Parent Directory
|
Revision Log
Final file updates/tidies for 8.38.
1 | /************************************************* |
2 | * Perl-Compatible Regular Expressions * |
3 | *************************************************/ |
4 | |
5 | /* PCRE is a library of functions to support regular expressions whose syntax |
6 | and semantics are as close as possible to those of the Perl 5 language. |
7 | |
8 | Written by Philip Hazel |
9 | Copyright (c) 1997-2014 University of Cambridge |
10 | |
11 | ----------------------------------------------------------------------------- |
12 | Redistribution and use in source and binary forms, with or without |
13 | modification, are permitted provided that the following conditions are met: |
14 | |
15 | * Redistributions of source code must retain the above copyright notice, |
16 | this list of conditions and the following disclaimer. |
17 | |
18 | * Redistributions in binary form must reproduce the above copyright |
19 | notice, this list of conditions and the following disclaimer in the |
20 | documentation and/or other materials provided with the distribution. |
21 | |
22 | * Neither the name of the University of Cambridge nor the names of its |
23 | contributors may be used to endorse or promote products derived from |
24 | this software without specific prior written permission. |
25 | |
26 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
27 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
28 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
29 | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
30 | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
31 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
32 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
33 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
34 | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
35 | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
36 | POSSIBILITY OF SUCH DAMAGE. |
37 | ----------------------------------------------------------------------------- |
38 | */ |
39 | |
40 | |
41 | /* This module contains the external function pcre_compile(), along with |
42 | supporting internal functions that are not used by other modules. */ |
43 | |
44 | |
45 | #ifdef HAVE_CONFIG_H |
46 | #include "config.h" |
47 | #endif |
48 | |
49 | #define NLBLOCK cd /* Block containing newline information */ |
50 | #define PSSTART start_pattern /* Field containing pattern start */ |
51 | #define PSEND end_pattern /* Field containing pattern end */ |
52 | |
53 | #include "pcre_internal.h" |
54 | |
55 | |
56 | /* When PCRE_DEBUG is defined, we need the pcre(16|32)_printint() function, which |
57 | is also used by pcretest. PCRE_DEBUG is not defined when building a production |
58 | library. We do not need to select pcre16_printint.c specially, because the |
59 | COMPILE_PCREx macro will already be appropriately set. */ |
60 | |
61 | #ifdef PCRE_DEBUG |
62 | /* pcre_printint.c should not include any headers */ |
63 | #define PCRE_INCLUDED |
64 | #include "pcre_printint.c" |
65 | #undef PCRE_INCLUDED |
66 | #endif |
67 | |
68 | |
69 | /* Macro for setting individual bits in class bitmaps. */ |
70 | |
71 | #define SETBIT(a,b) a[(b)/8] |= (1 << ((b)&7)) |
72 | |
73 | /* Maximum length value to check against when making sure that the integer that |
74 | holds the compiled pattern length does not overflow. We make it a bit less than |
75 | INT_MAX to allow for adding in group terminating bytes, so that we don't have |
76 | to check them every time. */ |
77 | |
78 | #define OFLOW_MAX (INT_MAX - 20) |
79 | |
80 | /* Definitions to allow mutual recursion */ |
81 | |
82 | static int |
83 | add_list_to_class(pcre_uint8 *, pcre_uchar **, int, compile_data *, |
84 | const pcre_uint32 *, unsigned int); |
85 | |
86 | static BOOL |
87 | compile_regex(int, pcre_uchar **, const pcre_uchar **, int *, BOOL, BOOL, int, int, |
88 | pcre_uint32 *, pcre_int32 *, pcre_uint32 *, pcre_int32 *, branch_chain *, |
89 | compile_data *, int *); |
90 | |
91 | |
92 | |
93 | /************************************************* |
94 | * Code parameters and static tables * |
95 | *************************************************/ |
96 | |
97 | /* This value specifies the size of stack workspace that is used during the |
98 | first pre-compile phase that determines how much memory is required. The regex |
99 | is partly compiled into this space, but the compiled parts are discarded as |
100 | soon as they can be, so that hopefully there will never be an overrun. The code |
101 | does, however, check for an overrun. The largest amount I've seen used is 218, |
102 | so this number is very generous. |
103 | |
104 | The same workspace is used during the second, actual compile phase for |
105 | remembering forward references to groups so that they can be filled in at the |
106 | end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE |
107 | is 4 there is plenty of room for most patterns. However, the memory can get |
108 | filled up by repetitions of forward references, for example patterns like |
109 | /(?1){0,1999}(b)/, and one user did hit the limit. The code has been changed so |
110 | that the workspace is expanded using malloc() in this situation. The value |
111 | below is therefore a minimum, and we put a maximum on it for safety. The |
112 | minimum is now also defined in terms of LINK_SIZE so that the use of malloc() |
113 | kicks in at the same number of forward references in all cases. */ |
114 | |
115 | #define COMPILE_WORK_SIZE (2048*LINK_SIZE) |
116 | #define COMPILE_WORK_SIZE_MAX (100*COMPILE_WORK_SIZE) |
117 | |
118 | /* This value determines the size of the initial vector that is used for |
119 | remembering named groups during the pre-compile. It is allocated on the stack, |
120 | but if it is too small, it is expanded using malloc(), in a similar way to the |
121 | workspace. The value is the number of slots in the list. */ |
122 | |
123 | #define NAMED_GROUP_LIST_SIZE 20 |
124 | |
125 | /* The overrun tests check for a slightly smaller size so that they detect the |
126 | overrun before it actually does run off the end of the data block. */ |
127 | |
128 | #define WORK_SIZE_SAFETY_MARGIN (100) |
129 | |
130 | /* Private flags added to firstchar and reqchar. */ |
131 | |
132 | #define REQ_CASELESS (1 << 0) /* Indicates caselessness */ |
133 | #define REQ_VARY (1 << 1) /* Reqchar followed non-literal item */ |
134 | /* Negative values for the firstchar and reqchar flags */ |
135 | #define REQ_UNSET (-2) |
136 | #define REQ_NONE (-1) |
137 | |
138 | /* Repeated character flags. */ |
139 | |
140 | #define UTF_LENGTH 0x10000000l /* The char contains its length. */ |
141 | |
142 | /* Table for handling escaped characters in the range '0'-'z'. Positive returns |
143 | are simple data values; negative values are for special things like \d and so |
144 | on. Zero means further processing is needed (for things like \x), or the escape |
145 | is invalid. */ |
146 | |
147 | #ifndef EBCDIC |
148 | |
149 | /* This is the "normal" table for ASCII systems or for EBCDIC systems running |
150 | in UTF-8 mode. */ |
151 | |
152 | static const short int escapes[] = { |
153 | 0, 0, |
154 | 0, 0, |
155 | 0, 0, |
156 | 0, 0, |
157 | 0, 0, |
158 | CHAR_COLON, CHAR_SEMICOLON, |
159 | CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN, |
160 | CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK, |
161 | CHAR_COMMERCIAL_AT, -ESC_A, |
162 | -ESC_B, -ESC_C, |
163 | -ESC_D, -ESC_E, |
164 | 0, -ESC_G, |
165 | -ESC_H, 0, |
166 | 0, -ESC_K, |
167 | 0, 0, |
168 | -ESC_N, 0, |
169 | -ESC_P, -ESC_Q, |
170 | -ESC_R, -ESC_S, |
171 | 0, 0, |
172 | -ESC_V, -ESC_W, |
173 | -ESC_X, 0, |
174 | -ESC_Z, CHAR_LEFT_SQUARE_BRACKET, |
175 | CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET, |
176 | CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE, |
177 | CHAR_GRAVE_ACCENT, ESC_a, |
178 | -ESC_b, 0, |
179 | -ESC_d, ESC_e, |
180 | ESC_f, 0, |
181 | -ESC_h, 0, |
182 | 0, -ESC_k, |
183 | 0, 0, |
184 | ESC_n, 0, |
185 | -ESC_p, 0, |
186 | ESC_r, -ESC_s, |
187 | ESC_tee, 0, |
188 | -ESC_v, -ESC_w, |
189 | 0, 0, |
190 | -ESC_z |
191 | }; |
192 | |
193 | #else |
194 | |
195 | /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */ |
196 | |
197 | static const short int escapes[] = { |
198 | /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|', |
199 | /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0, |
200 | /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~', |
201 | /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0, |
202 | /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?', |
203 | /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0, |
204 | /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"', |
205 | /* 80 */ 0, ESC_a, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, |
206 | /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0, |
207 | /* 90 */ 0, 0, -ESC_k, 0, 0, ESC_n, 0, -ESC_p, |
208 | /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0, |
209 | /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0, |
210 | /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0, |
211 | /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
212 | /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-', |
213 | /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G, |
214 | /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0, |
215 | /* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P, |
216 | /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0, |
217 | /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X, |
218 | /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0, |
219 | /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
220 | /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0 |
221 | }; |
222 | |
223 | /* We also need a table of characters that may follow \c in an EBCDIC |
224 | environment for characters 0-31. */ |
225 | |
226 | static unsigned char ebcdic_escape_c[] = "@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_"; |
227 | |
228 | #endif |
229 | |
230 | |
231 | /* Table of special "verbs" like (*PRUNE). This is a short table, so it is |
232 | searched linearly. Put all the names into a single string, in order to reduce |
233 | the number of relocations when a shared library is dynamically linked. The |
234 | string is built from string macros so that it works in UTF-8 mode on EBCDIC |
235 | platforms. */ |
236 | |
237 | typedef struct verbitem { |
238 | int len; /* Length of verb name */ |
239 | int op; /* Op when no arg, or -1 if arg mandatory */ |
240 | int op_arg; /* Op when arg present, or -1 if not allowed */ |
241 | } verbitem; |
242 | |
243 | static const char verbnames[] = |
244 | "\0" /* Empty name is a shorthand for MARK */ |
245 | STRING_MARK0 |
246 | STRING_ACCEPT0 |
247 | STRING_COMMIT0 |
248 | STRING_F0 |
249 | STRING_FAIL0 |
250 | STRING_PRUNE0 |
251 | STRING_SKIP0 |
252 | STRING_THEN; |
253 | |
254 | static const verbitem verbs[] = { |
255 | { 0, -1, OP_MARK }, |
256 | { 4, -1, OP_MARK }, |
257 | { 6, OP_ACCEPT, -1 }, |
258 | { 6, OP_COMMIT, -1 }, |
259 | { 1, OP_FAIL, -1 }, |
260 | { 4, OP_FAIL, -1 }, |
261 | { 5, OP_PRUNE, OP_PRUNE_ARG }, |
262 | { 4, OP_SKIP, OP_SKIP_ARG }, |
263 | { 4, OP_THEN, OP_THEN_ARG } |
264 | }; |
265 | |
266 | static const int verbcount = sizeof(verbs)/sizeof(verbitem); |
267 | |
268 | |
269 | /* Substitutes for [[:<:]] and [[:>:]], which mean start and end of word in |
270 | another regex library. */ |
271 | |
272 | static const pcre_uchar sub_start_of_word[] = { |
273 | CHAR_BACKSLASH, CHAR_b, CHAR_LEFT_PARENTHESIS, CHAR_QUESTION_MARK, |
274 | CHAR_EQUALS_SIGN, CHAR_BACKSLASH, CHAR_w, CHAR_RIGHT_PARENTHESIS, '\0' }; |
275 | |
276 | static const pcre_uchar sub_end_of_word[] = { |
277 | CHAR_BACKSLASH, CHAR_b, CHAR_LEFT_PARENTHESIS, CHAR_QUESTION_MARK, |
278 | CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN, CHAR_BACKSLASH, CHAR_w, |
279 | CHAR_RIGHT_PARENTHESIS, '\0' }; |
280 | |
281 | |
282 | /* Tables of names of POSIX character classes and their lengths. The names are |
283 | now all in a single string, to reduce the number of relocations when a shared |
284 | library is dynamically loaded. The list of lengths is terminated by a zero |
285 | length entry. The first three must be alpha, lower, upper, as this is assumed |
286 | for handling case independence. The indices for graph, print, and punct are |
287 | needed, so identify them. */ |
288 | |
289 | static const char posix_names[] = |
290 | STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0 |
291 | STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0 |
292 | STRING_graph0 STRING_print0 STRING_punct0 STRING_space0 |
293 | STRING_word0 STRING_xdigit; |
294 | |
295 | static const pcre_uint8 posix_name_lengths[] = { |
296 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 }; |
297 | |
298 | #define PC_GRAPH 8 |
299 | #define PC_PRINT 9 |
300 | #define PC_PUNCT 10 |
301 | |
302 | |
303 | /* Table of class bit maps for each POSIX class. Each class is formed from a |
304 | base map, with an optional addition or removal of another map. Then, for some |
305 | classes, there is some additional tweaking: for [:blank:] the vertical space |
306 | characters are removed, and for [:alpha:] and [:alnum:] the underscore |
307 | character is removed. The triples in the table consist of the base map offset, |
308 | second map offset or -1 if no second map, and a non-negative value for map |
309 | addition or a negative value for map subtraction (if there are two maps). The |
310 | absolute value of the third field has these meanings: 0 => no tweaking, 1 => |
311 | remove vertical space characters, 2 => remove underscore. */ |
312 | |
313 | static const int posix_class_maps[] = { |
314 | cbit_word, cbit_digit, -2, /* alpha */ |
315 | cbit_lower, -1, 0, /* lower */ |
316 | cbit_upper, -1, 0, /* upper */ |
317 | cbit_word, -1, 2, /* alnum - word without underscore */ |
318 | cbit_print, cbit_cntrl, 0, /* ascii */ |
319 | cbit_space, -1, 1, /* blank - a GNU extension */ |
320 | cbit_cntrl, -1, 0, /* cntrl */ |
321 | cbit_digit, -1, 0, /* digit */ |
322 | cbit_graph, -1, 0, /* graph */ |
323 | cbit_print, -1, 0, /* print */ |
324 | cbit_punct, -1, 0, /* punct */ |
325 | cbit_space, -1, 0, /* space */ |
326 | cbit_word, -1, 0, /* word - a Perl extension */ |
327 | cbit_xdigit,-1, 0 /* xdigit */ |
328 | }; |
329 | |
330 | /* Table of substitutes for \d etc when PCRE_UCP is set. They are replaced by |
331 | Unicode property escapes. */ |
332 | |
333 | #ifdef SUPPORT_UCP |
334 | static const pcre_uchar string_PNd[] = { |
335 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
336 | CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
337 | static const pcre_uchar string_pNd[] = { |
338 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
339 | CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
340 | static const pcre_uchar string_PXsp[] = { |
341 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
342 | CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
343 | static const pcre_uchar string_pXsp[] = { |
344 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
345 | CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
346 | static const pcre_uchar string_PXwd[] = { |
347 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
348 | CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
349 | static const pcre_uchar string_pXwd[] = { |
350 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
351 | CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
352 | |
353 | static const pcre_uchar *substitutes[] = { |
354 | string_PNd, /* \D */ |
355 | string_pNd, /* \d */ |
356 | string_PXsp, /* \S */ /* Xsp is Perl space, but from 8.34, Perl */ |
357 | string_pXsp, /* \s */ /* space and POSIX space are the same. */ |
358 | string_PXwd, /* \W */ |
359 | string_pXwd /* \w */ |
360 | }; |
361 | |
362 | /* The POSIX class substitutes must be in the order of the POSIX class names, |
363 | defined above, and there are both positive and negative cases. NULL means no |
364 | general substitute of a Unicode property escape (\p or \P). However, for some |
365 | POSIX classes (e.g. graph, print, punct) a special property code is compiled |
366 | directly. */ |
367 | |
368 | static const pcre_uchar string_pL[] = { |
369 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
370 | CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
371 | static const pcre_uchar string_pLl[] = { |
372 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
373 | CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
374 | static const pcre_uchar string_pLu[] = { |
375 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
376 | CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
377 | static const pcre_uchar string_pXan[] = { |
378 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
379 | CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
380 | static const pcre_uchar string_h[] = { |
381 | CHAR_BACKSLASH, CHAR_h, '\0' }; |
382 | static const pcre_uchar string_pXps[] = { |
383 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
384 | CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
385 | static const pcre_uchar string_PL[] = { |
386 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
387 | CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
388 | static const pcre_uchar string_PLl[] = { |
389 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
390 | CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
391 | static const pcre_uchar string_PLu[] = { |
392 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
393 | CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
394 | static const pcre_uchar string_PXan[] = { |
395 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
396 | CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
397 | static const pcre_uchar string_H[] = { |
398 | CHAR_BACKSLASH, CHAR_H, '\0' }; |
399 | static const pcre_uchar string_PXps[] = { |
400 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
401 | CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
402 | |
403 | static const pcre_uchar *posix_substitutes[] = { |
404 | string_pL, /* alpha */ |
405 | string_pLl, /* lower */ |
406 | string_pLu, /* upper */ |
407 | string_pXan, /* alnum */ |
408 | NULL, /* ascii */ |
409 | string_h, /* blank */ |
410 | NULL, /* cntrl */ |
411 | string_pNd, /* digit */ |
412 | NULL, /* graph */ |
413 | NULL, /* print */ |
414 | NULL, /* punct */ |
415 | string_pXps, /* space */ /* Xps is POSIX space, but from 8.34 */ |
416 | string_pXwd, /* word */ /* Perl and POSIX space are the same */ |
417 | NULL, /* xdigit */ |
418 | /* Negated cases */ |
419 | string_PL, /* ^alpha */ |
420 | string_PLl, /* ^lower */ |
421 | string_PLu, /* ^upper */ |
422 | string_PXan, /* ^alnum */ |
423 | NULL, /* ^ascii */ |
424 | string_H, /* ^blank */ |
425 | NULL, /* ^cntrl */ |
426 | string_PNd, /* ^digit */ |
427 | NULL, /* ^graph */ |
428 | NULL, /* ^print */ |
429 | NULL, /* ^punct */ |
430 | string_PXps, /* ^space */ /* Xps is POSIX space, but from 8.34 */ |
431 | string_PXwd, /* ^word */ /* Perl and POSIX space are the same */ |
432 | NULL /* ^xdigit */ |
433 | }; |
434 | #define POSIX_SUBSIZE (sizeof(posix_substitutes) / sizeof(pcre_uchar *)) |
435 | #endif |
436 | |
437 | #define STRING(a) # a |
438 | #define XSTRING(s) STRING(s) |
439 | |
440 | /* The texts of compile-time error messages. These are "char *" because they |
441 | are passed to the outside world. Do not ever re-use any error number, because |
442 | they are documented. Always add a new error instead. Messages marked DEAD below |
443 | are no longer used. This used to be a table of strings, but in order to reduce |
444 | the number of relocations needed when a shared library is loaded dynamically, |
445 | it is now one long string. We cannot use a table of offsets, because the |
446 | lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we |
447 | simply count through to the one we want - this isn't a performance issue |
448 | because these strings are used only when there is a compilation error. |
449 | |
450 | Each substring ends with \0 to insert a null character. This includes the final |
451 | substring, so that the whole string ends with \0\0, which can be detected when |
452 | counting through. */ |
453 | |
454 | static const char error_texts[] = |
455 | "no error\0" |
456 | "\\ at end of pattern\0" |
457 | "\\c at end of pattern\0" |
458 | "unrecognized character follows \\\0" |
459 | "numbers out of order in {} quantifier\0" |
460 | /* 5 */ |
461 | "number too big in {} quantifier\0" |
462 | "missing terminating ] for character class\0" |
463 | "invalid escape sequence in character class\0" |
464 | "range out of order in character class\0" |
465 | "nothing to repeat\0" |
466 | /* 10 */ |
467 | "internal error: invalid forward reference offset\0" |
468 | "internal error: unexpected repeat\0" |
469 | "unrecognized character after (? or (?-\0" |
470 | "POSIX named classes are supported only within a class\0" |
471 | "missing )\0" |
472 | /* 15 */ |
473 | "reference to non-existent subpattern\0" |
474 | "erroffset passed as NULL\0" |
475 | "unknown option bit(s) set\0" |
476 | "missing ) after comment\0" |
477 | "parentheses nested too deeply\0" /** DEAD **/ |
478 | /* 20 */ |
479 | "regular expression is too large\0" |
480 | "failed to get memory\0" |
481 | "unmatched parentheses\0" |
482 | "internal error: code overflow\0" |
483 | "unrecognized character after (?<\0" |
484 | /* 25 */ |
485 | "lookbehind assertion is not fixed length\0" |
486 | "malformed number or name after (?(\0" |
487 | "conditional group contains more than two branches\0" |
488 | "assertion expected after (?(\0" |
489 | "(?R or (?[+-]digits must be followed by )\0" |
490 | /* 30 */ |
491 | "unknown POSIX class name\0" |
492 | "POSIX collating elements are not supported\0" |
493 | "this version of PCRE is compiled without UTF support\0" |
494 | "spare error\0" /** DEAD **/ |
495 | "character value in \\x{} or \\o{} is too large\0" |
496 | /* 35 */ |
497 | "invalid condition (?(0)\0" |
498 | "\\C not allowed in lookbehind assertion\0" |
499 | "PCRE does not support \\L, \\l, \\N{name}, \\U, or \\u\0" |
500 | "number after (?C is > 255\0" |
501 | "closing ) for (?C expected\0" |
502 | /* 40 */ |
503 | "recursive call could loop indefinitely\0" |
504 | "unrecognized character after (?P\0" |
505 | "syntax error in subpattern name (missing terminator)\0" |
506 | "two named subpatterns have the same name\0" |
507 | "invalid UTF-8 string\0" |
508 | /* 45 */ |
509 | "support for \\P, \\p, and \\X has not been compiled\0" |
510 | "malformed \\P or \\p sequence\0" |
511 | "unknown property name after \\P or \\p\0" |
512 | "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0" |
513 | "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0" |
514 | /* 50 */ |
515 | "repeated subpattern is too long\0" /** DEAD **/ |
516 | "octal value is greater than \\377 in 8-bit non-UTF-8 mode\0" |
517 | "internal error: overran compiling workspace\0" |
518 | "internal error: previously-checked referenced subpattern not found\0" |
519 | "DEFINE group contains more than one branch\0" |
520 | /* 55 */ |
521 | "repeating a DEFINE group is not allowed\0" /** DEAD **/ |
522 | "inconsistent NEWLINE options\0" |
523 | "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0" |
524 | "a numbered reference must not be zero\0" |
525 | "an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0" |
526 | /* 60 */ |
527 | "(*VERB) not recognized or malformed\0" |
528 | "number is too big\0" |
529 | "subpattern name expected\0" |
530 | "digit expected after (?+\0" |
531 | "] is an invalid data character in JavaScript compatibility mode\0" |
532 | /* 65 */ |
533 | "different names for subpatterns of the same number are not allowed\0" |
534 | "(*MARK) must have an argument\0" |
535 | "this version of PCRE is not compiled with Unicode property support\0" |
536 | #ifndef EBCDIC |
537 | "\\c must be followed by an ASCII character\0" |
538 | #else |
539 | "\\c must be followed by a letter or one of [\\]^_?\0" |
540 | #endif |
541 | "\\k is not followed by a braced, angle-bracketed, or quoted name\0" |
542 | /* 70 */ |
543 | "internal error: unknown opcode in find_fixedlength()\0" |
544 | "\\N is not supported in a class\0" |
545 | "too many forward references\0" |
546 | "disallowed Unicode code point (>= 0xd800 && <= 0xdfff)\0" |
547 | "invalid UTF-16 string\0" |
548 | /* 75 */ |
549 | "name is too long in (*MARK), (*PRUNE), (*SKIP), or (*THEN)\0" |
550 | "character value in \\u.... sequence is too large\0" |
551 | "invalid UTF-32 string\0" |
552 | "setting UTF is disabled by the application\0" |
553 | "non-hex character in \\x{} (closing brace missing?)\0" |
554 | /* 80 */ |
555 | "non-octal character in \\o{} (closing brace missing?)\0" |
556 | "missing opening brace after \\o\0" |
557 | "parentheses are too deeply nested\0" |
558 | "invalid range in character class\0" |
559 | "group name must start with a non-digit\0" |
560 | /* 85 */ |
561 | "parentheses are too deeply nested (stack check)\0" |
562 | "digits missing in \\x{} or \\o{}\0" |
563 | ; |
564 | |
565 | /* Table to identify digits and hex digits. This is used when compiling |
566 | patterns. Note that the tables in chartables are dependent on the locale, and |
567 | may mark arbitrary characters as digits - but the PCRE compiling code expects |
568 | to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have |
569 | a private table here. It costs 256 bytes, but it is a lot faster than doing |
570 | character value tests (at least in some simple cases I timed), and in some |
571 | applications one wants PCRE to compile efficiently as well as match |
572 | efficiently. |
573 | |
574 | For convenience, we use the same bit definitions as in chartables: |
575 | |
576 | 0x04 decimal digit |
577 | 0x08 hexadecimal digit |
578 | |
579 | Then we can use ctype_digit and ctype_xdigit in the code. */ |
580 | |
581 | /* Using a simple comparison for decimal numbers rather than a memory read |
582 | is much faster, and the resulting code is simpler (the compiler turns it |
583 | into a subtraction and unsigned comparison). */ |
584 | |
585 | #define IS_DIGIT(x) ((x) >= CHAR_0 && (x) <= CHAR_9) |
586 | |
587 | #ifndef EBCDIC |
588 | |
589 | /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in |
590 | UTF-8 mode. */ |
591 | |
592 | static const pcre_uint8 digitab[] = |
593 | { |
594 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */ |
595 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
596 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */ |
597 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
598 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */ |
599 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */ |
600 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */ |
601 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */ |
602 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */ |
603 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */ |
604 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */ |
605 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */ |
606 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */ |
607 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */ |
608 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */ |
609 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */ |
610 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */ |
611 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */ |
612 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */ |
613 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */ |
614 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */ |
615 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */ |
616 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */ |
617 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
618 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */ |
619 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */ |
620 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */ |
621 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */ |
622 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */ |
623 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */ |
624 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */ |
625 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */ |
626 | |
627 | #else |
628 | |
629 | /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */ |
630 | |
631 | static const pcre_uint8 digitab[] = |
632 | { |
633 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */ |
634 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
635 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */ |
636 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
637 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */ |
638 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
639 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */ |
640 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
641 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */ |
642 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */ |
643 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */ |
644 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */ |
645 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */ |
646 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */ |
647 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */ |
648 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
