Parent Directory
|
Revision Log
Fix compile loop for subroutine reference when preceded by a non-ASCII single-character class such as [^\ff].
1 | /************************************************* |
2 | * Perl-Compatible Regular Expressions * |
3 | *************************************************/ |
4 | |
5 | /* PCRE is a library of functions to support regular expressions whose syntax |
6 | and semantics are as close as possible to those of the Perl 5 language. |
7 | |
8 | Written by Philip Hazel |
9 | Copyright (c) 1997-2014 University of Cambridge |
10 | |
11 | ----------------------------------------------------------------------------- |
12 | Redistribution and use in source and binary forms, with or without |
13 | modification, are permitted provided that the following conditions are met: |
14 | |
15 | * Redistributions of source code must retain the above copyright notice, |
16 | this list of conditions and the following disclaimer. |
17 | |
18 | * Redistributions in binary form must reproduce the above copyright |
19 | notice, this list of conditions and the following disclaimer in the |
20 | documentation and/or other materials provided with the distribution. |
21 | |
22 | * Neither the name of the University of Cambridge nor the names of its |
23 | contributors may be used to endorse or promote products derived from |
24 | this software without specific prior written permission. |
25 | |
26 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
27 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
28 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
29 | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
30 | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
31 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
32 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
33 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
34 | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
35 | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
36 | POSSIBILITY OF SUCH DAMAGE. |
37 | ----------------------------------------------------------------------------- |
38 | */ |
39 | |
40 | |
41 | /* This module contains the external function pcre_compile(), along with |
42 | supporting internal functions that are not used by other modules. */ |
43 | |
44 | |
45 | #ifdef HAVE_CONFIG_H |
46 | #include "config.h" |
47 | #endif |
48 | |
49 | #define NLBLOCK cd /* Block containing newline information */ |
50 | #define PSSTART start_pattern /* Field containing pattern start */ |
51 | #define PSEND end_pattern /* Field containing pattern end */ |
52 | |
53 | #include "pcre_internal.h" |
54 | |
55 | |
56 | /* When PCRE_DEBUG is defined, we need the pcre(16|32)_printint() function, which |
57 | is also used by pcretest. PCRE_DEBUG is not defined when building a production |
58 | library. We do not need to select pcre16_printint.c specially, because the |
59 | COMPILE_PCREx macro will already be appropriately set. */ |
60 | |
61 | #ifdef PCRE_DEBUG |
62 | /* pcre_printint.c should not include any headers */ |
63 | #define PCRE_INCLUDED |
64 | #include "pcre_printint.c" |
65 | #undef PCRE_INCLUDED |
66 | #endif |
67 | |
68 | |
69 | /* Macro for setting individual bits in class bitmaps. */ |
70 | |
71 | #define SETBIT(a,b) a[(b)/8] |= (1 << ((b)&7)) |
72 | |
73 | /* Maximum length value to check against when making sure that the integer that |
74 | holds the compiled pattern length does not overflow. We make it a bit less than |
75 | INT_MAX to allow for adding in group terminating bytes, so that we don't have |
76 | to check them every time. */ |
77 | |
78 | #define OFLOW_MAX (INT_MAX - 20) |
79 | |
80 | /* Definitions to allow mutual recursion */ |
81 | |
82 | static int |
83 | add_list_to_class(pcre_uint8 *, pcre_uchar **, int, compile_data *, |
84 | const pcre_uint32 *, unsigned int); |
85 | |
86 | static BOOL |
87 | compile_regex(int, pcre_uchar **, const pcre_uchar **, int *, BOOL, BOOL, int, int, |
88 | pcre_uint32 *, pcre_int32 *, pcre_uint32 *, pcre_int32 *, branch_chain *, |
89 | compile_data *, int *); |
90 | |
91 | |
92 | |
93 | /************************************************* |
94 | * Code parameters and static tables * |
95 | *************************************************/ |
96 | |
97 | /* This value specifies the size of stack workspace that is used during the |
98 | first pre-compile phase that determines how much memory is required. The regex |
99 | is partly compiled into this space, but the compiled parts are discarded as |
100 | soon as they can be, so that hopefully there will never be an overrun. The code |
101 | does, however, check for an overrun. The largest amount I've seen used is 218, |
102 | so this number is very generous. |
103 | |
104 | The same workspace is used during the second, actual compile phase for |
105 | remembering forward references to groups so that they can be filled in at the |
106 | end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE |
107 | is 4 there is plenty of room for most patterns. However, the memory can get |
108 | filled up by repetitions of forward references, for example patterns like |
109 | /(?1){0,1999}(b)/, and one user did hit the limit. The code has been changed so |
110 | that the workspace is expanded using malloc() in this situation. The value |
111 | below is therefore a minimum, and we put a maximum on it for safety. The |
112 | minimum is now also defined in terms of LINK_SIZE so that the use of malloc() |
113 | kicks in at the same number of forward references in all cases. */ |
114 | |
115 | #define COMPILE_WORK_SIZE (2048*LINK_SIZE) |
116 | #define COMPILE_WORK_SIZE_MAX (100*COMPILE_WORK_SIZE) |
117 | |
118 | /* This value determines the size of the initial vector that is used for |
119 | remembering named groups during the pre-compile. It is allocated on the stack, |
120 | but if it is too small, it is expanded using malloc(), in a similar way to the |
121 | workspace. The value is the number of slots in the list. */ |
122 | |
123 | #define NAMED_GROUP_LIST_SIZE 20 |
124 | |
125 | /* The overrun tests check for a slightly smaller size so that they detect the |
126 | overrun before it actually does run off the end of the data block. */ |
127 | |
128 | #define WORK_SIZE_SAFETY_MARGIN (100) |
129 | |
130 | /* Private flags added to firstchar and reqchar. */ |
131 | |
132 | #define REQ_CASELESS (1 << 0) /* Indicates caselessness */ |
133 | #define REQ_VARY (1 << 1) /* Reqchar followed non-literal item */ |
134 | /* Negative values for the firstchar and reqchar flags */ |
135 | #define REQ_UNSET (-2) |
136 | #define REQ_NONE (-1) |
137 | |
138 | /* Repeated character flags. */ |
139 | |
140 | #define UTF_LENGTH 0x10000000l /* The char contains its length. */ |
141 | |
142 | /* Table for handling escaped characters in the range '0'-'z'. Positive returns |
143 | are simple data values; negative values are for special things like \d and so |
144 | on. Zero means further processing is needed (for things like \x), or the escape |
145 | is invalid. */ |
146 | |
147 | #ifndef EBCDIC |
148 | |
149 | /* This is the "normal" table for ASCII systems or for EBCDIC systems running |
150 | in UTF-8 mode. */ |
151 | |
152 | static const short int escapes[] = { |
153 | 0, 0, |
154 | 0, 0, |
155 | 0, 0, |
156 | 0, 0, |
157 | 0, 0, |
158 | CHAR_COLON, CHAR_SEMICOLON, |
159 | CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN, |
160 | CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK, |
161 | CHAR_COMMERCIAL_AT, -ESC_A, |
162 | -ESC_B, -ESC_C, |
163 | -ESC_D, -ESC_E, |
164 | 0, -ESC_G, |
165 | -ESC_H, 0, |
166 | 0, -ESC_K, |
167 | 0, 0, |
168 | -ESC_N, 0, |
169 | -ESC_P, -ESC_Q, |
170 | -ESC_R, -ESC_S, |
171 | 0, 0, |
172 | -ESC_V, -ESC_W, |
173 | -ESC_X, 0, |
174 | -ESC_Z, CHAR_LEFT_SQUARE_BRACKET, |
175 | CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET, |
176 | CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE, |
177 | CHAR_GRAVE_ACCENT, 7, |
178 | -ESC_b, 0, |
179 | -ESC_d, ESC_e, |
180 | ESC_f, 0, |
181 | -ESC_h, 0, |
182 | 0, -ESC_k, |
183 | 0, 0, |
184 | ESC_n, 0, |
185 | -ESC_p, 0, |
186 | ESC_r, -ESC_s, |
187 | ESC_tee, 0, |
188 | -ESC_v, -ESC_w, |
189 | 0, 0, |
190 | -ESC_z |
191 | }; |
192 | |
193 | #else |
194 | |
195 | /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */ |
196 | |
197 | static const short int escapes[] = { |
198 | /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|', |
199 | /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0, |
200 | /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~', |
201 | /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0, |
202 | /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?', |
203 | /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0, |
204 | /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"', |
205 | /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, |
206 | /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0, |
207 | /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p, |
208 | /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0, |
209 | /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0, |
210 | /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0, |
211 | /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
212 | /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-', |
213 | /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G, |
214 | /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0, |
215 | /* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P, |
216 | /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0, |
217 | /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X, |
218 | /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0, |
219 | /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
220 | /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0 |
221 | }; |
222 | #endif |
223 | |
224 | |
225 | /* Table of special "verbs" like (*PRUNE). This is a short table, so it is |
226 | searched linearly. Put all the names into a single string, in order to reduce |
227 | the number of relocations when a shared library is dynamically linked. The |
228 | string is built from string macros so that it works in UTF-8 mode on EBCDIC |
229 | platforms. */ |
230 | |
231 | typedef struct verbitem { |
232 | int len; /* Length of verb name */ |
233 | int op; /* Op when no arg, or -1 if arg mandatory */ |
234 | int op_arg; /* Op when arg present, or -1 if not allowed */ |
235 | } verbitem; |
236 | |
237 | static const char verbnames[] = |
238 | "\0" /* Empty name is a shorthand for MARK */ |
239 | STRING_MARK0 |
240 | STRING_ACCEPT0 |
241 | STRING_COMMIT0 |
242 | STRING_F0 |
243 | STRING_FAIL0 |
244 | STRING_PRUNE0 |
245 | STRING_SKIP0 |
246 | STRING_THEN; |
247 | |
248 | static const verbitem verbs[] = { |
249 | { 0, -1, OP_MARK }, |
250 | { 4, -1, OP_MARK }, |
251 | { 6, OP_ACCEPT, -1 }, |
252 | { 6, OP_COMMIT, -1 }, |
253 | { 1, OP_FAIL, -1 }, |
254 | { 4, OP_FAIL, -1 }, |
255 | { 5, OP_PRUNE, OP_PRUNE_ARG }, |
256 | { 4, OP_SKIP, OP_SKIP_ARG }, |
257 | { 4, OP_THEN, OP_THEN_ARG } |
258 | }; |
259 | |
260 | static const int verbcount = sizeof(verbs)/sizeof(verbitem); |
261 | |
262 | |
263 | /* Substitutes for [[:<:]] and [[:>:]], which mean start and end of word in |
264 | another regex library. */ |
265 | |
266 | static const pcre_uchar sub_start_of_word[] = { |
267 | CHAR_BACKSLASH, CHAR_b, CHAR_LEFT_PARENTHESIS, CHAR_QUESTION_MARK, |
268 | CHAR_EQUALS_SIGN, CHAR_BACKSLASH, CHAR_w, CHAR_RIGHT_PARENTHESIS, '\0' }; |
269 | |
270 | static const pcre_uchar sub_end_of_word[] = { |
271 | CHAR_BACKSLASH, CHAR_b, CHAR_LEFT_PARENTHESIS, CHAR_QUESTION_MARK, |
272 | CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN, CHAR_BACKSLASH, CHAR_w, |
273 | CHAR_RIGHT_PARENTHESIS, '\0' }; |
274 | |
275 | |
276 | /* Tables of names of POSIX character classes and their lengths. The names are |
277 | now all in a single string, to reduce the number of relocations when a shared |
278 | library is dynamically loaded. The list of lengths is terminated by a zero |
279 | length entry. The first three must be alpha, lower, upper, as this is assumed |
280 | for handling case independence. The indices for graph, print, and punct are |
281 | needed, so identify them. */ |
282 | |
283 | static const char posix_names[] = |
284 | STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0 |
285 | STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0 |
286 | STRING_graph0 STRING_print0 STRING_punct0 STRING_space0 |
287 | STRING_word0 STRING_xdigit; |
288 | |
289 | static const pcre_uint8 posix_name_lengths[] = { |
290 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 }; |
291 | |
292 | #define PC_GRAPH 8 |
293 | #define PC_PRINT 9 |
294 | #define PC_PUNCT 10 |
295 | |
296 | |
297 | /* Table of class bit maps for each POSIX class. Each class is formed from a |
298 | base map, with an optional addition or removal of another map. Then, for some |
299 | classes, there is some additional tweaking: for [:blank:] the vertical space |
300 | characters are removed, and for [:alpha:] and [:alnum:] the underscore |
301 | character is removed. The triples in the table consist of the base map offset, |
302 | second map offset or -1 if no second map, and a non-negative value for map |
303 | addition or a negative value for map subtraction (if there are two maps). The |
304 | absolute value of the third field has these meanings: 0 => no tweaking, 1 => |
305 | remove vertical space characters, 2 => remove underscore. */ |
306 | |
307 | static const int posix_class_maps[] = { |
308 | cbit_word, cbit_digit, -2, /* alpha */ |
309 | cbit_lower, -1, 0, /* lower */ |
310 | cbit_upper, -1, 0, /* upper */ |
311 | cbit_word, -1, 2, /* alnum - word without underscore */ |
312 | cbit_print, cbit_cntrl, 0, /* ascii */ |
313 | cbit_space, -1, 1, /* blank - a GNU extension */ |
314 | cbit_cntrl, -1, 0, /* cntrl */ |
315 | cbit_digit, -1, 0, /* digit */ |
316 | cbit_graph, -1, 0, /* graph */ |
317 | cbit_print, -1, 0, /* print */ |
318 | cbit_punct, -1, 0, /* punct */ |
319 | cbit_space, -1, 0, /* space */ |
320 | cbit_word, -1, 0, /* word - a Perl extension */ |
321 | cbit_xdigit,-1, 0 /* xdigit */ |
322 | }; |
323 | |
324 | /* Table of substitutes for \d etc when PCRE_UCP is set. They are replaced by |
325 | Unicode property escapes. */ |
326 | |
327 | #ifdef SUPPORT_UCP |
328 | static const pcre_uchar string_PNd[] = { |
329 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
330 | CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
331 | static const pcre_uchar string_pNd[] = { |
332 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
333 | CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
334 | static const pcre_uchar string_PXsp[] = { |
335 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
336 | CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
337 | static const pcre_uchar string_pXsp[] = { |
338 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
339 | CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
340 | static const pcre_uchar string_PXwd[] = { |
341 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
342 | CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
343 | static const pcre_uchar string_pXwd[] = { |
344 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
345 | CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
346 | |
347 | static const pcre_uchar *substitutes[] = { |
348 | string_PNd, /* \D */ |
349 | string_pNd, /* \d */ |
350 | string_PXsp, /* \S */ /* Xsp is Perl space, but from 8.34, Perl */ |
351 | string_pXsp, /* \s */ /* space and POSIX space are the same. */ |
352 | string_PXwd, /* \W */ |
353 | string_pXwd /* \w */ |
354 | }; |
355 | |
356 | /* The POSIX class substitutes must be in the order of the POSIX class names, |
357 | defined above, and there are both positive and negative cases. NULL means no |
358 | general substitute of a Unicode property escape (\p or \P). However, for some |
359 | POSIX classes (e.g. graph, print, punct) a special property code is compiled |
360 | directly. */ |
361 | |
362 | static const pcre_uchar string_pL[] = { |
363 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
364 | CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
365 | static const pcre_uchar string_pLl[] = { |
366 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
367 | CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
368 | static const pcre_uchar string_pLu[] = { |
369 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
370 | CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
371 | static const pcre_uchar string_pXan[] = { |
372 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
373 | CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
374 | static const pcre_uchar string_h[] = { |
375 | CHAR_BACKSLASH, CHAR_h, '\0' }; |
376 | static const pcre_uchar string_pXps[] = { |
377 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
378 | CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
379 | static const pcre_uchar string_PL[] = { |
380 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
381 | CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
382 | static const pcre_uchar string_PLl[] = { |
383 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
384 | CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
385 | static const pcre_uchar string_PLu[] = { |
386 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
387 | CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
388 | static const pcre_uchar string_PXan[] = { |
389 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
390 | CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
391 | static const pcre_uchar string_H[] = { |
392 | CHAR_BACKSLASH, CHAR_H, '\0' }; |
393 | static const pcre_uchar string_PXps[] = { |
394 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
395 | CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
396 | |
397 | static const pcre_uchar *posix_substitutes[] = { |
398 | string_pL, /* alpha */ |
399 | string_pLl, /* lower */ |
400 | string_pLu, /* upper */ |
401 | string_pXan, /* alnum */ |
402 | NULL, /* ascii */ |
403 | string_h, /* blank */ |
404 | NULL, /* cntrl */ |
405 | string_pNd, /* digit */ |
406 | NULL, /* graph */ |
407 | NULL, /* print */ |
408 | NULL, /* punct */ |
409 | string_pXps, /* space */ /* Xps is POSIX space, but from 8.34 */ |
410 | string_pXwd, /* word */ /* Perl and POSIX space are the same */ |
411 | NULL, /* xdigit */ |
412 | /* Negated cases */ |
413 | string_PL, /* ^alpha */ |
414 | string_PLl, /* ^lower */ |
415 | string_PLu, /* ^upper */ |
416 | string_PXan, /* ^alnum */ |
417 | NULL, /* ^ascii */ |
418 | string_H, /* ^blank */ |
419 | NULL, /* ^cntrl */ |
420 | string_PNd, /* ^digit */ |
421 | NULL, /* ^graph */ |
422 | NULL, /* ^print */ |
423 | NULL, /* ^punct */ |
424 | string_PXps, /* ^space */ /* Xps is POSIX space, but from 8.34 */ |
425 | string_PXwd, /* ^word */ /* Perl and POSIX space are the same */ |
426 | NULL /* ^xdigit */ |
427 | }; |
428 | #define POSIX_SUBSIZE (sizeof(posix_substitutes) / sizeof(pcre_uchar *)) |
429 | #endif |
430 | |
431 | #define STRING(a) # a |
432 | #define XSTRING(s) STRING(s) |
433 | |
434 | /* The texts of compile-time error messages. These are "char *" because they |
435 | are passed to the outside world. Do not ever re-use any error number, because |
436 | they are documented. Always add a new error instead. Messages marked DEAD below |
437 | are no longer used. This used to be a table of strings, but in order to reduce |
438 | the number of relocations needed when a shared library is loaded dynamically, |
439 | it is now one long string. We cannot use a table of offsets, because the |
440 | lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we |
441 | simply count through to the one we want - this isn't a performance issue |
442 | because these strings are used only when there is a compilation error. |
443 | |
444 | Each substring ends with \0 to insert a null character. This includes the final |
445 | substring, so that the whole string ends with \0\0, which can be detected when |
446 | counting through. */ |
447 | |
448 | static const char error_texts[] = |
449 | "no error\0" |
450 | "\\ at end of pattern\0" |
451 | "\\c at end of pattern\0" |
452 | "unrecognized character follows \\\0" |
453 | "numbers out of order in {} quantifier\0" |
454 | /* 5 */ |
455 | "number too big in {} quantifier\0" |
456 | "missing terminating ] for character class\0" |
457 | "invalid escape sequence in character class\0" |
458 | "range out of order in character class\0" |
459 | "nothing to repeat\0" |
460 | /* 10 */ |
461 | "operand of unlimited repeat could match the empty string\0" /** DEAD **/ |
462 | "internal error: unexpected repeat\0" |
463 | "unrecognized character after (? or (?-\0" |
464 | "POSIX named classes are supported only within a class\0" |
465 | "missing )\0" |
466 | /* 15 */ |
467 | "reference to non-existent subpattern\0" |
468 | "erroffset passed as NULL\0" |
469 | "unknown option bit(s) set\0" |
470 | "missing ) after comment\0" |
471 | "parentheses nested too deeply\0" /** DEAD **/ |
472 | /* 20 */ |
473 | "regular expression is too large\0" |
474 | "failed to get memory\0" |
475 | "unmatched parentheses\0" |
476 | "internal error: code overflow\0" |
477 | "unrecognized character after (?<\0" |
478 | /* 25 */ |
479 | "lookbehind assertion is not fixed length\0" |
480 | "malformed number or name after (?(\0" |
481 | "conditional group contains more than two branches\0" |
482 | "assertion expected after (?(\0" |
483 | "(?R or (?[+-]digits must be followed by )\0" |
484 | /* 30 */ |
485 | "unknown POSIX class name\0" |
486 | "POSIX collating elements are not supported\0" |
487 | "this version of PCRE is compiled without UTF support\0" |
488 | "spare error\0" /** DEAD **/ |
489 | "character value in \\x{} or \\o{} is too large\0" |
490 | /* 35 */ |
491 | "invalid condition (?(0)\0" |
492 | "\\C not allowed in lookbehind assertion\0" |
493 | "PCRE does not support \\L, \\l, \\N{name}, \\U, or \\u\0" |
494 | "number after (?C is > 255\0" |
495 | "closing ) for (?C expected\0" |
496 | /* 40 */ |
497 | "recursive call could loop indefinitely\0" |
498 | "unrecognized character after (?P\0" |
499 | "syntax error in subpattern name (missing terminator)\0" |
500 | "two named subpatterns have the same name\0" |
501 | "invalid UTF-8 string\0" |
502 | /* 45 */ |
503 | "support for \\P, \\p, and \\X has not been compiled\0" |
504 | "malformed \\P or \\p sequence\0" |
505 | "unknown property name after \\P or \\p\0" |
506 | "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0" |
507 | "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0" |
508 | /* 50 */ |
509 | "repeated subpattern is too long\0" /** DEAD **/ |
510 | "octal value is greater than \\377 in 8-bit non-UTF-8 mode\0" |
511 | "internal error: overran compiling workspace\0" |
512 | "internal error: previously-checked referenced subpattern not found\0" |
513 | "DEFINE group contains more than one branch\0" |
514 | /* 55 */ |
515 | "repeating a DEFINE group is not allowed\0" /** DEAD **/ |
516 | "inconsistent NEWLINE options\0" |
517 | "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0" |
518 | "a numbered reference must not be zero\0" |
519 | "an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0" |
520 | /* 60 */ |
521 | "(*VERB) not recognized or malformed\0" |
522 | "number is too big\0" |
523 | "subpattern name expected\0" |
524 | "digit expected after (?+\0" |
525 | "] is an invalid data character in JavaScript compatibility mode\0" |
526 | /* 65 */ |
527 | "different names for subpatterns of the same number are not allowed\0" |
528 | "(*MARK) must have an argument\0" |
529 | "this version of PCRE is not compiled with Unicode property support\0" |
530 | "\\c must be followed by an ASCII character\0" |
531 | "\\k is not followed by a braced, angle-bracketed, or quoted name\0" |
532 | /* 70 */ |
533 | "internal error: unknown opcode in find_fixedlength()\0" |
534 | "\\N is not supported in a class\0" |
535 | "too many forward references\0" |
536 | "disallowed Unicode code point (>= 0xd800 && <= 0xdfff)\0" |
537 | "invalid UTF-16 string\0" |
538 | /* 75 */ |
539 | "name is too long in (*MARK), (*PRUNE), (*SKIP), or (*THEN)\0" |
540 | "character value in \\u.... sequence is too large\0" |
541 | "invalid UTF-32 string\0" |
542 | "setting UTF is disabled by the application\0" |
543 | "non-hex character in \\x{} (closing brace missing?)\0" |
544 | /* 80 */ |
545 | "non-octal character in \\o{} (closing brace missing?)\0" |
546 | "missing opening brace after \\o\0" |
547 | "parentheses are too deeply nested\0" |
548 | "invalid range in character class\0" |
549 | "group name must start with a non-digit\0" |
550 | /* 85 */ |
551 | "parentheses are too deeply nested (stack check)\0" |
552 | "digits missing in \\x{} or \\o{}\0" |
553 | ; |
554 | |
555 | /* Table to identify digits and hex digits. This is used when compiling |
556 | patterns. Note that the tables in chartables are dependent on the locale, and |
557 | may mark arbitrary characters as digits - but the PCRE compiling code expects |
558 | to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have |
559 | a private table here. It costs 256 bytes, but it is a lot faster than doing |
560 | character value tests (at least in some simple cases I timed), and in some |
561 | applications one wants PCRE to compile efficiently as well as match |
562 | efficiently. |
563 | |
564 | For convenience, we use the same bit definitions as in chartables: |
565 | |
566 | 0x04 decimal digit |
567 | 0x08 hexadecimal digit |
568 | |
569 | Then we can use ctype_digit and ctype_xdigit in the code. */ |
570 | |
571 | /* Using a simple comparison for decimal numbers rather than a memory read |
572 | is much faster, and the resulting code is simpler (the compiler turns it |
573 | into a subtraction and unsigned comparison). */ |
574 | |
575 | #define IS_DIGIT(x) ((x) >= CHAR_0 && (x) <= CHAR_9) |
576 | |
577 | #ifndef EBCDIC |
578 | |
579 | /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in |
580 | UTF-8 mode. */ |
581 | |
582 | static const pcre_uint8 digitab[] = |
583 | { |
584 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */ |
585 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
586 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */ |
587 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
588 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */ |
589 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */ |
590 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */ |
591 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */ |
592 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */ |
593 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */ |
594 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */ |
595 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */ |
596 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */ |
597 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */ |
598 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */ |
599 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */ |
600 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */ |
601 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */ |
602 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */ |
603 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */ |
604 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */ |
605 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */ |
606 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */ |
607 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
608 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */ |
609 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */ |
610 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */ |
611 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */ |
612 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */ |
613 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */ |
614 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */ |
615 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */ |
616 | |
617 | #else |
618 | |
619 | /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */ |
620 | |
621 | static const pcre_uint8 digitab[] = |
622 | { |
623 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */ |
624 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
625 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */ |
626 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
627 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */ |
628 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
629 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */ |
630 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
631 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */ |
632 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */ |
633 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */ |
634 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */ |
635 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */ |
636 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */ |
637 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */ |
638 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
639 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */ |
640 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
641 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */ |
642 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
643 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */ |
644 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
645 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */ |
646 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
647 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */ |
648 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
649 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */ |
650 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
651 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */ |
652 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
