeptr = PRIV(utt)[i].type;
1271 *pdataptr = PRIV(utt)[i].value;
1272 return TRUE;
1273 }
1274 if (r > 0) bot = i + 1; else top = i;
1275 }
1276
1277 *errorcodeptr = ERR47;
1278 *ptrptr = ptr;
1279 return FALSE;
1280
1281 ERROR_RETURN:
1282 *errorcodeptr = ERR46;
1283 *ptrptr = ptr;
1284 return FALSE;
1285 }
1286 #endif
1287
1288
1289
1290
1291 /*************************************************
1292 * Read repeat counts *
1293 *************************************************/
1294
1295 /* Read an item of the form {n,m} and return the values. This is called only
1296 after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
1297 so the syntax is guaranteed to be correct, but we need to check the values.
1298
1299 Arguments:
1300 p pointer to first char after '{'
1301 minp pointer to int for min
1302 maxp pointer to int for max
1303 returned as -1 if no max
1304 errorcodeptr points to error code variable
1305
1306 Returns: pointer to '}' on success;
1307 current ptr on error, with errorcodeptr set non-zero
1308 */
1309
1310 static const pcre_uchar *
1311 read_repeat_counts(const pcre_uchar *p, int *minp, int *maxp, int *errorcodeptr)
1312 {
1313 int min = 0;
1314 int max = -1;
1315
1316 /* Read the minimum value and do a paranoid check: a negative value indicates
1317 an integer overflow. */
1318
1319 while (IS_DIGIT(*p)) min = min * 10 + (int)(*p++ - CHAR_0);
1320 if (min < 0 || min > 65535)
1321 {
1322 *errorcodeptr = ERR5;
1323 return p;
1324 }
1325
1326 /* Read the maximum value if there is one, and again do a paranoid on its size.
1327 Also, max must not be less than min. */
1328
1329 if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else
1330 {
1331 if (*(++p) != CHAR_RIGHT_CURLY_BRACKET)
1332 {
1333 max = 0;
1334 while(IS_DIGIT(*p)) max = max * 10 + (int)(*p++ - CHAR_0);
1335 if (max < 0 || max > 65535)
1336 {
1337 *errorcodeptr = ERR5;
1338 return p;
1339 }
1340 if (max < min)
1341 {
1342 *errorcodeptr = ERR4;
1343 return p;
1344 }
1345 }
1346 }
1347
1348 /* Fill in the required variables, and pass back the pointer to the terminating
1349 '}'. */
1350
1351 *minp = min;
1352 *maxp = max;
1353 return p;
1354 }
1355
1356
1357
1358 /*************************************************
1359 * Subroutine for finding forward reference *
1360 *************************************************/
1361
1362 /* This recursive function is called only from find_parens() below. The
1363 top-level call starts at the beginning of the pattern. All other calls must
1364 start at a parenthesis. It scans along a pattern's text looking for capturing
1365 subpatterns, and counting them. If it finds a named pattern that matches the
1366 name it is given, it returns its number. Alternatively, if the name is NULL, it
1367 returns when it reaches a given numbered subpattern. Recursion is used to keep
1368 track of subpatterns that reset the capturing group numbers - the (?| feature.
1369
1370 This function was originally called only from the second pass, in which we know
1371 that if (?< or (?' or (?P< is encountered, the name will be correctly
1372 terminated because that is checked in the first pass. There is now one call to
1373 this function in the first pass, to check for a recursive back reference by
1374 name (so that we can make the whole group atomic). In this case, we need check
1375 only up to the current position in the pattern, and that is still OK because
1376 and previous occurrences will have been checked. To make this work, the test
1377 for "end of pattern" is a check against cd->end_pattern in the main loop,
1378 instead of looking for a binary zero. This means that the special first-pass
1379 call can adjust cd->end_pattern temporarily. (Checks for binary zero while
1380 processing items within the loop are OK, because afterwards the main loop will
1381 terminate.)
1382
1383 Arguments:
1384 ptrptr address of the current character pointer (updated)
1385 cd compile background data
1386 name name to seek, or NULL if seeking a numbered subpattern
1387 lorn name length, or subpattern number if name is NULL
1388 xmode TRUE if we are in /x mode
1389 utf TRUE if we are in UTF-8 / UTF-16 / UTF-32 mode
1390 count pointer to the current capturing subpattern number (updated)
1391
1392 Returns: the number of the named subpattern, or -1 if not found
1393 */
1394
1395 static int
1396 find_parens_sub(pcre_uchar **ptrptr, compile_data *cd, const pcre_uchar *name, int lorn,
1397 BOOL xmode, BOOL utf, int *count)
1398 {
1399 pcre_uchar *ptr = *ptrptr;
1400 int start_count = *count;
1401 int hwm_count = start_count;
1402 BOOL dup_parens = FALSE;
1403
1404 /* If the first character is a parenthesis, check on the type of group we are
1405 dealing with. The very first call may not start with a parenthesis. */
1406
1407 if (ptr[0] == CHAR_LEFT_PARENTHESIS)
1408 {
1409 /* Handle specials such as (*SKIP) or (*UTF8) etc. */
1410
1411 if (ptr[1] == CHAR_ASTERISK) ptr += 2;
1412
1413 /* Handle a normal, unnamed capturing parenthesis. */
1414
1415 else if (ptr[1] != CHAR_QUESTION_MARK)
1416 {
1417 *count += 1;
1418 if (name == NULL && *count == lorn) return *count;
1419 ptr++;
1420 }
1421
1422 /* All cases now have (? at the start. Remember when we are in a group
1423 where the parenthesis numbers are duplicated. */
1424
1425 else if (ptr[2] == CHAR_VERTICAL_LINE)
1426 {
1427 ptr += 3;
1428 dup_parens = TRUE;
1429 }
1430
1431 /* Handle comments; all characters are allowed until a ket is reached. */
1432
1433 else if (ptr[2] == CHAR_NUMBER_SIGN)
1434 {
1435 for (ptr += 3; *ptr != CHAR_NULL; ptr++)
1436 if (*ptr == CHAR_RIGHT_PARENTHESIS) break;
1437 goto FAIL_EXIT;
1438 }
1439
1440 /* Handle a condition. If it is an assertion, just carry on so that it
1441 is processed as normal. If not, skip to the closing parenthesis of the
1442 condition (there can't be any nested parens). */
1443
1444 else if (ptr[2] == CHAR_LEFT_PARENTHESIS)
1445 {
1446 ptr += 2;
1447 if (ptr[1] != CHAR_QUESTION_MARK)
1448 {
1449 while (*ptr != CHAR_NULL && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
1450 if (*ptr != CHAR_NULL) ptr++;
1451 }
1452 }
1453
1454 /* Start with (? but not a condition. */
1455
1456 else
1457 {
1458 ptr += 2;
1459 if (*ptr == CHAR_P) ptr++; /* Allow optional P */
1460
1461 /* We have to disambiguate (?<! and (?<= from (?<name> for named groups */
1462
1463 if ((*ptr == CHAR_LESS_THAN_SIGN && ptr[1] != CHAR_EXCLAMATION_MARK &&
1464 ptr[1] != CHAR_EQUALS_SIGN) || *ptr == CHAR_APOSTROPHE)
1465 {
1466 pcre_uchar term;
1467 const pcre_uchar *thisname;
1468 *count += 1;
1469 if (name == NULL && *count == lorn) return *count;
1470 term = *ptr++;
1471 if (term == CHAR_LESS_THAN_SIGN) term = CHAR_GREATER_THAN_SIGN;
1472 thisname = ptr;
1473 while (*ptr != term) ptr++;
1474 if (name != NULL && lorn == (int)(ptr - thisname) &&
1475 STRNCMP_UC_UC(name, thisname, (unsigned int)lorn) == 0)
1476 return *count;
1477 term++;
1478 }
1479 }
1480 }
1481
1482 /* Past any initial parenthesis handling, scan for parentheses or vertical
1483 bars. Stop if we get to cd->end_pattern. Note that this is important for the
1484 first-pass call when this value is temporarily adjusted to stop at the current
1485 position. So DO NOT change this to a test for binary zero. */
1486
1487 for (; ptr < cd->end_pattern; ptr++)
1488 {
1489 /* Skip over backslashed characters and also entire \Q...\E */
1490
1491 if (*ptr == CHAR_BACKSLASH)
1492 {
1493 if (*(++ptr) == CHAR_NULL) goto FAIL_EXIT;
1494 if (*ptr == CHAR_Q) for (;;)
1495 {
1496 while (*(++ptr) != CHAR_NULL && *ptr != CHAR_BACKSLASH) {};
1497 if (*ptr == CHAR_NULL) goto FAIL_EXIT;
1498 if (*(++ptr) == CHAR_E) break;
1499 }
1500 continue;
1501 }
1502
1503 /* Skip over character classes; this logic must be similar to the way they
1504 are handled for real. If the first character is '^', skip it. Also, if the
1505 first few characters (either before or after ^) are \Q\E or \E we skip them
1506 too. This makes for compatibility with Perl. Note the use of STR macros to
1507 encode "Q\\E" so that it works in UTF-8 on EBCDIC platforms. */
1508
1509 if (*ptr == CHAR_LEFT_SQUARE_BRACKET)
1510 {
1511 BOOL negate_class = FALSE;
1512 for (;;)
1513 {
1514 if (ptr[1] == CHAR_BACKSLASH)
1515 {
1516 if (ptr[2] == CHAR_E)
1517 ptr+= 2;
1518 else if (STRNCMP_UC_C8(ptr + 2,
1519 STR_Q STR_BACKSLASH STR_E, 3) == 0)
1520 ptr += 4;
1521 else
1522 break;
1523 }
1524 else if (!negate_class && ptr[1] == CHAR_CIRCUMFLEX_ACCENT)
1525 {
1526 negate_class = TRUE;
1527 ptr++;
1528 }
1529 else break;
1530 }
1531
1532 /* If the next character is ']', it is a data character that must be
1533 skipped, except in JavaScript compatibility mode. */
1534
1535 if (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET &&
1536 (cd->external_options & PCRE_JAVASCRIPT_COMPAT) == 0)
1537 ptr++;
1538
1539 while (*(++ptr) != CHAR_RIGHT_SQUARE_BRACKET)
1540 {
1541 if (*ptr == CHAR_NULL) return -1;
1542 if (*ptr == CHAR_BACKSLASH)
1543 {
1544 if (*(++ptr) == CHAR_NULL) goto FAIL_EXIT;
1545 if (*ptr == CHAR_Q) for (;;)
1546 {
1547 while (*(++ptr) != CHAR_NULL && *ptr != CHAR_BACKSLASH) {};
1548 if (*ptr == CHAR_NULL) goto FAIL_EXIT;
1549 if (*(++ptr) == CHAR_E) break;
1550 }
1551 continue;
1552 }
1553 }
1554 continue;
1555 }
1556
1557 /* Skip comments in /x mode */
1558
1559 if (xmode && *ptr == CHAR_NUMBER_SIGN)
1560 {
1561 ptr++;
1562 while (*ptr != CHAR_NULL)
1563 {
1564 if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
1565 ptr++;
1566 #ifdef SUPPORT_UTF
1567 if (utf) FORWARDCHAR(ptr);
1568 #endif
1569 }
1570 if (*ptr == CHAR_NULL) goto FAIL_EXIT;
1571 continue;
1572 }
1573
1574 /* Check for the special metacharacters */
1575
1576 if (*ptr == CHAR_LEFT_PARENTHESIS)
1577 {
1578 int rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf, count);
1579 if (rc > 0) return rc;
1580 if (*ptr == CHAR_NULL) goto FAIL_EXIT;
1581 }
1582
1583 else if (*ptr == CHAR_RIGHT_PARENTHESIS)
1584 {
1585 if (dup_parens && *count < hwm_count) *count = hwm_count;
1586 goto FAIL_EXIT;
1587 }
1588
1589 else if (*ptr == CHAR_VERTICAL_LINE && dup_parens)
1590 {
1591 if (*count > hwm_count) hwm_count = *count;
1592 *count = start_count;
1593 }
1594 }
1595
1596 FAIL_EXIT:
1597 *ptrptr = ptr;
1598 return -1;
1599 }
1600
1601
1602
1603
1604 /*************************************************
1605 * Find forward referenced subpattern *
1606 *************************************************/
1607
1608 /* This function scans along a pattern's text looking for capturing
1609 subpatterns, and counting them. If it finds a named pattern that matches the
1610 name it is given, it returns its number. Alternatively, if the name is NULL, it
1611 returns when it reaches a given numbered subpattern. This is used for forward
1612 references to subpatterns. We used to be able to start this scan from the
1613 current compiling point, using the current count value from cd->bracount, and
1614 do it all in a single loop, but the addition of the possibility of duplicate
1615 subpattern numbers means that we have to scan from the very start, in order to
1616 take account of such duplicates, and to use a recursive function to keep track
1617 of the different types of group.
1618
1619 Arguments:
1620 cd compile background data
1621 name name to seek, or NULL if seeking a numbered subpattern
1622 lorn name length, or subpattern number if name is NULL
1623 xmode TRUE if we are in /x mode
1624 utf TRUE if we are in UTF-8 / UTF-16 / UTF-32 mode
1625
1626 Returns: the number of the found subpattern, or -1 if not found
1627 */
1628
1629 static int
1630 find_parens(compile_data *cd, const pcre_uchar *name, int lorn, BOOL xmode,
1631 BOOL utf)
1632 {
1633 pcre_uchar *ptr = (pcre_uchar *)cd->start_pattern;
1634 int count = 0;
1635 int rc;
1636
1637 /* If the pattern does not start with an opening parenthesis, the first call
1638 to find_parens_sub() will scan right to the end (if necessary). However, if it
1639 does start with a parenthesis, find_parens_sub() will return when it hits the
1640 matching closing parens. That is why we have to have a loop. */
1641
1642 for (;;)
1643 {
1644 rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf, &count);
1645 if (rc > 0 || *ptr++ == CHAR_NULL) break;
1646 }
1647
1648 return rc;
1649 }
1650
1651
1652
1653
1654 /*************************************************
1655 * Find first significant op code *
1656 *************************************************/
1657
1658 /* This is called by several functions that scan a compiled expression looking
1659 for a fixed first character, or an anchoring op code etc. It skips over things
1660 that do not influence this. For some calls, it makes sense to skip negative
1661 forward and all backward assertions, and also the \b assertion; for others it
1662 does not.
1663
1664 Arguments:
1665 code pointer to the start of the group
1666 skipassert TRUE if certain assertions are to be skipped
1667
1668 Returns: pointer to the first significant opcode
1669 */
1670
1671 static const pcre_uchar*
1672 first_significant_code(const pcre_uchar *code, BOOL skipassert)
1673 {
1674 for (;;)
1675 {
1676 switch ((int)*code)
1677 {
1678 case OP_ASSERT_NOT:
1679 case OP_ASSERTBACK:
1680 case OP_ASSERTBACK_NOT:
1681 if (!skipassert) return code;
1682 do code += GET(code, 1); while (*code == OP_ALT);
1683 code += PRIV(OP_lengths)[*code];
1684 break;
1685
1686 case OP_WORD_BOUNDARY:
1687 case OP_NOT_WORD_BOUNDARY:
1688 if (!skipassert) return code;
1689 /* Fall through */
1690
1691 case OP_CALLOUT:
1692 case OP_CREF:
1693 case OP_NCREF:
1694 case OP_RREF:
1695 case OP_NRREF:
1696 case OP_DEF:
1697 code += PRIV(OP_lengths)[*code];
1698 break;
1699
1700 default:
1701 return code;
1702 }
1703 }
1704 /* Control never reaches here */
1705 }
1706
1707
1708
1709
1710 /*************************************************
1711 * Find the fixed length of a branch *
1712 *************************************************/
1713
1714 /* Scan a branch and compute the fixed length of subject that will match it,
1715 if the length is fixed. This is needed for dealing with backward assertions.
1716 In UTF8 mode, the result is in characters rather than bytes. The branch is
1717 temporarily terminated with OP_END when this function is called.
1718
1719 This function is called when a backward assertion is encountered, so that if it
1720 fails, the error message can point to the correct place in the pattern.
1721 However, we cannot do this when the assertion contains subroutine calls,
1722 because they can be forward references. We solve this by remembering this case
1723 and doing the check at the end; a flag specifies which mode we are running in.
1724
1725 Arguments:
1726 code points to the start of the pattern (the bracket)
1727 utf TRUE in UTF-8 / UTF-16 / UTF-32 mode
1728 atend TRUE if called when the pattern is complete
1729 cd the "compile data" structure
1730
1731 Returns: the fixed length,
1732 or -1 if there is no fixed length,
1733 or -2 if \C was encountered (in UTF-8 mode only)
1734 or -3 if an OP_RECURSE item was encountered and atend is FALSE
1735 or -4 if an unknown opcode was encountered (internal error)
1736 */
1737
1738 static int
1739 find_fixedlength(pcre_uchar *code, BOOL utf, BOOL atend, compile_data *cd)
1740 {
1741 int length = -1;
1742
1743 register int branchlength = 0;
1744 register pcre_uchar *cc = code + 1 + LINK_SIZE;
1745
1746 /* Scan along the opcodes for this branch. If we get to the end of the
1747 branch, check the length against that of the other branches. */
1748
1749 for (;;)
1750 {
1751 int d;
1752 pcre_uchar *ce, *cs;
1753 register pcre_uchar op = *cc;
1754
1755 switch (op)
1756 {
1757 /* We only need to continue for OP_CBRA (normal capturing bracket) and
1758 OP_BRA (normal non-capturing bracket) because the other variants of these
1759 opcodes are all concerned with unlimited repeated groups, which of course
1760 are not of fixed length. */
1761
1762 case OP_CBRA:
1763 case OP_BRA:
1764 case OP_ONCE:
1765 case OP_ONCE_NC:
1766 case OP_COND:
1767 d = find_fixedlength(cc + ((op == OP_CBRA)? IMM2_SIZE : 0), utf, atend, cd);
1768 if (d < 0) return d;
1769 branchlength += d;
1770 do cc += GET(cc, 1); while (*cc == OP_ALT);
1771 cc += 1 + LINK_SIZE;
1772 break;
1773
1774 /* Reached end of a branch; if it's a ket it is the end of a nested call.
1775 If it's ALT it is an alternation in a nested call. An ACCEPT is effectively
1776 an ALT. If it is END it's the end of the outer call. All can be handled by
1777 the same code. Note that we must not include the OP_KETRxxx opcodes here,
1778 because they all imply an unlimited repeat. */
1779
1780 case OP_ALT:
1781 case OP_KET:
1782 case OP_END:
1783 case OP_ACCEPT:
1784 case OP_ASSERT_ACCEPT:
1785 if (length < 0) length = branchlength;
1786 else if (length != branchlength) return -1;
1787 if (*cc != OP_ALT) return length;
1788 cc += 1 + LINK_SIZE;
1789 branchlength = 0;
1790 break;
1791
1792 /* A true recursion implies not fixed length, but a subroutine call may
1793 be OK. If the subroutine is a forward reference, we can't deal with
1794 it until the end of the pattern, so return -3. */
1795
1796 case OP_RECURSE:
1797 if (!atend) return -3;
1798 cs = ce = (pcre_uchar *)cd->start_code + GET(cc, 1); /* Start subpattern */
1799 do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */
1800 if (cc > cs && cc < ce) return -1; /* Recursion */
1801 d = find_fixedlength(cs + IMM2_SIZE, utf, atend, cd);
1802 if (d < 0) return d;
1803 branchlength += d;
1804 cc += 1 + LINK_SIZE;
1805 break;
1806
1807 /* Skip over assertive subpatterns */
1808
1809 case OP_ASSERT:
1810 case OP_ASSERT_NOT:
1811 case OP_ASSERTBACK:
1812 case OP_ASSERTBACK_NOT:
1813 do cc += GET(cc, 1); while (*cc == OP_ALT);
1814 cc += PRIV(OP_lengths)[*cc];
1815 break;
1816
1817 /* Skip over things that don't match chars */
1818
1819 case OP_MARK:
1820 case OP_PRUNE_ARG:
1821 case OP_SKIP_ARG:
1822 case OP_THEN_ARG:
1823 cc += cc[1] + PRIV(OP_lengths)[*cc];
1824 break;
1825
1826 case OP_CALLOUT:
1827 case OP_CIRC:
1828 case OP_CIRCM:
1829 case OP_CLOSE:
1830 case OP_COMMIT:
1831 case OP_CREF:
1832 case OP_DEF:
1833 case OP_DOLL:
1834 case OP_DOLLM:
1835 case OP_EOD:
1836 case OP_EODN:
1837 case OP_FAIL:
1838 case OP_NCREF:
1839 case OP_NRREF:
1840 case OP_NOT_WORD_BOUNDARY:
1841 case OP_PRUNE:
1842 case OP_REVERSE:
1843 case OP_RREF:
1844 case OP_SET_SOM:
1845 case OP_SKIP:
1846 case OP_SOD:
1847 case OP_SOM:
1848 case OP_THEN:
1849 case OP_WORD_BOUNDARY:
1850 cc += PRIV(OP_lengths)[*cc];
1851 break;
1852
1853 /* Handle literal characters */
1854
1855 case OP_CHAR:
1856 case OP_CHARI:
1857 case OP_NOT:
1858 case OP_NOTI:
1859 branchlength++;
1860 cc += 2;
1861 #ifdef SUPPORT_UTF
1862 if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
1863 #endif
1864 break;
1865
1866 /* Handle exact repetitions. The count is already in characters, but we
1867 need to skip over a multibyte character in UTF8 mode. */
1868
1869 case OP_EXACT:
1870 case OP_EXACTI:
1871 case OP_NOTEXACT:
1872 case OP_NOTEXACTI:
1873 branchlength += (int)GET2(cc,1);
1874 cc += 2 + IMM2_SIZE;
1875 #ifdef SUPPORT_UTF
1876 if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
1877 #endif
1878 break;
1879
1880 case OP_TYPEEXACT:
1881 branchlength += GET2(cc,1);
1882 if (cc[1 + IMM2_SIZE] == OP_PROP || cc[1 + IMM2_SIZE] == OP_NOTPROP)
1883 cc += 2;
1884 cc += 1 + IMM2_SIZE + 1;
1885 break;
1886
1887 /* Handle single-char matchers */
1888
1889 case OP_PROP:
1890 case OP_NOTPROP:
1891 cc += 2;
1892 /* Fall through */
1893
1894 case OP_HSPACE:
1895 case OP_VSPACE:
1896 case OP_NOT_HSPACE:
1897 case OP_NOT_VSPACE:
1898 case OP_NOT_DIGIT:
1899 case OP_DIGIT:
1900 case OP_NOT_WHITESPACE:
1901 case OP_WHITESPACE:
1902 case OP_NOT_WORDCHAR:
1903 case OP_WORDCHAR:
1904 case OP_ANY:
1905 case OP_ALLANY:
1906 branchlength++;
1907 cc++;
1908 break;
1909
1910 /* The single-byte matcher isn't allowed. This only happens in UTF-8 mode;
1911 otherwise \C is coded as OP_ALLANY. */
1912
1913 case OP_ANYBYTE:
1914 return -2;
1915
1916 /* Check a class for variable quantification */
1917
1918 case OP_CLASS:
1919 case OP_NCLASS:
1920 #if defined SUPPORT_UTF || defined COMPILE_PCRE16 || defined COMPILE_PCRE32
1921 case OP_XCLASS:
1922 /* The original code caused an unsigned overflow in 64 bit systems,
1923 so now we use a conditional statement. */
1924 if (op == OP_XCLASS)
1925 cc += GET(cc, 1);
1926 else
1927 cc += PRIV(OP_lengths)[OP_CLASS];
1928 #else
1929 cc += PRIV(OP_lengths)[OP_CLASS];
1930 #endif
1931
1932 switch (*cc)
1933 {
1934 case OP_CRPLUS:
1935 case OP_CRMINPLUS:
1936 case OP_CRSTAR:
1937 case OP_CRMINSTAR:
1938 case OP_CRQUERY:
1939 case OP_CRMINQUERY:
1940 return -1;
1941
1942 case OP_CRRANGE:
1943 case OP_CRMINRANGE:
1944 if (GET2(cc,1) != GET2(cc,1+IMM2_SIZE)) return -1;
1945 branchlength += (int)GET2(cc,1);
1946 cc += 1 + 2 * IMM2_SIZE;
1947 break;
1948
1949 default:
1950 branchlength++;
1951 }
1952 break;
1953
1954 /* Anything else is variable length */
1955
1956 case OP_ANYNL:
1957 case OP_BRAMINZERO:
1958 case OP_BRAPOS:
1959 case OP_BRAPOSZERO:
1960 case OP_BRAZERO:
1961 case OP_CBRAPOS:
1962 case OP_EXTUNI:
1963 case OP_KETRMAX:
1964 case OP_KETRMIN:
1965 case OP_KETRPOS:
1966 case OP_MINPLUS:
1967 case OP_MINPLUSI:
1968 case OP_MINQUERY:
1969 case OP_MINQUERYI:
1970 case OP_MINSTAR:
1971 case OP_MINSTARI:
1972 case OP_MINUPTO:
1973 case OP_MINUPTOI:
1974 case OP_NOTMINPLUS:
1975 case OP_NOTMINPLUSI:
1976 case OP_NOTMINQUERY:
1977 case OP_NOTMINQUERYI:
1978 case OP_NOTMINSTAR:
1979 case OP_NOTMINSTARI:
1980 case OP_NOTMINUPTO:
1981 case OP_NOTMINUPTOI:
1982 case OP_NOTPLUS:
1983 case OP_NOTPLUSI:
1984 case OP_NOTPOSPLUS:
1985 case OP_NOTPOSPLUSI:
1986 case OP_NOTPOSQUERY:
1987 case OP_NOTPOSQUERYI:
1988 case OP_NOTPOSSTAR:
1989 case OP_NOTPOSSTARI:
1990 case OP_NOTPOSUPTO:
1991 case OP_NOTPOSUPTOI:
1992 case OP_NOTQUERY:
1993 case OP_NOTQUERYI:
1994 case OP_NOTSTAR:
1995 case OP_NOTSTARI:
1996 case OP_NOTUPTO:
1997 case OP_NOTUPTOI:
1998 case OP_PLUS:
1999 case OP_PLUSI:
2000 case OP_POSPLUS:
2001 case OP_POSPLUSI:
2002 case OP_POSQUERY:
2003 case OP_POSQUERYI:
2004 case OP_POSSTAR:
2005 case OP_POSSTARI:
2006 case OP_POSUPTO:
2007 case OP_POSUPTOI:
2008 case OP_QUERY:
2009 case OP_QUERYI:
2010 case OP_REF:
2011 case OP_REFI:
2012 case OP_SBRA:
2013 case OP_SBRAPOS:
2014 case OP_SCBRA:
2015 case OP_SCBRAPOS:
2016 case OP_SCOND:
2017 case OP_SKIPZERO:
2018 case OP_STAR:
2019 case OP_STARI:
2020 case OP_TYPEMINPLUS:
2021 case OP_TYPEMINQUERY:
2022 case OP_TYPEMINSTAR:
2023 case OP_TYPEMINUPTO:
2024 case OP_TYPEPLUS:
2025 case OP_TYPEPOSPLUS:
2026 case OP_TYPEPOSQUERY:
2027 case OP_TYPEPOSSTAR:
2028 case OP_TYPEPOSUPTO:
2029 case OP_TYPEQUERY:
2030 case OP_TYPESTAR:
2031 case OP_TYPEUPTO:
2032 case OP_UPTO:
2033 case OP_UPTOI:
2034 return -1;
2035
2036 /* Catch unrecognized opcodes so that when new ones are added they
2037 are not forgotten, as has happened in the past. */
2038
2039 default:
2040 return -4;
2041 }
2042 }
2043 /* Control never gets here */
2044 }
2045
2046
2047
2048
2049 /*************************************************
2050 * Scan compiled regex for specific bracket *
2051 *************************************************/
2052
2053 /* This little function scans through a compiled pattern until it finds a
2054 capturing bracket with the given number, or, if the number is negative, an
2055 instance of OP_REVERSE for a lookbehind. The function is global in the C sense
2056 so that it can be called from pcre_study() when finding the minimum matching
2057 length.