649 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */ |
650 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
651 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */ |
652 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
653 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */ |
654 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
655 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */ |
656 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
657 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */ |
658 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
659 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */ |
660 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
661 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */ |
662 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
663 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */ |
664 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
665 | |
666 | static const pcre_uint8 ebcdic_chartab[] = { /* chartable partial dup */ |
667 | 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */ |
668 | 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */ |
669 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */ |
670 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
671 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */ |
672 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
673 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */ |
674 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
675 | 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */ |
676 | 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */ |
677 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */ |
678 | 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */ |
679 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */ |
680 | 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */ |
681 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */ |
682 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
683 | 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */ |
684 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
685 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */ |
686 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
687 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */ |
688 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
689 | 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */ |
690 | 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
691 | 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */ |
692 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
693 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */ |
694 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
695 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */ |
696 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
697 | 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */ |
698 | 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
699 | #endif |
700 | |
701 | |
702 | /* This table is used to check whether auto-possessification is possible |
703 | between adjacent character-type opcodes. The left-hand (repeated) opcode is |
704 | used to select the row, and the right-hand opcode is use to select the column. |
705 | A value of 1 means that auto-possessification is OK. For example, the second |
706 | value in the first row means that \D+\d can be turned into \D++\d. |
707 | |
708 | The Unicode property types (\P and \p) have to be present to fill out the table |
709 | because of what their opcode values are, but the table values should always be |
710 | zero because property types are handled separately in the code. The last four |
711 | columns apply to items that cannot be repeated, so there is no need to have |
712 | rows for them. Note that OP_DIGIT etc. are generated only when PCRE_UCP is |
713 | *not* set. When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */ |
714 | |
715 | #define APTROWS (LAST_AUTOTAB_LEFT_OP - FIRST_AUTOTAB_OP + 1) |
716 | #define APTCOLS (LAST_AUTOTAB_RIGHT_OP - FIRST_AUTOTAB_OP + 1) |
717 | |
718 | static const pcre_uint8 autoposstab[APTROWS][APTCOLS] = { |
719 | /* \D \d \S \s \W \w . .+ \C \P \p \R \H \h \V \v \X \Z \z $ $M */ |
720 | { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* \D */ |
721 | { 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1 }, /* \d */ |
722 | { 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1 }, /* \S */ |
723 | { 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* \s */ |
724 | { 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* \W */ |
725 | { 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1 }, /* \w */ |
726 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* . */ |
727 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* .+ */ |
728 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 }, /* \C */ |
729 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* \P */ |
730 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* \p */ |
731 | { 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0 }, /* \R */ |
732 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0 }, /* \H */ |
733 | { 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0 }, /* \h */ |
734 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0 }, /* \V */ |
735 | { 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0 }, /* \v */ |
736 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 } /* \X */ |
737 | }; |
738 | |
739 | |
740 | /* This table is used to check whether auto-possessification is possible |
741 | between adjacent Unicode property opcodes (OP_PROP and OP_NOTPROP). The |
742 | left-hand (repeated) opcode is used to select the row, and the right-hand |
743 | opcode is used to select the column. The values are as follows: |
744 | |
745 | 0 Always return FALSE (never auto-possessify) |
746 | 1 Character groups are distinct (possessify if both are OP_PROP) |
747 | 2 Check character categories in the same group (general or particular) |
748 | 3 TRUE if the two opcodes are not the same (PROP vs NOTPROP) |
749 | |
750 | 4 Check left general category vs right particular category |
751 | 5 Check right general category vs left particular category |
752 | |
753 | 6 Left alphanum vs right general category |
754 | 7 Left space vs right general category |
755 | 8 Left word vs right general category |
756 | |
757 | 9 Right alphanum vs left general category |
758 | 10 Right space vs left general category |
759 | 11 Right word vs left general category |
760 | |
761 | 12 Left alphanum vs right particular category |
762 | 13 Left space vs right particular category |
763 | 14 Left word vs right particular category |
764 | |
765 | 15 Right alphanum vs left particular category |
766 | 16 Right space vs left particular category |
767 | 17 Right word vs left particular category |
768 | */ |
769 | |
770 | static const pcre_uint8 propposstab[PT_TABSIZE][PT_TABSIZE] = { |
771 | /* ANY LAMP GC PC SC ALNUM SPACE PXSPACE WORD CLIST UCNC */ |
772 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* PT_ANY */ |
773 | { 0, 3, 0, 0, 0, 3, 1, 1, 0, 0, 0 }, /* PT_LAMP */ |
774 | { 0, 0, 2, 4, 0, 9, 10, 10, 11, 0, 0 }, /* PT_GC */ |
775 | { 0, 0, 5, 2, 0, 15, 16, 16, 17, 0, 0 }, /* PT_PC */ |
776 | { 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0 }, /* PT_SC */ |
777 | { 0, 3, 6, 12, 0, 3, 1, 1, 0, 0, 0 }, /* PT_ALNUM */ |
778 | { 0, 1, 7, 13, 0, 1, 3, 3, 1, 0, 0 }, /* PT_SPACE */ |
779 | { 0, 1, 7, 13, 0, 1, 3, 3, 1, 0, 0 }, /* PT_PXSPACE */ |
780 | { 0, 0, 8, 14, 0, 0, 1, 1, 3, 0, 0 }, /* PT_WORD */ |
781 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* PT_CLIST */ |
782 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3 } /* PT_UCNC */ |
783 | }; |
784 | |
785 | /* This table is used to check whether auto-possessification is possible |
786 | between adjacent Unicode property opcodes (OP_PROP and OP_NOTPROP) when one |
787 | specifies a general category and the other specifies a particular category. The |
788 | row is selected by the general category and the column by the particular |
789 | category. The value is 1 if the particular category is not part of the general |
790 | category. */ |
791 | |
792 | static const pcre_uint8 catposstab[7][30] = { |
793 | /* Cc Cf Cn Co Cs Ll Lm Lo Lt Lu Mc Me Mn Nd Nl No Pc Pd Pe Pf Pi Po Ps Sc Sk Sm So Zl Zp Zs */ |
794 | { 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, /* C */ |
795 | { 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, /* L */ |
796 | { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, /* M */ |
797 | { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, /* N */ |
798 | { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 }, /* P */ |
799 | { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1 }, /* S */ |
800 | { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0 } /* Z */ |
801 | }; |
802 | |
803 | /* This table is used when checking ALNUM, (PX)SPACE, SPACE, and WORD against |
804 | a general or particular category. The properties in each row are those |
805 | that apply to the character set in question. Duplication means that a little |
806 | unnecessary work is done when checking, but this keeps things much simpler |
807 | because they can all use the same code. For more details see the comment where |
808 | this table is used. |
809 | |
810 | Note: SPACE and PXSPACE used to be different because Perl excluded VT from |
811 | "space", but from Perl 5.18 it's included, so both categories are treated the |
812 | same here. */ |
813 | |
814 | static const pcre_uint8 posspropstab[3][4] = { |
815 | { ucp_L, ucp_N, ucp_N, ucp_Nl }, /* ALNUM, 3rd and 4th values redundant */ |
816 | { ucp_Z, ucp_Z, ucp_C, ucp_Cc }, /* SPACE and PXSPACE, 2nd value redundant */ |
817 | { ucp_L, ucp_N, ucp_P, ucp_Po } /* WORD */ |
818 | }; |
819 | |
820 | /* This table is used when converting repeating opcodes into possessified |
821 | versions as a result of an explicit possessive quantifier such as ++. A zero |
822 | value means there is no possessified version - in those cases the item in |
823 | question must be wrapped in ONCE brackets. The table is truncated at OP_CALLOUT |
824 | because all relevant opcodes are less than that. */ |
825 | |
826 | static const pcre_uint8 opcode_possessify[] = { |
827 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 15 */ |
828 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 16 - 31 */ |
829 | |
830 | 0, /* NOTI */ |
831 | OP_POSSTAR, 0, /* STAR, MINSTAR */ |
832 | OP_POSPLUS, 0, /* PLUS, MINPLUS */ |
833 | OP_POSQUERY, 0, /* QUERY, MINQUERY */ |
834 | OP_POSUPTO, 0, /* UPTO, MINUPTO */ |
835 | 0, /* EXACT */ |
836 | 0, 0, 0, 0, /* POS{STAR,PLUS,QUERY,UPTO} */ |
837 | |
838 | OP_POSSTARI, 0, /* STARI, MINSTARI */ |
839 | OP_POSPLUSI, 0, /* PLUSI, MINPLUSI */ |
840 | OP_POSQUERYI, 0, /* QUERYI, MINQUERYI */ |
841 | OP_POSUPTOI, 0, /* UPTOI, MINUPTOI */ |
842 | 0, /* EXACTI */ |
843 | 0, 0, 0, 0, /* POS{STARI,PLUSI,QUERYI,UPTOI} */ |
844 | |
845 | OP_NOTPOSSTAR, 0, /* NOTSTAR, NOTMINSTAR */ |
846 | OP_NOTPOSPLUS, 0, /* NOTPLUS, NOTMINPLUS */ |
847 | OP_NOTPOSQUERY, 0, /* NOTQUERY, NOTMINQUERY */ |
848 | OP_NOTPOSUPTO, 0, /* NOTUPTO, NOTMINUPTO */ |
849 | 0, /* NOTEXACT */ |
850 | 0, 0, 0, 0, /* NOTPOS{STAR,PLUS,QUERY,UPTO} */ |
851 | |
852 | OP_NOTPOSSTARI, 0, /* NOTSTARI, NOTMINSTARI */ |
853 | OP_NOTPOSPLUSI, 0, /* NOTPLUSI, NOTMINPLUSI */ |
854 | OP_NOTPOSQUERYI, 0, /* NOTQUERYI, NOTMINQUERYI */ |
855 | OP_NOTPOSUPTOI, 0, /* NOTUPTOI, NOTMINUPTOI */ |
856 | 0, /* NOTEXACTI */ |
857 | 0, 0, 0, 0, /* NOTPOS{STARI,PLUSI,QUERYI,UPTOI} */ |
858 | |
859 | OP_TYPEPOSSTAR, 0, /* TYPESTAR, TYPEMINSTAR */ |
860 | OP_TYPEPOSPLUS, 0, /* TYPEPLUS, TYPEMINPLUS */ |
861 | OP_TYPEPOSQUERY, 0, /* TYPEQUERY, TYPEMINQUERY */ |
862 | OP_TYPEPOSUPTO, 0, /* TYPEUPTO, TYPEMINUPTO */ |
863 | 0, /* TYPEEXACT */ |
864 | 0, 0, 0, 0, /* TYPEPOS{STAR,PLUS,QUERY,UPTO} */ |
865 | |
866 | OP_CRPOSSTAR, 0, /* CRSTAR, CRMINSTAR */ |
867 | OP_CRPOSPLUS, 0, /* CRPLUS, CRMINPLUS */ |
868 | OP_CRPOSQUERY, 0, /* CRQUERY, CRMINQUERY */ |
869 | OP_CRPOSRANGE, 0, /* CRRANGE, CRMINRANGE */ |
870 | 0, 0, 0, 0, /* CRPOS{STAR,PLUS,QUERY,RANGE} */ |
871 | |
872 | 0, 0, 0, /* CLASS, NCLASS, XCLASS */ |
873 | 0, 0, /* REF, REFI */ |
874 | 0, 0, /* DNREF, DNREFI */ |
875 | 0, 0 /* RECURSE, CALLOUT */ |
876 | }; |
877 | |
878 | |
879 | |
880 | /************************************************* |
881 | * Find an error text * |
882 | *************************************************/ |
883 | |
884 | /* The error texts are now all in one long string, to save on relocations. As |
885 | some of the text is of unknown length, we can't use a table of offsets. |
886 | Instead, just count through the strings. This is not a performance issue |
887 | because it happens only when there has been a compilation error. |
888 | |
889 | Argument: the error number |
890 | Returns: pointer to the error string |
891 | */ |
892 | |
893 | static const char * |
894 | find_error_text(int n) |
895 | { |
896 | const char *s = error_texts; |
897 | for (; n > 0; n--) |
898 | { |
899 | while (*s++ != CHAR_NULL) {}; |
900 | if (*s == CHAR_NULL) return "Error text not found (please report)"; |
901 | } |
902 | return s; |
903 | } |
904 | |
905 | |
906 | |
907 | /************************************************* |
908 | * Expand the workspace * |
909 | *************************************************/ |
910 | |
911 | /* This function is called during the second compiling phase, if the number of |
912 | forward references fills the existing workspace, which is originally a block on |
913 | the stack. A larger block is obtained from malloc() unless the ultimate limit |
914 | has been reached or the increase will be rather small. |
915 | |
916 | Argument: pointer to the compile data block |
917 | Returns: 0 if all went well, else an error number |
918 | */ |
919 | |
920 | static int |
921 | expand_workspace(compile_data *cd) |
922 | { |
923 | pcre_uchar *newspace; |
924 | int newsize = cd->workspace_size * 2; |
925 | |
926 | if (newsize > COMPILE_WORK_SIZE_MAX) newsize = COMPILE_WORK_SIZE_MAX; |
927 | if (cd->workspace_size >= COMPILE_WORK_SIZE_MAX || |
928 | newsize - cd->workspace_size < WORK_SIZE_SAFETY_MARGIN) |
929 | return ERR72; |
930 | |
931 | newspace = (PUBL(malloc))(IN_UCHARS(newsize)); |
932 | if (newspace == NULL) return ERR21; |
933 | memcpy(newspace, cd->start_workspace, cd->workspace_size * sizeof(pcre_uchar)); |
934 | cd->hwm = (pcre_uchar *)newspace + (cd->hwm - cd->start_workspace); |
935 | if (cd->workspace_size > COMPILE_WORK_SIZE) |
936 | (PUBL(free))((void *)cd->start_workspace); |
937 | cd->start_workspace = newspace; |
938 | cd->workspace_size = newsize; |
939 | return 0; |
940 | } |
941 | |
942 | |
943 | |
944 | /************************************************* |
945 | * Check for counted repeat * |
946 | *************************************************/ |
947 | |
948 | /* This function is called when a '{' is encountered in a place where it might |
949 | start a quantifier. It looks ahead to see if it really is a quantifier or not. |
950 | It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd} |
951 | where the ddds are digits. |
952 | |
953 | Arguments: |
954 | p pointer to the first char after '{' |
955 | |
956 | Returns: TRUE or FALSE |
957 | */ |
958 | |
959 | static BOOL |
960 | is_counted_repeat(const pcre_uchar *p) |
961 | { |
962 | if (!IS_DIGIT(*p)) return FALSE; |
963 | p++; |
964 | while (IS_DIGIT(*p)) p++; |
965 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
966 | |
967 | if (*p++ != CHAR_COMMA) return FALSE; |
968 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
969 | |
970 | if (!IS_DIGIT(*p)) return FALSE; |
971 | p++; |
972 | while (IS_DIGIT(*p)) p++; |
973 | |
974 | return (*p == CHAR_RIGHT_CURLY_BRACKET); |
975 | } |
976 | |
977 | |
978 | |
979 | /************************************************* |
980 | * Handle escapes * |
981 | *************************************************/ |
982 | |
983 | /* This function is called when a \ has been encountered. It either returns a |
984 | positive value for a simple escape such as \n, or 0 for a data character which |
985 | will be placed in chptr. A backreference to group n is returned as negative n. |
986 | When UTF-8 is enabled, a positive value greater than 255 may be returned in |
987 | chptr. On entry, ptr is pointing at the \. On exit, it is on the final |
988 | character of the escape sequence. |
989 | |
990 | Arguments: |
991 | ptrptr points to the pattern position pointer |
992 | chptr points to a returned data character |
993 | errorcodeptr points to the errorcode variable |
994 | bracount number of previous extracting brackets |
995 | options the options bits |
996 | isclass TRUE if inside a character class |
997 | |
998 | Returns: zero => a data character |
999 | positive => a special escape sequence |
1000 | negative => a back reference |
1001 | on error, errorcodeptr is set |
1002 | */ |
1003 | |
1004 | static int |
1005 | check_escape(const pcre_uchar **ptrptr, pcre_uint32 *chptr, int *errorcodeptr, |
1006 | int bracount, int options, BOOL isclass) |
1007 | { |
1008 | /* PCRE_UTF16 has the same value as PCRE_UTF8. */ |
1009 | BOOL utf = (options & PCRE_UTF8) != 0; |
1010 | const pcre_uchar *ptr = *ptrptr + 1; |
1011 | pcre_uint32 c; |
1012 | int escape = 0; |
1013 | int i; |
1014 | |
1015 | GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */ |
1016 | ptr--; /* Set pointer back to the last byte */ |
1017 | |
1018 | /* If backslash is at the end of the pattern, it's an error. */ |
1019 | |
1020 | if (c == CHAR_NULL) *errorcodeptr = ERR1; |
1021 | |
1022 | /* Non-alphanumerics are literals. For digits or letters, do an initial lookup |
1023 | in a table. A non-zero result is something that can be returned immediately. |
1024 | Otherwise further processing may be required. */ |
1025 | |
1026 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1027 | /* Not alphanumeric */ |
1028 | else if (c < CHAR_0 || c > CHAR_z) {} |
1029 | else if ((i = escapes[c - CHAR_0]) != 0) |
1030 | { if (i > 0) c = (pcre_uint32)i; else escape = -i; } |
1031 | |
1032 | #else /* EBCDIC coding */ |
1033 | /* Not alphanumeric */ |
1034 | else if (c < CHAR_a || (!MAX_255(c) || (ebcdic_chartab[c] & 0x0E) == 0)) {} |
1035 | else if ((i = escapes[c - 0x48]) != 0) { if (i > 0) c = (pcre_uint32)i; else escape = -i; } |
1036 | #endif |
1037 | |
1038 | /* Escapes that need further processing, or are illegal. */ |
1039 | |
1040 | else |
1041 | { |
1042 | const pcre_uchar *oldptr; |
1043 | BOOL braced, negated, overflow; |
1044 | int s; |
1045 | |
1046 | switch (c) |
1047 | { |
1048 | /* A number of Perl escapes are not handled by PCRE. We give an explicit |
1049 | error. */ |
1050 | |
1051 | case CHAR_l: |
1052 | case CHAR_L: |
1053 | *errorcodeptr = ERR37; |
1054 | break; |
1055 | |
1056 | case CHAR_u: |
1057 | if ((options & PCRE_JAVASCRIPT_COMPAT) != 0) |
1058 | { |
1059 | /* In JavaScript, \u must be followed by four hexadecimal numbers. |
1060 | Otherwise it is a lowercase u letter. */ |
1061 | if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0 |
1062 | && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0 |
1063 | && MAX_255(ptr[3]) && (digitab[ptr[3]] & ctype_xdigit) != 0 |
1064 | && MAX_255(ptr[4]) && (digitab[ptr[4]] & ctype_xdigit) != 0) |
1065 | { |
1066 | c = 0; |
1067 | for (i = 0; i < 4; ++i) |
1068 | { |
1069 | register pcre_uint32 cc = *(++ptr); |
1070 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1071 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
1072 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
1073 | #else /* EBCDIC coding */ |
1074 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
1075 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
1076 | #endif |
1077 | } |
1078 | |
1079 | #if defined COMPILE_PCRE8 |
1080 | if (c > (utf ? 0x10ffffU : 0xffU)) |
1081 | #elif defined COMPILE_PCRE16 |
1082 | if (c > (utf ? 0x10ffffU : 0xffffU)) |
1083 | #elif defined COMPILE_PCRE32 |
1084 | if (utf && c > 0x10ffffU) |
1085 | #endif |
1086 | { |
1087 | *errorcodeptr = ERR76; |
1088 | } |
1089 | else if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73; |
1090 | } |
1091 | } |
1092 | else |
1093 | *errorcodeptr = ERR37; |
1094 | break; |
1095 | |
1096 | case CHAR_U: |
1097 | /* In JavaScript, \U is an uppercase U letter. */ |
1098 | if ((options & PCRE_JAVASCRIPT_COMPAT) == 0) *errorcodeptr = ERR37; |
1099 | break; |
1100 | |
1101 | /* In a character class, \g is just a literal "g". Outside a character |
1102 | class, \g must be followed by one of a number of specific things: |
1103 | |
1104 | (1) A number, either plain or braced. If positive, it is an absolute |
1105 | backreference. If negative, it is a relative backreference. This is a Perl |
1106 | 5.10 feature. |
1107 | |
1108 | (2) Perl 5.10 also supports \g{name} as a reference to a named group. This |
1109 | is part of Perl's movement towards a unified syntax for back references. As |
1110 | this is synonymous with \k{name}, we fudge it up by pretending it really |
1111 | was \k. |
1112 | |
1113 | (3) For Oniguruma compatibility we also support \g followed by a name or a |
1114 | number either in angle brackets or in single quotes. However, these are |
1115 | (possibly recursive) subroutine calls, _not_ backreferences. Just return |
1116 | the ESC_g code (cf \k). */ |
1117 | |
1118 | case CHAR_g: |
1119 | if (isclass) break; |
1120 | if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE) |
1121 | { |
1122 | escape = ESC_g; |
1123 | break; |
1124 | } |
1125 | |
1126 | /* Handle the Perl-compatible cases */ |
1127 | |
1128 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
1129 | { |
1130 | const pcre_uchar *p; |
1131 | for (p = ptr+2; *p != CHAR_NULL && *p != CHAR_RIGHT_CURLY_BRACKET; p++) |
1132 | if (*p != CHAR_MINUS && !IS_DIGIT(*p)) break; |
1133 | if (*p != CHAR_NULL && *p != CHAR_RIGHT_CURLY_BRACKET) |
1134 | { |
1135 | escape = ESC_k; |
1136 | break; |
1137 | } |
1138 | braced = TRUE; |
1139 | ptr++; |
1140 | } |
1141 | else braced = FALSE; |
1142 | |
1143 | if (ptr[1] == CHAR_MINUS) |
1144 | { |
1145 | negated = TRUE; |
1146 | ptr++; |
1147 | } |
1148 | else negated = FALSE; |
1149 | |
1150 | /* The integer range is limited by the machine's int representation. */ |
1151 | s = 0; |
1152 | overflow = FALSE; |
1153 | while (IS_DIGIT(ptr[1])) |
1154 | { |
1155 | if (s > INT_MAX / 10 - 1) /* Integer overflow */ |
1156 | { |
1157 | overflow = TRUE; |
1158 | break; |
1159 | } |
1160 | s = s * 10 + (int)(*(++ptr) - CHAR_0); |
1161 | } |
1162 | if (overflow) /* Integer overflow */ |
1163 | { |
1164 | while (IS_DIGIT(ptr[1])) |
1165 | ptr++; |
1166 | *errorcodeptr = ERR61; |
1167 | break; |
1168 | } |
1169 | |
1170 | if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET) |
1171 | { |
1172 | *errorcodeptr = ERR57; |
1173 | break; |
1174 | } |
1175 | |
1176 | if (s == 0) |
1177 | { |
1178 | *errorcodeptr = ERR58; |
1179 | break; |
1180 | } |
1181 | |
1182 | if (negated) |
1183 | { |
1184 | if (s > bracount) |
1185 | { |
1186 | *errorcodeptr = ERR15; |
1187 | break; |
1188 | } |
1189 | s = bracount - (s - 1); |
1190 | } |
1191 | |
1192 | escape = -s; |
1193 | break; |
1194 | |
1195 | /* The handling of escape sequences consisting of a string of digits |
1196 | starting with one that is not zero is not straightforward. Perl has changed |
1197 | over the years. Nowadays \g{} for backreferences and \o{} for octal are |
1198 | recommended to avoid the ambiguities in the old syntax. |
1199 | |
1200 | Outside a character class, the digits are read as a decimal number. If the |
1201 | number is less than 8 (used to be 10), or if there are that many previous |
1202 | extracting left brackets, then it is a back reference. Otherwise, up to |
1203 | three octal digits are read to form an escaped byte. Thus \123 is likely to |
1204 | be octal 123 (cf \0123, which is octal 012 followed by the literal 3). If |
1205 | the octal value is greater than 377, the least significant 8 bits are |
1206 | taken. \8 and \9 are treated as the literal characters 8 and 9. |
1207 | |
1208 | Inside a character class, \ followed by a digit is always either a literal |
1209 | 8 or 9 or an octal number. */ |
1210 | |
1211 | case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5: |
1212 | case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
1213 | |
1214 | if (!isclass) |
1215 | { |
1216 | oldptr = ptr; |
1217 | /* The integer range is limited by the machine's int representation. */ |
1218 | s = (int)(c -CHAR_0); |
1219 | overflow = FALSE; |
1220 | while (IS_DIGIT(ptr[1])) |
1221 | { |
1222 | if (s > INT_MAX / 10 - 1) /* Integer overflow */ |
1223 | { |
1224 | overflow = TRUE; |
1225 | break; |
1226 | } |
1227 | s = s * 10 + (int)(*(++ptr) - CHAR_0); |
1228 | } |
1229 | if (overflow) /* Integer overflow */ |
1230 | { |
1231 | while (IS_DIGIT(ptr[1])) |
1232 | ptr++; |
1233 | *errorcodeptr = ERR61; |
1234 | break; |
1235 | } |
1236 | if (s < 8 || s <= bracount) /* Check for back reference */ |
1237 | { |
1238 | escape = -s; |
1239 | break; |
1240 | } |
1241 | ptr = oldptr; /* Put the pointer back and fall through */ |
1242 | } |
1243 | |
1244 | /* Handle a digit following \ when the number is not a back reference. If |
1245 | the first digit is 8 or 9, Perl used to generate a binary zero byte and |
1246 | then treat the digit as a following literal. At least by Perl 5.18 this |
1247 | changed so as not to insert the binary zero. */ |
1248 | |
1249 | if ((c = *ptr) >= CHAR_8) break; |
1250 | |
1251 | /* Fall through with a digit less than 8 */ |
1252 | |
1253 | /* \0 always starts an octal number, but we may drop through to here with a |
1254 | larger first octal digit. The original code used just to take the least |
1255 | significant 8 bits of octal numbers (I think this is what early Perls used |
1256 | to do). Nowadays we allow for larger numbers in UTF-8 mode and 16-bit mode, |
1257 | but no more than 3 octal digits. */ |
1258 | |
1259 | case CHAR_0: |
1260 | c -= CHAR_0; |
1261 | while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7) |
1262 | c = c * 8 + *(++ptr) - CHAR_0; |
1263 | #ifdef COMPILE_PCRE8 |
1264 | if (!utf && c > 0xff) *errorcodeptr = ERR51; |
1265 | #endif |
1266 | break; |
1267 | |
1268 | /* \o is a relatively new Perl feature, supporting a more general way of |
1269 | specifying character codes in octal. The only supported form is \o{ddd}. */ |
1270 | |
1271 | case CHAR_o: |
1272 | if (ptr[1] != CHAR_LEFT_CURLY_BRACKET) *errorcodeptr = ERR81; else |
1273 | if (ptr[2] == CHAR_RIGHT_CURLY_BRACKET) *errorcodeptr = ERR86; else |
1274 | { |
1275 | ptr += 2; |
1276 | c = 0; |
1277 | overflow = FALSE; |
1278 | while (*ptr >= CHAR_0 && *ptr <= CHAR_7) |
1279 | { |
1280 | register pcre_uint32 cc = *ptr++; |
1281 | if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */ |
1282 | #ifdef COMPILE_PCRE32 |
1283 | if (c >= 0x20000000l) { overflow = TRUE; break; } |
1284 | #endif |
1285 | c = (c << 3) + cc - CHAR_0 ; |
1286 | #if defined COMPILE_PCRE8 |
1287 | if (c > (utf ? 0x10ffffU : 0xffU)) { overflow = TRUE; break; } |
1288 | #elif defined COMPILE_PCRE16 |
1289 | if (c > (utf ? 0x10ffffU : 0xffffU)) { overflow = TRUE; break; } |
1290 | #elif defined COMPILE_PCRE32 |
1291 | if (utf && c > 0x10ffffU) { overflow = TRUE; break; } |
1292 | #endif |
1293 | } |
1294 | if (overflow) |
1295 | { |
1296 | while (*ptr >= CHAR_0 && *ptr <= CHAR_7) ptr++; |
1297 | *errorcodeptr = ERR34; |
1298 | } |
1299 | else if (*ptr == CHAR_RIGHT_CURLY_BRACKET) |
1300 | { |
1301 | if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73; |
1302 | } |
1303 | else *errorcodeptr = ERR80; |
1304 | } |
1305 | break; |
1306 | |
1307 | /* \x is complicated. In JavaScript, \x must be followed by two hexadecimal |
1308 | numbers. Otherwise it is a lowercase x letter. */ |
1309 | |
1310 | case CHAR_x: |
1311 | if ((options & PCRE_JAVASCRIPT_COMPAT) != 0) |
1312 | { |
1313 | if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0 |
1314 | && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0) |
1315 | { |
1316 | c = 0; |
1317 | for (i = 0; i < 2; ++i) |
1318 | { |
1319 | register pcre_uint32 cc = *(++ptr); |
1320 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1321 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
1322 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
1323 | #else /* EBCDIC coding */ |
1324 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
1325 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
1326 | #endif |
1327 | } |
1328 | } |
1329 | } /* End JavaScript handling */ |
1330 | |
1331 | /* Handle \x in Perl's style. \x{ddd} is a character number which can be |
1332 | greater than 0xff in utf or non-8bit mode, but only if the ddd are hex |
1333 | digits. If not, { used to be treated as a data character. However, Perl |
1334 | seems to read hex digits up to the first non-such, and ignore the rest, so |
1335 | that, for example \x{zz} matches a binary zero. This seems crazy, so PCRE |
1336 | now gives an error. */ |
1337 | |
1338 | else |
1339 | { |
1340 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
1341 | { |
1342 | ptr += 2; |
1343 | if (*ptr == CHAR_RIGHT_CURLY_BRACKET) |
1344 | { |
1345 | *errorcodeptr = ERR86; |
1346 | break; |
1347 | } |
1348 | c = 0; |
1349 | overflow = FALSE; |
1350 | while (MAX_255(*ptr) && (digitab[*ptr] & ctype_xdigit) != 0) |
1351 | { |
1352 | register pcre_uint32 cc = *ptr++; |
1353 | if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */ |
1354 | |
1355 | #ifdef COMPILE_PCRE32 |
1356 | if (c >= 0x10000000l) { overflow = TRUE; break; } |