653 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */ |
654 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
655 | |
656 | static const pcre_uint8 ebcdic_chartab[] = { /* chartable partial dup */ |
657 | 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */ |
658 | 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */ |
659 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */ |
660 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
661 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */ |
662 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
663 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */ |
664 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
665 | 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */ |
666 | 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */ |
667 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */ |
668 | 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */ |
669 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */ |
670 | 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */ |
671 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */ |
672 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
673 | 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */ |
674 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
675 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */ |
676 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
677 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */ |
678 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
679 | 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */ |
680 | 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
681 | 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */ |
682 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
683 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */ |
684 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
685 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */ |
686 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
687 | 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */ |
688 | 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
689 | #endif |
690 | |
691 | |
692 | /* This table is used to check whether auto-possessification is possible |
693 | between adjacent character-type opcodes. The left-hand (repeated) opcode is |
694 | used to select the row, and the right-hand opcode is use to select the column. |
695 | A value of 1 means that auto-possessification is OK. For example, the second |
696 | value in the first row means that \D+\d can be turned into \D++\d. |
697 | |
698 | The Unicode property types (\P and \p) have to be present to fill out the table |
699 | because of what their opcode values are, but the table values should always be |
700 | zero because property types are handled separately in the code. The last four |
701 | columns apply to items that cannot be repeated, so there is no need to have |
702 | rows for them. Note that OP_DIGIT etc. are generated only when PCRE_UCP is |
703 | *not* set. When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */ |
704 | |
705 | #define APTROWS (LAST_AUTOTAB_LEFT_OP - FIRST_AUTOTAB_OP + 1) |
706 | #define APTCOLS (LAST_AUTOTAB_RIGHT_OP - FIRST_AUTOTAB_OP + 1) |
707 | |
708 | static const pcre_uint8 autoposstab[APTROWS][APTCOLS] = { |
709 | /* \D \d \S \s \W \w . .+ \C \P \p \R \H \h \V \v \X \Z \z $ $M */ |
710 | { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* \D */ |
711 | { 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1 }, /* \d */ |
712 | { 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1 }, /* \S */ |
713 | { 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* \s */ |
714 | { 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* \W */ |
715 | { 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1 }, /* \w */ |
716 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* . */ |
717 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* .+ */ |
718 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* \C */ |
719 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* \P */ |
720 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* \p */ |
721 | { 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0 }, /* \R */ |
722 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0 }, /* \H */ |
723 | { 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0 }, /* \h */ |
724 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0 }, /* \V */ |
725 | { 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0 }, /* \v */ |
726 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 } /* \X */ |
727 | }; |
728 | |
729 | |
730 | /* This table is used to check whether auto-possessification is possible |
731 | between adjacent Unicode property opcodes (OP_PROP and OP_NOTPROP). The |
732 | left-hand (repeated) opcode is used to select the row, and the right-hand |
733 | opcode is used to select the column. The values are as follows: |
734 | |
735 | 0 Always return FALSE (never auto-possessify) |
736 | 1 Character groups are distinct (possessify if both are OP_PROP) |
737 | 2 Check character categories in the same group (general or particular) |
738 | 3 TRUE if the two opcodes are not the same (PROP vs NOTPROP) |
739 | |
740 | 4 Check left general category vs right particular category |
741 | 5 Check right general category vs left particular category |
742 | |
743 | 6 Left alphanum vs right general category |
744 | 7 Left space vs right general category |
745 | 8 Left word vs right general category |
746 | |
747 | 9 Right alphanum vs left general category |
748 | 10 Right space vs left general category |
749 | 11 Right word vs left general category |
750 | |
751 | 12 Left alphanum vs right particular category |
752 | 13 Left space vs right particular category |
753 | 14 Left word vs right particular category |
754 | |
755 | 15 Right alphanum vs left particular category |
756 | 16 Right space vs left particular category |
757 | 17 Right word vs left particular category |
758 | */ |
759 | |
760 | static const pcre_uint8 propposstab[PT_TABSIZE][PT_TABSIZE] = { |
761 | /* ANY LAMP GC PC SC ALNUM SPACE PXSPACE WORD CLIST UCNC */ |
762 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* PT_ANY */ |
763 | { 0, 3, 0, 0, 0, 3, 1, 1, 0, 0, 0 }, /* PT_LAMP */ |
764 | { 0, 0, 2, 4, 0, 9, 10, 10, 11, 0, 0 }, /* PT_GC */ |
765 | { 0, 0, 5, 2, 0, 15, 16, 16, 17, 0, 0 }, /* PT_PC */ |
766 | { 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0 }, /* PT_SC */ |
767 | { 0, 3, 6, 12, 0, 3, 1, 1, 0, 0, 0 }, /* PT_ALNUM */ |
768 | { 0, 1, 7, 13, 0, 1, 3, 3, 1, 0, 0 }, /* PT_SPACE */ |
769 | { 0, 1, 7, 13, 0, 1, 3, 3, 1, 0, 0 }, /* PT_PXSPACE */ |
770 | { 0, 0, 8, 14, 0, 0, 1, 1, 3, 0, 0 }, /* PT_WORD */ |
771 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* PT_CLIST */ |
772 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3 } /* PT_UCNC */ |
773 | }; |
774 | |
775 | /* This table is used to check whether auto-possessification is possible |
776 | between adjacent Unicode property opcodes (OP_PROP and OP_NOTPROP) when one |
777 | specifies a general category and the other specifies a particular category. The |
778 | row is selected by the general category and the column by the particular |
779 | category. The value is 1 if the particular category is not part of the general |
780 | category. */ |
781 | |
782 | static const pcre_uint8 catposstab[7][30] = { |
783 | /* Cc Cf Cn Co Cs Ll Lm Lo Lt Lu Mc Me Mn Nd Nl No Pc Pd Pe Pf Pi Po Ps Sc Sk Sm So Zl Zp Zs */ |
784 | { 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, /* C */ |
785 | { 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, /* L */ |
786 | { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, /* M */ |
787 | { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, /* N */ |
788 | { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 }, /* P */ |
789 | { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1 }, /* S */ |
790 | { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0 } /* Z */ |
791 | }; |
792 | |
793 | /* This table is used when checking ALNUM, (PX)SPACE, SPACE, and WORD against |
794 | a general or particular category. The properties in each row are those |
795 | that apply to the character set in question. Duplication means that a little |
796 | unnecessary work is done when checking, but this keeps things much simpler |
797 | because they can all use the same code. For more details see the comment where |
798 | this table is used. |
799 | |
800 | Note: SPACE and PXSPACE used to be different because Perl excluded VT from |
801 | "space", but from Perl 5.18 it's included, so both categories are treated the |
802 | same here. */ |
803 | |
804 | static const pcre_uint8 posspropstab[3][4] = { |
805 | { ucp_L, ucp_N, ucp_N, ucp_Nl }, /* ALNUM, 3rd and 4th values redundant */ |
806 | { ucp_Z, ucp_Z, ucp_C, ucp_Cc }, /* SPACE and PXSPACE, 2nd value redundant */ |
807 | { ucp_L, ucp_N, ucp_P, ucp_Po } /* WORD */ |
808 | }; |
809 | |
810 | /* This table is used when converting repeating opcodes into possessified |
811 | versions as a result of an explicit possessive quantifier such as ++. A zero |
812 | value means there is no possessified version - in those cases the item in |
813 | question must be wrapped in ONCE brackets. The table is truncated at OP_CALLOUT |
814 | because all relevant opcodes are less than that. */ |
815 | |
816 | static const pcre_uint8 opcode_possessify[] = { |
817 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 15 */ |
818 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 16 - 31 */ |
819 | |
820 | 0, /* NOTI */ |
821 | OP_POSSTAR, 0, /* STAR, MINSTAR */ |
822 | OP_POSPLUS, 0, /* PLUS, MINPLUS */ |
823 | OP_POSQUERY, 0, /* QUERY, MINQUERY */ |
824 | OP_POSUPTO, 0, /* UPTO, MINUPTO */ |
825 | 0, /* EXACT */ |
826 | 0, 0, 0, 0, /* POS{STAR,PLUS,QUERY,UPTO} */ |
827 | |
828 | OP_POSSTARI, 0, /* STARI, MINSTARI */ |
829 | OP_POSPLUSI, 0, /* PLUSI, MINPLUSI */ |
830 | OP_POSQUERYI, 0, /* QUERYI, MINQUERYI */ |
831 | OP_POSUPTOI, 0, /* UPTOI, MINUPTOI */ |
832 | 0, /* EXACTI */ |
833 | 0, 0, 0, 0, /* POS{STARI,PLUSI,QUERYI,UPTOI} */ |
834 | |
835 | OP_NOTPOSSTAR, 0, /* NOTSTAR, NOTMINSTAR */ |
836 | OP_NOTPOSPLUS, 0, /* NOTPLUS, NOTMINPLUS */ |
837 | OP_NOTPOSQUERY, 0, /* NOTQUERY, NOTMINQUERY */ |
838 | OP_NOTPOSUPTO, 0, /* NOTUPTO, NOTMINUPTO */ |
839 | 0, /* NOTEXACT */ |
840 | 0, 0, 0, 0, /* NOTPOS{STAR,PLUS,QUERY,UPTO} */ |
841 | |
842 | OP_NOTPOSSTARI, 0, /* NOTSTARI, NOTMINSTARI */ |
843 | OP_NOTPOSPLUSI, 0, /* NOTPLUSI, NOTMINPLUSI */ |
844 | OP_NOTPOSQUERYI, 0, /* NOTQUERYI, NOTMINQUERYI */ |
845 | OP_NOTPOSUPTOI, 0, /* NOTUPTOI, NOTMINUPTOI */ |
846 | 0, /* NOTEXACTI */ |
847 | 0, 0, 0, 0, /* NOTPOS{STARI,PLUSI,QUERYI,UPTOI} */ |
848 | |
849 | OP_TYPEPOSSTAR, 0, /* TYPESTAR, TYPEMINSTAR */ |
850 | OP_TYPEPOSPLUS, 0, /* TYPEPLUS, TYPEMINPLUS */ |
851 | OP_TYPEPOSQUERY, 0, /* TYPEQUERY, TYPEMINQUERY */ |
852 | OP_TYPEPOSUPTO, 0, /* TYPEUPTO, TYPEMINUPTO */ |
853 | 0, /* TYPEEXACT */ |
854 | 0, 0, 0, 0, /* TYPEPOS{STAR,PLUS,QUERY,UPTO} */ |
855 | |
856 | OP_CRPOSSTAR, 0, /* CRSTAR, CRMINSTAR */ |
857 | OP_CRPOSPLUS, 0, /* CRPLUS, CRMINPLUS */ |
858 | OP_CRPOSQUERY, 0, /* CRQUERY, CRMINQUERY */ |
859 | OP_CRPOSRANGE, 0, /* CRRANGE, CRMINRANGE */ |
860 | 0, 0, 0, 0, /* CRPOS{STAR,PLUS,QUERY,RANGE} */ |
861 | |
862 | 0, 0, 0, /* CLASS, NCLASS, XCLASS */ |
863 | 0, 0, /* REF, REFI */ |
864 | 0, 0, /* DNREF, DNREFI */ |
865 | 0, 0 /* RECURSE, CALLOUT */ |
866 | }; |
867 | |
868 | |
869 | |
870 | /************************************************* |
871 | * Find an error text * |
872 | *************************************************/ |
873 | |
874 | /* The error texts are now all in one long string, to save on relocations. As |
875 | some of the text is of unknown length, we can't use a table of offsets. |
876 | Instead, just count through the strings. This is not a performance issue |
877 | because it happens only when there has been a compilation error. |
878 | |
879 | Argument: the error number |
880 | Returns: pointer to the error string |
881 | */ |
882 | |
883 | static const char * |
884 | find_error_text(int n) |
885 | { |
886 | const char *s = error_texts; |
887 | for (; n > 0; n--) |
888 | { |
889 | while (*s++ != CHAR_NULL) {}; |
890 | if (*s == CHAR_NULL) return "Error text not found (please report)"; |
891 | } |
892 | return s; |
893 | } |
894 | |
895 | |
896 | |
897 | /************************************************* |
898 | * Expand the workspace * |
899 | *************************************************/ |
900 | |
901 | /* This function is called during the second compiling phase, if the number of |
902 | forward references fills the existing workspace, which is originally a block on |
903 | the stack. A larger block is obtained from malloc() unless the ultimate limit |
904 | has been reached or the increase will be rather small. |
905 | |
906 | Argument: pointer to the compile data block |
907 | Returns: 0 if all went well, else an error number |
908 | */ |
909 | |
910 | static int |
911 | expand_workspace(compile_data *cd) |
912 | { |
913 | pcre_uchar *newspace; |
914 | int newsize = cd->workspace_size * 2; |
915 | |
916 | if (newsize > COMPILE_WORK_SIZE_MAX) newsize = COMPILE_WORK_SIZE_MAX; |
917 | if (cd->workspace_size >= COMPILE_WORK_SIZE_MAX || |
918 | newsize - cd->workspace_size < WORK_SIZE_SAFETY_MARGIN) |
919 | return ERR72; |
920 | |
921 | newspace = (PUBL(malloc))(IN_UCHARS(newsize)); |
922 | if (newspace == NULL) return ERR21; |
923 | memcpy(newspace, cd->start_workspace, cd->workspace_size * sizeof(pcre_uchar)); |
924 | cd->hwm = (pcre_uchar *)newspace + (cd->hwm - cd->start_workspace); |
925 | if (cd->workspace_size > COMPILE_WORK_SIZE) |
926 | (PUBL(free))((void *)cd->start_workspace); |
927 | cd->start_workspace = newspace; |
928 | cd->workspace_size = newsize; |
929 | return 0; |
930 | } |
931 | |
932 | |
933 | |
934 | /************************************************* |
935 | * Check for counted repeat * |
936 | *************************************************/ |
937 | |
938 | /* This function is called when a '{' is encountered in a place where it might |
939 | start a quantifier. It looks ahead to see if it really is a quantifier or not. |
940 | It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd} |
941 | where the ddds are digits. |
942 | |
943 | Arguments: |
944 | p pointer to the first char after '{' |
945 | |
946 | Returns: TRUE or FALSE |
947 | */ |
948 | |
949 | static BOOL |
950 | is_counted_repeat(const pcre_uchar *p) |
951 | { |
952 | if (!IS_DIGIT(*p)) return FALSE; |
953 | p++; |
954 | while (IS_DIGIT(*p)) p++; |
955 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
956 | |
957 | if (*p++ != CHAR_COMMA) return FALSE; |
958 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
959 | |
960 | if (!IS_DIGIT(*p)) return FALSE; |
961 | p++; |
962 | while (IS_DIGIT(*p)) p++; |
963 | |
964 | return (*p == CHAR_RIGHT_CURLY_BRACKET); |
965 | } |
966 | |
967 | |
968 | |
969 | /************************************************* |
970 | * Handle escapes * |
971 | *************************************************/ |
972 | |
973 | /* This function is called when a \ has been encountered. It either returns a |
974 | positive value for a simple escape such as \n, or 0 for a data character which |
975 | will be placed in chptr. A backreference to group n is returned as negative n. |
976 | When UTF-8 is enabled, a positive value greater than 255 may be returned in |
977 | chptr. On entry, ptr is pointing at the \. On exit, it is on the final |
978 | character of the escape sequence. |
979 | |
980 | Arguments: |
981 | ptrptr points to the pattern position pointer |
982 | chptr points to a returned data character |
983 | errorcodeptr points to the errorcode variable |
984 | bracount number of previous extracting brackets |
985 | options the options bits |
986 | isclass TRUE if inside a character class |
987 | |
988 | Returns: zero => a data character |
989 | positive => a special escape sequence |
990 | negative => a back reference |
991 | on error, errorcodeptr is set |
992 | */ |
993 | |
994 | static int |
995 | check_escape(const pcre_uchar **ptrptr, pcre_uint32 *chptr, int *errorcodeptr, |
996 | int bracount, int options, BOOL isclass) |
997 | { |
998 | /* PCRE_UTF16 has the same value as PCRE_UTF8. */ |
999 | BOOL utf = (options & PCRE_UTF8) != 0; |
1000 | const pcre_uchar *ptr = *ptrptr + 1; |
1001 | pcre_uint32 c; |
1002 | int escape = 0; |
1003 | int i; |
1004 | |
1005 | GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */ |
1006 | ptr--; /* Set pointer back to the last byte */ |
1007 | |
1008 | /* If backslash is at the end of the pattern, it's an error. */ |
1009 | |
1010 | if (c == CHAR_NULL) *errorcodeptr = ERR1; |
1011 | |
1012 | /* Non-alphanumerics are literals. For digits or letters, do an initial lookup |
1013 | in a table. A non-zero result is something that can be returned immediately. |
1014 | Otherwise further processing may be required. */ |
1015 | |
1016 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1017 | /* Not alphanumeric */ |
1018 | else if (c < CHAR_0 || c > CHAR_z) {} |
1019 | else if ((i = escapes[c - CHAR_0]) != 0) |
1020 | { if (i > 0) c = (pcre_uint32)i; else escape = -i; } |
1021 | |
1022 | #else /* EBCDIC coding */ |
1023 | /* Not alphanumeric */ |
1024 | else if (c < CHAR_a || (!MAX_255(c) || (ebcdic_chartab[c] & 0x0E) == 0)) {} |
1025 | else if ((i = escapes[c - 0x48]) != 0) { if (i > 0) c = (pcre_uint32)i; else escape = -i; } |
1026 | #endif |
1027 | |
1028 | /* Escapes that need further processing, or are illegal. */ |
1029 | |
1030 | else |
1031 | { |
1032 | const pcre_uchar *oldptr; |
1033 | BOOL braced, negated, overflow; |
1034 | int s; |
1035 | |
1036 | switch (c) |
1037 | { |
1038 | /* A number of Perl escapes are not handled by PCRE. We give an explicit |
1039 | error. */ |
1040 | |
1041 | case CHAR_l: |
1042 | case CHAR_L: |
1043 | *errorcodeptr = ERR37; |
1044 | break; |
1045 | |
1046 | case CHAR_u: |
1047 | if ((options & PCRE_JAVASCRIPT_COMPAT) != 0) |
1048 | { |
1049 | /* In JavaScript, \u must be followed by four hexadecimal numbers. |
1050 | Otherwise it is a lowercase u letter. */ |
1051 | if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0 |
1052 | && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0 |
1053 | && MAX_255(ptr[3]) && (digitab[ptr[3]] & ctype_xdigit) != 0 |
1054 | && MAX_255(ptr[4]) && (digitab[ptr[4]] & ctype_xdigit) != 0) |
1055 | { |
1056 | c = 0; |
1057 | for (i = 0; i < 4; ++i) |
1058 | { |
1059 | register pcre_uint32 cc = *(++ptr); |
1060 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1061 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
1062 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
1063 | #else /* EBCDIC coding */ |
1064 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
1065 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
1066 | #endif |
1067 | } |
1068 | |
1069 | #if defined COMPILE_PCRE8 |
1070 | if (c > (utf ? 0x10ffffU : 0xffU)) |
1071 | #elif defined COMPILE_PCRE16 |
1072 | if (c > (utf ? 0x10ffffU : 0xffffU)) |
1073 | #elif defined COMPILE_PCRE32 |
1074 | if (utf && c > 0x10ffffU) |
1075 | #endif |
1076 | { |
1077 | *errorcodeptr = ERR76; |
1078 | } |
1079 | else if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73; |
1080 | } |
1081 | } |
1082 | else |
1083 | *errorcodeptr = ERR37; |
1084 | break; |
1085 | |
1086 | case CHAR_U: |
1087 | /* In JavaScript, \U is an uppercase U letter. */ |
1088 | if ((options & PCRE_JAVASCRIPT_COMPAT) == 0) *errorcodeptr = ERR37; |
1089 | break; |
1090 | |
1091 | /* In a character class, \g is just a literal "g". Outside a character |
1092 | class, \g must be followed by one of a number of specific things: |
1093 | |
1094 | (1) A number, either plain or braced. If positive, it is an absolute |
1095 | backreference. If negative, it is a relative backreference. This is a Perl |
1096 | 5.10 feature. |
1097 | |
1098 | (2) Perl 5.10 also supports \g{name} as a reference to a named group. This |
1099 | is part of Perl's movement towards a unified syntax for back references. As |
1100 | this is synonymous with \k{name}, we fudge it up by pretending it really |
1101 | was \k. |
1102 | |
1103 | (3) For Oniguruma compatibility we also support \g followed by a name or a |
1104 | number either in angle brackets or in single quotes. However, these are |
1105 | (possibly recursive) subroutine calls, _not_ backreferences. Just return |
1106 | the ESC_g code (cf \k). */ |
1107 | |
1108 | case CHAR_g: |
1109 | if (isclass) break; |
1110 | if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE) |
1111 | { |
1112 | escape = ESC_g; |
1113 | break; |
1114 | } |
1115 | |
1116 | /* Handle the Perl-compatible cases */ |
1117 | |
1118 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
1119 | { |
1120 | const pcre_uchar *p; |
1121 | for (p = ptr+2; *p != CHAR_NULL && *p != CHAR_RIGHT_CURLY_BRACKET; p++) |
1122 | if (*p != CHAR_MINUS && !IS_DIGIT(*p)) break; |
1123 | if (*p != CHAR_NULL && *p != CHAR_RIGHT_CURLY_BRACKET) |
1124 | { |
1125 | escape = ESC_k; |
1126 | break; |
1127 | } |
1128 | braced = TRUE; |
1129 | ptr++; |
1130 | } |
1131 | else braced = FALSE; |
1132 | |
1133 | if (ptr[1] == CHAR_MINUS) |
1134 | { |
1135 | negated = TRUE; |
1136 | ptr++; |
1137 | } |
1138 | else negated = FALSE; |
1139 | |
1140 | /* The integer range is limited by the machine's int representation. */ |
1141 | s = 0; |
1142 | overflow = FALSE; |
1143 | while (IS_DIGIT(ptr[1])) |
1144 | { |
1145 | if (s > INT_MAX / 10 - 1) /* Integer overflow */ |
1146 | { |
1147 | overflow = TRUE; |
1148 | break; |
1149 | } |
1150 | s = s * 10 + (int)(*(++ptr) - CHAR_0); |
1151 | } |
1152 | if (overflow) /* Integer overflow */ |
1153 | { |
1154 | while (IS_DIGIT(ptr[1])) |
1155 | ptr++; |
1156 | *errorcodeptr = ERR61; |
1157 | break; |
1158 | } |
1159 | |
1160 | if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET) |
1161 | { |
1162 | *errorcodeptr = ERR57; |
1163 | break; |
1164 | } |
1165 | |
1166 | if (s == 0) |
1167 | { |
1168 | *errorcodeptr = ERR58; |
1169 | break; |
1170 | } |
1171 | |
1172 | if (negated) |
1173 | { |
1174 | if (s > bracount) |
1175 | { |
1176 | *errorcodeptr = ERR15; |
1177 | break; |
1178 | } |
1179 | s = bracount - (s - 1); |
1180 | } |
1181 | |
1182 | escape = -s; |
1183 | break; |
1184 | |
1185 | /* The handling of escape sequences consisting of a string of digits |
1186 | starting with one that is not zero is not straightforward. Perl has changed |
1187 | over the years. Nowadays \g{} for backreferences and \o{} for octal are |
1188 | recommended to avoid the ambiguities in the old syntax. |
1189 | |
1190 | Outside a character class, the digits are read as a decimal number. If the |
1191 | number is less than 8 (used to be 10), or if there are that many previous |
1192 | extracting left brackets, then it is a back reference. Otherwise, up to |
1193 | three octal digits are read to form an escaped byte. Thus \123 is likely to |
1194 | be octal 123 (cf \0123, which is octal 012 followed by the literal 3). If |
1195 | the octal value is greater than 377, the least significant 8 bits are |
1196 | taken. \8 and \9 are treated as the literal characters 8 and 9. |
1197 | |
1198 | Inside a character class, \ followed by a digit is always either a literal |
1199 | 8 or 9 or an octal number. */ |
1200 | |
1201 | case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5: |
1202 | case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
1203 | |
1204 | if (!isclass) |
1205 | { |
1206 | oldptr = ptr; |
1207 | /* The integer range is limited by the machine's int representation. */ |
1208 | s = (int)(c -CHAR_0); |
1209 | overflow = FALSE; |
1210 | while (IS_DIGIT(ptr[1])) |
1211 | { |
1212 | if (s > INT_MAX / 10 - 1) /* Integer overflow */ |
1213 | { |
1214 | overflow = TRUE; |
1215 | break; |
1216 | } |
1217 | s = s * 10 + (int)(*(++ptr) - CHAR_0); |
1218 | } |
1219 | if (overflow) /* Integer overflow */ |
1220 | { |
1221 | while (IS_DIGIT(ptr[1])) |
1222 | ptr++; |
1223 | *errorcodeptr = ERR61; |
1224 | break; |
1225 | } |
1226 | if (s < 8 || s <= bracount) /* Check for back reference */ |
1227 | { |
1228 | escape = -s; |
1229 | break; |
1230 | } |
1231 | ptr = oldptr; /* Put the pointer back and fall through */ |
1232 | } |
1233 | |
1234 | /* Handle a digit following \ when the number is not a back reference. If |
1235 | the first digit is 8 or 9, Perl used to generate a binary zero byte and |
1236 | then treat the digit as a following literal. At least by Perl 5.18 this |
1237 | changed so as not to insert the binary zero. */ |
1238 | |
1239 | if ((c = *ptr) >= CHAR_8) break; |
1240 | |
1241 | /* Fall through with a digit less than 8 */ |
1242 | |
1243 | /* \0 always starts an octal number, but we may drop through to here with a |
1244 | larger first octal digit. The original code used just to take the least |
1245 | significant 8 bits of octal numbers (I think this is what early Perls used |
1246 | to do). Nowadays we allow for larger numbers in UTF-8 mode and 16-bit mode, |
1247 | but no more than 3 octal digits. */ |
1248 | |
1249 | case CHAR_0: |
1250 | c -= CHAR_0; |
1251 | while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7) |
1252 | c = c * 8 + *(++ptr) - CHAR_0; |
1253 | #ifdef COMPILE_PCRE8 |
1254 | if (!utf && c > 0xff) *errorcodeptr = ERR51; |
1255 | #endif |
1256 | break; |
1257 | |
1258 | /* \o is a relatively new Perl feature, supporting a more general way of |
1259 | specifying character codes in octal. The only supported form is \o{ddd}. */ |
1260 | |
1261 | case CHAR_o: |
1262 | if (ptr[1] != CHAR_LEFT_CURLY_BRACKET) *errorcodeptr = ERR81; else |
1263 | if (ptr[2] == CHAR_RIGHT_CURLY_BRACKET) *errorcodeptr = ERR86; else |
1264 | { |
1265 | ptr += 2; |
1266 | c = 0; |
1267 | overflow = FALSE; |
1268 | while (*ptr >= CHAR_0 && *ptr <= CHAR_7) |
1269 | { |
1270 | register pcre_uint32 cc = *ptr++; |
1271 | if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */ |
1272 | #ifdef COMPILE_PCRE32 |
1273 | if (c >= 0x20000000l) { overflow = TRUE; break; } |
1274 | #endif |
1275 | c = (c << 3) + cc - CHAR_0 ; |
1276 | #if defined COMPILE_PCRE8 |
1277 | if (c > (utf ? 0x10ffffU : 0xffU)) { overflow = TRUE; break; } |
1278 | #elif defined COMPILE_PCRE16 |
1279 | if (c > (utf ? 0x10ffffU : 0xffffU)) { overflow = TRUE; break; } |
1280 | #elif defined COMPILE_PCRE32 |
1281 | if (utf && c > 0x10ffffU) { overflow = TRUE; break; } |
1282 | #endif |
1283 | } |
1284 | if (overflow) |
1285 | { |
1286 | while (*ptr >= CHAR_0 && *ptr <= CHAR_7) ptr++; |
1287 | *errorcodeptr = ERR34; |
1288 | } |
1289 | else if (*ptr == CHAR_RIGHT_CURLY_BRACKET) |
1290 | { |
1291 | if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73; |
1292 | } |
1293 | else *errorcodeptr = ERR80; |
1294 | } |
1295 | break; |
1296 | |
1297 | /* \x is complicated. In JavaScript, \x must be followed by two hexadecimal |
1298 | numbers. Otherwise it is a lowercase x letter. */ |
1299 | |
1300 | case CHAR_x: |
1301 | if ((options & PCRE_JAVASCRIPT_COMPAT) != 0) |
1302 | { |
1303 | if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0 |
1304 | && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0) |
1305 | { |
1306 | c = 0; |
1307 | for (i = 0; i < 2; ++i) |
1308 | { |
1309 | register pcre_uint32 cc = *(++ptr); |
1310 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1311 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
1312 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
1313 | #else /* EBCDIC coding */ |
1314 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
1315 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
1316 | #endif |
1317 | } |
1318 | } |
1319 | } /* End JavaScript handling */ |
1320 | |
1321 | /* Handle \x in Perl's style. \x{ddd} is a character number which can be |
1322 | greater than 0xff in utf or non-8bit mode, but only if the ddd are hex |
1323 | digits. If not, { used to be treated as a data character. However, Perl |
1324 | seems to read hex digits up to the first non-such, and ignore the rest, so |
1325 | that, for example \x{zz} matches a binary zero. This seems crazy, so PCRE |
1326 | now gives an error. */ |
1327 | |
1328 | else |
1329 | { |
1330 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
1331 | { |
1332 | ptr += 2; |
1333 | if (*ptr == CHAR_RIGHT_CURLY_BRACKET) |
1334 | { |
1335 | *errorcodeptr = ERR86; |
1336 | break; |
1337 | } |
1338 | c = 0; |
1339 | overflow = FALSE; |
1340 | while (MAX_255(*ptr) && (digitab[*ptr] & ctype_xdigit) != 0) |
1341 | { |
1342 | register pcre_uint32 cc = *ptr++; |
1343 | if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */ |
1344 | |
1345 | #ifdef COMPILE_PCRE32 |
1346 | if (c >= 0x10000000l) { overflow = TRUE; break; } |
1347 | #endif |
1348 | |
1349 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1350 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
1351 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
1352 | #else /* EBCDIC coding */ |
1353 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
1354 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
1355 | #endif |
1356 | |
1357 | #if defined COMPILE_PCRE8 |
1358 | if (c > (utf ? 0x10ffffU : 0xffU)) { overflow = TRUE; break; } |
1359 | #elif defined COMPILE_PCRE16 |
1360 | if (c > (utf ? 0x10ffffU : 0xffffU)) { overflow = TRUE; break; } |
1361 | #elif defined COMPILE_PCRE32 |
1362 | if (utf && c > 0x10ffffU) { overflow = TRUE; break; } |
1363 | #endif |
1364 | } |
1365 | |
1366 | if (overflow) |
1367 | { |
1368 | while (MAX_255(*ptr) && (digitab[*ptr] & ctype_xdigit) != 0) ptr++; |
1369 | *errorcodeptr = ERR34; |
1370 | } |
1371 | |
1372 | else if (*ptr == CHAR_RIGHT_CURLY_BRACKET) |
1373 | { |
1374 | if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73; |
1375 | } |
1376 | |
1377 | /* If the sequence of hex digits does not end with '}', give an error. |
1378 | We used just to recognize this construct and fall through to the normal |
1379 | \x handling, but nowadays Perl gives an error, which seems much more |
1380 | sensible, so we do too. */ |