2058
2059 Arguments:
2060 code points to start of expression
2061 utf TRUE in UTF-8 / UTF-16 / UTF-32 mode
2062 number the required bracket number or negative to find a lookbehind
2063
2064 Returns: pointer to the opcode for the bracket, or NULL if not found
2065 */
2066
2067 const pcre_uchar *
2068 PRIV(find_bracket)(const pcre_uchar *code, BOOL utf, int number)
2069 {
2070 for (;;)
2071 {
2072 register pcre_uchar c = *code;
2073
2074 if (c == OP_END) return NULL;
2075
2076 /* XCLASS is used for classes that cannot be represented just by a bit
2077 map. This includes negated single high-valued characters. The length in
2078 the table is zero; the actual length is stored in the compiled code. */
2079
2080 if (c == OP_XCLASS) code += GET(code, 1);
2081
2082 /* Handle recursion */
2083
2084 else if (c == OP_REVERSE)
2085 {
2086 if (number < 0) return (pcre_uchar *)code;
2087 code += PRIV(OP_lengths)[c];
2088 }
2089
2090 /* Handle capturing bracket */
2091
2092 else if (c == OP_CBRA || c == OP_SCBRA ||
2093 c == OP_CBRAPOS || c == OP_SCBRAPOS)
2094 {
2095 int n = (int)GET2(code, 1+LINK_SIZE);
2096 if (n == number) return (pcre_uchar *)code;
2097 code += PRIV(OP_lengths)[c];
2098 }
2099
2100 /* Otherwise, we can get the item's length from the table, except that for
2101 repeated character types, we have to test for \p and \P, which have an extra
2102 two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we
2103 must add in its length. */
2104
2105 else
2106 {
2107 switch(c)
2108 {
2109 case OP_TYPESTAR:
2110 case OP_TYPEMINSTAR:
2111 case OP_TYPEPLUS:
2112 case OP_TYPEMINPLUS:
2113 case OP_TYPEQUERY:
2114 case OP_TYPEMINQUERY:
2115 case OP_TYPEPOSSTAR:
2116 case OP_TYPEPOSPLUS:
2117 case OP_TYPEPOSQUERY:
2118 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
2119 break;
2120
2121 case OP_TYPEUPTO:
2122 case OP_TYPEMINUPTO:
2123 case OP_TYPEEXACT:
2124 case OP_TYPEPOSUPTO:
2125 if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP)
2126 code += 2;
2127 break;
2128
2129 case OP_MARK:
2130 case OP_PRUNE_ARG:
2131 case OP_SKIP_ARG:
2132 code += code[1];
2133 break;
2134
2135 case OP_THEN_ARG:
2136 code += code[1];
2137 break;
2138 }
2139
2140 /* Add in the fixed length from the table */
2141
2142 code += PRIV(OP_lengths)[c];
2143
2144 /* In UTF-8 mode, opcodes that are followed by a character may be followed by
2145 a multi-byte character. The length in the table is a minimum, so we have to
2146 arrange to skip the extra bytes. */
2147
2148 #if defined SUPPORT_UTF && !defined COMPILE_PCRE32
2149 if (utf) switch(c)
2150 {
2151 case OP_CHAR:
2152 case OP_CHARI:
2153 case OP_EXACT:
2154 case OP_EXACTI:
2155 case OP_UPTO:
2156 case OP_UPTOI:
2157 case OP_MINUPTO:
2158 case OP_MINUPTOI:
2159 case OP_POSUPTO:
2160 case OP_POSUPTOI:
2161 case OP_STAR:
2162 case OP_STARI:
2163 case OP_MINSTAR:
2164 case OP_MINSTARI:
2165 case OP_POSSTAR:
2166 case OP_POSSTARI:
2167 case OP_PLUS:
2168 case OP_PLUSI:
2169 case OP_MINPLUS:
2170 case OP_MINPLUSI:
2171 case OP_POSPLUS:
2172 case OP_POSPLUSI:
2173 case OP_QUERY:
2174 case OP_QUERYI:
2175 case OP_MINQUERY:
2176 case OP_MINQUERYI:
2177 case OP_POSQUERY:
2178 case OP_POSQUERYI:
2179 if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]);
2180 break;
2181 }
2182 #else
2183 (void)(utf); /* Keep compiler happy by referencing function argument */
2184 #endif
2185 }
2186 }
2187 }
2188
2189
2190
2191 /*************************************************
2192 * Scan compiled regex for recursion reference *
2193 *************************************************/
2194
2195 /* This little function scans through a compiled pattern until it finds an
2196 instance of OP_RECURSE.
2197
2198 Arguments:
2199 code points to start of expression
2200 utf TRUE in UTF-8 / UTF-16 / UTF-32 mode
2201
2202 Returns: pointer to the opcode for OP_RECURSE, or NULL if not found
2203 */
2204
2205 static const pcre_uchar *
2206 find_recurse(const pcre_uchar *code, BOOL utf)
2207 {
2208 for (;;)
2209 {
2210 register pcre_uchar c = *code;
2211 if (c == OP_END) return NULL;
2212 if (c == OP_RECURSE) return code;
2213
2214 /* XCLASS is used for classes that cannot be represented just by a bit
2215 map. This includes negated single high-valued characters. The length in
2216 the table is zero; the actual length is stored in the compiled code. */
2217
2218 if (c == OP_XCLASS) code += GET(code, 1);
2219
2220 /* Otherwise, we can get the item's length from the table, except that for
2221 repeated character types, we have to test for \p and \P, which have an extra
2222 two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we
2223 must add in its length. */
2224
2225 else
2226 {
2227 switch(c)
2228 {
2229 case OP_TYPESTAR:
2230 case OP_TYPEMINSTAR:
2231 case OP_TYPEPLUS:
2232 case OP_TYPEMINPLUS:
2233 case OP_TYPEQUERY:
2234 case OP_TYPEMINQUERY:
2235 case OP_TYPEPOSSTAR:
2236 case OP_TYPEPOSPLUS:
2237 case OP_TYPEPOSQUERY:
2238 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
2239 break;
2240
2241 case OP_TYPEPOSUPTO:
2242 case OP_TYPEUPTO:
2243 case OP_TYPEMINUPTO:
2244 case OP_TYPEEXACT:
2245 if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP)
2246 code += 2;
2247 break;
2248
2249 case OP_MARK:
2250 case OP_PRUNE_ARG:
2251 case OP_SKIP_ARG:
2252 code += code[1];
2253 break;
2254
2255 case OP_THEN_ARG:
2256 code += code[1];
2257 break;
2258 }
2259
2260 /* Add in the fixed length from the table */
2261
2262 code += PRIV(OP_lengths)[c];
2263
2264 /* In UTF-8 mode, opcodes that are followed by a character may be followed
2265 by a multi-byte character. The length in the table is a minimum, so we have
2266 to arrange to skip the extra bytes. */
2267
2268 #if defined SUPPORT_UTF && !defined COMPILE_PCRE32
2269 if (utf) switch(c)
2270 {
2271 case OP_CHAR:
2272 case OP_CHARI:
2273 case OP_NOT:
2274 case OP_NOTI:
2275 case OP_EXACT:
2276 case OP_EXACTI:
2277 case OP_NOTEXACT:
2278 case OP_NOTEXACTI:
2279 case OP_UPTO:
2280 case OP_UPTOI:
2281 case OP_NOTUPTO:
2282 case OP_NOTUPTOI:
2283 case OP_MINUPTO:
2284 case OP_MINUPTOI:
2285 case OP_NOTMINUPTO:
2286 case OP_NOTMINUPTOI:
2287 case OP_POSUPTO:
2288 case OP_POSUPTOI:
2289 case OP_NOTPOSUPTO:
2290 case OP_NOTPOSUPTOI:
2291 case OP_STAR:
2292 case OP_STARI:
2293 case OP_NOTSTAR:
2294 case OP_NOTSTARI:
2295 case OP_MINSTAR:
2296 case OP_MINSTARI:
2297 case OP_NOTMINSTAR:
2298 case OP_NOTMINSTARI:
2299 case OP_POSSTAR:
2300 case OP_POSSTARI:
2301 case OP_NOTPOSSTAR:
2302 case OP_NOTPOSSTARI:
2303 case OP_PLUS:
2304 case OP_PLUSI:
2305 case OP_NOTPLUS:
2306 case OP_NOTPLUSI:
2307 case OP_MINPLUS:
2308 case OP_MINPLUSI:
2309 case OP_NOTMINPLUS:
2310 case OP_NOTMINPLUSI:
2311 case OP_POSPLUS:
2312 case OP_POSPLUSI:
2313 case OP_NOTPOSPLUS:
2314 case OP_NOTPOSPLUSI:
2315 case OP_QUERY:
2316 case OP_QUERYI:
2317 case OP_NOTQUERY:
2318 case OP_NOTQUERYI:
2319 case OP_MINQUERY:
2320 case OP_MINQUERYI:
2321 case OP_NOTMINQUERY:
2322 case OP_NOTMINQUERYI:
2323 case OP_POSQUERY:
2324 case OP_POSQUERYI:
2325 case OP_NOTPOSQUERY:
2326 case OP_NOTPOSQUERYI:
2327 if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]);
2328 break;
2329 }
2330 #else
2331 (void)(utf); /* Keep compiler happy by referencing function argument */
2332 #endif
2333 }
2334 }
2335 }
2336
2337
2338
2339 /*************************************************
2340 * Scan compiled branch for non-emptiness *
2341 *************************************************/
2342
2343 /* This function scans through a branch of a compiled pattern to see whether it
2344 can match the empty string or not. It is called from could_be_empty()
2345 below and from compile_branch() when checking for an unlimited repeat of a
2346 group that can match nothing. Note that first_significant_code() skips over
2347 backward and negative forward assertions when its final argument is TRUE. If we
2348 hit an unclosed bracket, we return "empty" - this means we've struck an inner
2349 bracket whose current branch will already have been scanned.
2350
2351 Arguments:
2352 code points to start of search
2353 endcode points to where to stop
2354 utf TRUE if in UTF-8 / UTF-16 / UTF-32 mode
2355 cd contains pointers to tables etc.
2356
2357 Returns: TRUE if what is matched could be empty
2358 */
2359
2360 static BOOL
2361 could_be_empty_branch(const pcre_uchar *code, const pcre_uchar *endcode,
2362 BOOL utf, compile_data *cd)
2363 {
2364 register pcre_uchar c;
2365 for (code = first_significant_code(code + PRIV(OP_lengths)[*code], TRUE);
2366 code < endcode;
2367 code = first_significant_code(code + PRIV(OP_lengths)[c], TRUE))
2368 {
2369 const pcre_uchar *ccode;
2370
2371 c = *code;
2372
2373 /* Skip over forward assertions; the other assertions are skipped by
2374 first_significant_code() with a TRUE final argument. */
2375
2376 if (c == OP_ASSERT)
2377 {
2378 do code += GET(code, 1); while (*code == OP_ALT);
2379 c = *code;
2380 continue;
2381 }
2382
2383 /* For a recursion/subroutine call, if its end has been reached, which
2384 implies a backward reference subroutine call, we can scan it. If it's a
2385 forward reference subroutine call, we can't. To detect forward reference
2386 we have to scan up the list that is kept in the workspace. This function is
2387 called only when doing the real compile, not during the pre-compile that
2388 measures the size of the compiled pattern. */
2389
2390 if (c == OP_RECURSE)
2391 {
2392 const pcre_uchar *scode;
2393 BOOL empty_branch;
2394
2395 /* Test for forward reference */
2396
2397 for (scode = cd->start_workspace; scode < cd->hwm; scode += LINK_SIZE)
2398 if ((int)GET(scode, 0) == (int)(code + 1 - cd->start_code)) return TRUE;
2399
2400 /* Not a forward reference, test for completed backward reference */
2401
2402 empty_branch = FALSE;
2403 scode = cd->start_code + GET(code, 1);
2404 if (GET(scode, 1) == 0) return TRUE; /* Unclosed */
2405
2406 /* Completed backwards reference */
2407
2408 do
2409 {
2410 if (could_be_empty_branch(scode, endcode, utf, cd))
2411 {
2412 empty_branch = TRUE;
2413 break;
2414 }
2415 scode += GET(scode, 1);
2416 }
2417 while (*scode == OP_ALT);
2418
2419 if (!empty_branch) return FALSE; /* All branches are non-empty */
2420 continue;
2421 }
2422
2423 /* Groups with zero repeats can of course be empty; skip them. */
2424
2425 if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO ||
2426 c == OP_BRAPOSZERO)
2427 {
2428 code += PRIV(OP_lengths)[c];
2429 do code += GET(code, 1); while (*code == OP_ALT);
2430 c = *code;
2431 continue;
2432 }
2433
2434 /* A nested group that is already marked as "could be empty" can just be
2435 skipped. */
2436
2437 if (c == OP_SBRA || c == OP_SBRAPOS ||
2438 c == OP_SCBRA || c == OP_SCBRAPOS)
2439 {
2440 do code += GET(code, 1); while (*code == OP_ALT);
2441 c = *code;
2442 continue;
2443 }
2444
2445 /* For other groups, scan the branches. */
2446
2447 if (c == OP_BRA || c == OP_BRAPOS ||
2448 c == OP_CBRA || c == OP_CBRAPOS ||
2449 c == OP_ONCE || c == OP_ONCE_NC ||
2450 c == OP_COND)
2451 {
2452 BOOL empty_branch;
2453 if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */
2454
2455 /* If a conditional group has only one branch, there is a second, implied,
2456 empty branch, so just skip over the conditional, because it could be empty.
2457 Otherwise, scan the individual branches of the group. */
2458
2459 if (c == OP_COND && code[GET(code, 1)] != OP_ALT)
2460 code += GET(code, 1);
2461 else
2462 {
2463 empty_branch = FALSE;
2464 do
2465 {
2466 if (!empty_branch && could_be_empty_branch(code, endcode, utf, cd))
2467 empty_branch = TRUE;
2468 code += GET(code, 1);
2469 }
2470 while (*code == OP_ALT);
2471 if (!empty_branch) return FALSE; /* All branches are non-empty */
2472 }
2473
2474 c = *code;
2475 continue;
2476 }
2477
2478 /* Handle the other opcodes */
2479
2480 switch (c)
2481 {
2482 /* Check for quantifiers after a class. XCLASS is used for classes that
2483 cannot be represented just by a bit map. This includes negated single
2484 high-valued characters. The length in PRIV(OP_lengths)[] is zero; the
2485 actual length is stored in the compiled code, so we must update "code"
2486 here. */
2487
2488 #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
2489 case OP_XCLASS:
2490 ccode = code += GET(code, 1);
2491 goto CHECK_CLASS_REPEAT;
2492 #endif
2493
2494 case OP_CLASS:
2495 case OP_NCLASS:
2496 ccode = code + PRIV(OP_lengths)[OP_CLASS];
2497
2498 #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
2499 CHECK_CLASS_REPEAT:
2500 #endif
2501
2502 switch (*ccode)
2503 {
2504 case OP_CRSTAR: /* These could be empty; continue */
2505 case OP_CRMINSTAR:
2506 case OP_CRQUERY:
2507 case OP_CRMINQUERY:
2508 break;
2509
2510 default: /* Non-repeat => class must match */
2511 case OP_CRPLUS: /* These repeats aren't empty */
2512 case OP_CRMINPLUS:
2513 return FALSE;
2514
2515 case OP_CRRANGE:
2516 case OP_CRMINRANGE:
2517 if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */
2518 break;
2519 }
2520 break;
2521
2522 /* Opcodes that must match a character */
2523
2524 case OP_PROP:
2525 case OP_NOTPROP:
2526 case OP_EXTUNI:
2527 case OP_NOT_DIGIT:
2528 case OP_DIGIT:
2529 case OP_NOT_WHITESPACE:
2530 case OP_WHITESPACE:
2531 case OP_NOT_WORDCHAR:
2532 case OP_WORDCHAR:
2533 case OP_ANY:
2534 case OP_ALLANY:
2535 case OP_ANYBYTE:
2536 case OP_CHAR:
2537 case OP_CHARI:
2538 case OP_NOT:
2539 case OP_NOTI:
2540 case OP_PLUS:
2541 case OP_MINPLUS:
2542 case OP_POSPLUS:
2543 case OP_EXACT:
2544 case OP_NOTPLUS:
2545 case OP_NOTMINPLUS:
2546 case OP_NOTPOSPLUS:
2547 case OP_NOTEXACT:
2548 case OP_TYPEPLUS:
2549 case OP_TYPEMINPLUS:
2550 case OP_TYPEPOSPLUS:
2551 case OP_TYPEEXACT:
2552 return FALSE;
2553
2554 /* These are going to continue, as they may be empty, but we have to
2555 fudge the length for the \p and \P cases. */
2556
2557 case OP_TYPESTAR:
2558 case OP_TYPEMINSTAR:
2559 case OP_TYPEPOSSTAR:
2560 case OP_TYPEQUERY:
2561 case OP_TYPEMINQUERY:
2562 case OP_TYPEPOSQUERY:
2563 if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
2564 break;
2565
2566 /* Same for these */
2567
2568 case OP_TYPEUPTO:
2569 case OP_TYPEMINUPTO:
2570 case OP_TYPEPOSUPTO:
2571 if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP)
2572 code += 2;
2573 break;
2574
2575 /* End of branch */
2576
2577 case OP_KET:
2578 case OP_KETRMAX:
2579 case OP_KETRMIN:
2580 case OP_KETRPOS:
2581 case OP_ALT:
2582 return TRUE;
2583
2584 /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO,
2585 MINUPTO, and POSUPTO may be followed by a multibyte character */
2586
2587 #if defined SUPPORT_UTF && !defined COMPILE_PCRE32
2588 case OP_STAR:
2589 case OP_STARI:
2590 case OP_MINSTAR:
2591 case OP_MINSTARI:
2592 case OP_POSSTAR:
2593 case OP_POSSTARI:
2594 case OP_QUERY:
2595 case OP_QUERYI:
2596 case OP_MINQUERY:
2597 case OP_MINQUERYI:
2598 case OP_POSQUERY:
2599 case OP_POSQUERYI:
2600 if (utf && HAS_EXTRALEN(code[1])) code += GET_EXTRALEN(code[1]);
2601 break;
2602
2603 case OP_UPTO:
2604 case OP_UPTOI:
2605 case OP_MINUPTO:
2606 case OP_MINUPTOI:
2607 case OP_POSUPTO:
2608 case OP_POSUPTOI:
2609 if (utf && HAS_EXTRALEN(code[1 + IMM2_SIZE])) code += GET_EXTRALEN(code[1 + IMM2_SIZE]);
2610 break;
2611 #endif
2612
2613 /* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument
2614 string. */
2615
2616 case OP_MARK:
2617 case OP_PRUNE_ARG:
2618 case OP_SKIP_ARG:
2619 code += code[1];
2620 break;
2621
2622 case OP_THEN_ARG:
2623 code += code[1];
2624 break;
2625
2626 /* None of the remaining opcodes are required to match a character. */
2627
2628 default:
2629 break;
2630 }
2631 }
2632
2633 return TRUE;
2634 }
2635
2636
2637
2638 /*************************************************
2639 * Scan compiled regex for non-emptiness *
2640 *************************************************/
2641
2642 /* This function is called to check for left recursive calls. We want to check
2643 the current branch of the current pattern to see if it could match the empty
2644 string. If it could, we must look outwards for branches at other levels,
2645 stopping when we pass beyond the bracket which is the subject of the recursion.