1357 | #endif |
1358 | |
1359 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1360 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
1361 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
1362 | #else /* EBCDIC coding */ |
1363 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
1364 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
1365 | #endif |
1366 | |
1367 | #if defined COMPILE_PCRE8 |
1368 | if (c > (utf ? 0x10ffffU : 0xffU)) { overflow = TRUE; break; } |
1369 | #elif defined COMPILE_PCRE16 |
1370 | if (c > (utf ? 0x10ffffU : 0xffffU)) { overflow = TRUE; break; } |
1371 | #elif defined COMPILE_PCRE32 |
1372 | if (utf && c > 0x10ffffU) { overflow = TRUE; break; } |
1373 | #endif |
1374 | } |
1375 | |
1376 | if (overflow) |
1377 | { |
1378 | while (MAX_255(*ptr) && (digitab[*ptr] & ctype_xdigit) != 0) ptr++; |
1379 | *errorcodeptr = ERR34; |
1380 | } |
1381 | |
1382 | else if (*ptr == CHAR_RIGHT_CURLY_BRACKET) |
1383 | { |
1384 | if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73; |
1385 | } |
1386 | |
1387 | /* If the sequence of hex digits does not end with '}', give an error. |
1388 | We used just to recognize this construct and fall through to the normal |
1389 | \x handling, but nowadays Perl gives an error, which seems much more |
1390 | sensible, so we do too. */ |
1391 | |
1392 | else *errorcodeptr = ERR79; |
1393 | } /* End of \x{} processing */ |
1394 | |
1395 | /* Read a single-byte hex-defined char (up to two hex digits after \x) */ |
1396 | |
1397 | else |
1398 | { |
1399 | c = 0; |
1400 | while (i++ < 2 && MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0) |
1401 | { |
1402 | pcre_uint32 cc; /* Some compilers don't like */ |
1403 | cc = *(++ptr); /* ++ in initializers */ |
1404 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1405 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
1406 | c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
1407 | #else /* EBCDIC coding */ |
1408 | if (cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
1409 | c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
1410 | #endif |
1411 | } |
1412 | } /* End of \xdd handling */ |
1413 | } /* End of Perl-style \x handling */ |
1414 | break; |
1415 | |
1416 | /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped. |
1417 | An error is given if the byte following \c is not an ASCII character. This |
1418 | coding is ASCII-specific, but then the whole concept of \cx is |
1419 | ASCII-specific. (However, an EBCDIC equivalent has now been added.) */ |
1420 | |
1421 | case CHAR_c: |
1422 | c = *(++ptr); |
1423 | if (c == CHAR_NULL) |
1424 | { |
1425 | *errorcodeptr = ERR2; |
1426 | break; |
1427 | } |
1428 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1429 | if (c > 127) /* Excludes all non-ASCII in either mode */ |
1430 | { |
1431 | *errorcodeptr = ERR68; |
1432 | break; |
1433 | } |
1434 | if (c >= CHAR_a && c <= CHAR_z) c -= 32; |
1435 | c ^= 0x40; |
1436 | #else /* EBCDIC coding */ |
1437 | if (c >= CHAR_a && c <= CHAR_z) c += 64; |
1438 | if (c == CHAR_QUESTION_MARK) |
1439 | c = ('\\' == 188 && '`' == 74)? 0x5f : 0xff; |
1440 | else |
1441 | { |
1442 | for (i = 0; i < 32; i++) |
1443 | { |
1444 | if (c == ebcdic_escape_c[i]) break; |
1445 | } |
1446 | if (i < 32) c = i; else *errorcodeptr = ERR68; |
1447 | } |
1448 | #endif |
1449 | break; |
1450 | |
1451 | /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any |
1452 | other alphanumeric following \ is an error if PCRE_EXTRA was set; |
1453 | otherwise, for Perl compatibility, it is a literal. This code looks a bit |
1454 | odd, but there used to be some cases other than the default, and there may |
1455 | be again in future, so I haven't "optimized" it. */ |
1456 | |
1457 | default: |
1458 | if ((options & PCRE_EXTRA) != 0) switch(c) |
1459 | { |
1460 | default: |
1461 | *errorcodeptr = ERR3; |
1462 | break; |
1463 | } |
1464 | break; |
1465 | } |
1466 | } |
1467 | |
1468 | /* Perl supports \N{name} for character names, as well as plain \N for "not |
1469 | newline". PCRE does not support \N{name}. However, it does support |
1470 | quantification such as \N{2,3}. */ |
1471 | |
1472 | if (escape == ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET && |
1473 | !is_counted_repeat(ptr+2)) |
1474 | *errorcodeptr = ERR37; |
1475 | |
1476 | /* If PCRE_UCP is set, we change the values for \d etc. */ |
1477 | |
1478 | if ((options & PCRE_UCP) != 0 && escape >= ESC_D && escape <= ESC_w) |
1479 | escape += (ESC_DU - ESC_D); |
1480 | |
1481 | /* Set the pointer to the final character before returning. */ |
1482 | |
1483 | *ptrptr = ptr; |
1484 | *chptr = c; |
1485 | return escape; |
1486 | } |
1487 | |
1488 | |
1489 | |
1490 | #ifdef SUPPORT_UCP |
1491 | /************************************************* |
1492 | * Handle \P and \p * |
1493 | *************************************************/ |
1494 | |
1495 | /* This function is called after \P or \p has been encountered, provided that |
1496 | PCRE is compiled with support for Unicode properties. On entry, ptrptr is |
1497 | pointing at the P or p. On exit, it is pointing at the final character of the |
1498 | escape sequence. |
1499 | |
1500 | Argument: |
1501 | ptrptr points to the pattern position pointer |
1502 | negptr points to a boolean that is set TRUE for negation else FALSE |
1503 | ptypeptr points to an unsigned int that is set to the type value |
1504 | pdataptr points to an unsigned int that is set to the detailed property value |
1505 | errorcodeptr points to the error code variable |
1506 | |
1507 | Returns: TRUE if the type value was found, or FALSE for an invalid type |
1508 | */ |
1509 | |
1510 | static BOOL |
1511 | get_ucp(const pcre_uchar **ptrptr, BOOL *negptr, unsigned int *ptypeptr, |
1512 | unsigned int *pdataptr, int *errorcodeptr) |
1513 | { |
1514 | pcre_uchar c; |
1515 | int i, bot, top; |
1516 | const pcre_uchar *ptr = *ptrptr; |
1517 | pcre_uchar name[32]; |
1518 | |
1519 | c = *(++ptr); |
1520 | if (c == CHAR_NULL) goto ERROR_RETURN; |
1521 | |
1522 | *negptr = FALSE; |
1523 | |
1524 | /* \P or \p can be followed by a name in {}, optionally preceded by ^ for |
1525 | negation. */ |
1526 | |
1527 | if (c == CHAR_LEFT_CURLY_BRACKET) |
1528 | { |
1529 | if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
1530 | { |
1531 | *negptr = TRUE; |
1532 | ptr++; |
1533 | } |
1534 | for (i = 0; i < (int)(sizeof(name) / sizeof(pcre_uchar)) - 1; i++) |
1535 | { |
1536 | c = *(++ptr); |
1537 | if (c == CHAR_NULL) goto ERROR_RETURN; |
1538 | if (c == CHAR_RIGHT_CURLY_BRACKET) break; |
1539 | name[i] = c; |
1540 | } |
1541 | if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN; |
1542 | name[i] = 0; |
1543 | } |
1544 | |
1545 | /* Otherwise there is just one following character */ |
1546 | |
1547 | else |
1548 | { |
1549 | name[0] = c; |
1550 | name[1] = 0; |
1551 | } |
1552 | |
1553 | *ptrptr = ptr; |
1554 | |
1555 | /* Search for a recognized property name using binary chop */ |
1556 | |
1557 | bot = 0; |
1558 | top = PRIV(utt_size); |
1559 | |
1560 | while (bot < top) |
1561 | { |
1562 | int r; |
1563 | i = (bot + top) >> 1; |
1564 | r = STRCMP_UC_C8(name, PRIV(utt_names) + PRIV(utt)[i].name_offset); |
1565 | if (r == 0) |
1566 | { |
1567 | *ptypeptr = PRIV(utt)[i].type; |
1568 | *pdataptr = PRIV(utt)[i].value; |
1569 | return TRUE; |
1570 | } |
1571 | if (r > 0) bot = i + 1; else top = i; |
1572 | } |
1573 | |
1574 | *errorcodeptr = ERR47; |
1575 | *ptrptr = ptr; |
1576 | return FALSE; |
1577 | |
1578 | ERROR_RETURN: |
1579 | *errorcodeptr = ERR46; |
1580 | *ptrptr = ptr; |
1581 | return FALSE; |
1582 | } |
1583 | #endif |
1584 | |
1585 | |
1586 | |
1587 | /************************************************* |
1588 | * Read repeat counts * |
1589 | *************************************************/ |
1590 | |
1591 | /* Read an item of the form {n,m} and return the values. This is called only |
1592 | after is_counted_repeat() has confirmed that a repeat-count quantifier exists, |
1593 | so the syntax is guaranteed to be correct, but we need to check the values. |
1594 | |
1595 | Arguments: |
1596 | p pointer to first char after '{' |
1597 | minp pointer to int for min |
1598 | maxp pointer to int for max |
1599 | returned as -1 if no max |
1600 | errorcodeptr points to error code variable |
1601 | |
1602 | Returns: pointer to '}' on success; |
1603 | current ptr on error, with errorcodeptr set non-zero |
1604 | */ |
1605 | |
1606 | static const pcre_uchar * |
1607 | read_repeat_counts(const pcre_uchar *p, int *minp, int *maxp, int *errorcodeptr) |
1608 | { |
1609 | int min = 0; |
1610 | int max = -1; |
1611 | |
1612 | while (IS_DIGIT(*p)) |
1613 | { |
1614 | min = min * 10 + (int)(*p++ - CHAR_0); |
1615 | if (min > 65535) |
1616 | { |
1617 | *errorcodeptr = ERR5; |
1618 | return p; |
1619 | } |
1620 | } |
1621 | |
1622 | if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else |
1623 | { |
1624 | if (*(++p) != CHAR_RIGHT_CURLY_BRACKET) |
1625 | { |
1626 | max = 0; |
1627 | while(IS_DIGIT(*p)) |
1628 | { |
1629 | max = max * 10 + (int)(*p++ - CHAR_0); |
1630 | if (max > 65535) |
1631 | { |
1632 | *errorcodeptr = ERR5; |
1633 | return p; |
1634 | } |
1635 | } |
1636 | if (max < min) |
1637 | { |
1638 | *errorcodeptr = ERR4; |
1639 | return p; |
1640 | } |
1641 | } |
1642 | } |
1643 | |
1644 | *minp = min; |
1645 | *maxp = max; |
1646 | return p; |
1647 | } |
1648 | |
1649 | |
1650 | |
1651 | /************************************************* |
1652 | * Find first significant op code * |
1653 | *************************************************/ |
1654 | |
1655 | /* This is called by several functions that scan a compiled expression looking |
1656 | for a fixed first character, or an anchoring op code etc. It skips over things |
1657 | that do not influence this. For some calls, it makes sense to skip negative |
1658 | forward and all backward assertions, and also the \b assertion; for others it |
1659 | does not. |
1660 | |
1661 | Arguments: |
1662 | code pointer to the start of the group |
1663 | skipassert TRUE if certain assertions are to be skipped |
1664 | |
1665 | Returns: pointer to the first significant opcode |
1666 | */ |
1667 | |
1668 | static const pcre_uchar* |
1669 | first_significant_code(const pcre_uchar *code, BOOL skipassert) |
1670 | { |
1671 | for (;;) |
1672 | { |
1673 | switch ((int)*code) |
1674 | { |
1675 | case OP_ASSERT_NOT: |
1676 | case OP_ASSERTBACK: |
1677 | case OP_ASSERTBACK_NOT: |
1678 | if (!skipassert) return code; |
1679 | do code += GET(code, 1); while (*code == OP_ALT); |
1680 | code += PRIV(OP_lengths)[*code]; |
1681 | break; |
1682 | |
1683 | case OP_WORD_BOUNDARY: |
1684 | case OP_NOT_WORD_BOUNDARY: |
1685 | if (!skipassert) return code; |
1686 | /* Fall through */ |
1687 | |
1688 | case OP_CALLOUT: |
1689 | case OP_CREF: |
1690 | case OP_DNCREF: |
1691 | case OP_RREF: |
1692 | case OP_DNRREF: |
1693 | case OP_DEF: |
1694 | code += PRIV(OP_lengths)[*code]; |
1695 | break; |
1696 | |
1697 | default: |
1698 | return code; |
1699 | } |
1700 | } |
1701 | /* Control never reaches here */ |
1702 | } |
1703 | |
1704 | |
1705 | |
1706 | /************************************************* |
1707 | * Find the fixed length of a branch * |
1708 | *************************************************/ |
1709 | |
1710 | /* Scan a branch and compute the fixed length of subject that will match it, |
1711 | if the length is fixed. This is needed for dealing with backward assertions. |
1712 | In UTF8 mode, the result is in characters rather than bytes. The branch is |
1713 | temporarily terminated with OP_END when this function is called. |
1714 | |
1715 | This function is called when a backward assertion is encountered, so that if it |
1716 | fails, the error message can point to the correct place in the pattern. |
1717 | However, we cannot do this when the assertion contains subroutine calls, |
1718 | because they can be forward references. We solve this by remembering this case |
1719 | and doing the check at the end; a flag specifies which mode we are running in. |
1720 | |
1721 | Arguments: |
1722 | code points to the start of the pattern (the bracket) |
1723 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
1724 | atend TRUE if called when the pattern is complete |
1725 | cd the "compile data" structure |
1726 | recurses chain of recurse_check to catch mutual recursion |
1727 | |
1728 | Returns: the fixed length, |
1729 | or -1 if there is no fixed length, |
1730 | or -2 if \C was encountered (in UTF-8 mode only) |
1731 | or -3 if an OP_RECURSE item was encountered and atend is FALSE |
1732 | or -4 if an unknown opcode was encountered (internal error) |
1733 | */ |
1734 | |
1735 | static int |
1736 | find_fixedlength(pcre_uchar *code, BOOL utf, BOOL atend, compile_data *cd, |
1737 | recurse_check *recurses) |
1738 | { |
1739 | int length = -1; |
1740 | recurse_check this_recurse; |
1741 | register int branchlength = 0; |
1742 | register pcre_uchar *cc = code + 1 + LINK_SIZE; |
1743 | |
1744 | /* Scan along the opcodes for this branch. If we get to the end of the |
1745 | branch, check the length against that of the other branches. */ |
1746 | |
1747 | for (;;) |
1748 | { |
1749 | int d; |
1750 | pcre_uchar *ce, *cs; |
1751 | register pcre_uchar op = *cc; |
1752 | |
1753 | switch (op) |
1754 | { |
1755 | /* We only need to continue for OP_CBRA (normal capturing bracket) and |
1756 | OP_BRA (normal non-capturing bracket) because the other variants of these |
1757 | opcodes are all concerned with unlimited repeated groups, which of course |
1758 | are not of fixed length. */ |
1759 | |
1760 | case OP_CBRA: |
1761 | case OP_BRA: |
1762 | case OP_ONCE: |
1763 | case OP_ONCE_NC: |
1764 | case OP_COND: |
1765 | d = find_fixedlength(cc + ((op == OP_CBRA)? IMM2_SIZE : 0), utf, atend, cd, |
1766 | recurses); |
1767 | if (d < 0) return d; |
1768 | branchlength += d; |
1769 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1770 | cc += 1 + LINK_SIZE; |
1771 | break; |
1772 | |
1773 | /* Reached end of a branch; if it's a ket it is the end of a nested call. |
1774 | If it's ALT it is an alternation in a nested call. An ACCEPT is effectively |
1775 | an ALT. If it is END it's the end of the outer call. All can be handled by |
1776 | the same code. Note that we must not include the OP_KETRxxx opcodes here, |
1777 | because they all imply an unlimited repeat. */ |
1778 | |
1779 | case OP_ALT: |
1780 | case OP_KET: |
1781 | case OP_END: |
1782 | case OP_ACCEPT: |
1783 | case OP_ASSERT_ACCEPT: |
1784 | if (length < 0) length = branchlength; |
1785 | else if (length != branchlength) return -1; |
1786 | if (*cc != OP_ALT) return length; |
1787 | cc += 1 + LINK_SIZE; |
1788 | branchlength = 0; |
1789 | break; |
1790 | |
1791 | /* A true recursion implies not fixed length, but a subroutine call may |
1792 | be OK. If the subroutine is a forward reference, we can't deal with |
1793 | it until the end of the pattern, so return -3. */ |
1794 | |
1795 | case OP_RECURSE: |
1796 | if (!atend) return -3; |
1797 | cs = ce = (pcre_uchar *)cd->start_code + GET(cc, 1); /* Start subpattern */ |
1798 | do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */ |
1799 | if (cc > cs && cc < ce) return -1; /* Recursion */ |
1800 | else /* Check for mutual recursion */ |
1801 | { |
1802 | recurse_check *r = recurses; |
1803 | for (r = recurses; r != NULL; r = r->prev) if (r->group == cs) break; |
1804 | if (r != NULL) return -1; /* Mutual recursion */ |
1805 | } |
1806 | this_recurse.prev = recurses; |
1807 | this_recurse.group = cs; |
1808 | d = find_fixedlength(cs + IMM2_SIZE, utf, atend, cd, &this_recurse); |
1809 | if (d < 0) return d; |
1810 | branchlength += d; |
1811 | cc += 1 + LINK_SIZE; |
1812 | break; |
1813 | |
1814 | /* Skip over assertive subpatterns */ |
1815 | |
1816 | case OP_ASSERT: |
1817 | case OP_ASSERT_NOT: |
1818 | case OP_ASSERTBACK: |
1819 | case OP_ASSERTBACK_NOT: |
1820 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1821 | cc += 1 + LINK_SIZE; |
1822 | break; |
1823 | |
1824 | /* Skip over things that don't match chars */ |
1825 | |
1826 | case OP_MARK: |
1827 | case OP_PRUNE_ARG: |
1828 | case OP_SKIP_ARG: |
1829 | case OP_THEN_ARG: |
1830 | cc += cc[1] + PRIV(OP_lengths)[*cc]; |
1831 | break; |
1832 | |
1833 | case OP_CALLOUT: |
1834 | case OP_CIRC: |
1835 | case OP_CIRCM: |
1836 | case OP_CLOSE: |
1837 | case OP_COMMIT: |
1838 | case OP_CREF: |
1839 | case OP_DEF: |
1840 | case OP_DNCREF: |
1841 | case OP_DNRREF: |
1842 | case OP_DOLL: |
1843 | case OP_DOLLM: |
1844 | case OP_EOD: |
1845 | case OP_EODN: |
1846 | case OP_FAIL: |
1847 | case OP_NOT_WORD_BOUNDARY: |
1848 | case OP_PRUNE: |
1849 | case OP_REVERSE: |
1850 | case OP_RREF: |
1851 | case OP_SET_SOM: |
1852 | case OP_SKIP: |
1853 | case OP_SOD: |
1854 | case OP_SOM: |
1855 | case OP_THEN: |
1856 | case OP_WORD_BOUNDARY: |
1857 | cc += PRIV(OP_lengths)[*cc]; |
1858 | break; |
1859 | |
1860 | /* Handle literal characters */ |
1861 | |
1862 | case OP_CHAR: |
1863 | case OP_CHARI: |
1864 | case OP_NOT: |
1865 | case OP_NOTI: |
1866 | branchlength++; |
1867 | cc += 2; |
1868 | #ifdef SUPPORT_UTF |
1869 | if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]); |
1870 | #endif |
1871 | break; |
1872 | |
1873 | /* Handle exact repetitions. The count is already in characters, but we |
1874 | need to skip over a multibyte character in UTF8 mode. */ |
1875 | |
1876 | case OP_EXACT: |
1877 | case OP_EXACTI: |
1878 | case OP_NOTEXACT: |
1879 | case OP_NOTEXACTI: |
1880 | branchlength += (int)GET2(cc,1); |
1881 | cc += 2 + IMM2_SIZE; |
1882 | #ifdef SUPPORT_UTF |
1883 | if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]); |
1884 | #endif |
1885 | break; |
1886 | |
1887 | case OP_TYPEEXACT: |
1888 | branchlength += GET2(cc,1); |
1889 | if (cc[1 + IMM2_SIZE] == OP_PROP || cc[1 + IMM2_SIZE] == OP_NOTPROP) |
1890 | cc += 2; |
1891 | cc += 1 + IMM2_SIZE + 1; |
1892 | break; |
1893 | |
1894 | /* Handle single-char matchers */ |
1895 | |
1896 | case OP_PROP: |
1897 | case OP_NOTPROP: |
1898 | cc += 2; |
1899 | /* Fall through */ |
1900 | |
1901 | case OP_HSPACE: |
1902 | case OP_VSPACE: |
1903 | case OP_NOT_HSPACE: |
1904 | case OP_NOT_VSPACE: |
1905 | case OP_NOT_DIGIT: |
1906 | case OP_DIGIT: |
1907 | case OP_NOT_WHITESPACE: |
1908 | case OP_WHITESPACE: |
1909 | case OP_NOT_WORDCHAR: |
1910 | case OP_WORDCHAR: |
1911 | case OP_ANY: |
1912 | case OP_ALLANY: |
1913 | branchlength++; |
1914 | cc++; |
1915 | break; |
1916 | |
1917 | /* The single-byte matcher isn't allowed. This only happens in UTF-8 mode; |
1918 | otherwise \C is coded as OP_ALLANY. */ |
1919 | |
1920 | case OP_ANYBYTE: |
1921 | return -2; |
1922 | |
1923 | /* Check a class for variable quantification */ |
1924 | |
1925 | case OP_CLASS: |
1926 | case OP_NCLASS: |
1927 | #if defined SUPPORT_UTF || defined COMPILE_PCRE16 || defined COMPILE_PCRE32 |
1928 | case OP_XCLASS: |
1929 | /* The original code caused an unsigned overflow in 64 bit systems, |
1930 | so now we use a conditional statement. */ |
1931 | if (op == OP_XCLASS) |
1932 | cc += GET(cc, 1); |
1933 | else |
1934 | cc += PRIV(OP_lengths)[OP_CLASS]; |
1935 | #else |
1936 | cc += PRIV(OP_lengths)[OP_CLASS]; |
1937 | #endif |
1938 | |
1939 | switch (*cc) |
1940 | { |
1941 | case OP_CRSTAR: |
1942 | case OP_CRMINSTAR: |
1943 | case OP_CRPLUS: |
1944 | case OP_CRMINPLUS: |
1945 | case OP_CRQUERY: |
1946 | case OP_CRMINQUERY: |
1947 | case OP_CRPOSSTAR: |
1948 | case OP_CRPOSPLUS: |
1949 | case OP_CRPOSQUERY: |
1950 | return -1; |
1951 | |
1952 | case OP_CRRANGE: |
1953 | case OP_CRMINRANGE: |
1954 | case OP_CRPOSRANGE: |
1955 | if (GET2(cc,1) != GET2(cc,1+IMM2_SIZE)) return -1; |
1956 | branchlength += (int)GET2(cc,1); |
1957 | cc += 1 + 2 * IMM2_SIZE; |
1958 | break; |
1959 | |
1960 | default: |
1961 | branchlength++; |
1962 | } |
1963 | break; |
1964 | |
1965 | /* Anything else is variable length */ |
1966 | |
1967 | case OP_ANYNL: |
1968 | case OP_BRAMINZERO: |
1969 | case OP_BRAPOS: |
1970 | case OP_BRAPOSZERO: |
1971 | case OP_BRAZERO: |
1972 | case OP_CBRAPOS: |
1973 | case OP_EXTUNI: |
1974 | case OP_KETRMAX: |
1975 | case OP_KETRMIN: |
1976 | case OP_KETRPOS: |
1977 | case OP_MINPLUS: |
1978 | case OP_MINPLUSI: |
1979 | case OP_MINQUERY: |
1980 | case OP_MINQUERYI: |
1981 | case OP_MINSTAR: |
1982 | case OP_MINSTARI: |
1983 | case OP_MINUPTO: |
1984 | case OP_MINUPTOI: |
1985 | case OP_NOTMINPLUS: |
1986 | case OP_NOTMINPLUSI: |
1987 | case OP_NOTMINQUERY: |
1988 | case OP_NOTMINQUERYI: |
1989 | case OP_NOTMINSTAR: |
1990 | case OP_NOTMINSTARI: |
1991 | case OP_NOTMINUPTO: |
1992 | case OP_NOTMINUPTOI: |
1993 | case OP_NOTPLUS: |
1994 | case OP_NOTPLUSI: |
1995 | case OP_NOTPOSPLUS: |
1996 | case OP_NOTPOSPLUSI: |
1997 | case OP_NOTPOSQUERY: |
1998 | case OP_NOTPOSQUERYI: |
1999 | case OP_NOTPOSSTAR: |
2000 | case OP_NOTPOSSTARI: |
2001 | case OP_NOTPOSUPTO: |
2002 | case OP_NOTPOSUPTOI: |
2003 | case OP_NOTQUERY: |
2004 | case OP_NOTQUERYI: |
2005 | case OP_NOTSTAR: |
2006 | case OP_NOTSTARI: |
2007 | case OP_NOTUPTO: |
2008 | case OP_NOTUPTOI: |
2009 | case OP_PLUS: |
2010 | case OP_PLUSI: |
2011 | case OP_POSPLUS: |
2012 | case OP_POSPLUSI: |
2013 | case OP_POSQUERY: |
2014 | case OP_POSQUERYI: |
2015 | case OP_POSSTAR: |
2016 | case OP_POSSTARI: |
2017 | case OP_POSUPTO: |
2018 | case OP_POSUPTOI: |
2019 | case OP_QUERY: |
2020 | case OP_QUERYI: |
2021 | case OP_REF: |
2022 | case OP_REFI: |
2023 | case OP_DNREF: |
2024 | case OP_DNREFI: |
2025 | case OP_SBRA: |
2026 | case OP_SBRAPOS: |
2027 | case OP_SCBRA: |
2028 | case OP_SCBRAPOS: |
2029 | case OP_SCOND: |
2030 | case OP_SKIPZERO: |
2031 | case OP_STAR: |
2032 | case OP_STARI: |
2033 | case OP_TYPEMINPLUS: |
2034 | case OP_TYPEMINQUERY: |
2035 | case OP_TYPEMINSTAR: |
2036 | case OP_TYPEMINUPTO: |
2037 | case OP_TYPEPLUS: |
2038 | case OP_TYPEPOSPLUS: |
2039 | case OP_TYPEPOSQUERY: |
2040 | case OP_TYPEPOSSTAR: |
2041 | case OP_TYPEPOSUPTO: |
2042 | case OP_TYPEQUERY: |
2043 | case OP_TYPESTAR: |
2044 | case OP_TYPEUPTO: |
2045 | case OP_UPTO: |
2046 | case OP_UPTOI: |
2047 | return -1; |
2048 | |
2049 | /* Catch unrecognized opcodes so that when new ones are added they |
2050 | are not forgotten, as has happened in the past. */ |
2051 | |
2052 | default: |
2053 | return -4; |
2054 | } |
2055 | } |
2056 | /* Control never gets here */ |
2057 | } |
2058 | |
2059 | |
2060 | |
2061 | /************************************************* |
2062 | * Scan compiled regex for specific bracket * |
2063 | *************************************************/ |
2064 | |
2065 | /* This little function scans through a compiled pattern until it finds a |
2066 | capturing bracket with the given number, or, if the number is negative, an |
2067 | instance of OP_REVERSE for a lookbehind. The function is global in the C sense |
2068 | so that it can be called from pcre_study() when finding the minimum matching |
2069 | length. |
2070 | |
2071 | Arguments: |
2072 | code points to start of expression |
2073 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
2074 | number the required bracket number or negative to find a lookbehind |
2075 | |
2076 | Returns: pointer to the opcode for the bracket, or NULL if not found |
2077 | */ |
2078 | |
2079 | const pcre_uchar * |
2080 | PRIV(find_bracket)(const pcre_uchar *code, BOOL utf, int number) |
2081 | { |
2082 | for (;;) |
2083 | { |
2084 | register pcre_uchar c = *code; |
2085 | |
2086 | if (c == OP_END) return NULL; |
2087 | |
2088 | /* XCLASS is used for classes that cannot be represented just by a bit |
2089 | map. This includes negated single high-valued characters. The length in |
2090 | the table is zero; the actual length is stored in the compiled code. */ |
2091 | |
2092 | if (c == OP_XCLASS) code += GET(code, 1); |
2093 | |
2094 | /* Handle recursion */ |
2095 | |
2096 | else if (c == OP_REVERSE) |
2097 | { |
2098 | if (number < 0) return (pcre_uchar *)code; |
2099 | code += PRIV(OP_lengths)[c]; |
2100 | } |
2101 | |
2102 | /* Handle capturing bracket */ |
2103 | |
2104 | else if (c == OP_CBRA || c == OP_SCBRA || |
2105 | c == OP_CBRAPOS || c == OP_SCBRAPOS) |
2106 | { |
2107 | int n = (int)GET2(code, 1+LINK_SIZE); |
2108 | if (n == number) return (pcre_uchar *)code; |
2109 | code += PRIV(OP_lengths)[c]; |
2110 | } |
2111 | |
2112 | /* Otherwise, we can get the item's length from the table, except that for |
2113 | repeated character types, we have to test for \p and \P, which have an extra |
2114 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
2115 | must add in its length. */ |
2116 | |
2117 | else |
2118 | { |
2119 | switch(c) |
2120 | { |
2121 | case OP_TYPESTAR: |
2122 | case OP_TYPEMINSTAR: |
2123 | case OP_TYPEPLUS: |
2124 | case OP_TYPEMINPLUS: |
2125 | case OP_TYPEQUERY: |
2126 | case OP_TYPEMINQUERY: |
2127 | case OP_TYPEPOSSTAR: |
2128 | case OP_TYPEPOSPLUS: |
2129 | case OP_TYPEPOSQUERY: |
2130 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2131 | break; |
2132 | |
2133 | case OP_TYPEUPTO: |
2134 | case OP_TYPEMINUPTO: |
2135 | case OP_TYPEEXACT: |
2136 | case OP_TYPEPOSUPTO: |
2137 | if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP) |
2138 | code += 2; |
2139 | break; |
2140 | |
2141 | case OP_MARK: |
2142 | case OP_PRUNE_ARG: |
2143 | case OP_SKIP_ARG: |
2144 | case OP_THEN_ARG: |
2145 | code += code[1]; |
2146 | break; |
2147 | } |
2148 | |
2149 | /* Add in the fixed length from the table */ |
2150 | |
2151 | code += PRIV(OP_lengths)[c]; |
2152 | |
2153 | /* In UTF-8 mode, opcodes that are followed by a character may be followed by |
2154 | a multi-byte character. The length in the table is a minimum, so we have to |
2155 | arrange to skip the extra bytes. */ |
2156 | |
2157 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
2158 | if (utf) switch(c) |
2159 | { |
2160 | case OP_CHAR: |
2161 | case OP_CHARI: |
2162 | case OP_NOT: |
2163 | case OP_NOTI: |
2164 | case OP_EXACT: |
2165 | case OP_EXACTI: |
2166 | case OP_NOTEXACT: |
2167 | case OP_NOTEXACTI: |
2168 | case OP_UPTO: |
2169 | case OP_UPTOI: |
2170 | case OP_NOTUPTO: |
2171 | case OP_NOTUPTOI: |
2172 | case OP_MINUPTO: |
2173 | case OP_MINUPTOI: |
2174 | case OP_NOTMINUPTO: |
2175 | case OP_NOTMINUPTOI: |
2176 | case OP_POSUPTO: |
2177 | case OP_POSUPTOI: |
2178 | case OP_NOTPOSUPTO: |
2179 | case OP_NOTPOSUPTOI: |
2180 | case OP_STAR: |
2181 | case OP_STARI: |
2182 | case OP_NOTSTAR: |
2183 | case OP_NOTSTARI: |
2184 | case OP_MINSTAR: |
2185 | case OP_MINSTARI: |
2186 | case OP_NOTMINSTAR: |
2187 | case OP_NOTMINSTARI: |
2188 | case OP_POSSTAR: |
2189 | case OP_POSSTARI: |
2190 | case OP_NOTPOSSTAR: |
2191 | case OP_NOTPOSSTARI: |
2192 | case OP_PLUS: |
2193 | case OP_PLUSI: |
2194 | case OP_NOTPLUS: |
2195 | case OP_NOTPLUSI: |
2196 | case OP_MINPLUS: |
2197 | case OP_MINPLUSI: |
2198 | case OP_NOTMINPLUS: |
2199 | case OP_NOTMINPLUSI: |
2200 | case OP_POSPLUS: |
2201 | case OP_POSPLUSI: |
2202 | case OP_NOTPOSPLUS: |
2203 | case OP_NOTPOSPLUSI: |
2204 | case OP_QUERY: |
2205 | case OP_QUERYI: |
2206 | case OP_NOTQUERY: |
2207 | case OP_NOTQUERYI: |
2208 | case OP_MINQUERY: |
2209 | case OP_MINQUERYI: |
2210 | case OP_NOTMINQUERY: |
2211 | case OP_NOTMINQUERYI: |
2212 | case OP_POSQUERY: |
2213 | case OP_POSQUERYI: |
2214 | case OP_NOTPOSQUERY: |
2215 | case OP_NOTPOSQUERYI: |
2216 | if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]); |
2217 | break; |
2218 | } |
2219 | #else |
2220 | (void)(utf); /* Keep compiler happy by referencing function argument */ |
2221 | #endif |
2222 | } |
2223 | } |
2224 | } |
2225 | |
2226 | |
2227 | |
2228 | /************************************************* |
2229 | * Scan compiled regex for recursion reference * |
2230 | *************************************************/ |
2231 | |
2232 | /* This little function scans through a compiled pattern until it finds an |
2233 | instance of OP_RECURSE. |
2234 | |
2235 | Arguments: |
2236 | code points to start of expression |
2237 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
2238 | |
2239 | Returns: pointer to the opcode for OP_RECURSE, or NULL if not found |
2240 | */ |
2241 | |
2242 | static const pcre_uchar * |
2243 | find_recurse(const pcre_uchar *code, BOOL utf) |
2244 | { |
2245 | for (;;) |
2246 | { |
2247 | register pcre_uchar c = *code; |
2248 | if (c == OP_END) return NULL; |
2249 | if (c == OP_RECURSE) return code; |
2250 | |
2251 | /* XCLASS is used for classes that cannot be represented just by a bit |
2252 | map. This includes negated single high-valued characters. The length in |
2253 | the table is zero; the actual length is stored in the compiled code. */ |
2254 | |
2255 | if (c == OP_XCLASS) code += GET(code, 1); |
2256 | |
2257 | /* Otherwise, we can get the item's length from the table, except that for |
2258 | repeated character types, we have to test for \p and \P, which have an extra |
2259 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
2260 | must add in its length. */ |
2261 | |
2262 | else |
2263 | { |
2264 | switch(c) |
2265 | { |
2266 | case OP_TYPESTAR: |
2267 | case OP_TYPEMINSTAR: |
2268 | case OP_TYPEPLUS: |
2269 | case OP_TYPEMINPLUS: |
2270 | case OP_TYPEQUERY: |
2271 | case OP_TYPEMINQUERY: |
2272 | case OP_TYPEPOSSTAR: |
2273 | case OP_TYPEPOSPLUS: |
2274 | case OP_TYPEPOSQUERY: |
2275 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2276 | break; |
2277 | |
2278 | case OP_TYPEPOSUPTO: |
2279 | case OP_TYPEUPTO: |
2280 | case OP_TYPEMINUPTO: |
2281 | case OP_TYPEEXACT: |
2282 | if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP) |
2283 | code += 2; |
2284 | break; |
2285 | |
2286 | case OP_MARK: |
2287 | case OP_PRUNE_ARG: |