1381 | |
1382 | else *errorcodeptr = ERR79; |
1383 | } /* End of \x{} processing */ |
1384 | |
1385 | /* Read a single-byte hex-defined char (up to two hex digits after \x) */ |
1386 | |
1387 | else |
1388 | { |
1389 | c = 0; |
1390 | while (i++ < 2 && MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0) |
1391 | { |
1392 | pcre_uint32 cc; /* Some compilers don't like */ |
1393 | cc = *(++ptr); /* ++ in initializers */ |
1394 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1395 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
1396 | c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
1397 | #else /* EBCDIC coding */ |
1398 | if (cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
1399 | c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
1400 | #endif |
1401 | } |
1402 | } /* End of \xdd handling */ |
1403 | } /* End of Perl-style \x handling */ |
1404 | break; |
1405 | |
1406 | /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped. |
1407 | An error is given if the byte following \c is not an ASCII character. This |
1408 | coding is ASCII-specific, but then the whole concept of \cx is |
1409 | ASCII-specific. (However, an EBCDIC equivalent has now been added.) */ |
1410 | |
1411 | case CHAR_c: |
1412 | c = *(++ptr); |
1413 | if (c == CHAR_NULL) |
1414 | { |
1415 | *errorcodeptr = ERR2; |
1416 | break; |
1417 | } |
1418 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1419 | if (c > 127) /* Excludes all non-ASCII in either mode */ |
1420 | { |
1421 | *errorcodeptr = ERR68; |
1422 | break; |
1423 | } |
1424 | if (c >= CHAR_a && c <= CHAR_z) c -= 32; |
1425 | c ^= 0x40; |
1426 | #else /* EBCDIC coding */ |
1427 | if (c >= CHAR_a && c <= CHAR_z) c += 64; |
1428 | c ^= 0xC0; |
1429 | #endif |
1430 | break; |
1431 | |
1432 | /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any |
1433 | other alphanumeric following \ is an error if PCRE_EXTRA was set; |
1434 | otherwise, for Perl compatibility, it is a literal. This code looks a bit |
1435 | odd, but there used to be some cases other than the default, and there may |
1436 | be again in future, so I haven't "optimized" it. */ |
1437 | |
1438 | default: |
1439 | if ((options & PCRE_EXTRA) != 0) switch(c) |
1440 | { |
1441 | default: |
1442 | *errorcodeptr = ERR3; |
1443 | break; |
1444 | } |
1445 | break; |
1446 | } |
1447 | } |
1448 | |
1449 | /* Perl supports \N{name} for character names, as well as plain \N for "not |
1450 | newline". PCRE does not support \N{name}. However, it does support |
1451 | quantification such as \N{2,3}. */ |
1452 | |
1453 | if (escape == ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET && |
1454 | !is_counted_repeat(ptr+2)) |
1455 | *errorcodeptr = ERR37; |
1456 | |
1457 | /* If PCRE_UCP is set, we change the values for \d etc. */ |
1458 | |
1459 | if ((options & PCRE_UCP) != 0 && escape >= ESC_D && escape <= ESC_w) |
1460 | escape += (ESC_DU - ESC_D); |
1461 | |
1462 | /* Set the pointer to the final character before returning. */ |
1463 | |
1464 | *ptrptr = ptr; |
1465 | *chptr = c; |
1466 | return escape; |
1467 | } |
1468 | |
1469 | |
1470 | |
1471 | #ifdef SUPPORT_UCP |
1472 | /************************************************* |
1473 | * Handle \P and \p * |
1474 | *************************************************/ |
1475 | |
1476 | /* This function is called after \P or \p has been encountered, provided that |
1477 | PCRE is compiled with support for Unicode properties. On entry, ptrptr is |
1478 | pointing at the P or p. On exit, it is pointing at the final character of the |
1479 | escape sequence. |
1480 | |
1481 | Argument: |
1482 | ptrptr points to the pattern position pointer |
1483 | negptr points to a boolean that is set TRUE for negation else FALSE |
1484 | ptypeptr points to an unsigned int that is set to the type value |
1485 | pdataptr points to an unsigned int that is set to the detailed property value |
1486 | errorcodeptr points to the error code variable |
1487 | |
1488 | Returns: TRUE if the type value was found, or FALSE for an invalid type |
1489 | */ |
1490 | |
1491 | static BOOL |
1492 | get_ucp(const pcre_uchar **ptrptr, BOOL *negptr, unsigned int *ptypeptr, |
1493 | unsigned int *pdataptr, int *errorcodeptr) |
1494 | { |
1495 | pcre_uchar c; |
1496 | int i, bot, top; |
1497 | const pcre_uchar *ptr = *ptrptr; |
1498 | pcre_uchar name[32]; |
1499 | |
1500 | c = *(++ptr); |
1501 | if (c == CHAR_NULL) goto ERROR_RETURN; |
1502 | |
1503 | *negptr = FALSE; |
1504 | |
1505 | /* \P or \p can be followed by a name in {}, optionally preceded by ^ for |
1506 | negation. */ |
1507 | |
1508 | if (c == CHAR_LEFT_CURLY_BRACKET) |
1509 | { |
1510 | if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
1511 | { |
1512 | *negptr = TRUE; |
1513 | ptr++; |
1514 | } |
1515 | for (i = 0; i < (int)(sizeof(name) / sizeof(pcre_uchar)) - 1; i++) |
1516 | { |
1517 | c = *(++ptr); |
1518 | if (c == CHAR_NULL) goto ERROR_RETURN; |
1519 | if (c == CHAR_RIGHT_CURLY_BRACKET) break; |
1520 | name[i] = c; |
1521 | } |
1522 | if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN; |
1523 | name[i] = 0; |
1524 | } |
1525 | |
1526 | /* Otherwise there is just one following character */ |
1527 | |
1528 | else |
1529 | { |
1530 | name[0] = c; |
1531 | name[1] = 0; |
1532 | } |
1533 | |
1534 | *ptrptr = ptr; |
1535 | |
1536 | /* Search for a recognized property name using binary chop */ |
1537 | |
1538 | bot = 0; |
1539 | top = PRIV(utt_size); |
1540 | |
1541 | while (bot < top) |
1542 | { |
1543 | int r; |
1544 | i = (bot + top) >> 1; |
1545 | r = STRCMP_UC_C8(name, PRIV(utt_names) + PRIV(utt)[i].name_offset); |
1546 | if (r == 0) |
1547 | { |
1548 | *ptypeptr = PRIV(utt)[i].type; |
1549 | *pdataptr = PRIV(utt)[i].value; |
1550 | return TRUE; |
1551 | } |
1552 | if (r > 0) bot = i + 1; else top = i; |
1553 | } |
1554 | |
1555 | *errorcodeptr = ERR47; |
1556 | *ptrptr = ptr; |
1557 | return FALSE; |
1558 | |
1559 | ERROR_RETURN: |
1560 | *errorcodeptr = ERR46; |
1561 | *ptrptr = ptr; |
1562 | return FALSE; |
1563 | } |
1564 | #endif |
1565 | |
1566 | |
1567 | |
1568 | /************************************************* |
1569 | * Read repeat counts * |
1570 | *************************************************/ |
1571 | |
1572 | /* Read an item of the form {n,m} and return the values. This is called only |
1573 | after is_counted_repeat() has confirmed that a repeat-count quantifier exists, |
1574 | so the syntax is guaranteed to be correct, but we need to check the values. |
1575 | |
1576 | Arguments: |
1577 | p pointer to first char after '{' |
1578 | minp pointer to int for min |
1579 | maxp pointer to int for max |
1580 | returned as -1 if no max |
1581 | errorcodeptr points to error code variable |
1582 | |
1583 | Returns: pointer to '}' on success; |
1584 | current ptr on error, with errorcodeptr set non-zero |
1585 | */ |
1586 | |
1587 | static const pcre_uchar * |
1588 | read_repeat_counts(const pcre_uchar *p, int *minp, int *maxp, int *errorcodeptr) |
1589 | { |
1590 | int min = 0; |
1591 | int max = -1; |
1592 | |
1593 | while (IS_DIGIT(*p)) |
1594 | { |
1595 | min = min * 10 + (int)(*p++ - CHAR_0); |
1596 | if (min > 65535) |
1597 | { |
1598 | *errorcodeptr = ERR5; |
1599 | return p; |
1600 | } |
1601 | } |
1602 | |
1603 | if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else |
1604 | { |
1605 | if (*(++p) != CHAR_RIGHT_CURLY_BRACKET) |
1606 | { |
1607 | max = 0; |
1608 | while(IS_DIGIT(*p)) |
1609 | { |
1610 | max = max * 10 + (int)(*p++ - CHAR_0); |
1611 | if (max > 65535) |
1612 | { |
1613 | *errorcodeptr = ERR5; |
1614 | return p; |
1615 | } |
1616 | } |
1617 | if (max < min) |
1618 | { |
1619 | *errorcodeptr = ERR4; |
1620 | return p; |
1621 | } |
1622 | } |
1623 | } |
1624 | |
1625 | *minp = min; |
1626 | *maxp = max; |
1627 | return p; |
1628 | } |
1629 | |
1630 | |
1631 | |
1632 | /************************************************* |
1633 | * Find first significant op code * |
1634 | *************************************************/ |
1635 | |
1636 | /* This is called by several functions that scan a compiled expression looking |
1637 | for a fixed first character, or an anchoring op code etc. It skips over things |
1638 | that do not influence this. For some calls, it makes sense to skip negative |
1639 | forward and all backward assertions, and also the \b assertion; for others it |
1640 | does not. |
1641 | |
1642 | Arguments: |
1643 | code pointer to the start of the group |
1644 | skipassert TRUE if certain assertions are to be skipped |
1645 | |
1646 | Returns: pointer to the first significant opcode |
1647 | */ |
1648 | |
1649 | static const pcre_uchar* |
1650 | first_significant_code(const pcre_uchar *code, BOOL skipassert) |
1651 | { |
1652 | for (;;) |
1653 | { |
1654 | switch ((int)*code) |
1655 | { |
1656 | case OP_ASSERT_NOT: |
1657 | case OP_ASSERTBACK: |
1658 | case OP_ASSERTBACK_NOT: |
1659 | if (!skipassert) return code; |
1660 | do code += GET(code, 1); while (*code == OP_ALT); |
1661 | code += PRIV(OP_lengths)[*code]; |
1662 | break; |
1663 | |
1664 | case OP_WORD_BOUNDARY: |
1665 | case OP_NOT_WORD_BOUNDARY: |
1666 | if (!skipassert) return code; |
1667 | /* Fall through */ |
1668 | |
1669 | case OP_CALLOUT: |
1670 | case OP_CREF: |
1671 | case OP_DNCREF: |
1672 | case OP_RREF: |
1673 | case OP_DNRREF: |
1674 | case OP_DEF: |
1675 | code += PRIV(OP_lengths)[*code]; |
1676 | break; |
1677 | |
1678 | default: |
1679 | return code; |
1680 | } |
1681 | } |
1682 | /* Control never reaches here */ |
1683 | } |
1684 | |
1685 | |
1686 | |
1687 | /************************************************* |
1688 | * Find the fixed length of a branch * |
1689 | *************************************************/ |
1690 | |
1691 | /* Scan a branch and compute the fixed length of subject that will match it, |
1692 | if the length is fixed. This is needed for dealing with backward assertions. |
1693 | In UTF8 mode, the result is in characters rather than bytes. The branch is |
1694 | temporarily terminated with OP_END when this function is called. |
1695 | |
1696 | This function is called when a backward assertion is encountered, so that if it |
1697 | fails, the error message can point to the correct place in the pattern. |
1698 | However, we cannot do this when the assertion contains subroutine calls, |
1699 | because they can be forward references. We solve this by remembering this case |
1700 | and doing the check at the end; a flag specifies which mode we are running in. |
1701 | |
1702 | Arguments: |
1703 | code points to the start of the pattern (the bracket) |
1704 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
1705 | atend TRUE if called when the pattern is complete |
1706 | cd the "compile data" structure |
1707 | |
1708 | Returns: the fixed length, |
1709 | or -1 if there is no fixed length, |
1710 | or -2 if \C was encountered (in UTF-8 mode only) |
1711 | or -3 if an OP_RECURSE item was encountered and atend is FALSE |
1712 | or -4 if an unknown opcode was encountered (internal error) |
1713 | */ |
1714 | |
1715 | static int |
1716 | find_fixedlength(pcre_uchar *code, BOOL utf, BOOL atend, compile_data *cd) |
1717 | { |
1718 | int length = -1; |
1719 | |
1720 | register int branchlength = 0; |
1721 | register pcre_uchar *cc = code + 1 + LINK_SIZE; |
1722 | |
1723 | /* Scan along the opcodes for this branch. If we get to the end of the |
1724 | branch, check the length against that of the other branches. */ |
1725 | |
1726 | for (;;) |
1727 | { |
1728 | int d; |
1729 | pcre_uchar *ce, *cs; |
1730 | register pcre_uchar op = *cc; |
1731 | |
1732 | switch (op) |
1733 | { |
1734 | /* We only need to continue for OP_CBRA (normal capturing bracket) and |
1735 | OP_BRA (normal non-capturing bracket) because the other variants of these |
1736 | opcodes are all concerned with unlimited repeated groups, which of course |
1737 | are not of fixed length. */ |
1738 | |
1739 | case OP_CBRA: |
1740 | case OP_BRA: |
1741 | case OP_ONCE: |
1742 | case OP_ONCE_NC: |
1743 | case OP_COND: |
1744 | d = find_fixedlength(cc + ((op == OP_CBRA)? IMM2_SIZE : 0), utf, atend, cd); |
1745 | if (d < 0) return d; |
1746 | branchlength += d; |
1747 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1748 | cc += 1 + LINK_SIZE; |
1749 | break; |
1750 | |
1751 | /* Reached end of a branch; if it's a ket it is the end of a nested call. |
1752 | If it's ALT it is an alternation in a nested call. An ACCEPT is effectively |
1753 | an ALT. If it is END it's the end of the outer call. All can be handled by |
1754 | the same code. Note that we must not include the OP_KETRxxx opcodes here, |
1755 | because they all imply an unlimited repeat. */ |
1756 | |
1757 | case OP_ALT: |
1758 | case OP_KET: |
1759 | case OP_END: |
1760 | case OP_ACCEPT: |
1761 | case OP_ASSERT_ACCEPT: |
1762 | if (length < 0) length = branchlength; |
1763 | else if (length != branchlength) return -1; |
1764 | if (*cc != OP_ALT) return length; |
1765 | cc += 1 + LINK_SIZE; |
1766 | branchlength = 0; |
1767 | break; |
1768 | |
1769 | /* A true recursion implies not fixed length, but a subroutine call may |
1770 | be OK. If the subroutine is a forward reference, we can't deal with |
1771 | it until the end of the pattern, so return -3. */ |
1772 | |
1773 | case OP_RECURSE: |
1774 | if (!atend) return -3; |
1775 | cs = ce = (pcre_uchar *)cd->start_code + GET(cc, 1); /* Start subpattern */ |
1776 | do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */ |
1777 | if (cc > cs && cc < ce) return -1; /* Recursion */ |
1778 | d = find_fixedlength(cs + IMM2_SIZE, utf, atend, cd); |
1779 | if (d < 0) return d; |
1780 | branchlength += d; |
1781 | cc += 1 + LINK_SIZE; |
1782 | break; |
1783 | |
1784 | /* Skip over assertive subpatterns */ |
1785 | |
1786 | case OP_ASSERT: |
1787 | case OP_ASSERT_NOT: |
1788 | case OP_ASSERTBACK: |
1789 | case OP_ASSERTBACK_NOT: |
1790 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1791 | cc += PRIV(OP_lengths)[*cc]; |
1792 | break; |
1793 | |
1794 | /* Skip over things that don't match chars */ |
1795 | |
1796 | case OP_MARK: |
1797 | case OP_PRUNE_ARG: |
1798 | case OP_SKIP_ARG: |
1799 | case OP_THEN_ARG: |
1800 | cc += cc[1] + PRIV(OP_lengths)[*cc]; |
1801 | break; |
1802 | |
1803 | case OP_CALLOUT: |
1804 | case OP_CIRC: |
1805 | case OP_CIRCM: |
1806 | case OP_CLOSE: |
1807 | case OP_COMMIT: |
1808 | case OP_CREF: |
1809 | case OP_DEF: |
1810 | case OP_DNCREF: |
1811 | case OP_DNRREF: |
1812 | case OP_DOLL: |
1813 | case OP_DOLLM: |
1814 | case OP_EOD: |
1815 | case OP_EODN: |
1816 | case OP_FAIL: |
1817 | case OP_NOT_WORD_BOUNDARY: |
1818 | case OP_PRUNE: |
1819 | case OP_REVERSE: |
1820 | case OP_RREF: |
1821 | case OP_SET_SOM: |
1822 | case OP_SKIP: |
1823 | case OP_SOD: |
1824 | case OP_SOM: |
1825 | case OP_THEN: |
1826 | case OP_WORD_BOUNDARY: |
1827 | cc += PRIV(OP_lengths)[*cc]; |
1828 | break; |
1829 | |
1830 | /* Handle literal characters */ |
1831 | |
1832 | case OP_CHAR: |
1833 | case OP_CHARI: |
1834 | case OP_NOT: |
1835 | case OP_NOTI: |
1836 | branchlength++; |
1837 | cc += 2; |
1838 | #ifdef SUPPORT_UTF |
1839 | if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]); |
1840 | #endif |
1841 | break; |
1842 | |
1843 | /* Handle exact repetitions. The count is already in characters, but we |
1844 | need to skip over a multibyte character in UTF8 mode. */ |
1845 | |
1846 | case OP_EXACT: |
1847 | case OP_EXACTI: |
1848 | case OP_NOTEXACT: |
1849 | case OP_NOTEXACTI: |
1850 | branchlength += (int)GET2(cc,1); |
1851 | cc += 2 + IMM2_SIZE; |
1852 | #ifdef SUPPORT_UTF |
1853 | if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]); |
1854 | #endif |
1855 | break; |
1856 | |
1857 | case OP_TYPEEXACT: |
1858 | branchlength += GET2(cc,1); |
1859 | if (cc[1 + IMM2_SIZE] == OP_PROP || cc[1 + IMM2_SIZE] == OP_NOTPROP) |
1860 | cc += 2; |
1861 | cc += 1 + IMM2_SIZE + 1; |
1862 | break; |
1863 | |
1864 | /* Handle single-char matchers */ |
1865 | |
1866 | case OP_PROP: |
1867 | case OP_NOTPROP: |
1868 | cc += 2; |
1869 | /* Fall through */ |
1870 | |
1871 | case OP_HSPACE: |
1872 | case OP_VSPACE: |
1873 | case OP_NOT_HSPACE: |
1874 | case OP_NOT_VSPACE: |
1875 | case OP_NOT_DIGIT: |
1876 | case OP_DIGIT: |
1877 | case OP_NOT_WHITESPACE: |
1878 | case OP_WHITESPACE: |
1879 | case OP_NOT_WORDCHAR: |
1880 | case OP_WORDCHAR: |
1881 | case OP_ANY: |
1882 | case OP_ALLANY: |
1883 | branchlength++; |
1884 | cc++; |
1885 | break; |
1886 | |
1887 | /* The single-byte matcher isn't allowed. This only happens in UTF-8 mode; |
1888 | otherwise \C is coded as OP_ALLANY. */ |
1889 | |
1890 | case OP_ANYBYTE: |
1891 | return -2; |
1892 | |
1893 | /* Check a class for variable quantification */ |
1894 | |
1895 | case OP_CLASS: |
1896 | case OP_NCLASS: |
1897 | #if defined SUPPORT_UTF || defined COMPILE_PCRE16 || defined COMPILE_PCRE32 |
1898 | case OP_XCLASS: |
1899 | /* The original code caused an unsigned overflow in 64 bit systems, |
1900 | so now we use a conditional statement. */ |
1901 | if (op == OP_XCLASS) |
1902 | cc += GET(cc, 1); |
1903 | else |
1904 | cc += PRIV(OP_lengths)[OP_CLASS]; |
1905 | #else |
1906 | cc += PRIV(OP_lengths)[OP_CLASS]; |
1907 | #endif |
1908 | |
1909 | switch (*cc) |
1910 | { |
1911 | case OP_CRSTAR: |
1912 | case OP_CRMINSTAR: |
1913 | case OP_CRPLUS: |
1914 | case OP_CRMINPLUS: |
1915 | case OP_CRQUERY: |
1916 | case OP_CRMINQUERY: |
1917 | case OP_CRPOSSTAR: |
1918 | case OP_CRPOSPLUS: |
1919 | case OP_CRPOSQUERY: |
1920 | return -1; |
1921 | |
1922 | case OP_CRRANGE: |
1923 | case OP_CRMINRANGE: |
1924 | case OP_CRPOSRANGE: |
1925 | if (GET2(cc,1) != GET2(cc,1+IMM2_SIZE)) return -1; |
1926 | branchlength += (int)GET2(cc,1); |
1927 | cc += 1 + 2 * IMM2_SIZE; |
1928 | break; |
1929 | |
1930 | default: |
1931 | branchlength++; |
1932 | } |
1933 | break; |
1934 | |
1935 | /* Anything else is variable length */ |
1936 | |
1937 | case OP_ANYNL: |
1938 | case OP_BRAMINZERO: |
1939 | case OP_BRAPOS: |
1940 | case OP_BRAPOSZERO: |
1941 | case OP_BRAZERO: |
1942 | case OP_CBRAPOS: |
1943 | case OP_EXTUNI: |
1944 | case OP_KETRMAX: |
1945 | case OP_KETRMIN: |
1946 | case OP_KETRPOS: |
1947 | case OP_MINPLUS: |
1948 | case OP_MINPLUSI: |
1949 | case OP_MINQUERY: |
1950 | case OP_MINQUERYI: |
1951 | case OP_MINSTAR: |
1952 | case OP_MINSTARI: |
1953 | case OP_MINUPTO: |
1954 | case OP_MINUPTOI: |
1955 | case OP_NOTMINPLUS: |
1956 | case OP_NOTMINPLUSI: |
1957 | case OP_NOTMINQUERY: |
1958 | case OP_NOTMINQUERYI: |
1959 | case OP_NOTMINSTAR: |
1960 | case OP_NOTMINSTARI: |
1961 | case OP_NOTMINUPTO: |
1962 | case OP_NOTMINUPTOI: |
1963 | case OP_NOTPLUS: |
1964 | case OP_NOTPLUSI: |
1965 | case OP_NOTPOSPLUS: |
1966 | case OP_NOTPOSPLUSI: |
1967 | case OP_NOTPOSQUERY: |
1968 | case OP_NOTPOSQUERYI: |
1969 | case OP_NOTPOSSTAR: |
1970 | case OP_NOTPOSSTARI: |
1971 | case OP_NOTPOSUPTO: |
1972 | case OP_NOTPOSUPTOI: |
1973 | case OP_NOTQUERY: |
1974 | case OP_NOTQUERYI: |
1975 | case OP_NOTSTAR: |
1976 | case OP_NOTSTARI: |
1977 | case OP_NOTUPTO: |
1978 | case OP_NOTUPTOI: |
1979 | case OP_PLUS: |
1980 | case OP_PLUSI: |
1981 | case OP_POSPLUS: |
1982 | case OP_POSPLUSI: |
1983 | case OP_POSQUERY: |
1984 | case OP_POSQUERYI: |
1985 | case OP_POSSTAR: |
1986 | case OP_POSSTARI: |
1987 | case OP_POSUPTO: |
1988 | case OP_POSUPTOI: |
1989 | case OP_QUERY: |
1990 | case OP_QUERYI: |
1991 | case OP_REF: |
1992 | case OP_REFI: |
1993 | case OP_DNREF: |
1994 | case OP_DNREFI: |
1995 | case OP_SBRA: |
1996 | case OP_SBRAPOS: |
1997 | case OP_SCBRA: |
1998 | case OP_SCBRAPOS: |
1999 | case OP_SCOND: |
2000 | case OP_SKIPZERO: |
2001 | case OP_STAR: |
2002 | case OP_STARI: |
2003 | case OP_TYPEMINPLUS: |
2004 | case OP_TYPEMINQUERY: |
2005 | case OP_TYPEMINSTAR: |
2006 | case OP_TYPEMINUPTO: |
2007 | case OP_TYPEPLUS: |
2008 | case OP_TYPEPOSPLUS: |
2009 | case OP_TYPEPOSQUERY: |
2010 | case OP_TYPEPOSSTAR: |
2011 | case OP_TYPEPOSUPTO: |
2012 | case OP_TYPEQUERY: |
2013 | case OP_TYPESTAR: |
2014 | case OP_TYPEUPTO: |
2015 | case OP_UPTO: |
2016 | case OP_UPTOI: |
2017 | return -1; |
2018 | |
2019 | /* Catch unrecognized opcodes so that when new ones are added they |
2020 | are not forgotten, as has happened in the past. */ |
2021 | |
2022 | default: |
2023 | return -4; |
2024 | } |
2025 | } |
2026 | /* Control never gets here */ |
2027 | } |
2028 | |
2029 | |
2030 | |
2031 | /************************************************* |
2032 | * Scan compiled regex for specific bracket * |
2033 | *************************************************/ |
2034 | |
2035 | /* This little function scans through a compiled pattern until it finds a |
2036 | capturing bracket with the given number, or, if the number is negative, an |
2037 | instance of OP_REVERSE for a lookbehind. The function is global in the C sense |
2038 | so that it can be called from pcre_study() when finding the minimum matching |
2039 | length. |
2040 | |
2041 | Arguments: |
2042 | code points to start of expression |
2043 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
2044 | number the required bracket number or negative to find a lookbehind |
2045 | |
2046 | Returns: pointer to the opcode for the bracket, or NULL if not found |
2047 | */ |
2048 | |
2049 | const pcre_uchar * |
2050 | PRIV(find_bracket)(const pcre_uchar *code, BOOL utf, int number) |
2051 | { |
2052 | for (;;) |
2053 | { |
2054 | register pcre_uchar c = *code; |
2055 | |
2056 | if (c == OP_END) return NULL; |
2057 | |
2058 | /* XCLASS is used for classes that cannot be represented just by a bit |
2059 | map. This includes negated single high-valued characters. The length in |
2060 | the table is zero; the actual length is stored in the compiled code. */ |
2061 | |
2062 | if (c == OP_XCLASS) code += GET(code, 1); |
2063 | |
2064 | /* Handle recursion */ |
2065 | |
2066 | else if (c == OP_REVERSE) |
2067 | { |
2068 | if (number < 0) return (pcre_uchar *)code; |
2069 | code += PRIV(OP_lengths)[c]; |
2070 | } |
2071 | |
2072 | /* Handle capturing bracket */ |
2073 | |
2074 | else if (c == OP_CBRA || c == OP_SCBRA || |
2075 | c == OP_CBRAPOS || c == OP_SCBRAPOS) |
2076 | { |
2077 | int n = (int)GET2(code, 1+LINK_SIZE); |
2078 | if (n == number) return (pcre_uchar *)code; |
2079 | code += PRIV(OP_lengths)[c]; |
2080 | } |
2081 | |
2082 | /* Otherwise, we can get the item's length from the table, except that for |
2083 | repeated character types, we have to test for \p and \P, which have an extra |
2084 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
2085 | must add in its length. */ |
2086 | |
2087 | else |
2088 | { |
2089 | switch(c) |
2090 | { |
2091 | case OP_TYPESTAR: |
2092 | case OP_TYPEMINSTAR: |
2093 | case OP_TYPEPLUS: |
2094 | case OP_TYPEMINPLUS: |
2095 | case OP_TYPEQUERY: |
2096 | case OP_TYPEMINQUERY: |
2097 | case OP_TYPEPOSSTAR: |
2098 | case OP_TYPEPOSPLUS: |
2099 | case OP_TYPEPOSQUERY: |
2100 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2101 | break; |
2102 | |
2103 | case OP_TYPEUPTO: |
2104 | case OP_TYPEMINUPTO: |
2105 | case OP_TYPEEXACT: |
2106 | case OP_TYPEPOSUPTO: |
2107 | if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP) |
2108 | code += 2; |
2109 | break; |
2110 | |
2111 | case OP_MARK: |
2112 | case OP_PRUNE_ARG: |
2113 | case OP_SKIP_ARG: |
2114 | case OP_THEN_ARG: |
2115 | code += code[1]; |
2116 | break; |
2117 | } |
2118 | |
2119 | /* Add in the fixed length from the table */ |
2120 | |
2121 | code += PRIV(OP_lengths)[c]; |
2122 | |
2123 | /* In UTF-8 mode, opcodes that are followed by a character may be followed by |
2124 | a multi-byte character. The length in the table is a minimum, so we have to |
2125 | arrange to skip the extra bytes. */ |
2126 | |
2127 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
2128 | if (utf) switch(c) |
2129 | { |
2130 | case OP_CHAR: |
2131 | case OP_CHARI: |
2132 | case OP_NOT: |
2133 | case OP_NOTI: |
2134 | case OP_EXACT: |
2135 | case OP_EXACTI: |
2136 | case OP_NOTEXACT: |
2137 | case OP_NOTEXACTI: |
2138 | case OP_UPTO: |
2139 | case OP_UPTOI: |
2140 | case OP_NOTUPTO: |
2141 | case OP_NOTUPTOI: |
2142 | case OP_MINUPTO: |
2143 | case OP_MINUPTOI: |
2144 | case OP_NOTMINUPTO: |
2145 | case OP_NOTMINUPTOI: |
2146 | case OP_POSUPTO: |
2147 | case OP_POSUPTOI: |
2148 | case OP_NOTPOSUPTO: |
2149 | case OP_NOTPOSUPTOI: |
2150 | case OP_STAR: |
2151 | case OP_STARI: |
2152 | case OP_NOTSTAR: |
2153 | case OP_NOTSTARI: |
2154 | case OP_MINSTAR: |
2155 | case OP_MINSTARI: |
2156 | case OP_NOTMINSTAR: |
2157 | case OP_NOTMINSTARI: |
2158 | case OP_POSSTAR: |
2159 | case OP_POSSTARI: |
2160 | case OP_NOTPOSSTAR: |
2161 | case OP_NOTPOSSTARI: |
2162 | case OP_PLUS: |
2163 | case OP_PLUSI: |
2164 | case OP_NOTPLUS: |
2165 | case OP_NOTPLUSI: |
2166 | case OP_MINPLUS: |
2167 | case OP_MINPLUSI: |
2168 | case OP_NOTMINPLUS: |
2169 | case OP_NOTMINPLUSI: |
2170 | case OP_POSPLUS: |
2171 | case OP_POSPLUSI: |
2172 | case OP_NOTPOSPLUS: |
2173 | case OP_NOTPOSPLUSI: |
2174 | case OP_QUERY: |
2175 | case OP_QUERYI: |
2176 | case OP_NOTQUERY: |
2177 | case OP_NOTQUERYI: |
2178 | case OP_MINQUERY: |
2179 | case OP_MINQUERYI: |
2180 | case OP_NOTMINQUERY: |
2181 | case OP_NOTMINQUERYI: |
2182 | case OP_POSQUERY: |
2183 | case OP_POSQUERYI: |
2184 | case OP_NOTPOSQUERY: |
2185 | case OP_NOTPOSQUERYI: |
2186 | if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]); |
2187 | break; |
2188 | } |
2189 | #else |
2190 | (void)(utf); /* Keep compiler happy by referencing function argument */ |
2191 | #endif |
2192 | } |
2193 | } |
2194 | } |
2195 | |
2196 | |
2197 | |
2198 | /************************************************* |
2199 | * Scan compiled regex for recursion reference * |
2200 | *************************************************/ |
2201 | |
2202 | /* This little function scans through a compiled pattern until it finds an |
2203 | instance of OP_RECURSE. |
2204 | |
2205 | Arguments: |
2206 | code points to start of expression |
2207 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
2208 | |
2209 | Returns: pointer to the opcode for OP_RECURSE, or NULL if not found |
2210 | */ |
2211 | |
2212 | static const pcre_uchar * |
2213 | find_recurse(const pcre_uchar *code, BOOL utf) |
2214 | { |
2215 | for (;;) |
2216 | { |
2217 | register pcre_uchar c = *code; |
2218 | if (c == OP_END) return NULL; |
2219 | if (c == OP_RECURSE) return code; |
2220 | |
2221 | /* XCLASS is used for classes that cannot be represented just by a bit |
2222 | map. This includes negated single high-valued characters. The length in |
2223 | the table is zero; the actual length is stored in the compiled code. */ |
2224 | |
2225 | if (c == OP_XCLASS) code += GET(code, 1); |
2226 | |
2227 | /* Otherwise, we can get the item's length from the table, except that for |
2228 | repeated character types, we have to test for \p and \P, which have an extra |
2229 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
2230 | must add in its length. */ |
2231 | |
2232 | else |
2233 | { |
2234 | switch(c) |
2235 | { |
2236 | case OP_TYPESTAR: |
2237 | case OP_TYPEMINSTAR: |
2238 | case OP_TYPEPLUS: |
2239 | case OP_TYPEMINPLUS: |
2240 | case OP_TYPEQUERY: |
2241 | case OP_TYPEMINQUERY: |
2242 | case OP_TYPEPOSSTAR: |
2243 | case OP_TYPEPOSPLUS: |
2244 | case OP_TYPEPOSQUERY: |
2245 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2246 | break; |
2247 | |
2248 | case OP_TYPEPOSUPTO: |
2249 | case OP_TYPEUPTO: |
2250 | case OP_TYPEMINUPTO: |
2251 | case OP_TYPEEXACT: |
2252 | if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP) |
2253 | code += 2; |
2254 | break; |
2255 | |
2256 | case OP_MARK: |
2257 | case OP_PRUNE_ARG: |
2258 | case OP_SKIP_ARG: |
2259 | case OP_THEN_ARG: |
2260 | code += code[1]; |
2261 | break; |
2262 | } |
2263 | |
2264 | /* Add in the fixed length from the table */ |
2265 | |
2266 | code += PRIV(OP_lengths)[c]; |
2267 | |
2268 | /* In UTF-8 mode, opcodes that are followed by a character may be followed |
2269 | by a multi-byte character. The length in the table is a minimum, so we have |
2270 | to arrange to skip the extra bytes. */ |
2271 | |
2272 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
2273 | if (utf) switch(c) |
2274 | { |
2275 | case OP_CHAR: |
2276 | case OP_CHARI: |
2277 | case OP_NOT: |
2278 | case OP_NOTI: |
2279 | case OP_EXACT: |
2280 | case OP_EXACTI: |
2281 | case OP_NOTEXACT: |
2282 | case OP_NOTEXACTI: |
2283 | case OP_UPTO: |
2284 | case OP_UPTOI: |
2285 | case OP_NOTUPTO: |
2286 | case OP_NOTUPTOI: |
2287 | case OP_MINUPTO: |
2288 | case OP_MINUPTOI: |
2289 | case OP_NOTMINUPTO: |
2290 | case OP_NOTMINUPTOI: |
2291 | case OP_POSUPTO: |
2292 | case OP_POSUPTOI: |
2293 | case OP_NOTPOSUPTO: |
2294 | case OP_NOTPOSUPTOI: |
2295 | case OP_STAR: |
2296 | case OP_STARI: |
2297 | case OP_NOTSTAR: |
2298 | case OP_NOTSTARI: |
2299 | case OP_MINSTAR: |
2300 | case OP_MINSTARI: |
2301 | case OP_NOTMINSTAR: |
2302 | case OP_NOTMINSTARI: |
2303 | case OP_POSSTAR: |
2304 | case OP_POSSTARI: |
2305 | case OP_NOTPOSSTAR: |
2306 | case OP_NOTPOSSTARI: |
2307 | case OP_PLUS: |
2308 | case OP_PLUSI: |
2309 | case OP_NOTPLUS: |
2310 | case OP_NOTPLUSI: |
2311 | case OP_MINPLUS: |
2312 | case OP_MINPLUSI: |
2313 | case OP_NOTMINPLUS: |
2314 | case OP_NOTMINPLUSI: |
2315 | case OP_POSPLUS: |
2316 | case OP_POSPLUSI: |
2317 | case OP_NOTPOSPLUS: |
2318 | case OP_NOTPOSPLUSI: |
2319 | case OP_QUERY: |
2320 | case OP_QUERYI: |
2321 | case OP_NOTQUERY: |
2322 | case OP_NOTQUERYI: |
2323 | case OP_MINQUERY: |
2324 | case OP_MINQUERYI: |
2325 | case OP_NOTMINQUERY: |
2326 | case OP_NOTMINQUERYI: |
2327 | case OP_POSQUERY: |
2328 | case OP_POSQUERYI: |
2329 | case OP_NOTPOSQUERY: |
2330 | case OP_NOTPOSQUERYI: |
2331 | if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]); |
2332 | break; |
2333 | } |
2334 | #else |
2335 | (void)(utf); /* Keep compiler happy by referencing function argument */ |
2336 | #endif |
2337 | } |
2338 | } |
2339 | } |
2340 | |
2341 | |
2342 | |
2343 | /************************************************* |
2344 | * Scan compiled branch for non-emptiness * |
2345 | *************************************************/ |
2346 | |
2347 | /* This function scans through a branch of a compiled pattern to see whether it |