2646 This function is called only during the real compile, not during the
2647 pre-compile.
2648
2649 Arguments:
2650 code points to start of the recursion
2651 endcode points to where to stop (current RECURSE item)
2652 bcptr points to the chain of current (unclosed) branch starts
2653 utf TRUE if in UTF-8 / UTF-16 / UTF-32 mode
2654 cd pointers to tables etc
2655
2656 Returns: TRUE if what is matched could be empty
2657 */
2658
2659 static BOOL
2660 could_be_empty(const pcre_uchar *code, const pcre_uchar *endcode,
2661 branch_chain *bcptr, BOOL utf, compile_data *cd)
2662 {
2663 while (bcptr != NULL && bcptr->current_branch >= code)
2664 {
2665 if (!could_be_empty_branch(bcptr->current_branch, endcode, utf, cd))
2666 return FALSE;
2667 bcptr = bcptr->outer;
2668 }
2669 return TRUE;
2670 }
2671
2672
2673
2674 /*************************************************
2675 * Check for POSIX class syntax *
2676 *************************************************/
2677
2678 /* This function is called when the sequence "[:" or "[." or "[=" is
2679 encountered in a character class. It checks whether this is followed by a
2680 sequence of characters terminated by a matching ":]" or ".]" or "=]". If we
2681 reach an unescaped ']' without the special preceding character, return FALSE.
2682
2683 Originally, this function only recognized a sequence of letters between the
2684 terminators, but it seems that Perl recognizes any sequence of characters,
2685 though of course unknown POSIX names are subsequently rejected. Perl gives an
2686 "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE
2687 didn't consider this to be a POSIX class. Likewise for [:1234:].
2688
2689 The problem in trying to be exactly like Perl is in the handling of escapes. We
2690 have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX
2691 class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code
2692 below handles the special case of \], but does not try to do any other escape
2693 processing. This makes it different from Perl for cases such as [:l\ower:]
2694 where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize
2695 "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does,
2696 I think.
2697
2698 A user pointed out that PCRE was rejecting [:a[:digit:]] whereas Perl was not.
2699 It seems that the appearance of a nested POSIX class supersedes an apparent
2700 external class. For example, [:a[:digit:]b:] matches "a", "b", ":", or
2701 a digit.
2702
2703 In Perl, unescaped square brackets may also appear as part of class names. For
2704 example, [:a[:abc]b:] gives unknown POSIX class "[:abc]b:]". However, for
2705 [:a[:abc]b][b:] it gives unknown POSIX class "[:abc]b][b:]", which does not
2706 seem right at all. PCRE does not allow closing square brackets in POSIX class
2707 names.
2708
2709 Arguments:
2710 ptr pointer to the initial [
2711 endptr where to return the end pointer
2712
2713 Returns: TRUE or FALSE
2714 */
2715
2716 static BOOL
2717 check_posix_syntax(const pcre_uchar *ptr, const pcre_uchar **endptr)
2718 {
2719 pcre_uchar terminator; /* Don't combine these lines; the Solaris cc */
2720 terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */
2721 for (++ptr; *ptr != CHAR_NULL; ptr++)
2722 {
2723 if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
2724 ptr++;
2725 else if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE;
2726 else
2727 {
2728 if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
2729 {
2730 *endptr = ptr;
2731 return TRUE;
2732 }
2733 if (*ptr == CHAR_LEFT_SQUARE_BRACKET &&
2734 (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
2735 ptr[1] == CHAR_EQUALS_SIGN) &&
2736 check_posix_syntax(ptr, endptr))
2737 return FALSE;
2738 }
2739 }
2740 return FALSE;
2741 }
2742
2743
2744
2745
2746 /*************************************************
2747 * Check POSIX class name *
2748 *************************************************/
2749
2750 /* This function is called to check the name given in a POSIX-style class entry
2751 such as [:alnum:].
2752
2753 Arguments:
2754 ptr points to the first letter
2755 len the length of the name
2756
2757 Returns: a value representing the name, or -1 if unknown
2758 */
2759
2760 static int
2761 check_posix_name(const pcre_uchar *ptr, int len)
2762 {
2763 const char *pn = posix_names;
2764 register int yield = 0;
2765 while (posix_name_lengths[yield] != 0)
2766 {
2767 if (len == posix_name_lengths[yield] &&
2768 STRNCMP_UC_C8(ptr, pn, (unsigned int)len) == 0) return yield;
2769 pn += posix_name_lengths[yield] + 1;
2770 yield++;
2771 }
2772 return -1;
2773 }
2774
2775
2776 /*************************************************
2777 * Adjust OP_RECURSE items in repeated group *
2778 *************************************************/
2779
2780 /* OP_RECURSE items contain an offset from the start of the regex to the group
2781 that is referenced. This means that groups can be replicated for fixed
2782 repetition simply by copying (because the recursion is allowed to refer to
2783 earlier groups that are outside the current group). However, when a group is
2784 optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is
2785 inserted before it, after it has been compiled. This means that any OP_RECURSE
2786 items within it that refer to the group itself or any contained groups have to
2787 have their offsets adjusted. That one of the jobs of this function. Before it
2788 is called, the partially compiled regex must be temporarily terminated with
2789 OP_END.
2790
2791 This function has been extended with the possibility of forward references for
2792 recursions and subroutine calls. It must also check the list of such references
2793 for the group we are dealing with. If it finds that one of the recursions in
2794 the current group is on this list, it adjusts the offset in the list, not the
2795 value in the reference (which is a group number).
2796
2797 Arguments:
2798 group points to the start of the group
2799 adjust the amount by which the group is to be moved
2800 utf TRUE in UTF-8 / UTF-16 / UTF-32 mode
2801 cd contains pointers to tables etc.
2802 save_hwm the hwm forward reference pointer at the start of the group
2803
2804 Returns: nothing
2805 */
2806
2807 static void
2808 adjust_recurse(pcre_uchar *group, int adjust, BOOL utf, compile_data *cd,
2809 pcre_uchar *save_hwm)
2810 {
2811 pcre_uchar *ptr = group;
2812
2813 while ((ptr = (pcre_uchar *)find_recurse(ptr, utf)) != NULL)
2814 {
2815 int offset;
2816 pcre_uchar *hc;
2817
2818 /* See if this recursion is on the forward reference list. If so, adjust the
2819 reference. */
2820
2821 for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE)
2822 {
2823 offset = (int)GET(hc, 0);
2824 if (cd->start_code + offset == ptr + 1)
2825 {
2826 PUT(hc, 0, offset + adjust);
2827 break;
2828 }
2829 }
2830
2831 /* Otherwise, adjust the recursion offset if it's after the start of this
2832 group. */
2833
2834 if (hc >= cd->hwm)
2835 {
2836 offset = (int)GET(ptr, 1);
2837 if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust);
2838 }
2839
2840 ptr += 1 + LINK_SIZE;
2841 }
2842 }
2843
2844
2845
2846 /*************************************************
2847 * Insert an automatic callout point *
2848 *************************************************/
2849
2850 /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert
2851 callout points before each pattern item.
2852
2853 Arguments:
2854 code current code pointer
2855 ptr current pattern pointer
2856 cd pointers to tables etc
2857
2858 Returns: new code pointer
2859 */
2860
2861 static pcre_uchar *
2862 auto_callout(pcre_uchar *code, const pcre_uchar *ptr, compile_data *cd)
2863 {
2864 *code++ = OP_CALLOUT;
2865 *code++ = 255;
2866 PUT(code, 0, (int)(ptr - cd->start_pattern)); /* Pattern offset */
2867 PUT(code, LINK_SIZE, 0); /* Default length */
2868 return code + 2 * LINK_SIZE;
2869 }
2870
2871
2872
2873 /*************************************************
2874 * Complete a callout item *
2875 *************************************************/
2876
2877 /* A callout item contains the length of the next item in the pattern, which
2878 we can't fill in till after we have reached the relevant point. This is used
2879 for both automatic and manual callouts.
2880
2881 Arguments:
2882 previous_callout points to previous callout item
2883 ptr current pattern pointer
2884 cd pointers to tables etc
2885
2886 Returns: nothing
2887 */
2888
2889 static void
2890 complete_callout(pcre_uchar *previous_callout, const pcre_uchar *ptr, compile_data *cd)
2891 {
2892 int length = (int)(ptr - cd->start_pattern - GET(previous_callout, 2));
2893 PUT(previous_callout, 2 + LINK_SIZE, length);
2894 }
2895
2896
2897
2898 #ifdef SUPPORT_UCP
2899 /*************************************************
2900 * Get othercase range *
2901 *************************************************/
2902
2903 /* This function is passed the start and end of a class range, in UTF-8 mode
2904 with UCP support. It searches up the characters, looking for ranges of
2905 characters in the "other" case. Each call returns the next one, updating the
2906 start address. A character with multiple other cases is returned on its own
2907 with a special return value.
2908
2909 Arguments:
2910 cptr points to starting character value; updated
2911 d end value
2912 ocptr where to put start of othercase range
2913 odptr where to put end of othercase range
2914
2915 Yield: -1 when no more
2916 0 when a range is returned
2917 >0 the CASESET offset for char with multiple other cases
2918 in this case, ocptr contains the original
2919 */
2920
2921 static int
2922 get_othercase_range(pcre_uint32 *cptr, pcre_uint32 d, pcre_uint32 *ocptr,
2923 pcre_uint32 *odptr)
2924 {
2925 pcre_uint32 c, othercase, next;
2926 unsigned int co;
2927
2928 /* Find the first character that has an other case. If it has multiple other
2929 cases, return its case offset value. */
2930
2931 for (c = *cptr; c <= d; c++)
2932 {
2933 if ((co = UCD_CASESET(c)) != 0)
2934 {
2935 *ocptr = c++; /* Character that has the set */
2936 *cptr = c; /* Rest of input range */
2937 return (int)co;
2938 }
2939 if ((othercase = UCD_OTHERCASE(c)) != c) break;
2940 }
2941
2942 if (c > d) return -1; /* Reached end of range */
2943
2944 *ocptr = othercase;
2945 next = othercase + 1;
2946
2947 for (++c; c <= d; c++)
2948 {
2949 if (UCD_OTHERCASE(c) != next) break;
2950 next++;
2951 }
2952
2953 *odptr = next - 1; /* End of othercase range */
2954 *cptr = c; /* Rest of input range */
2955 return 0;
2956 }
2957
2958
2959
2960 /*************************************************
2961 * Check a character and a property *
2962 *************************************************/
2963
2964 /* This function is called by check_auto_possessive() when a property item
2965 is adjacent to a fixed character.
2966
2967 Arguments:
2968 c the character
2969 ptype the property type
2970 pdata the data for the type
2971 negated TRUE if it's a negated property (\P or \p{^)
2972
2973 Returns: TRUE if auto-possessifying is OK
2974 */
2975
2976 static BOOL
2977 check_char_prop(pcre_uint32 c, unsigned int ptype, unsigned int pdata, BOOL negated)
2978 {
2979 #ifdef SUPPORT_UCP
2980 const pcre_uint32 *p;
2981 #endif
2982
2983 const ucd_record *prop = GET_UCD(c);
2984
2985 switch(ptype)
2986 {
2987 case PT_LAMP:
2988 return (prop->chartype == ucp_Lu ||
2989 prop->chartype == ucp_Ll ||
2990 prop->chartype == ucp_Lt) == negated;
2991
2992 case PT_GC:
2993 return (pdata == PRIV(ucp_gentype)[prop->chartype]) == negated;
2994
2995 case PT_PC:
2996 return (pdata == prop->chartype) == negated;
2997
2998 case PT_SC:
2999 return (pdata == prop->script) == negated;
3000
3001 /* These are specials */
3002
3003 case PT_ALNUM:
3004 return (PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
3005 PRIV(ucp_gentype)[prop->chartype] == ucp_N) == negated;
3006
3007 case PT_SPACE: /* Perl space */
3008 return (PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
3009 c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR)
3010 == negated;
3011
3012 case PT_PXSPACE: /* POSIX space */
3013 return (PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
3014 c == CHAR_HT || c == CHAR_NL || c == CHAR_VT ||
3015 c == CHAR_FF || c == CHAR_CR)
3016 == negated;
3017
3018 case PT_WORD:
3019 return (PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
3020 PRIV(ucp_gentype)[prop->chartype] == ucp_N ||
3021 c == CHAR_UNDERSCORE) == negated;
3022
3023 #ifdef SUPPORT_UCP
3024 case PT_CLIST:
3025 p = PRIV(ucd_caseless_sets) + prop->caseset;
3026 for (;;)
3027 {
3028 if (c < *p) return !negated;
3029 if (c == *p++) return negated;
3030 }
3031 break; /* Control never reaches here */
3032 #endif
3033 }
3034
3035 return FALSE;
3036 }
3037 #endif /* SUPPORT_UCP */
3038
3039
3040
3041 /*************************************************
3042 * Check if auto-possessifying is possible *
3043 *************************************************/
3044
3045 /* This function is called for unlimited repeats of certain items, to see
3046 whether the next thing could possibly match the repeated item. If not, it makes
3047 sense to automatically possessify the repeated item.
3048
3049 Arguments:
3050 previous pointer to the repeated opcode
3051 utf TRUE in UTF-8 / UTF-16 / UTF-32 mode
3052 ptr next character in pattern
3053 options options bits
3054 cd contains pointers to tables etc.
3055
3056 Returns: TRUE if possessifying is wanted
3057 */
3058
3059 static BOOL
3060 check_auto_possessive(const pcre_uchar *previous, BOOL utf,
3061 const pcre_uchar *ptr, int options, compile_data *cd)
3062 {
3063 pcre_uint32 c = NOTACHAR;
3064 pcre_uint32 next;
3065 int escape;
3066 pcre_uchar op_code = *previous++;
3067
3068 /* Skip whitespace and comments in extended mode */
3069
3070 if ((options & PCRE_EXTENDED) != 0)
3071 {
3072 for (;;)
3073 {
3074 while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
3075 if (*ptr == CHAR_NUMBER_SIGN)
3076 {
3077 ptr++;
3078 while (*ptr != CHAR_NULL)
3079 {
3080 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
3081 ptr++;
3082 #ifdef SUPPORT_UTF
3083 if (utf) FORWARDCHAR(ptr);
3084 #endif
3085 }
3086 }
3087 else break;
3088 }
3089 }
3090
3091 /* If the next item is one that we can handle, get its value. A non-negative
3092 value is a character, a negative value is an escape value. */
3093
3094 if (*ptr == CHAR_BACKSLASH)
3095 {
3096 int temperrorcode = 0;
3097 escape = check_escape(&ptr, &next, &temperrorcode, cd->bracount, options, FALSE);
3098 if (temperrorcode != 0) return FALSE;
3099 ptr++; /* Point after the escape sequence */
3100 }
3101 else if (!MAX_255(*ptr) || (cd->ctypes[*ptr] & ctype_meta) == 0)
3102 {
3103 escape = 0;
3104 #ifdef SUPPORT_UTF
3105 if (utf) { GETCHARINC(next, ptr); } else
3106 #endif
3107 next = *ptr++;
3108 }
3109 else return FALSE;
3110
3111 /* Skip whitespace and comments in extended mode */
3112
3113 if ((options & PCRE_EXTENDED) != 0)
3114 {
3115 for (;;)
3116 {
3117 while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
3118 if (*ptr == CHAR_NUMBER_SIGN)
3119 {
3120 ptr++;
3121 while (*ptr != CHAR_NULL)
3122 {
3123 if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
3124 ptr++;
3125 #ifdef SUPPORT_UTF
3126 if (utf) FORWARDCHAR(ptr);
3127 #endif
3128 }
3129 }
3130 else break;
3131 }
3132 }
3133
3134 /* If the next thing is itself optional, we have to give up. */
3135
3136 if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK ||
3137 STRNCMP_UC_C8(ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0)
3138 return FALSE;
3139
3140 /* If the previous item is a character, get its value. */
3141
3142 if (op_code == OP_CHAR || op_code == OP_CHARI ||
3143 op_code == OP_NOT || op_code == OP_NOTI)
3144 {
3145 #ifdef SUPPORT_UTF
3146 GETCHARTEST(c, previous);
3147 #else
3148 c = *previous;
3149 #endif
3150 }
3151
3152 /* Now compare the next item with the previous opcode. First, handle cases when
3153 the next item is a character. */
3154
3155 if (escape == 0)
3156 {
3157 /* For a caseless UTF match, the next character may have more than one other
3158 case, which maps to the special PT_CLIST property. Check this first. */
3159
3160 #ifdef SUPPORT_UCP
3161 if (utf && c != NOTACHAR && (options & PCRE_CASELESS) != 0)
3162 {
3163 unsigned int ocs = UCD_CASESET(next);
3164 if (ocs > 0) return check_char_prop(c, PT_CLIST, ocs, op_code >= OP_NOT);
3165 }
3166 #endif
3167
3168 switch(op_code)
3169 {
3170 case OP_CHAR:
3171 return c != next;
3172
3173 /* For CHARI (caseless character) we must check the other case. If we have
3174 Unicode property support, we can use it to test the other case of
3175 high-valued characters. We know that next can have only one other case,
3176 because multi-other-case characters are dealt with above. */
3177
3178 case OP_CHARI:
3179 if (c == next) return FALSE;
3180 #ifdef SUPPORT_UTF
3181 if (utf)
3182 {
3183 pcre_uint32 othercase;
3184 if (next < 128) othercase = cd->fcc[next]; else
3185 #ifdef SUPPORT_UCP
3186 othercase = UCD_OTHERCASE(next);
3187 #else
3188 othercase = NOTACHAR;
3189 #endif
3190 return c != othercase;
3191 }
3192 else
3193 #endif /* SUPPORT_UTF */
3194 return (c != TABLE_GET(next, cd->fcc, next)); /* Not UTF */
3195
3196 case OP_NOT:
3197 return c == next;
3198
3199 case OP_NOTI:
3200 if (c == next) return TRUE;
3201 #ifdef SUPPORT_UTF
3202 if (utf)
3203 {
3204 pcre_uint32 othercase;
3205 if (next < 128) othercase = cd->fcc[next]; else
3206 #ifdef SUPPORT_UCP
3207 othercase = UCD_OTHERCASE(next);
3208 #else
3209 othercase = NOTACHAR;
3210 #endif
3211 return c == othercase;
3212 }
3213 else
3214 #endif /* SUPPORT_UTF */
3215 return (c == TABLE_GET(next, cd->fcc, next)); /* Not UTF */
3216
3217 /* Note that OP_DIGIT etc. are generated only when PCRE_UCP is *not* set.
3218 When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */
3219
3220 case OP_DIGIT:
3221 return next > 255 || (cd->ctypes[next] & ctype_digit) == 0;
3222
3223 case OP_NOT_DIGIT:
3224 return next <= 255 && (cd->ctypes[next] & ctype_digit) != 0;
3225
3226 case OP_WHITESPACE:
3227 return next > 255 || (cd->ctypes[next] & ctype_space) == 0;
3228
3229 case OP_NOT_WHITESPACE:
3230 return next <= 255 && (cd->ctypes[next] & ctype_space) != 0;
3231
3232 case OP_WORDCHAR:
3233 return next > 255 || (cd->ctypes[next] & ctype_word) == 0;
3234
3235 case OP_NOT_WORDCHAR:
3236 return next <= 255 && (cd->ctypes[next] & ctype_word) != 0;
3237
3238 case OP_HSPACE:
3239 case OP_NOT_HSPACE:
3240 switch(next)
3241 {
3242 HSPACE_CASES:
3243 return op_code == OP_NOT_HSPACE;
3244
3245 default:
3246 return op_code != OP_NOT_HSPACE;
3247 }
3248
3249 case OP_ANYNL:
3250 case OP_VSPACE:
3251 case OP_NOT_VSPACE:
3252 switch(next)
3253 {
3254 VSPACE_CASES:
3255 return op_code == OP_NOT_VSPACE;
3256
3257 default:
3258 return op_code != OP_NOT_VSPACE;
3259 }
3260
3261 #ifdef SUPPORT_UCP
3262 case OP_PROP:
3263 return check_char_prop(next, previous[0], previous[1], FALSE);
3264
3265 case OP_NOTPROP:
3266 return check_char_prop(next, previous[0], previous[1], TRUE);
3267 #endif
3268
3269 default:
3270 return FALSE;
3271 }
3272 }
3273
3274 /* Handle the case when the next item is \d, \s, etc. Note that when PCRE_UCP
3275 is set, \d turns into ESC_du rather than ESC_d, etc., so ESC_d etc. are
3276 generated only when PCRE_UCP is *not* set, that is, when only ASCII
3277 characteristics are recognized. Similarly, the opcodes OP_DIGIT etc. are
3278 replaced by OP_PROP codes when PCRE_UCP is set. */
3279
3280 switch(op_code)
3281 {
3282 case OP_CHAR:
3283 case OP_CHARI:
3284 switch(escape)
3285 {
3286 case ESC_d:
3287 return c > 255 || (cd->ctypes[c] & ctype_digit) == 0;
3288
3289 case ESC_D:
3290 return c <= 255 && (cd->ctypes[c] & ctype_digit) != 0;
3291
3292 case ESC_s:
3293 return c > 255 || (cd->ctypes[c] & ctype_space) == 0;
3294
3295 case ESC_S:
3296 return c <= 255 && (cd->ctypes[c] & ctype_space) != 0;
3297
3298 case ESC_w:
3299 return c > 255 || (cd->ctypes[c] & ctype_word) == 0;
3300
3301 case ESC_W:
3302 return c <= 255 && (cd->ctypes[c] & ctype_word) != 0;
3303
3304 case ESC_h:
3305 case ESC_H:
3306 switch(c)
3307 {
3308 HSPACE_CASES:
3309 return escape != ESC_h;
3310
3311 default:
3312 return escape == ESC_h;
3313 }
3314
3315 case ESC_v:
3316 case ESC_V:
3317 switch(c)
3318 {
3319 VSPACE_CASES:
3320 return escape != ESC_v;
3321
3322 default:
3323 return escape == ESC_v;
3324 }
3325
3326 /* When PCRE_UCP is set, these values get generated for \d etc. Find
3327 their substitutions and process them. The result will always be either
3328 ESC_p or ESC_P. Then fall through to process those values. */
3329
3330 #ifdef SUPPORT_UCP
3331 case ESC_du:
3332 case ESC_DU:
3333 case ESC_wu:
3334 case ESC_WU:
3335 case ESC_su:
3336 case ESC_SU:
3337 {
3338 int temperrorcode = 0;
3339 ptr = substitutes[escape - ESC_DU];
3340 escape = check_escape(&ptr, &next, &temperrorcode, 0, options, FALSE);
3341 if (temperrorcode != 0) return FALSE;
3342 ptr++; /* For compatibility */
3343 }
3344 /* Fall through */
3345
3346 case ESC_p:
3347 case ESC_P:
3348 {
3349 unsigned int ptype = 0, pdata = 0;
3350 int errorcodeptr;
3351 BOOL negated;
3352
3353 ptr--; /* Make ptr point at the p or P */
3354 if (!get_ucp(&ptr, &negated, &ptype, &pdata, &errorcodeptr))
3355 return FALSE;
3356 ptr++; /* Point past the final curly ket */
3357
3358 /* If the property item is optional, we have to give up. (When generated
3359 from \d etc by PCRE_UCP, this test will have been applied much earlier,
3360 to the original \d etc. At this point, ptr will point to a zero byte. */
3361
3362 if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK ||
3363 STRNCMP_UC_C8(ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0)
3364 return FALSE;
3365
3366 /* Do the property check. */
3367
3368 return check_char_prop(c, ptype, pdata, (escape == ESC_P) != negated);
3369 }
3370 #endif
3371
3372 default:
3373 return FALSE;
3374 }
3375
3376 /* In principle, support for Unicode properties should be integrated here as
3377 well. It means re-organizing the above code so as to get hold of the property
3378 values before switching on the op-code. However, I wonder how many patterns
3379 combine ASCII \d etc with Unicode properties? (Note that if PCRE_UCP is set,
3380 these op-codes are never generated.) */
3381
3382 case OP_DIGIT:
3383 return escape == ESC_D || escape == ESC_s || escape == ESC_W ||
3384 escape == ESC_h || escape == ESC_v || escape == ESC_R;
3385
3386 case OP_NOT_DIGIT:
3387 return escape == ESC_d;
3388
3389 case OP_WHITESPACE:
3390 return escape == ESC_S || escape == ESC_d || escape == ESC_w;
3391
3392 case OP_NOT_WHITESPACE:
3393 return escape == ESC_s || escape == ESC_h || escape == ESC_v || escape == ESC_R;
3394
3395 case OP_HSPACE:
3396 return escape == ESC_S || escape == ESC_H || escape == ESC_d ||
3397 escape == ESC_w || escape == ESC_v || escape == ESC_R;
3398
3399 case OP_NOT_HSPACE:
3400 return escape == ESC_h;
3401
3402 /* Can't have \S in here because VT matches \S (Perl anomaly) */
3403 case OP_ANYNL:
3404 case OP_VSPACE:
3405 return escape == ESC_V || escape == ESC_d || escape == ESC_w;
3406
3407 case OP_NOT_VSPACE:
3408 return escape == ESC_v || escape == ESC_R;
3409
3410 case OP_WORDCHAR:
3411 return escape == ESC_W || escape == ESC_s || escape == ESC_h ||
3412 escape == ESC_v || escape == ESC_R;
3413
3414 case OP_NOT_WORDCHAR:
3415 return escape == ESC_w || escape == ESC_d;
3416
3417 default:
3418 return FALSE;
3419 }
3420
3421 /* Control does not reach here */
3422 }
3423
3424
3425
3426 /*************************************************
3427 * Add a character or range to a class *
3428 *************************************************/
3429
3430 /* This function packages up the logic of adding a character or range of
3431 characters to a class. The character values in the arguments will be within the
3432 valid values for the current mode (8-bit, 16-bit, UTF, etc). This function is
3433 mutually recursive with the function immediately below.