2288 | case OP_SKIP_ARG: |
2289 | case OP_THEN_ARG: |
2290 | code += code[1]; |
2291 | break; |
2292 | } |
2293 | |
2294 | /* Add in the fixed length from the table */ |
2295 | |
2296 | code += PRIV(OP_lengths)[c]; |
2297 | |
2298 | /* In UTF-8 mode, opcodes that are followed by a character may be followed |
2299 | by a multi-byte character. The length in the table is a minimum, so we have |
2300 | to arrange to skip the extra bytes. */ |
2301 | |
2302 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
2303 | if (utf) switch(c) |
2304 | { |
2305 | case OP_CHAR: |
2306 | case OP_CHARI: |
2307 | case OP_NOT: |
2308 | case OP_NOTI: |
2309 | case OP_EXACT: |
2310 | case OP_EXACTI: |
2311 | case OP_NOTEXACT: |
2312 | case OP_NOTEXACTI: |
2313 | case OP_UPTO: |
2314 | case OP_UPTOI: |
2315 | case OP_NOTUPTO: |
2316 | case OP_NOTUPTOI: |
2317 | case OP_MINUPTO: |
2318 | case OP_MINUPTOI: |
2319 | case OP_NOTMINUPTO: |
2320 | case OP_NOTMINUPTOI: |
2321 | case OP_POSUPTO: |
2322 | case OP_POSUPTOI: |
2323 | case OP_NOTPOSUPTO: |
2324 | case OP_NOTPOSUPTOI: |
2325 | case OP_STAR: |
2326 | case OP_STARI: |
2327 | case OP_NOTSTAR: |
2328 | case OP_NOTSTARI: |
2329 | case OP_MINSTAR: |
2330 | case OP_MINSTARI: |
2331 | case OP_NOTMINSTAR: |
2332 | case OP_NOTMINSTARI: |
2333 | case OP_POSSTAR: |
2334 | case OP_POSSTARI: |
2335 | case OP_NOTPOSSTAR: |
2336 | case OP_NOTPOSSTARI: |
2337 | case OP_PLUS: |
2338 | case OP_PLUSI: |
2339 | case OP_NOTPLUS: |
2340 | case OP_NOTPLUSI: |
2341 | case OP_MINPLUS: |
2342 | case OP_MINPLUSI: |
2343 | case OP_NOTMINPLUS: |
2344 | case OP_NOTMINPLUSI: |
2345 | case OP_POSPLUS: |
2346 | case OP_POSPLUSI: |
2347 | case OP_NOTPOSPLUS: |
2348 | case OP_NOTPOSPLUSI: |
2349 | case OP_QUERY: |
2350 | case OP_QUERYI: |
2351 | case OP_NOTQUERY: |
2352 | case OP_NOTQUERYI: |
2353 | case OP_MINQUERY: |
2354 | case OP_MINQUERYI: |
2355 | case OP_NOTMINQUERY: |
2356 | case OP_NOTMINQUERYI: |
2357 | case OP_POSQUERY: |
2358 | case OP_POSQUERYI: |
2359 | case OP_NOTPOSQUERY: |
2360 | case OP_NOTPOSQUERYI: |
2361 | if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]); |
2362 | break; |
2363 | } |
2364 | #else |
2365 | (void)(utf); /* Keep compiler happy by referencing function argument */ |
2366 | #endif |
2367 | } |
2368 | } |
2369 | } |
2370 | |
2371 | |
2372 | |
2373 | /************************************************* |
2374 | * Scan compiled branch for non-emptiness * |
2375 | *************************************************/ |
2376 | |
2377 | /* This function scans through a branch of a compiled pattern to see whether it |
2378 | can match the empty string or not. It is called from could_be_empty() |
2379 | below and from compile_branch() when checking for an unlimited repeat of a |
2380 | group that can match nothing. Note that first_significant_code() skips over |
2381 | backward and negative forward assertions when its final argument is TRUE. If we |
2382 | hit an unclosed bracket, we return "empty" - this means we've struck an inner |
2383 | bracket whose current branch will already have been scanned. |
2384 | |
2385 | Arguments: |
2386 | code points to start of search |
2387 | endcode points to where to stop |
2388 | utf TRUE if in UTF-8 / UTF-16 / UTF-32 mode |
2389 | cd contains pointers to tables etc. |
2390 | recurses chain of recurse_check to catch mutual recursion |
2391 | |
2392 | Returns: TRUE if what is matched could be empty |
2393 | */ |
2394 | |
2395 | static BOOL |
2396 | could_be_empty_branch(const pcre_uchar *code, const pcre_uchar *endcode, |
2397 | BOOL utf, compile_data *cd, recurse_check *recurses) |
2398 | { |
2399 | register pcre_uchar c; |
2400 | recurse_check this_recurse; |
2401 | |
2402 | for (code = first_significant_code(code + PRIV(OP_lengths)[*code], TRUE); |
2403 | code < endcode; |
2404 | code = first_significant_code(code + PRIV(OP_lengths)[c], TRUE)) |
2405 | { |
2406 | const pcre_uchar *ccode; |
2407 | |
2408 | c = *code; |
2409 | |
2410 | /* Skip over forward assertions; the other assertions are skipped by |
2411 | first_significant_code() with a TRUE final argument. */ |
2412 | |
2413 | if (c == OP_ASSERT) |
2414 | { |
2415 | do code += GET(code, 1); while (*code == OP_ALT); |
2416 | c = *code; |
2417 | continue; |
2418 | } |
2419 | |
2420 | /* For a recursion/subroutine call, if its end has been reached, which |
2421 | implies a backward reference subroutine call, we can scan it. If it's a |
2422 | forward reference subroutine call, we can't. To detect forward reference |
2423 | we have to scan up the list that is kept in the workspace. This function is |
2424 | called only when doing the real compile, not during the pre-compile that |
2425 | measures the size of the compiled pattern. */ |
2426 | |
2427 | if (c == OP_RECURSE) |
2428 | { |
2429 | const pcre_uchar *scode = cd->start_code + GET(code, 1); |
2430 | const pcre_uchar *endgroup = scode; |
2431 | BOOL empty_branch; |
2432 | |
2433 | /* Test for forward reference or uncompleted reference. This is disabled |
2434 | when called to scan a completed pattern by setting cd->start_workspace to |
2435 | NULL. */ |
2436 | |
2437 | if (cd->start_workspace != NULL) |
2438 | { |
2439 | const pcre_uchar *tcode; |
2440 | for (tcode = cd->start_workspace; tcode < cd->hwm; tcode += LINK_SIZE) |
2441 | if ((int)GET(tcode, 0) == (int)(code + 1 - cd->start_code)) return TRUE; |
2442 | if (GET(scode, 1) == 0) return TRUE; /* Unclosed */ |
2443 | } |
2444 | |
2445 | /* If the reference is to a completed group, we need to detect whether this |
2446 | is a recursive call, as otherwise there will be an infinite loop. If it is |
2447 | a recursion, just skip over it. Simple recursions are easily detected. For |
2448 | mutual recursions we keep a chain on the stack. */ |
2449 | |
2450 | do endgroup += GET(endgroup, 1); while (*endgroup == OP_ALT); |
2451 | if (code >= scode && code <= endgroup) continue; /* Simple recursion */ |
2452 | else |
2453 | { |
2454 | recurse_check *r = recurses; |
2455 | for (r = recurses; r != NULL; r = r->prev) |
2456 | if (r->group == scode) break; |
2457 | if (r != NULL) continue; /* Mutual recursion */ |
2458 | } |
2459 | |
2460 | /* Completed reference; scan the referenced group, remembering it on the |
2461 | stack chain to detect mutual recursions. */ |
2462 | |
2463 | empty_branch = FALSE; |
2464 | this_recurse.prev = recurses; |
2465 | this_recurse.group = scode; |
2466 | |
2467 | do |
2468 | { |
2469 | if (could_be_empty_branch(scode, endcode, utf, cd, &this_recurse)) |
2470 | { |
2471 | empty_branch = TRUE; |
2472 | break; |
2473 | } |
2474 | scode += GET(scode, 1); |
2475 | } |
2476 | while (*scode == OP_ALT); |
2477 | |
2478 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
2479 | continue; |
2480 | } |
2481 | |
2482 | /* Groups with zero repeats can of course be empty; skip them. */ |
2483 | |
2484 | if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO || |
2485 | c == OP_BRAPOSZERO) |
2486 | { |
2487 | code += PRIV(OP_lengths)[c]; |
2488 | do code += GET(code, 1); while (*code == OP_ALT); |
2489 | c = *code; |
2490 | continue; |
2491 | } |
2492 | |
2493 | /* A nested group that is already marked as "could be empty" can just be |
2494 | skipped. */ |
2495 | |
2496 | if (c == OP_SBRA || c == OP_SBRAPOS || |
2497 | c == OP_SCBRA || c == OP_SCBRAPOS) |
2498 | { |
2499 | do code += GET(code, 1); while (*code == OP_ALT); |
2500 | c = *code; |
2501 | continue; |
2502 | } |
2503 | |
2504 | /* For other groups, scan the branches. */ |
2505 | |
2506 | if (c == OP_BRA || c == OP_BRAPOS || |
2507 | c == OP_CBRA || c == OP_CBRAPOS || |
2508 | c == OP_ONCE || c == OP_ONCE_NC || |
2509 | c == OP_COND || c == OP_SCOND) |
2510 | { |
2511 | BOOL empty_branch; |
2512 | if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */ |
2513 | |
2514 | /* If a conditional group has only one branch, there is a second, implied, |
2515 | empty branch, so just skip over the conditional, because it could be empty. |
2516 | Otherwise, scan the individual branches of the group. */ |
2517 | |
2518 | if (c == OP_COND && code[GET(code, 1)] != OP_ALT) |
2519 | code += GET(code, 1); |
2520 | else |
2521 | { |
2522 | empty_branch = FALSE; |
2523 | do |
2524 | { |
2525 | if (!empty_branch && could_be_empty_branch(code, endcode, utf, cd, |
2526 | recurses)) empty_branch = TRUE; |
2527 | code += GET(code, 1); |
2528 | } |
2529 | while (*code == OP_ALT); |
2530 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
2531 | } |
2532 | |
2533 | c = *code; |
2534 | continue; |
2535 | } |
2536 | |
2537 | /* Handle the other opcodes */ |
2538 | |
2539 | switch (c) |
2540 | { |
2541 | /* Check for quantifiers after a class. XCLASS is used for classes that |
2542 | cannot be represented just by a bit map. This includes negated single |
2543 | high-valued characters. The length in PRIV(OP_lengths)[] is zero; the |
2544 | actual length is stored in the compiled code, so we must update "code" |
2545 | here. */ |
2546 | |
2547 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
2548 | case OP_XCLASS: |
2549 | ccode = code += GET(code, 1); |
2550 | goto CHECK_CLASS_REPEAT; |
2551 | #endif |
2552 | |
2553 | case OP_CLASS: |
2554 | case OP_NCLASS: |
2555 | ccode = code + PRIV(OP_lengths)[OP_CLASS]; |
2556 | |
2557 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
2558 | CHECK_CLASS_REPEAT: |
2559 | #endif |
2560 | |
2561 | switch (*ccode) |
2562 | { |
2563 | case OP_CRSTAR: /* These could be empty; continue */ |
2564 | case OP_CRMINSTAR: |
2565 | case OP_CRQUERY: |
2566 | case OP_CRMINQUERY: |
2567 | case OP_CRPOSSTAR: |
2568 | case OP_CRPOSQUERY: |
2569 | break; |
2570 | |
2571 | default: /* Non-repeat => class must match */ |
2572 | case OP_CRPLUS: /* These repeats aren't empty */ |
2573 | case OP_CRMINPLUS: |
2574 | case OP_CRPOSPLUS: |
2575 | return FALSE; |
2576 | |
2577 | case OP_CRRANGE: |
2578 | case OP_CRMINRANGE: |
2579 | case OP_CRPOSRANGE: |
2580 | if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */ |
2581 | break; |
2582 | } |
2583 | break; |
2584 | |
2585 | /* Opcodes that must match a character */ |
2586 | |
2587 | case OP_ANY: |
2588 | case OP_ALLANY: |
2589 | case OP_ANYBYTE: |
2590 | |
2591 | case OP_PROP: |
2592 | case OP_NOTPROP: |
2593 | case OP_ANYNL: |
2594 | |
2595 | case OP_NOT_HSPACE: |
2596 | case OP_HSPACE: |
2597 | case OP_NOT_VSPACE: |
2598 | case OP_VSPACE: |
2599 | case OP_EXTUNI: |
2600 | |
2601 | case OP_NOT_DIGIT: |
2602 | case OP_DIGIT: |
2603 | case OP_NOT_WHITESPACE: |
2604 | case OP_WHITESPACE: |
2605 | case OP_NOT_WORDCHAR: |
2606 | case OP_WORDCHAR: |
2607 | |
2608 | case OP_CHAR: |
2609 | case OP_CHARI: |
2610 | case OP_NOT: |
2611 | case OP_NOTI: |
2612 | |
2613 | case OP_PLUS: |
2614 | case OP_PLUSI: |
2615 | case OP_MINPLUS: |
2616 | case OP_MINPLUSI: |
2617 | |
2618 | case OP_NOTPLUS: |
2619 | case OP_NOTPLUSI: |
2620 | case OP_NOTMINPLUS: |
2621 | case OP_NOTMINPLUSI: |
2622 | |
2623 | case OP_POSPLUS: |
2624 | case OP_POSPLUSI: |
2625 | case OP_NOTPOSPLUS: |
2626 | case OP_NOTPOSPLUSI: |
2627 | |
2628 | case OP_EXACT: |
2629 | case OP_EXACTI: |
2630 | case OP_NOTEXACT: |
2631 | case OP_NOTEXACTI: |
2632 | |
2633 | case OP_TYPEPLUS: |
2634 | case OP_TYPEMINPLUS: |
2635 | case OP_TYPEPOSPLUS: |
2636 | case OP_TYPEEXACT: |
2637 | |
2638 | return FALSE; |
2639 | |
2640 | /* These are going to continue, as they may be empty, but we have to |
2641 | fudge the length for the \p and \P cases. */ |
2642 | |
2643 | case OP_TYPESTAR: |
2644 | case OP_TYPEMINSTAR: |
2645 | case OP_TYPEPOSSTAR: |
2646 | case OP_TYPEQUERY: |
2647 | case OP_TYPEMINQUERY: |
2648 | case OP_TYPEPOSQUERY: |
2649 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2650 | break; |
2651 | |
2652 | /* Same for these */ |
2653 | |
2654 | case OP_TYPEUPTO: |
2655 | case OP_TYPEMINUPTO: |
2656 | case OP_TYPEPOSUPTO: |
2657 | if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP) |
2658 | code += 2; |
2659 | break; |
2660 | |
2661 | /* End of branch */ |
2662 | |
2663 | case OP_KET: |
2664 | case OP_KETRMAX: |
2665 | case OP_KETRMIN: |
2666 | case OP_KETRPOS: |
2667 | case OP_ALT: |
2668 | return TRUE; |
2669 | |
2670 | /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO, |
2671 | MINUPTO, and POSUPTO and their caseless and negative versions may be |
2672 | followed by a multibyte character. */ |
2673 | |
2674 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
2675 | case OP_STAR: |
2676 | case OP_STARI: |
2677 | case OP_NOTSTAR: |
2678 | case OP_NOTSTARI: |
2679 | |
2680 | case OP_MINSTAR: |
2681 | case OP_MINSTARI: |
2682 | case OP_NOTMINSTAR: |
2683 | case OP_NOTMINSTARI: |
2684 | |
2685 | case OP_POSSTAR: |
2686 | case OP_POSSTARI: |
2687 | case OP_NOTPOSSTAR: |
2688 | case OP_NOTPOSSTARI: |
2689 | |
2690 | case OP_QUERY: |
2691 | case OP_QUERYI: |
2692 | case OP_NOTQUERY: |
2693 | case OP_NOTQUERYI: |
2694 | |
2695 | case OP_MINQUERY: |
2696 | case OP_MINQUERYI: |
2697 | case OP_NOTMINQUERY: |
2698 | case OP_NOTMINQUERYI: |
2699 | |
2700 | case OP_POSQUERY: |
2701 | case OP_POSQUERYI: |
2702 | case OP_NOTPOSQUERY: |
2703 | case OP_NOTPOSQUERYI: |
2704 | |
2705 | if (utf && HAS_EXTRALEN(code[1])) code += GET_EXTRALEN(code[1]); |
2706 | break; |
2707 | |
2708 | case OP_UPTO: |
2709 | case OP_UPTOI: |
2710 | case OP_NOTUPTO: |
2711 | case OP_NOTUPTOI: |
2712 | |
2713 | case OP_MINUPTO: |
2714 | case OP_MINUPTOI: |
2715 | case OP_NOTMINUPTO: |
2716 | case OP_NOTMINUPTOI: |
2717 | |
2718 | case OP_POSUPTO: |
2719 | case OP_POSUPTOI: |
2720 | case OP_NOTPOSUPTO: |
2721 | case OP_NOTPOSUPTOI: |
2722 | |
2723 | if (utf && HAS_EXTRALEN(code[1 + IMM2_SIZE])) code += GET_EXTRALEN(code[1 + IMM2_SIZE]); |
2724 | break; |
2725 | #endif |
2726 | |
2727 | /* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument |
2728 | string. */ |
2729 | |
2730 | case OP_MARK: |
2731 | case OP_PRUNE_ARG: |
2732 | case OP_SKIP_ARG: |
2733 | case OP_THEN_ARG: |
2734 | code += code[1]; |
2735 | break; |
2736 | |
2737 | /* None of the remaining opcodes are required to match a character. */ |
2738 | |
2739 | default: |
2740 | break; |
2741 | } |
2742 | } |
2743 | |
2744 | return TRUE; |
2745 | } |
2746 | |
2747 | |
2748 | |
2749 | /************************************************* |
2750 | * Scan compiled regex for non-emptiness * |
2751 | *************************************************/ |
2752 | |
2753 | /* This function is called to check for left recursive calls. We want to check |
2754 | the current branch of the current pattern to see if it could match the empty |
2755 | string. If it could, we must look outwards for branches at other levels, |
2756 | stopping when we pass beyond the bracket which is the subject of the recursion. |
2757 | This function is called only during the real compile, not during the |
2758 | pre-compile. |
2759 | |
2760 | Arguments: |
2761 | code points to start of the recursion |
2762 | endcode points to where to stop (current RECURSE item) |
2763 | bcptr points to the chain of current (unclosed) branch starts |
2764 | utf TRUE if in UTF-8 / UTF-16 / UTF-32 mode |
2765 | cd pointers to tables etc |
2766 | |
2767 | Returns: TRUE if what is matched could be empty |
2768 | */ |
2769 | |
2770 | static BOOL |
2771 | could_be_empty(const pcre_uchar *code, const pcre_uchar *endcode, |
2772 | branch_chain *bcptr, BOOL utf, compile_data *cd) |
2773 | { |
2774 | while (bcptr != NULL && bcptr->current_branch >= code) |
2775 | { |
2776 | if (!could_be_empty_branch(bcptr->current_branch, endcode, utf, cd, NULL)) |
2777 | return FALSE; |
2778 | bcptr = bcptr->outer; |
2779 | } |
2780 | return TRUE; |
2781 | } |
2782 | |
2783 | |
2784 | |
2785 | /************************************************* |
2786 | * Base opcode of repeated opcodes * |
2787 | *************************************************/ |
2788 | |
2789 | /* Returns the base opcode for repeated single character type opcodes. If the |
2790 | opcode is not a repeated character type, it returns with the original value. |
2791 | |
2792 | Arguments: c opcode |
2793 | Returns: base opcode for the type |
2794 | */ |
2795 | |
2796 | static pcre_uchar |
2797 | get_repeat_base(pcre_uchar c) |
2798 | { |
2799 | return (c > OP_TYPEPOSUPTO)? c : |
2800 | (c >= OP_TYPESTAR)? OP_TYPESTAR : |
2801 | (c >= OP_NOTSTARI)? OP_NOTSTARI : |
2802 | (c >= OP_NOTSTAR)? OP_NOTSTAR : |
2803 | (c >= OP_STARI)? OP_STARI : |
2804 | OP_STAR; |
2805 | } |
2806 | |
2807 | |
2808 | |
2809 | #ifdef SUPPORT_UCP |
2810 | /************************************************* |
2811 | * Check a character and a property * |
2812 | *************************************************/ |
2813 | |
2814 | /* This function is called by check_auto_possessive() when a property item |
2815 | is adjacent to a fixed character. |
2816 | |
2817 | Arguments: |
2818 | c the character |
2819 | ptype the property type |
2820 | pdata the data for the type |
2821 | negated TRUE if it's a negated property (\P or \p{^) |
2822 | |
2823 | Returns: TRUE if auto-possessifying is OK |
2824 | */ |
2825 | |
2826 | static BOOL |
2827 | check_char_prop(pcre_uint32 c, unsigned int ptype, unsigned int pdata, |
2828 | BOOL negated) |
2829 | { |
2830 | const pcre_uint32 *p; |
2831 | const ucd_record *prop = GET_UCD(c); |
2832 | |
2833 | switch(ptype) |
2834 | { |
2835 | case PT_LAMP: |
2836 | return (prop->chartype == ucp_Lu || |
2837 | prop->chartype == ucp_Ll || |
2838 | prop->chartype == ucp_Lt) == negated; |
2839 | |
2840 | case PT_GC: |
2841 | return (pdata == PRIV(ucp_gentype)[prop->chartype]) == negated; |
2842 | |
2843 | case PT_PC: |
2844 | return (pdata == prop->chartype) == negated; |
2845 | |
2846 | case PT_SC: |
2847 | return (pdata == prop->script) == negated; |
2848 | |
2849 | /* These are specials */ |
2850 | |
2851 | case PT_ALNUM: |
2852 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_L || |
2853 | PRIV(ucp_gentype)[prop->chartype] == ucp_N) == negated; |
2854 | |
2855 | /* Perl space used to exclude VT, but from Perl 5.18 it is included, which |
2856 | means that Perl space and POSIX space are now identical. PCRE was changed |
2857 | at release 8.34. */ |
2858 | |
2859 | case PT_SPACE: /* Perl space */ |
2860 | case PT_PXSPACE: /* POSIX space */ |
2861 | switch(c) |
2862 | { |
2863 | HSPACE_CASES: |
2864 | VSPACE_CASES: |
2865 | return negated; |
2866 | |
2867 | default: |
2868 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_Z) == negated; |
2869 | } |
2870 | break; /* Control never reaches here */ |
2871 | |
2872 | case PT_WORD: |
2873 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_L || |
2874 | PRIV(ucp_gentype)[prop->chartype] == ucp_N || |
2875 | c == CHAR_UNDERSCORE) == negated; |
2876 | |
2877 | case PT_CLIST: |
2878 | p = PRIV(ucd_caseless_sets) + prop->caseset; |
2879 | for (;;) |
2880 | { |
2881 | if (c < *p) return !negated; |
2882 | if (c == *p++) return negated; |
2883 | } |
2884 | break; /* Control never reaches here */ |
2885 | } |
2886 | |
2887 | return FALSE; |
2888 | } |
2889 | #endif /* SUPPORT_UCP */ |
2890 | |
2891 | |
2892 | |
2893 | /************************************************* |
2894 | * Fill the character property list * |
2895 | *************************************************/ |
2896 | |
2897 | /* Checks whether the code points to an opcode that can take part in auto- |
2898 | possessification, and if so, fills a list with its properties. |
2899 | |
2900 | Arguments: |
2901 | code points to start of expression |
2902 | utf TRUE if in UTF-8 / UTF-16 / UTF-32 mode |
2903 | fcc points to case-flipping table |
2904 | list points to output list |
2905 | list[0] will be filled with the opcode |
2906 | list[1] will be non-zero if this opcode |
2907 | can match an empty character string |
2908 | list[2..7] depends on the opcode |
2909 | |
2910 | Returns: points to the start of the next opcode if *code is accepted |
2911 | NULL if *code is not accepted |
2912 | */ |
2913 | |
2914 | static const pcre_uchar * |
2915 | get_chr_property_list(const pcre_uchar *code, BOOL utf, |
2916 | const pcre_uint8 *fcc, pcre_uint32 *list) |
2917 | { |
2918 | pcre_uchar c = *code; |
2919 | pcre_uchar base; |
2920 | const pcre_uchar *end; |
2921 | pcre_uint32 chr; |
2922 | |
2923 | #ifdef SUPPORT_UCP |
2924 | pcre_uint32 *clist_dest; |
2925 | const pcre_uint32 *clist_src; |
2926 | #else |
2927 | utf = utf; /* Suppress "unused parameter" compiler warning */ |
2928 | #endif |
2929 | |
2930 | list[0] = c; |
2931 | list[1] = FALSE; |
2932 | code++; |
2933 | |
2934 | if (c >= OP_STAR && c <= OP_TYPEPOSUPTO) |
2935 | { |
2936 | base = get_repeat_base(c); |
2937 | c -= (base - OP_STAR); |
2938 | |
2939 | if (c == OP_UPTO || c == OP_MINUPTO || c == OP_EXACT || c == OP_POSUPTO) |
2940 | code += IMM2_SIZE; |
2941 | |
2942 | list[1] = (c != OP_PLUS && c != OP_MINPLUS && c != OP_EXACT && c != OP_POSPLUS); |
2943 | |
2944 | switch(base) |
2945 | { |
2946 | case OP_STAR: |
2947 | list[0] = OP_CHAR; |
2948 | break; |
2949 | |
2950 | case OP_STARI: |
2951 | list[0] = OP_CHARI; |
2952 | break; |
2953 | |
2954 | case OP_NOTSTAR: |
2955 | list[0] = OP_NOT; |
2956 | break; |
2957 | |
2958 | case OP_NOTSTARI: |
2959 | list[0] = OP_NOTI; |
2960 | break; |
2961 | |
2962 | case OP_TYPESTAR: |
2963 | list[0] = *code; |
2964 | code++; |
2965 | break; |
2966 | } |
2967 | c = list[0]; |
2968 | } |
2969 | |
2970 | switch(c) |
2971 | { |
2972 | case OP_NOT_DIGIT: |
2973 | case OP_DIGIT: |
2974 | case OP_NOT_WHITESPACE: |
2975 | case OP_WHITESPACE: |
2976 | case OP_NOT_WORDCHAR: |
2977 | case OP_WORDCHAR: |
2978 | case OP_ANY: |
2979 | case OP_ALLANY: |
2980 | case OP_ANYNL: |
2981 | case OP_NOT_HSPACE: |
2982 | case OP_HSPACE: |
2983 | case OP_NOT_VSPACE: |
2984 | case OP_VSPACE: |
2985 | case OP_EXTUNI: |
2986 | case OP_EODN: |
2987 | case OP_EOD: |
2988 | case OP_DOLL: |
2989 | case OP_DOLLM: |
2990 | return code; |
2991 | |
2992 | case OP_CHAR: |
2993 | case OP_NOT: |
2994 | GETCHARINCTEST(chr, code); |
2995 | list[2] = chr; |
2996 | list[3] = NOTACHAR; |
2997 | return code; |
2998 | |
2999 | case OP_CHARI: |
3000 | case OP_NOTI: |
3001 | list[0] = (c == OP_CHARI) ? OP_CHAR : OP_NOT; |
3002 | GETCHARINCTEST(chr, code); |
3003 | list[2] = chr; |
3004 | |
3005 | #ifdef SUPPORT_UCP |
3006 | if (chr < 128 || (chr < 256 && !utf)) |
3007 | list[3] = fcc[chr]; |
3008 | else |
3009 | list[3] = UCD_OTHERCASE(chr); |
3010 | #elif defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3011 | list[3] = (chr < 256) ? fcc[chr] : chr; |
3012 | #else |
3013 | list[3] = fcc[chr]; |
3014 | #endif |
3015 | |
3016 | /* The othercase might be the same value. */ |
3017 | |
3018 | if (chr == list[3]) |
3019 | list[3] = NOTACHAR; |
3020 | else |
3021 | list[4] = NOTACHAR; |
3022 | return code; |
3023 | |
3024 | #ifdef SUPPORT_UCP |
3025 | case OP_PROP: |
3026 | case OP_NOTPROP: |
3027 | if (code[0] != PT_CLIST) |
3028 | { |
3029 | list[2] = code[0]; |
3030 | list[3] = code[1]; |
3031 | return code + 2; |
3032 | } |
3033 | |
3034 | /* Convert only if we have enough space. */ |
3035 | |
3036 | clist_src = PRIV(ucd_caseless_sets) + code[1]; |
3037 | clist_dest = list + 2; |
3038 | code += 2; |
3039 | |
3040 | do { |
3041 | if (clist_dest >= list + 8) |
3042 | { |
3043 | /* Early return if there is not enough space. This should never |
3044 | happen, since all clists are shorter than 5 character now. */ |
3045 | list[2] = code[0]; |
3046 | list[3] = code[1]; |
3047 | return code; |
3048 | } |
3049 | *clist_dest++ = *clist_src; |
3050 | } |
3051 | while(*clist_src++ != NOTACHAR); |
3052 | |
3053 | /* All characters are stored. The terminating NOTACHAR |
3054 | is copied form the clist itself. */ |
3055 | |
3056 | list[0] = (c == OP_PROP) ? OP_CHAR : OP_NOT; |
3057 | return code; |
3058 | #endif |
3059 | |
3060 | case OP_NCLASS: |
3061 | case OP_CLASS: |
3062 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3063 | case OP_XCLASS: |
3064 | if (c == OP_XCLASS) |
3065 | end = code + GET(code, 0) - 1; |
3066 | else |
3067 | #endif |
3068 | end = code + 32 / sizeof(pcre_uchar); |
3069 | |
3070 | switch(*end) |
3071 | { |
3072 | case OP_CRSTAR: |
3073 | case OP_CRMINSTAR: |
3074 | case OP_CRQUERY: |
3075 | case OP_CRMINQUERY: |
3076 | case OP_CRPOSSTAR: |
3077 | case OP_CRPOSQUERY: |
3078 | list[1] = TRUE; |
3079 | end++; |
3080 | break; |
3081 | |
3082 | case OP_CRPLUS: |
3083 | case OP_CRMINPLUS: |
3084 | case OP_CRPOSPLUS: |
3085 | end++; |
3086 | break; |
3087 | |
3088 | case OP_CRRANGE: |
3089 | case OP_CRMINRANGE: |
3090 | case OP_CRPOSRANGE: |
3091 | list[1] = (GET2(end, 1) == 0); |
3092 | end += 1 + 2 * IMM2_SIZE; |
3093 | break; |
3094 | } |
3095 | list[2] = (pcre_uint32)(end - code); |
3096 | return end; |
3097 | } |
3098 | return NULL; /* Opcode not accepted */ |
3099 | } |
3100 | |
3101 | |
3102 | |
3103 | /************************************************* |
3104 | * Scan further character sets for match * |
3105 | *************************************************/ |
3106 | |
3107 | /* Checks whether the base and the current opcode have a common character, in |
3108 | which case the base cannot be possessified. |
3109 | |
3110 | Arguments: |
3111 | code points to the byte code |
3112 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
3113 | cd static compile data |
3114 | base_list the data list of the base opcode |
3115 | |
3116 | Returns: TRUE if the auto-possessification is possible |
3117 | */ |
3118 | |
3119 | static BOOL |
3120 | compare_opcodes(const pcre_uchar *code, BOOL utf, const compile_data *cd, |
3121 | const pcre_uint32 *base_list, const pcre_uchar *base_end, int *rec_limit) |
3122 | { |
3123 | pcre_uchar c; |
3124 | pcre_uint32 list[8]; |
3125 | const pcre_uint32 *chr_ptr; |
3126 | const pcre_uint32 *ochr_ptr; |
3127 | const pcre_uint32 *list_ptr; |
3128 | const pcre_uchar *next_code; |
3129 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3130 | const pcre_uchar *xclass_flags; |
3131 | #endif |
3132 | const pcre_uint8 *class_bitset; |
3133 | const pcre_uint8 *set1, *set2, *set_end; |
3134 | pcre_uint32 chr; |
3135 | BOOL accepted, invert_bits; |
3136 | BOOL entered_a_group = FALSE; |
3137 | |
3138 | if (*rec_limit == 0) return FALSE; |
3139 | --(*rec_limit); |
3140 | |
3141 | /* Note: the base_list[1] contains whether the current opcode has greedy |
3142 | (represented by a non-zero value) quantifier. This is a different from |
3143 | other character type lists, which stores here that the character iterator |
3144 | matches to an empty string (also represented by a non-zero value). */ |
3145 | |
3146 | for(;;) |
3147 | { |
3148 | /* All operations move the code pointer forward. |
3149 | Therefore infinite recursions are not possible. */ |
3150 | |
3151 | c = *code; |
3152 | |
3153 | /* Skip over callouts */ |
3154 | |
3155 | if (c == OP_CALLOUT) |
3156 | { |
3157 | code += PRIV(OP_lengths)[c]; |
3158 | continue; |
3159 | } |
3160 | |
3161 | if (c == OP_ALT) |
3162 | { |
3163 | do code += GET(code, 1); while (*code == OP_ALT); |
3164 | c = *code; |
3165 | } |
3166 | |
3167 | switch(c) |
3168 | { |
3169 | case OP_END: |
3170 | case OP_KETRPOS: |
3171 | /* TRUE only in greedy case. The non-greedy case could be replaced by |
3172 | an OP_EXACT, but it is probably not worth it. (And note that OP_EXACT |
3173 | uses more memory, which we cannot get at this stage.) */ |
3174 | |
3175 | return base_list[1] != 0; |
3176 | |
3177 | case OP_KET: |
3178 | /* If the bracket is capturing, and referenced by an OP_RECURSE, or |
3179 | it is an atomic sub-pattern (assert, once, etc.) the non-greedy case |
3180 | cannot be converted to a possessive form. */ |
3181 | |
3182 | if (base_list[1] == 0) return FALSE; |
3183 | |
3184 | switch(*(code - GET(code, 1))) |
3185 | { |
3186 | case OP_ASSERT: |
3187 | case OP_ASSERT_NOT: |
3188 | case OP_ASSERTBACK: |
3189 | case OP_ASSERTBACK_NOT: |
3190 | case OP_ONCE: |
3191 | case OP_ONCE_NC: |
3192 | /* Atomic sub-patterns and assertions can always auto-possessify their |
3193 | last iterator. However, if the group was entered as a result of checking |
3194 | a previous iterator, this is not possible. */ |
3195 | |
3196 | return !entered_a_group; |
3197 | } |
3198 | |
3199 | code += PRIV(OP_lengths)[c]; |
3200 | continue; |
3201 | |
3202 | case OP_ONCE: |
3203 | case OP_ONCE_NC: |
3204 | case OP_BRA: |
3205 | case OP_CBRA: |
3206 | next_code = code + GET(code, 1); |
3207 | code += PRIV(OP_lengths)[c]; |
3208 | |
3209 | while (*next_code == OP_ALT) |
3210 | { |
3211 | if (!compare_opcodes(code, utf, cd, base_list, base_end, rec_limit)) |
3212 | return FALSE; |
3213 | code = next_code + 1 + LINK_SIZE; |
3214 | next_code += GET(next_code, 1); |
3215 | } |
3216 | |
3217 | entered_a_group = TRUE; |
3218 | continue; |
3219 | |
3220 | case OP_BRAZERO: |
3221 | case OP_BRAMINZERO: |
3222 | |
3223 | next_code = code + 1; |
3224 | if (*next_code != OP_BRA && *next_code != OP_CBRA |
3225 | && *next_code != OP_ONCE && *next_code != OP_ONCE_NC) return FALSE; |
3226 | |
3227 | do next_code += GET(next_code, 1); while (*next_code == OP_ALT); |
3228 | |
3229 | /* The bracket content will be checked by the |
3230 | OP_BRA/OP_CBRA case above. */ |
3231 | next_code += 1 + LINK_SIZE; |
3232 | if (!compare_opcodes(next_code, utf, cd, base_list, base_end, rec_limit)) |
3233 | return FALSE; |
3234 | |
3235 | code += PRIV(OP_lengths)[c]; |
3236 | continue; |
3237 | |
3238 | default: |
3239 | break; |
3240 | } |
3241 | |
3242 | /* Check for a supported opcode, and load its properties. */ |
3243 | |
3244 | code = get_chr_property_list(code, utf, cd->fcc, list); |
3245 | if (code == NULL) return FALSE; /* Unsupported */ |
3246 | |
3247 | /* If either opcode is a small character list, set pointers for comparing |
3248 | characters from that list with another list, or with a property. */ |