2348 | can match the empty string or not. It is called from could_be_empty() |
2349 | below and from compile_branch() when checking for an unlimited repeat of a |
2350 | group that can match nothing. Note that first_significant_code() skips over |
2351 | backward and negative forward assertions when its final argument is TRUE. If we |
2352 | hit an unclosed bracket, we return "empty" - this means we've struck an inner |
2353 | bracket whose current branch will already have been scanned. |
2354 | |
2355 | Arguments: |
2356 | code points to start of search |
2357 | endcode points to where to stop |
2358 | utf TRUE if in UTF-8 / UTF-16 / UTF-32 mode |
2359 | cd contains pointers to tables etc. |
2360 | recurses chain of recurse_check to catch mutual recursion |
2361 | |
2362 | Returns: TRUE if what is matched could be empty |
2363 | */ |
2364 | |
2365 | typedef struct recurse_check { |
2366 | struct recurse_check *prev; |
2367 | const pcre_uchar *group; |
2368 | } recurse_check; |
2369 | |
2370 | static BOOL |
2371 | could_be_empty_branch(const pcre_uchar *code, const pcre_uchar *endcode, |
2372 | BOOL utf, compile_data *cd, recurse_check *recurses) |
2373 | { |
2374 | register pcre_uchar c; |
2375 | recurse_check this_recurse; |
2376 | |
2377 | for (code = first_significant_code(code + PRIV(OP_lengths)[*code], TRUE); |
2378 | code < endcode; |
2379 | code = first_significant_code(code + PRIV(OP_lengths)[c], TRUE)) |
2380 | { |
2381 | const pcre_uchar *ccode; |
2382 | |
2383 | c = *code; |
2384 | |
2385 | /* Skip over forward assertions; the other assertions are skipped by |
2386 | first_significant_code() with a TRUE final argument. */ |
2387 | |
2388 | if (c == OP_ASSERT) |
2389 | { |
2390 | do code += GET(code, 1); while (*code == OP_ALT); |
2391 | c = *code; |
2392 | continue; |
2393 | } |
2394 | |
2395 | /* For a recursion/subroutine call, if its end has been reached, which |
2396 | implies a backward reference subroutine call, we can scan it. If it's a |
2397 | forward reference subroutine call, we can't. To detect forward reference |
2398 | we have to scan up the list that is kept in the workspace. This function is |
2399 | called only when doing the real compile, not during the pre-compile that |
2400 | measures the size of the compiled pattern. */ |
2401 | |
2402 | if (c == OP_RECURSE) |
2403 | { |
2404 | const pcre_uchar *scode = cd->start_code + GET(code, 1); |
2405 | const pcre_uchar *endgroup = scode; |
2406 | BOOL empty_branch; |
2407 | |
2408 | /* Test for forward reference or uncompleted reference. This is disabled |
2409 | when called to scan a completed pattern by setting cd->start_workspace to |
2410 | NULL. */ |
2411 | |
2412 | if (cd->start_workspace != NULL) |
2413 | { |
2414 | const pcre_uchar *tcode; |
2415 | for (tcode = cd->start_workspace; tcode < cd->hwm; tcode += LINK_SIZE) |
2416 | if ((int)GET(tcode, 0) == (int)(code + 1 - cd->start_code)) return TRUE; |
2417 | if (GET(scode, 1) == 0) return TRUE; /* Unclosed */ |
2418 | } |
2419 | |
2420 | /* If the reference is to a completed group, we need to detect whether this |
2421 | is a recursive call, as otherwise there will be an infinite loop. If it is |
2422 | a recursion, just skip over it. Simple recursions are easily detected. For |
2423 | mutual recursions we keep a chain on the stack. */ |
2424 | |
2425 | do endgroup += GET(endgroup, 1); while (*endgroup == OP_ALT); |
2426 | if (code >= scode && code <= endgroup) continue; /* Simple recursion */ |
2427 | else |
2428 | { |
2429 | recurse_check *r = recurses; |
2430 | for (r = recurses; r != NULL; r = r->prev) |
2431 | if (r->group == scode) break; |
2432 | if (r != NULL) continue; /* Mutual recursion */ |
2433 | } |
2434 | |
2435 | /* Completed reference; scan the referenced group, remembering it on the |
2436 | stack chain to detect mutual recursions. */ |
2437 | |
2438 | empty_branch = FALSE; |
2439 | this_recurse.prev = recurses; |
2440 | this_recurse.group = scode; |
2441 | |
2442 | do |
2443 | { |
2444 | if (could_be_empty_branch(scode, endcode, utf, cd, &this_recurse)) |
2445 | { |
2446 | empty_branch = TRUE; |
2447 | break; |
2448 | } |
2449 | scode += GET(scode, 1); |
2450 | } |
2451 | while (*scode == OP_ALT); |
2452 | |
2453 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
2454 | continue; |
2455 | } |
2456 | |
2457 | /* Groups with zero repeats can of course be empty; skip them. */ |
2458 | |
2459 | if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO || |
2460 | c == OP_BRAPOSZERO) |
2461 | { |
2462 | code += PRIV(OP_lengths)[c]; |
2463 | do code += GET(code, 1); while (*code == OP_ALT); |
2464 | c = *code; |
2465 | continue; |
2466 | } |
2467 | |
2468 | /* A nested group that is already marked as "could be empty" can just be |
2469 | skipped. */ |
2470 | |
2471 | if (c == OP_SBRA || c == OP_SBRAPOS || |
2472 | c == OP_SCBRA || c == OP_SCBRAPOS) |
2473 | { |
2474 | do code += GET(code, 1); while (*code == OP_ALT); |
2475 | c = *code; |
2476 | continue; |
2477 | } |
2478 | |
2479 | /* For other groups, scan the branches. */ |
2480 | |
2481 | if (c == OP_BRA || c == OP_BRAPOS || |
2482 | c == OP_CBRA || c == OP_CBRAPOS || |
2483 | c == OP_ONCE || c == OP_ONCE_NC || |
2484 | c == OP_COND) |
2485 | { |
2486 | BOOL empty_branch; |
2487 | if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */ |
2488 | |
2489 | /* If a conditional group has only one branch, there is a second, implied, |
2490 | empty branch, so just skip over the conditional, because it could be empty. |
2491 | Otherwise, scan the individual branches of the group. */ |
2492 | |
2493 | if (c == OP_COND && code[GET(code, 1)] != OP_ALT) |
2494 | code += GET(code, 1); |
2495 | else |
2496 | { |
2497 | empty_branch = FALSE; |
2498 | do |
2499 | { |
2500 | if (!empty_branch && could_be_empty_branch(code, endcode, utf, cd, NULL)) |
2501 | empty_branch = TRUE; |
2502 | code += GET(code, 1); |
2503 | } |
2504 | while (*code == OP_ALT); |
2505 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
2506 | } |
2507 | |
2508 | c = *code; |
2509 | continue; |
2510 | } |
2511 | |
2512 | /* Handle the other opcodes */ |
2513 | |
2514 | switch (c) |
2515 | { |
2516 | /* Check for quantifiers after a class. XCLASS is used for classes that |
2517 | cannot be represented just by a bit map. This includes negated single |
2518 | high-valued characters. The length in PRIV(OP_lengths)[] is zero; the |
2519 | actual length is stored in the compiled code, so we must update "code" |
2520 | here. */ |
2521 | |
2522 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
2523 | case OP_XCLASS: |
2524 | ccode = code += GET(code, 1); |
2525 | goto CHECK_CLASS_REPEAT; |
2526 | #endif |
2527 | |
2528 | case OP_CLASS: |
2529 | case OP_NCLASS: |
2530 | ccode = code + PRIV(OP_lengths)[OP_CLASS]; |
2531 | |
2532 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
2533 | CHECK_CLASS_REPEAT: |
2534 | #endif |
2535 | |
2536 | switch (*ccode) |
2537 | { |
2538 | case OP_CRSTAR: /* These could be empty; continue */ |
2539 | case OP_CRMINSTAR: |
2540 | case OP_CRQUERY: |
2541 | case OP_CRMINQUERY: |
2542 | case OP_CRPOSSTAR: |
2543 | case OP_CRPOSQUERY: |
2544 | break; |
2545 | |
2546 | default: /* Non-repeat => class must match */ |
2547 | case OP_CRPLUS: /* These repeats aren't empty */ |
2548 | case OP_CRMINPLUS: |
2549 | case OP_CRPOSPLUS: |
2550 | return FALSE; |
2551 | |
2552 | case OP_CRRANGE: |
2553 | case OP_CRMINRANGE: |
2554 | case OP_CRPOSRANGE: |
2555 | if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */ |
2556 | break; |
2557 | } |
2558 | break; |
2559 | |
2560 | /* Opcodes that must match a character */ |
2561 | |
2562 | case OP_ANY: |
2563 | case OP_ALLANY: |
2564 | case OP_ANYBYTE: |
2565 | |
2566 | case OP_PROP: |
2567 | case OP_NOTPROP: |
2568 | case OP_ANYNL: |
2569 | |
2570 | case OP_NOT_HSPACE: |
2571 | case OP_HSPACE: |
2572 | case OP_NOT_VSPACE: |
2573 | case OP_VSPACE: |
2574 | case OP_EXTUNI: |
2575 | |
2576 | case OP_NOT_DIGIT: |
2577 | case OP_DIGIT: |
2578 | case OP_NOT_WHITESPACE: |
2579 | case OP_WHITESPACE: |
2580 | case OP_NOT_WORDCHAR: |
2581 | case OP_WORDCHAR: |
2582 | |
2583 | case OP_CHAR: |
2584 | case OP_CHARI: |
2585 | case OP_NOT: |
2586 | case OP_NOTI: |
2587 | |
2588 | case OP_PLUS: |
2589 | case OP_PLUSI: |
2590 | case OP_MINPLUS: |
2591 | case OP_MINPLUSI: |
2592 | |
2593 | case OP_NOTPLUS: |
2594 | case OP_NOTPLUSI: |
2595 | case OP_NOTMINPLUS: |
2596 | case OP_NOTMINPLUSI: |
2597 | |
2598 | case OP_POSPLUS: |
2599 | case OP_POSPLUSI: |
2600 | case OP_NOTPOSPLUS: |
2601 | case OP_NOTPOSPLUSI: |
2602 | |
2603 | case OP_EXACT: |
2604 | case OP_EXACTI: |
2605 | case OP_NOTEXACT: |
2606 | case OP_NOTEXACTI: |
2607 | |
2608 | case OP_TYPEPLUS: |
2609 | case OP_TYPEMINPLUS: |
2610 | case OP_TYPEPOSPLUS: |
2611 | case OP_TYPEEXACT: |
2612 | |
2613 | return FALSE; |
2614 | |
2615 | /* These are going to continue, as they may be empty, but we have to |
2616 | fudge the length for the \p and \P cases. */ |
2617 | |
2618 | case OP_TYPESTAR: |
2619 | case OP_TYPEMINSTAR: |
2620 | case OP_TYPEPOSSTAR: |
2621 | case OP_TYPEQUERY: |
2622 | case OP_TYPEMINQUERY: |
2623 | case OP_TYPEPOSQUERY: |
2624 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2625 | break; |
2626 | |
2627 | /* Same for these */ |
2628 | |
2629 | case OP_TYPEUPTO: |
2630 | case OP_TYPEMINUPTO: |
2631 | case OP_TYPEPOSUPTO: |
2632 | if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP) |
2633 | code += 2; |
2634 | break; |
2635 | |
2636 | /* End of branch */ |
2637 | |
2638 | case OP_KET: |
2639 | case OP_KETRMAX: |
2640 | case OP_KETRMIN: |
2641 | case OP_KETRPOS: |
2642 | case OP_ALT: |
2643 | return TRUE; |
2644 | |
2645 | /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO, |
2646 | MINUPTO, and POSUPTO and their caseless and negative versions may be |
2647 | followed by a multibyte character. */ |
2648 | |
2649 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
2650 | case OP_STAR: |
2651 | case OP_STARI: |
2652 | case OP_NOTSTAR: |
2653 | case OP_NOTSTARI: |
2654 | |
2655 | case OP_MINSTAR: |
2656 | case OP_MINSTARI: |
2657 | case OP_NOTMINSTAR: |
2658 | case OP_NOTMINSTARI: |
2659 | |
2660 | case OP_POSSTAR: |
2661 | case OP_POSSTARI: |
2662 | case OP_NOTPOSSTAR: |
2663 | case OP_NOTPOSSTARI: |
2664 | |
2665 | case OP_QUERY: |
2666 | case OP_QUERYI: |
2667 | case OP_NOTQUERY: |
2668 | case OP_NOTQUERYI: |
2669 | |
2670 | case OP_MINQUERY: |
2671 | case OP_MINQUERYI: |
2672 | case OP_NOTMINQUERY: |
2673 | case OP_NOTMINQUERYI: |
2674 | |
2675 | case OP_POSQUERY: |
2676 | case OP_POSQUERYI: |
2677 | case OP_NOTPOSQUERY: |
2678 | case OP_NOTPOSQUERYI: |
2679 | |
2680 | if (utf && HAS_EXTRALEN(code[1])) code += GET_EXTRALEN(code[1]); |
2681 | break; |
2682 | |
2683 | case OP_UPTO: |
2684 | case OP_UPTOI: |
2685 | case OP_NOTUPTO: |
2686 | case OP_NOTUPTOI: |
2687 | |
2688 | case OP_MINUPTO: |
2689 | case OP_MINUPTOI: |
2690 | case OP_NOTMINUPTO: |
2691 | case OP_NOTMINUPTOI: |
2692 | |
2693 | case OP_POSUPTO: |
2694 | case OP_POSUPTOI: |
2695 | case OP_NOTPOSUPTO: |
2696 | case OP_NOTPOSUPTOI: |
2697 | |
2698 | if (utf && HAS_EXTRALEN(code[1 + IMM2_SIZE])) code += GET_EXTRALEN(code[1 + IMM2_SIZE]); |
2699 | break; |
2700 | #endif |
2701 | |
2702 | /* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument |
2703 | string. */ |
2704 | |
2705 | case OP_MARK: |
2706 | case OP_PRUNE_ARG: |
2707 | case OP_SKIP_ARG: |
2708 | case OP_THEN_ARG: |
2709 | code += code[1]; |
2710 | break; |
2711 | |
2712 | /* None of the remaining opcodes are required to match a character. */ |
2713 | |
2714 | default: |
2715 | break; |
2716 | } |
2717 | } |
2718 | |
2719 | return TRUE; |
2720 | } |
2721 | |
2722 | |
2723 | |
2724 | /************************************************* |
2725 | * Scan compiled regex for non-emptiness * |
2726 | *************************************************/ |
2727 | |
2728 | /* This function is called to check for left recursive calls. We want to check |
2729 | the current branch of the current pattern to see if it could match the empty |
2730 | string. If it could, we must look outwards for branches at other levels, |
2731 | stopping when we pass beyond the bracket which is the subject of the recursion. |
2732 | This function is called only during the real compile, not during the |
2733 | pre-compile. |
2734 | |
2735 | Arguments: |
2736 | code points to start of the recursion |
2737 | endcode points to where to stop (current RECURSE item) |
2738 | bcptr points to the chain of current (unclosed) branch starts |
2739 | utf TRUE if in UTF-8 / UTF-16 / UTF-32 mode |
2740 | cd pointers to tables etc |
2741 | |
2742 | Returns: TRUE if what is matched could be empty |
2743 | */ |
2744 | |
2745 | static BOOL |
2746 | could_be_empty(const pcre_uchar *code, const pcre_uchar *endcode, |
2747 | branch_chain *bcptr, BOOL utf, compile_data *cd) |
2748 | { |
2749 | while (bcptr != NULL && bcptr->current_branch >= code) |
2750 | { |
2751 | if (!could_be_empty_branch(bcptr->current_branch, endcode, utf, cd, NULL)) |
2752 | return FALSE; |
2753 | bcptr = bcptr->outer; |
2754 | } |
2755 | return TRUE; |
2756 | } |
2757 | |
2758 | |
2759 | |
2760 | /************************************************* |
2761 | * Base opcode of repeated opcodes * |
2762 | *************************************************/ |
2763 | |
2764 | /* Returns the base opcode for repeated single character type opcodes. If the |
2765 | opcode is not a repeated character type, it returns with the original value. |
2766 | |
2767 | Arguments: c opcode |
2768 | Returns: base opcode for the type |
2769 | */ |
2770 | |
2771 | static pcre_uchar |
2772 | get_repeat_base(pcre_uchar c) |
2773 | { |
2774 | return (c > OP_TYPEPOSUPTO)? c : |
2775 | (c >= OP_TYPESTAR)? OP_TYPESTAR : |
2776 | (c >= OP_NOTSTARI)? OP_NOTSTARI : |
2777 | (c >= OP_NOTSTAR)? OP_NOTSTAR : |
2778 | (c >= OP_STARI)? OP_STARI : |
2779 | OP_STAR; |
2780 | } |
2781 | |
2782 | |
2783 | |
2784 | #ifdef SUPPORT_UCP |
2785 | /************************************************* |
2786 | * Check a character and a property * |
2787 | *************************************************/ |
2788 | |
2789 | /* This function is called by check_auto_possessive() when a property item |
2790 | is adjacent to a fixed character. |
2791 | |
2792 | Arguments: |
2793 | c the character |
2794 | ptype the property type |
2795 | pdata the data for the type |
2796 | negated TRUE if it's a negated property (\P or \p{^) |
2797 | |
2798 | Returns: TRUE if auto-possessifying is OK |
2799 | */ |
2800 | |
2801 | static BOOL |
2802 | check_char_prop(pcre_uint32 c, unsigned int ptype, unsigned int pdata, |
2803 | BOOL negated) |
2804 | { |
2805 | const pcre_uint32 *p; |
2806 | const ucd_record *prop = GET_UCD(c); |
2807 | |
2808 | switch(ptype) |
2809 | { |
2810 | case PT_LAMP: |
2811 | return (prop->chartype == ucp_Lu || |
2812 | prop->chartype == ucp_Ll || |
2813 | prop->chartype == ucp_Lt) == negated; |
2814 | |
2815 | case PT_GC: |
2816 | return (pdata == PRIV(ucp_gentype)[prop->chartype]) == negated; |
2817 | |
2818 | case PT_PC: |
2819 | return (pdata == prop->chartype) == negated; |
2820 | |
2821 | case PT_SC: |
2822 | return (pdata == prop->script) == negated; |
2823 | |
2824 | /* These are specials */ |
2825 | |
2826 | case PT_ALNUM: |
2827 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_L || |
2828 | PRIV(ucp_gentype)[prop->chartype] == ucp_N) == negated; |
2829 | |
2830 | /* Perl space used to exclude VT, but from Perl 5.18 it is included, which |
2831 | means that Perl space and POSIX space are now identical. PCRE was changed |
2832 | at release 8.34. */ |
2833 | |
2834 | case PT_SPACE: /* Perl space */ |
2835 | case PT_PXSPACE: /* POSIX space */ |
2836 | switch(c) |
2837 | { |
2838 | HSPACE_CASES: |
2839 | VSPACE_CASES: |
2840 | return negated; |
2841 | |
2842 | default: |
2843 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_Z) == negated; |
2844 | } |
2845 | break; /* Control never reaches here */ |
2846 | |
2847 | case PT_WORD: |
2848 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_L || |
2849 | PRIV(ucp_gentype)[prop->chartype] == ucp_N || |
2850 | c == CHAR_UNDERSCORE) == negated; |
2851 | |
2852 | case PT_CLIST: |
2853 | p = PRIV(ucd_caseless_sets) + prop->caseset; |
2854 | for (;;) |
2855 | { |
2856 | if (c < *p) return !negated; |
2857 | if (c == *p++) return negated; |
2858 | } |
2859 | break; /* Control never reaches here */ |
2860 | } |
2861 | |
2862 | return FALSE; |
2863 | } |
2864 | #endif /* SUPPORT_UCP */ |
2865 | |
2866 | |
2867 | |
2868 | /************************************************* |
2869 | * Fill the character property list * |
2870 | *************************************************/ |
2871 | |
2872 | /* Checks whether the code points to an opcode that can take part in auto- |
2873 | possessification, and if so, fills a list with its properties. |
2874 | |
2875 | Arguments: |
2876 | code points to start of expression |
2877 | utf TRUE if in UTF-8 / UTF-16 / UTF-32 mode |
2878 | fcc points to case-flipping table |
2879 | list points to output list |
2880 | list[0] will be filled with the opcode |
2881 | list[1] will be non-zero if this opcode |
2882 | can match an empty character string |
2883 | list[2..7] depends on the opcode |
2884 | |
2885 | Returns: points to the start of the next opcode if *code is accepted |
2886 | NULL if *code is not accepted |
2887 | */ |
2888 | |
2889 | static const pcre_uchar * |
2890 | get_chr_property_list(const pcre_uchar *code, BOOL utf, |
2891 | const pcre_uint8 *fcc, pcre_uint32 *list) |
2892 | { |
2893 | pcre_uchar c = *code; |
2894 | pcre_uchar base; |
2895 | const pcre_uchar *end; |
2896 | pcre_uint32 chr; |
2897 | |
2898 | #ifdef SUPPORT_UCP |
2899 | pcre_uint32 *clist_dest; |
2900 | const pcre_uint32 *clist_src; |
2901 | #else |
2902 | utf = utf; /* Suppress "unused parameter" compiler warning */ |
2903 | #endif |
2904 | |
2905 | list[0] = c; |
2906 | list[1] = FALSE; |
2907 | code++; |
2908 | |
2909 | if (c >= OP_STAR && c <= OP_TYPEPOSUPTO) |
2910 | { |
2911 | base = get_repeat_base(c); |
2912 | c -= (base - OP_STAR); |
2913 | |
2914 | if (c == OP_UPTO || c == OP_MINUPTO || c == OP_EXACT || c == OP_POSUPTO) |
2915 | code += IMM2_SIZE; |
2916 | |
2917 | list[1] = (c != OP_PLUS && c != OP_MINPLUS && c != OP_EXACT && c != OP_POSPLUS); |
2918 | |
2919 | switch(base) |
2920 | { |
2921 | case OP_STAR: |
2922 | list[0] = OP_CHAR; |
2923 | break; |
2924 | |
2925 | case OP_STARI: |
2926 | list[0] = OP_CHARI; |
2927 | break; |
2928 | |
2929 | case OP_NOTSTAR: |
2930 | list[0] = OP_NOT; |
2931 | break; |
2932 | |
2933 | case OP_NOTSTARI: |
2934 | list[0] = OP_NOTI; |
2935 | break; |
2936 | |
2937 | case OP_TYPESTAR: |
2938 | list[0] = *code; |
2939 | code++; |
2940 | break; |
2941 | } |
2942 | c = list[0]; |
2943 | } |
2944 | |
2945 | switch(c) |
2946 | { |
2947 | case OP_NOT_DIGIT: |
2948 | case OP_DIGIT: |
2949 | case OP_NOT_WHITESPACE: |
2950 | case OP_WHITESPACE: |
2951 | case OP_NOT_WORDCHAR: |
2952 | case OP_WORDCHAR: |
2953 | case OP_ANY: |
2954 | case OP_ALLANY: |
2955 | case OP_ANYNL: |
2956 | case OP_NOT_HSPACE: |
2957 | case OP_HSPACE: |
2958 | case OP_NOT_VSPACE: |
2959 | case OP_VSPACE: |
2960 | case OP_EXTUNI: |
2961 | case OP_EODN: |
2962 | case OP_EOD: |
2963 | case OP_DOLL: |
2964 | case OP_DOLLM: |
2965 | return code; |
2966 | |
2967 | case OP_CHAR: |
2968 | case OP_NOT: |
2969 | GETCHARINCTEST(chr, code); |
2970 | list[2] = chr; |
2971 | list[3] = NOTACHAR; |
2972 | return code; |
2973 | |
2974 | case OP_CHARI: |
2975 | case OP_NOTI: |
2976 | list[0] = (c == OP_CHARI) ? OP_CHAR : OP_NOT; |
2977 | GETCHARINCTEST(chr, code); |
2978 | list[2] = chr; |
2979 | |
2980 | #ifdef SUPPORT_UCP |
2981 | if (chr < 128 || (chr < 256 && !utf)) |
2982 | list[3] = fcc[chr]; |
2983 | else |
2984 | list[3] = UCD_OTHERCASE(chr); |
2985 | #elif defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
2986 | list[3] = (chr < 256) ? fcc[chr] : chr; |
2987 | #else |
2988 | list[3] = fcc[chr]; |
2989 | #endif |
2990 | |
2991 | /* The othercase might be the same value. */ |
2992 | |
2993 | if (chr == list[3]) |
2994 | list[3] = NOTACHAR; |
2995 | else |
2996 | list[4] = NOTACHAR; |
2997 | return code; |
2998 | |
2999 | #ifdef SUPPORT_UCP |
3000 | case OP_PROP: |
3001 | case OP_NOTPROP: |
3002 | if (code[0] != PT_CLIST) |
3003 | { |
3004 | list[2] = code[0]; |
3005 | list[3] = code[1]; |
3006 | return code + 2; |
3007 | } |
3008 | |
3009 | /* Convert only if we have enough space. */ |
3010 | |
3011 | clist_src = PRIV(ucd_caseless_sets) + code[1]; |
3012 | clist_dest = list + 2; |
3013 | code += 2; |
3014 | |
3015 | do { |
3016 | if (clist_dest >= list + 8) |
3017 | { |
3018 | /* Early return if there is not enough space. This should never |
3019 | happen, since all clists are shorter than 5 character now. */ |
3020 | list[2] = code[0]; |
3021 | list[3] = code[1]; |
3022 | return code; |
3023 | } |
3024 | *clist_dest++ = *clist_src; |
3025 | } |
3026 | while(*clist_src++ != NOTACHAR); |
3027 | |
3028 | /* All characters are stored. The terminating NOTACHAR |
3029 | is copied form the clist itself. */ |
3030 | |
3031 | list[0] = (c == OP_PROP) ? OP_CHAR : OP_NOT; |
3032 | return code; |
3033 | #endif |
3034 | |
3035 | case OP_NCLASS: |
3036 | case OP_CLASS: |
3037 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3038 | case OP_XCLASS: |
3039 | if (c == OP_XCLASS) |
3040 | end = code + GET(code, 0) - 1; |
3041 | else |
3042 | #endif |
3043 | end = code + 32 / sizeof(pcre_uchar); |
3044 | |
3045 | switch(*end) |
3046 | { |
3047 | case OP_CRSTAR: |
3048 | case OP_CRMINSTAR: |
3049 | case OP_CRQUERY: |
3050 | case OP_CRMINQUERY: |
3051 | case OP_CRPOSSTAR: |
3052 | case OP_CRPOSQUERY: |
3053 | list[1] = TRUE; |
3054 | end++; |
3055 | break; |
3056 | |
3057 | case OP_CRPLUS: |
3058 | case OP_CRMINPLUS: |
3059 | case OP_CRPOSPLUS: |
3060 | end++; |
3061 | break; |
3062 | |
3063 | case OP_CRRANGE: |
3064 | case OP_CRMINRANGE: |
3065 | case OP_CRPOSRANGE: |
3066 | list[1] = (GET2(end, 1) == 0); |
3067 | end += 1 + 2 * IMM2_SIZE; |
3068 | break; |
3069 | } |
3070 | list[2] = (pcre_uint32)(end - code); |
3071 | return end; |
3072 | } |
3073 | return NULL; /* Opcode not accepted */ |
3074 | } |
3075 | |
3076 | |
3077 | |
3078 | /************************************************* |
3079 | * Scan further character sets for match * |
3080 | *************************************************/ |
3081 | |
3082 | /* Checks whether the base and the current opcode have a common character, in |
3083 | which case the base cannot be possessified. |
3084 | |
3085 | Arguments: |
3086 | code points to the byte code |
3087 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
3088 | cd static compile data |
3089 | base_list the data list of the base opcode |
3090 | |
3091 | Returns: TRUE if the auto-possessification is possible |
3092 | */ |
3093 | |
3094 | static BOOL |
3095 | compare_opcodes(const pcre_uchar *code, BOOL utf, const compile_data *cd, |
3096 | const pcre_uint32 *base_list, const pcre_uchar *base_end) |
3097 | { |
3098 | pcre_uchar c; |
3099 | pcre_uint32 list[8]; |
3100 | const pcre_uint32 *chr_ptr; |
3101 | const pcre_uint32 *ochr_ptr; |
3102 | const pcre_uint32 *list_ptr; |
3103 | const pcre_uchar *next_code; |
3104 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3105 | const pcre_uchar *xclass_flags; |
3106 | #endif |
3107 | const pcre_uint8 *class_bitset; |
3108 | const pcre_uint8 *set1, *set2, *set_end; |
3109 | pcre_uint32 chr; |
3110 | BOOL accepted, invert_bits; |
3111 | BOOL entered_a_group = FALSE; |
3112 | |
3113 | /* Note: the base_list[1] contains whether the current opcode has greedy |
3114 | (represented by a non-zero value) quantifier. This is a different from |
3115 | other character type lists, which stores here that the character iterator |
3116 | matches to an empty string (also represented by a non-zero value). */ |
3117 | |
3118 | for(;;) |
3119 | { |
3120 | /* All operations move the code pointer forward. |
3121 | Therefore infinite recursions are not possible. */ |
3122 | |
3123 | c = *code; |
3124 | |
3125 | /* Skip over callouts */ |
3126 | |
3127 | if (c == OP_CALLOUT) |
3128 | { |
3129 | code += PRIV(OP_lengths)[c]; |
3130 | continue; |
3131 | } |
3132 | |
3133 | if (c == OP_ALT) |
3134 | { |
3135 | do code += GET(code, 1); while (*code == OP_ALT); |
3136 | c = *code; |
3137 | } |
3138 | |
3139 | switch(c) |
3140 | { |
3141 | case OP_END: |
3142 | case OP_KETRPOS: |
3143 | /* TRUE only in greedy case. The non-greedy case could be replaced by |
3144 | an OP_EXACT, but it is probably not worth it. (And note that OP_EXACT |
3145 | uses more memory, which we cannot get at this stage.) */ |
3146 | |
3147 | return base_list[1] != 0; |
3148 | |
3149 | case OP_KET: |
3150 | /* If the bracket is capturing, and referenced by an OP_RECURSE, or |
3151 | it is an atomic sub-pattern (assert, once, etc.) the non-greedy case |
3152 | cannot be converted to a possessive form. */ |
3153 | |
3154 | if (base_list[1] == 0) return FALSE; |
3155 | |
3156 | switch(*(code - GET(code, 1))) |
3157 | { |
3158 | case OP_ASSERT: |
3159 | case OP_ASSERT_NOT: |
3160 | case OP_ASSERTBACK: |
3161 | case OP_ASSERTBACK_NOT: |
3162 | case OP_ONCE: |
3163 | case OP_ONCE_NC: |
3164 | /* Atomic sub-patterns and assertions can always auto-possessify their |
3165 | last iterator. However, if the group was entered as a result of checking |
3166 | a previous iterator, this is not possible. */ |
3167 | |
3168 | return !entered_a_group; |
3169 | } |
3170 | |
3171 | code += PRIV(OP_lengths)[c]; |
3172 | continue; |
3173 | |
3174 | case OP_ONCE: |
3175 | case OP_ONCE_NC: |
3176 | case OP_BRA: |
3177 | case OP_CBRA: |
3178 | next_code = code + GET(code, 1); |
3179 | code += PRIV(OP_lengths)[c]; |
3180 | |
3181 | while (*next_code == OP_ALT) |
3182 | { |
3183 | if (!compare_opcodes(code, utf, cd, base_list, base_end)) return FALSE; |
3184 | code = next_code + 1 + LINK_SIZE; |
3185 | next_code += GET(next_code, 1); |
3186 | } |
3187 | |
3188 | entered_a_group = TRUE; |
3189 | continue; |
3190 | |
3191 | case OP_BRAZERO: |
3192 | case OP_BRAMINZERO: |
3193 | |
3194 | next_code = code + 1; |
3195 | if (*next_code != OP_BRA && *next_code != OP_CBRA |
3196 | && *next_code != OP_ONCE && *next_code != OP_ONCE_NC) return FALSE; |
3197 | |
3198 | do next_code += GET(next_code, 1); while (*next_code == OP_ALT); |
3199 | |
3200 | /* The bracket content will be checked by the |
3201 | OP_BRA/OP_CBRA case above. */ |
3202 | next_code += 1 + LINK_SIZE; |
3203 | if (!compare_opcodes(next_code, utf, cd, base_list, base_end)) |
3204 | return FALSE; |
3205 | |
3206 | code += PRIV(OP_lengths)[c]; |
3207 | continue; |
3208 | |
3209 | default: |
3210 | break; |
3211 | } |
3212 | |
3213 | /* Check for a supported opcode, and load its properties. */ |
3214 | |
3215 | code = get_chr_property_list(code, utf, cd->fcc, list); |
3216 | if (code == NULL) return FALSE; /* Unsupported */ |
3217 | |
3218 | /* If either opcode is a small character list, set pointers for comparing |
3219 | characters from that list with another list, or with a property. */ |
3220 | |
3221 | if (base_list[0] == OP_CHAR) |
3222 | { |
3223 | chr_ptr = base_list + 2; |
3224 | list_ptr = list; |
3225 | } |
3226 | else if (list[0] == OP_CHAR) |
3227 | { |
3228 | chr_ptr = list + 2; |
3229 | list_ptr = base_list; |
3230 | } |
3231 | |
3232 | /* Character bitsets can also be compared to certain opcodes. */ |
3233 | |
3234 | else if (base_list[0] == OP_CLASS || list[0] == OP_CLASS |
3235 | #ifdef COMPILE_PCRE8 |
3236 | /* In 8 bit, non-UTF mode, OP_CLASS and OP_NCLASS are the same. */ |
3237 | || (!utf && (base_list[0] == OP_NCLASS || list[0] == OP_NCLASS)) |
3238 | #endif |
3239 | ) |
3240 | { |
3241 | #ifdef COMPILE_PCRE8 |
3242 | if (base_list[0] == OP_CLASS || (!utf && base_list[0] == OP_NCLASS)) |
3243 | #else |
3244 | if (base_list[0] == OP_CLASS) |
3245 | #endif |
3246 | { |
3247 | set1 = (pcre_uint8 *)(base_end - base_list[2]); |
3248 | list_ptr = list; |
3249 | } |
3250 | else |
3251 | { |
3252 | set1 = (pcre_uint8 *)(code - list[2]); |
3253 | list_ptr = base_list; |
3254 | } |
3255 | |
3256 | invert_bits = FALSE; |
3257 | switch(list_ptr[0]) |
3258 | { |
3259 | case OP_CLASS: |
3260 | case OP_NCLASS: |
3261 | set2 = (pcre_uint8 *) |
3262 | ((list_ptr == list ? code : base_end) - list_ptr[2]); |
3263 | break; |
3264 | |
3265 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3266 | case OP_XCLASS: |
3267 | xclass_flags = (list_ptr == list ? code : base_end) - list_ptr[2] + LINK_SIZE; |
3268 | if ((*xclass_flags & XCL_HASPROP) != 0) return FALSE; |
3269 | if ((*xclass_flags & XCL_MAP) == 0) |
3270 | { |
3271 | /* No bits are set for characters < 256. */ |
3272 | if (list[1] == 0) return TRUE; |
3273 | /* Might be an empty repeat. */ |
3274 | continue; |
3275 | } |
3276 | set2 = (pcre_uint8 *)(xclass_flags + 1); |
3277 | break; |
3278 | #endif |
3279 | |
3280 | case OP_NOT_DIGIT: |
3281 | invert_bits = TRUE; |
3282 | /* Fall through */ |
3283 | case OP_DIGIT: |
3284 | set2 = (pcre_uint8 *)(cd->cbits + cbit_digit); |
3285 | break; |
3286 | |
3287 | case OP_NOT_WHITESPACE: |
3288 | invert_bits = TRUE; |
3289 | /* Fall through */ |
3290 | case OP_WHITESPACE: |
3291 | set2 = (pcre_uint8 *)(cd->cbits + cbit_space); |
3292 | break; |
3293 | |
3294 | case OP_NOT_WORDCHAR: |
3295 | invert_bits = TRUE; |
3296 | /* Fall through */ |
3297 | case OP_WORDCHAR: |
3298 | set2 = (pcre_uint8 *)(cd->cbits + cbit_word); |
3299 | break; |
3300 | |
3301 | default: |
3302 | return FALSE; |
3303 | } |
3304 | |
3305 | /* Because the sets are unaligned, we need |
3306 | to perform byte comparison here. */ |
3307 | set_end = set1 + 32; |
3308 | if (invert_bits) |
3309 | { |
3310 | do |
3311 | { |
3312 | if ((*set1++ & ~(*set2++)) != 0) return FALSE; |
3313 | } |
3314 | while (set1 < set_end); |
3315 | } |
3316 | else |
3317 | { |
3318 | do |
3319 | { |
3320 | if ((*set1++ & *set2++) != 0) return FALSE; |
3321 | } |
3322 | while (set1 < set_end); |
3323 | } |
3324 | |
3325 | if (list[1] == 0) return TRUE; |
3326 | /* Might be an empty repeat. */ |
3327 | continue; |
3328 | } |
3329 | |