3434
3435 Arguments:
3436 classbits the bit map for characters < 256
3437 uchardptr points to the pointer for extra data
3438 options the options word
3439 cd contains pointers to tables etc.
3440 start start of range character
3441 end end of range character
3442
3443 Returns: the number of < 256 characters added
3444 the pointer to extra data is updated
3445 */
3446
3447 static int
3448 add_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, int options,
3449 compile_data *cd, pcre_uint32 start, pcre_uint32 end)
3450 {
3451 pcre_uint32 c;
3452 int n8 = 0;
3453
3454 /* If caseless matching is required, scan the range and process alternate
3455 cases. In Unicode, there are 8-bit characters that have alternate cases that
3456 are greater than 255 and vice-versa. Sometimes we can just extend the original
3457 range. */
3458
3459 if ((options & PCRE_CASELESS) != 0)
3460 {
3461 #ifdef SUPPORT_UCP
3462 if ((options & PCRE_UTF8) != 0)
3463 {
3464 int rc;
3465 pcre_uint32 oc, od;
3466
3467 options &= ~PCRE_CASELESS; /* Remove for recursive calls */
3468 c = start;
3469
3470 while ((rc = get_othercase_range(&c, end, &oc, &od)) >= 0)
3471 {
3472 /* Handle a single character that has more than one other case. */
3473
3474 if (rc > 0) n8 += add_list_to_class(classbits, uchardptr, options, cd,
3475 PRIV(ucd_caseless_sets) + rc, oc);
3476
3477 /* Do nothing if the other case range is within the original range. */
3478
3479 else if (oc >= start && od <= end) continue;
3480
3481 /* Extend the original range if there is overlap, noting that if oc < c, we
3482 can't have od > end because a subrange is always shorter than the basic
3483 range. Otherwise, use a recursive call to add the additional range. */
3484
3485 else if (oc < start && od >= start - 1) start = oc; /* Extend downwards */
3486 else if (od > end && oc <= end + 1) end = od; /* Extend upwards */
3487 else n8 += add_to_class(classbits, uchardptr, options, cd, oc, od);
3488 }
3489 }
3490 else
3491 #endif /* SUPPORT_UCP */
3492
3493 /* Not UTF-mode, or no UCP */
3494
3495 for (c = start; c <= end && c < 256; c++)
3496 {
3497 SETBIT(classbits, cd->fcc[c]);
3498 n8++;
3499 }
3500 }
3501
3502 /* Now handle the original range. Adjust the final value according to the bit
3503 length - this means that the same lists of (e.g.) horizontal spaces can be used
3504 in all cases. */
3505
3506 #if defined COMPILE_PCRE8
3507 #ifdef SUPPORT_UTF
3508 if ((options & PCRE_UTF8) == 0)
3509 #endif
3510 if (end > 0xff) end = 0xff;
3511
3512 #elif defined COMPILE_PCRE16
3513 #ifdef SUPPORT_UTF
3514 if ((options & PCRE_UTF16) == 0)
3515 #endif
3516 if (end > 0xffff) end = 0xffff;
3517
3518 #endif /* COMPILE_PCRE[8|16] */
3519
3520 /* If all characters are less than 256, use the bit map. Otherwise use extra
3521 data. */
3522
3523 if (end < 0x100)
3524 {
3525 for (c = start; c <= end; c++)
3526 {
3527 n8++;
3528 SETBIT(classbits, c);
3529 }
3530 }
3531
3532 else
3533 {
3534 pcre_uchar *uchardata = *uchardptr;
3535
3536 #ifdef SUPPORT_UTF
3537 if ((options & PCRE_UTF8) != 0) /* All UTFs use the same flag bit */
3538 {
3539 if (start < end)
3540 {
3541 *uchardata++ = XCL_RANGE;
3542 uchardata += PRIV(ord2utf)(start, uchardata);
3543 uchardata += PRIV(ord2utf)(end, uchardata);
3544 }
3545 else if (start == end)
3546 {
3547 *uchardata++ = XCL_SINGLE;
3548 uchardata += PRIV(ord2utf)(start, uchardata);
3549 }
3550 }
3551 else
3552 #endif /* SUPPORT_UTF */
3553
3554 /* Without UTF support, character values are constrained by the bit length,
3555 and can only be > 256 for 16-bit and 32-bit libraries. */
3556
3557 #ifdef COMPILE_PCRE8
3558 {}
3559 #else
3560 if (start < end)
3561 {
3562 *uchardata++ = XCL_RANGE;
3563 *uchardata++ = start;
3564 *uchardata++ = end;
3565 }
3566 else if (start == end)
3567 {
3568 *uchardata++ = XCL_SINGLE;
3569 *uchardata++ = start;
3570 }
3571 #endif
3572
3573 *uchardptr = uchardata; /* Updata extra data pointer */
3574 }
3575
3576 return n8; /* Number of 8-bit characters */
3577 }
3578
3579
3580
3581
3582 /*************************************************
3583 * Add a list of characters to a class *
3584 *************************************************/
3585
3586 /* This function is used for adding a list of case-equivalent characters to a
3587 class, and also for adding a list of horizontal or vertical whitespace. If the
3588 list is in order (which it should be), ranges of characters are detected and
3589 handled appropriately. This function is mutually recursive with the function
3590 above.
3591
3592 Arguments:
3593 classbits the bit map for characters < 256
3594 uchardptr points to the pointer for extra data
3595 options the options word
3596 cd contains pointers to tables etc.
3597 p points to row of 32-bit values, terminated by NOTACHAR
3598 except character to omit; this is used when adding lists of
3599 case-equivalent characters to avoid including the one we
3600 already know about
3601
3602 Returns: the number of < 256 characters added
3603 the pointer to extra data is updated
3604 */
3605
3606 static int
3607 add_list_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, int options,
3608 compile_data *cd, const pcre_uint32 *p, unsigned int except)
3609 {
3610 int n8 = 0;
3611 while (p[0] < NOTACHAR)
3612 {
3613 int n = 0;
3614 if (p[0] != except)
3615 {
3616 while(p[n+1] == p[0] + n + 1) n++;
3617 n8 += add_to_class(classbits, uchardptr, options, cd, p[0], p[n]);
3618 }
3619 p += n + 1;
3620 }
3621 return n8;
3622 }
3623
3624
3625
3626 /*************************************************
3627 * Add characters not in a list to a class *
3628 *************************************************/
3629
3630 /* This function is used for adding the complement of a list of horizontal or
3631 vertical whitespace to a class. The list must be in order.
3632
3633 Arguments:
3634 classbits the bit map for characters < 256
3635 uchardptr points to the pointer for extra data
3636 options the options word
3637 cd contains pointers to tables etc.
3638 p points to row of 32-bit values, terminated by NOTACHAR
3639
3640 Returns: the number of < 256 characters added
3641 the pointer to extra data is updated
3642 */
3643
3644 static int
3645 add_not_list_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr,
3646 int options, compile_data *cd, const pcre_uint32 *p)
3647 {
3648 BOOL utf = (options & PCRE_UTF8) != 0;
3649 int n8 = 0;
3650 if (p[0] > 0)
3651 n8 += add_to_class(classbits, uchardptr, options, cd, 0, p[0] - 1);
3652 while (p[0] < NOTACHAR)
3653 {
3654 while (p[1] == p[0] + 1) p++;
3655 n8 += add_to_class(classbits, uchardptr, options, cd, p[0] + 1,
3656 (p[1] == NOTACHAR) ? (utf ? 0x10ffffu : 0xffffffffu) : p[1] - 1);
3657 p++;
3658 }
3659 return n8;
3660 }
3661
3662
3663
3664 /*************************************************
3665 * Compile one branch *
3666 *************************************************/
3667
3668 /* Scan the pattern, compiling it into the a vector. If the options are
3669 changed during the branch, the pointer is used to change the external options
3670 bits. This function is used during the pre-compile phase when we are trying
3671 to find out the amount of memory needed, as well as during the real compile
3672 phase. The value of lengthptr distinguishes the two phases.
3673
3674 Arguments:
3675 optionsptr pointer to the option bits
3676 codeptr points to the pointer to the current code point
3677 ptrptr points to the current pattern pointer
3678 errorcodeptr points to error code variable
3679 firstcharptr place to put the first required character
3680 firstcharflagsptr place to put the first character flags, or a negative number
3681 reqcharptr place to put the last required character
3682 reqcharflagsptr place to put the last required character flags, or a negative number
3683 bcptr points to current branch chain
3684 cond_depth conditional nesting depth
3685 cd contains pointers to tables etc.
3686 lengthptr NULL during the real compile phase
3687 points to length accumulator during pre-compile phase
3688
3689 Returns: TRUE on success
3690 FALSE, with *errorcodeptr set non-zero on error
3691 */
3692
3693 static BOOL
3694 compile_branch(int *optionsptr, pcre_uchar **codeptr,
3695 const pcre_uchar **ptrptr, int *errorcodeptr,
3696 pcre_uint32 *firstcharptr, pcre_int32 *firstcharflagsptr,
3697 pcre_uint32 *reqcharptr, pcre_int32 *reqcharflagsptr,
3698 branch_chain *bcptr, int cond_depth,
3699 compile_data *cd, int *lengthptr)
3700 {
3701 int repeat_type, op_type;
3702 int repeat_min = 0, repeat_max = 0; /* To please picky compilers */
3703 int bravalue = 0;
3704 int greedy_default, greedy_non_default;
3705 pcre_uint32 firstchar, reqchar;
3706 pcre_int32 firstcharflags, reqcharflags;
3707 pcre_uint32 zeroreqchar, zerofirstchar;
3708 pcre_int32 zeroreqcharflags, zerofirstcharflags;
3709 pcre_int32 req_caseopt, reqvary, tempreqvary;
3710 int options = *optionsptr; /* May change dynamically */
3711 int after_manual_callout = 0;
3712 int length_prevgroup = 0;
3713 register pcre_uint32 c;
3714 int escape;
3715 register pcre_uchar *code = *codeptr;
3716 pcre_uchar *last_code = code;
3717 pcre_uchar *orig_code = code;
3718 pcre_uchar *tempcode;
3719 BOOL inescq = FALSE;
3720 BOOL groupsetfirstchar = FALSE;
3721 const pcre_uchar *ptr = *ptrptr;
3722 const pcre_uchar *tempptr;
3723 const pcre_uchar *nestptr = NULL;
3724 pcre_uchar *previous = NULL;
3725 pcre_uchar *previous_callout = NULL;
3726 pcre_uchar *save_hwm = NULL;
3727 pcre_uint8 classbits[32];
3728
3729 /* We can fish out the UTF-8 setting once and for all into a BOOL, but we
3730 must not do this for other options (e.g. PCRE_EXTENDED) because they may change
3731 dynamically as we process the pattern. */
3732
3733 #ifdef SUPPORT_UTF
3734 /* PCRE_UTF[16|32] have the same value as PCRE_UTF8. */
3735 BOOL utf = (options & PCRE_UTF8) != 0;
3736 #ifndef COMPILE_PCRE32
3737 pcre_uchar utf_chars[6];
3738 #endif
3739 #else
3740 BOOL utf = FALSE;
3741 #endif
3742
3743 /* Helper variables for OP_XCLASS opcode (for characters > 255). We define
3744 class_uchardata always so that it can be passed to add_to_class() always,
3745 though it will not be used in non-UTF 8-bit cases. This avoids having to supply
3746 alternative calls for the different cases. */
3747
3748 pcre_uchar *class_uchardata;
3749 #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
3750 BOOL xclass;
3751 pcre_uchar *class_uchardata_base;
3752 #endif
3753
3754 #ifdef PCRE_DEBUG
3755 if (lengthptr != NULL) DPRINTF((">> start branch\n"));
3756 #endif
3757
3758 /* Set up the default and non-default settings for greediness */
3759
3760 greedy_default = ((options & PCRE_UNGREEDY) != 0);
3761 greedy_non_default = greedy_default ^ 1;
3762
3763 /* Initialize no first byte, no required byte. REQ_UNSET means "no char
3764 matching encountered yet". It gets changed to REQ_NONE if we hit something that
3765 matches a non-fixed char first char; reqchar just remains unset if we never
3766 find one.
3767
3768 When we hit a repeat whose minimum is zero, we may have to adjust these values
3769 to take the zero repeat into account. This is implemented by setting them to
3770 zerofirstbyte and zeroreqchar when such a repeat is encountered. The individual
3771 item types that can be repeated set these backoff variables appropriately. */
3772
3773 firstchar = reqchar = zerofirstchar = zeroreqchar = 0;
3774 firstcharflags = reqcharflags = zerofirstcharflags = zeroreqcharflags = REQ_UNSET;
3775
3776 /* The variable req_caseopt contains either the REQ_CASELESS value
3777 or zero, according to the current setting of the caseless flag. The
3778 REQ_CASELESS leaves the lower 28 bit empty. It is added into the
3779 firstchar or reqchar variables to record the case status of the
3780 value. This is used only for ASCII characters. */
3781
3782 req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS:0;
3783
3784 /* Switch on next character until the end of the branch */
3785
3786 for (;; ptr++)
3787 {
3788 BOOL negate_class;
3789 BOOL should_flip_negation;
3790 BOOL possessive_quantifier;
3791 BOOL is_quantifier;
3792 BOOL is_recurse;
3793 BOOL reset_bracount;
3794 int class_has_8bitchar;
3795 int class_one_char;
3796 int newoptions;
3797 int recno;
3798 int refsign;
3799 int skipbytes;
3800 pcre_uint32 subreqchar, subfirstchar;
3801 pcre_int32 subreqcharflags, subfirstcharflags;
3802 int terminator;
3803 unsigned int mclength;
3804 unsigned int tempbracount;
3805 pcre_uint32 ec;
3806 pcre_uchar mcbuffer[8];
3807
3808 /* Get next character in the pattern */
3809
3810 c = *ptr;
3811
3812 /* If we are at the end of a nested substitution, revert to the outer level
3813 string. Nesting only happens one level deep. */
3814
3815 if (c == CHAR_NULL && nestptr != NULL)
3816 {
3817 ptr = nestptr;
3818 nestptr = NULL;
3819 c = *ptr;
3820 }
3821
3822 /* If we are in the pre-compile phase, accumulate the length used for the
3823 previous cycle of this loop. */
3824
3825 if (lengthptr != NULL)
3826 {
3827 #ifdef PCRE_DEBUG
3828 if (code > cd->hwm) cd->hwm = code; /* High water info */
3829 #endif
3830 if (code > cd->start_workspace + cd->workspace_size -
3831 WORK_SIZE_SAFETY_MARGIN) /* Check for overrun */
3832 {
3833 *errorcodeptr = ERR52;
3834 goto FAILED;
3835 }
3836
3837 /* There is at least one situation where code goes backwards: this is the
3838 case of a zero quantifier after a class (e.g. [ab]{0}). At compile time,
3839 the class is simply eliminated. However, it is created first, so we have to
3840 allow memory for it. Therefore, don't ever reduce the length at this point.
3841 */
3842
3843 if (code < last_code) code = last_code;
3844
3845 /* Paranoid check for integer overflow */
3846
3847 if (OFLOW_MAX - *lengthptr < code - last_code)
3848 {
3849 *errorcodeptr = ERR20;
3850 goto FAILED;
3851 }
3852
3853 *lengthptr += (int)(code - last_code);
3854 DPRINTF(("length=%d added %d c=%c (0x%x)\n", *lengthptr,
3855 (int)(code - last_code), c, c));
3856
3857 /* If "previous" is set and it is not at the start of the work space, move
3858 it back to there, in order to avoid filling up the work space. Otherwise,
3859 if "previous" is NULL, reset the current code pointer to the start. */
3860
3861 if (previous != NULL)
3862 {
3863 if (previous > orig_code)
3864 {
3865 memmove(orig_code, previous, IN_UCHARS(code - previous));
3866 code -= previous - orig_code;
3867 previous = orig_code;
3868 }
3869 }
3870 else code = orig_code;
3871
3872 /* Remember where this code item starts so we can pick up the length
3873 next time round. */
3874
3875 last_code = code;
3876 }
3877
3878 /* In the real compile phase, just check the workspace used by the forward
3879 reference list. */
3880
3881 else if (cd->hwm > cd->start_workspace + cd->workspace_size -
3882 WORK_SIZE_SAFETY_MARGIN)
3883 {
3884 *errorcodeptr = ERR52;
3885 goto FAILED;
3886 }
3887
3888 /* If in \Q...\E, check for the end; if not, we have a literal */
3889
3890 if (inescq && c != CHAR_NULL)
3891 {
3892 if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E)
3893 {
3894 inescq = FALSE;
3895 ptr++;
3896 continue;
3897 }
3898 else
3899 {
3900 if (previous_callout != NULL)
3901 {
3902 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
3903 complete_callout(previous_callout, ptr, cd);
3904 previous_callout = NULL;
3905 }
3906 if ((options & PCRE_AUTO_CALLOUT) != 0)
3907 {
3908 previous_callout = code;
3909 code = auto_callout(code, ptr, cd);
3910 }
3911 goto NORMAL_CHAR;
3912 }
3913 }
3914
3915 /* Fill in length of a previous callout, except when the next thing is
3916 a quantifier. */
3917
3918 is_quantifier =
3919 c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK ||
3920 (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1));
3921
3922 if (!is_quantifier && previous_callout != NULL &&
3923 after_manual_callout-- <= 0)
3924 {
3925 if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
3926 complete_callout(previous_callout, ptr, cd);
3927 previous_callout = NULL;
3928 }
3929
3930 /* In extended mode, skip white space and comments. */
3931
3932 if ((options & PCRE_EXTENDED) != 0)
3933 {
3934 if (MAX_255(*ptr) && (cd->ctypes[c] & ctype_space) != 0) continue;
3935 if (c == CHAR_NUMBER_SIGN)
3936 {
3937 ptr++;
3938 while (*ptr != CHAR_NULL)
3939 {
3940 if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
3941 ptr++;
3942 #ifdef SUPPORT_UTF
3943 if (utf) FORWARDCHAR(ptr);
3944 #endif
3945 }
3946 if (*ptr != CHAR_NULL) continue;
3947
3948 /* Else fall through to handle end of string */
3949 c = 0;
3950 }
3951 }
3952
3953 /* No auto callout for quantifiers. */
3954
3955 if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier)
3956 {
3957 previous_callout = code;
3958 code = auto_callout(code, ptr, cd);
3959 }
3960
3961 switch(c)
3962 {
3963 /* ===================================================================*/
3964 case 0: /* The branch terminates at string end */
3965 case CHAR_VERTICAL_LINE: /* or | or ) */
3966 case CHAR_RIGHT_PARENTHESIS:
3967 *firstcharptr = firstchar;
3968 *firstcharflagsptr = firstcharflags;
3969 *reqcharptr = reqchar;
3970 *reqcharflagsptr = reqcharflags;
3971 *codeptr = code;
3972 *ptrptr = ptr;
3973 if (lengthptr != NULL)
3974 {
3975 if (OFLOW_MAX - *lengthptr < code - last_code)
3976 {
3977 *errorcodeptr = ERR20;
3978 goto FAILED;
3979 }
3980 *lengthptr += (int)(code - last_code); /* To include callout length */
3981 DPRINTF((">> end branch\n"));
3982 }
3983 return TRUE;
3984
3985
3986 /* ===================================================================*/
3987 /* Handle single-character metacharacters. In multiline mode, ^ disables
3988 the setting of any following char as a first character. */
3989
3990 case CHAR_CIRCUMFLEX_ACCENT:
3991 previous = NULL;
3992 if ((options & PCRE_MULTILINE) != 0)
3993 {
3994 if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
3995 *code++ = OP_CIRCM;
3996 }
3997 else *code++ = OP_CIRC;
3998 break;
3999
4000 case CHAR_DOLLAR_SIGN:
4001 previous = NULL;
4002 *code++ = ((options & PCRE_MULTILINE) != 0)? OP_DOLLM : OP_DOLL;
4003 break;
4004
4005 /* There can never be a first char if '.' is first, whatever happens about
4006 repeats. The value of reqchar doesn't change either. */
4007
4008 case CHAR_DOT:
4009 if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
4010 zerofirstchar = firstchar;
4011 zerofirstcharflags = firstcharflags;
4012 zeroreqchar = reqchar;
4013 zeroreqcharflags = reqcharflags;
4014 previous = code;
4015 *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY;
4016 break;
4017
4018
4019 /* ===================================================================*/
4020 /* Character classes. If the included characters are all < 256, we build a
4021 32-byte bitmap of the permitted characters, except in the special case
4022 where there is only one such character. For negated classes, we build the
4023 map as usual, then invert it at the end. However, we use a different opcode
4024 so that data characters > 255 can be handled correctly.