3249 | |
3250 | if (base_list[0] == OP_CHAR) |
3251 | { |
3252 | chr_ptr = base_list + 2; |
3253 | list_ptr = list; |
3254 | } |
3255 | else if (list[0] == OP_CHAR) |
3256 | { |
3257 | chr_ptr = list + 2; |
3258 | list_ptr = base_list; |
3259 | } |
3260 | |
3261 | /* Character bitsets can also be compared to certain opcodes. */ |
3262 | |
3263 | else if (base_list[0] == OP_CLASS || list[0] == OP_CLASS |
3264 | #ifdef COMPILE_PCRE8 |
3265 | /* In 8 bit, non-UTF mode, OP_CLASS and OP_NCLASS are the same. */ |
3266 | || (!utf && (base_list[0] == OP_NCLASS || list[0] == OP_NCLASS)) |
3267 | #endif |
3268 | ) |
3269 | { |
3270 | #ifdef COMPILE_PCRE8 |
3271 | if (base_list[0] == OP_CLASS || (!utf && base_list[0] == OP_NCLASS)) |
3272 | #else |
3273 | if (base_list[0] == OP_CLASS) |
3274 | #endif |
3275 | { |
3276 | set1 = (pcre_uint8 *)(base_end - base_list[2]); |
3277 | list_ptr = list; |
3278 | } |
3279 | else |
3280 | { |
3281 | set1 = (pcre_uint8 *)(code - list[2]); |
3282 | list_ptr = base_list; |
3283 | } |
3284 | |
3285 | invert_bits = FALSE; |
3286 | switch(list_ptr[0]) |
3287 | { |
3288 | case OP_CLASS: |
3289 | case OP_NCLASS: |
3290 | set2 = (pcre_uint8 *) |
3291 | ((list_ptr == list ? code : base_end) - list_ptr[2]); |
3292 | break; |
3293 | |
3294 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3295 | case OP_XCLASS: |
3296 | xclass_flags = (list_ptr == list ? code : base_end) - list_ptr[2] + LINK_SIZE; |
3297 | if ((*xclass_flags & XCL_HASPROP) != 0) return FALSE; |
3298 | if ((*xclass_flags & XCL_MAP) == 0) |
3299 | { |
3300 | /* No bits are set for characters < 256. */ |
3301 | if (list[1] == 0) return TRUE; |
3302 | /* Might be an empty repeat. */ |
3303 | continue; |
3304 | } |
3305 | set2 = (pcre_uint8 *)(xclass_flags + 1); |
3306 | break; |
3307 | #endif |
3308 | |
3309 | case OP_NOT_DIGIT: |
3310 | invert_bits = TRUE; |
3311 | /* Fall through */ |
3312 | case OP_DIGIT: |
3313 | set2 = (pcre_uint8 *)(cd->cbits + cbit_digit); |
3314 | break; |
3315 | |
3316 | case OP_NOT_WHITESPACE: |
3317 | invert_bits = TRUE; |
3318 | /* Fall through */ |
3319 | case OP_WHITESPACE: |
3320 | set2 = (pcre_uint8 *)(cd->cbits + cbit_space); |
3321 | break; |
3322 | |
3323 | case OP_NOT_WORDCHAR: |
3324 | invert_bits = TRUE; |
3325 | /* Fall through */ |
3326 | case OP_WORDCHAR: |
3327 | set2 = (pcre_uint8 *)(cd->cbits + cbit_word); |
3328 | break; |
3329 | |
3330 | default: |
3331 | return FALSE; |
3332 | } |
3333 | |
3334 | /* Because the sets are unaligned, we need |
3335 | to perform byte comparison here. */ |
3336 | set_end = set1 + 32; |
3337 | if (invert_bits) |
3338 | { |
3339 | do |
3340 | { |
3341 | if ((*set1++ & ~(*set2++)) != 0) return FALSE; |
3342 | } |
3343 | while (set1 < set_end); |
3344 | } |
3345 | else |
3346 | { |
3347 | do |
3348 | { |
3349 | if ((*set1++ & *set2++) != 0) return FALSE; |
3350 | } |
3351 | while (set1 < set_end); |
3352 | } |
3353 | |
3354 | if (list[1] == 0) return TRUE; |
3355 | /* Might be an empty repeat. */ |
3356 | continue; |
3357 | } |
3358 | |
3359 | /* Some property combinations also acceptable. Unicode property opcodes are |
3360 | processed specially; the rest can be handled with a lookup table. */ |
3361 | |
3362 | else |
3363 | { |
3364 | pcre_uint32 leftop, rightop; |
3365 | |
3366 | leftop = base_list[0]; |
3367 | rightop = list[0]; |
3368 | |
3369 | #ifdef SUPPORT_UCP |
3370 | accepted = FALSE; /* Always set in non-unicode case. */ |
3371 | if (leftop == OP_PROP || leftop == OP_NOTPROP) |
3372 | { |
3373 | if (rightop == OP_EOD) |
3374 | accepted = TRUE; |
3375 | else if (rightop == OP_PROP || rightop == OP_NOTPROP) |
3376 | { |
3377 | int n; |
3378 | const pcre_uint8 *p; |
3379 | BOOL same = leftop == rightop; |
3380 | BOOL lisprop = leftop == OP_PROP; |
3381 | BOOL risprop = rightop == OP_PROP; |
3382 | BOOL bothprop = lisprop && risprop; |
3383 | |
3384 | /* There's a table that specifies how each combination is to be |
3385 | processed: |
3386 | 0 Always return FALSE (never auto-possessify) |
3387 | 1 Character groups are distinct (possessify if both are OP_PROP) |
3388 | 2 Check character categories in the same group (general or particular) |
3389 | 3 Return TRUE if the two opcodes are not the same |
3390 | ... see comments below |
3391 | */ |
3392 | |
3393 | n = propposstab[base_list[2]][list[2]]; |
3394 | switch(n) |
3395 | { |
3396 | case 0: break; |
3397 | case 1: accepted = bothprop; break; |
3398 | case 2: accepted = (base_list[3] == list[3]) != same; break; |
3399 | case 3: accepted = !same; break; |
3400 | |
3401 | case 4: /* Left general category, right particular category */ |
3402 | accepted = risprop && catposstab[base_list[3]][list[3]] == same; |
3403 | break; |
3404 | |
3405 | case 5: /* Right general category, left particular category */ |
3406 | accepted = lisprop && catposstab[list[3]][base_list[3]] == same; |
3407 | break; |
3408 | |
3409 | /* This code is logically tricky. Think hard before fiddling with it. |
3410 | The posspropstab table has four entries per row. Each row relates to |
3411 | one of PCRE's special properties such as ALNUM or SPACE or WORD. |
3412 | Only WORD actually needs all four entries, but using repeats for the |
3413 | others means they can all use the same code below. |
3414 | |
3415 | The first two entries in each row are Unicode general categories, and |
3416 | apply always, because all the characters they include are part of the |
3417 | PCRE character set. The third and fourth entries are a general and a |
3418 | particular category, respectively, that include one or more relevant |
3419 | characters. One or the other is used, depending on whether the check |
3420 | is for a general or a particular category. However, in both cases the |
3421 | category contains more characters than the specials that are defined |
3422 | for the property being tested against. Therefore, it cannot be used |
3423 | in a NOTPROP case. |
3424 | |
3425 | Example: the row for WORD contains ucp_L, ucp_N, ucp_P, ucp_Po. |
3426 | Underscore is covered by ucp_P or ucp_Po. */ |
3427 | |
3428 | case 6: /* Left alphanum vs right general category */ |
3429 | case 7: /* Left space vs right general category */ |
3430 | case 8: /* Left word vs right general category */ |
3431 | p = posspropstab[n-6]; |
3432 | accepted = risprop && lisprop == |
3433 | (list[3] != p[0] && |
3434 | list[3] != p[1] && |
3435 | (list[3] != p[2] || !lisprop)); |
3436 | break; |
3437 | |
3438 | case 9: /* Right alphanum vs left general category */ |
3439 | case 10: /* Right space vs left general category */ |
3440 | case 11: /* Right word vs left general category */ |
3441 | p = posspropstab[n-9]; |
3442 | accepted = lisprop && risprop == |
3443 | (base_list[3] != p[0] && |
3444 | base_list[3] != p[1] && |
3445 | (base_list[3] != p[2] || !risprop)); |
3446 | break; |
3447 | |
3448 | case 12: /* Left alphanum vs right particular category */ |
3449 | case 13: /* Left space vs right particular category */ |
3450 | case 14: /* Left word vs right particular category */ |
3451 | p = posspropstab[n-12]; |
3452 | accepted = risprop && lisprop == |
3453 | (catposstab[p[0]][list[3]] && |
3454 | catposstab[p[1]][list[3]] && |
3455 | (list[3] != p[3] || !lisprop)); |
3456 | break; |
3457 | |
3458 | case 15: /* Right alphanum vs left particular category */ |
3459 | case 16: /* Right space vs left particular category */ |
3460 | case 17: /* Right word vs left particular category */ |
3461 | p = posspropstab[n-15]; |
3462 | accepted = lisprop && risprop == |
3463 | (catposstab[p[0]][base_list[3]] && |
3464 | catposstab[p[1]][base_list[3]] && |
3465 | (base_list[3] != p[3] || !risprop)); |
3466 | break; |
3467 | } |
3468 | } |
3469 | } |
3470 | |
3471 | else |
3472 | #endif /* SUPPORT_UCP */ |
3473 | |
3474 | accepted = leftop >= FIRST_AUTOTAB_OP && leftop <= LAST_AUTOTAB_LEFT_OP && |
3475 | rightop >= FIRST_AUTOTAB_OP && rightop <= LAST_AUTOTAB_RIGHT_OP && |
3476 | autoposstab[leftop - FIRST_AUTOTAB_OP][rightop - FIRST_AUTOTAB_OP]; |
3477 | |
3478 | if (!accepted) return FALSE; |
3479 | |
3480 | if (list[1] == 0) return TRUE; |
3481 | /* Might be an empty repeat. */ |
3482 | continue; |
3483 | } |
3484 | |
3485 | /* Control reaches here only if one of the items is a small character list. |
3486 | All characters are checked against the other side. */ |
3487 | |
3488 | do |
3489 | { |
3490 | chr = *chr_ptr; |
3491 | |
3492 | switch(list_ptr[0]) |
3493 | { |
3494 | case OP_CHAR: |
3495 | ochr_ptr = list_ptr + 2; |
3496 | do |
3497 | { |
3498 | if (chr == *ochr_ptr) return FALSE; |
3499 | ochr_ptr++; |
3500 | } |
3501 | while(*ochr_ptr != NOTACHAR); |
3502 | break; |
3503 | |
3504 | case OP_NOT: |
3505 | ochr_ptr = list_ptr + 2; |
3506 | do |
3507 | { |
3508 | if (chr == *ochr_ptr) |
3509 | break; |
3510 | ochr_ptr++; |
3511 | } |
3512 | while(*ochr_ptr != NOTACHAR); |
3513 | if (*ochr_ptr == NOTACHAR) return FALSE; /* Not found */ |
3514 | break; |
3515 | |
3516 | /* Note that OP_DIGIT etc. are generated only when PCRE_UCP is *not* |
3517 | set. When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */ |
3518 | |
3519 | case OP_DIGIT: |
3520 | if (chr < 256 && (cd->ctypes[chr] & ctype_digit) != 0) return FALSE; |
3521 | break; |
3522 | |
3523 | case OP_NOT_DIGIT: |
3524 | if (chr > 255 || (cd->ctypes[chr] & ctype_digit) == 0) return FALSE; |
3525 | break; |
3526 | |
3527 | case OP_WHITESPACE: |
3528 | if (chr < 256 && (cd->ctypes[chr] & ctype_space) != 0) return FALSE; |
3529 | break; |
3530 | |
3531 | case OP_NOT_WHITESPACE: |
3532 | if (chr > 255 || (cd->ctypes[chr] & ctype_space) == 0) return FALSE; |
3533 | break; |
3534 | |
3535 | case OP_WORDCHAR: |
3536 | if (chr < 255 && (cd->ctypes[chr] & ctype_word) != 0) return FALSE; |
3537 | break; |
3538 | |
3539 | case OP_NOT_WORDCHAR: |
3540 | if (chr > 255 || (cd->ctypes[chr] & ctype_word) == 0) return FALSE; |
3541 | break; |
3542 | |
3543 | case OP_HSPACE: |
3544 | switch(chr) |
3545 | { |
3546 | HSPACE_CASES: return FALSE; |
3547 | default: break; |
3548 | } |
3549 | break; |
3550 | |
3551 | case OP_NOT_HSPACE: |
3552 | switch(chr) |
3553 | { |
3554 | HSPACE_CASES: break; |
3555 | default: return FALSE; |
3556 | } |
3557 | break; |
3558 | |
3559 | case OP_ANYNL: |
3560 | case OP_VSPACE: |
3561 | switch(chr) |
3562 | { |
3563 | VSPACE_CASES: return FALSE; |
3564 | default: break; |
3565 | } |
3566 | break; |
3567 | |
3568 | case OP_NOT_VSPACE: |
3569 | switch(chr) |
3570 | { |
3571 | VSPACE_CASES: break; |
3572 | default: return FALSE; |
3573 | } |
3574 | break; |
3575 | |
3576 | case OP_DOLL: |
3577 | case OP_EODN: |
3578 | switch (chr) |
3579 | { |
3580 | case CHAR_CR: |
3581 | case CHAR_LF: |
3582 | case CHAR_VT: |
3583 | case CHAR_FF: |
3584 | case CHAR_NEL: |
3585 | #ifndef EBCDIC |
3586 | case 0x2028: |
3587 | case 0x2029: |
3588 | #endif /* Not EBCDIC */ |
3589 | return FALSE; |
3590 | } |
3591 | break; |
3592 | |
3593 | case OP_EOD: /* Can always possessify before \z */ |
3594 | break; |
3595 | |
3596 | #ifdef SUPPORT_UCP |
3597 | case OP_PROP: |
3598 | case OP_NOTPROP: |
3599 | if (!check_char_prop(chr, list_ptr[2], list_ptr[3], |
3600 | list_ptr[0] == OP_NOTPROP)) |
3601 | return FALSE; |
3602 | break; |
3603 | #endif |
3604 | |
3605 | case OP_NCLASS: |
3606 | if (chr > 255) return FALSE; |
3607 | /* Fall through */ |
3608 | |
3609 | case OP_CLASS: |
3610 | if (chr > 255) break; |
3611 | class_bitset = (pcre_uint8 *) |
3612 | ((list_ptr == list ? code : base_end) - list_ptr[2]); |
3613 | if ((class_bitset[chr >> 3] & (1 << (chr & 7))) != 0) return FALSE; |
3614 | break; |
3615 | |
3616 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3617 | case OP_XCLASS: |
3618 | if (PRIV(xclass)(chr, (list_ptr == list ? code : base_end) - |
3619 | list_ptr[2] + LINK_SIZE, utf)) return FALSE; |
3620 | break; |
3621 | #endif |
3622 | |
3623 | default: |
3624 | return FALSE; |
3625 | } |
3626 | |
3627 | chr_ptr++; |
3628 | } |
3629 | while(*chr_ptr != NOTACHAR); |
3630 | |
3631 | /* At least one character must be matched from this opcode. */ |
3632 | |
3633 | if (list[1] == 0) return TRUE; |
3634 | } |
3635 | |
3636 | /* Control never reaches here. There used to be a fail-save return FALSE; here, |
3637 | but some compilers complain about an unreachable statement. */ |
3638 | |
3639 | } |
3640 | |
3641 | |
3642 | |
3643 | /************************************************* |
3644 | * Scan compiled regex for auto-possession * |
3645 | *************************************************/ |
3646 | |
3647 | /* Replaces single character iterations with their possessive alternatives |
3648 | if appropriate. This function modifies the compiled opcode! |
3649 | |
3650 | Arguments: |
3651 | code points to start of the byte code |
3652 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
3653 | cd static compile data |
3654 | |
3655 | Returns: nothing |
3656 | */ |
3657 | |
3658 | static void |
3659 | auto_possessify(pcre_uchar *code, BOOL utf, const compile_data *cd) |
3660 | { |
3661 | register pcre_uchar c; |
3662 | const pcre_uchar *end; |
3663 | pcre_uchar *repeat_opcode; |
3664 | pcre_uint32 list[8]; |
3665 | int rec_limit; |
3666 | |
3667 | for (;;) |
3668 | { |
3669 | c = *code; |
3670 | |
3671 | /* When a pattern with bad UTF-8 encoding is compiled with NO_UTF_CHECK, |
3672 | it may compile without complaining, but may get into a loop here if the code |
3673 | pointer points to a bad value. This is, of course a documentated possibility, |
3674 | when NO_UTF_CHECK is set, so it isn't a bug, but we can detect this case and |
3675 | just give up on this optimization. */ |
3676 | |
3677 | if (c >= OP_TABLE_LENGTH) return; |
3678 | |
3679 | if (c >= OP_STAR && c <= OP_TYPEPOSUPTO) |
3680 | { |
3681 | c -= get_repeat_base(c) - OP_STAR; |
3682 | end = (c <= OP_MINUPTO) ? |
3683 | get_chr_property_list(code, utf, cd->fcc, list) : NULL; |
3684 | list[1] = c == OP_STAR || c == OP_PLUS || c == OP_QUERY || c == OP_UPTO; |
3685 | |
3686 | rec_limit = 1000; |
3687 | if (end != NULL && compare_opcodes(end, utf, cd, list, end, &rec_limit)) |
3688 | { |
3689 | switch(c) |
3690 | { |
3691 | case OP_STAR: |
3692 | *code += OP_POSSTAR - OP_STAR; |
3693 | break; |
3694 | |
3695 | case OP_MINSTAR: |
3696 | *code += OP_POSSTAR - OP_MINSTAR; |
3697 | break; |
3698 | |
3699 | case OP_PLUS: |
3700 | *code += OP_POSPLUS - OP_PLUS; |
3701 | break; |
3702 | |
3703 | case OP_MINPLUS: |
3704 | *code += OP_POSPLUS - OP_MINPLUS; |
3705 | break; |
3706 | |
3707 | case OP_QUERY: |
3708 | *code += OP_POSQUERY - OP_QUERY; |
3709 | break; |
3710 | |
3711 | case OP_MINQUERY: |
3712 | *code += OP_POSQUERY - OP_MINQUERY; |
3713 | break; |
3714 | |
3715 | case OP_UPTO: |
3716 | *code += OP_POSUPTO - OP_UPTO; |
3717 | break; |
3718 | |
3719 | case OP_MINUPTO: |
3720 | *code += OP_POSUPTO - OP_MINUPTO; |
3721 | break; |
3722 | } |
3723 | } |
3724 | c = *code; |
3725 | } |
3726 | else if (c == OP_CLASS || c == OP_NCLASS || c == OP_XCLASS) |
3727 | { |
3728 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3729 | if (c == OP_XCLASS) |
3730 | repeat_opcode = code + GET(code, 1); |
3731 | else |
3732 | #endif |
3733 | repeat_opcode = code + 1 + (32 / sizeof(pcre_uchar)); |
3734 | |
3735 | c = *repeat_opcode; |
3736 | if (c >= OP_CRSTAR && c <= OP_CRMINRANGE) |
3737 | { |
3738 | /* end must not be NULL. */ |
3739 | end = get_chr_property_list(code, utf, cd->fcc, list); |
3740 | |
3741 | list[1] = (c & 1) == 0; |
3742 | |
3743 | rec_limit = 1000; |
3744 | if (compare_opcodes(end, utf, cd, list, end, &rec_limit)) |
3745 | { |
3746 | switch (c) |
3747 | { |
3748 | case OP_CRSTAR: |
3749 | case OP_CRMINSTAR: |
3750 | *repeat_opcode = OP_CRPOSSTAR; |
3751 | break; |
3752 | |
3753 | case OP_CRPLUS: |
3754 | case OP_CRMINPLUS: |
3755 | *repeat_opcode = OP_CRPOSPLUS; |
3756 | break; |
3757 | |
3758 | case OP_CRQUERY: |
3759 | case OP_CRMINQUERY: |
3760 | *repeat_opcode = OP_CRPOSQUERY; |
3761 | break; |
3762 | |
3763 | case OP_CRRANGE: |
3764 | case OP_CRMINRANGE: |
3765 | *repeat_opcode = OP_CRPOSRANGE; |
3766 | break; |
3767 | } |
3768 | } |
3769 | } |
3770 | c = *code; |
3771 | } |
3772 | |
3773 | switch(c) |
3774 | { |
3775 | case OP_END: |
3776 | return; |
3777 | |
3778 | case OP_TYPESTAR: |
3779 | case OP_TYPEMINSTAR: |
3780 | case OP_TYPEPLUS: |
3781 | case OP_TYPEMINPLUS: |
3782 | case OP_TYPEQUERY: |
3783 | case OP_TYPEMINQUERY: |
3784 | case OP_TYPEPOSSTAR: |
3785 | case OP_TYPEPOSPLUS: |
3786 | case OP_TYPEPOSQUERY: |
3787 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
3788 | break; |
3789 | |
3790 | case OP_TYPEUPTO: |
3791 | case OP_TYPEMINUPTO: |
3792 | case OP_TYPEEXACT: |
3793 | case OP_TYPEPOSUPTO: |
3794 | if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP) |
3795 | code += 2; |
3796 | break; |
3797 | |
3798 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3799 | case OP_XCLASS: |
3800 | code += GET(code, 1); |
3801 | break; |
3802 | #endif |
3803 | |
3804 | case OP_MARK: |
3805 | case OP_PRUNE_ARG: |
3806 | case OP_SKIP_ARG: |
3807 | case OP_THEN_ARG: |
3808 | code += code[1]; |
3809 | break; |
3810 | } |
3811 | |
3812 | /* Add in the fixed length from the table */ |
3813 | |
3814 | code += PRIV(OP_lengths)[c]; |
3815 | |
3816 | /* In UTF-8 mode, opcodes that are followed by a character may be followed by |
3817 | a multi-byte character. The length in the table is a minimum, so we have to |
3818 | arrange to skip the extra bytes. */ |
3819 | |
3820 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
3821 | if (utf) switch(c) |
3822 | { |
3823 | case OP_CHAR: |
3824 | case OP_CHARI: |
3825 | case OP_NOT: |
3826 | case OP_NOTI: |
3827 | case OP_STAR: |
3828 | case OP_MINSTAR: |
3829 | case OP_PLUS: |
3830 | case OP_MINPLUS: |
3831 | case OP_QUERY: |
3832 | case OP_MINQUERY: |
3833 | case OP_UPTO: |
3834 | case OP_MINUPTO: |
3835 | case OP_EXACT: |
3836 | case OP_POSSTAR: |
3837 | case OP_POSPLUS: |
3838 | case OP_POSQUERY: |
3839 | case OP_POSUPTO: |
3840 | case OP_STARI: |
3841 | case OP_MINSTARI: |
3842 | case OP_PLUSI: |
3843 | case OP_MINPLUSI: |
3844 | case OP_QUERYI: |
3845 | case OP_MINQUERYI: |
3846 | case OP_UPTOI: |
3847 | case OP_MINUPTOI: |
3848 | case OP_EXACTI: |
3849 | case OP_POSSTARI: |
3850 | case OP_POSPLUSI: |
3851 | case OP_POSQUERYI: |
3852 | case OP_POSUPTOI: |
3853 | case OP_NOTSTAR: |
3854 | case OP_NOTMINSTAR: |
3855 | case OP_NOTPLUS: |
3856 | case OP_NOTMINPLUS: |
3857 | case OP_NOTQUERY: |
3858 | case OP_NOTMINQUERY: |
3859 | case OP_NOTUPTO: |
3860 | case OP_NOTMINUPTO: |
3861 | case OP_NOTEXACT: |
3862 | case OP_NOTPOSSTAR: |
3863 | case OP_NOTPOSPLUS: |
3864 | case OP_NOTPOSQUERY: |
3865 | case OP_NOTPOSUPTO: |
3866 | case OP_NOTSTARI: |
3867 | case OP_NOTMINSTARI: |
3868 | case OP_NOTPLUSI: |
3869 | case OP_NOTMINPLUSI: |
3870 | case OP_NOTQUERYI: |
3871 | case OP_NOTMINQUERYI: |
3872 | case OP_NOTUPTOI: |
3873 | case OP_NOTMINUPTOI: |
3874 | case OP_NOTEXACTI: |
3875 | case OP_NOTPOSSTARI: |
3876 | case OP_NOTPOSPLUSI: |
3877 | case OP_NOTPOSQUERYI: |
3878 | case OP_NOTPOSUPTOI: |
3879 | if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]); |
3880 | break; |
3881 | } |
3882 | #else |
3883 | (void)(utf); /* Keep compiler happy by referencing function argument */ |
3884 | #endif |
3885 | } |
3886 | } |
3887 | |
3888 | |
3889 | |
3890 | /************************************************* |
3891 | * Check for POSIX class syntax * |
3892 | *************************************************/ |
3893 | |
3894 | /* This function is called when the sequence "[:" or "[." or "[=" is |
3895 | encountered in a character class. It checks whether this is followed by a |
3896 | sequence of characters terminated by a matching ":]" or ".]" or "=]". If we |
3897 | reach an unescaped ']' without the special preceding character, return FALSE. |
3898 | |
3899 | Originally, this function only recognized a sequence of letters between the |
3900 | terminators, but it seems that Perl recognizes any sequence of characters, |
3901 | though of course unknown POSIX names are subsequently rejected. Perl gives an |
3902 | "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE |
3903 | didn't consider this to be a POSIX class. Likewise for [:1234:]. |
3904 | |
3905 | The problem in trying to be exactly like Perl is in the handling of escapes. We |
3906 | have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX |
3907 | class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code |
3908 | below handles the special cases \\ and \], but does not try to do any other |
3909 | escape processing. This makes it different from Perl for cases such as |
3910 | [:l\ower:] where Perl recognizes it as the POSIX class "lower" but PCRE does |
3911 | not recognize "l\ower". This is a lesser evil than not diagnosing bad classes |
3912 | when Perl does, I think. |
3913 | |
3914 | A user pointed out that PCRE was rejecting [:a[:digit:]] whereas Perl was not. |
3915 | It seems that the appearance of a nested POSIX class supersedes an apparent |
3916 | external class. For example, [:a[:digit:]b:] matches "a", "b", ":", or |
3917 | a digit. |
3918 | |
3919 | In Perl, unescaped square brackets may also appear as part of class names. For |
3920 | example, [:a[:abc]b:] gives unknown POSIX class "[:abc]b:]". However, for |
3921 | [:a[:abc]b][b:] it gives unknown POSIX class "[:abc]b][b:]", which does not |
3922 | seem right at all. PCRE does not allow closing square brackets in POSIX class |
3923 | names. |
3924 | |
3925 | Arguments: |
3926 | ptr pointer to the initial [ |
3927 | endptr where to return the end pointer |
3928 | |
3929 | Returns: TRUE or FALSE |
3930 | */ |
3931 | |
3932 | static BOOL |
3933 | check_posix_syntax(const pcre_uchar *ptr, const pcre_uchar **endptr) |
3934 | { |
3935 | pcre_uchar terminator; /* Don't combine these lines; the Solaris cc */ |
3936 | terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */ |
3937 | for (++ptr; *ptr != CHAR_NULL; ptr++) |
3938 | { |
3939 | if (*ptr == CHAR_BACKSLASH && |
3940 | (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET || |
3941 | ptr[1] == CHAR_BACKSLASH)) |
3942 | ptr++; |
3943 | else if ((*ptr == CHAR_LEFT_SQUARE_BRACKET && ptr[1] == terminator) || |
3944 | *ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE; |
3945 | else if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
3946 | { |
3947 | *endptr = ptr; |
3948 | return TRUE; |
3949 | } |
3950 | } |
3951 | return FALSE; |
3952 | } |
3953 | |
3954 | |
3955 | |
3956 | |
3957 | /************************************************* |
3958 | * Check POSIX class name * |
3959 | *************************************************/ |
3960 | |
3961 | /* This function is called to check the name given in a POSIX-style class entry |
3962 | such as [:alnum:]. |
3963 | |
3964 | Arguments: |
3965 | ptr points to the first letter |
3966 | len the length of the name |
3967 | |
3968 | Returns: a value representing the name, or -1 if unknown |
3969 | */ |
3970 | |
3971 | static int |
3972 | check_posix_name(const pcre_uchar *ptr, int len) |
3973 | { |
3974 | const char *pn = posix_names; |
3975 | register int yield = 0; |
3976 | while (posix_name_lengths[yield] != 0) |
3977 | { |
3978 | if (len == posix_name_lengths[yield] && |
3979 | STRNCMP_UC_C8(ptr, pn, (unsigned int)len) == 0) return yield; |
3980 | pn += posix_name_lengths[yield] + 1; |
3981 | yield++; |
3982 | } |
3983 | return -1; |
3984 | } |
3985 | |
3986 | |
3987 | /************************************************* |
3988 | * Adjust OP_RECURSE items in repeated group * |
3989 | *************************************************/ |
3990 | |
3991 | /* OP_RECURSE items contain an offset from the start of the regex to the group |
3992 | that is referenced. This means that groups can be replicated for fixed |
3993 | repetition simply by copying (because the recursion is allowed to refer to |
3994 | earlier groups that are outside the current group). However, when a group is |
3995 | optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is |
3996 | inserted before it, after it has been compiled. This means that any OP_RECURSE |
3997 | items within it that refer to the group itself or any contained groups have to |
3998 | have their offsets adjusted. That one of the jobs of this function. Before it |
3999 | is called, the partially compiled regex must be temporarily terminated with |
4000 | OP_END. |
4001 | |
4002 | This function has been extended to cope with forward references for recursions |
4003 | and subroutine calls. It must check the list of such references for the |
4004 | group we are dealing with. If it finds that one of the recursions in the |
4005 | current group is on this list, it does not adjust the value in the reference |
4006 | (which is a group number). After the group has been scanned, all the offsets in |
4007 | the forward reference list for the group are adjusted. |
4008 | |
4009 | Arguments: |
4010 | group points to the start of the group |
4011 | adjust the amount by which the group is to be moved |
4012 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
4013 | cd contains pointers to tables etc. |
4014 | save_hwm_offset the hwm forward reference offset at the start of the group |
4015 | |
4016 | Returns: nothing |
4017 | */ |
4018 | |
4019 | static void |
4020 | adjust_recurse(pcre_uchar *group, int adjust, BOOL utf, compile_data *cd, |
4021 | size_t save_hwm_offset) |
4022 | { |
4023 | int offset; |
4024 | pcre_uchar *hc; |
4025 | pcre_uchar *ptr = group; |
4026 | |
4027 | while ((ptr = (pcre_uchar *)find_recurse(ptr, utf)) != NULL) |
4028 | { |
4029 | for (hc = (pcre_uchar *)cd->start_workspace + save_hwm_offset; hc < cd->hwm; |
4030 | hc += LINK_SIZE) |
4031 | { |
4032 | offset = (int)GET(hc, 0); |
4033 | if (cd->start_code + offset == ptr + 1) break; |
4034 | } |
4035 | |
4036 | /* If we have not found this recursion on the forward reference list, adjust |
4037 | the recursion's offset if it's after the start of this group. */ |
4038 | |
4039 | if (hc >= cd->hwm) |
4040 | { |
4041 | offset = (int)GET(ptr, 1); |
4042 | if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust); |
4043 | } |
4044 | |
4045 | ptr += 1 + LINK_SIZE; |
4046 | } |
4047 | |
4048 | /* Now adjust all forward reference offsets for the group. */ |
4049 | |
4050 | for (hc = (pcre_uchar *)cd->start_workspace + save_hwm_offset; hc < cd->hwm; |
4051 | hc += LINK_SIZE) |
4052 | { |
4053 | offset = (int)GET(hc, 0); |
4054 | PUT(hc, 0, offset + adjust); |
4055 | } |
4056 | } |
4057 | |
4058 | |
4059 | |
4060 | /************************************************* |
4061 | * Insert an automatic callout point * |
4062 | *************************************************/ |
4063 | |
4064 | /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert |
4065 | callout points before each pattern item. |
4066 | |
4067 | Arguments: |
4068 | code current code pointer |
4069 | ptr current pattern pointer |
4070 | cd pointers to tables etc |
4071 | |
4072 | Returns: new code pointer |
4073 | */ |
4074 | |
4075 | static pcre_uchar * |
4076 | auto_callout(pcre_uchar *code, const pcre_uchar *ptr, compile_data *cd) |
4077 | { |
4078 | *code++ = OP_CALLOUT; |
4079 | *code++ = 255; |
4080 | PUT(code, 0, (int)(ptr - cd->start_pattern)); /* Pattern offset */ |
4081 | PUT(code, LINK_SIZE, 0); /* Default length */ |
4082 | return code + 2 * LINK_SIZE; |
4083 | } |
4084 | |
4085 | |
4086 | |
4087 | /************************************************* |
4088 | * Complete a callout item * |
4089 | *************************************************/ |
4090 | |
4091 | /* A callout item contains the length of the next item in the pattern, which |
4092 | we can't fill in till after we have reached the relevant point. This is used |
4093 | for both automatic and manual callouts. |
4094 | |
4095 | Arguments: |
4096 | previous_callout points to previous callout item |
4097 | ptr current pattern pointer |
4098 | cd pointers to tables etc |
4099 | |
4100 | Returns: nothing |
4101 | */ |
4102 | |
4103 | static void |
4104 | complete_callout(pcre_uchar *previous_callout, const pcre_uchar *ptr, compile_data *cd) |
4105 | { |
4106 | int length = (int)(ptr - cd->start_pattern - GET(previous_callout, 2)); |
4107 | PUT(previous_callout, 2 + LINK_SIZE, length); |
4108 | } |
4109 | |
4110 | |
4111 | |
4112 | #ifdef SUPPORT_UCP |
4113 | /************************************************* |
4114 | * Get othercase range * |
4115 | *************************************************/ |
4116 | |
4117 | /* This function is passed the start and end of a class range, in UTF-8 mode |
4118 | with UCP support. It searches up the characters, looking for ranges of |
4119 | characters in the "other" case. Each call returns the next one, updating the |
4120 | start address. A character with multiple other cases is returned on its own |
4121 | with a special return value. |
4122 | |
4123 | Arguments: |
4124 | cptr points to starting character value; updated |
4125 | d end value |
4126 | ocptr where to put start of othercase range |
4127 | odptr where to put end of othercase range |
4128 | |
4129 | Yield: -1 when no more |
4130 | 0 when a range is returned |
4131 | >0 the CASESET offset for char with multiple other cases |
4132 | in this case, ocptr contains the original |
4133 | */ |
4134 | |
4135 | static int |
4136 | get_othercase_range(pcre_uint32 *cptr, pcre_uint32 d, pcre_uint32 *ocptr, |
4137 | pcre_uint32 *odptr) |
4138 | { |
4139 | pcre_uint32 c, othercase, next; |
4140 | unsigned int co; |
4141 | |
4142 | /* Find the first character that has an other case. If it has multiple other |
4143 | cases, return its case offset value. */ |
4144 | |
4145 | for (c = *cptr; c <= d; c++) |