3330 | /* Some property combinations also acceptable. Unicode property opcodes are |
3331 | processed specially; the rest can be handled with a lookup table. */ |
3332 | |
3333 | else |
3334 | { |
3335 | pcre_uint32 leftop, rightop; |
3336 | |
3337 | leftop = base_list[0]; |
3338 | rightop = list[0]; |
3339 | |
3340 | #ifdef SUPPORT_UCP |
3341 | accepted = FALSE; /* Always set in non-unicode case. */ |
3342 | if (leftop == OP_PROP || leftop == OP_NOTPROP) |
3343 | { |
3344 | if (rightop == OP_EOD) |
3345 | accepted = TRUE; |
3346 | else if (rightop == OP_PROP || rightop == OP_NOTPROP) |
3347 | { |
3348 | int n; |
3349 | const pcre_uint8 *p; |
3350 | BOOL same = leftop == rightop; |
3351 | BOOL lisprop = leftop == OP_PROP; |
3352 | BOOL risprop = rightop == OP_PROP; |
3353 | BOOL bothprop = lisprop && risprop; |
3354 | |
3355 | /* There's a table that specifies how each combination is to be |
3356 | processed: |
3357 | 0 Always return FALSE (never auto-possessify) |
3358 | 1 Character groups are distinct (possessify if both are OP_PROP) |
3359 | 2 Check character categories in the same group (general or particular) |
3360 | 3 Return TRUE if the two opcodes are not the same |
3361 | ... see comments below |
3362 | */ |
3363 | |
3364 | n = propposstab[base_list[2]][list[2]]; |
3365 | switch(n) |
3366 | { |
3367 | case 0: break; |
3368 | case 1: accepted = bothprop; break; |
3369 | case 2: accepted = (base_list[3] == list[3]) != same; break; |
3370 | case 3: accepted = !same; break; |
3371 | |
3372 | case 4: /* Left general category, right particular category */ |
3373 | accepted = risprop && catposstab[base_list[3]][list[3]] == same; |
3374 | break; |
3375 | |
3376 | case 5: /* Right general category, left particular category */ |
3377 | accepted = lisprop && catposstab[list[3]][base_list[3]] == same; |
3378 | break; |
3379 | |
3380 | /* This code is logically tricky. Think hard before fiddling with it. |
3381 | The posspropstab table has four entries per row. Each row relates to |
3382 | one of PCRE's special properties such as ALNUM or SPACE or WORD. |
3383 | Only WORD actually needs all four entries, but using repeats for the |
3384 | others means they can all use the same code below. |
3385 | |
3386 | The first two entries in each row are Unicode general categories, and |
3387 | apply always, because all the characters they include are part of the |
3388 | PCRE character set. The third and fourth entries are a general and a |
3389 | particular category, respectively, that include one or more relevant |
3390 | characters. One or the other is used, depending on whether the check |
3391 | is for a general or a particular category. However, in both cases the |
3392 | category contains more characters than the specials that are defined |
3393 | for the property being tested against. Therefore, it cannot be used |
3394 | in a NOTPROP case. |
3395 | |
3396 | Example: the row for WORD contains ucp_L, ucp_N, ucp_P, ucp_Po. |
3397 | Underscore is covered by ucp_P or ucp_Po. */ |
3398 | |
3399 | case 6: /* Left alphanum vs right general category */ |
3400 | case 7: /* Left space vs right general category */ |
3401 | case 8: /* Left word vs right general category */ |
3402 | p = posspropstab[n-6]; |
3403 | accepted = risprop && lisprop == |
3404 | (list[3] != p[0] && |
3405 | list[3] != p[1] && |
3406 | (list[3] != p[2] || !lisprop)); |
3407 | break; |
3408 | |
3409 | case 9: /* Right alphanum vs left general category */ |
3410 | case 10: /* Right space vs left general category */ |
3411 | case 11: /* Right word vs left general category */ |
3412 | p = posspropstab[n-9]; |
3413 | accepted = lisprop && risprop == |
3414 | (base_list[3] != p[0] && |
3415 | base_list[3] != p[1] && |
3416 | (base_list[3] != p[2] || !risprop)); |
3417 | break; |
3418 | |
3419 | case 12: /* Left alphanum vs right particular category */ |
3420 | case 13: /* Left space vs right particular category */ |
3421 | case 14: /* Left word vs right particular category */ |
3422 | p = posspropstab[n-12]; |
3423 | accepted = risprop && lisprop == |
3424 | (catposstab[p[0]][list[3]] && |
3425 | catposstab[p[1]][list[3]] && |
3426 | (list[3] != p[3] || !lisprop)); |
3427 | break; |
3428 | |
3429 | case 15: /* Right alphanum vs left particular category */ |
3430 | case 16: /* Right space vs left particular category */ |
3431 | case 17: /* Right word vs left particular category */ |
3432 | p = posspropstab[n-15]; |
3433 | accepted = lisprop && risprop == |
3434 | (catposstab[p[0]][base_list[3]] && |
3435 | catposstab[p[1]][base_list[3]] && |
3436 | (base_list[3] != p[3] || !risprop)); |
3437 | break; |
3438 | } |
3439 | } |
3440 | } |
3441 | |
3442 | else |
3443 | #endif /* SUPPORT_UCP */ |
3444 | |
3445 | accepted = leftop >= FIRST_AUTOTAB_OP && leftop <= LAST_AUTOTAB_LEFT_OP && |
3446 | rightop >= FIRST_AUTOTAB_OP && rightop <= LAST_AUTOTAB_RIGHT_OP && |
3447 | autoposstab[leftop - FIRST_AUTOTAB_OP][rightop - FIRST_AUTOTAB_OP]; |
3448 | |
3449 | if (!accepted) return FALSE; |
3450 | |
3451 | if (list[1] == 0) return TRUE; |
3452 | /* Might be an empty repeat. */ |
3453 | continue; |
3454 | } |
3455 | |
3456 | /* Control reaches here only if one of the items is a small character list. |
3457 | All characters are checked against the other side. */ |
3458 | |
3459 | do |
3460 | { |
3461 | chr = *chr_ptr; |
3462 | |
3463 | switch(list_ptr[0]) |
3464 | { |
3465 | case OP_CHAR: |
3466 | ochr_ptr = list_ptr + 2; |
3467 | do |
3468 | { |
3469 | if (chr == *ochr_ptr) return FALSE; |
3470 | ochr_ptr++; |
3471 | } |
3472 | while(*ochr_ptr != NOTACHAR); |
3473 | break; |
3474 | |
3475 | case OP_NOT: |
3476 | ochr_ptr = list_ptr + 2; |
3477 | do |
3478 | { |
3479 | if (chr == *ochr_ptr) |
3480 | break; |
3481 | ochr_ptr++; |
3482 | } |
3483 | while(*ochr_ptr != NOTACHAR); |
3484 | if (*ochr_ptr == NOTACHAR) return FALSE; /* Not found */ |
3485 | break; |
3486 | |
3487 | /* Note that OP_DIGIT etc. are generated only when PCRE_UCP is *not* |
3488 | set. When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */ |
3489 | |
3490 | case OP_DIGIT: |
3491 | if (chr < 256 && (cd->ctypes[chr] & ctype_digit) != 0) return FALSE; |
3492 | break; |
3493 | |
3494 | case OP_NOT_DIGIT: |
3495 | if (chr > 255 || (cd->ctypes[chr] & ctype_digit) == 0) return FALSE; |
3496 | break; |
3497 | |
3498 | case OP_WHITESPACE: |
3499 | if (chr < 256 && (cd->ctypes[chr] & ctype_space) != 0) return FALSE; |
3500 | break; |
3501 | |
3502 | case OP_NOT_WHITESPACE: |
3503 | if (chr > 255 || (cd->ctypes[chr] & ctype_space) == 0) return FALSE; |
3504 | break; |
3505 | |
3506 | case OP_WORDCHAR: |
3507 | if (chr < 255 && (cd->ctypes[chr] & ctype_word) != 0) return FALSE; |
3508 | break; |
3509 | |
3510 | case OP_NOT_WORDCHAR: |
3511 | if (chr > 255 || (cd->ctypes[chr] & ctype_word) == 0) return FALSE; |
3512 | break; |
3513 | |
3514 | case OP_HSPACE: |
3515 | switch(chr) |
3516 | { |
3517 | HSPACE_CASES: return FALSE; |
3518 | default: break; |
3519 | } |
3520 | break; |
3521 | |
3522 | case OP_NOT_HSPACE: |
3523 | switch(chr) |
3524 | { |
3525 | HSPACE_CASES: break; |
3526 | default: return FALSE; |
3527 | } |
3528 | break; |
3529 | |
3530 | case OP_ANYNL: |
3531 | case OP_VSPACE: |
3532 | switch(chr) |
3533 | { |
3534 | VSPACE_CASES: return FALSE; |
3535 | default: break; |
3536 | } |
3537 | break; |
3538 | |
3539 | case OP_NOT_VSPACE: |
3540 | switch(chr) |
3541 | { |
3542 | VSPACE_CASES: break; |
3543 | default: return FALSE; |
3544 | } |
3545 | break; |
3546 | |
3547 | case OP_DOLL: |
3548 | case OP_EODN: |
3549 | switch (chr) |
3550 | { |
3551 | case CHAR_CR: |
3552 | case CHAR_LF: |
3553 | case CHAR_VT: |
3554 | case CHAR_FF: |
3555 | case CHAR_NEL: |
3556 | #ifndef EBCDIC |
3557 | case 0x2028: |
3558 | case 0x2029: |
3559 | #endif /* Not EBCDIC */ |
3560 | return FALSE; |
3561 | } |
3562 | break; |
3563 | |
3564 | case OP_EOD: /* Can always possessify before \z */ |
3565 | break; |
3566 | |
3567 | #ifdef SUPPORT_UCP |
3568 | case OP_PROP: |
3569 | case OP_NOTPROP: |
3570 | if (!check_char_prop(chr, list_ptr[2], list_ptr[3], |
3571 | list_ptr[0] == OP_NOTPROP)) |
3572 | return FALSE; |
3573 | break; |
3574 | #endif |
3575 | |
3576 | case OP_NCLASS: |
3577 | if (chr > 255) return FALSE; |
3578 | /* Fall through */ |
3579 | |
3580 | case OP_CLASS: |
3581 | if (chr > 255) break; |
3582 | class_bitset = (pcre_uint8 *) |
3583 | ((list_ptr == list ? code : base_end) - list_ptr[2]); |
3584 | if ((class_bitset[chr >> 3] & (1 << (chr & 7))) != 0) return FALSE; |
3585 | break; |
3586 | |
3587 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3588 | case OP_XCLASS: |
3589 | if (PRIV(xclass)(chr, (list_ptr == list ? code : base_end) - |
3590 | list_ptr[2] + LINK_SIZE, utf)) return FALSE; |
3591 | break; |
3592 | #endif |
3593 | |
3594 | default: |
3595 | return FALSE; |
3596 | } |
3597 | |
3598 | chr_ptr++; |
3599 | } |
3600 | while(*chr_ptr != NOTACHAR); |
3601 | |
3602 | /* At least one character must be matched from this opcode. */ |
3603 | |
3604 | if (list[1] == 0) return TRUE; |
3605 | } |
3606 | |
3607 | /* Control never reaches here. There used to be a fail-save return FALSE; here, |
3608 | but some compilers complain about an unreachable statement. */ |
3609 | |
3610 | } |
3611 | |
3612 | |
3613 | |
3614 | /************************************************* |
3615 | * Scan compiled regex for auto-possession * |
3616 | *************************************************/ |
3617 | |
3618 | /* Replaces single character iterations with their possessive alternatives |
3619 | if appropriate. This function modifies the compiled opcode! |
3620 | |
3621 | Arguments: |
3622 | code points to start of the byte code |
3623 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
3624 | cd static compile data |
3625 | |
3626 | Returns: nothing |
3627 | */ |
3628 | |
3629 | static void |
3630 | auto_possessify(pcre_uchar *code, BOOL utf, const compile_data *cd) |
3631 | { |
3632 | register pcre_uchar c; |
3633 | const pcre_uchar *end; |
3634 | pcre_uchar *repeat_opcode; |
3635 | pcre_uint32 list[8]; |
3636 | |
3637 | for (;;) |
3638 | { |
3639 | c = *code; |
3640 | |
3641 | /* When a pattern with bad UTF-8 encoding is compiled with NO_UTF_CHECK, |
3642 | it may compile without complaining, but may get into a loop here if the code |
3643 | pointer points to a bad value. This is, of course a documentated possibility, |
3644 | when NO_UTF_CHECK is set, so it isn't a bug, but we can detect this case and |
3645 | just give up on this optimization. */ |
3646 | |
3647 | if (c >= OP_TABLE_LENGTH) return; |
3648 | |
3649 | if (c >= OP_STAR && c <= OP_TYPEPOSUPTO) |
3650 | { |
3651 | c -= get_repeat_base(c) - OP_STAR; |
3652 | end = (c <= OP_MINUPTO) ? |
3653 | get_chr_property_list(code, utf, cd->fcc, list) : NULL; |
3654 | list[1] = c == OP_STAR || c == OP_PLUS || c == OP_QUERY || c == OP_UPTO; |
3655 | |
3656 | if (end != NULL && compare_opcodes(end, utf, cd, list, end)) |
3657 | { |
3658 | switch(c) |
3659 | { |
3660 | case OP_STAR: |
3661 | *code += OP_POSSTAR - OP_STAR; |
3662 | break; |
3663 | |
3664 | case OP_MINSTAR: |
3665 | *code += OP_POSSTAR - OP_MINSTAR; |
3666 | break; |
3667 | |
3668 | case OP_PLUS: |
3669 | *code += OP_POSPLUS - OP_PLUS; |
3670 | break; |
3671 | |
3672 | case OP_MINPLUS: |
3673 | *code += OP_POSPLUS - OP_MINPLUS; |
3674 | break; |
3675 | |
3676 | case OP_QUERY: |
3677 | *code += OP_POSQUERY - OP_QUERY; |
3678 | break; |
3679 | |
3680 | case OP_MINQUERY: |
3681 | *code += OP_POSQUERY - OP_MINQUERY; |
3682 | break; |
3683 | |
3684 | case OP_UPTO: |
3685 | *code += OP_POSUPTO - OP_UPTO; |
3686 | break; |
3687 | |
3688 | case OP_MINUPTO: |
3689 | *code += OP_POSUPTO - OP_MINUPTO; |
3690 | break; |
3691 | } |
3692 | } |
3693 | c = *code; |
3694 | } |
3695 | else if (c == OP_CLASS || c == OP_NCLASS || c == OP_XCLASS) |
3696 | { |
3697 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3698 | if (c == OP_XCLASS) |
3699 | repeat_opcode = code + GET(code, 1); |
3700 | else |
3701 | #endif |
3702 | repeat_opcode = code + 1 + (32 / sizeof(pcre_uchar)); |
3703 | |
3704 | c = *repeat_opcode; |
3705 | if (c >= OP_CRSTAR && c <= OP_CRMINRANGE) |
3706 | { |
3707 | /* end must not be NULL. */ |
3708 | end = get_chr_property_list(code, utf, cd->fcc, list); |
3709 | |
3710 | list[1] = (c & 1) == 0; |
3711 | |
3712 | if (compare_opcodes(end, utf, cd, list, end)) |
3713 | { |
3714 | switch (c) |
3715 | { |
3716 | case OP_CRSTAR: |
3717 | case OP_CRMINSTAR: |
3718 | *repeat_opcode = OP_CRPOSSTAR; |
3719 | break; |
3720 | |
3721 | case OP_CRPLUS: |
3722 | case OP_CRMINPLUS: |
3723 | *repeat_opcode = OP_CRPOSPLUS; |
3724 | break; |
3725 | |
3726 | case OP_CRQUERY: |
3727 | case OP_CRMINQUERY: |
3728 | *repeat_opcode = OP_CRPOSQUERY; |
3729 | break; |
3730 | |
3731 | case OP_CRRANGE: |
3732 | case OP_CRMINRANGE: |
3733 | *repeat_opcode = OP_CRPOSRANGE; |
3734 | break; |
3735 | } |
3736 | } |
3737 | } |
3738 | c = *code; |
3739 | } |
3740 | |
3741 | switch(c) |
3742 | { |
3743 | case OP_END: |
3744 | return; |
3745 | |
3746 | case OP_TYPESTAR: |
3747 | case OP_TYPEMINSTAR: |
3748 | case OP_TYPEPLUS: |
3749 | case OP_TYPEMINPLUS: |
3750 | case OP_TYPEQUERY: |
3751 | case OP_TYPEMINQUERY: |
3752 | case OP_TYPEPOSSTAR: |
3753 | case OP_TYPEPOSPLUS: |
3754 | case OP_TYPEPOSQUERY: |
3755 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
3756 | break; |
3757 | |
3758 | case OP_TYPEUPTO: |
3759 | case OP_TYPEMINUPTO: |
3760 | case OP_TYPEEXACT: |
3761 | case OP_TYPEPOSUPTO: |
3762 | if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP) |
3763 | code += 2; |
3764 | break; |
3765 | |
3766 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3767 | case OP_XCLASS: |
3768 | code += GET(code, 1); |
3769 | break; |
3770 | #endif |
3771 | |
3772 | case OP_MARK: |
3773 | case OP_PRUNE_ARG: |
3774 | case OP_SKIP_ARG: |
3775 | case OP_THEN_ARG: |
3776 | code += code[1]; |
3777 | break; |
3778 | } |
3779 | |
3780 | /* Add in the fixed length from the table */ |
3781 | |
3782 | code += PRIV(OP_lengths)[c]; |
3783 | |
3784 | /* In UTF-8 mode, opcodes that are followed by a character may be followed by |
3785 | a multi-byte character. The length in the table is a minimum, so we have to |
3786 | arrange to skip the extra bytes. */ |
3787 | |
3788 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
3789 | if (utf) switch(c) |
3790 | { |
3791 | case OP_CHAR: |
3792 | case OP_CHARI: |
3793 | case OP_NOT: |
3794 | case OP_NOTI: |
3795 | case OP_STAR: |
3796 | case OP_MINSTAR: |
3797 | case OP_PLUS: |
3798 | case OP_MINPLUS: |
3799 | case OP_QUERY: |
3800 | case OP_MINQUERY: |
3801 | case OP_UPTO: |
3802 | case OP_MINUPTO: |
3803 | case OP_EXACT: |
3804 | case OP_POSSTAR: |
3805 | case OP_POSPLUS: |
3806 | case OP_POSQUERY: |
3807 | case OP_POSUPTO: |
3808 | case OP_STARI: |
3809 | case OP_MINSTARI: |
3810 | case OP_PLUSI: |
3811 | case OP_MINPLUSI: |
3812 | case OP_QUERYI: |
3813 | case OP_MINQUERYI: |
3814 | case OP_UPTOI: |
3815 | case OP_MINUPTOI: |
3816 | case OP_EXACTI: |
3817 | case OP_POSSTARI: |
3818 | case OP_POSPLUSI: |
3819 | case OP_POSQUERYI: |
3820 | case OP_POSUPTOI: |
3821 | case OP_NOTSTAR: |
3822 | case OP_NOTMINSTAR: |
3823 | case OP_NOTPLUS: |
3824 | case OP_NOTMINPLUS: |
3825 | case OP_NOTQUERY: |
3826 | case OP_NOTMINQUERY: |
3827 | case OP_NOTUPTO: |
3828 | case OP_NOTMINUPTO: |
3829 | case OP_NOTEXACT: |
3830 | case OP_NOTPOSSTAR: |
3831 | case OP_NOTPOSPLUS: |
3832 | case OP_NOTPOSQUERY: |
3833 | case OP_NOTPOSUPTO: |
3834 | case OP_NOTSTARI: |
3835 | case OP_NOTMINSTARI: |
3836 | case OP_NOTPLUSI: |
3837 | case OP_NOTMINPLUSI: |
3838 | case OP_NOTQUERYI: |
3839 | case OP_NOTMINQUERYI: |
3840 | case OP_NOTUPTOI: |
3841 | case OP_NOTMINUPTOI: |
3842 | case OP_NOTEXACTI: |
3843 | case OP_NOTPOSSTARI: |
3844 | case OP_NOTPOSPLUSI: |
3845 | case OP_NOTPOSQUERYI: |
3846 | case OP_NOTPOSUPTOI: |
3847 | if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]); |
3848 | break; |
3849 | } |
3850 | #else |
3851 | (void)(utf); /* Keep compiler happy by referencing function argument */ |
3852 | #endif |
3853 | } |
3854 | } |
3855 | |
3856 | |
3857 | |
3858 | /************************************************* |
3859 | * Check for POSIX class syntax * |
3860 | *************************************************/ |
3861 | |
3862 | /* This function is called when the sequence "[:" or "[." or "[=" is |
3863 | encountered in a character class. It checks whether this is followed by a |
3864 | sequence of characters terminated by a matching ":]" or ".]" or "=]". If we |
3865 | reach an unescaped ']' without the special preceding character, return FALSE. |
3866 | |
3867 | Originally, this function only recognized a sequence of letters between the |
3868 | terminators, but it seems that Perl recognizes any sequence of characters, |
3869 | though of course unknown POSIX names are subsequently rejected. Perl gives an |
3870 | "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE |
3871 | didn't consider this to be a POSIX class. Likewise for [:1234:]. |
3872 | |
3873 | The problem in trying to be exactly like Perl is in the handling of escapes. We |
3874 | have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX |
3875 | class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code |
3876 | below handles the special case of \], but does not try to do any other escape |
3877 | processing. This makes it different from Perl for cases such as [:l\ower:] |
3878 | where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize |
3879 | "l\ower". This is a lesser evil than not diagnosing bad classes when Perl does, |
3880 | I think. |
3881 | |
3882 | A user pointed out that PCRE was rejecting [:a[:digit:]] whereas Perl was not. |
3883 | It seems that the appearance of a nested POSIX class supersedes an apparent |
3884 | external class. For example, [:a[:digit:]b:] matches "a", "b", ":", or |
3885 | a digit. |
3886 | |
3887 | In Perl, unescaped square brackets may also appear as part of class names. For |
3888 | example, [:a[:abc]b:] gives unknown POSIX class "[:abc]b:]". However, for |
3889 | [:a[:abc]b][b:] it gives unknown POSIX class "[:abc]b][b:]", which does not |
3890 | seem right at all. PCRE does not allow closing square brackets in POSIX class |
3891 | names. |
3892 | |
3893 | Arguments: |
3894 | ptr pointer to the initial [ |
3895 | endptr where to return the end pointer |
3896 | |
3897 | Returns: TRUE or FALSE |
3898 | */ |
3899 | |
3900 | static BOOL |
3901 | check_posix_syntax(const pcre_uchar *ptr, const pcre_uchar **endptr) |
3902 | { |
3903 | pcre_uchar terminator; /* Don't combine these lines; the Solaris cc */ |
3904 | terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */ |
3905 | for (++ptr; *ptr != CHAR_NULL; ptr++) |
3906 | { |
3907 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
3908 | ptr++; |
3909 | else if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE; |
3910 | else |
3911 | { |
3912 | if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
3913 | { |
3914 | *endptr = ptr; |
3915 | return TRUE; |
3916 | } |
3917 | if (*ptr == CHAR_LEFT_SQUARE_BRACKET && |
3918 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
3919 | ptr[1] == CHAR_EQUALS_SIGN) && |
3920 | check_posix_syntax(ptr, endptr)) |
3921 | return FALSE; |
3922 | } |
3923 | } |
3924 | return FALSE; |
3925 | } |
3926 | |
3927 | |
3928 | |
3929 | |
3930 | /************************************************* |
3931 | * Check POSIX class name * |
3932 | *************************************************/ |
3933 | |
3934 | /* This function is called to check the name given in a POSIX-style class entry |
3935 | such as [:alnum:]. |
3936 | |
3937 | Arguments: |
3938 | ptr points to the first letter |
3939 | len the length of the name |
3940 | |
3941 | Returns: a value representing the name, or -1 if unknown |
3942 | */ |
3943 | |
3944 | static int |
3945 | check_posix_name(const pcre_uchar *ptr, int len) |
3946 | { |
3947 | const char *pn = posix_names; |
3948 | register int yield = 0; |
3949 | while (posix_name_lengths[yield] != 0) |
3950 | { |
3951 | if (len == posix_name_lengths[yield] && |
3952 | STRNCMP_UC_C8(ptr, pn, (unsigned int)len) == 0) return yield; |
3953 | pn += posix_name_lengths[yield] + 1; |
3954 | yield++; |
3955 | } |
3956 | return -1; |
3957 | } |
3958 | |
3959 | |
3960 | /************************************************* |
3961 | * Adjust OP_RECURSE items in repeated group * |
3962 | *************************************************/ |
3963 | |
3964 | /* OP_RECURSE items contain an offset from the start of the regex to the group |
3965 | that is referenced. This means that groups can be replicated for fixed |
3966 | repetition simply by copying (because the recursion is allowed to refer to |
3967 | earlier groups that are outside the current group). However, when a group is |
3968 | optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is |
3969 | inserted before it, after it has been compiled. This means that any OP_RECURSE |
3970 | items within it that refer to the group itself or any contained groups have to |
3971 | have their offsets adjusted. That one of the jobs of this function. Before it |
3972 | is called, the partially compiled regex must be temporarily terminated with |
3973 | OP_END. |
3974 | |
3975 | This function has been extended with the possibility of forward references for |
3976 | recursions and subroutine calls. It must also check the list of such references |
3977 | for the group we are dealing with. If it finds that one of the recursions in |
3978 | the current group is on this list, it adjusts the offset in the list, not the |
3979 | value in the reference (which is a group number). |
3980 | |
3981 | Arguments: |
3982 | group points to the start of the group |
3983 | adjust the amount by which the group is to be moved |
3984 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
3985 | cd contains pointers to tables etc. |
3986 | save_hwm the hwm forward reference pointer at the start of the group |
3987 | |
3988 | Returns: nothing |
3989 | */ |
3990 | |
3991 | static void |
3992 | adjust_recurse(pcre_uchar *group, int adjust, BOOL utf, compile_data *cd, |
3993 | pcre_uchar *save_hwm) |
3994 | { |
3995 | pcre_uchar *ptr = group; |
3996 | |
3997 | while ((ptr = (pcre_uchar *)find_recurse(ptr, utf)) != NULL) |
3998 | { |
3999 | int offset; |
4000 | pcre_uchar *hc; |
4001 | |
4002 | /* See if this recursion is on the forward reference list. If so, adjust the |
4003 | reference. */ |
4004 | |
4005 | for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE) |
4006 | { |
4007 | offset = (int)GET(hc, 0); |
4008 | if (cd->start_code + offset == ptr + 1) |
4009 | { |
4010 | PUT(hc, 0, offset + adjust); |
4011 | break; |
4012 | } |
4013 | } |
4014 | |
4015 | /* Otherwise, adjust the recursion offset if it's after the start of this |
4016 | group. */ |
4017 | |
4018 | if (hc >= cd->hwm) |
4019 | { |
4020 | offset = (int)GET(ptr, 1); |
4021 | if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust); |
4022 | } |
4023 | |
4024 | ptr += 1 + LINK_SIZE; |
4025 | } |
4026 | } |
4027 | |
4028 | |
4029 | |
4030 | /************************************************* |
4031 | * Insert an automatic callout point * |
4032 | *************************************************/ |
4033 | |
4034 | /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert |
4035 | callout points before each pattern item. |
4036 | |
4037 | Arguments: |
4038 | code current code pointer |
4039 | ptr current pattern pointer |
4040 | cd pointers to tables etc |
4041 | |
4042 | Returns: new code pointer |
4043 | */ |
4044 | |
4045 | static pcre_uchar * |
4046 | auto_callout(pcre_uchar *code, const pcre_uchar *ptr, compile_data *cd) |
4047 | { |
4048 | *code++ = OP_CALLOUT; |
4049 | *code++ = 255; |
4050 | PUT(code, 0, (int)(ptr - cd->start_pattern)); /* Pattern offset */ |
4051 | PUT(code, LINK_SIZE, 0); /* Default length */ |
4052 | return code + 2 * LINK_SIZE; |
4053 | } |
4054 | |
4055 | |
4056 | |
4057 | /************************************************* |
4058 | * Complete a callout item * |
4059 | *************************************************/ |
4060 | |
4061 | /* A callout item contains the length of the next item in the pattern, which |
4062 | we can't fill in till after we have reached the relevant point. This is used |
4063 | for both automatic and manual callouts. |
4064 | |
4065 | Arguments: |
4066 | previous_callout points to previous callout item |
4067 | ptr current pattern pointer |
4068 | cd pointers to tables etc |
4069 | |
4070 | Returns: nothing |
4071 | */ |
4072 | |
4073 | static void |
4074 | complete_callout(pcre_uchar *previous_callout, const pcre_uchar *ptr, compile_data *cd) |
4075 | { |
4076 | int length = (int)(ptr - cd->start_pattern - GET(previous_callout, 2)); |
4077 | PUT(previous_callout, 2 + LINK_SIZE, length); |
4078 | } |
4079 | |
4080 | |
4081 | |
4082 | #ifdef SUPPORT_UCP |
4083 | /************************************************* |
4084 | * Get othercase range * |
4085 | *************************************************/ |
4086 | |
4087 | /* This function is passed the start and end of a class range, in UTF-8 mode |
4088 | with UCP support. It searches up the characters, looking for ranges of |
4089 | characters in the "other" case. Each call returns the next one, updating the |
4090 | start address. A character with multiple other cases is returned on its own |
4091 | with a special return value. |
4092 | |
4093 | Arguments: |
4094 | cptr points to starting character value; updated |
4095 | d end value |
4096 | ocptr where to put start of othercase range |
4097 | odptr where to put end of othercase range |
4098 | |
4099 | Yield: -1 when no more |
4100 | 0 when a range is returned |
4101 | >0 the CASESET offset for char with multiple other cases |
4102 | in this case, ocptr contains the original |
4103 | */ |
4104 | |
4105 | static int |
4106 | get_othercase_range(pcre_uint32 *cptr, pcre_uint32 d, pcre_uint32 *ocptr, |
4107 | pcre_uint32 *odptr) |
4108 | { |
4109 | pcre_uint32 c, othercase, next; |
4110 | unsigned int co; |
4111 | |
4112 | /* Find the first character that has an other case. If it has multiple other |
4113 | cases, return its case offset value. */ |
4114 | |
4115 | for (c = *cptr; c <= d; c++) |
4116 | { |
4117 | if ((co = UCD_CASESET(c)) != 0) |
4118 | { |
4119 | *ocptr = c++; /* Character that has the set */ |
4120 | *cptr = c; /* Rest of input range */ |
4121 | return (int)co; |
4122 | } |
4123 | if ((othercase = UCD_OTHERCASE(c)) != c) break; |
4124 | } |
4125 | |
4126 | if (c > d) return -1; /* Reached end of range */ |
4127 | |
4128 | /* Found a character that has a single other case. Search for the end of the |
4129 | range, which is either the end of the input range, or a character that has zero |
4130 | or more than one other cases. */ |
4131 | |
4132 | *ocptr = othercase; |
4133 | next = othercase + 1; |
4134 | |
4135 | for (++c; c <= d; c++) |
4136 | { |
4137 | if ((co = UCD_CASESET(c)) != 0 || UCD_OTHERCASE(c) != next) break; |
4138 | next++; |
4139 | } |
4140 | |
4141 | *odptr = next - 1; /* End of othercase range */ |
4142 | *cptr = c; /* Rest of input range */ |
4143 | return 0; |
4144 | } |
4145 | #endif /* SUPPORT_UCP */ |
4146 | |
4147 | |
4148 | |
4149 | /************************************************* |
4150 | * Add a character or range to a class * |
4151 | *************************************************/ |
4152 | |
4153 | /* This function packages up the logic of adding a character or range of |
4154 | characters to a class. The character values in the arguments will be within the |
4155 | valid values for the current mode (8-bit, 16-bit, UTF, etc). This function is |
4156 | mutually recursive with the function immediately below. |
4157 | |
4158 | Arguments: |
4159 | classbits the bit map for characters < 256 |
4160 | uchardptr points to the pointer for extra data |
4161 | options the options word |
4162 | cd contains pointers to tables etc. |
4163 | start start of range character |
4164 | end end of range character |
4165 | |
4166 | Returns: the number of < 256 characters added |
4167 | the pointer to extra data is updated |
4168 | */ |
4169 | |
4170 | static int |
4171 | add_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, int options, |
4172 | compile_data *cd, pcre_uint32 start, pcre_uint32 end) |
4173 | { |
4174 | pcre_uint32 c; |
4175 | pcre_uint32 classbits_end = (end <= 0xff ? end : 0xff); |
4176 | int n8 = 0; |
4177 | |
4178 | /* If caseless matching is required, scan the range and process alternate |
4179 | cases. In Unicode, there are 8-bit characters that have alternate cases that |
4180 | are greater than 255 and vice-versa. Sometimes we can just extend the original |
4181 | range. */ |
4182 | |
4183 | if ((options & PCRE_CASELESS) != 0) |
4184 | { |
4185 | #ifdef SUPPORT_UCP |
4186 | if ((options & PCRE_UTF8) != 0) |
4187 | { |
4188 | int rc; |
4189 | pcre_uint32 oc, od; |
4190 | |
4191 | options &= ~PCRE_CASELESS; /* Remove for recursive calls */ |
4192 | c = start; |
4193 | |
4194 | while ((rc = get_othercase_range(&c, end, &oc, &od)) >= 0) |
4195 | { |
4196 | /* Handle a single character that has more than one other case. */ |
4197 | |
4198 | if (rc > 0) n8 += add_list_to_class(classbits, uchardptr, options, cd, |
4199 | PRIV(ucd_caseless_sets) + rc, oc); |
4200 | |
4201 | /* Do nothing if the other case range is within the original range. */ |
4202 | |
4203 | else if (oc >= start && od <= end) continue; |
4204 | |
4205 | /* Extend the original range if there is overlap, noting that if oc < c, we |
4206 | can't have od > end because a subrange is always shorter than the basic |
4207 | range. Otherwise, use a recursive call to add the additional range. */ |
4208 | |
4209 | else if (oc < start && od >= start - 1) start = oc; /* Extend downwards */ |
4210 | else if (od > end && oc <= end + 1) end = od; /* Extend upwards */ |
4211 | else n8 += add_to_class(classbits, uchardptr, options, cd, oc, od); |
4212 | } |
4213 | } |
4214 | else |
4215 | #endif /* SUPPORT_UCP */ |
4216 | |
4217 | /* Not UTF-mode, or no UCP */ |
4218 | |
4219 | for (c = start; c <= classbits_end; c++) |