4025
4026 If the class contains characters outside the 0-255 range, a different
4027 opcode is compiled. It may optionally have a bit map for characters < 256,
4028 but those above are are explicitly listed afterwards. A flag byte tells
4029 whether the bitmap is present, and whether this is a negated class or not.
4030
4031 In JavaScript compatibility mode, an isolated ']' causes an error. In
4032 default (Perl) mode, it is treated as a data character. */
4033
4034 case CHAR_RIGHT_SQUARE_BRACKET:
4035 if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
4036 {
4037 *errorcodeptr = ERR64;
4038 goto FAILED;
4039 }
4040 goto NORMAL_CHAR;
4041
4042 case CHAR_LEFT_SQUARE_BRACKET:
4043 previous = code;
4044
4045 /* PCRE supports POSIX class stuff inside a class. Perl gives an error if
4046 they are encountered at the top level, so we'll do that too. */
4047
4048 if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
4049 ptr[1] == CHAR_EQUALS_SIGN) &&
4050 check_posix_syntax(ptr, &tempptr))
4051 {
4052 *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31;
4053 goto FAILED;
4054 }
4055
4056 /* If the first character is '^', set the negation flag and skip it. Also,
4057 if the first few characters (either before or after ^) are \Q\E or \E we
4058 skip them too. This makes for compatibility with Perl. */
4059
4060 negate_class = FALSE;
4061 for (;;)
4062 {
4063 c = *(++ptr);
4064 if (c == CHAR_BACKSLASH)
4065 {
4066 if (ptr[1] == CHAR_E)
4067 ptr++;
4068 else if (STRNCMP_UC_C8(ptr + 1, STR_Q STR_BACKSLASH STR_E, 3) == 0)
4069 ptr += 3;
4070 else
4071 break;
4072 }
4073 else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT)
4074 negate_class = TRUE;
4075 else break;
4076 }
4077
4078 /* Empty classes are allowed in JavaScript compatibility mode. Otherwise,
4079 an initial ']' is taken as a data character -- the code below handles
4080 that. In JS mode, [] must always fail, so generate OP_FAIL, whereas
4081 [^] must match any character, so generate OP_ALLANY. */
4082
4083 if (c == CHAR_RIGHT_SQUARE_BRACKET &&
4084 (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
4085 {
4086 *code++ = negate_class? OP_ALLANY : OP_FAIL;
4087 if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
4088 zerofirstchar = firstchar;
4089 zerofirstcharflags = firstcharflags;
4090 break;
4091 }
4092
4093 /* If a class contains a negative special such as \S, we need to flip the
4094 negation flag at the end, so that support for characters > 255 works
4095 correctly (they are all included in the class). */
4096
4097 should_flip_negation = FALSE;
4098
4099 /* For optimization purposes, we track some properties of the class:
4100 class_has_8bitchar will be non-zero if the class contains at least one <
4101 256 character; class_one_char will be 1 if the class contains just one
4102 character. */
4103
4104 class_has_8bitchar = 0;
4105 class_one_char = 0;
4106
4107 /* Initialize the 32-char bit map to all zeros. We build the map in a
4108 temporary bit of memory, in case the class contains fewer than two
4109 8-bit characters because in that case the compiled code doesn't use the bit
4110 map. */
4111
4112 memset(classbits, 0, 32 * sizeof(pcre_uint8));
4113
4114 #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
4115 xclass = FALSE;
4116 class_uchardata = code + LINK_SIZE + 2; /* For XCLASS items */
4117 class_uchardata_base = class_uchardata; /* Save the start */
4118 #endif
4119
4120 /* Process characters until ] is reached. By writing this as a "do" it
4121 means that an initial ] is taken as a data character. At the start of the
4122 loop, c contains the first byte of the character. */
4123
4124 if (c != CHAR_NULL) do
4125 {
4126 const pcre_uchar *oldptr;
4127
4128 #ifdef SUPPORT_UTF
4129 if (utf && HAS_EXTRALEN(c))
4130 { /* Braces are required because the */
4131 GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */
4132 }
4133 #endif
4134
4135 #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
4136 /* In the pre-compile phase, accumulate the length of any extra
4137 data and reset the pointer. This is so that very large classes that
4138 contain a zillion > 255 characters no longer overwrite the work space
4139 (which is on the stack). We have to remember that there was XCLASS data,
4140 however. */
4141
4142 if (lengthptr != NULL && class_uchardata > class_uchardata_base)
4143 {
4144 xclass = TRUE;
4145 *lengthptr += class_uchardata - class_uchardata_base;
4146 class_uchardata = class_uchardata_base;
4147 }
4148 #endif
4149
4150 /* Inside \Q...\E everything is literal except \E */
4151
4152 if (inescq)
4153 {
4154 if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */
4155 {
4156 inescq = FALSE; /* Reset literal state */
4157 ptr++; /* Skip the 'E' */
4158 continue; /* Carry on with next */
4159 }
4160 goto CHECK_RANGE; /* Could be range if \E follows */
4161 }
4162
4163 /* Handle POSIX class names. Perl allows a negation extension of the
4164 form [:^name:]. A square bracket that doesn't match the syntax is
4165 treated as a literal. We also recognize the POSIX constructions
4166 [.ch.] and [=ch=] ("collating elements") and fault them, as Perl
4167 5.6 and 5.8 do. */
4168
4169 if (c == CHAR_LEFT_SQUARE_BRACKET &&
4170 (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
4171 ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr))
4172 {
4173 BOOL local_negate = FALSE;
4174 int posix_class, taboffset, tabopt;
4175 register const pcre_uint8 *cbits = cd->cbits;
4176 pcre_uint8 pbits[32];
4177
4178 if (ptr[1] != CHAR_COLON)
4179 {
4180 *errorcodeptr = ERR31;
4181 goto FAILED;
4182 }
4183
4184 ptr += 2;
4185 if (*ptr == CHAR_CIRCUMFLEX_ACCENT)
4186 {
4187 local_negate = TRUE;
4188 should_flip_negation = TRUE; /* Note negative special */
4189 ptr++;
4190 }
4191
4192 posix_class = check_posix_name(ptr, (int)(tempptr - ptr));
4193 if (posix_class < 0)
4194 {
4195 *errorcodeptr = ERR30;
4196 goto FAILED;
4197 }
4198
4199 /* If matching is caseless, upper and lower are converted to
4200 alpha. This relies on the fact that the class table starts with
4201 alpha, lower, upper as the first 3 entries. */
4202
4203 if ((options & PCRE_CASELESS) != 0 && posix_class <= 2)
4204 posix_class = 0;
4205
4206 /* When PCRE_UCP is set, some of the POSIX classes are converted to
4207 different escape sequences that use Unicode properties. */
4208
4209 #ifdef SUPPORT_UCP
4210 if ((options & PCRE_UCP) != 0)
4211 {
4212 int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0);
4213 if (posix_substitutes[pc] != NULL)
4214 {
4215 nestptr = tempptr + 1;
4216 ptr = posix_substitutes[pc] - 1;
4217 continue;
4218 }
4219 }
4220 #endif
4221 /* In the non-UCP case, we build the bit map for the POSIX class in a
4222 chunk of local store because we may be adding and subtracting from it,
4223 and we don't want to subtract bits that may be in the main map already.
4224 At the end we or the result into the bit map that is being built. */
4225
4226 posix_class *= 3;
4227
4228 /* Copy in the first table (always present) */
4229
4230 memcpy(pbits, cbits + posix_class_maps[posix_class],
4231 32 * sizeof(pcre_uint8));
4232
4233 /* If there is a second table, add or remove it as required. */
4234
4235 taboffset = posix_class_maps[posix_class + 1];
4236 tabopt = posix_class_maps[posix_class + 2];
4237
4238 if (taboffset >= 0)
4239 {
4240 if (tabopt >= 0)
4241 for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset];
4242 else
4243 for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset];
4244 }
4245
4246 /* Now see if we need to remove any special characters. An option
4247 value of 1 removes vertical space and 2 removes underscore. */
4248
4249 if (tabopt < 0) tabopt = -tabopt;
4250 if (tabopt == 1) pbits[1] &= ~0x3c;
4251 else if (tabopt == 2) pbits[11] &= 0x7f;
4252
4253 /* Add the POSIX table or its complement into the main table that is
4254 being built and we are done. */
4255
4256 if (local_negate)
4257 for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c];
4258 else
4259 for (c = 0; c < 32; c++) classbits[c] |= pbits[c];
4260
4261 ptr = tempptr + 1;
4262 /* Every class contains at least one < 256 character. */
4263 class_has_8bitchar = 1;
4264 /* Every class contains at least two characters. */
4265 class_one_char = 2;
4266 continue; /* End of POSIX syntax handling */
4267 }
4268
4269 /* Backslash may introduce a single character, or it may introduce one
4270 of the specials, which just set a flag. The sequence \b is a special
4271 case. Inside a class (and only there) it is treated as backspace. We
4272 assume that other escapes have more than one character in them, so
4273 speculatively set both class_has_8bitchar and class_one_char bigger
4274 than one. Unrecognized escapes fall through and are either treated
4275 as literal characters (by default), or are faulted if
4276 PCRE_EXTRA is set. */
4277
4278 if (c == CHAR_BACKSLASH)
4279 {
4280 escape = check_escape(&ptr, &ec, errorcodeptr, cd->bracount, options, TRUE);
4281
4282 if (*errorcodeptr != 0) goto FAILED;
4283
4284 if (escape == 0)
4285 c = ec;
4286 else if (escape == ESC_b) c = CHAR_BS; /* \b is backspace in a class */
4287 else if (escape == ESC_N) /* \N is not supported in a class */
4288 {
4289 *errorcodeptr = ERR71;
4290 goto FAILED;
4291 }
4292 else if (escape == ESC_Q) /* Handle start of quoted string */
4293 {
4294 if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
4295 {
4296 ptr += 2; /* avoid empty string */
4297 }
4298 else inescq = TRUE;
4299 continue;
4300 }
4301 else if (escape == ESC_E) continue; /* Ignore orphan \E */
4302
4303 else
4304 {
4305 register const pcre_uint8 *cbits = cd->cbits;
4306 /* Every class contains at least two < 256 characters. */
4307 class_has_8bitchar++;
4308 /* Every class contains at least two characters. */
4309 class_one_char += 2;
4310
4311 switch (escape)
4312 {
4313 #ifdef SUPPORT_UCP
4314 case ESC_du: /* These are the values given for \d etc */
4315 case ESC_DU: /* when PCRE_UCP is set. We replace the */
4316 case ESC_wu: /* escape sequence with an appropriate \p */
4317 case ESC_WU: /* or \P to test Unicode properties instead */
4318 case ESC_su: /* of the default ASCII testing. */
4319 case ESC_SU:
4320 nestptr = ptr;
4321 ptr = substitutes[escape - ESC_DU] - 1; /* Just before substitute */
4322 class_has_8bitchar--; /* Undo! */
4323 continue;
4324 #endif
4325 case ESC_d:
4326 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit];
4327 continue;
4328
4329 case ESC_D:
4330 should_flip_negation = TRUE;
4331 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit];
4332 continue;
4333
4334 case ESC_w:
4335 for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word];
4336 continue;
4337
4338 case ESC_W:
4339 should_flip_negation = TRUE;
4340 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word];
4341 continue;
4342
4343 /* Perl 5.004 onwards omits VT from \s, but we must preserve it
4344 if it was previously set by something earlier in the character
4345 class. Luckily, the value of CHAR_VT is 0x0b in both ASCII and
4346 EBCDIC, so we lazily just adjust the appropriate bit. */
4347
4348 case ESC_s:
4349 classbits[0] |= cbits[cbit_space];
4350 classbits[1] |= cbits[cbit_space+1] & ~0x08;
4351 for (c = 2; c < 32; c++) classbits[c] |= cbits[c+cbit_space];
4352 continue;
4353
4354 case ESC_S:
4355 should_flip_negation = TRUE;
4356 for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space];
4357 classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */
4358 continue;
4359
4360 /* The rest apply in both UCP and non-UCP cases. */
4361
4362 case ESC_h:
4363 (void)add_list_to_class(classbits, &class_uchardata, options, cd,
4364 PRIV(hspace_list), NOTACHAR);
4365 continue;
4366
4367 case ESC_H:
4368 (void)add_not_list_to_class(classbits, &class_uchardata, options,
4369 cd, PRIV(hspace_list));
4370 continue;
4371
4372 case ESC_v:
4373 (void)add_list_to_class(classbits, &class_uchardata, options, cd,
4374 PRIV(vspace_list), NOTACHAR);
4375 continue;
4376
4377 case ESC_V:
4378 (void)add_not_list_to_class(classbits, &class_uchardata, options,
4379 cd, PRIV(vspace_list));
4380 continue;
4381
4382 #ifdef SUPPORT_UCP
4383 case ESC_p:
4384 case ESC_P:
4385 {
4386 BOOL negated;
4387 unsigned int ptype = 0, pdata = 0;
4388 if (!get_ucp(&ptr, &negated, &ptype, &pdata, errorcodeptr))
4389 goto FAILED;
4390 *class_uchardata++ = ((escape == ESC_p) != negated)?
4391 XCL_PROP : XCL_NOTPROP;
4392 *class_uchardata++ = ptype;
4393 *class_uchardata++ = pdata;
4394 class_has_8bitchar--; /* Undo! */
4395 continue;
4396 }
4397 #endif
4398 /* Unrecognized escapes are faulted if PCRE is running in its
4399 strict mode. By default, for compatibility with Perl, they are
4400 treated as literals. */
4401
4402 default:
4403 if ((options & PCRE_EXTRA) != 0)
4404 {
4405 *errorcodeptr = ERR7;
4406 goto FAILED;
4407 }
4408 class_has_8bitchar--; /* Undo the speculative increase. */
4409 class_one_char -= 2; /* Undo the speculative increase. */
4410 c = *ptr; /* Get the final character and fall through */
4411 break;
4412 }
4413 }
4414
4415 /* Fall through if the escape just defined a single character (c >= 0).
4416 This may be greater than 256. */
4417
4418 escape = 0;
4419
4420 } /* End of backslash handling */
4421
4422 /* A character may be followed by '-' to form a range. However, Perl does
4423 not permit ']' to be the end of the range. A '-' character at the end is
4424 treated as a literal. Perl ignores orphaned \E sequences entirely. The
4425 code for handling \Q and \E is messy. */
4426
4427 CHECK_RANGE:
4428 while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
4429 {
4430 inescq = FALSE;
4431 ptr += 2;
4432 }
4433 oldptr = ptr;
4434
4435 /* Remember if \r or \n were explicitly used */
4436
4437 if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF;
4438
4439 /* Check for range */
4440
4441 if (!inescq && ptr[1] == CHAR_MINUS)
4442 {
4443 pcre_uint32 d;
4444 ptr += 2;
4445 while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2;
4446
4447 /* If we hit \Q (not followed by \E) at this point, go into escaped
4448 mode. */
4449
4450 while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q)
4451 {
4452 ptr += 2;
4453 if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E)
4454 { ptr += 2; continue; }
4455 inescq = TRUE;
4456 break;
4457 }
4458
4459 /* Minus (hyphen) at the end of a class is treated as a literal, so put
4460 back the pointer and jump to handle the character that preceded it. */
4461
4462 if (*ptr == CHAR_NULL || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET))
4463 {
4464 ptr = oldptr;
4465 goto CLASS_SINGLE_CHARACTER;
4466 }
4467
4468 /* Otherwise, we have a potential range; pick up the next character */
4469
4470 #ifdef SUPPORT_UTF
4471 if (utf)
4472 { /* Braces are required because the */
4473 GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */
4474 }
4475 else
4476 #endif
4477 d = *ptr; /* Not UTF-8 mode */
4478
4479 /* The second part of a range can be a single-character escape, but
4480 not any of the other escapes. Perl 5.6 treats a hyphen as a literal
4481 in such circumstances. */
4482
4483 if (!inescq && d == CHAR_BACKSLASH)
4484 {
4485 int descape;
4486 descape = check_escape(&ptr, &d, errorcodeptr, cd->bracount, options, TRUE);
4487 if (*errorcodeptr != 0) goto FAILED;
4488
4489 /* \b is backspace; any other special means the '-' was literal. */
4490
4491 if (descape != 0)
4492 {
4493 if (descape == ESC_b) d = CHAR_BS; else
4494 {
4495 ptr = oldptr;
4496 goto CLASS_SINGLE_CHARACTER; /* A few lines below */
4497 }
4498 }
4499 }
4500
4501 /* Check that the two values are in the correct order. Optimize
4502 one-character ranges. */
4503
4504 if (d < c)
4505 {
4506 *errorcodeptr = ERR8;
4507 goto FAILED;
4508 }
4509 if (d == c) goto CLASS_SINGLE_CHARACTER; /* A few lines below */
4510
4511 /* We have found a character range, so single character optimizations
4512 cannot be done anymore. Any value greater than 1 indicates that there
4513 is more than one character. */
4514
4515 class_one_char = 2;
4516
4517 /* Remember an explicit \r or \n, and add the range to the class. */
4518
4519 if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF;
4520
4521 class_has_8bitchar +=
4522 add_to_class(classbits, &class_uchardata, options, cd, c, d);
4523
4524 continue; /* Go get the next char in the class */
4525 }
4526
4527 /* Handle a single character - we can get here for a normal non-escape
4528 char, or after \ that introduces a single character or for an apparent
4529 range that isn't. Only the value 1 matters for class_one_char, so don't
4530 increase it if it is already 2 or more ... just in case there's a class
4531 with a zillion characters in it. */
4532
4533 CLASS_SINGLE_CHARACTER:
4534 if (class_one_char < 2) class_one_char++;
4535
4536 /* If class_one_char is 1, we have the first single character in the
4537 class, and there have been no prior ranges, or XCLASS items generated by
4538 escapes. If this is the final character in the class, we can optimize by
4539 turning the item into a 1-character OP_CHAR[I] if it's positive, or
4540 OP_NOT[I] if it's negative. In the positive case, it can cause firstchar
4541 to be set. Otherwise, there can be no first char if this item is first,
4542 whatever repeat count may follow. In the case of reqchar, save the
4543 previous value for reinstating. */
4544
4545 if (class_one_char == 1 && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
4546 {
4547 ptr++;
4548 zeroreqchar = reqchar;
4549 zeroreqcharflags = reqcharflags;
4550
4551 if (negate_class)
4552 {
4553 #ifdef SUPPORT_UCP
4554 int d;
4555 #endif
4556 if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
4557 zerofirstchar = firstchar;
4558 zerofirstcharflags = firstcharflags;
4559
4560 /* For caseless UTF-8 mode when UCP support is available, check
4561 whether this character has more than one other case. If so, generate
4562 a special OP_NOTPROP item instead of OP_NOTI. */
4563
4564 #ifdef SUPPORT_UCP
4565 if (utf && (options & PCRE_CASELESS) != 0 &&
4566 (d = UCD_CASESET(c)) != 0)
4567 {
4568 *code++ = OP_NOTPROP;
4569 *code++ = PT_CLIST;
4570 *code++ = d;
4571 }
4572 else
4573 #endif
4574 /* Char has only one other case, or UCP not available */
4575
4576 {
4577 *code++ = ((options & PCRE_CASELESS) != 0)? OP_NOTI: OP_NOT;
4578 #if defined SUPPORT_UTF && !defined COMPILE_PCRE32
4579 if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR)
4580 code += PRIV(ord2utf)(c, code);
4581 else
4582 #endif
4583 *code++ = c;
4584 }
4585
4586 /* We are finished with this character class */
4587
4588 goto END_CLASS;
4589 }
4590
4591 /* For a single, positive character, get the value into mcbuffer, and
4592 then we can handle this with the normal one-character code. */
4593
4594 #if defined SUPPORT_UTF && !defined COMPILE_PCRE32
4595 if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR)
4596 mclength = PRIV(ord2utf)(c, mcbuffer);
4597 else
4598 #endif
4599 {
4600 mcbuffer[0] = c;
4601 mclength = 1;
4602 }
4603 goto ONE_CHAR;
4604 } /* End of 1-char optimization */
4605
4606 /* There is more than one character in the class, or an XCLASS item
4607 has been generated. Add this character to the class. */
4608
4609 class_has_8bitchar +=
4610 add_to_class(classbits, &class_uchardata, options, cd, c, c);
4611 }
4612
4613 /* Loop until ']' reached. This "while" is the end of the "do" far above.
4614 If we are at the end of an internal nested string, revert to the outer
4615 string. */
4616
4617 while (((c = *(++ptr)) != CHAR_NULL ||
4618 (nestptr != NULL &&
4619 (ptr = nestptr, nestptr = NULL, c = *(++ptr)) != CHAR_NULL)) &&
4620 (c != CHAR_RIGHT_SQUARE_BRACKET || inescq));
4621
4622 /* Check for missing terminating ']' */
4623
4624 if (c == CHAR_NULL)
4625 {
4626 *errorcodeptr = ERR6;
4627 goto FAILED;
4628 }
4629
4630 /* We will need an XCLASS if data has been placed in class_uchardata. In
4631 the second phase this is a sufficient test. However, in the pre-compile
4632 phase, class_uchardata gets emptied to prevent workspace overflow, so it
4633 only if the very last character in the class needs XCLASS will it contain
4634 anything at this point. For this reason, xclass gets set TRUE above when
4635 uchar_classdata is emptied, and that's why this code is the way it is here
4636 instead of just doing a test on class_uchardata below. */
4637
4638 #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
4639 if (class_uchardata > class_uchardata_base) xclass = TRUE;
4640 #endif
4641
4642 /* If this is the first thing in the branch, there can be no first char
4643 setting, whatever the repeat count. Any reqchar setting must remain
4644 unchanged after any kind of repeat. */
4645
4646 if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
4647 zerofirstchar = firstchar;
4648 zerofirstcharflags = firstcharflags;
4649 zeroreqchar = reqchar;
4650 zeroreqcharflags = reqcharflags;
4651
4652 /* If there are characters with values > 255, we have to compile an
4653 extended class, with its own opcode, unless there was a negated special
4654 such as \S in the class, and PCRE_UCP is not set, because in that case all
4655 characters > 255 are in the class, so any that were explicitly given as
4656 well can be ignored. If (when there are explicit characters > 255 that must
4657 be listed) there are no characters < 256, we can omit the bitmap in the
4658 actual compiled code. */
4659
4660 #ifdef SUPPORT_UTF
4661 if (xclass && (!should_flip_negation || (options & PCRE_UCP) != 0))
4662 #elif !defined COMPILE_PCRE8
4663 if (xclass && !should_flip_negation)
4664 #endif
4665 #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
4666 {
4667 *class_uchardata++ = XCL_END; /* Marks the end of extra data */
4668 *code++ = OP_XCLASS;
4669 code += LINK_SIZE;
4670 *code = negate_class? XCL_NOT:0;
4671
4672 /* If the map is required, move up the extra data to make room for it;
4673 otherwise just move the code pointer to the end of the extra data. */
4674
4675 if (class_has_8bitchar > 0)
4676 {
4677 *code++ |= XCL_MAP;
4678 memmove(code + (32 / sizeof(pcre_uchar)), code,
4679 IN_UCHARS(class_uchardata - code));
4680 memcpy(code, classbits, 32);
4681 code = class_uchardata + (32 / sizeof(pcre_uchar));
4682 }
4683 else code = class_uchardata;
4684
4685 /* Now fill in the complete length of the item */
4686
4687 PUT(previous, 1, (int)(code - previous));
4688 break; /* End of class handling */
4689 }
4690 #endif
4691
4692 /* If there are no characters > 255, or they are all to be included or
4693 excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the
4694 whole class was negated and whether there were negative specials such as \S
4695 (non-UCP) in the class. Then copy the 32-byte map into the code vector,
4696 negating it if necessary. */
4697
4698 *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS;
4699 if (lengthptr == NULL) /* Save time in the pre-compile phase */
4700 {
4701 if (negate_class)
4702 for (c = 0; c < 32; c++) classbits[c] = ~classbits[c];
4703 memcpy(code, classbits, 32);
4704 }
4705 code += 32 / sizeof(pcre_uchar);
4706
4707 END_CLASS:
4708 break;
4709
4710
4711 /* ===================================================================*/
4712 /* Various kinds of repeat; '{' is not necessarily a quantifier, but this
4713 has been tested above. */
4714
4715 case CHAR_LEFT_CURLY_BRACKET:
4716 if (!is_quantifier) goto NORMAL_CHAR;
4717 ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr);
4718 if (*errorcodeptr != 0) goto FAILED;
4719 goto REPEAT;
4720
4721 case CHAR_ASTERISK:
4722 repeat_min = 0;
4723 repeat_max = -1;
4724 goto REPEAT;
4725
4726 case CHAR_PLUS:
4727 repeat_min = 1;
4728 repeat_max = -1;
4729 goto REPEAT;
4730
4731 case CHAR_QUESTION_MARK:
4732 repeat_min = 0;
4733 repeat_max = 1;
4734
4735 REPEAT:
4736 if (previous == NULL)
4737 {
4738 *errorcodeptr = ERR9;
4739 goto FAILED;
4740 }
4741
4742 if (repeat_min == 0)
4743 {
4744 firstchar = zerofirstchar; /* Adjust for zero repeat */
4745 firstcharflags = zerofirstcharflags;
4746 reqchar = zeroreqchar; /* Ditto */
4747 reqcharflags = zeroreqcharflags;
4748 }
4749
4750 /* Remember whether this is a variable length repeat */
4751
4752 reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY;
4753
4754 op_type = 0; /* Default single-char op codes */
4755 possessive_quantifier = FALSE; /* Default not possessive quantifier */
4756
4757 /* Save start of previous item, in case we have to move it up in order to
4758 insert something before it. */
4759
4760 tempcode = previous;
4761
4762 /* If the next character is '+', we have a possessive quantifier. This
4763 implies greediness, whatever the setting of the PCRE_UNGREEDY option.