4146 | { |
4147 | if ((co = UCD_CASESET(c)) != 0) |
4148 | { |
4149 | *ocptr = c++; /* Character that has the set */ |
4150 | *cptr = c; /* Rest of input range */ |
4151 | return (int)co; |
4152 | } |
4153 | if ((othercase = UCD_OTHERCASE(c)) != c) break; |
4154 | } |
4155 | |
4156 | if (c > d) return -1; /* Reached end of range */ |
4157 | |
4158 | /* Found a character that has a single other case. Search for the end of the |
4159 | range, which is either the end of the input range, or a character that has zero |
4160 | or more than one other cases. */ |
4161 | |
4162 | *ocptr = othercase; |
4163 | next = othercase + 1; |
4164 | |
4165 | for (++c; c <= d; c++) |
4166 | { |
4167 | if ((co = UCD_CASESET(c)) != 0 || UCD_OTHERCASE(c) != next) break; |
4168 | next++; |
4169 | } |
4170 | |
4171 | *odptr = next - 1; /* End of othercase range */ |
4172 | *cptr = c; /* Rest of input range */ |
4173 | return 0; |
4174 | } |
4175 | #endif /* SUPPORT_UCP */ |
4176 | |
4177 | |
4178 | |
4179 | /************************************************* |
4180 | * Add a character or range to a class * |
4181 | *************************************************/ |
4182 | |
4183 | /* This function packages up the logic of adding a character or range of |
4184 | characters to a class. The character values in the arguments will be within the |
4185 | valid values for the current mode (8-bit, 16-bit, UTF, etc). This function is |
4186 | mutually recursive with the function immediately below. |
4187 | |
4188 | Arguments: |
4189 | classbits the bit map for characters < 256 |
4190 | uchardptr points to the pointer for extra data |
4191 | options the options word |
4192 | cd contains pointers to tables etc. |
4193 | start start of range character |
4194 | end end of range character |
4195 | |
4196 | Returns: the number of < 256 characters added |
4197 | the pointer to extra data is updated |
4198 | */ |
4199 | |
4200 | static int |
4201 | add_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, int options, |
4202 | compile_data *cd, pcre_uint32 start, pcre_uint32 end) |
4203 | { |
4204 | pcre_uint32 c; |
4205 | pcre_uint32 classbits_end = (end <= 0xff ? end : 0xff); |
4206 | int n8 = 0; |
4207 | |
4208 | /* If caseless matching is required, scan the range and process alternate |
4209 | cases. In Unicode, there are 8-bit characters that have alternate cases that |
4210 | are greater than 255 and vice-versa. Sometimes we can just extend the original |
4211 | range. */ |
4212 | |
4213 | if ((options & PCRE_CASELESS) != 0) |
4214 | { |
4215 | #ifdef SUPPORT_UCP |
4216 | if ((options & PCRE_UTF8) != 0) |
4217 | { |
4218 | int rc; |
4219 | pcre_uint32 oc, od; |
4220 | |
4221 | options &= ~PCRE_CASELESS; /* Remove for recursive calls */ |
4222 | c = start; |
4223 | |
4224 | while ((rc = get_othercase_range(&c, end, &oc, &od)) >= 0) |
4225 | { |
4226 | /* Handle a single character that has more than one other case. */ |
4227 | |
4228 | if (rc > 0) n8 += add_list_to_class(classbits, uchardptr, options, cd, |
4229 | PRIV(ucd_caseless_sets) + rc, oc); |
4230 | |
4231 | /* Do nothing if the other case range is within the original range. */ |
4232 | |
4233 | else if (oc >= start && od <= end) continue; |
4234 | |
4235 | /* Extend the original range if there is overlap, noting that if oc < c, we |
4236 | can't have od > end because a subrange is always shorter than the basic |
4237 | range. Otherwise, use a recursive call to add the additional range. */ |
4238 | |
4239 | else if (oc < start && od >= start - 1) start = oc; /* Extend downwards */ |
4240 | else if (od > end && oc <= end + 1) |
4241 | { |
4242 | end = od; /* Extend upwards */ |
4243 | if (end > classbits_end) classbits_end = (end <= 0xff ? end : 0xff); |
4244 | } |
4245 | else n8 += add_to_class(classbits, uchardptr, options, cd, oc, od); |
4246 | } |
4247 | } |
4248 | else |
4249 | #endif /* SUPPORT_UCP */ |
4250 | |
4251 | /* Not UTF-mode, or no UCP */ |
4252 | |
4253 | for (c = start; c <= classbits_end; c++) |
4254 | { |
4255 | SETBIT(classbits, cd->fcc[c]); |
4256 | n8++; |
4257 | } |
4258 | } |
4259 | |
4260 | /* Now handle the original range. Adjust the final value according to the bit |
4261 | length - this means that the same lists of (e.g.) horizontal spaces can be used |
4262 | in all cases. */ |
4263 | |
4264 | #if defined COMPILE_PCRE8 |
4265 | #ifdef SUPPORT_UTF |
4266 | if ((options & PCRE_UTF8) == 0) |
4267 | #endif |
4268 | if (end > 0xff) end = 0xff; |
4269 | |
4270 | #elif defined COMPILE_PCRE16 |
4271 | #ifdef SUPPORT_UTF |
4272 | if ((options & PCRE_UTF16) == 0) |
4273 | #endif |
4274 | if (end > 0xffff) end = 0xffff; |
4275 | |
4276 | #endif /* COMPILE_PCRE[8|16] */ |
4277 | |
4278 | /* Use the bitmap for characters < 256. Otherwise use extra data.*/ |
4279 | |
4280 | for (c = start; c <= classbits_end; c++) |
4281 | { |
4282 | /* Regardless of start, c will always be <= 255. */ |
4283 | SETBIT(classbits, c); |
4284 | n8++; |
4285 | } |
4286 | |
4287 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4288 | if (start <= 0xff) start = 0xff + 1; |
4289 | |
4290 | if (end >= start) |
4291 | { |
4292 | pcre_uchar *uchardata = *uchardptr; |
4293 | #ifdef SUPPORT_UTF |
4294 | if ((options & PCRE_UTF8) != 0) /* All UTFs use the same flag bit */ |
4295 | { |
4296 | if (start < end) |
4297 | { |
4298 | *uchardata++ = XCL_RANGE; |
4299 | uchardata += PRIV(ord2utf)(start, uchardata); |
4300 | uchardata += PRIV(ord2utf)(end, uchardata); |
4301 | } |
4302 | else if (start == end) |
4303 | { |
4304 | *uchardata++ = XCL_SINGLE; |
4305 | uchardata += PRIV(ord2utf)(start, uchardata); |
4306 | } |
4307 | } |
4308 | else |
4309 | #endif /* SUPPORT_UTF */ |
4310 | |
4311 | /* Without UTF support, character values are constrained by the bit length, |
4312 | and can only be > 256 for 16-bit and 32-bit libraries. */ |
4313 | |
4314 | #ifdef COMPILE_PCRE8 |
4315 | {} |
4316 | #else |
4317 | if (start < end) |
4318 | { |
4319 | *uchardata++ = XCL_RANGE; |
4320 | *uchardata++ = start; |
4321 | *uchardata++ = end; |
4322 | } |
4323 | else if (start == end) |
4324 | { |
4325 | *uchardata++ = XCL_SINGLE; |
4326 | *uchardata++ = start; |
4327 | } |
4328 | #endif |
4329 | |
4330 | *uchardptr = uchardata; /* Updata extra data pointer */ |
4331 | } |
4332 | #endif /* SUPPORT_UTF || !COMPILE_PCRE8 */ |
4333 | |
4334 | return n8; /* Number of 8-bit characters */ |
4335 | } |
4336 | |
4337 | |
4338 | |
4339 | |
4340 | /************************************************* |
4341 | * Add a list of characters to a class * |
4342 | *************************************************/ |
4343 | |
4344 | /* This function is used for adding a list of case-equivalent characters to a |
4345 | class, and also for adding a list of horizontal or vertical whitespace. If the |
4346 | list is in order (which it should be), ranges of characters are detected and |
4347 | handled appropriately. This function is mutually recursive with the function |
4348 | above. |
4349 | |
4350 | Arguments: |
4351 | classbits the bit map for characters < 256 |
4352 | uchardptr points to the pointer for extra data |
4353 | options the options word |
4354 | cd contains pointers to tables etc. |
4355 | p points to row of 32-bit values, terminated by NOTACHAR |
4356 | except character to omit; this is used when adding lists of |
4357 | case-equivalent characters to avoid including the one we |
4358 | already know about |
4359 | |
4360 | Returns: the number of < 256 characters added |
4361 | the pointer to extra data is updated |
4362 | */ |
4363 | |
4364 | static int |
4365 | add_list_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, int options, |
4366 | compile_data *cd, const pcre_uint32 *p, unsigned int except) |
4367 | { |
4368 | int n8 = 0; |
4369 | while (p[0] < NOTACHAR) |
4370 | { |
4371 | int n = 0; |
4372 | if (p[0] != except) |
4373 | { |
4374 | while(p[n+1] == p[0] + n + 1) n++; |
4375 | n8 += add_to_class(classbits, uchardptr, options, cd, p[0], p[n]); |
4376 | } |
4377 | p += n + 1; |
4378 | } |
4379 | return n8; |
4380 | } |
4381 | |
4382 | |
4383 | |
4384 | /************************************************* |
4385 | * Add characters not in a list to a class * |
4386 | *************************************************/ |
4387 | |
4388 | /* This function is used for adding the complement of a list of horizontal or |
4389 | vertical whitespace to a class. The list must be in order. |
4390 | |
4391 | Arguments: |
4392 | classbits the bit map for characters < 256 |
4393 | uchardptr points to the pointer for extra data |
4394 | options the options word |
4395 | cd contains pointers to tables etc. |
4396 | p points to row of 32-bit values, terminated by NOTACHAR |
4397 | |
4398 | Returns: the number of < 256 characters added |
4399 | the pointer to extra data is updated |
4400 | */ |
4401 | |
4402 | static int |
4403 | add_not_list_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, |
4404 | int options, compile_data *cd, const pcre_uint32 *p) |
4405 | { |
4406 | BOOL utf = (options & PCRE_UTF8) != 0; |
4407 | int n8 = 0; |
4408 | if (p[0] > 0) |
4409 | n8 += add_to_class(classbits, uchardptr, options, cd, 0, p[0] - 1); |
4410 | while (p[0] < NOTACHAR) |
4411 | { |
4412 | while (p[1] == p[0] + 1) p++; |
4413 | n8 += add_to_class(classbits, uchardptr, options, cd, p[0] + 1, |
4414 | (p[1] == NOTACHAR) ? (utf ? 0x10ffffu : 0xffffffffu) : p[1] - 1); |
4415 | p++; |
4416 | } |
4417 | return n8; |
4418 | } |
4419 | |
4420 | |
4421 | |
4422 | /************************************************* |
4423 | * Compile one branch * |
4424 | *************************************************/ |
4425 | |
4426 | /* Scan the pattern, compiling it into the a vector. If the options are |
4427 | changed during the branch, the pointer is used to change the external options |
4428 | bits. This function is used during the pre-compile phase when we are trying |
4429 | to find out the amount of memory needed, as well as during the real compile |
4430 | phase. The value of lengthptr distinguishes the two phases. |
4431 | |
4432 | Arguments: |
4433 | optionsptr pointer to the option bits |
4434 | codeptr points to the pointer to the current code point |
4435 | ptrptr points to the current pattern pointer |
4436 | errorcodeptr points to error code variable |
4437 | firstcharptr place to put the first required character |
4438 | firstcharflagsptr place to put the first character flags, or a negative number |
4439 | reqcharptr place to put the last required character |
4440 | reqcharflagsptr place to put the last required character flags, or a negative number |
4441 | bcptr points to current branch chain |
4442 | cond_depth conditional nesting depth |
4443 | cd contains pointers to tables etc. |
4444 | lengthptr NULL during the real compile phase |
4445 | points to length accumulator during pre-compile phase |
4446 | |
4447 | Returns: TRUE on success |
4448 | FALSE, with *errorcodeptr set non-zero on error |
4449 | */ |
4450 | |
4451 | static BOOL |
4452 | compile_branch(int *optionsptr, pcre_uchar **codeptr, |
4453 | const pcre_uchar **ptrptr, int *errorcodeptr, |
4454 | pcre_uint32 *firstcharptr, pcre_int32 *firstcharflagsptr, |
4455 | pcre_uint32 *reqcharptr, pcre_int32 *reqcharflagsptr, |
4456 | branch_chain *bcptr, int cond_depth, |
4457 | compile_data *cd, int *lengthptr) |
4458 | { |
4459 | int repeat_type, op_type; |
4460 | int repeat_min = 0, repeat_max = 0; /* To please picky compilers */ |
4461 | int bravalue = 0; |
4462 | int greedy_default, greedy_non_default; |
4463 | pcre_uint32 firstchar, reqchar; |
4464 | pcre_int32 firstcharflags, reqcharflags; |
4465 | pcre_uint32 zeroreqchar, zerofirstchar; |
4466 | pcre_int32 zeroreqcharflags, zerofirstcharflags; |
4467 | pcre_int32 req_caseopt, reqvary, tempreqvary; |
4468 | int options = *optionsptr; /* May change dynamically */ |
4469 | int after_manual_callout = 0; |
4470 | int length_prevgroup = 0; |
4471 | register pcre_uint32 c; |
4472 | int escape; |
4473 | register pcre_uchar *code = *codeptr; |
4474 | pcre_uchar *last_code = code; |
4475 | pcre_uchar *orig_code = code; |
4476 | pcre_uchar *tempcode; |
4477 | BOOL inescq = FALSE; |
4478 | BOOL groupsetfirstchar = FALSE; |
4479 | const pcre_uchar *ptr = *ptrptr; |
4480 | const pcre_uchar *tempptr; |
4481 | const pcre_uchar *nestptr = NULL; |
4482 | pcre_uchar *previous = NULL; |
4483 | pcre_uchar *previous_callout = NULL; |
4484 | size_t item_hwm_offset = 0; |
4485 | pcre_uint8 classbits[32]; |
4486 | |
4487 | /* We can fish out the UTF-8 setting once and for all into a BOOL, but we |
4488 | must not do this for other options (e.g. PCRE_EXTENDED) because they may change |
4489 | dynamically as we process the pattern. */ |
4490 | |
4491 | #ifdef SUPPORT_UTF |
4492 | /* PCRE_UTF[16|32] have the same value as PCRE_UTF8. */ |
4493 | BOOL utf = (options & PCRE_UTF8) != 0; |
4494 | #ifndef COMPILE_PCRE32 |
4495 | pcre_uchar utf_chars[6]; |
4496 | #endif |
4497 | #else |
4498 | BOOL utf = FALSE; |
4499 | #endif |
4500 | |
4501 | /* Helper variables for OP_XCLASS opcode (for characters > 255). We define |
4502 | class_uchardata always so that it can be passed to add_to_class() always, |
4503 | though it will not be used in non-UTF 8-bit cases. This avoids having to supply |
4504 | alternative calls for the different cases. */ |
4505 | |
4506 | pcre_uchar *class_uchardata; |
4507 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4508 | BOOL xclass; |
4509 | pcre_uchar *class_uchardata_base; |
4510 | #endif |
4511 | |
4512 | #ifdef PCRE_DEBUG |
4513 | if (lengthptr != NULL) DPRINTF((">> start branch\n")); |
4514 | #endif |
4515 | |
4516 | /* Set up the default and non-default settings for greediness */ |
4517 | |
4518 | greedy_default = ((options & PCRE_UNGREEDY) != 0); |
4519 | greedy_non_default = greedy_default ^ 1; |
4520 | |
4521 | /* Initialize no first byte, no required byte. REQ_UNSET means "no char |
4522 | matching encountered yet". It gets changed to REQ_NONE if we hit something that |
4523 | matches a non-fixed char first char; reqchar just remains unset if we never |
4524 | find one. |
4525 | |
4526 | When we hit a repeat whose minimum is zero, we may have to adjust these values |
4527 | to take the zero repeat into account. This is implemented by setting them to |
4528 | zerofirstbyte and zeroreqchar when such a repeat is encountered. The individual |
4529 | item types that can be repeated set these backoff variables appropriately. */ |
4530 | |
4531 | firstchar = reqchar = zerofirstchar = zeroreqchar = 0; |
4532 | firstcharflags = reqcharflags = zerofirstcharflags = zeroreqcharflags = REQ_UNSET; |
4533 | |
4534 | /* The variable req_caseopt contains either the REQ_CASELESS value |
4535 | or zero, according to the current setting of the caseless flag. The |
4536 | REQ_CASELESS leaves the lower 28 bit empty. It is added into the |
4537 | firstchar or reqchar variables to record the case status of the |
4538 | value. This is used only for ASCII characters. */ |
4539 | |
4540 | req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS:0; |
4541 | |
4542 | /* Switch on next character until the end of the branch */ |
4543 | |
4544 | for (;; ptr++) |
4545 | { |
4546 | BOOL negate_class; |
4547 | BOOL should_flip_negation; |
4548 | BOOL possessive_quantifier; |
4549 | BOOL is_quantifier; |
4550 | BOOL is_recurse; |
4551 | BOOL reset_bracount; |
4552 | int class_has_8bitchar; |
4553 | int class_one_char; |
4554 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4555 | BOOL xclass_has_prop; |
4556 | #endif |
4557 | int newoptions; |
4558 | int recno; |
4559 | int refsign; |
4560 | int skipbytes; |
4561 | pcre_uint32 subreqchar, subfirstchar; |
4562 | pcre_int32 subreqcharflags, subfirstcharflags; |
4563 | int terminator; |
4564 | unsigned int mclength; |
4565 | unsigned int tempbracount; |
4566 | pcre_uint32 ec; |
4567 | pcre_uchar mcbuffer[8]; |
4568 | |
4569 | /* Get next character in the pattern */ |
4570 | |
4571 | c = *ptr; |
4572 | |
4573 | /* If we are at the end of a nested substitution, revert to the outer level |
4574 | string. Nesting only happens one level deep. */ |
4575 | |
4576 | if (c == CHAR_NULL && nestptr != NULL) |
4577 | { |
4578 | ptr = nestptr; |
4579 | nestptr = NULL; |
4580 | c = *ptr; |
4581 | } |
4582 | |
4583 | /* If we are in the pre-compile phase, accumulate the length used for the |
4584 | previous cycle of this loop. */ |
4585 | |
4586 | if (lengthptr != NULL) |
4587 | { |
4588 | #ifdef PCRE_DEBUG |
4589 | if (code > cd->hwm) cd->hwm = code; /* High water info */ |
4590 | #endif |
4591 | if (code > cd->start_workspace + cd->workspace_size - |
4592 | WORK_SIZE_SAFETY_MARGIN) /* Check for overrun */ |
4593 | { |
4594 | *errorcodeptr = ERR52; |
4595 | goto FAILED; |
4596 | } |
4597 | |
4598 | /* There is at least one situation where code goes backwards: this is the |
4599 | case of a zero quantifier after a class (e.g. [ab]{0}). At compile time, |
4600 | the class is simply eliminated. However, it is created first, so we have to |
4601 | allow memory for it. Therefore, don't ever reduce the length at this point. |
4602 | */ |
4603 | |
4604 | if (code < last_code) code = last_code; |
4605 | |
4606 | /* Paranoid check for integer overflow */ |
4607 | |
4608 | if (OFLOW_MAX - *lengthptr < code - last_code) |
4609 | { |
4610 | *errorcodeptr = ERR20; |
4611 | goto FAILED; |
4612 | } |
4613 | |
4614 | *lengthptr += (int)(code - last_code); |
4615 | DPRINTF(("length=%d added %d c=%c (0x%x)\n", *lengthptr, |
4616 | (int)(code - last_code), c, c)); |
4617 | |
4618 | /* If "previous" is set and it is not at the start of the work space, move |
4619 | it back to there, in order to avoid filling up the work space. Otherwise, |
4620 | if "previous" is NULL, reset the current code pointer to the start. */ |
4621 | |
4622 | if (previous != NULL) |
4623 | { |
4624 | if (previous > orig_code) |
4625 | { |
4626 | memmove(orig_code, previous, IN_UCHARS(code - previous)); |
4627 | code -= previous - orig_code; |
4628 | previous = orig_code; |
4629 | } |
4630 | } |
4631 | else code = orig_code; |
4632 | |
4633 | /* Remember where this code item starts so we can pick up the length |
4634 | next time round. */ |
4635 | |
4636 | last_code = code; |
4637 | } |
4638 | |
4639 | /* In the real compile phase, just check the workspace used by the forward |
4640 | reference list. */ |
4641 | |
4642 | else if (cd->hwm > cd->start_workspace + cd->workspace_size) |
4643 | { |
4644 | *errorcodeptr = ERR52; |
4645 | goto FAILED; |
4646 | } |
4647 | |
4648 | /* If in \Q...\E, check for the end; if not, we have a literal */ |
4649 | |
4650 | if (inescq && c != CHAR_NULL) |
4651 | { |
4652 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
4653 | { |
4654 | inescq = FALSE; |
4655 | ptr++; |
4656 | continue; |
4657 | } |
4658 | else |
4659 | { |
4660 | if (previous_callout != NULL) |
4661 | { |
4662 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
4663 | complete_callout(previous_callout, ptr, cd); |
4664 | previous_callout = NULL; |
4665 | } |
4666 | if ((options & PCRE_AUTO_CALLOUT) != 0) |
4667 | { |
4668 | previous_callout = code; |
4669 | code = auto_callout(code, ptr, cd); |
4670 | } |
4671 | goto NORMAL_CHAR; |
4672 | } |
4673 | /* Control does not reach here. */ |
4674 | } |
4675 | |
4676 | /* In extended mode, skip white space and comments. We need a loop in order |
4677 | to check for more white space and more comments after a comment. */ |
4678 | |
4679 | if ((options & PCRE_EXTENDED) != 0) |
4680 | { |
4681 | for (;;) |
4682 | { |
4683 | while (MAX_255(c) && (cd->ctypes[c] & ctype_space) != 0) c = *(++ptr); |
4684 | if (c != CHAR_NUMBER_SIGN) break; |
4685 | ptr++; |
4686 | while (*ptr != CHAR_NULL) |
4687 | { |
4688 | if (IS_NEWLINE(ptr)) /* For non-fixed-length newline cases, */ |
4689 | { /* IS_NEWLINE sets cd->nllen. */ |
4690 | ptr += cd->nllen; |
4691 | break; |
4692 | } |
4693 | ptr++; |
4694 | #ifdef SUPPORT_UTF |
4695 | if (utf) FORWARDCHAR(ptr); |
4696 | #endif |
4697 | } |
4698 | c = *ptr; /* Either NULL or the char after a newline */ |
4699 | } |
4700 | } |
4701 | |
4702 | /* See if the next thing is a quantifier. */ |
4703 | |
4704 | is_quantifier = |
4705 | c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK || |
4706 | (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1)); |
4707 | |
4708 | /* Fill in length of a previous callout, except when the next thing is a |
4709 | quantifier or when processing a property substitution string in UCP mode. */ |
4710 | |
4711 | if (!is_quantifier && previous_callout != NULL && nestptr == NULL && |
4712 | after_manual_callout-- <= 0) |
4713 | { |
4714 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
4715 | complete_callout(previous_callout, ptr, cd); |
4716 | previous_callout = NULL; |
4717 | } |
4718 | |
4719 | /* Create auto callout, except for quantifiers, or while processing property |
4720 | strings that are substituted for \w etc in UCP mode. */ |
4721 | |
4722 | if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier && nestptr == NULL) |
4723 | { |
4724 | previous_callout = code; |
4725 | code = auto_callout(code, ptr, cd); |
4726 | } |
4727 | |
4728 | /* Process the next pattern item. */ |
4729 | |
4730 | switch(c) |
4731 | { |
4732 | /* ===================================================================*/ |
4733 | case CHAR_NULL: /* The branch terminates at string end */ |
4734 | case CHAR_VERTICAL_LINE: /* or | or ) */ |
4735 | case CHAR_RIGHT_PARENTHESIS: |
4736 | *firstcharptr = firstchar; |
4737 | *firstcharflagsptr = firstcharflags; |
4738 | *reqcharptr = reqchar; |
4739 | *reqcharflagsptr = reqcharflags; |
4740 | *codeptr = code; |
4741 | *ptrptr = ptr; |
4742 | if (lengthptr != NULL) |
4743 | { |
4744 | if (OFLOW_MAX - *lengthptr < code - last_code) |
4745 | { |
4746 | *errorcodeptr = ERR20; |
4747 | goto FAILED; |
4748 | } |
4749 | *lengthptr += (int)(code - last_code); /* To include callout length */ |
4750 | DPRINTF((">> end branch\n")); |
4751 | } |
4752 | return TRUE; |
4753 | |
4754 | |
4755 | /* ===================================================================*/ |
4756 | /* Handle single-character metacharacters. In multiline mode, ^ disables |
4757 | the setting of any following char as a first character. */ |
4758 | |
4759 | case CHAR_CIRCUMFLEX_ACCENT: |
4760 | previous = NULL; |
4761 | if ((options & PCRE_MULTILINE) != 0) |
4762 | { |
4763 | if (firstcharflags == REQ_UNSET) |
4764 | zerofirstcharflags = firstcharflags = REQ_NONE; |
4765 | *code++ = OP_CIRCM; |
4766 | } |
4767 | else *code++ = OP_CIRC; |
4768 | break; |
4769 | |
4770 | case CHAR_DOLLAR_SIGN: |
4771 | previous = NULL; |
4772 | *code++ = ((options & PCRE_MULTILINE) != 0)? OP_DOLLM : OP_DOLL; |
4773 | break; |
4774 | |
4775 | /* There can never be a first char if '.' is first, whatever happens about |
4776 | repeats. The value of reqchar doesn't change either. */ |
4777 | |
4778 | case CHAR_DOT: |
4779 | if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE; |
4780 | zerofirstchar = firstchar; |
4781 | zerofirstcharflags = firstcharflags; |
4782 | zeroreqchar = reqchar; |
4783 | zeroreqcharflags = reqcharflags; |
4784 | previous = code; |
4785 | item_hwm_offset = cd->hwm - cd->start_workspace; |
4786 | *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY; |
4787 | break; |
4788 | |
4789 | |
4790 | /* ===================================================================*/ |
4791 | /* Character classes. If the included characters are all < 256, we build a |
4792 | 32-byte bitmap of the permitted characters, except in the special case |
4793 | where there is only one such character. For negated classes, we build the |
4794 | map as usual, then invert it at the end. However, we use a different opcode |
4795 | so that data characters > 255 can be handled correctly. |
4796 | |
4797 | If the class contains characters outside the 0-255 range, a different |
4798 | opcode is compiled. It may optionally have a bit map for characters < 256, |
4799 | but those above are are explicitly listed afterwards. A flag byte tells |
4800 | whether the bitmap is present, and whether this is a negated class or not. |
4801 | |
4802 | In JavaScript compatibility mode, an isolated ']' causes an error. In |
4803 | default (Perl) mode, it is treated as a data character. */ |
4804 | |
4805 | case CHAR_RIGHT_SQUARE_BRACKET: |
4806 | if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
4807 | { |
4808 | *errorcodeptr = ERR64; |
4809 | goto FAILED; |
4810 | } |
4811 | goto NORMAL_CHAR; |
4812 | |
4813 | /* In another (POSIX) regex library, the ugly syntax [[:<:]] and [[:>:]] is |
4814 | used for "start of word" and "end of word". As these are otherwise illegal |
4815 | sequences, we don't break anything by recognizing them. They are replaced |
4816 | by \b(?=\w) and \b(?<=\w) respectively. Sequences like [a[:<:]] are |
4817 | erroneous and are handled by the normal code below. */ |
4818 | |
4819 | case CHAR_LEFT_SQUARE_BRACKET: |
4820 | if (STRNCMP_UC_C8(ptr+1, STRING_WEIRD_STARTWORD, 6) == 0) |
4821 | { |
4822 | nestptr = ptr + 7; |
4823 | ptr = sub_start_of_word - 1; |
4824 | continue; |
4825 | } |
4826 | |
4827 | if (STRNCMP_UC_C8(ptr+1, STRING_WEIRD_ENDWORD, 6) == 0) |
4828 | { |
4829 | nestptr = ptr + 7; |
4830 | ptr = sub_end_of_word - 1; |
4831 | continue; |
4832 | } |
4833 | |
4834 | /* Handle a real character class. */ |
4835 | |
4836 | previous = code; |
4837 | item_hwm_offset = cd->hwm - cd->start_workspace; |
4838 | |
4839 | /* PCRE supports POSIX class stuff inside a class. Perl gives an error if |
4840 | they are encountered at the top level, so we'll do that too. */ |
4841 | |
4842 | if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
4843 | ptr[1] == CHAR_EQUALS_SIGN) && |
4844 | check_posix_syntax(ptr, &tempptr)) |
4845 | { |
4846 | *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31; |
4847 | goto FAILED; |
4848 | } |
4849 | |
4850 | /* If the first character is '^', set the negation flag and skip it. Also, |
4851 | if the first few characters (either before or after ^) are \Q\E or \E we |
4852 | skip them too. This makes for compatibility with Perl. */ |
4853 | |
4854 | negate_class = FALSE; |
4855 | for (;;) |
4856 | { |
4857 | c = *(++ptr); |
4858 | if (c == CHAR_BACKSLASH) |
4859 | { |
4860 | if (ptr[1] == CHAR_E) |
4861 | ptr++; |
4862 | else if (STRNCMP_UC_C8(ptr + 1, STR_Q STR_BACKSLASH STR_E, 3) == 0) |
4863 | ptr += 3; |
4864 | else |
4865 | break; |
4866 | } |
4867 | else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT) |
4868 | negate_class = TRUE; |
4869 | else break; |
4870 | } |
4871 | |
4872 | /* Empty classes are allowed in JavaScript compatibility mode. Otherwise, |
4873 | an initial ']' is taken as a data character -- the code below handles |
4874 | that. In JS mode, [] must always fail, so generate OP_FAIL, whereas |
4875 | [^] must match any character, so generate OP_ALLANY. */ |
4876 | |
4877 | if (c == CHAR_RIGHT_SQUARE_BRACKET && |
4878 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
4879 | { |
4880 | *code++ = negate_class? OP_ALLANY : OP_FAIL; |
4881 | if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE; |
4882 | zerofirstchar = firstchar; |
4883 | zerofirstcharflags = firstcharflags; |
4884 | break; |
4885 | } |
4886 | |
4887 | /* If a class contains a negative special such as \S, we need to flip the |
4888 | negation flag at the end, so that support for characters > 255 works |
4889 | correctly (they are all included in the class). */ |
4890 | |
4891 | should_flip_negation = FALSE; |
4892 | |
4893 | /* Extended class (xclass) will be used when characters > 255 |
4894 | might match. */ |
4895 | |
4896 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4897 | xclass = FALSE; |
4898 | class_uchardata = code + LINK_SIZE + 2; /* For XCLASS items */ |
4899 | class_uchardata_base = class_uchardata; /* Save the start */ |
4900 | #endif |
4901 | |
4902 | /* For optimization purposes, we track some properties of the class: |
4903 | class_has_8bitchar will be non-zero if the class contains at least one < |
4904 | 256 character; class_one_char will be 1 if the class contains just one |
4905 | character; xclass_has_prop will be TRUE if unicode property checks |
4906 | are present in the class. */ |
4907 | |
4908 | class_has_8bitchar = 0; |
4909 | class_one_char = 0; |
4910 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4911 | xclass_has_prop = FALSE; |
4912 | #endif |
4913 | |
4914 | /* Initialize the 32-char bit map to all zeros. We build the map in a |
4915 | temporary bit of memory, in case the class contains fewer than two |
4916 | 8-bit characters because in that case the compiled code doesn't use the bit |
4917 | map. */ |
4918 | |
4919 | memset(classbits, 0, 32 * sizeof(pcre_uint8)); |
4920 | |
4921 | /* Process characters until ] is reached. By writing this as a "do" it |
4922 | means that an initial ] is taken as a data character. At the start of the |
4923 | loop, c contains the first byte of the character. */ |
4924 | |
4925 | if (c != CHAR_NULL) do |
4926 | { |
4927 | const pcre_uchar *oldptr; |
4928 | |
4929 | #ifdef SUPPORT_UTF |
4930 | if (utf && HAS_EXTRALEN(c)) |
4931 | { /* Braces are required because the */ |
4932 | GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */ |
4933 | } |
4934 | #endif |
4935 | |
4936 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4937 | /* In the pre-compile phase, accumulate the length of any extra |
4938 | data and reset the pointer. This is so that very large classes that |
4939 | contain a zillion > 255 characters no longer overwrite the work space |
4940 | (which is on the stack). We have to remember that there was XCLASS data, |