4220 | { |
4221 | SETBIT(classbits, cd->fcc[c]); |
4222 | n8++; |
4223 | } |
4224 | } |
4225 | |
4226 | /* Now handle the original range. Adjust the final value according to the bit |
4227 | length - this means that the same lists of (e.g.) horizontal spaces can be used |
4228 | in all cases. */ |
4229 | |
4230 | #if defined COMPILE_PCRE8 |
4231 | #ifdef SUPPORT_UTF |
4232 | if ((options & PCRE_UTF8) == 0) |
4233 | #endif |
4234 | if (end > 0xff) end = 0xff; |
4235 | |
4236 | #elif defined COMPILE_PCRE16 |
4237 | #ifdef SUPPORT_UTF |
4238 | if ((options & PCRE_UTF16) == 0) |
4239 | #endif |
4240 | if (end > 0xffff) end = 0xffff; |
4241 | |
4242 | #endif /* COMPILE_PCRE[8|16] */ |
4243 | |
4244 | /* Use the bitmap for characters < 256. Otherwise use extra data.*/ |
4245 | |
4246 | for (c = start; c <= classbits_end; c++) |
4247 | { |
4248 | /* Regardless of start, c will always be <= 255. */ |
4249 | SETBIT(classbits, c); |
4250 | n8++; |
4251 | } |
4252 | |
4253 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4254 | if (start <= 0xff) start = 0xff + 1; |
4255 | |
4256 | if (end >= start) |
4257 | { |
4258 | pcre_uchar *uchardata = *uchardptr; |
4259 | #ifdef SUPPORT_UTF |
4260 | if ((options & PCRE_UTF8) != 0) /* All UTFs use the same flag bit */ |
4261 | { |
4262 | if (start < end) |
4263 | { |
4264 | *uchardata++ = XCL_RANGE; |
4265 | uchardata += PRIV(ord2utf)(start, uchardata); |
4266 | uchardata += PRIV(ord2utf)(end, uchardata); |
4267 | } |
4268 | else if (start == end) |
4269 | { |
4270 | *uchardata++ = XCL_SINGLE; |
4271 | uchardata += PRIV(ord2utf)(start, uchardata); |
4272 | } |
4273 | } |
4274 | else |
4275 | #endif /* SUPPORT_UTF */ |
4276 | |
4277 | /* Without UTF support, character values are constrained by the bit length, |
4278 | and can only be > 256 for 16-bit and 32-bit libraries. */ |
4279 | |
4280 | #ifdef COMPILE_PCRE8 |
4281 | {} |
4282 | #else |
4283 | if (start < end) |
4284 | { |
4285 | *uchardata++ = XCL_RANGE; |
4286 | *uchardata++ = start; |
4287 | *uchardata++ = end; |
4288 | } |
4289 | else if (start == end) |
4290 | { |
4291 | *uchardata++ = XCL_SINGLE; |
4292 | *uchardata++ = start; |
4293 | } |
4294 | #endif |
4295 | |
4296 | *uchardptr = uchardata; /* Updata extra data pointer */ |
4297 | } |
4298 | #endif /* SUPPORT_UTF || !COMPILE_PCRE8 */ |
4299 | |
4300 | return n8; /* Number of 8-bit characters */ |
4301 | } |
4302 | |
4303 | |
4304 | |
4305 | |
4306 | /************************************************* |
4307 | * Add a list of characters to a class * |
4308 | *************************************************/ |
4309 | |
4310 | /* This function is used for adding a list of case-equivalent characters to a |
4311 | class, and also for adding a list of horizontal or vertical whitespace. If the |
4312 | list is in order (which it should be), ranges of characters are detected and |
4313 | handled appropriately. This function is mutually recursive with the function |
4314 | above. |
4315 | |
4316 | Arguments: |
4317 | classbits the bit map for characters < 256 |
4318 | uchardptr points to the pointer for extra data |
4319 | options the options word |
4320 | cd contains pointers to tables etc. |
4321 | p points to row of 32-bit values, terminated by NOTACHAR |
4322 | except character to omit; this is used when adding lists of |
4323 | case-equivalent characters to avoid including the one we |
4324 | already know about |
4325 | |
4326 | Returns: the number of < 256 characters added |
4327 | the pointer to extra data is updated |
4328 | */ |
4329 | |
4330 | static int |
4331 | add_list_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, int options, |
4332 | compile_data *cd, const pcre_uint32 *p, unsigned int except) |
4333 | { |
4334 | int n8 = 0; |
4335 | while (p[0] < NOTACHAR) |
4336 | { |
4337 | int n = 0; |
4338 | if (p[0] != except) |
4339 | { |
4340 | while(p[n+1] == p[0] + n + 1) n++; |
4341 | n8 += add_to_class(classbits, uchardptr, options, cd, p[0], p[n]); |
4342 | } |
4343 | p += n + 1; |
4344 | } |
4345 | return n8; |
4346 | } |
4347 | |
4348 | |
4349 | |
4350 | /************************************************* |
4351 | * Add characters not in a list to a class * |
4352 | *************************************************/ |
4353 | |
4354 | /* This function is used for adding the complement of a list of horizontal or |
4355 | vertical whitespace to a class. The list must be in order. |
4356 | |
4357 | Arguments: |
4358 | classbits the bit map for characters < 256 |
4359 | uchardptr points to the pointer for extra data |
4360 | options the options word |
4361 | cd contains pointers to tables etc. |
4362 | p points to row of 32-bit values, terminated by NOTACHAR |
4363 | |
4364 | Returns: the number of < 256 characters added |
4365 | the pointer to extra data is updated |
4366 | */ |
4367 | |
4368 | static int |
4369 | add_not_list_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, |
4370 | int options, compile_data *cd, const pcre_uint32 *p) |
4371 | { |
4372 | BOOL utf = (options & PCRE_UTF8) != 0; |
4373 | int n8 = 0; |
4374 | if (p[0] > 0) |
4375 | n8 += add_to_class(classbits, uchardptr, options, cd, 0, p[0] - 1); |
4376 | while (p[0] < NOTACHAR) |
4377 | { |
4378 | while (p[1] == p[0] + 1) p++; |
4379 | n8 += add_to_class(classbits, uchardptr, options, cd, p[0] + 1, |
4380 | (p[1] == NOTACHAR) ? (utf ? 0x10ffffu : 0xffffffffu) : p[1] - 1); |
4381 | p++; |
4382 | } |
4383 | return n8; |
4384 | } |
4385 | |
4386 | |
4387 | |
4388 | /************************************************* |
4389 | * Compile one branch * |
4390 | *************************************************/ |
4391 | |
4392 | /* Scan the pattern, compiling it into the a vector. If the options are |
4393 | changed during the branch, the pointer is used to change the external options |
4394 | bits. This function is used during the pre-compile phase when we are trying |
4395 | to find out the amount of memory needed, as well as during the real compile |
4396 | phase. The value of lengthptr distinguishes the two phases. |
4397 | |
4398 | Arguments: |
4399 | optionsptr pointer to the option bits |
4400 | codeptr points to the pointer to the current code point |
4401 | ptrptr points to the current pattern pointer |
4402 | errorcodeptr points to error code variable |
4403 | firstcharptr place to put the first required character |
4404 | firstcharflagsptr place to put the first character flags, or a negative number |
4405 | reqcharptr place to put the last required character |
4406 | reqcharflagsptr place to put the last required character flags, or a negative number |
4407 | bcptr points to current branch chain |
4408 | cond_depth conditional nesting depth |
4409 | cd contains pointers to tables etc. |
4410 | lengthptr NULL during the real compile phase |
4411 | points to length accumulator during pre-compile phase |
4412 | |
4413 | Returns: TRUE on success |
4414 | FALSE, with *errorcodeptr set non-zero on error |
4415 | */ |
4416 | |
4417 | static BOOL |
4418 | compile_branch(int *optionsptr, pcre_uchar **codeptr, |
4419 | const pcre_uchar **ptrptr, int *errorcodeptr, |
4420 | pcre_uint32 *firstcharptr, pcre_int32 *firstcharflagsptr, |
4421 | pcre_uint32 *reqcharptr, pcre_int32 *reqcharflagsptr, |
4422 | branch_chain *bcptr, int cond_depth, |
4423 | compile_data *cd, int *lengthptr) |
4424 | { |
4425 | int repeat_type, op_type; |
4426 | int repeat_min = 0, repeat_max = 0; /* To please picky compilers */ |
4427 | int bravalue = 0; |
4428 | int greedy_default, greedy_non_default; |
4429 | pcre_uint32 firstchar, reqchar; |
4430 | pcre_int32 firstcharflags, reqcharflags; |
4431 | pcre_uint32 zeroreqchar, zerofirstchar; |
4432 | pcre_int32 zeroreqcharflags, zerofirstcharflags; |
4433 | pcre_int32 req_caseopt, reqvary, tempreqvary; |
4434 | int options = *optionsptr; /* May change dynamically */ |
4435 | int after_manual_callout = 0; |
4436 | int length_prevgroup = 0; |
4437 | register pcre_uint32 c; |
4438 | int escape; |
4439 | register pcre_uchar *code = *codeptr; |
4440 | pcre_uchar *last_code = code; |
4441 | pcre_uchar *orig_code = code; |
4442 | pcre_uchar *tempcode; |
4443 | BOOL inescq = FALSE; |
4444 | BOOL groupsetfirstchar = FALSE; |
4445 | const pcre_uchar *ptr = *ptrptr; |
4446 | const pcre_uchar *tempptr; |
4447 | const pcre_uchar *nestptr = NULL; |
4448 | pcre_uchar *previous = NULL; |
4449 | pcre_uchar *previous_callout = NULL; |
4450 | pcre_uchar *save_hwm = NULL; |
4451 | pcre_uint8 classbits[32]; |
4452 | |
4453 | /* We can fish out the UTF-8 setting once and for all into a BOOL, but we |
4454 | must not do this for other options (e.g. PCRE_EXTENDED) because they may change |
4455 | dynamically as we process the pattern. */ |
4456 | |
4457 | #ifdef SUPPORT_UTF |
4458 | /* PCRE_UTF[16|32] have the same value as PCRE_UTF8. */ |
4459 | BOOL utf = (options & PCRE_UTF8) != 0; |
4460 | #ifndef COMPILE_PCRE32 |
4461 | pcre_uchar utf_chars[6]; |
4462 | #endif |
4463 | #else |
4464 | BOOL utf = FALSE; |
4465 | #endif |
4466 | |
4467 | /* Helper variables for OP_XCLASS opcode (for characters > 255). We define |
4468 | class_uchardata always so that it can be passed to add_to_class() always, |
4469 | though it will not be used in non-UTF 8-bit cases. This avoids having to supply |
4470 | alternative calls for the different cases. */ |
4471 | |
4472 | pcre_uchar *class_uchardata; |
4473 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4474 | BOOL xclass; |
4475 | pcre_uchar *class_uchardata_base; |
4476 | #endif |
4477 | |
4478 | #ifdef PCRE_DEBUG |
4479 | if (lengthptr != NULL) DPRINTF((">> start branch\n")); |
4480 | #endif |
4481 | |
4482 | /* Set up the default and non-default settings for greediness */ |
4483 | |
4484 | greedy_default = ((options & PCRE_UNGREEDY) != 0); |
4485 | greedy_non_default = greedy_default ^ 1; |
4486 | |
4487 | /* Initialize no first byte, no required byte. REQ_UNSET means "no char |
4488 | matching encountered yet". It gets changed to REQ_NONE if we hit something that |
4489 | matches a non-fixed char first char; reqchar just remains unset if we never |
4490 | find one. |
4491 | |
4492 | When we hit a repeat whose minimum is zero, we may have to adjust these values |
4493 | to take the zero repeat into account. This is implemented by setting them to |
4494 | zerofirstbyte and zeroreqchar when such a repeat is encountered. The individual |
4495 | item types that can be repeated set these backoff variables appropriately. */ |
4496 | |
4497 | firstchar = reqchar = zerofirstchar = zeroreqchar = 0; |
4498 | firstcharflags = reqcharflags = zerofirstcharflags = zeroreqcharflags = REQ_UNSET; |
4499 | |
4500 | /* The variable req_caseopt contains either the REQ_CASELESS value |
4501 | or zero, according to the current setting of the caseless flag. The |
4502 | REQ_CASELESS leaves the lower 28 bit empty. It is added into the |
4503 | firstchar or reqchar variables to record the case status of the |
4504 | value. This is used only for ASCII characters. */ |
4505 | |
4506 | req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS:0; |
4507 | |
4508 | /* Switch on next character until the end of the branch */ |
4509 | |
4510 | for (;; ptr++) |
4511 | { |
4512 | BOOL negate_class; |
4513 | BOOL should_flip_negation; |
4514 | BOOL possessive_quantifier; |
4515 | BOOL is_quantifier; |
4516 | BOOL is_recurse; |
4517 | BOOL reset_bracount; |
4518 | int class_has_8bitchar; |
4519 | int class_one_char; |
4520 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4521 | BOOL xclass_has_prop; |
4522 | #endif |
4523 | int newoptions; |
4524 | int recno; |
4525 | int refsign; |
4526 | int skipbytes; |
4527 | pcre_uint32 subreqchar, subfirstchar; |
4528 | pcre_int32 subreqcharflags, subfirstcharflags; |
4529 | int terminator; |
4530 | unsigned int mclength; |
4531 | unsigned int tempbracount; |
4532 | pcre_uint32 ec; |
4533 | pcre_uchar mcbuffer[8]; |
4534 | |
4535 | /* Get next character in the pattern */ |
4536 | |
4537 | c = *ptr; |
4538 | |
4539 | /* If we are at the end of a nested substitution, revert to the outer level |
4540 | string. Nesting only happens one level deep. */ |
4541 | |
4542 | if (c == CHAR_NULL && nestptr != NULL) |
4543 | { |
4544 | ptr = nestptr; |
4545 | nestptr = NULL; |
4546 | c = *ptr; |
4547 | } |
4548 | |
4549 | /* If we are in the pre-compile phase, accumulate the length used for the |
4550 | previous cycle of this loop. */ |
4551 | |
4552 | if (lengthptr != NULL) |
4553 | { |
4554 | #ifdef PCRE_DEBUG |
4555 | if (code > cd->hwm) cd->hwm = code; /* High water info */ |
4556 | #endif |
4557 | if (code > cd->start_workspace + cd->workspace_size - |
4558 | WORK_SIZE_SAFETY_MARGIN) /* Check for overrun */ |
4559 | { |
4560 | *errorcodeptr = ERR52; |
4561 | goto FAILED; |
4562 | } |
4563 | |
4564 | /* There is at least one situation where code goes backwards: this is the |
4565 | case of a zero quantifier after a class (e.g. [ab]{0}). At compile time, |
4566 | the class is simply eliminated. However, it is created first, so we have to |
4567 | allow memory for it. Therefore, don't ever reduce the length at this point. |
4568 | */ |
4569 | |
4570 | if (code < last_code) code = last_code; |
4571 | |
4572 | /* Paranoid check for integer overflow */ |
4573 | |
4574 | if (OFLOW_MAX - *lengthptr < code - last_code) |
4575 | { |
4576 | *errorcodeptr = ERR20; |
4577 | goto FAILED; |
4578 | } |
4579 | |
4580 | *lengthptr += (int)(code - last_code); |
4581 | DPRINTF(("length=%d added %d c=%c (0x%x)\n", *lengthptr, |
4582 | (int)(code - last_code), c, c)); |
4583 | |
4584 | /* If "previous" is set and it is not at the start of the work space, move |
4585 | it back to there, in order to avoid filling up the work space. Otherwise, |
4586 | if "previous" is NULL, reset the current code pointer to the start. */ |
4587 | |
4588 | if (previous != NULL) |
4589 | { |
4590 | if (previous > orig_code) |
4591 | { |
4592 | memmove(orig_code, previous, IN_UCHARS(code - previous)); |
4593 | code -= previous - orig_code; |
4594 | previous = orig_code; |
4595 | } |
4596 | } |
4597 | else code = orig_code; |
4598 | |
4599 | /* Remember where this code item starts so we can pick up the length |
4600 | next time round. */ |
4601 | |
4602 | last_code = code; |
4603 | } |
4604 | |
4605 | /* In the real compile phase, just check the workspace used by the forward |
4606 | reference list. */ |
4607 | |
4608 | else if (cd->hwm > cd->start_workspace + cd->workspace_size - |
4609 | WORK_SIZE_SAFETY_MARGIN) |
4610 | { |
4611 | *errorcodeptr = ERR52; |
4612 | goto FAILED; |
4613 | } |
4614 | |
4615 | /* If in \Q...\E, check for the end; if not, we have a literal */ |
4616 | |
4617 | if (inescq && c != CHAR_NULL) |
4618 | { |
4619 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
4620 | { |
4621 | inescq = FALSE; |
4622 | ptr++; |
4623 | continue; |
4624 | } |
4625 | else |
4626 | { |
4627 | if (previous_callout != NULL) |
4628 | { |
4629 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
4630 | complete_callout(previous_callout, ptr, cd); |
4631 | previous_callout = NULL; |
4632 | } |
4633 | if ((options & PCRE_AUTO_CALLOUT) != 0) |
4634 | { |
4635 | previous_callout = code; |
4636 | code = auto_callout(code, ptr, cd); |
4637 | } |
4638 | goto NORMAL_CHAR; |
4639 | } |
4640 | /* Control does not reach here. */ |
4641 | } |
4642 | |
4643 | /* In extended mode, skip white space and comments. We need a loop in order |
4644 | to check for more white space and more comments after a comment. */ |
4645 | |
4646 | if ((options & PCRE_EXTENDED) != 0) |
4647 | { |
4648 | for (;;) |
4649 | { |
4650 | while (MAX_255(c) && (cd->ctypes[c] & ctype_space) != 0) c = *(++ptr); |
4651 | if (c != CHAR_NUMBER_SIGN) break; |
4652 | ptr++; |
4653 | while (*ptr != CHAR_NULL) |
4654 | { |
4655 | if (IS_NEWLINE(ptr)) /* For non-fixed-length newline cases, */ |
4656 | { /* IS_NEWLINE sets cd->nllen. */ |
4657 | ptr += cd->nllen; |
4658 | break; |
4659 | } |
4660 | ptr++; |
4661 | #ifdef SUPPORT_UTF |
4662 | if (utf) FORWARDCHAR(ptr); |
4663 | #endif |
4664 | } |
4665 | c = *ptr; /* Either NULL or the char after a newline */ |
4666 | } |
4667 | } |
4668 | |
4669 | /* See if the next thing is a quantifier. */ |
4670 | |
4671 | is_quantifier = |
4672 | c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK || |
4673 | (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1)); |
4674 | |
4675 | /* Fill in length of a previous callout, except when the next thing is a |
4676 | quantifier or when processing a property substitution string in UCP mode. */ |
4677 | |
4678 | if (!is_quantifier && previous_callout != NULL && nestptr == NULL && |
4679 | after_manual_callout-- <= 0) |
4680 | { |
4681 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
4682 | complete_callout(previous_callout, ptr, cd); |
4683 | previous_callout = NULL; |
4684 | } |
4685 | |
4686 | /* Create auto callout, except for quantifiers, or while processing property |
4687 | strings that are substituted for \w etc in UCP mode. */ |
4688 | |
4689 | if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier && nestptr == NULL) |
4690 | { |
4691 | previous_callout = code; |
4692 | code = auto_callout(code, ptr, cd); |
4693 | } |
4694 | |
4695 | /* Process the next pattern item. */ |
4696 | |
4697 | switch(c) |
4698 | { |
4699 | /* ===================================================================*/ |
4700 | case CHAR_NULL: /* The branch terminates at string end */ |
4701 | case CHAR_VERTICAL_LINE: /* or | or ) */ |
4702 | case CHAR_RIGHT_PARENTHESIS: |
4703 | *firstcharptr = firstchar; |
4704 | *firstcharflagsptr = firstcharflags; |
4705 | *reqcharptr = reqchar; |
4706 | *reqcharflagsptr = reqcharflags; |
4707 | *codeptr = code; |
4708 | *ptrptr = ptr; |
4709 | if (lengthptr != NULL) |
4710 | { |
4711 | if (OFLOW_MAX - *lengthptr < code - last_code) |
4712 | { |
4713 | *errorcodeptr = ERR20; |
4714 | goto FAILED; |
4715 | } |
4716 | *lengthptr += (int)(code - last_code); /* To include callout length */ |
4717 | DPRINTF((">> end branch\n")); |
4718 | } |
4719 | return TRUE; |
4720 | |
4721 | |
4722 | /* ===================================================================*/ |
4723 | /* Handle single-character metacharacters. In multiline mode, ^ disables |
4724 | the setting of any following char as a first character. */ |
4725 | |
4726 | case CHAR_CIRCUMFLEX_ACCENT: |
4727 | previous = NULL; |
4728 | if ((options & PCRE_MULTILINE) != 0) |
4729 | { |
4730 | if (firstcharflags == REQ_UNSET) |
4731 | zerofirstcharflags = firstcharflags = REQ_NONE; |
4732 | *code++ = OP_CIRCM; |
4733 | } |
4734 | else *code++ = OP_CIRC; |
4735 | break; |
4736 | |
4737 | case CHAR_DOLLAR_SIGN: |
4738 | previous = NULL; |
4739 | *code++ = ((options & PCRE_MULTILINE) != 0)? OP_DOLLM : OP_DOLL; |
4740 | break; |
4741 | |
4742 | /* There can never be a first char if '.' is first, whatever happens about |
4743 | repeats. The value of reqchar doesn't change either. */ |
4744 | |
4745 | case CHAR_DOT: |
4746 | if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE; |
4747 | zerofirstchar = firstchar; |
4748 | zerofirstcharflags = firstcharflags; |
4749 | zeroreqchar = reqchar; |
4750 | zeroreqcharflags = reqcharflags; |
4751 | previous = code; |
4752 | *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY; |
4753 | break; |
4754 | |
4755 | |
4756 | /* ===================================================================*/ |
4757 | /* Character classes. If the included characters are all < 256, we build a |
4758 | 32-byte bitmap of the permitted characters, except in the special case |
4759 | where there is only one such character. For negated classes, we build the |
4760 | map as usual, then invert it at the end. However, we use a different opcode |
4761 | so that data characters > 255 can be handled correctly. |
4762 | |
4763 | If the class contains characters outside the 0-255 range, a different |
4764 | opcode is compiled. It may optionally have a bit map for characters < 256, |
4765 | but those above are are explicitly listed afterwards. A flag byte tells |
4766 | whether the bitmap is present, and whether this is a negated class or not. |
4767 | |
4768 | In JavaScript compatibility mode, an isolated ']' causes an error. In |
4769 | default (Perl) mode, it is treated as a data character. */ |
4770 | |
4771 | case CHAR_RIGHT_SQUARE_BRACKET: |
4772 | if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
4773 | { |
4774 | *errorcodeptr = ERR64; |
4775 | goto FAILED; |
4776 | } |
4777 | goto NORMAL_CHAR; |
4778 | |
4779 | /* In another (POSIX) regex library, the ugly syntax [[:<:]] and [[:>:]] is |
4780 | used for "start of word" and "end of word". As these are otherwise illegal |
4781 | sequences, we don't break anything by recognizing them. They are replaced |
4782 | by \b(?=\w) and \b(?<=\w) respectively. Sequences like [a[:<:]] are |
4783 | erroneous and are handled by the normal code below. */ |
4784 | |
4785 | case CHAR_LEFT_SQUARE_BRACKET: |
4786 | if (STRNCMP_UC_C8(ptr+1, STRING_WEIRD_STARTWORD, 6) == 0) |
4787 | { |
4788 | nestptr = ptr + 7; |
4789 | ptr = sub_start_of_word - 1; |
4790 | continue; |
4791 | } |
4792 | |
4793 | if (STRNCMP_UC_C8(ptr+1, STRING_WEIRD_ENDWORD, 6) == 0) |
4794 | { |
4795 | nestptr = ptr + 7; |
4796 | ptr = sub_end_of_word - 1; |
4797 | continue; |
4798 | } |
4799 | |
4800 | /* Handle a real character class. */ |
4801 | |
4802 | previous = code; |
4803 | |
4804 | /* PCRE supports POSIX class stuff inside a class. Perl gives an error if |
4805 | they are encountered at the top level, so we'll do that too. */ |
4806 | |
4807 | if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
4808 | ptr[1] == CHAR_EQUALS_SIGN) && |
4809 | check_posix_syntax(ptr, &tempptr)) |
4810 | { |
4811 | *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31; |
4812 | goto FAILED; |
4813 | } |
4814 | |
4815 | /* If the first character is '^', set the negation flag and skip it. Also, |
4816 | if the first few characters (either before or after ^) are \Q\E or \E we |
4817 | skip them too. This makes for compatibility with Perl. */ |
4818 | |
4819 | negate_class = FALSE; |
4820 | for (;;) |
4821 | { |
4822 | c = *(++ptr); |
4823 | if (c == CHAR_BACKSLASH) |
4824 | { |
4825 | if (ptr[1] == CHAR_E) |
4826 | ptr++; |
4827 | else if (STRNCMP_UC_C8(ptr + 1, STR_Q STR_BACKSLASH STR_E, 3) == 0) |
4828 | ptr += 3; |
4829 | else |
4830 | break; |
4831 | } |
4832 | else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT) |
4833 | negate_class = TRUE; |
4834 | else break; |
4835 | } |
4836 | |
4837 | /* Empty classes are allowed in JavaScript compatibility mode. Otherwise, |
4838 | an initial ']' is taken as a data character -- the code below handles |
4839 | that. In JS mode, [] must always fail, so generate OP_FAIL, whereas |
4840 | [^] must match any character, so generate OP_ALLANY. */ |
4841 | |
4842 | if (c == CHAR_RIGHT_SQUARE_BRACKET && |
4843 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
4844 | { |
4845 | *code++ = negate_class? OP_ALLANY : OP_FAIL; |
4846 | if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE; |
4847 | zerofirstchar = firstchar; |
4848 | zerofirstcharflags = firstcharflags; |
4849 | break; |
4850 | } |
4851 | |
4852 | /* If a class contains a negative special such as \S, we need to flip the |
4853 | negation flag at the end, so that support for characters > 255 works |
4854 | correctly (they are all included in the class). */ |
4855 | |
4856 | should_flip_negation = FALSE; |
4857 | |
4858 | /* Extended class (xclass) will be used when characters > 255 |
4859 | might match. */ |
4860 | |
4861 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4862 | xclass = FALSE; |
4863 | class_uchardata = code + LINK_SIZE + 2; /* For XCLASS items */ |
4864 | class_uchardata_base = class_uchardata; /* Save the start */ |
4865 | #endif |
4866 | |
4867 | /* For optimization purposes, we track some properties of the class: |
4868 | class_has_8bitchar will be non-zero if the class contains at least one < |
4869 | 256 character; class_one_char will be 1 if the class contains just one |
4870 | character; xclass_has_prop will be TRUE if unicode property checks |
4871 | are present in the class. */ |
4872 | |
4873 | class_has_8bitchar = 0; |
4874 | class_one_char = 0; |
4875 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4876 | xclass_has_prop = FALSE; |
4877 | #endif |
4878 | |
4879 | /* Initialize the 32-char bit map to all zeros. We build the map in a |
4880 | temporary bit of memory, in case the class contains fewer than two |
4881 | 8-bit characters because in that case the compiled code doesn't use the bit |
4882 | map. */ |
4883 | |
4884 | memset(classbits, 0, 32 * sizeof(pcre_uint8)); |
4885 | |
4886 | /* Process characters until ] is reached. By writing this as a "do" it |
4887 | means that an initial ] is taken as a data character. At the start of the |
4888 | loop, c contains the first byte of the character. */ |
4889 | |
4890 | if (c != CHAR_NULL) do |
4891 | { |
4892 | const pcre_uchar *oldptr; |
4893 | |
4894 | #ifdef SUPPORT_UTF |
4895 | if (utf && HAS_EXTRALEN(c)) |
4896 | { /* Braces are required because the */ |
4897 | GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */ |
4898 | } |
4899 | #endif |
4900 | |
4901 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4902 | /* In the pre-compile phase, accumulate the length of any extra |
4903 | data and reset the pointer. This is so that very large classes that |
4904 | contain a zillion > 255 characters no longer overwrite the work space |
4905 | (which is on the stack). We have to remember that there was XCLASS data, |
4906 | however. */ |
4907 | |
4908 | if (lengthptr != NULL && class_uchardata > class_uchardata_base) |
4909 | { |
4910 | xclass = TRUE; |
4911 | *lengthptr += (int)(class_uchardata - class_uchardata_base); |
4912 | class_uchardata = class_uchardata_base; |
4913 | } |
4914 | #endif |
4915 | |
4916 | /* Inside \Q...\E everything is literal except \E */ |
4917 | |
4918 | if (inescq) |
4919 | { |
4920 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */ |
4921 | { |
4922 | inescq = FALSE; /* Reset literal state */ |
4923 | ptr++; /* Skip the 'E' */ |
4924 | continue; /* Carry on with next */ |
4925 | } |
4926 | goto CHECK_RANGE; /* Could be range if \E follows */ |
4927 | } |
4928 | |
4929 | /* Handle POSIX class names. Perl allows a negation extension of the |
4930 | form [:^name:]. A square bracket that doesn't match the syntax is |
4931 | treated as a literal. We also recognize the POSIX constructions |
4932 | [.ch.] and [=ch=] ("collating elements") and fault them, as Perl |
4933 | 5.6 and 5.8 do. */ |
4934 | |
4935 | if (c == CHAR_LEFT_SQUARE_BRACKET && |
4936 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
4937 | ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr)) |
4938 | { |
4939 | BOOL local_negate = FALSE; |
4940 | int posix_class, taboffset, tabopt; |
4941 | register const pcre_uint8 *cbits = cd->cbits; |
4942 | pcre_uint8 pbits[32]; |
4943 | |
4944 | if (ptr[1] != CHAR_COLON) |
4945 | { |
4946 | *errorcodeptr = ERR31; |
4947 | goto FAILED; |
4948 | } |
4949 | |
4950 | ptr += 2; |
4951 | if (*ptr == CHAR_CIRCUMFLEX_ACCENT) |
4952 | { |
4953 | local_negate = TRUE; |
4954 | should_flip_negation = TRUE; /* Note negative special */ |
4955 | ptr++; |
4956 | } |
4957 | |
4958 | posix_class = check_posix_name(ptr, (int)(tempptr - ptr)); |
4959 | if (posix_class < 0) |
4960 | { |
4961 | *errorcodeptr = ERR30; |
4962 | goto FAILED; |
4963 | } |
4964 | |
4965 | /* If matching is caseless, upper and lower are converted to |
4966 | alpha. This relies on the fact that the class table starts with |
4967 | alpha, lower, upper as the first 3 entries. */ |
4968 | |
4969 | if ((options & PCRE_CASELESS) != 0 && posix_class <= 2) |
4970 | posix_class = 0; |
4971 | |
4972 | /* When PCRE_UCP is set, some of the POSIX classes are converted to |
4973 | different escape sequences that use Unicode properties \p or \P. Others |
4974 | that are not available via \p or \P generate XCL_PROP/XCL_NOTPROP |
4975 | directly. */ |
4976 | |
4977 | #ifdef SUPPORT_UCP |
4978 | if ((options & PCRE_UCP) != 0) |
4979 | { |
4980 | unsigned int ptype = 0; |
4981 | int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0); |
4982 | |
4983 | /* The posix_substitutes table specifies which POSIX classes can be |
4984 | converted to \p or \P items. */ |
4985 | |
4986 | if (posix_substitutes[pc] != NULL) |
4987 | { |
4988 | nestptr = tempptr + 1; |
4989 | ptr = posix_substitutes[pc] - 1; |
4990 | continue; |
4991 | } |
4992 | |
4993 | /* There are three other classes that generate special property calls |
4994 | that are recognized only in an XCLASS. */ |
4995 | |
4996 | else switch(posix_class) |
4997 | { |
4998 | case PC_GRAPH: |
4999 | ptype = PT_PXGRAPH; |
5000 | /* Fall through */ |
5001 | case PC_PRINT: |
5002 | if (ptype == 0) ptype = PT_PXPRINT; |
5003 | /* Fall through */ |
5004 | case PC_PUNCT: |
5005 | if (ptype == 0) ptype = PT_PXPUNCT; |
5006 | *class_uchardata++ = local_negate? XCL_NOTPROP : XCL_PROP; |
5007 | *class_uchardata++ = ptype; |
5008 | *class_uchardata++ = 0; |
5009 | xclass_has_prop = TRUE; |
5010 | ptr = tempptr + 1; |
5011 | continue; |
5012 | |
5013 | /* For all other POSIX classes, no special action is taken in UCP |
5014 | mode. Fall through to the non_UCP case. */ |
5015 | |
5016 | default: |
5017 | break; |
5018 | } |
5019 | } |
5020 | #endif |
5021 | /* In the non-UCP case, or when UCP makes no difference, we build the |
5022 | bit map for the POSIX class in a chunk of local store because we may be |
5023 | adding and subtracting from it, and we don't want to subtract bits that |
5024 | may be in the main map already. At the end we or the result into the |
5025 | bit map that is being built. */ |
5026 | |
5027 | posix_class *= 3; |
5028 | |
5029 | /* Copy in the first table (always present) */ |
5030 | |
5031 | memcpy(pbits, cbits + posix_class_maps[posix_class], |
5032 | 32 * sizeof(pcre_uint8)); |
5033 | |
5034 | /* If there is a second table, add or remove it as required. */ |
5035 | |
5036 | taboffset = posix_class_maps[posix_class + 1]; |
5037 | tabopt = posix_class_maps[posix_class + 2]; |