4764 If the next character is '?' this is a minimizing repeat, by default,
4765 but if PCRE_UNGREEDY is set, it works the other way round. We change the
4766 repeat type to the non-default. */
4767
4768 if (ptr[1] == CHAR_PLUS)
4769 {
4770 repeat_type = 0; /* Force greedy */
4771 possessive_quantifier = TRUE;
4772 ptr++;
4773 }
4774 else if (ptr[1] == CHAR_QUESTION_MARK)
4775 {
4776 repeat_type = greedy_non_default;
4777 ptr++;
4778 }
4779 else repeat_type = greedy_default;
4780
4781 /* If previous was a recursion call, wrap it in atomic brackets so that
4782 previous becomes the atomic group. All recursions were so wrapped in the
4783 past, but it no longer happens for non-repeated recursions. In fact, the
4784 repeated ones could be re-implemented independently so as not to need this,
4785 but for the moment we rely on the code for repeating groups. */
4786
4787 if (*previous == OP_RECURSE)
4788 {
4789 memmove(previous + 1 + LINK_SIZE, previous, IN_UCHARS(1 + LINK_SIZE));
4790 *previous = OP_ONCE;
4791 PUT(previous, 1, 2 + 2*LINK_SIZE);
4792 previous[2 + 2*LINK_SIZE] = OP_KET;
4793 PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE);
4794 code += 2 + 2 * LINK_SIZE;
4795 length_prevgroup = 3 + 3*LINK_SIZE;
4796
4797 /* When actually compiling, we need to check whether this was a forward
4798 reference, and if so, adjust the offset. */
4799
4800 if (lengthptr == NULL && cd->hwm >= cd->start_workspace + LINK_SIZE)
4801 {
4802 int offset = GET(cd->hwm, -LINK_SIZE);
4803 if (offset == previous + 1 - cd->start_code)
4804 PUT(cd->hwm, -LINK_SIZE, offset + 1 + LINK_SIZE);
4805 }
4806 }
4807
4808 /* Now handle repetition for the different types of item. */
4809
4810 /* If previous was a character or negated character match, abolish the item
4811 and generate a repeat item instead. If a char item has a minimum of more
4812 than one, ensure that it is set in reqchar - it might not be if a sequence
4813 such as x{3} is the first thing in a branch because the x will have gone
4814 into firstchar instead. */
4815
4816 if (*previous == OP_CHAR || *previous == OP_CHARI
4817 || *previous == OP_NOT || *previous == OP_NOTI)
4818 {
4819 switch (*previous)
4820 {
4821 default: /* Make compiler happy. */
4822 case OP_CHAR: op_type = OP_STAR - OP_STAR; break;
4823 case OP_CHARI: op_type = OP_STARI - OP_STAR; break;
4824 case OP_NOT: op_type = OP_NOTSTAR - OP_STAR; break;
4825 case OP_NOTI: op_type = OP_NOTSTARI - OP_STAR; break;
4826 }
4827
4828 /* Deal with UTF characters that take up more than one character. It's
4829 easier to write this out separately than try to macrify it. Use c to
4830 hold the length of the character in bytes, plus UTF_LENGTH to flag that
4831 it's a length rather than a small character. */
4832
4833 #if defined SUPPORT_UTF && !defined COMPILE_PCRE32
4834 if (utf && NOT_FIRSTCHAR(code[-1]))
4835 {
4836 pcre_uchar *lastchar = code - 1;
4837 BACKCHAR(lastchar);
4838 c = (int)(code - lastchar); /* Length of UTF-8 character */
4839 memcpy(utf_chars, lastchar, IN_UCHARS(c)); /* Save the char */
4840 c |= UTF_LENGTH; /* Flag c as a length */
4841 }
4842 else
4843 #endif /* SUPPORT_UTF */
4844
4845 /* Handle the case of a single charater - either with no UTF support, or
4846 with UTF disabled, or for a single character UTF character. */
4847 {
4848 c = code[-1];
4849 if (*previous <= OP_CHARI && repeat_min > 1)
4850 {
4851 reqchar = c;
4852 reqcharflags = req_caseopt | cd->req_varyopt;
4853 }
4854 }
4855
4856 /* If the repetition is unlimited, it pays to see if the next thing on
4857 the line is something that cannot possibly match this character. If so,
4858 automatically possessifying this item gains some performance in the case
4859 where the match fails. */
4860
4861 if (!possessive_quantifier &&
4862 repeat_max < 0 &&
4863 check_auto_possessive(previous, utf, ptr + 1, options, cd))
4864 {
4865 repeat_type = 0; /* Force greedy */
4866 possessive_quantifier = TRUE;
4867 }
4868
4869 goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
4870 }
4871
4872 /* If previous was a character type match (\d or similar), abolish it and
4873 create a suitable repeat item. The code is shared with single-character
4874 repeats by setting op_type to add a suitable offset into repeat_type. Note
4875 the the Unicode property types will be present only when SUPPORT_UCP is
4876 defined, but we don't wrap the little bits of code here because it just
4877 makes it horribly messy. */
4878
4879 else if (*previous < OP_EODN)
4880 {
4881 pcre_uchar *oldcode;
4882 int prop_type, prop_value;
4883 op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
4884 c = *previous;
4885
4886 if (!possessive_quantifier &&
4887 repeat_max < 0 &&
4888 check_auto_possessive(previous, utf, ptr + 1, options, cd))
4889 {
4890 repeat_type = 0; /* Force greedy */
4891 possessive_quantifier = TRUE;
4892 }
4893
4894 OUTPUT_SINGLE_REPEAT:
4895 if (*previous == OP_PROP || *previous == OP_NOTPROP)
4896 {
4897 prop_type = previous[1];
4898 prop_value = previous[2];
4899 }
4900 else prop_type = prop_value = -1;
4901
4902 oldcode = code;
4903 code = previous; /* Usually overwrite previous item */
4904
4905 /* If the maximum is zero then the minimum must also be zero; Perl allows
4906 this case, so we do too - by simply omitting the item altogether. */
4907
4908 if (repeat_max == 0) goto END_REPEAT;
4909
4910 /*--------------------------------------------------------------------*/
4911 /* This code is obsolete from release 8.00; the restriction was finally
4912 removed: */
4913
4914 /* All real repeats make it impossible to handle partial matching (maybe
4915 one day we will be able to remove this restriction). */
4916
4917 /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */
4918 /*--------------------------------------------------------------------*/
4919
4920 /* Combine the op_type with the repeat_type */
4921
4922 repeat_type += op_type;
4923
4924 /* A minimum of zero is handled either as the special case * or ?, or as
4925 an UPTO, with the maximum given. */
4926
4927 if (repeat_min == 0)
4928 {
4929 if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
4930 else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
4931 else
4932 {
4933 *code++ = OP_UPTO + repeat_type;
4934 PUT2INC(code, 0, repeat_max);
4935 }
4936 }
4937
4938 /* A repeat minimum of 1 is optimized into some special cases. If the
4939 maximum is unlimited, we use OP_PLUS. Otherwise, the original item is
4940 left in place and, if the maximum is greater than 1, we use OP_UPTO with
4941 one less than the maximum. */
4942
4943 else if (repeat_min == 1)
4944 {
4945 if (repeat_max == -1)
4946 *code++ = OP_PLUS + repeat_type;
4947 else
4948 {
4949 code = oldcode; /* leave previous item in place */
4950 if (repeat_max == 1) goto END_REPEAT;
4951 *code++ = OP_UPTO + repeat_type;
4952 PUT2INC(code, 0, repeat_max - 1);
4953 }
4954 }
4955
4956 /* The case {n,n} is just an EXACT, while the general case {n,m} is
4957 handled as an EXACT followed by an UPTO. */
4958
4959 else
4960 {
4961 *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
4962 PUT2INC(code, 0, repeat_min);
4963
4964 /* If the maximum is unlimited, insert an OP_STAR. Before doing so,
4965 we have to insert the character for the previous code. For a repeated
4966 Unicode property match, there are two extra bytes that define the
4967 required property. In UTF-8 mode, long characters have their length in
4968 c, with the UTF_LENGTH bit as a flag. */
4969
4970 if (repeat_max < 0)
4971 {
4972 #if defined SUPPORT_UTF && !defined COMPILE_PCRE32
4973 if (utf && (c & UTF_LENGTH) != 0)
4974 {
4975 memcpy(code, utf_chars, IN_UCHARS(c & 7));
4976 code += c & 7;
4977 }
4978 else
4979 #endif
4980 {
4981 *code++ = c;
4982 if (prop_type >= 0)
4983 {
4984 *code++ = prop_type;
4985 *code++ = prop_value;
4986 }
4987 }
4988 *code++ = OP_STAR + repeat_type;
4989 }
4990
4991 /* Else insert an UPTO if the max is greater than the min, again
4992 preceded by the character, for the previously inserted code. If the
4993 UPTO is just for 1 instance, we can use QUERY instead. */
4994
4995 else if (repeat_max != repeat_min)
4996 {
4997 #if defined SUPPORT_UTF && !defined COMPILE_PCRE32
4998 if (utf && (c & UTF_LENGTH) != 0)
4999 {
5000 memcpy(code, utf_chars, IN_UCHARS(c & 7));
5001 code += c & 7;
5002 }
5003 else
5004 #endif
5005 *code++ = c;
5006 if (prop_type >= 0)
5007 {
5008 *code++ = prop_type;
5009 *code++ = prop_value;
5010 }
5011 repeat_max -= repeat_min;
5012
5013 if (repeat_max == 1)
5014 {
5015 *code++ = OP_QUERY + repeat_type;
5016 }
5017 else
5018 {
5019 *code++ = OP_UPTO + repeat_type;
5020 PUT2INC(code, 0, repeat_max);
5021 }
5022 }
5023 }
5024
5025 /* The character or character type itself comes last in all cases. */
5026
5027 #if defined SUPPORT_UTF && !defined COMPILE_PCRE32
5028 if (utf && (c & UTF_LENGTH) != 0)
5029 {
5030 memcpy(code, utf_chars, IN_UCHARS(c & 7));
5031 code += c & 7;
5032 }
5033 else
5034 #endif
5035 *code++ = c;
5036
5037 /* For a repeated Unicode property match, there are two extra bytes that
5038 define the required property. */
5039
5040 #ifdef SUPPORT_UCP
5041 if (prop_type >= 0)
5042 {
5043 *code++ = prop_type;
5044 *code++ = prop_value;
5045 }
5046 #endif
5047 }
5048
5049 /* If previous was a character class or a back reference, we put the repeat
5050 stuff after it, but just skip the item if the repeat was {0,0}. */
5051
5052 else if (*previous == OP_CLASS ||
5053 *previous == OP_NCLASS ||
5054 #if defined SUPPORT_UTF || !defined COMPILE_PCRE8
5055 *previous == OP_XCLASS ||
5056 #endif
5057 *previous == OP_REF ||
5058 *previous == OP_REFI)
5059 {
5060 if (repeat_max == 0)
5061 {
5062 code = previous;
5063 goto END_REPEAT;
5064 }
5065
5066 /*--------------------------------------------------------------------*/
5067 /* This code is obsolete from release 8.00; the restriction was finally
5068 removed: */
5069
5070 /* All real repeats make it impossible to handle partial matching (maybe
5071 one day we will be able to remove this restriction). */
5072
5073 /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */
5074 /*--------------------------------------------------------------------*/
5075
5076 if (repeat_min == 0 && repeat_max == -1)
5077 *code++ = OP_CRSTAR + repeat_type;
5078 else if (repeat_min == 1 && repeat_max == -1)
5079 *code++ = OP_CRPLUS + repeat_type;
5080 else if (repeat_min == 0 && repeat_max == 1)
5081 *code++ = OP_CRQUERY + repeat_type;
5082 else
5083 {
5084 *code++ = OP_CRRANGE + repeat_type;
5085 PUT2INC(code, 0, repeat_min);
5086 if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
5087 PUT2INC(code, 0, repeat_max);
5088 }
5089 }
5090
5091 /* If previous was a bracket group, we may have to replicate it in certain
5092 cases. Note that at this point we can encounter only the "basic" bracket
5093 opcodes such as BRA and CBRA, as this is the place where they get converted
5094 into the more special varieties such as BRAPOS and SBRA. A test for >=
5095 OP_ASSERT and <= OP_COND includes ASSERT, ASSERT_NOT, ASSERTBACK,
5096 ASSERTBACK_NOT, ONCE, BRA, CBRA, and COND. Originally, PCRE did not allow
5097 repetition of assertions, but now it does, for Perl compatibility. */
5098
5099 else if (*previous >= OP_ASSERT && *previous <= OP_COND)
5100 {
5101 register int i;
5102 int len = (int)(code - previous);
5103 pcre_uchar *bralink = NULL;
5104 pcre_uchar *brazeroptr = NULL;
5105
5106 /* Repeating a DEFINE group is pointless, but Perl allows the syntax, so
5107 we just ignore the repeat. */
5108
5109 if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF)
5110 goto END_REPEAT;
5111
5112 /* There is no sense in actually repeating assertions. The only potential
5113 use of repetition is in cases when the assertion is optional. Therefore,
5114 if the minimum is greater than zero, just ignore the repeat. If the
5115 maximum is not not zero or one, set it to 1. */
5116
5117 if (*previous < OP_ONCE) /* Assertion */
5118 {
5119 if (repeat_min > 0) goto END_REPEAT;
5120 if (repeat_max < 0 || repeat_max > 1) repeat_max = 1;
5121 }
5122
5123 /* The case of a zero minimum is special because of the need to stick
5124 OP_BRAZERO in front of it, and because the group appears once in the
5125 data, whereas in other cases it appears the minimum number of times. For
5126 this reason, it is simplest to treat this case separately, as otherwise
5127 the code gets far too messy. There are several special subcases when the
5128 minimum is zero. */
5129
5130 if (repeat_min == 0)
5131 {
5132 /* If the maximum is also zero, we used to just omit the group from the
5133 output altogether, like this:
5134
5135 ** if (repeat_max == 0)
5136 ** {
5137 ** code = previous;
5138 ** goto END_REPEAT;
5139 ** }
5140
5141 However, that fails when a group or a subgroup within it is referenced
5142 as a subroutine from elsewhere in the pattern, so now we stick in
5143 OP_SKIPZERO in front of it so that it is skipped on execution. As we
5144 don't have a list of which groups are referenced, we cannot do this
5145 selectively.
5146
5147 If the maximum is 1 or unlimited, we just have to stick in the BRAZERO
5148 and do no more at this point. However, we do need to adjust any
5149 OP_RECURSE calls inside the group that refer to the group itself or any
5150 internal or forward referenced group, because the offset is from the
5151 start of the whole regex. Temporarily terminate the pattern while doing
5152 this. */
5153
5154 if (repeat_max <= 1) /* Covers 0, 1, and unlimited */
5155 {
5156 *code = OP_END;
5157 adjust_recurse(previous, 1, utf, cd, save_hwm);
5158 memmove(previous + 1, previous, IN_UCHARS(len));
5159 code++;
5160 if (repeat_max == 0)
5161 {
5162 *previous++ = OP_SKIPZERO;
5163 goto END_REPEAT;
5164 }
5165 brazeroptr = previous; /* Save for possessive optimizing */
5166 *previous++ = OP_BRAZERO + repeat_type;
5167 }
5168
5169 /* If the maximum is greater than 1 and limited, we have to replicate
5170 in a nested fashion, sticking OP_BRAZERO before each set of brackets.
5171 The first one has to be handled carefully because it's the original
5172 copy, which has to be moved up. The remainder can be handled by code
5173 that is common with the non-zero minimum case below. We have to
5174 adjust the value or repeat_max, since one less copy is required. Once
5175 again, we may have to adjust any OP_RECURSE calls inside the group. */
5176
5177 else
5178 {
5179 int offset;
5180 *code = OP_END;
5181 adjust_recurse(previous, 2 + LINK_SIZE, utf, cd, save_hwm);
5182 memmove(previous + 2 + LINK_SIZE, previous, IN_UCHARS(len));
5183 code += 2 + LINK_SIZE;
5184 *previous++ = OP_BRAZERO + repeat_type;
5185 *previous++ = OP_BRA;
5186
5187 /* We chain together the bracket offset fields that have to be
5188 filled in later when the ends of the brackets are reached. */
5189
5190 offset = (bralink == NULL)? 0 : (int)(previous - bralink);
5191 bralink = previous;
5192 PUTINC(previous, 0, offset);
5193 }
5194
5195 repeat_max--;
5196 }
5197
5198 /* If the minimum is greater than zero, replicate the group as many
5199 times as necessary, and adjust the maximum to the number of subsequent
5200 copies that we need. If we set a first char from the group, and didn't
5201 set a required char, copy the latter from the former. If there are any
5202 forward reference subroutine calls in the group, there will be entries on
5203 the workspace list; replicate these with an appropriate increment. */
5204
5205 else
5206 {
5207 if (repeat_min > 1)
5208 {
5209 /* In the pre-compile phase, we don't actually do the replication. We
5210 just adjust the length as if we had. Do some paranoid checks for
5211 potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit
5212 integer type when available, otherwise double. */
5213
5214 if (lengthptr != NULL)
5215 {
5216 int delta = (repeat_min - 1)*length_prevgroup;
5217 if ((INT64_OR_DOUBLE)(repeat_min - 1)*
5218 (INT64_OR_DOUBLE)length_prevgroup >
5219 (INT64_OR_DOUBLE)INT_MAX ||
5220 OFLOW_MAX - *lengthptr < delta)
5221 {
5222 *errorcodeptr = ERR20;
5223 goto FAILED;
5224 }
5225 *lengthptr += delta;
5226 }
5227
5228 /* This is compiling for real. If there is a set first byte for
5229 the group, and we have not yet set a "required byte", set it. Make
5230 sure there is enough workspace for copying forward references before
5231 doing the copy. */
5232
5233 else
5234 {
5235 if (groupsetfirstchar && reqcharflags < 0)
5236 {
5237 reqchar = firstchar;
5238 reqcharflags = firstcharflags;
5239 }
5240
5241 for (i = 1; i < repeat_min; i++)
5242 {
5243 pcre_uchar *hc;
5244 pcre_uchar *this_hwm = cd->hwm;
5245 memcpy(code, previous, IN_UCHARS(len));
5246
5247 while (cd->hwm > cd->start_workspace + cd->workspace_size -
5248 WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm))
5249 {
5250 int save_offset = save_hwm - cd->start_workspace;
5251 int this_offset = this_hwm - cd->start_workspace;
5252 *errorcodeptr = expand_workspace(cd);
5253 if (*errorcodeptr != 0) goto FAILED;
5254 save_hwm = (pcre_uchar *)cd->start_workspace + save_offset;
5255 this_hwm = (pcre_uchar *)cd->start_workspace + this_offset;
5256 }
5257
5258 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
5259 {
5260 PUT(cd->hwm, 0, GET(hc, 0) + len);
5261 cd->hwm += LINK_SIZE;
5262 }
5263 save_hwm = this_hwm;
5264 code += len;
5265 }
5266 }
5267 }
5268
5269 if (repeat_max > 0) repeat_max -= repeat_min;
5270 }
5271
5272 /* This code is common to both the zero and non-zero minimum cases. If
5273 the maximum is limited, it replicates the group in a nested fashion,
5274 remembering the bracket starts on a stack. In the case of a zero minimum,
5275 the first one was set up above. In all cases the repeat_max now specifies
5276 the number of additional copies needed. Again, we must remember to
5277 replicate entries on the forward reference list. */
5278
5279 if (repeat_max >= 0)
5280 {
5281 /* In the pre-compile phase, we don't actually do the replication. We
5282 just adjust the length as if we had. For each repetition we must add 1
5283 to the length for BRAZERO and for all but the last repetition we must
5284 add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some
5285 paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is
5286 a 64-bit integer type when available, otherwise double. */
5287
5288 if (lengthptr != NULL && repeat_max > 0)
5289 {
5290 int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) -
5291 2 - 2*LINK_SIZE; /* Last one doesn't nest */
5292 if ((INT64_OR_DOUBLE)repeat_max *
5293 (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE)
5294 > (INT64_OR_DOUBLE)INT_MAX ||
5295 OFLOW_MAX - *lengthptr < delta)
5296 {
5297 *errorcodeptr = ERR20;
5298 goto FAILED;
5299 }
5300 *lengthptr += delta;
5301 }
5302
5303 /* This is compiling for real */
5304
5305 else for (i = repeat_max - 1; i >= 0; i--)
5306 {
5307 pcre_uchar *hc;
5308 pcre_uchar *this_hwm = cd->hwm;
5309
5310 *code++ = OP_BRAZERO + repeat_type;
5311
5312 /* All but the final copy start a new nesting, maintaining the
5313 chain of brackets outstanding. */
5314
5315 if (i != 0)
5316 {
5317 int offset;
5318 *code++ = OP_BRA;
5319 offset = (bralink == NULL)? 0 : (int)(code - bralink);
5320 bralink = code;
5321 PUTINC(code, 0, offset);
5322 }
5323
5324 memcpy(code, previous, IN_UCHARS(len));
5325
5326 /* Ensure there is enough workspace for forward references before
5327 copying them. */
5328
5329 while (cd->hwm > cd->start_workspace + cd->workspace_size -
5330 WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm))
5331 {
5332 int save_offset = save_hwm - cd->start_workspace;
5333 int this_offset = this_hwm - cd->start_workspace;
5334 *errorcodeptr = expand_workspace(cd);
5335 if (*errorcodeptr != 0) goto FAILED;
5336 save_hwm = (pcre_uchar *)cd->start_workspace + save_offset;
5337 this_hwm = (pcre_uchar *)cd->start_workspace + this_offset;
5338 }
5339
5340 for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
5341 {
5342 PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1));
5343 cd->hwm += LINK_SIZE;
5344 }
5345 save_hwm = this_hwm;
5346 code += len;
5347 }
5348
5349 /* Now chain through the pending brackets, and fill in their length
5350 fields (which are holding the chain links pro tem). */
5351
5352 while (bralink != NULL)
5353 {
5354 int oldlinkoffset;
5355 int offset = (int)(code - bralink + 1);
5356 pcre_uchar *bra = code - offset;
5357 oldlinkoffset = GET(bra, 1);
5358 bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset;
5359 *code++ = OP_KET;
5360 PUTINC(code, 0, offset);
5361 PUT(bra, 1, offset);
5362 }
5363 }
5364
5365 /* If the maximum is unlimited, set a repeater in the final copy. For
5366 ONCE brackets, that's all we need to do. However, possessively repeated
5367 ONCE brackets can be converted into non-capturing brackets, as the
5368 behaviour of (?:xx)++ is the same as (?>xx)++ and this saves having to
5369 deal with possessive ONCEs specially.