4941 | however. */ |
4942 | |
4943 | if (class_uchardata > class_uchardata_base) xclass = TRUE; |
4944 | |
4945 | if (lengthptr != NULL && class_uchardata > class_uchardata_base) |
4946 | { |
4947 | *lengthptr += (int)(class_uchardata - class_uchardata_base); |
4948 | class_uchardata = class_uchardata_base; |
4949 | } |
4950 | #endif |
4951 | |
4952 | /* Inside \Q...\E everything is literal except \E */ |
4953 | |
4954 | if (inescq) |
4955 | { |
4956 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */ |
4957 | { |
4958 | inescq = FALSE; /* Reset literal state */ |
4959 | ptr++; /* Skip the 'E' */ |
4960 | continue; /* Carry on with next */ |
4961 | } |
4962 | goto CHECK_RANGE; /* Could be range if \E follows */ |
4963 | } |
4964 | |
4965 | /* Handle POSIX class names. Perl allows a negation extension of the |
4966 | form [:^name:]. A square bracket that doesn't match the syntax is |
4967 | treated as a literal. We also recognize the POSIX constructions |
4968 | [.ch.] and [=ch=] ("collating elements") and fault them, as Perl |
4969 | 5.6 and 5.8 do. */ |
4970 | |
4971 | if (c == CHAR_LEFT_SQUARE_BRACKET && |
4972 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
4973 | ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr)) |
4974 | { |
4975 | BOOL local_negate = FALSE; |
4976 | int posix_class, taboffset, tabopt; |
4977 | register const pcre_uint8 *cbits = cd->cbits; |
4978 | pcre_uint8 pbits[32]; |
4979 | |
4980 | if (ptr[1] != CHAR_COLON) |
4981 | { |
4982 | *errorcodeptr = ERR31; |
4983 | goto FAILED; |
4984 | } |
4985 | |
4986 | ptr += 2; |
4987 | if (*ptr == CHAR_CIRCUMFLEX_ACCENT) |
4988 | { |
4989 | local_negate = TRUE; |
4990 | should_flip_negation = TRUE; /* Note negative special */ |
4991 | ptr++; |
4992 | } |
4993 | |
4994 | posix_class = check_posix_name(ptr, (int)(tempptr - ptr)); |
4995 | if (posix_class < 0) |
4996 | { |
4997 | *errorcodeptr = ERR30; |
4998 | goto FAILED; |
4999 | } |
5000 | |
5001 | /* If matching is caseless, upper and lower are converted to |
5002 | alpha. This relies on the fact that the class table starts with |
5003 | alpha, lower, upper as the first 3 entries. */ |
5004 | |
5005 | if ((options & PCRE_CASELESS) != 0 && posix_class <= 2) |
5006 | posix_class = 0; |
5007 | |
5008 | /* When PCRE_UCP is set, some of the POSIX classes are converted to |
5009 | different escape sequences that use Unicode properties \p or \P. Others |
5010 | that are not available via \p or \P generate XCL_PROP/XCL_NOTPROP |
5011 | directly. */ |
5012 | |
5013 | #ifdef SUPPORT_UCP |
5014 | if ((options & PCRE_UCP) != 0) |
5015 | { |
5016 | unsigned int ptype = 0; |
5017 | int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0); |
5018 | |
5019 | /* The posix_substitutes table specifies which POSIX classes can be |
5020 | converted to \p or \P items. */ |
5021 | |
5022 | if (posix_substitutes[pc] != NULL) |
5023 | { |
5024 | nestptr = tempptr + 1; |
5025 | ptr = posix_substitutes[pc] - 1; |
5026 | continue; |
5027 | } |
5028 | |
5029 | /* There are three other classes that generate special property calls |
5030 | that are recognized only in an XCLASS. */ |
5031 | |
5032 | else switch(posix_class) |
5033 | { |
5034 | case PC_GRAPH: |
5035 | ptype = PT_PXGRAPH; |
5036 | /* Fall through */ |
5037 | case PC_PRINT: |
5038 | if (ptype == 0) ptype = PT_PXPRINT; |
5039 | /* Fall through */ |
5040 | case PC_PUNCT: |
5041 | if (ptype == 0) ptype = PT_PXPUNCT; |
5042 | *class_uchardata++ = local_negate? XCL_NOTPROP : XCL_PROP; |
5043 | *class_uchardata++ = ptype; |
5044 | *class_uchardata++ = 0; |
5045 | xclass_has_prop = TRUE; |
5046 | ptr = tempptr + 1; |
5047 | continue; |
5048 | |
5049 | /* For the other POSIX classes (ascii, xdigit) we are going to fall |
5050 | through to the non-UCP case and build a bit map for characters with |
5051 | code points less than 256. If we are in a negated POSIX class |
5052 | within a non-negated overall class, characters with code points |
5053 | greater than 255 must all match. In the special case where we have |
5054 | not yet generated any xclass data, and this is the final item in |
5055 | the overall class, we need do nothing: later on, the opcode |
5056 | OP_NCLASS will be used to indicate that characters greater than 255 |
5057 | are acceptable. If we have already seen an xclass item or one may |
5058 | follow (we have to assume that it might if this is not the end of |
5059 | the class), explicitly match all wide codepoints. */ |
5060 | |
5061 | default: |
5062 | if (!negate_class && local_negate && |
5063 | (xclass || tempptr[2] != CHAR_RIGHT_SQUARE_BRACKET)) |
5064 | { |
5065 | *class_uchardata++ = XCL_RANGE; |
5066 | class_uchardata += PRIV(ord2utf)(0x100, class_uchardata); |
5067 | class_uchardata += PRIV(ord2utf)(0x10ffff, class_uchardata); |
5068 | } |
5069 | break; |
5070 | } |
5071 | } |
5072 | #endif |
5073 | /* In the non-UCP case, or when UCP makes no difference, we build the |
5074 | bit map for the POSIX class in a chunk of local store because we may be |
5075 | adding and subtracting from it, and we don't want to subtract bits that |
5076 | may be in the main map already. At the end we or the result into the |
5077 | bit map that is being built. */ |
5078 | |
5079 | posix_class *= 3; |
5080 | |
5081 | /* Copy in the first table (always present) */ |
5082 | |
5083 | memcpy(pbits, cbits + posix_class_maps[posix_class], |
5084 | 32 * sizeof(pcre_uint8)); |
5085 | |
5086 | /* If there is a second table, add or remove it as required. */ |
5087 | |
5088 | taboffset = posix_class_maps[posix_class + 1]; |
5089 | tabopt = posix_class_maps[posix_class + 2]; |
5090 | |
5091 | if (taboffset >= 0) |
5092 | { |
5093 | if (tabopt >= 0) |
5094 | for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset]; |
5095 | else |
5096 | for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset]; |
5097 | } |
5098 | |
5099 | /* Now see if we need to remove any special characters. An option |
5100 | value of 1 removes vertical space and 2 removes underscore. */ |
5101 | |
5102 | if (tabopt < 0) tabopt = -tabopt; |
5103 | if (tabopt == 1) pbits[1] &= ~0x3c; |
5104 | else if (tabopt == 2) pbits[11] &= 0x7f; |
5105 | |
5106 | /* Add the POSIX table or its complement into the main table that is |
5107 | being built and we are done. */ |
5108 | |
5109 | if (local_negate) |
5110 | for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c]; |
5111 | else |
5112 | for (c = 0; c < 32; c++) classbits[c] |= pbits[c]; |
5113 | |
5114 | ptr = tempptr + 1; |
5115 | /* Every class contains at least one < 256 character. */ |
5116 | class_has_8bitchar = 1; |
5117 | /* Every class contains at least two characters. */ |
5118 | class_one_char = 2; |
5119 | continue; /* End of POSIX syntax handling */ |
5120 | } |
5121 | |
5122 | /* Backslash may introduce a single character, or it may introduce one |
5123 | of the specials, which just set a flag. The sequence \b is a special |
5124 | case. Inside a class (and only there) it is treated as backspace. We |
5125 | assume that other escapes have more than one character in them, so |
5126 | speculatively set both class_has_8bitchar and class_one_char bigger |
5127 | than one. Unrecognized escapes fall through and are either treated |
5128 | as literal characters (by default), or are faulted if |
5129 | PCRE_EXTRA is set. */ |
5130 | |
5131 | if (c == CHAR_BACKSLASH) |
5132 | { |
5133 | escape = check_escape(&ptr, &ec, errorcodeptr, cd->bracount, options, |
5134 | TRUE); |
5135 | if (*errorcodeptr != 0) goto FAILED; |
5136 | if (escape == 0) c = ec; |
5137 | else if (escape == ESC_b) c = CHAR_BS; /* \b is backspace in a class */ |
5138 | else if (escape == ESC_N) /* \N is not supported in a class */ |
5139 | { |
5140 | *errorcodeptr = ERR71; |
5141 | goto FAILED; |
5142 | } |
5143 | else if (escape == ESC_Q) /* Handle start of quoted string */ |
5144 | { |
5145 | if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
5146 | { |
5147 | ptr += 2; /* avoid empty string */ |
5148 | } |
5149 | else inescq = TRUE; |
5150 | continue; |
5151 | } |
5152 | else if (escape == ESC_E) continue; /* Ignore orphan \E */ |
5153 | |
5154 | else |
5155 | { |
5156 | register const pcre_uint8 *cbits = cd->cbits; |
5157 | /* Every class contains at least two < 256 characters. */ |
5158 | class_has_8bitchar++; |
5159 | /* Every class contains at least two characters. */ |
5160 | class_one_char += 2; |
5161 | |
5162 | switch (escape) |
5163 | { |
5164 | #ifdef SUPPORT_UCP |
5165 | case ESC_du: /* These are the values given for \d etc */ |
5166 | case ESC_DU: /* when PCRE_UCP is set. We replace the */ |
5167 | case ESC_wu: /* escape sequence with an appropriate \p */ |
5168 | case ESC_WU: /* or \P to test Unicode properties instead */ |
5169 | case ESC_su: /* of the default ASCII testing. */ |
5170 | case ESC_SU: |
5171 | nestptr = ptr; |
5172 | ptr = substitutes[escape - ESC_DU] - 1; /* Just before substitute */ |
5173 | class_has_8bitchar--; /* Undo! */ |
5174 | continue; |
5175 | #endif |
5176 | case ESC_d: |
5177 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit]; |
5178 | continue; |
5179 | |
5180 | case ESC_D: |
5181 | should_flip_negation = TRUE; |
5182 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit]; |
5183 | continue; |
5184 | |
5185 | case ESC_w: |
5186 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word]; |
5187 | continue; |
5188 | |
5189 | case ESC_W: |
5190 | should_flip_negation = TRUE; |
5191 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word]; |
5192 | continue; |
5193 | |
5194 | /* Perl 5.004 onwards omitted VT from \s, but restored it at Perl |
5195 | 5.18. Before PCRE 8.34, we had to preserve the VT bit if it was |
5196 | previously set by something earlier in the character class. |
5197 | Luckily, the value of CHAR_VT is 0x0b in both ASCII and EBCDIC, so |
5198 | we could just adjust the appropriate bit. From PCRE 8.34 we no |
5199 | longer treat \s and \S specially. */ |
5200 | |
5201 | case ESC_s: |
5202 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_space]; |
5203 | continue; |
5204 | |
5205 | case ESC_S: |
5206 | should_flip_negation = TRUE; |
5207 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space]; |
5208 | continue; |
5209 | |
5210 | /* The rest apply in both UCP and non-UCP cases. */ |
5211 | |
5212 | case ESC_h: |
5213 | (void)add_list_to_class(classbits, &class_uchardata, options, cd, |
5214 | PRIV(hspace_list), NOTACHAR); |
5215 | continue; |
5216 | |
5217 | case ESC_H: |
5218 | (void)add_not_list_to_class(classbits, &class_uchardata, options, |
5219 | cd, PRIV(hspace_list)); |
5220 | continue; |
5221 | |
5222 | case ESC_v: |
5223 | (void)add_list_to_class(classbits, &class_uchardata, options, cd, |
5224 | PRIV(vspace_list), NOTACHAR); |
5225 | continue; |
5226 | |
5227 | case ESC_V: |
5228 | (void)add_not_list_to_class(classbits, &class_uchardata, options, |
5229 | cd, PRIV(vspace_list)); |
5230 | continue; |
5231 | |
5232 | case ESC_p: |
5233 | case ESC_P: |
5234 | #ifdef SUPPORT_UCP |
5235 | { |
5236 | BOOL negated; |
5237 | unsigned int ptype = 0, pdata = 0; |
5238 | if (!get_ucp(&ptr, &negated, &ptype, &pdata, errorcodeptr)) |
5239 | goto FAILED; |
5240 | *class_uchardata++ = ((escape == ESC_p) != negated)? |
5241 | XCL_PROP : XCL_NOTPROP; |
5242 | *class_uchardata++ = ptype; |
5243 | *class_uchardata++ = pdata; |
5244 | xclass_has_prop = TRUE; |
5245 | class_has_8bitchar--; /* Undo! */ |
5246 | continue; |
5247 | } |
5248 | #else |
5249 | *errorcodeptr = ERR45; |
5250 | goto FAILED; |
5251 | #endif |
5252 | /* Unrecognized escapes are faulted if PCRE is running in its |
5253 | strict mode. By default, for compatibility with Perl, they are |
5254 | treated as literals. */ |
5255 | |
5256 | default: |
5257 | if ((options & PCRE_EXTRA) != 0) |
5258 | { |
5259 | *errorcodeptr = ERR7; |
5260 | goto FAILED; |
5261 | } |
5262 | class_has_8bitchar--; /* Undo the speculative increase. */ |
5263 | class_one_char -= 2; /* Undo the speculative increase. */ |
5264 | c = *ptr; /* Get the final character and fall through */ |
5265 | break; |
5266 | } |
5267 | } |
5268 | |
5269 | /* Fall through if the escape just defined a single character (c >= 0). |
5270 | This may be greater than 256. */ |
5271 | |
5272 | escape = 0; |
5273 | |
5274 | } /* End of backslash handling */ |
5275 | |
5276 | /* A character may be followed by '-' to form a range. However, Perl does |
5277 | not permit ']' to be the end of the range. A '-' character at the end is |
5278 | treated as a literal. Perl ignores orphaned \E sequences entirely. The |
5279 | code for handling \Q and \E is messy. */ |
5280 | |
5281 | CHECK_RANGE: |
5282 | while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
5283 | { |
5284 | inescq = FALSE; |
5285 | ptr += 2; |
5286 | } |
5287 | oldptr = ptr; |
5288 | |
5289 | /* Remember if \r or \n were explicitly used */ |
5290 | |
5291 | if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
5292 | |
5293 | /* Check for range */ |
5294 | |
5295 | if (!inescq && ptr[1] == CHAR_MINUS) |
5296 | { |
5297 | pcre_uint32 d; |
5298 | ptr += 2; |
5299 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2; |
5300 | |
5301 | /* If we hit \Q (not followed by \E) at this point, go into escaped |
5302 | mode. */ |
5303 | |
5304 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q) |
5305 | { |
5306 | ptr += 2; |
5307 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
5308 | { ptr += 2; continue; } |
5309 | inescq = TRUE; |
5310 | break; |
5311 | } |
5312 | |
5313 | /* Minus (hyphen) at the end of a class is treated as a literal, so put |
5314 | back the pointer and jump to handle the character that preceded it. */ |
5315 | |
5316 | if (*ptr == CHAR_NULL || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET)) |
5317 | { |
5318 | ptr = oldptr; |
5319 | goto CLASS_SINGLE_CHARACTER; |
5320 | } |
5321 | |
5322 | /* Otherwise, we have a potential range; pick up the next character */ |
5323 | |
5324 | #ifdef SUPPORT_UTF |
5325 | if (utf) |
5326 | { /* Braces are required because the */ |
5327 | GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */ |
5328 | } |
5329 | else |
5330 | #endif |
5331 | d = *ptr; /* Not UTF-8 mode */ |
5332 | |
5333 | /* The second part of a range can be a single-character escape |
5334 | sequence, but not any of the other escapes. Perl treats a hyphen as a |
5335 | literal in such circumstances. However, in Perl's warning mode, a |
5336 | warning is given, so PCRE now faults it as it is almost certainly a |
5337 | mistake on the user's part. */ |
5338 | |
5339 | if (!inescq) |
5340 | { |
5341 | if (d == CHAR_BACKSLASH) |
5342 | { |
5343 | int descape; |
5344 | descape = check_escape(&ptr, &d, errorcodeptr, cd->bracount, options, TRUE); |
5345 | if (*errorcodeptr != 0) goto FAILED; |
5346 | |
5347 | /* 0 means a character was put into d; \b is backspace; any other |
5348 | special causes an error. */ |
5349 | |
5350 | if (descape != 0) |
5351 | { |
5352 | if (descape == ESC_b) d = CHAR_BS; else |
5353 | { |
5354 | *errorcodeptr = ERR83; |
5355 | goto FAILED; |
5356 | } |
5357 | } |
5358 | } |
5359 | |
5360 | /* A hyphen followed by a POSIX class is treated in the same way. */ |
5361 | |
5362 | else if (d == CHAR_LEFT_SQUARE_BRACKET && |
5363 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
5364 | ptr[1] == CHAR_EQUALS_SIGN) && |
5365 | check_posix_syntax(ptr, &tempptr)) |
5366 | { |
5367 | *errorcodeptr = ERR83; |
5368 | goto FAILED; |
5369 | } |
5370 | } |
5371 | |
5372 | /* Check that the two values are in the correct order. Optimize |
5373 | one-character ranges. */ |
5374 | |
5375 | if (d < c) |
5376 | { |
5377 | *errorcodeptr = ERR8; |
5378 | goto FAILED; |
5379 | } |
5380 | if (d == c) goto CLASS_SINGLE_CHARACTER; /* A few lines below */ |
5381 | |
5382 | /* We have found a character range, so single character optimizations |
5383 | cannot be done anymore. Any value greater than 1 indicates that there |
5384 | is more than one character. */ |
5385 | |
5386 | class_one_char = 2; |
5387 | |
5388 | /* Remember an explicit \r or \n, and add the range to the class. */ |
5389 | |
5390 | if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
5391 | |
5392 | class_has_8bitchar += |
5393 | add_to_class(classbits, &class_uchardata, options, cd, c, d); |
5394 | |
5395 | continue; /* Go get the next char in the class */ |
5396 | } |
5397 | |
5398 | /* Handle a single character - we can get here for a normal non-escape |
5399 | char, or after \ that introduces a single character or for an apparent |
5400 | range that isn't. Only the value 1 matters for class_one_char, so don't |
5401 | increase it if it is already 2 or more ... just in case there's a class |
5402 | with a zillion characters in it. */ |
5403 | |
5404 | CLASS_SINGLE_CHARACTER: |
5405 | if (class_one_char < 2) class_one_char++; |
5406 | |
5407 | /* If xclass_has_prop is false and class_one_char is 1, we have the first |
5408 | single character in the class, and there have been no prior ranges, or |
5409 | XCLASS items generated by escapes. If this is the final character in the |
5410 | class, we can optimize by turning the item into a 1-character OP_CHAR[I] |
5411 | if it's positive, or OP_NOT[I] if it's negative. In the positive case, it |
5412 | can cause firstchar to be set. Otherwise, there can be no first char if |
5413 | this item is first, whatever repeat count may follow. In the case of |
5414 | reqchar, save the previous value for reinstating. */ |
5415 | |
5416 | if (!inescq && |
5417 | #ifdef SUPPORT_UCP |
5418 | !xclass_has_prop && |
5419 | #endif |
5420 | class_one_char == 1 && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
5421 | { |
5422 | ptr++; |
5423 | zeroreqchar = reqchar; |
5424 | zeroreqcharflags = reqcharflags; |
5425 | |
5426 | if (negate_class) |
5427 | { |
5428 | #ifdef SUPPORT_UCP |
5429 | int d; |
5430 | #endif |
5431 | if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE; |
5432 | zerofirstchar = firstchar; |
5433 | zerofirstcharflags = firstcharflags; |
5434 | |
5435 | /* For caseless UTF-8 mode when UCP support is available, check |
5436 | whether this character has more than one other case. If so, generate |
5437 | a special OP_NOTPROP item instead of OP_NOTI. */ |
5438 | |
5439 | #ifdef SUPPORT_UCP |
5440 | if (utf && (options & PCRE_CASELESS) != 0 && |
5441 | (d = UCD_CASESET(c)) != 0) |
5442 | { |
5443 | *code++ = OP_NOTPROP; |
5444 | *code++ = PT_CLIST; |
5445 | *code++ = d; |
5446 | } |
5447 | else |
5448 | #endif |
5449 | /* Char has only one other case, or UCP not available */ |
5450 | |
5451 | { |
5452 | *code++ = ((options & PCRE_CASELESS) != 0)? OP_NOTI: OP_NOT; |
5453 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
5454 | if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR) |
5455 | code += PRIV(ord2utf)(c, code); |
5456 | else |
5457 | #endif |
5458 | *code++ = c; |
5459 | } |
5460 | |
5461 | /* We are finished with this character class */ |
5462 | |
5463 | goto END_CLASS; |
5464 | } |
5465 | |
5466 | /* For a single, positive character, get the value into mcbuffer, and |
5467 | then we can handle this with the normal one-character code. */ |
5468 | |
5469 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
5470 | if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR) |
5471 | mclength = PRIV(ord2utf)(c, mcbuffer); |
5472 | else |
5473 | #endif |
5474 | { |
5475 | mcbuffer[0] = c; |
5476 | mclength = 1; |
5477 | } |
5478 | goto ONE_CHAR; |
5479 | } /* End of 1-char optimization */ |
5480 | |
5481 | /* There is more than one character in the class, or an XCLASS item |
5482 | has been generated. Add this character to the class. */ |
5483 | |
5484 | class_has_8bitchar += |
5485 | add_to_class(classbits, &class_uchardata, options, cd, c, c); |
5486 | } |
5487 | |
5488 | /* Loop until ']' reached. This "while" is the end of the "do" far above. |
5489 | If we are at the end of an internal nested string, revert to the outer |
5490 | string. */ |
5491 | |
5492 | while (((c = *(++ptr)) != CHAR_NULL || |
5493 | (nestptr != NULL && |
5494 | (ptr = nestptr, nestptr = NULL, c = *(++ptr)) != CHAR_NULL)) && |
5495 | (c != CHAR_RIGHT_SQUARE_BRACKET || inescq)); |
5496 | |
5497 | /* Check for missing terminating ']' */ |
5498 | |
5499 | if (c == CHAR_NULL) |
5500 | { |
5501 | *errorcodeptr = ERR6; |
5502 | goto FAILED; |
5503 | } |
5504 | |
5505 | /* We will need an XCLASS if data has been placed in class_uchardata. In |
5506 | the second phase this is a sufficient test. However, in the pre-compile |
5507 | phase, class_uchardata gets emptied to prevent workspace overflow, so it |
5508 | only if the very last character in the class needs XCLASS will it contain |
5509 | anything at this point. For this reason, xclass gets set TRUE above when |
5510 | uchar_classdata is emptied, and that's why this code is the way it is here |
5511 | instead of just doing a test on class_uchardata below. */ |
5512 | |
5513 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
5514 | if (class_uchardata > class_uchardata_base) xclass = TRUE; |
5515 | #endif |
5516 | |
5517 | /* If this is the first thing in the branch, there can be no first char |
5518 | setting, whatever the repeat count. Any reqchar setting must remain |
5519 | unchanged after any kind of repeat. */ |
5520 | |
5521 | if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE; |
5522 | zerofirstchar = firstchar; |
5523 | zerofirstcharflags = firstcharflags; |
5524 | zeroreqchar = reqchar; |
5525 | zeroreqcharflags = reqcharflags; |
5526 | |
5527 | /* If there are characters with values > 255, we have to compile an |
5528 | extended class, with its own opcode, unless there was a negated special |
5529 | such as \S in the class, and PCRE_UCP is not set, because in that case all |
5530 | characters > 255 are in the class, so any that were explicitly given as |
5531 | well can be ignored. If (when there are explicit characters > 255 that must |
5532 | be listed) there are no characters < 256, we can omit the bitmap in the |
5533 | actual compiled code. */ |
5534 | |
5535 | #ifdef SUPPORT_UTF |
5536 | if (xclass && (xclass_has_prop || !should_flip_negation || |
5537 | (options & PCRE_UCP) != 0)) |
5538 | #elif !defined COMPILE_PCRE8 |
5539 | if (xclass && (xclass_has_prop || !should_flip_negation)) |
5540 | #endif |
5541 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
5542 | { |
5543 | *class_uchardata++ = XCL_END; /* Marks the end of extra data */ |
5544 | *code++ = OP_XCLASS; |
5545 | code += LINK_SIZE; |
5546 | *code = negate_class? XCL_NOT:0; |
5547 | if (xclass_has_prop) *code |= XCL_HASPROP; |
5548 | |
5549 | /* If the map is required, move up the extra data to make room for it; |
5550 | otherwise just move the code pointer to the end of the extra data. */ |
5551 | |
5552 | if (class_has_8bitchar > 0) |
5553 | { |
5554 | *code++ |= XCL_MAP; |
5555 | memmove(code + (32 / sizeof(pcre_uchar)), code, |
5556 | IN_UCHARS(class_uchardata - code)); |
5557 | if (negate_class && !xclass_has_prop) |
5558 | for (c = 0; c < 32; c++) classbits[c] = ~classbits[c]; |
5559 | memcpy(code, classbits, 32); |
5560 | code = class_uchardata + (32 / sizeof(pcre_uchar)); |
5561 | } |
5562 | else code = class_uchardata; |
5563 | |
5564 | /* Now fill in the complete length of the item */ |
5565 | |
5566 | PUT(previous, 1, (int)(code - previous)); |
5567 | break; /* End of class handling */ |
5568 | } |
5569 | |
5570 | /* Even though any XCLASS list is now discarded, we must allow for |
5571 | its memory. */ |
5572 | |
5573 | if (lengthptr != NULL) |
5574 | *lengthptr += (int)(class_uchardata - class_uchardata_base); |
5575 | #endif |
5576 | |
5577 | /* If there are no characters > 255, or they are all to be included or |
5578 | excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the |
5579 | whole class was negated and whether there were negative specials such as \S |
5580 | (non-UCP) in the class. Then copy the 32-byte map into the code vector, |
5581 | negating it if necessary. */ |
5582 | |
5583 | *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS; |
5584 | if (lengthptr == NULL) /* Save time in the pre-compile phase */ |
5585 | { |
5586 | if (negate_class) |
5587 | for (c = 0; c < 32; c++) classbits[c] = ~classbits[c]; |
5588 | memcpy(code, classbits, 32); |
5589 | } |
5590 | code += 32 / sizeof(pcre_uchar); |
5591 | |
5592 | END_CLASS: |
5593 | break; |
5594 | |
5595 | |
5596 | /* ===================================================================*/ |
5597 | /* Various kinds of repeat; '{' is not necessarily a quantifier, but this |
5598 | has been tested above. */ |
5599 | |
5600 | case CHAR_LEFT_CURLY_BRACKET: |
5601 | if (!is_quantifier) goto NORMAL_CHAR; |
5602 | ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr); |
5603 | if (*errorcodeptr != 0) goto FAILED; |
5604 | goto REPEAT; |
5605 | |
5606 | case CHAR_ASTERISK: |
5607 | repeat_min = 0; |
5608 | repeat_max = -1; |
5609 | goto REPEAT; |
5610 | |
5611 | case CHAR_PLUS: |
5612 | repeat_min = 1; |
5613 | repeat_max = -1; |
5614 | goto REPEAT; |
5615 | |
5616 | case CHAR_QUESTION_MARK: |
5617 | repeat_min = 0; |
5618 | repeat_max = 1; |
5619 | |
5620 | REPEAT: |
5621 | if (previous == NULL) |
5622 | { |
5623 | *errorcodeptr = ERR9; |
5624 | goto FAILED; |
5625 | } |
5626 | |
5627 | if (repeat_min == 0) |
5628 | { |
5629 | firstchar = zerofirstchar; /* Adjust for zero repeat */ |
5630 | firstcharflags = zerofirstcharflags; |
5631 | reqchar = zeroreqchar; /* Ditto */ |
5632 | reqcharflags = zeroreqcharflags; |
5633 | } |
5634 | |
5635 | /* Remember whether this is a variable length repeat */ |
5636 | |
5637 | reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY; |
5638 | |
5639 | op_type = 0; /* Default single-char op codes */ |
5640 | possessive_quantifier = FALSE; /* Default not possessive quantifier */ |
5641 | |
5642 | /* Save start of previous item, in case we have to move it up in order to |
5643 | insert something before it. */ |
5644 | |
5645 | tempcode = previous; |
5646 | |
5647 | /* Before checking for a possessive quantifier, we must skip over |
5648 | whitespace and comments in extended mode because Perl allows white space at |
5649 | this point. */ |
5650 | |
5651 | if ((options & PCRE_EXTENDED) != 0) |
5652 | { |
5653 | const pcre_uchar *p = ptr + 1; |
5654 | for (;;) |
5655 | { |
5656 | while (MAX_255(*p) && (cd->ctypes[*p] & ctype_space) != 0) p++; |
5657 | if (*p != CHAR_NUMBER_SIGN) break; |
5658 | p++; |
5659 | while (*p != CHAR_NULL) |
5660 | { |
5661 | if (IS_NEWLINE(p)) /* For non-fixed-length newline cases, */ |
5662 | { /* IS_NEWLINE sets cd->nllen. */ |
5663 | p += cd->nllen; |
5664 | break; |
5665 | } |
5666 | p++; |
5667 | #ifdef SUPPORT_UTF |
5668 | if (utf) FORWARDCHAR(p); |
5669 | #endif |
5670 | } /* Loop for comment characters */ |
5671 | } /* Loop for multiple comments */ |
5672 | ptr = p - 1; /* Character before the next significant one. */ |
5673 | } |
5674 | |
5675 | /* If the next character is '+', we have a possessive quantifier. This |
5676 | implies greediness, whatever the setting of the PCRE_UNGREEDY option. |
5677 | If the next character is '?' this is a minimizing repeat, by default, |
5678 | but if PCRE_UNGREEDY is set, it works the other way round. We change the |
5679 | repeat type to the non-default. */ |
5680 | |
5681 | if (ptr[1] == CHAR_PLUS) |
5682 | { |
5683 | repeat_type = 0; /* Force greedy */ |
5684 | possessive_quantifier = TRUE; |
5685 | ptr++; |
5686 | } |
5687 | else if (ptr[1] == CHAR_QUESTION_MARK) |
5688 | { |
5689 | repeat_type = greedy_non_default; |
5690 | ptr++; |
5691 | } |
5692 | else repeat_type = greedy_default; |
5693 | |
5694 | /* If previous was a recursion call, wrap it in atomic brackets so that |
5695 | previous becomes the atomic group. All recursions were so wrapped in the |
5696 | past, but it no longer happens for non-repeated recursions. In fact, the |
5697 | repeated ones could be re-implemented independently so as not to need this, |
5698 | but for the moment we rely on the code for repeating groups. */ |
5699 | |
5700 | if (*previous == OP_RECURSE) |
5701 | { |
5702 | memmove(previous + 1 + LINK_SIZE, previous, IN_UCHARS(1 + LINK_SIZE)); |
5703 | *previous = OP_ONCE; |
5704 | PUT(previous, 1, 2 + 2*LINK_SIZE); |
5705 | previous[2 + 2*LINK_SIZE] = OP_KET; |
5706 | PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE); |
5707 | code += 2 + 2 * LINK_SIZE; |
5708 | length_prevgroup = 3 + 3*LINK_SIZE; |
5709 | |
5710 | /* When actually compiling, we need to check whether this was a forward |
5711 | reference, and if so, adjust the offset. */ |
5712 | |
5713 | if (lengthptr == NULL && cd->hwm >= cd->start_workspace + LINK_SIZE) |
5714 | { |
5715 | int offset = GET(cd->hwm, -LINK_SIZE); |
5716 | if (offset == previous + 1 - cd->start_code) |
5717 | PUT(cd->hwm, -LINK_SIZE, offset + 1 + LINK_SIZE); |
5718 | } |
5719 | } |
5720 | |
5721 | /* Now handle repetition for the different types of item. */ |
5722 | |
5723 | /* If previous was a character or negated character match, abolish the item |
5724 | and generate a repeat item instead. If a char item has a minimum of more |
5725 | than one, ensure that it is set in reqchar - it might not be if a sequence |
5726 | such as x{3} is the first thing in a branch because the x will have gone |
5727 | into firstchar instead. */ |
5728 | |
5729 | if (*previous == OP_CHAR || *previous == OP_CHARI |
5730 | || *previous == OP_NOT || *previous == OP_NOTI) |
5731 | { |
5732 | switch (*previous) |
5733 | { |
5734 | default: /* Make compiler happy. */ |
5735 | case OP_CHAR: op_type = OP_STAR - OP_STAR; break; |
5736 | case OP_CHARI: op_type = OP_STARI - OP_STAR; break; |