5038 | |
5039 | if (taboffset >= 0) |
5040 | { |
5041 | if (tabopt >= 0) |
5042 | for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset]; |
5043 | else |
5044 | for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset]; |
5045 | } |
5046 | |
5047 | /* Now see if we need to remove any special characters. An option |
5048 | value of 1 removes vertical space and 2 removes underscore. */ |
5049 | |
5050 | if (tabopt < 0) tabopt = -tabopt; |
5051 | if (tabopt == 1) pbits[1] &= ~0x3c; |
5052 | else if (tabopt == 2) pbits[11] &= 0x7f; |
5053 | |
5054 | /* Add the POSIX table or its complement into the main table that is |
5055 | being built and we are done. */ |
5056 | |
5057 | if (local_negate) |
5058 | for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c]; |
5059 | else |
5060 | for (c = 0; c < 32; c++) classbits[c] |= pbits[c]; |
5061 | |
5062 | ptr = tempptr + 1; |
5063 | /* Every class contains at least one < 256 character. */ |
5064 | class_has_8bitchar = 1; |
5065 | /* Every class contains at least two characters. */ |
5066 | class_one_char = 2; |
5067 | continue; /* End of POSIX syntax handling */ |
5068 | } |
5069 | |
5070 | /* Backslash may introduce a single character, or it may introduce one |
5071 | of the specials, which just set a flag. The sequence \b is a special |
5072 | case. Inside a class (and only there) it is treated as backspace. We |
5073 | assume that other escapes have more than one character in them, so |
5074 | speculatively set both class_has_8bitchar and class_one_char bigger |
5075 | than one. Unrecognized escapes fall through and are either treated |
5076 | as literal characters (by default), or are faulted if |
5077 | PCRE_EXTRA is set. */ |
5078 | |
5079 | if (c == CHAR_BACKSLASH) |
5080 | { |
5081 | escape = check_escape(&ptr, &ec, errorcodeptr, cd->bracount, options, |
5082 | TRUE); |
5083 | if (*errorcodeptr != 0) goto FAILED; |
5084 | if (escape == 0) c = ec; |
5085 | else if (escape == ESC_b) c = CHAR_BS; /* \b is backspace in a class */ |
5086 | else if (escape == ESC_N) /* \N is not supported in a class */ |
5087 | { |
5088 | *errorcodeptr = ERR71; |
5089 | goto FAILED; |
5090 | } |
5091 | else if (escape == ESC_Q) /* Handle start of quoted string */ |
5092 | { |
5093 | if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
5094 | { |
5095 | ptr += 2; /* avoid empty string */ |
5096 | } |
5097 | else inescq = TRUE; |
5098 | continue; |
5099 | } |
5100 | else if (escape == ESC_E) continue; /* Ignore orphan \E */ |
5101 | |
5102 | else |
5103 | { |
5104 | register const pcre_uint8 *cbits = cd->cbits; |
5105 | /* Every class contains at least two < 256 characters. */ |
5106 | class_has_8bitchar++; |
5107 | /* Every class contains at least two characters. */ |
5108 | class_one_char += 2; |
5109 | |
5110 | switch (escape) |
5111 | { |
5112 | #ifdef SUPPORT_UCP |
5113 | case ESC_du: /* These are the values given for \d etc */ |
5114 | case ESC_DU: /* when PCRE_UCP is set. We replace the */ |
5115 | case ESC_wu: /* escape sequence with an appropriate \p */ |
5116 | case ESC_WU: /* or \P to test Unicode properties instead */ |
5117 | case ESC_su: /* of the default ASCII testing. */ |
5118 | case ESC_SU: |
5119 | nestptr = ptr; |
5120 | ptr = substitutes[escape - ESC_DU] - 1; /* Just before substitute */ |
5121 | class_has_8bitchar--; /* Undo! */ |
5122 | continue; |
5123 | #endif |
5124 | case ESC_d: |
5125 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit]; |
5126 | continue; |
5127 | |
5128 | case ESC_D: |
5129 | should_flip_negation = TRUE; |
5130 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit]; |
5131 | continue; |
5132 | |
5133 | case ESC_w: |
5134 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word]; |
5135 | continue; |
5136 | |
5137 | case ESC_W: |
5138 | should_flip_negation = TRUE; |
5139 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word]; |
5140 | continue; |
5141 | |
5142 | /* Perl 5.004 onwards omitted VT from \s, but restored it at Perl |
5143 | 5.18. Before PCRE 8.34, we had to preserve the VT bit if it was |
5144 | previously set by something earlier in the character class. |
5145 | Luckily, the value of CHAR_VT is 0x0b in both ASCII and EBCDIC, so |
5146 | we could just adjust the appropriate bit. From PCRE 8.34 we no |
5147 | longer treat \s and \S specially. */ |
5148 | |
5149 | case ESC_s: |
5150 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_space]; |
5151 | continue; |
5152 | |
5153 | case ESC_S: |
5154 | should_flip_negation = TRUE; |
5155 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space]; |
5156 | continue; |
5157 | |
5158 | /* The rest apply in both UCP and non-UCP cases. */ |
5159 | |
5160 | case ESC_h: |
5161 | (void)add_list_to_class(classbits, &class_uchardata, options, cd, |
5162 | PRIV(hspace_list), NOTACHAR); |
5163 | continue; |
5164 | |
5165 | case ESC_H: |
5166 | (void)add_not_list_to_class(classbits, &class_uchardata, options, |
5167 | cd, PRIV(hspace_list)); |
5168 | continue; |
5169 | |
5170 | case ESC_v: |
5171 | (void)add_list_to_class(classbits, &class_uchardata, options, cd, |
5172 | PRIV(vspace_list), NOTACHAR); |
5173 | continue; |
5174 | |
5175 | case ESC_V: |
5176 | (void)add_not_list_to_class(classbits, &class_uchardata, options, |
5177 | cd, PRIV(vspace_list)); |
5178 | continue; |
5179 | |
5180 | #ifdef SUPPORT_UCP |
5181 | case ESC_p: |
5182 | case ESC_P: |
5183 | { |
5184 | BOOL negated; |
5185 | unsigned int ptype = 0, pdata = 0; |
5186 | if (!get_ucp(&ptr, &negated, &ptype, &pdata, errorcodeptr)) |
5187 | goto FAILED; |
5188 | *class_uchardata++ = ((escape == ESC_p) != negated)? |
5189 | XCL_PROP : XCL_NOTPROP; |
5190 | *class_uchardata++ = ptype; |
5191 | *class_uchardata++ = pdata; |
5192 | xclass_has_prop = TRUE; |
5193 | class_has_8bitchar--; /* Undo! */ |
5194 | continue; |
5195 | } |
5196 | #endif |
5197 | /* Unrecognized escapes are faulted if PCRE is running in its |
5198 | strict mode. By default, for compatibility with Perl, they are |
5199 | treated as literals. */ |
5200 | |
5201 | default: |
5202 | if ((options & PCRE_EXTRA) != 0) |
5203 | { |
5204 | *errorcodeptr = ERR7; |
5205 | goto FAILED; |
5206 | } |
5207 | class_has_8bitchar--; /* Undo the speculative increase. */ |
5208 | class_one_char -= 2; /* Undo the speculative increase. */ |
5209 | c = *ptr; /* Get the final character and fall through */ |
5210 | break; |
5211 | } |
5212 | } |
5213 | |
5214 | /* Fall through if the escape just defined a single character (c >= 0). |
5215 | This may be greater than 256. */ |
5216 | |
5217 | escape = 0; |
5218 | |
5219 | } /* End of backslash handling */ |
5220 | |
5221 | /* A character may be followed by '-' to form a range. However, Perl does |
5222 | not permit ']' to be the end of the range. A '-' character at the end is |
5223 | treated as a literal. Perl ignores orphaned \E sequences entirely. The |
5224 | code for handling \Q and \E is messy. */ |
5225 | |
5226 | CHECK_RANGE: |
5227 | while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
5228 | { |
5229 | inescq = FALSE; |
5230 | ptr += 2; |
5231 | } |
5232 | oldptr = ptr; |
5233 | |
5234 | /* Remember if \r or \n were explicitly used */ |
5235 | |
5236 | if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
5237 | |
5238 | /* Check for range */ |
5239 | |
5240 | if (!inescq && ptr[1] == CHAR_MINUS) |
5241 | { |
5242 | pcre_uint32 d; |
5243 | ptr += 2; |
5244 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2; |
5245 | |
5246 | /* If we hit \Q (not followed by \E) at this point, go into escaped |
5247 | mode. */ |
5248 | |
5249 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q) |
5250 | { |
5251 | ptr += 2; |
5252 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
5253 | { ptr += 2; continue; } |
5254 | inescq = TRUE; |
5255 | break; |
5256 | } |
5257 | |
5258 | /* Minus (hyphen) at the end of a class is treated as a literal, so put |
5259 | back the pointer and jump to handle the character that preceded it. */ |
5260 | |
5261 | if (*ptr == CHAR_NULL || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET)) |
5262 | { |
5263 | ptr = oldptr; |
5264 | goto CLASS_SINGLE_CHARACTER; |
5265 | } |
5266 | |
5267 | /* Otherwise, we have a potential range; pick up the next character */ |
5268 | |
5269 | #ifdef SUPPORT_UTF |
5270 | if (utf) |
5271 | { /* Braces are required because the */ |
5272 | GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */ |
5273 | } |
5274 | else |
5275 | #endif |
5276 | d = *ptr; /* Not UTF-8 mode */ |
5277 | |
5278 | /* The second part of a range can be a single-character escape |
5279 | sequence, but not any of the other escapes. Perl treats a hyphen as a |
5280 | literal in such circumstances. However, in Perl's warning mode, a |
5281 | warning is given, so PCRE now faults it as it is almost certainly a |
5282 | mistake on the user's part. */ |
5283 | |
5284 | if (!inescq) |
5285 | { |
5286 | if (d == CHAR_BACKSLASH) |
5287 | { |
5288 | int descape; |
5289 | descape = check_escape(&ptr, &d, errorcodeptr, cd->bracount, options, TRUE); |
5290 | if (*errorcodeptr != 0) goto FAILED; |
5291 | |
5292 | /* 0 means a character was put into d; \b is backspace; any other |
5293 | special causes an error. */ |
5294 | |
5295 | if (descape != 0) |
5296 | { |
5297 | if (descape == ESC_b) d = CHAR_BS; else |
5298 | { |
5299 | *errorcodeptr = ERR83; |
5300 | goto FAILED; |
5301 | } |
5302 | } |
5303 | } |
5304 | |
5305 | /* A hyphen followed by a POSIX class is treated in the same way. */ |
5306 | |
5307 | else if (d == CHAR_LEFT_SQUARE_BRACKET && |
5308 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
5309 | ptr[1] == CHAR_EQUALS_SIGN) && |
5310 | check_posix_syntax(ptr, &tempptr)) |
5311 | { |
5312 | *errorcodeptr = ERR83; |
5313 | goto FAILED; |
5314 | } |
5315 | } |
5316 | |
5317 | /* Check that the two values are in the correct order. Optimize |
5318 | one-character ranges. */ |
5319 | |
5320 | if (d < c) |
5321 | { |
5322 | *errorcodeptr = ERR8; |
5323 | goto FAILED; |
5324 | } |
5325 | if (d == c) goto CLASS_SINGLE_CHARACTER; /* A few lines below */ |
5326 | |
5327 | /* We have found a character range, so single character optimizations |
5328 | cannot be done anymore. Any value greater than 1 indicates that there |
5329 | is more than one character. */ |
5330 | |
5331 | class_one_char = 2; |
5332 | |
5333 | /* Remember an explicit \r or \n, and add the range to the class. */ |
5334 | |
5335 | if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
5336 | |
5337 | class_has_8bitchar += |
5338 | add_to_class(classbits, &class_uchardata, options, cd, c, d); |
5339 | |
5340 | continue; /* Go get the next char in the class */ |
5341 | } |
5342 | |
5343 | /* Handle a single character - we can get here for a normal non-escape |
5344 | char, or after \ that introduces a single character or for an apparent |
5345 | range that isn't. Only the value 1 matters for class_one_char, so don't |
5346 | increase it if it is already 2 or more ... just in case there's a class |
5347 | with a zillion characters in it. */ |
5348 | |
5349 | CLASS_SINGLE_CHARACTER: |
5350 | if (class_one_char < 2) class_one_char++; |
5351 | |
5352 | /* If class_one_char is 1, we have the first single character in the |
5353 | class, and there have been no prior ranges, or XCLASS items generated by |
5354 | escapes. If this is the final character in the class, we can optimize by |
5355 | turning the item into a 1-character OP_CHAR[I] if it's positive, or |
5356 | OP_NOT[I] if it's negative. In the positive case, it can cause firstchar |
5357 | to be set. Otherwise, there can be no first char if this item is first, |
5358 | whatever repeat count may follow. In the case of reqchar, save the |
5359 | previous value for reinstating. */ |
5360 | |
5361 | if (!inescq && class_one_char == 1 && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
5362 | { |
5363 | ptr++; |
5364 | zeroreqchar = reqchar; |
5365 | zeroreqcharflags = reqcharflags; |
5366 | |
5367 | if (negate_class) |
5368 | { |
5369 | #ifdef SUPPORT_UCP |
5370 | int d; |
5371 | #endif |
5372 | if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE; |
5373 | zerofirstchar = firstchar; |
5374 | zerofirstcharflags = firstcharflags; |
5375 | |
5376 | /* For caseless UTF-8 mode when UCP support is available, check |
5377 | whether this character has more than one other case. If so, generate |
5378 | a special OP_NOTPROP item instead of OP_NOTI. */ |
5379 | |
5380 | #ifdef SUPPORT_UCP |
5381 | if (utf && (options & PCRE_CASELESS) != 0 && |
5382 | (d = UCD_CASESET(c)) != 0) |
5383 | { |
5384 | *code++ = OP_NOTPROP; |
5385 | *code++ = PT_CLIST; |
5386 | *code++ = d; |
5387 | } |
5388 | else |
5389 | #endif |
5390 | /* Char has only one other case, or UCP not available */ |
5391 | |
5392 | { |
5393 | *code++ = ((options & PCRE_CASELESS) != 0)? OP_NOTI: OP_NOT; |
5394 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
5395 | if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR) |
5396 | code += PRIV(ord2utf)(c, code); |
5397 | else |
5398 | #endif |
5399 | *code++ = c; |
5400 | } |
5401 | |
5402 | /* We are finished with this character class */ |
5403 | |
5404 | goto END_CLASS; |
5405 | } |
5406 | |
5407 | /* For a single, positive character, get the value into mcbuffer, and |
5408 | then we can handle this with the normal one-character code. */ |
5409 | |
5410 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
5411 | if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR) |
5412 | mclength = PRIV(ord2utf)(c, mcbuffer); |
5413 | else |
5414 | #endif |
5415 | { |
5416 | mcbuffer[0] = c; |
5417 | mclength = 1; |
5418 | } |
5419 | goto ONE_CHAR; |
5420 | } /* End of 1-char optimization */ |
5421 | |
5422 | /* There is more than one character in the class, or an XCLASS item |
5423 | has been generated. Add this character to the class. */ |
5424 | |
5425 | class_has_8bitchar += |
5426 | add_to_class(classbits, &class_uchardata, options, cd, c, c); |
5427 | } |
5428 | |
5429 | /* Loop until ']' reached. This "while" is the end of the "do" far above. |
5430 | If we are at the end of an internal nested string, revert to the outer |
5431 | string. */ |
5432 | |
5433 | while (((c = *(++ptr)) != CHAR_NULL || |
5434 | (nestptr != NULL && |
5435 | (ptr = nestptr, nestptr = NULL, c = *(++ptr)) != CHAR_NULL)) && |
5436 | (c != CHAR_RIGHT_SQUARE_BRACKET || inescq)); |
5437 | |
5438 | /* Check for missing terminating ']' */ |
5439 | |
5440 | if (c == CHAR_NULL) |
5441 | { |
5442 | *errorcodeptr = ERR6; |
5443 | goto FAILED; |
5444 | } |
5445 | |
5446 | /* We will need an XCLASS if data has been placed in class_uchardata. In |
5447 | the second phase this is a sufficient test. However, in the pre-compile |
5448 | phase, class_uchardata gets emptied to prevent workspace overflow, so it |
5449 | only if the very last character in the class needs XCLASS will it contain |
5450 | anything at this point. For this reason, xclass gets set TRUE above when |
5451 | uchar_classdata is emptied, and that's why this code is the way it is here |
5452 | instead of just doing a test on class_uchardata below. */ |
5453 | |
5454 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
5455 | if (class_uchardata > class_uchardata_base) xclass = TRUE; |
5456 | #endif |
5457 | |
5458 | /* If this is the first thing in the branch, there can be no first char |
5459 | setting, whatever the repeat count. Any reqchar setting must remain |
5460 | unchanged after any kind of repeat. */ |
5461 | |
5462 | if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE; |
5463 | zerofirstchar = firstchar; |
5464 | zerofirstcharflags = firstcharflags; |
5465 | zeroreqchar = reqchar; |
5466 | zeroreqcharflags = reqcharflags; |
5467 | |
5468 | /* If there are characters with values > 255, we have to compile an |
5469 | extended class, with its own opcode, unless there was a negated special |
5470 | such as \S in the class, and PCRE_UCP is not set, because in that case all |
5471 | characters > 255 are in the class, so any that were explicitly given as |
5472 | well can be ignored. If (when there are explicit characters > 255 that must |
5473 | be listed) there are no characters < 256, we can omit the bitmap in the |
5474 | actual compiled code. */ |
5475 | |
5476 | #ifdef SUPPORT_UTF |
5477 | if (xclass && (!should_flip_negation || (options & PCRE_UCP) != 0)) |
5478 | #elif !defined COMPILE_PCRE8 |
5479 | if (xclass && !should_flip_negation) |
5480 | #endif |
5481 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
5482 | { |
5483 | *class_uchardata++ = XCL_END; /* Marks the end of extra data */ |
5484 | *code++ = OP_XCLASS; |
5485 | code += LINK_SIZE; |
5486 | *code = negate_class? XCL_NOT:0; |
5487 | if (xclass_has_prop) *code |= XCL_HASPROP; |
5488 | |
5489 | /* If the map is required, move up the extra data to make room for it; |
5490 | otherwise just move the code pointer to the end of the extra data. */ |
5491 | |
5492 | if (class_has_8bitchar > 0) |
5493 | { |
5494 | *code++ |= XCL_MAP; |
5495 | memmove(code + (32 / sizeof(pcre_uchar)), code, |
5496 | IN_UCHARS(class_uchardata - code)); |
5497 | if (negate_class && !xclass_has_prop) |
5498 | for (c = 0; c < 32; c++) classbits[c] = ~classbits[c]; |
5499 | memcpy(code, classbits, 32); |
5500 | code = class_uchardata + (32 / sizeof(pcre_uchar)); |
5501 | } |
5502 | else code = class_uchardata; |
5503 | |
5504 | /* Now fill in the complete length of the item */ |
5505 | |
5506 | PUT(previous, 1, (int)(code - previous)); |
5507 | break; /* End of class handling */ |
5508 | } |
5509 | #endif |
5510 | |
5511 | /* If there are no characters > 255, or they are all to be included or |
5512 | excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the |
5513 | whole class was negated and whether there were negative specials such as \S |
5514 | (non-UCP) in the class. Then copy the 32-byte map into the code vector, |
5515 | negating it if necessary. */ |
5516 | |
5517 | *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS; |
5518 | if (lengthptr == NULL) /* Save time in the pre-compile phase */ |
5519 | { |
5520 | if (negate_class) |
5521 | for (c = 0; c < 32; c++) classbits[c] = ~classbits[c]; |
5522 | memcpy(code, classbits, 32); |
5523 | } |
5524 | code += 32 / sizeof(pcre_uchar); |
5525 | |
5526 | END_CLASS: |
5527 | break; |
5528 | |
5529 | |
5530 | /* ===================================================================*/ |
5531 | /* Various kinds of repeat; '{' is not necessarily a quantifier, but this |
5532 | has been tested above. */ |
5533 | |
5534 | case CHAR_LEFT_CURLY_BRACKET: |
5535 | if (!is_quantifier) goto NORMAL_CHAR; |
5536 | ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr); |
5537 | if (*errorcodeptr != 0) goto FAILED; |
5538 | goto REPEAT; |
5539 | |
5540 | case CHAR_ASTERISK: |
5541 | repeat_min = 0; |
5542 | repeat_max = -1; |
5543 | goto REPEAT; |
5544 | |
5545 | case CHAR_PLUS: |
5546 | repeat_min = 1; |
5547 | repeat_max = -1; |
5548 | goto REPEAT; |
5549 | |
5550 | case CHAR_QUESTION_MARK: |
5551 | repeat_min = 0; |
5552 | repeat_max = 1; |
5553 | |
5554 | REPEAT: |
5555 | if (previous == NULL) |
5556 | { |
5557 | *errorcodeptr = ERR9; |
5558 | goto FAILED; |
5559 | } |
5560 | |
5561 | if (repeat_min == 0) |
5562 | { |
5563 | firstchar = zerofirstchar; /* Adjust for zero repeat */ |
5564 | firstcharflags = zerofirstcharflags; |
5565 | reqchar = zeroreqchar; /* Ditto */ |
5566 | reqcharflags = zeroreqcharflags; |
5567 | } |
5568 | |
5569 | /* Remember whether this is a variable length repeat */ |
5570 | |
5571 | reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY; |
5572 | |
5573 | op_type = 0; /* Default single-char op codes */ |
5574 | possessive_quantifier = FALSE; /* Default not possessive quantifier */ |
5575 | |
5576 | /* Save start of previous item, in case we have to move it up in order to |
5577 | insert something before it. */ |
5578 | |
5579 | tempcode = previous; |
5580 | |
5581 | /* Before checking for a possessive quantifier, we must skip over |
5582 | whitespace and comments in extended mode because Perl allows white space at |
5583 | this point. */ |
5584 | |
5585 | if ((options & PCRE_EXTENDED) != 0) |
5586 | { |
5587 | const pcre_uchar *p = ptr + 1; |
5588 | for (;;) |
5589 | { |
5590 | while (MAX_255(*p) && (cd->ctypes[*p] & ctype_space) != 0) p++; |
5591 | if (*p != CHAR_NUMBER_SIGN) break; |
5592 | p++; |
5593 | while (*p != CHAR_NULL) |
5594 | { |
5595 | if (IS_NEWLINE(p)) /* For non-fixed-length newline cases, */ |
5596 | { /* IS_NEWLINE sets cd->nllen. */ |
5597 | p += cd->nllen; |
5598 | break; |
5599 | } |
5600 | p++; |
5601 | #ifdef SUPPORT_UTF |
5602 | if (utf) FORWARDCHAR(p); |
5603 | #endif |
5604 | } /* Loop for comment characters */ |
5605 | } /* Loop for multiple comments */ |
5606 | ptr = p - 1; /* Character before the next significant one. */ |
5607 | } |
5608 | |
5609 | /* If the next character is '+', we have a possessive quantifier. This |
5610 | implies greediness, whatever the setting of the PCRE_UNGREEDY option. |
5611 | If the next character is '?' this is a minimizing repeat, by default, |
5612 | but if PCRE_UNGREEDY is set, it works the other way round. We change the |
5613 | repeat type to the non-default. */ |
5614 | |
5615 | if (ptr[1] == CHAR_PLUS) |
5616 | { |
5617 | repeat_type = 0; /* Force greedy */ |
5618 | possessive_quantifier = TRUE; |
5619 | ptr++; |
5620 | } |
5621 | else if (ptr[1] == CHAR_QUESTION_MARK) |
5622 | { |
5623 | repeat_type = greedy_non_default; |
5624 | ptr++; |
5625 | } |
5626 | else repeat_type = greedy_default; |
5627 | |
5628 | /* If previous was a recursion call, wrap it in atomic brackets so that |
5629 | previous becomes the atomic group. All recursions were so wrapped in the |
5630 | past, but it no longer happens for non-repeated recursions. In fact, the |
5631 | repeated ones could be re-implemented independently so as not to need this, |
5632 | but for the moment we rely on the code for repeating groups. */ |
5633 | |
5634 | if (*previous == OP_RECURSE) |
5635 | { |
5636 | memmove(previous + 1 + LINK_SIZE, previous, IN_UCHARS(1 + LINK_SIZE)); |
5637 | *previous = OP_ONCE; |
5638 | PUT(previous, 1, 2 + 2*LINK_SIZE); |
5639 | previous[2 + 2*LINK_SIZE] = OP_KET; |
5640 | PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE); |
5641 | code += 2 + 2 * LINK_SIZE; |
5642 | length_prevgroup = 3 + 3*LINK_SIZE; |
5643 | |
5644 | /* When actually compiling, we need to check whether this was a forward |
5645 | reference, and if so, adjust the offset. */ |
5646 | |
5647 | if (lengthptr == NULL && cd->hwm >= cd->start_workspace + LINK_SIZE) |
5648 | { |
5649 | int offset = GET(cd->hwm, -LINK_SIZE); |
5650 | if (offset == previous + 1 - cd->start_code) |
5651 | PUT(cd->hwm, -LINK_SIZE, offset + 1 + LINK_SIZE); |
5652 | } |
5653 | } |
5654 | |
5655 | /* Now handle repetition for the different types of item. */ |
5656 | |
5657 | /* If previous was a character or negated character match, abolish the item |
5658 | and generate a repeat item instead. If a char item has a minimum of more |
5659 | than one, ensure that it is set in reqchar - it might not be if a sequence |
5660 | such as x{3} is the first thing in a branch because the x will have gone |
5661 | into firstchar instead. */ |
5662 | |
5663 | if (*previous == OP_CHAR || *previous == OP_CHARI |
5664 | || *previous == OP_NOT || *previous == OP_NOTI) |
5665 | { |
5666 | switch (*previous) |
5667 | { |
5668 | default: /* Make compiler happy. */ |
5669 | case OP_CHAR: op_type = OP_STAR - OP_STAR; break; |
5670 | case OP_CHARI: op_type = OP_STARI - OP_STAR; break; |
5671 | case OP_NOT: op_type = OP_NOTSTAR - OP_STAR; break; |
5672 | case OP_NOTI: op_type = OP_NOTSTARI - OP_STAR; break; |
5673 | } |
5674 | |
5675 | /* Deal with UTF characters that take up more than one character. It's |
5676 | easier to write this out separately than try to macrify it. Use c to |
5677 | hold the length of the character in bytes, plus UTF_LENGTH to flag that |
5678 | it's a length rather than a small character. */ |
5679 | |
5680 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
5681 | if (utf && NOT_FIRSTCHAR(code[-1])) |
5682 | { |
5683 | pcre_uchar *lastchar = code - 1; |
5684 | BACKCHAR(lastchar); |
5685 | c = (int)(code - lastchar); /* Length of UTF-8 character */ |
5686 | memcpy(utf_chars, lastchar, IN_UCHARS(c)); /* Save the char */ |
5687 | c |= UTF_LENGTH; /* Flag c as a length */ |
5688 | } |
5689 | else |
5690 | #endif /* SUPPORT_UTF */ |
5691 | |
5692 | /* Handle the case of a single charater - either with no UTF support, or |
5693 | with UTF disabled, or for a single character UTF character. */ |
5694 | { |
5695 | c = code[-1]; |
5696 | if (*previous <= OP_CHARI && repeat_min > 1) |
5697 | { |
5698 | reqchar = c; |
5699 | reqcharflags = req_caseopt | cd->req_varyopt; |
5700 | } |
5701 | } |
5702 | |
5703 | goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */ |
5704 | } |
5705 | |
5706 | /* If previous was a character type match (\d or similar), abolish it and |
5707 | create a suitable repeat item. The code is shared with single-character |
5708 | repeats by setting op_type to add a suitable offset into repeat_type. Note |
5709 | the the Unicode property types will be present only when SUPPORT_UCP is |
5710 | defined, but we don't wrap the little bits of code here because it just |
5711 | makes it horribly messy. */ |
5712 | |
5713 | else if (*previous < OP_EODN) |
5714 | { |
5715 | pcre_uchar *oldcode; |
5716 | int prop_type, prop_value; |
5717 | op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ |
5718 | c = *previous; |
5719 | |
5720 | OUTPUT_SINGLE_REPEAT: |
5721 | if (*previous == OP_PROP || *previous == OP_NOTPROP) |
5722 | { |
5723 | prop_type = previous[1]; |
5724 | prop_value = previous[2]; |
5725 | } |
5726 | else prop_type = prop_value = -1; |
5727 | |
5728 | oldcode = code; |
5729 | code = previous; /* Usually overwrite previous item */ |
5730 | |
5731 | /* If the maximum is zero then the minimum must also be zero; Perl allows |
5732 | this case, so we do too - by simply omitting the item altogether. */ |
5733 | |
5734 | if (repeat_max == 0) goto END_REPEAT; |
5735 | |
5736 | /* Combine the op_type with the repeat_type */ |
5737 | |
5738 | repeat_type += op_type; |
5739 | |
5740 | /* A minimum of zero is handled either as the special case * or ?, or as |
5741 | an UPTO, with the maximum given. */ |
5742 | |
5743 | if (repeat_min == 0) |
5744 | { |
5745 | if (repeat_max == -1) *code++ = OP_STAR + repeat_type; |
5746 | else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type; |
5747 | else |
5748 | { |
5749 | *code++ = OP_UPTO + repeat_type; |
5750 | PUT2INC(code, 0, repeat_max); |
5751 | } |
5752 | } |
5753 | |
5754 | /* A repeat minimum of 1 is optimized into some special cases. If the |
5755 | maximum is unlimited, we use OP_PLUS. Otherwise, the original item is |
5756 | left in place and, if the maximum is greater than 1, we use OP_UPTO with |
5757 | one less than the maximum. */ |
5758 | |
5759 | else if (repeat_min == 1) |
5760 | { |
5761 | if (repeat_max == -1) |
5762 | *code++ = OP_PLUS + repeat_type; |
5763 | else |
5764 | { |
5765 | code = oldcode; /* leave previous item in place */ |
5766 | if (repeat_max == 1) goto END_REPEAT; |
5767 | *code++ = OP_UPTO + repeat_type; |
5768 | PUT2INC(code, 0, repeat_max - 1); |
5769 | } |
5770 | } |
5771 | |
5772 | /* The case {n,n} is just an EXACT, while the general case {n,m} is |
5773 | handled as an EXACT followed by an UPTO. */ |
5774 | |
5775 | else |
5776 | { |
5777 | *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */ |
5778 | PUT2INC(code, 0, repeat_min); |
5779 | |
5780 | /* If the maximum is unlimited, insert an OP_STAR. Before doing so, |
5781 | we have to insert the character for the previous code. For a repeated |
5782 | Unicode property match, there are two extra bytes that define the |
5783 | required property. In UTF-8 mode, long characters have their length in |
5784 | c, with the UTF_LENGTH bit as a flag. */ |
5785 | |
5786 | if (repeat_max < 0) |
5787 | { |
5788 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
5789 | if (utf && (c & UTF_LENGTH) != 0) |
5790 | { |
5791 | memcpy(code, utf_chars, IN_UCHARS(c & 7)); |
5792 | code += c & 7; |
5793 | } |
5794 | else |
5795 | #endif |
5796 | { |
5797 | *code++ = c; |
5798 | if (prop_type >= 0) |
5799 | { |
5800 | *code++ = prop_type; |
5801 | *code++ = prop_value; |
5802 | } |
5803 | } |
5804 | *code++ = OP_STAR + repeat_type; |
5805 | } |
5806 | |
5807 | /* Else insert an UPTO if the max is greater than the min, again |
5808 | preceded by the character, for the previously inserted code. If the |
5809 | UPTO is just for 1 instance, we can use QUERY instead. */ |
5810 | |
5811 | else if (repeat_max != repeat_min) |
5812 | { |
5813 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
5814 | if (utf && (c & UTF_LENGTH) != 0) |
5815 | { |
5816 | memcpy(code, utf_chars, IN_UCHARS(c & 7)); |
5817 | code += c & 7; |
5818 | } |
5819 | else |
5820 | #endif |
5821 | *code++ = c; |
5822 | if (prop_type >= 0) |
5823 | { |
5824 | *code++ = prop_type; |
5825 | *code++ = prop_value; |
5826 | } |
5827 | repeat_max -= repeat_min; |
5828 | |
5829 | if (repeat_max == 1) |
5830 | { |
5831 | *code++ = OP_QUERY + repeat_type; |
5832 | } |
5833 | else |
5834 | { |
5835 | *code++ = OP_UPTO + repeat_type; |
5836 | PUT2INC(code, 0, repeat_max); |
5837 | } |
5838 | } |
5839 | } |
5840 | |
5841 | /* The character or character type itself comes last in all cases. */ |
5842 | |
5843 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
5844 | if (utf && (c & UTF_LENGTH) != 0) |
5845 | { |
5846 | memcpy(code, utf_chars, IN_UCHARS(c & 7)); |
5847 | code += c & 7; |
5848 | } |
5849 | else |
5850 | #endif |
5851 | *code++ = c; |
5852 | |
5853 | /* For a repeated Unicode property match, there are two extra bytes that |
5854 | define the required property. */ |
5855 | |
5856 | #ifdef SUPPORT_UCP |
5857 | if (prop_type >= 0) |
5858 | { |
5859 | *code++ = prop_type; |
5860 | *code++ = prop_value; |
5861 | } |
5862 | #endif |
5863 | } |
5864 | |
5865 | /* If previous was a character class or a back reference, we put the repeat |