5370
5371 Otherwise, when we are doing the actual compile phase, check to see
5372 whether this group is one that could match an empty string. If so,
5373 convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so
5374 that runtime checking can be done. [This check is also applied to ONCE
5375 groups at runtime, but in a different way.]
5376
5377 Then, if the quantifier was possessive and the bracket is not a
5378 conditional, we convert the BRA code to the POS form, and the KET code to
5379 KETRPOS. (It turns out to be convenient at runtime to detect this kind of
5380 subpattern at both the start and at the end.) The use of special opcodes
5381 makes it possible to reduce greatly the stack usage in pcre_exec(). If
5382 the group is preceded by OP_BRAZERO, convert this to OP_BRAPOSZERO.
5383
5384 Then, if the minimum number of matches is 1 or 0, cancel the possessive
5385 flag so that the default action below, of wrapping everything inside
5386 atomic brackets, does not happen. When the minimum is greater than 1,
5387 there will be earlier copies of the group, and so we still have to wrap
5388 the whole thing. */
5389
5390 else
5391 {
5392 pcre_uchar *ketcode = code - 1 - LINK_SIZE;
5393 pcre_uchar *bracode = ketcode - GET(ketcode, 1);
5394
5395 /* Convert possessive ONCE brackets to non-capturing */
5396
5397 if ((*bracode == OP_ONCE || *bracode == OP_ONCE_NC) &&
5398 possessive_quantifier) *bracode = OP_BRA;
5399
5400 /* For non-possessive ONCE brackets, all we need to do is to
5401 set the KET. */
5402
5403 if (*bracode == OP_ONCE || *bracode == OP_ONCE_NC)
5404 *ketcode = OP_KETRMAX + repeat_type;
5405
5406 /* Handle non-ONCE brackets and possessive ONCEs (which have been
5407 converted to non-capturing above). */
5408
5409 else
5410 {
5411 /* In the compile phase, check for empty string matching. */
5412
5413 if (lengthptr == NULL)
5414 {
5415 pcre_uchar *scode = bracode;
5416 do
5417 {
5418 if (could_be_empty_branch(scode, ketcode, utf, cd))
5419 {
5420 *bracode += OP_SBRA - OP_BRA;
5421 break;
5422 }
5423 scode += GET(scode, 1);
5424 }
5425 while (*scode == OP_ALT);
5426 }
5427
5428 /* Handle possessive quantifiers. */
5429
5430 if (possessive_quantifier)
5431 {
5432 /* For COND brackets, we wrap the whole thing in a possessively
5433 repeated non-capturing bracket, because we have not invented POS
5434 versions of the COND opcodes. Because we are moving code along, we
5435 must ensure that any pending recursive references are updated. */
5436
5437 if (*bracode == OP_COND || *bracode == OP_SCOND)
5438 {
5439 int nlen = (int)(code - bracode);
5440 *code = OP_END;
5441 adjust_recurse(bracode, 1 + LINK_SIZE, utf, cd, save_hwm);
5442 memmove(bracode + 1 + LINK_SIZE, bracode, IN_UCHARS(nlen));
5443 code += 1 + LINK_SIZE;
5444 nlen += 1 + LINK_SIZE;
5445 *bracode = OP_BRAPOS;
5446 *code++ = OP_KETRPOS;
5447 PUTINC(code, 0, nlen);
5448 PUT(bracode, 1, nlen);
5449 }
5450
5451 /* For non-COND brackets, we modify the BRA code and use KETRPOS. */
5452
5453 else
5454 {
5455 *bracode += 1; /* Switch to xxxPOS opcodes */
5456 *ketcode = OP_KETRPOS;
5457 }
5458
5459 /* If the minimum is zero, mark it as possessive, then unset the
5460 possessive flag when the minimum is 0 or 1. */
5461
5462 if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO;
5463 if (repeat_min < 2) possessive_quantifier = FALSE;
5464 }
5465
5466 /* Non-possessive quantifier */
5467
5468 else *ketcode = OP_KETRMAX + repeat_type;
5469 }
5470 }
5471 }
5472
5473 /* If previous is OP_FAIL, it was generated by an empty class [] in
5474 JavaScript mode. The other ways in which OP_FAIL can be generated, that is
5475 by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat"
5476 error above. We can just ignore the repeat in JS case. */
5477
5478 else if (*previous == OP_FAIL) goto END_REPEAT;
5479
5480 /* Else there's some kind of shambles */
5481
5482 else
5483 {
5484 *errorcodeptr = ERR11;
5485 goto FAILED;
5486 }
5487
5488 /* If the character following a repeat is '+', or if certain optimization
5489 tests above succeeded, possessive_quantifier is TRUE. For some opcodes,
5490 there are special alternative opcodes for this case. For anything else, we
5491 wrap the entire repeated item inside OP_ONCE brackets. Logically, the '+'
5492 notation is just syntactic sugar, taken from Sun's Java package, but the
5493 special opcodes can optimize it.
5494
5495 Some (but not all) possessively repeated subpatterns have already been
5496 completely handled in the code just above. For them, possessive_quantifier
5497 is always FALSE at this stage.
5498
5499 Note that the repeated item starts at tempcode, not at previous, which
5500 might be the first part of a string whose (former) last char we repeated.
5501
5502 Possessifying an 'exact' quantifier has no effect, so we can ignore it. But
5503 an 'upto' may follow. We skip over an 'exact' item, and then test the
5504 length of what remains before proceeding. */
5505
5506 if (possessive_quantifier)
5507 {
5508 int len;
5509
5510 if (*tempcode == OP_TYPEEXACT)
5511 tempcode += PRIV(OP_lengths)[*tempcode] +
5512 ((tempcode[1 + IMM2_SIZE] == OP_PROP
5513 || tempcode[1 + IMM2_SIZE] == OP_NOTPROP)? 2 : 0);
5514
5515 else if (*tempcode == OP_EXACT || *tempcode == OP_NOTEXACT)
5516 {
5517 tempcode += PRIV(OP_lengths)[*tempcode];
5518 #ifdef SUPPORT_UTF
5519 if (utf && HAS_EXTRALEN(tempcode[-1]))
5520 tempcode += GET_EXTRALEN(tempcode[-1]);
5521 #endif
5522 }
5523
5524 len = (int)(code - tempcode);
5525 if (len > 0) switch (*tempcode)
5526 {
5527 case OP_STAR: *tempcode = OP_POSSTAR; break;
5528 case OP_PLUS: *tempcode = OP_POSPLUS; break;
5529 case OP_QUERY: *tempcode = OP_POSQUERY; break;
5530 case OP_UPTO: *tempcode = OP_POSUPTO; break;
5531
5532 case OP_STARI: *tempcode = OP_POSSTARI; break;
5533 case OP_PLUSI: *tempcode = OP_POSPLUSI; break;
5534 case OP_QUERYI: *tempcode = OP_POSQUERYI; break;
5535 case OP_UPTOI: *tempcode = OP_POSUPTOI; break;
5536
5537 case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break;
5538 case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break;
5539 case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break;
5540 case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break;
5541
5542 case OP_NOTSTARI: *tempcode = OP_NOTPOSSTARI; break;
5543 case OP_NOTPLUSI: *tempcode = OP_NOTPOSPLUSI; break;
5544 case OP_NOTQUERYI: *tempcode = OP_NOTPOSQUERYI; break;
5545 case OP_NOTUPTOI: *tempcode = OP_NOTPOSUPTOI; break;
5546
5547 case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break;
5548 case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break;
5549 case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break;
5550 case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break;
5551
5552 /* Because we are moving code along, we must ensure that any
5553 pending recursive references are updated. */
5554
5555 default:
5556 *code = OP_END;
5557 adjust_recurse(tempcode, 1 + LINK_SIZE, utf, cd, save_hwm);
5558 memmove(tempcode + 1 + LINK_SIZE, tempcode, IN_UCHARS(len));
5559 code += 1 + LINK_SIZE;
5560 len += 1 + LINK_SIZE;
5561 tempcode[0] = OP_ONCE;
5562 *code++ = OP_KET;
5563 PUTINC(code, 0, len);
5564 PUT(tempcode, 1, len);
5565 break;
5566 }
5567 }
5568
5569 /* In all case we no longer have a previous item. We also set the
5570 "follows varying string" flag for subsequently encountered reqchars if
5571 it isn't already set and we have just passed a varying length item. */
5572
5573 END_REPEAT:
5574 previous = NULL;
5575 cd->req_varyopt |= reqvary;
5576 break;
5577
5578
5579 /* ===================================================================*/
5580 /* Start of nested parenthesized sub-expression, or comment or lookahead or
5581 lookbehind or option setting or condition or all the other extended
5582 parenthesis forms. */
5583
5584 case CHAR_LEFT_PARENTHESIS:
5585 newoptions = options;
5586 skipbytes = 0;
5587 bravalue = OP_CBRA;
5588 save_hwm = cd->hwm;
5589 reset_bracount = FALSE;
5590
5591 /* First deal with various "verbs" that can be introduced by '*'. */
5592
5593 ptr++;
5594 if (ptr[0] == CHAR_ASTERISK && (ptr[1] == ':'
5595 || (MAX_255(ptr[1]) && ((cd->ctypes[ptr[1]] & ctype_letter) != 0))))
5596 {
5597 int i, namelen;
5598 int arglen = 0;
5599 const char *vn = verbnames;
5600 const pcre_uchar *name = ptr + 1;
5601 const pcre_uchar *arg = NULL;
5602 previous = NULL;
5603 ptr++;
5604 while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_letter) != 0) ptr++;
5605 namelen = (int)(ptr - name);
5606
5607 /* It appears that Perl allows any characters whatsoever, other than
5608 a closing parenthesis, to appear in arguments, so we no longer insist on
5609 letters, digits, and underscores. */
5610
5611 if (*ptr == CHAR_COLON)
5612 {
5613 arg = ++ptr;
5614 while (*ptr != CHAR_NULL && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
5615 arglen = (int)(ptr - arg);
5616 if ((unsigned int)arglen > MAX_MARK)
5617 {
5618 *errorcodeptr = ERR75;
5619 goto FAILED;
5620 }
5621 }
5622
5623 if (*ptr != CHAR_RIGHT_PARENTHESIS)
5624 {
5625 *errorcodeptr = ERR60;
5626 goto FAILED;
5627 }
5628
5629 /* Scan the table of verb names */
5630
5631 for (i = 0; i < verbcount; i++)
5632 {
5633 if (namelen == verbs[i].len &&
5634 STRNCMP_UC_C8(name, vn, namelen) == 0)
5635 {
5636 int setverb;
5637
5638 /* Check for open captures before ACCEPT and convert it to
5639 ASSERT_ACCEPT if in an assertion. */
5640
5641 if (verbs[i].op == OP_ACCEPT)
5642 {
5643 open_capitem *oc;
5644 if (arglen != 0)
5645 {
5646 *errorcodeptr = ERR59;
5647 goto FAILED;
5648 }
5649 cd->had_accept = TRUE;
5650 for (oc = cd->open_caps; oc != NULL; oc = oc->next)
5651 {
5652 *code++ = OP_CLOSE;
5653 PUT2INC(code, 0, oc->number);
5654 }
5655 setverb = *code++ =
5656 (cd->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT;
5657
5658 /* Do not set firstchar after *ACCEPT */
5659 if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
5660 }
5661
5662 /* Handle other cases with/without an argument */
5663
5664 else if (arglen == 0)
5665 {
5666 if (verbs[i].op < 0) /* Argument is mandatory */
5667 {
5668 *errorcodeptr = ERR66;
5669 goto FAILED;
5670 }
5671 setverb = *code++ = verbs[i].op;
5672 }
5673
5674 else
5675 {
5676 if (verbs[i].op_arg < 0) /* Argument is forbidden */
5677 {
5678 *errorcodeptr = ERR59;
5679 goto FAILED;
5680 }
5681 setverb = *code++ = verbs[i].op_arg;
5682 *code++ = arglen;
5683 memcpy(code, arg, IN_UCHARS(arglen));
5684 code += arglen;
5685 *code++ = 0;
5686 }
5687
5688 switch (setverb)
5689 {
5690 case OP_THEN:
5691 case OP_THEN_ARG:
5692 cd->external_flags |= PCRE_HASTHEN;
5693 break;
5694
5695 case OP_PRUNE:
5696 case OP_PRUNE_ARG:
5697 case OP_SKIP:
5698 case OP_SKIP_ARG:
5699 cd->had_pruneorskip = TRUE;
5700 break;
5701 }
5702
5703 break; /* Found verb, exit loop */
5704 }
5705
5706 vn += verbs[i].len + 1;
5707 }
5708
5709 if (i < verbcount) continue; /* Successfully handled a verb */
5710 *errorcodeptr = ERR60; /* Verb not recognized */
5711 goto FAILED;
5712 }
5713
5714 /* Deal with the extended parentheses; all are introduced by '?', and the
5715 appearance of any of them means that this is not a capturing group. */
5716
5717 else if (*ptr == CHAR_QUESTION_MARK)
5718 {
5719 int i, set, unset, namelen;
5720 int *optset;
5721 const pcre_uchar *name;
5722 pcre_uchar *slot;
5723
5724 switch (*(++ptr))
5725 {
5726 case CHAR_NUMBER_SIGN: /* Comment; skip to ket */
5727 ptr++;
5728 while (*ptr != CHAR_NULL && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
5729 if (*ptr == CHAR_NULL)
5730 {
5731 *errorcodeptr = ERR18;
5732 goto FAILED;
5733 }
5734 continue;
5735
5736
5737 /* ------------------------------------------------------------ */
5738 case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */
5739 reset_bracount = TRUE;
5740 /* Fall through */
5741
5742 /* ------------------------------------------------------------ */
5743 case CHAR_COLON: /* Non-capturing bracket */
5744 bravalue = OP_BRA;
5745 ptr++;
5746 break;
5747
5748
5749 /* ------------------------------------------------------------ */
5750 case CHAR_LEFT_PARENTHESIS:
5751 bravalue = OP_COND; /* Conditional group */
5752
5753 /* A condition can be an assertion, a number (referring to a numbered
5754 group), a name (referring to a named group), or 'R', referring to
5755 recursion. R<digits> and R&name are also permitted for recursion tests.
5756
5757 There are several syntaxes for testing a named group: (?(name)) is used
5758 by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')).
5759
5760 There are two unfortunate ambiguities, caused by history. (a) 'R' can
5761 be the recursive thing or the name 'R' (and similarly for 'R' followed
5762 by digits), and (b) a number could be a name that consists of digits.
5763 In both cases, we look for a name first; if not found, we try the other
5764 cases. */
5765
5766 /* For conditions that are assertions, check the syntax, and then exit
5767 the switch. This will take control down to where bracketed groups,
5768 including assertions, are processed. */
5769
5770 if (ptr[1] == CHAR_QUESTION_MARK && (ptr[2] == CHAR_EQUALS_SIGN ||
5771 ptr[2] == CHAR_EXCLAMATION_MARK || ptr[2] == CHAR_LESS_THAN_SIGN))
5772 break;
5773
5774 /* Most other conditions use OP_CREF (a couple change to OP_RREF
5775 below), and all need to skip 1+IMM2_SIZE bytes at the start of the group. */
5776
5777 code[1+LINK_SIZE] = OP_CREF;
5778 skipbytes = 1+IMM2_SIZE;
5779 refsign = -1;
5780
5781 /* Check for a test for recursion in a named group. */
5782
5783 if (ptr[1] == CHAR_R && ptr[2] == CHAR_AMPERSAND)
5784 {
5785 terminator = -1;
5786 ptr += 2;
5787 code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */
5788 }
5789
5790 /* Check for a test for a named group's having been set, using the Perl
5791 syntax (?(<name>) or (?('name') */
5792
5793 else if (ptr[1] == CHAR_LESS_THAN_SIGN)
5794 {
5795 terminator = CHAR_GREATER_THAN_SIGN;
5796 ptr++;
5797 }
5798 else if (ptr[1] == CHAR_APOSTROPHE)
5799 {
5800 terminator = CHAR_APOSTROPHE;
5801 ptr++;
5802 }
5803 else
5804 {
5805 terminator = CHAR_NULL;
5806 if (ptr[1] == CHAR_MINUS || ptr[1] == CHAR_PLUS) refsign = *(++ptr);
5807 }
5808
5809 /* We now expect to read a name; any thing else is an error */
5810
5811 if (!MAX_255(ptr[1]) || (cd->ctypes[ptr[1]] & ctype_word) == 0)
5812 {
5813 ptr += 1; /* To get the right offset */
5814 *errorcodeptr = ERR28;
5815 goto FAILED;
5816 }
5817
5818 /* Read the name, but also get it as a number if it's all digits */
5819
5820 recno = 0;
5821 name = ++ptr;
5822 while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0)
5823 {
5824 if (recno >= 0)
5825 recno = (IS_DIGIT(*ptr))? recno * 10 + (int)(*ptr - CHAR_0) : -1;
5826 ptr++;
5827 }
5828 namelen = (int)(ptr - name);
5829
5830 if ((terminator > 0 && *ptr++ != (pcre_uchar)terminator) ||
5831 *ptr++ != CHAR_RIGHT_PARENTHESIS)
5832 {
5833 ptr--; /* Error offset */
5834 *errorcodeptr = ERR26;
5835 goto FAILED;
5836 }
5837
5838 /* Do no further checking in the pre-compile phase. */
5839
5840 if (lengthptr != NULL) break;
5841
5842 /* In the real compile we do the work of looking for the actual
5843 reference. If the string started with "+" or "-" we require the rest to
5844 be digits, in which case recno will be set. */
5845
5846 if (refsign > 0)
5847 {
5848 if (recno <= 0)
5849 {
5850 *errorcodeptr = ERR58;
5851 goto FAILED;
5852 }
5853 recno = (refsign == CHAR_MINUS)?
5854 cd->bracount - recno + 1 : recno +cd->bracount;
5855 if (recno <= 0 || recno > cd->final_bracount)
5856 {
5857 *errorcodeptr = ERR15;
5858 goto FAILED;
5859 }
5860 PUT2(code, 2+LINK_SIZE, recno);
5861 break;
5862 }
5863
5864 /* Otherwise (did not start with "+" or "-"), start by looking for the
5865 name. If we find a name, add one to the opcode to change OP_CREF or
5866 OP_RREF into OP_NCREF or OP_NRREF. These behave exactly the same,
5867 except they record that the reference was originally to a name. The
5868 information is used to check duplicate names. */
5869
5870 slot = cd->name_table;
5871 for (i = 0; i < cd->names_found; i++)
5872 {
5873 if (STRNCMP_UC_UC(name, slot+IMM2_SIZE, namelen) == 0) break;
5874 slot += cd->name_entry_size;
5875 }
5876
5877 /* Found a previous named subpattern */
5878
5879 if (i < cd->names_found)
5880 {
5881 recno = GET2(slot, 0);
5882 PUT2(code, 2+LINK_SIZE, recno);
5883 code[1+LINK_SIZE]++;
5884 }
5885
5886 /* Search the pattern for a forward reference */
5887
5888 else if ((i = find_parens(cd, name, namelen,
5889 (options & PCRE_EXTENDED) != 0, utf)) > 0)
5890 {
5891 PUT2(code, 2+LINK_SIZE, i);
5892 code[1+LINK_SIZE]++;
5893 }
5894
5895 /* If terminator == CHAR_NULL it means that the name followed directly
5896 after the opening parenthesis [e.g. (?(abc)...] and in this case there
5897 are some further alternatives to try. For the cases where terminator !=
5898 0 [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have
5899 now checked all the possibilities, so give an error. */
5900
5901 else if (terminator != CHAR_NULL)
5902 {
5903 *errorcodeptr = ERR15;
5904 goto FAILED;
5905 }
5906
5907 /* Check for (?(R) for recursion. Allow digits after R to specify a
5908 specific group number. */
5909
5910 else if (*name == CHAR_R)
5911 {
5912 recno = 0;
5913 for (i = 1; i < namelen; i++)
5914 {
5915 if (!IS_DIGIT(name[i]))
5916 {
5917 *errorcodeptr = ERR15;
5918 goto FAILED;
5919 }
5920 recno = recno * 10 + name[i] - CHAR_0;
5921 }
5922 if (recno == 0) recno = RREF_ANY;
5923 code[1+LINK_SIZE] = OP_RREF; /* Change test type */
5924 PUT2(code, 2+LINK_SIZE, recno);
5925 }
5926
5927 /* Similarly, check for the (?(DEFINE) "condition", which is always
5928 false. */
5929
5930 else if (namelen == 6 && STRNCMP_UC_C8(name, STRING_DEFINE, 6) == 0)
5931 {
5932 code[1+LINK_SIZE] = OP_DEF;
5933 skipbytes = 1;
5934 }
5935
5936 /* Check for the "name" actually being a subpattern number. We are
5937 in the second pass here, so final_bracount is set. */
5938
5939 else if (recno > 0 && recno <= cd->final_bracount)
5940 {
5941 PUT2(code, 2+LINK_SIZE, recno);
5942 }
5943
5944 /* Either an unidentified subpattern, or a reference to (?(0) */
5945
5946 else
5947 {
5948 *errorcodeptr = (recno == 0)? ERR35: ERR15;
5949 goto FAILED;
5950 }
5951 break;
5952
5953
5954 /* ------------------------------------------------------------ */
5955 case CHAR_EQUALS_SIGN: /* Positive lookahead */
5956 bravalue = OP_ASSERT;
5957 cd->assert_depth += 1;
5958 ptr++;
5959 break;
5960
5961
5962 /* ------------------------------------------------------------ */
5963 case CHAR_EXCLAMATION_MARK: /* Negative lookahead */
5964 ptr++;
5965 if (*ptr == CHAR_RIGHT_PARENTHESIS) /* Optimize (?!) */
5966 {
5967 *code++ = OP_FAIL;
5968 previous = NULL;
5969 continue;
5970 }
5971 bravalue = OP_ASSERT_NOT;
5972 cd->assert_depth += 1;
5973 break;
5974
5975
5976 /* ------------------------------------------------------------ */
5977 case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */
5978 switch (ptr[1])
5979 {
5980 case CHAR_EQUALS_SIGN: /* Positive lookbehind */
5981 bravalue = OP_ASSERTBACK;
5982 cd->assert_depth += 1;
5983 ptr += 2;
5984 break;
5985
5986 case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */
5987 bravalue = OP_ASSERTBACK_NOT;
5988 cd->assert_depth += 1;
5989 ptr += 2;
5990 break;
5991
5992 default: /* Could be name define, else bad */
5993 if (MAX_255(ptr[1]) && (cd->ctypes[ptr[1]] & ctype_word) != 0)
5994 goto DEFINE_NAME;
5995 ptr++; /* Correct offset for error */
5996 *errorcodeptr = ERR24;
5997 goto FAILED;
5998 }
5999 break;
6000
6001
6002 /* ------------------------------------------------------------ */
6003 case CHAR_GREATER_THAN_SIGN: /* One-time brackets */
6004 bravalue = OP_ONCE;
6005 ptr++;
6006 break;
6007
6008
6009 /* ------------------------------------------------------------ */
6010 case CHAR_C: /* Callout - may be followed by digits; */
6011 previous_callout = code; /* Save for later completion */
6012 after_manual_callout = 1; /* Skip one item before completing */
6013 *code++ = OP_CALLOUT;
6014 {
6015 int n = 0;
6016 ptr++;
6017 while(IS_DIGIT(*ptr))
6018 n = n * 10 + *ptr++ - CHAR_0;
6019 if (*ptr != CHAR_RIGHT_PARENTHESIS)
6020 {
6021 *errorcodeptr = ERR39;
6022 goto FAILED;
6023 }
6024 if (n > 255)
6025 {
6026 *errorcodeptr = ERR38;
6027 goto FAILED;
6028 }
6029 *code++ = n;
6030 PUT(code, 0, (int)(ptr - cd->start_pattern + 1)); /* Pattern offset */
6031 PUT(code, LINK_SIZE, 0); /* Default length */
6032 code += 2 * LINK_SIZE;
6033 }
6034 previous = NULL;
6035 continue;
6036
6037
6038 /* ------------------------------------------------------------ */
6039 case CHAR_P: /* Python-style named subpattern handling */
6040 if (*(++ptr) == CHAR_EQUALS_SIGN ||
6041 *ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */
6042 {
6043 is_recurse = *ptr == CHAR_GREATER_THAN_SIGN;
6044 terminator = CHAR_RIGHT_PARENTHESIS;
6045 goto NAMED_REF_OR_RECURSE;
6046 }
6047 else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */
6048 {
6049 *errorcodeptr = ERR41;
6050 goto FAILED;
6051 }
6052 /* Fall through to handle (?P< as (?< is handled */
6053
6054
6055 /* ------------------------------------------------------------ */
6056 DEFINE_NAME: /* Come here from (?< handling */
6057 case CHAR_APOSTROPHE:
6058 {
6059 terminator = (*ptr == CHAR_LESS_THAN_SIGN)?
6060 CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE;
6061 name = ++ptr;
6062
6063 while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
6064 namelen = (int)(ptr - name);
6065
6066 /* In the pre-compile phase, just do a syntax check. */
6067
6068 if (lengthptr != NULL)
6069 {
6070 if (*ptr != (pcre_uchar)terminator)
6071 {
6072 *errorcodeptr = ERR42;
6073 goto FAILED;
6074 }
6075 if (cd->names_found >= MAX_NAME_COUNT)
6076 {
6077 *errorcodeptr = ERR49;
6078 goto FAILED;
6079 }
6080 if (namelen + IMM2_SIZE + 1 > cd->name_entry_size)
6081 {
6082 cd->name_entry_size = namelen + IMM2_SIZE + 1;
6083 if (namelen > MAX_NAME_SIZE)
6084 {
6085 *errorcodeptr = ERR48;
6086 goto FAILED;
6087 }
6088 }
6089 }
6090
6091 /* In the real compile, create the entry in the table, maintaining
6092 alphabetical order. Duplicate names for different numbers are
6093 permitted only if PCRE_DUPNAMES is set. Duplicate names for the same
6094 number are always OK. (An existing number can be re-used if (?|
6095 appears in the pattern.) In either event, a duplicate name results in
6096 a duplicate entry in the table, even if the number is the same. This
6097 is because the number of names, and hence the table size, is computed
6098 in the pre-compile, and it affects various numbers and pointers which
6099 would all have to be modified, and the compiled code moved down, if
6100 duplicates with the same number were omitted from the table. This
6101 doesn't seem worth the hassle. However, *different* names for the
6102 same number are not permitted. */
6103
6104 else
6105 {
6106 BOOL dupname = FALSE;
6107 slot = cd->name_table;
6108
6109 for (i = 0; i < cd->names_found; i++)
6110 {
6111 int crc = memcmp(name, slot+IMM2_SIZE, IN_UCHARS(namelen));
6112 if (crc == 0)
6113 {
6114 if (slot[IMM2_SIZE+namelen] == 0)
6115 {
6116 if (GET2(slot, 0) != cd->bracount + 1 &&
6117 (options & PCRE_DUPNAMES) == 0)
6118 {
6119 *errorcodeptr = ERR43;
6120 goto FAILED;
6121 }
6122 else dupname = TRUE;
6123 }
6124 else crc = -1; /* Current name is a substring */
6125 }
6126
6127 /* Make space in the table and break the loop for an earlier
6128 name. For a duplicate or later name, carry on. We do this for
6129 duplicates so that in the simple case (when ?(| is not used) they
6130 are in order of their numbers. */
6131
6132 if (crc < 0)
6133 {
6134 memmove(slot + cd->name_entry_size, slot,
6135 IN_UCHARS((cd->names_found - i) * cd->name_entry_size));
6136 break;
6137 }
6138
6139 /* Continue the loop for a later or duplicate name */
6140
6141 slot += cd->name_entry_size;
6142 }
6143
6144 /* For non-duplicate names, check for a duplicate number before
6145 adding the new name. */
6146
6147 if (!dupname)
6148 {
6149 pcre_uchar *cslot = cd->name_table;
6150 for (i = 0; i < cd->names_found; i++)
6151 {
6152 if (cslot != slot)
6153 {
6154 if (GET2(cslot, 0) == cd->bracount + 1)
6155 {
6156 *errorcodeptr = ERR65;
6157 goto FAILED;
6158 }
6159 }
6160 else i--;
6161 cslot += cd->name_entry_size;
6162 }
6163 }
6164
6165 PUT2(slot, 0, cd->bracount + 1);
6166 memcpy(slot + IMM2_SIZE, name, IN_UCHARS(namelen));
6167 slot[IMM2_SIZE + namelen] = 0;
6168 }
6169 }
6170
6171 /* In both pre-compile and compile, count the number of names we've
6172 encountered. */
6173
6174 cd->names_found++;
6175 ptr++; /* Move past > or ' */
6176 goto NUMBERED_GROUP;
6177
6178
6179 /* ------------------------------------------------------------ */
6180 case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */
6181 terminator = CHAR_RIGHT_PARENTHESIS;
6182 is_recurse = TRUE;
6183 /* Fall through */
6184
6185 /* We come here from the Python syntax above that handles both
6186 references (?P=name) and recursion (?P>name), as well as falling
6187 through from the Perl recursion syntax (?&name). We also come here from
6188 the Perl \k<name> or \k'name' back reference syntax and the \k{name}
6189 .NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */
6190
6191 NAMED_REF_OR_RECURSE:
6192 name = ++ptr;
6193 while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
6194 namelen = (int)(ptr - name);
6195
6196 /* In the pre-compile phase, do a syntax check. We used to just set
6197 a dummy reference number, because it was not used in the first pass.
6198 However, with the change of recursive back references to be atomic,
6199 we have to look for the number so that this state can be identified, as
6200 otherwise the incorrect length is computed. If it's not a backwards
6201 reference, the dummy number will do. */
6202
6203 if (lengthptr != NULL)
6204 {
6205 const pcre_uchar *temp;
6206
6207 if (namelen == 0)
6208 {
6209 *errorcodeptr = ERR62;
6210 goto FAILED;
6211 }
6212 if (*ptr != (pcre_uchar)terminator)
6213 {
6214 *errorcodeptr = ERR42;
6215 goto FAILED;
6216 }
6217 if (namelen > MAX_NAME_SIZE)
6218 {
6219 *errorcodeptr = ERR48;
6220 goto FAILED;
6221 }
6222
6223 /* The name table does not exist in the first pass, so we cannot
6224 do a simple search as in the code below. Instead, we have to scan the
6225 pattern to find the number. It is important that we scan it only as
6226 far as we have got because the syntax of named subpatterns has not
6227 been checked for the rest of the pattern, and find_parens() assumes
6228 correct syntax. In any case, it's a waste of resources to scan
6229 further. We stop the scan at the current point by temporarily
6230 adjusting the value of cd->endpattern. */
6231
6232 temp = cd->end_pattern;
6233 cd->end_pattern = ptr;
6234 recno = find_parens(cd, name, namelen,
6235 (options & PCRE_EXTENDED) != 0, utf);
6236 cd->end_pattern = temp;
6237 if (recno < 0) recno = 0; /* Forward ref; set dummy number */
6238 }
6239
6240 /* In the real compile, seek the name in the table. We check the name
6241 first, and then check that we have reached the end of the name in the
6242 table. That way, if the name that is longer than any in the table,
6243 the comparison will fail without reading beyond the table entry. */
6244
6245 else
6246 {
6247 slot = cd->name_table;
6248 for (i = 0; i < cd->names_found; i++)
6249 {
6250 if (STRNCMP_UC_UC(name, slot+IMM2_SIZE, namelen) == 0 &&
6251 slot[IMM2_SIZE+namelen] == 0)
6252 break;
6253 slot += cd->name_entry_size;
6254 }
6255
6256 if (i < cd->names_found) /* Back reference */
6257 {
6258 recno = GET2(slot, 0);
6259 }
6260 else if ((recno = /* Forward back reference */
6261 find_parens(cd, name, namelen,
6262 (options & PCRE_EXTENDED) != 0, utf)) <= 0)
6263 {
6264 *errorcodeptr = ERR15;
6265 goto FAILED;
6266 }
6267 }
6268
6269 /* In both phases, we can now go to the code than handles numerical
6270 recursion or backreferences. */
6271
6272 if (is_recurse) goto HANDLE_RECURSION;
6273 else goto HANDLE_REFERENCE;
6274
6275
6276 /* ------------------------------------------------------------ */
6277 case CHAR_R: /* Recursion */
6278 ptr++; /* Same as (?0) */
6279 /* Fall through */
6280
6281
6282 /* ------------------------------------------------------------ */
6283 case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */
6284 case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4:
6285 case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
6286 {
6287 const pcre_uchar *called;
6288 terminator = CHAR_RIGHT_PARENTHESIS;
6289
6290 /* Come here from the \g<...> and \g'...' code (Oniguruma
6291 compatibility). However, the syntax has been checked to ensure that
6292 the ... are a (signed) number, so that neither ERR63 nor ERR29 will
6293 be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY
6294 ever be taken. */
6295
6296 HANDLE_NUMERICAL_RECURSION:
6297
6298 if ((refsign = *ptr) == CHAR_PLUS)
6299 {
6300 ptr++;
6301 if (!IS_DIGIT(*ptr))
6302 {
6303 *errorcodeptr = ERR63;
6304 goto FAILED;
6305 }
6306 }
6307 else if (refsign == CHAR_MINUS)
6308 {
6309 if (!IS_DIGIT(ptr[1]))
6310 goto OTHER_CHAR_AFTER_QUERY;
6311 ptr++;
6312 }
6313
6314 recno = 0;
6315 while(IS_DIGIT(*ptr))
6316 recno = recno * 10 + *ptr++ - CHAR_0;
6317
6318 if (*ptr != (pcre_uchar)terminator)
6319 {
6320 *errorcodeptr = ERR29;
6321 goto FAILED;
6322 }
6323
6324 if (refsign == CHAR_MINUS)
6325 {
6326 if (recno == 0)
6327 {
6328 *errorcodeptr = ERR58;
6329 goto FAILED;
6330 }
6331 recno = cd->bracount - recno + 1;
6332 if (recno <= 0)
6333 {
6334 *errorcodeptr = ERR15;
6335 goto FAILED;
6336 }
6337 }
6338 else if (refsign == CHAR_PLUS)
6339 {
6340 if (recno == 0)
6341 {
6342 *errorcodeptr = ERR58;
6343 goto FAILED;
6344 }
6345 recno += cd->bracount;
6346 }
6347
6348 /* Come here from code above that handles a named recursion */
6349
6350 HANDLE_RECURSION:
6351
6352 previous = code;
6353 called = cd->start_code;
6354
6355 /* When we are actually compiling, find the bracket that is being
6356 referenced. Temporarily end the regex in case it doesn't exist before
6357 this point. If we end up with a forward reference, first check that
6358 the bracket does occur later so we can give the error (and position)
6359 now. Then remember this forward reference in the workspace so it can
6360 be filled in at the end. */
6361
6362 if (lengthptr == NULL)
6363 {
6364 *code = OP_END;
6365 if (recno != 0)
6366 called = PRIV(find_bracket)(cd->start_code, utf, recno);
6367
6368 /* Forward reference */
6369
6370 if (called == NULL)
6371 {
6372 if (find_parens(cd, NULL, recno,
6373 (options & PCRE_EXTENDED) != 0, utf) < 0)
6374 {
6375 *errorcodeptr = ERR15;
6376 goto FAILED;
6377 }
6378
6379 /* Fudge the value of "called" so that when it is inserted as an
6380 offset below, what it actually inserted is the reference number
6381 of the group. Then remember the forward reference. */
6382
6383 called = cd->start_code + recno;
6384 if (cd->hwm >= cd->start_workspace + cd->workspace_size -
6385 WORK_SIZE_SAFETY_MARGIN)
6386 {
6387 *errorcodeptr = expand_workspace(cd);
6388 if (*errorcodeptr != 0) goto FAILED;
6389 }
6390 PUTINC(cd->hwm, 0, (int)(code + 1 - cd->start_code));
6391 }
6392
6393 /* If not a forward reference, and the subpattern is still open,
6394 this is a recursive call. We check to see if this is a left
6395 recursion that could loop for ever, and diagnose that case. We
6396 must not, however, do this check if we are in a conditional
6397 subpattern because the condition might be testing for recursion in
6398 a pattern such as /(?(R)a+|(?R)b)/, which is perfectly valid.
6399 Forever loops are also detected at runtime, so those that occur in
6400 conditional subpatterns will be picked up then. */
6401
6402 else if (GET(called, 1) == 0 && cond_depth <= 0 &&
6403 could_be_empty(called, code, bcptr, utf, cd))
6404 {
6405 *errorcodeptr = ERR40;
6406 goto FAILED;
6407 }
6408 }
6409
6410 /* Insert the recursion/subroutine item. It does not have a set first
6411 character (relevant if it is repeated, because it will then be
6412 wrapped with ONCE brackets). */
6413
6414 *code = OP_RECURSE;
6415 PUT(code, 1, (int)(called - cd->start_code));
6416 code += 1 + LINK_SIZE;
6417 groupsetfirstchar = FALSE;
6418 }
6419
6420 /* Can't determine a first byte now */
6421
6422 if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
6423 continue;
6424
6425
6426 /* ------------------------------------------------------------ */
6427 default: /* Other characters: check option setting */
6428 OTHER_CHAR_AFTER_QUERY:
6429 set = unset = 0;
6430 optset = &set;
6431
6432 while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON)
6433 {
6434 switch (*ptr++)
6435 {
6436 case CHAR_MINUS: optset = &unset; break;
6437
6438 case CHAR_J: /* Record that it changed in the external options */
6439 *optset |= PCRE_DUPNAMES;
6440 cd->external_flags |= PCRE_JCHANGED;
6441 break;
6442
6443 case CHAR_i: *optset |= PCRE_CASELESS; break;
6444 case CHAR_m: *optset |= PCRE_MULTILINE; break;
6445 case CHAR_s: *optset |= PCRE_DOTALL; break;
6446 case CHAR_x: *optset |= PCRE_EXTENDED; break;
6447 case CHAR_U: *optset |= PCRE_UNGREEDY; break;
6448 case CHAR_X: *optset |= PCRE_EXTRA; break;
6449
6450 default: *errorcodeptr = ERR12;
6451 ptr--; /* Correct the offset */
6452 goto FAILED;
6453 }
6454 }
6455
6456 /* Set up the changed option bits, but don't change anything yet. */
6457
6458 newoptions = (options | set) & (~unset);
6459
6460 /* If the options ended with ')' this is not the start of a nested
6461 group with option changes, so the options change at this level. If this
6462 item is right at the start of the pattern, the options can be
6463 abstracted and made external in the pre-compile phase, and ignored in
6464 the compile phase. This can be helpful when matching -- for instance in
6465 caseless checking of required bytes.
6466
6467 If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are
6468 definitely *not* at the start of the pattern because something has been
6469 compiled. In the pre-compile phase, however, the code pointer can have
6470 that value after the start, because it gets reset as code is discarded
6471 during the pre-compile. However, this can happen only at top level - if
6472 we are within parentheses, the starting BRA will still be present. At
6473 any parenthesis level, the length value can be used to test if anything
6474 has been compiled at that level. Thus, a test for both these conditions
6475 is necessary to ensure we correctly detect the start of the pattern in
6476 both phases.
6477
6478 If we are not at the pattern start, reset the greedy defaults and the
6479 case value for firstchar and reqchar. */
6480
6481 if (*ptr == CHAR_RIGHT_PARENTHESIS)
6482 {
6483 if (code == cd->start_code + 1 + LINK_SIZE &&
6484 (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE))
6485 {
6486 cd->external_options = newoptions;
6487 }
6488 else
6489 {
6490 greedy_default = ((newoptions & PCRE_UNGREEDY) != 0);
6491 greedy_non_default = greedy_default ^ 1;
6492 req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS:0;
6493 }
6494
6495 /* Change options at this level, and pass them back for use
6496 in subsequent branches. */
6497
6498 *optionsptr = options = newoptions;
6499 previous = NULL; /* This item can't be repeated */
6500 continue; /* It is complete */
6501 }
6502
6503 /* If the options ended with ':' we are heading into a nested group
6504 with possible change of options. Such groups are non-capturing and are
6505 not assertions of any kind. All we need to do is skip over the ':';
6506 the newoptions value is handled below. */
6507
6508 bravalue = OP_BRA;
6509 ptr++;
6510 } /* End of switch for character following (? */
6511 } /* End of (? handling */
6512
6513 /* Opening parenthesis not followed by '*' or '?'. If PCRE_NO_AUTO_CAPTURE
6514 is set, all unadorned brackets become non-capturing and behave like (?:...)
6515 brackets. */
6516
6517 else if ((options & PCRE_NO_AUTO_CAPTURE) != 0)
6518 {
6519 bravalue = OP_BRA;
6520 }
6521
6522 /* Else we have a capturing group. */
6523
6524 else
6525 {
6526 NUMBERED_GROUP:
6527 cd->bracount += 1;
6528 PUT2(code, 1+LINK_SIZE, cd->bracount);
6529 skipbytes = IMM2_SIZE;
6530 }
6531
6532 /* Process nested bracketed regex. Assertions used not to be repeatable,
6533 but this was changed for Perl compatibility, so all kinds can now be
6534 repeated. We copy code into a non-register variable (tempcode) in order to
6535 be able to pass its address because some compilers complain otherwise. */
6536
6537 previous = code; /* For handling repetition */
6538 *code = bravalue;
6539 tempcode = code;
6540 tempreqvary = cd->req_varyopt; /* Save value before bracket */
6541 tempbracount = cd->bracount; /* Save value before bracket */
6542 length_prevgroup = 0; /* Initialize for pre-compile phase */
6543
6544 if (!compile_regex(
6545 newoptions, /* The complete new option state */
6546 &tempcode, /* Where to put code (updated) */
6547 &ptr, /* Input pointer (updated) */
6548 errorcodeptr, /* Where to put an error message */
6549 (bravalue == OP_ASSERTBACK ||
6550 bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */
6551 reset_bracount, /* True if (?| group */
6552 skipbytes, /* Skip over bracket number */
6553 cond_depth +
6554 ((bravalue == OP_COND)?1:0), /* Depth of condition subpatterns */
6555 &subfirstchar, /* For possible first char */
6556 &subfirstcharflags,
6557 &subreqchar, /* For possible last char */
6558 &subreqcharflags,
6559 bcptr, /* Current branch chain */
6560 cd, /* Tables block */
6561 (lengthptr == NULL)? NULL : /* Actual compile phase */
6562 &length_prevgroup /* Pre-compile phase */
6563 ))
6564 goto FAILED;
6565
6566 /* If this was an atomic group and there are no capturing groups within it,
6567 generate OP_ONCE_NC instead of OP_ONCE. */
6568
6569 if (bravalue == OP_ONCE && cd->bracount <= tempbracount)
6570 *code = OP_ONCE_NC;
6571
6572 if (bravalue >= OP_ASSERT && bravalue <= OP_ASSERTBACK_NOT)
6573 cd->assert_depth -= 1;
6574
6575 /* At the end of compiling, code is still pointing to the start of the
6576 group, while tempcode has been updated to point past the end of the group.
6577 The pattern pointer (ptr) is on the bracket.
6578
6579 If this is a conditional bracket, check that there are no more than
6580 two branches in the group, or just one if it's a DEFINE group. We do this
6581 in the real compile phase, not in the pre-pass, where the whole group may
6582 not be available. */
6583
6584 if (bravalue == OP_COND && lengthptr == NULL)
6585 {
6586 pcre_uchar *tc = code;
6587 int condcount = 0;
6588
6589 do {
6590 condcount++;
6591 tc += GET(tc,1);
6592 }
6593 while (*tc != OP_KET);
6594
6595 /* A DEFINE group is never obeyed inline (the "condition" is always
6596 false). It must have only one branch. */
6597
6598 if (code[LINK_SIZE+1] == OP_DEF)
6599 {
6600 if (condcount > 1)
6601 {
6602 *errorcodeptr = ERR54;
6603 goto FAILED;
6604 }
6605 bravalue = OP_DEF; /* Just a flag to suppress char handling below */
6606 }
6607
6608 /* A "normal" conditional group. If there is just one branch, we must not
6609 make use of its firstchar or reqchar, because this is equivalent to an
6610 empty second branch. */
6611
6612 else
6613 {
6614 if (condcount > 2)
6615 {
6616 *errorcodeptr = ERR27;
6617 goto FAILED;
6618 }
6619 if (condcount == 1) subfirstcharflags = subreqcharflags = REQ_NONE;
6620 }
6621 }
6622
6623 /* Error if hit end of pattern */
6624
6625 if (*ptr != CHAR_RIGHT_PARENTHESIS)
6626 {
6627 *errorcodeptr = ERR14;
6628 goto FAILED;
6629 }
6630
6631 /* In the pre-compile phase, update the length by the length of the group,
6632 less the brackets at either end. Then reduce the compiled code to just a
6633 set of non-capturing brackets so that it doesn't use much memory if it is
6634 duplicated by a quantifier.*/
6635
6636 if (lengthptr != NULL)
6637 {
6638 if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE)
6639 {
6640 *