5866 | stuff after it, but just skip the item if the repeat was {0,0}. */ |
5867 | |
5868 | else if (*previous == OP_CLASS || *previous == OP_NCLASS || |
5869 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
5870 | *previous == OP_XCLASS || |
5871 | #endif |
5872 | *previous == OP_REF || *previous == OP_REFI || |
5873 | *previous == OP_DNREF || *previous == OP_DNREFI) |
5874 | { |
5875 | if (repeat_max == 0) |
5876 | { |
5877 | code = previous; |
5878 | goto END_REPEAT; |
5879 | } |
5880 | |
5881 | if (repeat_min == 0 && repeat_max == -1) |
5882 | *code++ = OP_CRSTAR + repeat_type; |
5883 | else if (repeat_min == 1 && repeat_max == -1) |
5884 | *code++ = OP_CRPLUS + repeat_type; |
5885 | else if (repeat_min == 0 && repeat_max == 1) |
5886 | *code++ = OP_CRQUERY + repeat_type; |
5887 | else |
5888 | { |
5889 | *code++ = OP_CRRANGE + repeat_type; |
5890 | PUT2INC(code, 0, repeat_min); |
5891 | if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */ |
5892 | PUT2INC(code, 0, repeat_max); |
5893 | } |
5894 | } |
5895 | |
5896 | /* If previous was a bracket group, we may have to replicate it in certain |
5897 | cases. Note that at this point we can encounter only the "basic" bracket |
5898 | opcodes such as BRA and CBRA, as this is the place where they get converted |
5899 | into the more special varieties such as BRAPOS and SBRA. A test for >= |
5900 | OP_ASSERT and <= OP_COND includes ASSERT, ASSERT_NOT, ASSERTBACK, |
5901 | ASSERTBACK_NOT, ONCE, ONCE_NC, BRA, BRAPOS, CBRA, CBRAPOS, and COND. |
5902 | Originally, PCRE did not allow repetition of assertions, but now it does, |
5903 | for Perl compatibility. */ |
5904 | |
5905 | else if (*previous >= OP_ASSERT && *previous <= OP_COND) |
5906 | { |
5907 | register int i; |
5908 | int len = (int)(code - previous); |
5909 | pcre_uchar *bralink = NULL; |
5910 | pcre_uchar *brazeroptr = NULL; |
5911 | |
5912 | /* Repeating a DEFINE group is pointless, but Perl allows the syntax, so |
5913 | we just ignore the repeat. */ |
5914 | |
5915 | if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF) |
5916 | goto END_REPEAT; |
5917 | |
5918 | /* There is no sense in actually repeating assertions. The only potential |
5919 | use of repetition is in cases when the assertion is optional. Therefore, |
5920 | if the minimum is greater than zero, just ignore the repeat. If the |
5921 | maximum is not zero or one, set it to 1. */ |
5922 | |
5923 | if (*previous < OP_ONCE) /* Assertion */ |
5924 | { |
5925 | if (repeat_min > 0) goto END_REPEAT; |
5926 | if (repeat_max < 0 || repeat_max > 1) repeat_max = 1; |
5927 | } |
5928 | |
5929 | /* The case of a zero minimum is special because of the need to stick |
5930 | OP_BRAZERO in front of it, and because the group appears once in the |
5931 | data, whereas in other cases it appears the minimum number of times. For |
5932 | this reason, it is simplest to treat this case separately, as otherwise |
5933 | the code gets far too messy. There are several special subcases when the |
5934 | minimum is zero. */ |
5935 | |
5936 | if (repeat_min == 0) |
5937 | { |
5938 | /* If the maximum is also zero, we used to just omit the group from the |
5939 | output altogether, like this: |
5940 | |
5941 | ** if (repeat_max == 0) |
5942 | ** { |
5943 | ** code = previous; |
5944 | ** goto END_REPEAT; |
5945 | ** } |
5946 | |
5947 | However, that fails when a group or a subgroup within it is referenced |
5948 | as a subroutine from elsewhere in the pattern, so now we stick in |
5949 | OP_SKIPZERO in front of it so that it is skipped on execution. As we |
5950 | don't have a list of which groups are referenced, we cannot do this |
5951 | selectively. |
5952 | |
5953 | If the maximum is 1 or unlimited, we just have to stick in the BRAZERO |
5954 | and do no more at this point. However, we do need to adjust any |
5955 | OP_RECURSE calls inside the group that refer to the group itself or any |
5956 | internal or forward referenced group, because the offset is from the |
5957 | start of the whole regex. Temporarily terminate the pattern while doing |
5958 | this. */ |
5959 | |
5960 | if (repeat_max <= 1) /* Covers 0, 1, and unlimited */ |
5961 | { |
5962 | *code = OP_END; |
5963 | adjust_recurse(previous, 1, utf, cd, save_hwm); |
5964 | memmove(previous + 1, previous, IN_UCHARS(len)); |
5965 | code++; |
5966 | if (repeat_max == 0) |
5967 | { |
5968 | *previous++ = OP_SKIPZERO; |
5969 | goto END_REPEAT; |
5970 | } |
5971 | brazeroptr = previous; /* Save for possessive optimizing */ |
5972 | *previous++ = OP_BRAZERO + repeat_type; |
5973 | } |
5974 | |
5975 | /* If the maximum is greater than 1 and limited, we have to replicate |
5976 | in a nested fashion, sticking OP_BRAZERO before each set of brackets. |
5977 | The first one has to be handled carefully because it's the original |
5978 | copy, which has to be moved up. The remainder can be handled by code |
5979 | that is common with the non-zero minimum case below. We have to |
5980 | adjust the value or repeat_max, since one less copy is required. Once |
5981 | again, we may have to adjust any OP_RECURSE calls inside the group. */ |
5982 | |
5983 | else |
5984 | { |
5985 | int offset; |
5986 | *code = OP_END; |
5987 | adjust_recurse(previous, 2 + LINK_SIZE, utf, cd, save_hwm); |
5988 | memmove(previous + 2 + LINK_SIZE, previous, IN_UCHARS(len)); |
5989 | code += 2 + LINK_SIZE; |
5990 | *previous++ = OP_BRAZERO + repeat_type; |
5991 | *previous++ = OP_BRA; |
5992 | |
5993 | /* We chain together the bracket offset fields that have to be |
5994 | filled in later when the ends of the brackets are reached. */ |
5995 | |
5996 | offset = (bralink == NULL)? 0 : (int)(previous - bralink); |
5997 | bralink = previous; |
5998 | PUTINC(previous, 0, offset); |
5999 | } |
6000 | |
6001 | repeat_max--; |
6002 | } |
6003 | |
6004 | /* If the minimum is greater than zero, replicate the group as many |
6005 | times as necessary, and adjust the maximum to the number of subsequent |
6006 | copies that we need. If we set a first char from the group, and didn't |
6007 | set a required char, copy the latter from the former. If there are any |
6008 | forward reference subroutine calls in the group, there will be entries on |
6009 | the workspace list; replicate these with an appropriate increment. */ |
6010 | |
6011 | else |
6012 | { |
6013 | if (repeat_min > 1) |
6014 | { |
6015 | /* In the pre-compile phase, we don't actually do the replication. We |
6016 | just adjust the length as if we had. Do some paranoid checks for |
6017 | potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit |
6018 | integer type when available, otherwise double. */ |
6019 | |
6020 | if (lengthptr != NULL) |
6021 | { |
6022 | int delta = (repeat_min - 1)*length_prevgroup; |
6023 | if ((INT64_OR_DOUBLE)(repeat_min - 1)* |
6024 | (INT64_OR_DOUBLE)length_prevgroup > |
6025 | (INT64_OR_DOUBLE)INT_MAX || |
6026 | OFLOW_MAX - *lengthptr < delta) |
6027 | { |
6028 | *errorcodeptr = ERR20; |
6029 | goto FAILED; |
6030 | } |
6031 | *lengthptr += delta; |
6032 | } |
6033 | |
6034 | /* This is compiling for real. If there is a set first byte for |
6035 | the group, and we have not yet set a "required byte", set it. Make |
6036 | sure there is enough workspace for copying forward references before |
6037 | doing the copy. */ |
6038 | |
6039 | else |
6040 | { |
6041 | if (groupsetfirstchar && reqcharflags < 0) |
6042 | { |
6043 | reqchar = firstchar; |
6044 | reqcharflags = firstcharflags; |
6045 | } |
6046 | |
6047 | for (i = 1; i < repeat_min; i++) |
6048 | { |
6049 | pcre_uchar *hc; |
6050 | pcre_uchar *this_hwm = cd->hwm; |
6051 | memcpy(code, previous, IN_UCHARS(len)); |
6052 | |
6053 | while (cd->hwm > cd->start_workspace + cd->workspace_size - |
6054 | WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm)) |
6055 | { |
6056 | size_t save_offset = save_hwm - cd->start_workspace; |
6057 | size_t this_offset = this_hwm - cd->start_workspace; |
6058 | *errorcodeptr = expand_workspace(cd); |
6059 | if (*errorcodeptr != 0) goto FAILED; |
6060 | save_hwm = (pcre_uchar *)cd->start_workspace + save_offset; |
6061 | this_hwm = (pcre_uchar *)cd->start_workspace + this_offset; |
6062 | } |
6063 | |
6064 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
6065 | { |
6066 | PUT(cd->hwm, 0, GET(hc, 0) + len); |
6067 | cd->hwm += LINK_SIZE; |
6068 | } |
6069 | save_hwm = this_hwm; |
6070 | code += len; |
6071 | } |
6072 | } |
6073 | } |
6074 | |
6075 | if (repeat_max > 0) repeat_max -= repeat_min; |
6076 | } |
6077 | |
6078 | /* This code is common to both the zero and non-zero minimum cases. If |
6079 | the maximum is limited, it replicates the group in a nested fashion, |
6080 | remembering the bracket starts on a stack. In the case of a zero minimum, |
6081 | the first one was set up above. In all cases the repeat_max now specifies |
6082 | the number of additional copies needed. Again, we must remember to |
6083 | replicate entries on the forward reference list. */ |
6084 | |
6085 | if (repeat_max >= 0) |
6086 | { |
6087 | /* In the pre-compile phase, we don't actually do the replication. We |
6088 | just adjust the length as if we had. For each repetition we must add 1 |
6089 | to the length for BRAZERO and for all but the last repetition we must |
6090 | add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some |
6091 | paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is |
6092 | a 64-bit integer type when available, otherwise double. */ |
6093 | |
6094 | if (lengthptr != NULL && repeat_max > 0) |
6095 | { |
6096 | int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) - |
6097 | 2 - 2*LINK_SIZE; /* Last one doesn't nest */ |
6098 | if ((INT64_OR_DOUBLE)repeat_max * |
6099 | (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE) |
6100 | > (INT64_OR_DOUBLE)INT_MAX || |
6101 | OFLOW_MAX - *lengthptr < delta) |
6102 | { |
6103 | *errorcodeptr = ERR20; |
6104 | goto FAILED; |
6105 | } |
6106 | *lengthptr += delta; |
6107 | } |
6108 | |
6109 | /* This is compiling for real */ |
6110 | |
6111 | else for (i = repeat_max - 1; i >= 0; i--) |
6112 | { |
6113 | pcre_uchar *hc; |
6114 | pcre_uchar *this_hwm = cd->hwm; |
6115 | |
6116 | *code++ = OP_BRAZERO + repeat_type; |
6117 | |
6118 | /* All but the final copy start a new nesting, maintaining the |
6119 | chain of brackets outstanding. */ |
6120 | |
6121 | if (i != 0) |
6122 | { |
6123 | int offset; |
6124 | *code++ = OP_BRA; |
6125 | offset = (bralink == NULL)? 0 : (int)(code - bralink); |
6126 | bralink = code; |
6127 | PUTINC(code, 0, offset); |
6128 | } |
6129 | |
6130 | memcpy(code, previous, IN_UCHARS(len)); |
6131 | |
6132 | /* Ensure there is enough workspace for forward references before |
6133 | copying them. */ |
6134 | |
6135 | while (cd->hwm > cd->start_workspace + cd->workspace_size - |
6136 | WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm)) |
6137 | { |
6138 | size_t save_offset = save_hwm - cd->start_workspace; |
6139 | size_t this_offset = this_hwm - cd->start_workspace; |
6140 | *errorcodeptr = expand_workspace(cd); |
6141 | if (*errorcodeptr != 0) goto FAILED; |
6142 | save_hwm = (pcre_uchar *)cd->start_workspace + save_offset; |
6143 | this_hwm = (pcre_uchar *)cd->start_workspace + this_offset; |
6144 | } |
6145 | |
6146 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
6147 | { |
6148 | PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1)); |
6149 | cd->hwm += LINK_SIZE; |
6150 | } |
6151 | save_hwm = this_hwm; |
6152 | code += len; |
6153 | } |
6154 | |
6155 | /* Now chain through the pending brackets, and fill in their length |
6156 | fields (which are holding the chain links pro tem). */ |
6157 | |
6158 | while (bralink != NULL) |
6159 | { |
6160 | int oldlinkoffset; |
6161 | int offset = (int)(code - bralink + 1); |
6162 | pcre_uchar *bra = code - offset; |
6163 | oldlinkoffset = GET(bra, 1); |
6164 | bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset; |
6165 | *code++ = OP_KET; |
6166 | PUTINC(code, 0, offset); |
6167 | PUT(bra, 1, offset); |
6168 | } |
6169 | } |
6170 | |
6171 | /* If the maximum is unlimited, set a repeater in the final copy. For |
6172 | ONCE brackets, that's all we need to do. However, possessively repeated |
6173 | ONCE brackets can be converted into non-capturing brackets, as the |
6174 | behaviour of (?:xx)++ is the same as (?>xx)++ and this saves having to |
6175 | deal with possessive ONCEs specially. |
6176 | |
6177 | Otherwise, when we are doing the actual compile phase, check to see |
6178 | whether this group is one that could match an empty string. If so, |
6179 | convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so |
6180 | that runtime checking can be done. [This check is also applied to ONCE |
6181 | groups at runtime, but in a different way.] |
6182 | |
6183 | Then, if the quantifier was possessive and the bracket is not a |
6184 | conditional, we convert the BRA code to the POS form, and the KET code to |
6185 | KETRPOS. (It turns out to be convenient at runtime to detect this kind of |
6186 | subpattern at both the start and at the end.) The use of special opcodes |
6187 | makes it possible to reduce greatly the stack usage in pcre_exec(). If |
6188 | the group is preceded by OP_BRAZERO, convert this to OP_BRAPOSZERO. |
6189 | |
6190 | Then, if the minimum number of matches is 1 or 0, cancel the possessive |
6191 | flag so that the default action below, of wrapping everything inside |
6192 | atomic brackets, does not happen. When the minimum is greater than 1, |
6193 | there will be earlier copies of the group, and so we still have to wrap |
6194 | the whole thing. */ |
6195 | |
6196 | else |
6197 | { |
6198 | pcre_uchar *ketcode = code - 1 - LINK_SIZE; |
6199 | pcre_uchar *bracode = ketcode - GET(ketcode, 1); |
6200 | |
6201 | /* Convert possessive ONCE brackets to non-capturing */ |
6202 | |
6203 | if ((*bracode == OP_ONCE || *bracode == OP_ONCE_NC) && |
6204 | possessive_quantifier) *bracode = OP_BRA; |
6205 | |
6206 | /* For non-possessive ONCE brackets, all we need to do is to |
6207 | set the KET. */ |
6208 | |
6209 | if (*bracode == OP_ONCE || *bracode == OP_ONCE_NC) |
6210 | *ketcode = OP_KETRMAX + repeat_type; |
6211 | |
6212 | /* Handle non-ONCE brackets and possessive ONCEs (which have been |
6213 | converted to non-capturing above). */ |
6214 | |
6215 | else |
6216 | { |
6217 | /* In the compile phase, check for empty string matching. */ |
6218 | |
6219 | if (lengthptr == NULL) |
6220 | { |
6221 | pcre_uchar *scode = bracode; |
6222 | do |
6223 | { |
6224 | if (could_be_empty_branch(scode, ketcode, utf, cd, NULL)) |
6225 | { |
6226 | *bracode += OP_SBRA - OP_BRA; |
6227 | break; |
6228 | } |
6229 | scode += GET(scode, 1); |
6230 | } |
6231 | while (*scode == OP_ALT); |
6232 | } |
6233 | |
6234 | /* Handle possessive quantifiers. */ |
6235 | |
6236 | if (possessive_quantifier) |
6237 | { |
6238 | /* For COND brackets, we wrap the whole thing in a possessively |
6239 | repeated non-capturing bracket, because we have not invented POS |
6240 | versions of the COND opcodes. Because we are moving code along, we |
6241 | must ensure that any pending recursive references are updated. */ |
6242 | |
6243 | if (*bracode == OP_COND || *bracode == OP_SCOND) |
6244 | { |
6245 | int nlen = (int)(code - bracode); |
6246 | *code = OP_END; |
6247 | adjust_recurse(bracode, 1 + LINK_SIZE, utf, cd, save_hwm); |
6248 | memmove(bracode + 1 + LINK_SIZE, bracode, IN_UCHARS(nlen)); |
6249 | code += 1 + LINK_SIZE; |
6250 | nlen += 1 + LINK_SIZE; |
6251 | *bracode = OP_BRAPOS; |
6252 | *code++ = OP_KETRPOS; |
6253 | PUTINC(code, 0, nlen); |
6254 | PUT(bracode, 1, nlen); |
6255 | } |
6256 | |
6257 | /* For non-COND brackets, we modify the BRA code and use KETRPOS. */ |
6258 | |
6259 | else |
6260 | { |
6261 | *bracode += 1; /* Switch to xxxPOS opcodes */ |
6262 | *ketcode = OP_KETRPOS; |
6263 | } |
6264 | |
6265 | /* If the minimum is zero, mark it as possessive, then unset the |
6266 | possessive flag when the minimum is 0 or 1. */ |
6267 | |
6268 | if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO; |
6269 | if (repeat_min < 2) possessive_quantifier = FALSE; |
6270 | } |
6271 | |
6272 | /* Non-possessive quantifier */ |
6273 | |
6274 | else *ketcode = OP_KETRMAX + repeat_type; |
6275 | } |
6276 | } |
6277 | } |
6278 | |
6279 | /* If previous is OP_FAIL, it was generated by an empty class [] in |
6280 | JavaScript mode. The other ways in which OP_FAIL can be generated, that is |
6281 | by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat" |
6282 | error above. We can just ignore the repeat in JS case. */ |
6283 | |
6284 | else if (*previous == OP_FAIL) goto END_REPEAT; |
6285 | |
6286 | /* Else there's some kind of shambles */ |
6287 | |
6288 | else |
6289 | { |
6290 | *errorcodeptr = ERR11; |
6291 | goto FAILED; |
6292 | } |
6293 | |
6294 | /* If the character following a repeat is '+', possessive_quantifier is |
6295 | TRUE. For some opcodes, there are special alternative opcodes for this |
6296 | case. For anything else, we wrap the entire repeated item inside OP_ONCE |
6297 | brackets. Logically, the '+' notation is just syntactic sugar, taken from |
6298 | Sun's Java package, but the special opcodes can optimize it. |
6299 | |
6300 | Some (but not all) possessively repeated subpatterns have already been |
6301 | completely handled in the code just above. For them, possessive_quantifier |
6302 | is always FALSE at this stage. Note that the repeated item starts at |
6303 | tempcode, not at previous, which might be the first part of a string whose |
6304 | (former) last char we repeated. */ |
6305 | |
6306 | if (possessive_quantifier) |
6307 | { |
6308 | int len; |
6309 | |
6310 | /* Possessifying an EXACT quantifier has no effect, so we can ignore it. |
6311 | However, QUERY, STAR, or UPTO may follow (for quantifiers such as {5,6}, |
6312 | {5,}, or {5,10}). We skip over an EXACT item; if the length of what |
6313 | remains is greater than zero, there's a further opcode that can be |
6314 | handled. If not, do nothing, leaving the EXACT alone. */ |
6315 | |
6316 | switch(*tempcode) |
6317 | { |
6318 | case OP_TYPEEXACT: |
6319 | tempcode += PRIV(OP_lengths)[*tempcode] + |
6320 | ((tempcode[1 + IMM2_SIZE] == OP_PROP |
6321 | || tempcode[1 + IMM2_SIZE] == OP_NOTPROP)? 2 : 0); |
6322 | break; |
6323 | |
6324 | /* CHAR opcodes are used for exacts whose count is 1. */ |
6325 | |
6326 | case OP_CHAR: |
6327 | case OP_CHARI: |
6328 | case OP_NOT: |
6329 | case OP_NOTI: |
6330 | case OP_EXACT: |
6331 | case OP_EXACTI: |
6332 | case OP_NOTEXACT: |
6333 | case OP_NOTEXACTI: |
6334 | tempcode += PRIV(OP_lengths)[*tempcode]; |
6335 | #ifdef SUPPORT_UTF |
6336 | if (utf && HAS_EXTRALEN(tempcode[-1])) |
6337 | tempcode += GET_EXTRALEN(tempcode[-1]); |
6338 | #endif |
6339 | break; |
6340 | |
6341 | /* For the class opcodes, the repeat operator appears at the end; |
6342 | adjust tempcode to point to it. */ |
6343 | |
6344 | case OP_CLASS: |
6345 | case OP_NCLASS: |
6346 | tempcode += 1 + 32/sizeof(pcre_uchar); |
6347 | break; |
6348 | |
6349 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
6350 | case OP_XCLASS: |
6351 | tempcode += GET(tempcode, 1); |
6352 | break; |
6353 | #endif |
6354 | } |
6355 | |
6356 | /* If tempcode is equal to code (which points to the end of the repeated |
6357 | item), it means we have skipped an EXACT item but there is no following |
6358 | QUERY, STAR, or UPTO; the value of len will be 0, and we do nothing. In |
6359 | all other cases, tempcode will be pointing to the repeat opcode, and will |
6360 | be less than code, so the value of len will be greater than 0. */ |
6361 | |
6362 | len = (int)(code - tempcode); |
6363 | if (len > 0) |
6364 | { |
6365 | unsigned int repcode = *tempcode; |
6366 | |
6367 | /* There is a table for possessifying opcodes, all of which are less |
6368 | than OP_CALLOUT. A zero entry means there is no possessified version. |
6369 | */ |
6370 | |
6371 | if (repcode < OP_CALLOUT && opcode_possessify[repcode] > 0) |
6372 | *tempcode = opcode_possessify[repcode]; |
6373 | |
6374 | /* For opcode without a special possessified version, wrap the item in |
6375 | ONCE brackets. Because we are moving code along, we must ensure that any |
6376 | pending recursive references are updated. */ |
6377 | |
6378 | else |
6379 | { |
6380 | *code = OP_END; |
6381 | adjust_recurse(tempcode, 1 + LINK_SIZE, utf, cd, save_hwm); |
6382 | memmove(tempcode + 1 + LINK_SIZE, tempcode, IN_UCHARS(len)); |
6383 | code += 1 + LINK_SIZE; |
6384 | len += 1 + LINK_SIZE; |
6385 | tempcode[0] = OP_ONCE; |
6386 | *code++ = OP_KET; |
6387 | PUTINC(code, 0, len); |
6388 | PUT(tempcode, 1, len); |
6389 | } |
6390 | } |
6391 | |
6392 | #ifdef NEVER |
6393 | if (len > 0) switch (*tempcode) |
6394 | { |
6395 | case OP_STAR: *tempcode = OP_POSSTAR; break; |
6396 | case OP_PLUS: *tempcode = OP_POSPLUS; break; |
6397 | case OP_QUERY: *tempcode = OP_POSQUERY; break; |
6398 | case OP_UPTO: *tempcode = OP_POSUPTO; break; |
6399 | |
6400 | case OP_STARI: *tempcode = OP_POSSTARI; break; |
6401 | case OP_PLUSI: *tempcode = OP_POSPLUSI; break; |
6402 | case OP_QUERYI: *tempcode = OP_POSQUERYI; break; |
6403 | case OP_UPTOI: *tempcode = OP_POSUPTOI; break; |
6404 | |
6405 | case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break; |
6406 | case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break; |
6407 | case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break; |
6408 | case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break; |
6409 | |
6410 | case OP_NOTSTARI: *tempcode = OP_NOTPOSSTARI; break; |
6411 | case OP_NOTPLUSI: *tempcode = OP_NOTPOSPLUSI; break; |
6412 | case OP_NOTQUERYI: *tempcode = OP_NOTPOSQUERYI; break; |
6413 | case OP_NOTUPTOI: *tempcode = OP_NOTPOSUPTOI; break; |
6414 | |
6415 | case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break; |
6416 | case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break; |
6417 | case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break; |
6418 | case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break; |
6419 | |
6420 | case OP_CRSTAR: *tempcode = OP_CRPOSSTAR; break; |
6421 | case OP_CRPLUS: *tempcode = OP_CRPOSPLUS; break; |
6422 | case OP_CRQUERY: *tempcode = OP_CRPOSQUERY; break; |
6423 | case OP_CRRANGE: *tempcode = OP_CRPOSRANGE; break; |
6424 | |
6425 | /* Because we are moving code along, we must ensure that any |
6426 | pending recursive references are updated. */ |
6427 | |
6428 | default: |
6429 | *code = OP_END; |
6430 | adjust_recurse(tempcode, 1 + LINK_SIZE, utf, cd, save_hwm); |
6431 | memmove(tempcode + 1 + LINK_SIZE, tempcode, IN_UCHARS(len)); |
6432 | code += 1 + LINK_SIZE; |
6433 | len += 1 + LINK_SIZE; |
6434 | tempcode[0] = OP_ONCE; |
6435 | *code++ = OP_KET; |
6436 | PUTINC(code, 0, len); |
6437 | PUT(tempcode, 1, len); |
6438 | break; |
6439 | } |
6440 | #endif |
6441 | } |
6442 | |
6443 | /* In all case we no longer have a previous item. We also set the |
6444 | "follows varying string" flag for subsequently encountered reqchars if |
6445 | it isn't already set and we have just passed a varying length item. */ |
6446 | |
6447 | END_REPEAT: |
6448 | previous = NULL; |
6449 | cd->req_varyopt |= reqvary; |
6450 | break; |
6451 | |
6452 | |
6453 | /* ===================================================================*/ |
6454 | /* Start of nested parenthesized sub-expression, or comment or lookahead or |
6455 | lookbehind or option setting or condition or all the other extended |
6456 | parenthesis forms. */ |
6457 | |
6458 | case CHAR_LEFT_PARENTHESIS: |
6459 | newoptions = options; |
6460 | skipbytes = 0; |
6461 | bravalue = OP_CBRA; |
6462 | save_hwm = cd->hwm; |
6463 | reset_bracount = FALSE; |
6464 | |
6465 | /* First deal with various "verbs" that can be introduced by '*'. */ |
6466 | |
6467 | ptr++; |
6468 | if (ptr[0] == CHAR_ASTERISK && (ptr[1] == ':' |
6469 | || (MAX_255(ptr[1]) && ((cd->ctypes[ptr[1]] & ctype_letter) != 0)))) |
6470 | { |
6471 | int i, namelen; |
6472 | int arglen = 0; |
6473 | const char *vn = verbnames; |
6474 | const pcre_uchar *name = ptr + 1; |
6475 | const pcre_uchar *arg = NULL; |
6476 | previous = NULL; |
6477 | ptr++; |
6478 | while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_letter) != 0) ptr++; |
6479 | namelen = (int)(ptr - name); |
6480 | |
6481 | /* It appears that Perl allows any characters whatsoever, other than |
6482 | a closing parenthesis, to appear in arguments, so we no longer insist on |
6483 | letters, digits, and underscores. */ |
6484 | |
6485 | if (*ptr == CHAR_COLON) |
6486 | { |
6487 | arg = ++ptr; |
6488 | while (*ptr != CHAR_NULL && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
6489 | arglen = (int)(ptr - arg); |
6490 | if ((unsigned int)arglen > MAX_MARK) |
6491 | { |
6492 | *errorcodeptr = ERR75; |
6493 | goto FAILED; |
6494 | } |
6495 | } |
6496 | |
6497 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
6498 | { |
6499 | *errorcodeptr = ERR60; |
6500 | goto FAILED; |
6501 | } |
6502 | |
6503 | /* Scan the table of verb names */ |
6504 | |
6505 | for (i = 0; i < verbcount; i++) |
6506 | { |
6507 | if (namelen == verbs[i].len && |
6508 | STRNCMP_UC_C8(name, vn, namelen) == 0) |
6509 | { |
6510 | int setverb; |
6511 | |
6512 | /* Check for open captures before ACCEPT and convert it to |
6513 | ASSERT_ACCEPT if in an assertion. */ |
6514 | |
6515 | if (verbs[i].op == OP_ACCEPT) |
6516 | { |
6517 | open_capitem *oc; |
6518 | if (arglen != 0) |
6519 | { |
6520 | *errorcodeptr = ERR59; |
6521 | goto FAILED; |
6522 | } |
6523 | cd->had_accept = TRUE; |
6524 | for (oc = cd->open_caps; oc != NULL; oc = oc->next) |
6525 | { |
6526 | *code++ = OP_CLOSE; |
6527 | PUT2INC(code, 0, oc->number); |
6528 | } |
6529 | setverb = *code++ = |
6530 | (cd->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT; |
6531 | |
6532 | /* Do not set firstchar after *ACCEPT */ |
6533 | if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE; |
6534 | } |
6535 | |
6536 | /* Handle other cases with/without an argument */ |
6537 | |
6538 | else if (arglen == 0) |
6539 | { |
6540 | if (verbs[i].op < 0) /* Argument is mandatory */ |
6541 | { |
6542 | *errorcodeptr = ERR66; |
6543 | goto FAILED; |
6544 | } |
6545 | setverb = *code++ = verbs[i].op; |
6546 | } |
6547 | |
6548 | else |
6549 | { |
6550 | if (verbs[i].op_arg < 0) /* Argument is forbidden */ |
6551 | { |
6552 | *errorcodeptr = ERR59; |
6553 | goto FAILED; |
6554 | } |
6555 | setverb = *code++ = verbs[i].op_arg; |
6556 | *code++ = arglen; |
6557 | memcpy(code, arg, IN_UCHARS(arglen)); |
6558 | code += arglen; |
6559 | *code++ = 0; |
6560 | } |
6561 | |
6562 | switch (setverb) |
6563 | { |
6564 | case OP_THEN: |
6565 | case OP_THEN_ARG: |
6566 | cd->external_flags |= PCRE_HASTHEN; |
6567 | break; |
6568 | |
6569 | case OP_PRUNE: |
6570 | case OP_PRUNE_ARG: |
6571 | case OP_SKIP: |
6572 | case OP_SKIP_ARG: |
6573 | cd->had_pruneorskip = TRUE; |
6574 | break; |
6575 | } |
6576 | |
6577 | break; /* Found verb, exit loop */ |
6578 | } |
6579 | |
6580 | vn += verbs[i].len + 1; |
6581 | } |
6582 | |
6583 | if (i < verbcount) continue; /* Successfully handled a verb */ |
6584 | *errorcodeptr = ERR60; /* Verb not recognized */ |
6585 | goto FAILED; |
6586 | } |
6587 | |
6588 | /* Deal with the extended parentheses; all are introduced by '?', and the |
6589 | appearance of any of them means that this is not a capturing group. */ |
6590 | |
6591 | else if (*ptr == CHAR_QUESTION_MARK) |
6592 | { |
6593 | int i, set, unset, namelen; |
6594 | int *optset; |
6595 | const pcre_uchar *name; |
6596 | pcre_uchar *slot; |
6597 | |
6598 | switch (*(++ptr)) |
6599 | { |
6600 | case CHAR_NUMBER_SIGN: /* Comment; skip to ket */ |
6601 | ptr++; |
6602 | while (*ptr != CHAR_NULL && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
6603 | if (*ptr == CHAR_NULL) |
6604 | { |
6605 | *errorcodeptr = ERR18; |
6606 | goto FAILED; |
6607 | } |
6608 | continue; |
6609 | |
6610 | |
6611 | /* ------------------------------------------------------------ */ |
6612 | case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */ |
6613 | reset_bracount = TRUE; |
6614 | /* Fall through */ |
6615 | |
6616 | /* ------------------------------------------------------------ */ |
6617 | case CHAR_COLON: /* Non-capturing bracket */ |
6618 | bravalue = OP_BRA; |
6619 | ptr++; |
6620 | break; |
6621 | |
6622 | |
6623 | /* ------------------------------------------------------------ */ |
6624 | case CHAR_LEFT_PARENTHESIS: |
6625 | bravalue = OP_COND; /* Conditional group */ |
6626 | tempptr = ptr; |
6627 | |
6628 | /* A condition can be an assertion, a number (referring to a numbered |
6629 | group's having been set), a name (referring to a named group), or 'R', |
6630 | referring to recursion. R<digits> and R&name are also permitted for |
6631 | recursion tests. |
6632 | |
6633 | There are ways of testing a named group: (?(name)) is used by Python; |
6634 | Perl 5.10 onwards uses (?(<name>) or (?('name')). |
6635 | |
6636 | There is one unfortunate ambiguity, caused by history. 'R' can be the |
6637 | recursive thing or the name 'R' (and similarly for 'R' followed by |
6638 | digits). We look for a name first; if not found, we try the other case. |
6639 | |
6640 | For compatibility with auto-callouts, we allow a callout to be |
6641 | specified before a condition that is an assertion. First, check for the |
6642 | syntax of a callout; if found, adjust the temporary pointer that is |
6643 | used to check for an assertion condition. That's all that is needed! */ |
6644 | |
6645 | if (ptr[1] == CHAR_QUESTION_MARK && ptr[2] == CHAR_C) |
6646 | { |
6647 | for (i = 3;; i++) if (!IS_DIGIT(ptr[i])) break; |
6648 | if (ptr[i] == CHAR_RIGHT_PARENTHESIS) |
6649 | tempptr += i + 1; |
6650 | } |
6651 | |
6652 | /* For conditions that are assertions, check the syntax, and then exit |
6653 | the switch. This will take control down to where bracketed groups, |
6654 | including assertions, are processed. */ |
6655 | |
6656 | if (tempptr[1] == CHAR_QUESTION_MARK && |
6657 | (tempptr[2] == CHAR_EQUALS_SIGN || |
6658 | tempptr[2] == CHAR_EXCLAMATION_MARK || |
6659 | tempptr[2] == CHAR_LESS_THAN_SIGN)) |