5737 | case OP_NOT: op_type = OP_NOTSTAR - OP_STAR; break; |
5738 | case OP_NOTI: op_type = OP_NOTSTARI - OP_STAR; break; |
5739 | } |
5740 | |
5741 | /* Deal with UTF characters that take up more than one character. It's |
5742 | easier to write this out separately than try to macrify it. Use c to |
5743 | hold the length of the character in bytes, plus UTF_LENGTH to flag that |
5744 | it's a length rather than a small character. */ |
5745 | |
5746 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
5747 | if (utf && NOT_FIRSTCHAR(code[-1])) |
5748 | { |
5749 | pcre_uchar *lastchar = code - 1; |
5750 | BACKCHAR(lastchar); |
5751 | c = (int)(code - lastchar); /* Length of UTF-8 character */ |
5752 | memcpy(utf_chars, lastchar, IN_UCHARS(c)); /* Save the char */ |
5753 | c |= UTF_LENGTH; /* Flag c as a length */ |
5754 | } |
5755 | else |
5756 | #endif /* SUPPORT_UTF */ |
5757 | |
5758 | /* Handle the case of a single charater - either with no UTF support, or |
5759 | with UTF disabled, or for a single character UTF character. */ |
5760 | { |
5761 | c = code[-1]; |
5762 | if (*previous <= OP_CHARI && repeat_min > 1) |
5763 | { |
5764 | reqchar = c; |
5765 | reqcharflags = req_caseopt | cd->req_varyopt; |
5766 | } |
5767 | } |
5768 | |
5769 | goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */ |
5770 | } |
5771 | |
5772 | /* If previous was a character type match (\d or similar), abolish it and |
5773 | create a suitable repeat item. The code is shared with single-character |
5774 | repeats by setting op_type to add a suitable offset into repeat_type. Note |
5775 | the the Unicode property types will be present only when SUPPORT_UCP is |
5776 | defined, but we don't wrap the little bits of code here because it just |
5777 | makes it horribly messy. */ |
5778 | |
5779 | else if (*previous < OP_EODN) |
5780 | { |
5781 | pcre_uchar *oldcode; |
5782 | int prop_type, prop_value; |
5783 | op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ |
5784 | c = *previous; |
5785 | |
5786 | OUTPUT_SINGLE_REPEAT: |
5787 | if (*previous == OP_PROP || *previous == OP_NOTPROP) |
5788 | { |
5789 | prop_type = previous[1]; |
5790 | prop_value = previous[2]; |
5791 | } |
5792 | else prop_type = prop_value = -1; |
5793 | |
5794 | oldcode = code; |
5795 | code = previous; /* Usually overwrite previous item */ |
5796 | |
5797 | /* If the maximum is zero then the minimum must also be zero; Perl allows |
5798 | this case, so we do too - by simply omitting the item altogether. */ |
5799 | |
5800 | if (repeat_max == 0) goto END_REPEAT; |
5801 | |
5802 | /* Combine the op_type with the repeat_type */ |
5803 | |
5804 | repeat_type += op_type; |
5805 | |
5806 | /* A minimum of zero is handled either as the special case * or ?, or as |
5807 | an UPTO, with the maximum given. */ |
5808 | |
5809 | if (repeat_min == 0) |
5810 | { |
5811 | if (repeat_max == -1) *code++ = OP_STAR + repeat_type; |
5812 | else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type; |
5813 | else |
5814 | { |
5815 | *code++ = OP_UPTO + repeat_type; |
5816 | PUT2INC(code, 0, repeat_max); |
5817 | } |
5818 | } |
5819 | |
5820 | /* A repeat minimum of 1 is optimized into some special cases. If the |
5821 | maximum is unlimited, we use OP_PLUS. Otherwise, the original item is |
5822 | left in place and, if the maximum is greater than 1, we use OP_UPTO with |
5823 | one less than the maximum. */ |
5824 | |
5825 | else if (repeat_min == 1) |
5826 | { |
5827 | if (repeat_max == -1) |
5828 | *code++ = OP_PLUS + repeat_type; |
5829 | else |
5830 | { |
5831 | code = oldcode; /* leave previous item in place */ |
5832 | if (repeat_max == 1) goto END_REPEAT; |
5833 | *code++ = OP_UPTO + repeat_type; |
5834 | PUT2INC(code, 0, repeat_max - 1); |
5835 | } |
5836 | } |
5837 | |
5838 | /* The case {n,n} is just an EXACT, while the general case {n,m} is |
5839 | handled as an EXACT followed by an UPTO. */ |
5840 | |
5841 | else |
5842 | { |
5843 | *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */ |
5844 | PUT2INC(code, 0, repeat_min); |
5845 | |
5846 | /* If the maximum is unlimited, insert an OP_STAR. Before doing so, |
5847 | we have to insert the character for the previous code. For a repeated |
5848 | Unicode property match, there are two extra bytes that define the |
5849 | required property. In UTF-8 mode, long characters have their length in |
5850 | c, with the UTF_LENGTH bit as a flag. */ |
5851 | |
5852 | if (repeat_max < 0) |
5853 | { |
5854 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
5855 | if (utf && (c & UTF_LENGTH) != 0) |
5856 | { |
5857 | memcpy(code, utf_chars, IN_UCHARS(c & 7)); |
5858 | code += c & 7; |
5859 | } |
5860 | else |
5861 | #endif |
5862 | { |
5863 | *code++ = c; |
5864 | if (prop_type >= 0) |
5865 | { |
5866 | *code++ = prop_type; |
5867 | *code++ = prop_value; |
5868 | } |
5869 | } |
5870 | *code++ = OP_STAR + repeat_type; |
5871 | } |
5872 | |
5873 | /* Else insert an UPTO if the max is greater than the min, again |
5874 | preceded by the character, for the previously inserted code. If the |
5875 | UPTO is just for 1 instance, we can use QUERY instead. */ |
5876 | |
5877 | else if (repeat_max != repeat_min) |
5878 | { |
5879 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
5880 | if (utf && (c & UTF_LENGTH) != 0) |
5881 | { |
5882 | memcpy(code, utf_chars, IN_UCHARS(c & 7)); |
5883 | code += c & 7; |
5884 | } |
5885 | else |
5886 | #endif |
5887 | *code++ = c; |
5888 | if (prop_type >= 0) |
5889 | { |
5890 | *code++ = prop_type; |
5891 | *code++ = prop_value; |
5892 | } |
5893 | repeat_max -= repeat_min; |
5894 | |
5895 | if (repeat_max == 1) |
5896 | { |
5897 | *code++ = OP_QUERY + repeat_type; |
5898 | } |
5899 | else |
5900 | { |
5901 | *code++ = OP_UPTO + repeat_type; |
5902 | PUT2INC(code, 0, repeat_max); |
5903 | } |
5904 | } |
5905 | } |
5906 | |
5907 | /* The character or character type itself comes last in all cases. */ |
5908 | |
5909 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
5910 | if (utf && (c & UTF_LENGTH) != 0) |
5911 | { |
5912 | memcpy(code, utf_chars, IN_UCHARS(c & 7)); |
5913 | code += c & 7; |
5914 | } |
5915 | else |
5916 | #endif |
5917 | *code++ = c; |
5918 | |
5919 | /* For a repeated Unicode property match, there are two extra bytes that |
5920 | define the required property. */ |
5921 | |
5922 | #ifdef SUPPORT_UCP |
5923 | if (prop_type >= 0) |
5924 | { |
5925 | *code++ = prop_type; |
5926 | *code++ = prop_value; |
5927 | } |
5928 | #endif |
5929 | } |
5930 | |
5931 | /* If previous was a character class or a back reference, we put the repeat |
5932 | stuff after it, but just skip the item if the repeat was {0,0}. */ |
5933 | |
5934 | else if (*previous == OP_CLASS || *previous == OP_NCLASS || |
5935 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
5936 | *previous == OP_XCLASS || |
5937 | #endif |
5938 | *previous == OP_REF || *previous == OP_REFI || |
5939 | *previous == OP_DNREF || *previous == OP_DNREFI) |
5940 | { |
5941 | if (repeat_max == 0) |
5942 | { |
5943 | code = previous; |
5944 | goto END_REPEAT; |
5945 | } |
5946 | |
5947 | if (repeat_min == 0 && repeat_max == -1) |
5948 | *code++ = OP_CRSTAR + repeat_type; |
5949 | else if (repeat_min == 1 && repeat_max == -1) |
5950 | *code++ = OP_CRPLUS + repeat_type; |
5951 | else if (repeat_min == 0 && repeat_max == 1) |
5952 | *code++ = OP_CRQUERY + repeat_type; |
5953 | else |
5954 | { |
5955 | *code++ = OP_CRRANGE + repeat_type; |
5956 | PUT2INC(code, 0, repeat_min); |
5957 | if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */ |
5958 | PUT2INC(code, 0, repeat_max); |
5959 | } |
5960 | } |
5961 | |
5962 | /* If previous was a bracket group, we may have to replicate it in certain |
5963 | cases. Note that at this point we can encounter only the "basic" bracket |
5964 | opcodes such as BRA and CBRA, as this is the place where they get converted |
5965 | into the more special varieties such as BRAPOS and SBRA. A test for >= |
5966 | OP_ASSERT and <= OP_COND includes ASSERT, ASSERT_NOT, ASSERTBACK, |
5967 | ASSERTBACK_NOT, ONCE, ONCE_NC, BRA, BRAPOS, CBRA, CBRAPOS, and COND. |
5968 | Originally, PCRE did not allow repetition of assertions, but now it does, |
5969 | for Perl compatibility. */ |
5970 | |
5971 | else if (*previous >= OP_ASSERT && *previous <= OP_COND) |
5972 | { |
5973 | register int i; |
5974 | int len = (int)(code - previous); |
5975 | size_t base_hwm_offset = item_hwm_offset; |
5976 | pcre_uchar *bralink = NULL; |
5977 | pcre_uchar *brazeroptr = NULL; |
5978 | |
5979 | /* Repeating a DEFINE group is pointless, but Perl allows the syntax, so |
5980 | we just ignore the repeat. */ |
5981 | |
5982 | if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF) |
5983 | goto END_REPEAT; |
5984 | |
5985 | /* There is no sense in actually repeating assertions. The only potential |
5986 | use of repetition is in cases when the assertion is optional. Therefore, |
5987 | if the minimum is greater than zero, just ignore the repeat. If the |
5988 | maximum is not zero or one, set it to 1. */ |
5989 | |
5990 | if (*previous < OP_ONCE) /* Assertion */ |
5991 | { |
5992 | if (repeat_min > 0) goto END_REPEAT; |
5993 | if (repeat_max < 0 || repeat_max > 1) repeat_max = 1; |
5994 | } |
5995 | |
5996 | /* The case of a zero minimum is special because of the need to stick |
5997 | OP_BRAZERO in front of it, and because the group appears once in the |
5998 | data, whereas in other cases it appears the minimum number of times. For |
5999 | this reason, it is simplest to treat this case separately, as otherwise |
6000 | the code gets far too messy. There are several special subcases when the |
6001 | minimum is zero. */ |
6002 | |
6003 | if (repeat_min == 0) |
6004 | { |
6005 | /* If the maximum is also zero, we used to just omit the group from the |
6006 | output altogether, like this: |
6007 | |
6008 | ** if (repeat_max == 0) |
6009 | ** { |
6010 | ** code = previous; |
6011 | ** goto END_REPEAT; |
6012 | ** } |
6013 | |
6014 | However, that fails when a group or a subgroup within it is referenced |
6015 | as a subroutine from elsewhere in the pattern, so now we stick in |
6016 | OP_SKIPZERO in front of it so that it is skipped on execution. As we |
6017 | don't have a list of which groups are referenced, we cannot do this |
6018 | selectively. |
6019 | |
6020 | If the maximum is 1 or unlimited, we just have to stick in the BRAZERO |
6021 | and do no more at this point. However, we do need to adjust any |
6022 | OP_RECURSE calls inside the group that refer to the group itself or any |
6023 | internal or forward referenced group, because the offset is from the |
6024 | start of the whole regex. Temporarily terminate the pattern while doing |
6025 | this. */ |
6026 | |
6027 | if (repeat_max <= 1) /* Covers 0, 1, and unlimited */ |
6028 | { |
6029 | *code = OP_END; |
6030 | adjust_recurse(previous, 1, utf, cd, item_hwm_offset); |
6031 | memmove(previous + 1, previous, IN_UCHARS(len)); |
6032 | code++; |
6033 | if (repeat_max == 0) |
6034 | { |
6035 | *previous++ = OP_SKIPZERO; |
6036 | goto END_REPEAT; |
6037 | } |
6038 | brazeroptr = previous; /* Save for possessive optimizing */ |
6039 | *previous++ = OP_BRAZERO + repeat_type; |
6040 | } |
6041 | |
6042 | /* If the maximum is greater than 1 and limited, we have to replicate |
6043 | in a nested fashion, sticking OP_BRAZERO before each set of brackets. |
6044 | The first one has to be handled carefully because it's the original |
6045 | copy, which has to be moved up. The remainder can be handled by code |
6046 | that is common with the non-zero minimum case below. We have to |
6047 | adjust the value or repeat_max, since one less copy is required. Once |
6048 | again, we may have to adjust any OP_RECURSE calls inside the group. */ |
6049 | |
6050 | else |
6051 | { |
6052 | int offset; |
6053 | *code = OP_END; |
6054 | adjust_recurse(previous, 2 + LINK_SIZE, utf, cd, item_hwm_offset); |
6055 | memmove(previous + 2 + LINK_SIZE, previous, IN_UCHARS(len)); |
6056 | code += 2 + LINK_SIZE; |
6057 | *previous++ = OP_BRAZERO + repeat_type; |
6058 | *previous++ = OP_BRA; |
6059 | |
6060 | /* We chain together the bracket offset fields that have to be |
6061 | filled in later when the ends of the brackets are reached. */ |
6062 | |
6063 | offset = (bralink == NULL)? 0 : (int)(previous - bralink); |
6064 | bralink = previous; |
6065 | PUTINC(previous, 0, offset); |
6066 | } |
6067 | |
6068 | repeat_max--; |
6069 | } |
6070 | |
6071 | /* If the minimum is greater than zero, replicate the group as many |
6072 | times as necessary, and adjust the maximum to the number of subsequent |
6073 | copies that we need. If we set a first char from the group, and didn't |
6074 | set a required char, copy the latter from the former. If there are any |
6075 | forward reference subroutine calls in the group, there will be entries on |
6076 | the workspace list; replicate these with an appropriate increment. */ |
6077 | |
6078 | else |
6079 | { |
6080 | if (repeat_min > 1) |
6081 | { |
6082 | /* In the pre-compile phase, we don't actually do the replication. We |
6083 | just adjust the length as if we had. Do some paranoid checks for |
6084 | potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit |
6085 | integer type when available, otherwise double. */ |
6086 | |
6087 | if (lengthptr != NULL) |
6088 | { |
6089 | int delta = (repeat_min - 1)*length_prevgroup; |
6090 | if ((INT64_OR_DOUBLE)(repeat_min - 1)* |
6091 | (INT64_OR_DOUBLE)length_prevgroup > |
6092 | (INT64_OR_DOUBLE)INT_MAX || |
6093 | OFLOW_MAX - *lengthptr < delta) |
6094 | { |
6095 | *errorcodeptr = ERR20; |
6096 | goto FAILED; |
6097 | } |
6098 | *lengthptr += delta; |
6099 | } |
6100 | |
6101 | /* This is compiling for real. If there is a set first byte for |
6102 | the group, and we have not yet set a "required byte", set it. Make |
6103 | sure there is enough workspace for copying forward references before |
6104 | doing the copy. */ |
6105 | |
6106 | else |
6107 | { |
6108 | if (groupsetfirstchar && reqcharflags < 0) |
6109 | { |
6110 | reqchar = firstchar; |
6111 | reqcharflags = firstcharflags; |
6112 | } |
6113 | |
6114 | for (i = 1; i < repeat_min; i++) |
6115 | { |
6116 | pcre_uchar *hc; |
6117 | size_t this_hwm_offset = cd->hwm - cd->start_workspace; |
6118 | memcpy(code, previous, IN_UCHARS(len)); |
6119 | |
6120 | while (cd->hwm > cd->start_workspace + cd->workspace_size - |
6121 | WORK_SIZE_SAFETY_MARGIN - |
6122 | (this_hwm_offset - base_hwm_offset)) |
6123 | { |
6124 | *errorcodeptr = expand_workspace(cd); |
6125 | if (*errorcodeptr != 0) goto FAILED; |
6126 | } |
6127 | |
6128 | for (hc = (pcre_uchar *)cd->start_workspace + base_hwm_offset; |
6129 | hc < (pcre_uchar *)cd->start_workspace + this_hwm_offset; |
6130 | hc += LINK_SIZE) |
6131 | { |
6132 | PUT(cd->hwm, 0, GET(hc, 0) + len); |
6133 | cd->hwm += LINK_SIZE; |
6134 | } |
6135 | base_hwm_offset = this_hwm_offset; |
6136 | code += len; |
6137 | } |
6138 | } |
6139 | } |
6140 | |
6141 | if (repeat_max > 0) repeat_max -= repeat_min; |
6142 | } |
6143 | |
6144 | /* This code is common to both the zero and non-zero minimum cases. If |
6145 | the maximum is limited, it replicates the group in a nested fashion, |
6146 | remembering the bracket starts on a stack. In the case of a zero minimum, |
6147 | the first one was set up above. In all cases the repeat_max now specifies |
6148 | the number of additional copies needed. Again, we must remember to |
6149 | replicate entries on the forward reference list. */ |
6150 | |
6151 | if (repeat_max >= 0) |
6152 | { |
6153 | /* In the pre-compile phase, we don't actually do the replication. We |
6154 | just adjust the length as if we had. For each repetition we must add 1 |
6155 | to the length for BRAZERO and for all but the last repetition we must |
6156 | add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some |
6157 | paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is |
6158 | a 64-bit integer type when available, otherwise double. */ |
6159 | |
6160 | if (lengthptr != NULL && repeat_max > 0) |
6161 | { |
6162 | int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) - |
6163 | 2 - 2*LINK_SIZE; /* Last one doesn't nest */ |
6164 | if ((INT64_OR_DOUBLE)repeat_max * |
6165 | (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE) |
6166 | > (INT64_OR_DOUBLE)INT_MAX || |
6167 | OFLOW_MAX - *lengthptr < delta) |
6168 | { |
6169 | *errorcodeptr = ERR20; |
6170 | goto FAILED; |
6171 | } |
6172 | *lengthptr += delta; |
6173 | } |
6174 | |
6175 | /* This is compiling for real */ |
6176 | |
6177 | else for (i = repeat_max - 1; i >= 0; i--) |
6178 | { |
6179 | pcre_uchar *hc; |
6180 | size_t this_hwm_offset = cd->hwm - cd->start_workspace; |
6181 | |
6182 | *code++ = OP_BRAZERO + repeat_type; |
6183 | |
6184 | /* All but the final copy start a new nesting, maintaining the |
6185 | chain of brackets outstanding. */ |
6186 | |
6187 | if (i != 0) |
6188 | { |
6189 | int offset; |
6190 | *code++ = OP_BRA; |
6191 | offset = (bralink == NULL)? 0 : (int)(code - bralink); |
6192 | bralink = code; |
6193 | PUTINC(code, 0, offset); |
6194 | } |
6195 | |
6196 | memcpy(code, previous, IN_UCHARS(len)); |
6197 | |
6198 | /* Ensure there is enough workspace for forward references before |
6199 | copying them. */ |
6200 | |
6201 | while (cd->hwm > cd->start_workspace + cd->workspace_size - |
6202 | WORK_SIZE_SAFETY_MARGIN - |
6203 | (this_hwm_offset - base_hwm_offset)) |
6204 | { |
6205 | *errorcodeptr = expand_workspace(cd); |
6206 | if (*errorcodeptr != 0) goto FAILED; |
6207 | } |
6208 | |
6209 | for (hc = (pcre_uchar *)cd->start_workspace + base_hwm_offset; |
6210 | hc < (pcre_uchar *)cd->start_workspace + this_hwm_offset; |
6211 | hc += LINK_SIZE) |
6212 | { |
6213 | PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1)); |
6214 | cd->hwm += LINK_SIZE; |
6215 | } |
6216 | base_hwm_offset = this_hwm_offset; |
6217 | code += len; |
6218 | } |
6219 | |
6220 | /* Now chain through the pending brackets, and fill in their length |
6221 | fields (which are holding the chain links pro tem). */ |
6222 | |
6223 | while (bralink != NULL) |
6224 | { |
6225 | int oldlinkoffset; |
6226 | int offset = (int)(code - bralink + 1); |
6227 | pcre_uchar *bra = code - offset; |
6228 | oldlinkoffset = GET(bra, 1); |
6229 | bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset; |
6230 | *code++ = OP_KET; |
6231 | PUTINC(code, 0, offset); |
6232 | PUT(bra, 1, offset); |
6233 | } |
6234 | } |
6235 | |
6236 | /* If the maximum is unlimited, set a repeater in the final copy. For |
6237 | ONCE brackets, that's all we need to do. However, possessively repeated |
6238 | ONCE brackets can be converted into non-capturing brackets, as the |
6239 | behaviour of (?:xx)++ is the same as (?>xx)++ and this saves having to |
6240 | deal with possessive ONCEs specially. |
6241 | |
6242 | Otherwise, when we are doing the actual compile phase, check to see |
6243 | whether this group is one that could match an empty string. If so, |
6244 | convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so |
6245 | that runtime checking can be done. [This check is also applied to ONCE |
6246 | groups at runtime, but in a different way.] |
6247 | |
6248 | Then, if the quantifier was possessive and the bracket is not a |
6249 | conditional, we convert the BRA code to the POS form, and the KET code to |
6250 | KETRPOS. (It turns out to be convenient at runtime to detect this kind of |
6251 | subpattern at both the start and at the end.) The use of special opcodes |
6252 | makes it possible to reduce greatly the stack usage in pcre_exec(). If |
6253 | the group is preceded by OP_BRAZERO, convert this to OP_BRAPOSZERO. |
6254 | |
6255 | Then, if the minimum number of matches is 1 or 0, cancel the possessive |
6256 | flag so that the default action below, of wrapping everything inside |
6257 | atomic brackets, does not happen. When the minimum is greater than 1, |
6258 | there will be earlier copies of the group, and so we still have to wrap |
6259 | the whole thing. */ |
6260 | |
6261 | else |
6262 | { |
6263 | pcre_uchar *ketcode = code - 1 - LINK_SIZE; |
6264 | pcre_uchar *bracode = ketcode - GET(ketcode, 1); |
6265 | |
6266 | /* Convert possessive ONCE brackets to non-capturing */ |
6267 | |
6268 | if ((*bracode == OP_ONCE || *bracode == OP_ONCE_NC) && |
6269 | possessive_quantifier) *bracode = OP_BRA; |
6270 | |
6271 | /* For non-possessive ONCE brackets, all we need to do is to |
6272 | set the KET. */ |
6273 | |
6274 | if (*bracode == OP_ONCE || *bracode == OP_ONCE_NC) |
6275 | *ketcode = OP_KETRMAX + repeat_type; |
6276 | |
6277 | /* Handle non-ONCE brackets and possessive ONCEs (which have been |
6278 | converted to non-capturing above). */ |
6279 | |
6280 | else |
6281 | { |
6282 | /* In the compile phase, check for empty string matching. */ |
6283 | |
6284 | if (lengthptr == NULL) |
6285 | { |
6286 | pcre_uchar *scode = bracode; |
6287 | do |
6288 | { |
6289 | if (could_be_empty_branch(scode, ketcode, utf, cd, NULL)) |
6290 | { |
6291 | *bracode += OP_SBRA - OP_BRA; |
6292 | break; |
6293 | } |
6294 | scode += GET(scode, 1); |
6295 | } |
6296 | while (*scode == OP_ALT); |
6297 | } |
6298 | |
6299 | /* A conditional group with only one branch has an implicit empty |
6300 | alternative branch. */ |
6301 | |
6302 | if (*bracode == OP_COND && bracode[GET(bracode,1)] != OP_ALT) |
6303 | *bracode = OP_SCOND; |
6304 | |
6305 | /* Handle possessive quantifiers. */ |
6306 | |
6307 | if (possessive_quantifier) |
6308 | { |
6309 | /* For COND brackets, we wrap the whole thing in a possessively |
6310 | repeated non-capturing bracket, because we have not invented POS |
6311 | versions of the COND opcodes. Because we are moving code along, we |
6312 | must ensure that any pending recursive references are updated. */ |
6313 | |
6314 | if (*bracode == OP_COND || *bracode == OP_SCOND) |
6315 | { |
6316 | int nlen = (int)(code - bracode); |
6317 | *code = OP_END; |
6318 | adjust_recurse(bracode, 1 + LINK_SIZE, utf, cd, item_hwm_offset); |
6319 | memmove(bracode + 1 + LINK_SIZE, bracode, IN_UCHARS(nlen)); |
6320 | code += 1 + LINK_SIZE; |
6321 | nlen += 1 + LINK_SIZE; |
6322 | *bracode = (*bracode == OP_COND)? OP_BRAPOS : OP_SBRAPOS; |
6323 | *code++ = OP_KETRPOS; |
6324 | PUTINC(code, 0, nlen); |
6325 | PUT(bracode, 1, nlen); |
6326 | } |
6327 | |
6328 | /* For non-COND brackets, we modify the BRA code and use KETRPOS. */ |
6329 | |
6330 | else |
6331 | { |
6332 | *bracode += 1; /* Switch to xxxPOS opcodes */ |
6333 | *ketcode = OP_KETRPOS; |
6334 | } |
6335 | |
6336 | /* If the minimum is zero, mark it as possessive, then unset the |
6337 | possessive flag when the minimum is 0 or 1. */ |
6338 | |
6339 | if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO; |
6340 | if (repeat_min < 2) possessive_quantifier = FALSE; |
6341 | } |
6342 | |
6343 | /* Non-possessive quantifier */ |
6344 | |
6345 | else *ketcode = OP_KETRMAX + repeat_type; |
6346 | } |
6347 | } |
6348 | } |
6349 | |
6350 | /* If previous is OP_FAIL, it was generated by an empty class [] in |
6351 | JavaScript mode. The other ways in which OP_FAIL can be generated, that is |
6352 | by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat" |
6353 | error above. We can just ignore the repeat in JS case. */ |
6354 | |
6355 | else if (*previous == OP_FAIL) goto END_REPEAT; |
6356 | |
6357 | /* Else there's some kind of shambles */ |
6358 | |
6359 | else |
6360 | { |
6361 | *errorcodeptr = ERR11; |
6362 | goto FAILED; |
6363 | } |
6364 | |
6365 | /* If the character following a repeat is '+', possessive_quantifier is |
6366 | TRUE. For some opcodes, there are special alternative opcodes for this |
6367 | case. For anything else, we wrap the entire repeated item inside OP_ONCE |
6368 | brackets. Logically, the '+' notation is just syntactic sugar, taken from |
6369 | Sun's Java package, but the special opcodes can optimize it. |
6370 | |
6371 | Some (but not all) possessively repeated subpatterns have already been |
6372 | completely handled in the code just above. For them, possessive_quantifier |
6373 | is always FALSE at this stage. Note that the repeated item starts at |
6374 | tempcode, not at previous, which might be the first part of a string whose |
6375 | (former) last char we repeated. */ |
6376 | |
6377 | if (possessive_quantifier) |
6378 | { |
6379 | int len; |
6380 | |
6381 | /* Possessifying an EXACT quantifier has no effect, so we can ignore it. |
6382 | However, QUERY, STAR, or UPTO may follow (for quantifiers such as {5,6}, |
6383 | {5,}, or {5,10}). We skip over an EXACT item; if the length of what |
6384 | remains is greater than zero, there's a further opcode that can be |
6385 | handled. If not, do nothing, leaving the EXACT alone. */ |
6386 | |
6387 | switch(*tempcode) |
6388 | { |
6389 | case OP_TYPEEXACT: |
6390 | tempcode += PRIV(OP_lengths)[*tempcode] + |
6391 | ((tempcode[1 + IMM2_SIZE] == OP_PROP |
6392 | || tempcode[1 + IMM2_SIZE] == OP_NOTPROP)? 2 : 0); |
6393 | break; |
6394 | |
6395 | /* CHAR opcodes are used for exacts whose count is 1. */ |
6396 | |
6397 | case OP_CHAR: |
6398 | case OP_CHARI: |
6399 | case OP_NOT: |
6400 | case OP_NOTI: |
6401 | case OP_EXACT: |
6402 | case OP_EXACTI: |
6403 | case OP_NOTEXACT: |
6404 | case OP_NOTEXACTI: |
6405 | tempcode += PRIV(OP_lengths)[*tempcode]; |
6406 | #ifdef SUPPORT_UTF |
6407 | if (utf && HAS_EXTRALEN(tempcode[-1])) |
6408 | tempcode += GET_EXTRALEN(tempcode[-1]); |
6409 | #endif |
6410 | break; |
6411 | |
6412 | /* For the class opcodes, the repeat operator appears at the end; |
6413 | adjust tempcode to point to it. */ |
6414 | |
6415 | case OP_CLASS: |
6416 | case OP_NCLASS: |
6417 | tempcode += 1 + 32/sizeof(pcre_uchar); |
6418 | break; |
6419 | |
6420 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
6421 | case OP_XCLASS: |
6422 | tempcode += GET(tempcode, 1); |
6423 | break; |
6424 | #endif |
6425 | } |
6426 | |
6427 | /* If tempcode is equal to code (which points to the end of the repeated |
6428 | item), it means we have skipped an EXACT item but there is no following |
6429 | QUERY, STAR, or UPTO; the value of len will be 0, and we do nothing. In |
6430 | all other cases, tempcode will be pointing to the repeat opcode, and will |
6431 | be less than code, so the value of len will be greater than 0. */ |
6432 | |
6433 | len = (int)(code - tempcode); |
6434 | if (len > 0) |
6435 | { |
6436 | unsigned int repcode = *tempcode; |
6437 | |
6438 | /* There is a table for possessifying opcodes, all of which are less |
6439 | than OP_CALLOUT. A zero entry means there is no possessified version. |
6440 | */ |
6441 | |
6442 | if (repcode < OP_CALLOUT && opcode_possessify[repcode] > 0) |
6443 | *tempcode = opcode_possessify[repcode]; |
6444 | |
6445 | /* For opcode without a special possessified version, wrap the item in |
6446 | ONCE brackets. Because we are moving code along, we must ensure that any |
6447 | pending recursive references are updated. */ |
6448 | |
6449 | else |
6450 | { |
6451 | *code = OP_END; |
6452 | adjust_recurse(tempcode, 1 + LINK_SIZE, utf, cd, item_hwm_offset); |
6453 | memmove(tempcode + 1 + LINK_SIZE, tempcode, IN_UCHARS(len)); |
6454 | code += 1 + LINK_SIZE; |
6455 | len += 1 + LINK_SIZE; |
6456 | tempcode[0] = OP_ONCE; |
6457 | *code++ = OP_KET; |
6458 | PUTINC(code, 0, len); |
6459 | PUT(tempcode, 1, len); |
6460 | } |
6461 | } |
6462 | |
6463 | #ifdef NEVER |
6464 | if (len > 0) switch (*tempcode) |
6465 | { |
6466 | case OP_STAR: *tempcode = OP_POSSTAR; break; |
6467 | case OP_PLUS: *tempcode = OP_POSPLUS; break; |
6468 | case OP_QUERY: *tempcode = OP_POSQUERY; break; |
6469 | case OP_UPTO: *tempcode = OP_POSUPTO; break; |
6470 | |
6471 | case OP_STARI: *tempcode = OP_POSSTARI; break; |
6472 | case OP_PLUSI: *tempcode = OP_POSPLUSI; break; |
6473 | case OP_QUERYI: *tempcode = OP_POSQUERYI; break; |
6474 | case OP_UPTOI: *tempcode = OP_POSUPTOI; break; |
6475 | |
6476 | case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break; |
6477 | case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break; |
6478 | case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break; |
6479 | case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break; |
6480 | |
6481 | case OP_NOTSTARI: *tempcode = OP_NOTPOSSTARI; break; |
6482 | case OP_NOTPLUSI: *tempcode = OP_NOTPOSPLUSI; break; |
6483 | case OP_NOTQUERYI: *tempcode = OP_NOTPOSQUERYI; break; |
6484 | case OP_NOTUPTOI: *tempcode = OP_NOTPOSUPTOI; break; |
6485 | |
6486 | case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break; |
6487 | case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break; |
6488 | case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break; |
6489 | case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break; |
6490 | |
6491 | case OP_CRSTAR: *tempcode = OP_CRPOSSTAR; break; |
6492 | case OP_CRPLUS: *tempcode = OP_CRPOSPLUS; break; |
6493 | case OP_CRQUERY: *tempcode = OP_CRPOSQUERY; break; |
6494 | case OP_CRRANGE: *tempcode = OP_CRPOSRANGE; break; |
6495 | |
6496 | /* Because we are moving code along, we must ensure that any |
6497 | pending recursive references are updated. */ |
6498 | |
6499 | default: |
6500 | *code = OP_END; |
6501 | adjust_recurse(tempcode, 1 + LINK_SIZE, utf, cd, item_hwm_offset); |
6502 | memmove(tempcode + 1 + LINK_SIZE, tempcode, IN_UCHARS(len)); |
6503 | code += 1 + LINK_SIZE; |
6504 | len += 1 + LINK_SIZE; |
6505 | tempcode[0] = OP_ONCE; |
6506 | *code++ = OP_KET; |
6507 | PUTINC(code, 0, len); |
6508 | PUT(tempcode, 1, len); |
6509 | break; |
6510 | } |
6511 | #endif |
6512 | } |
6513 | |
6514 | /* In all case we no longer have a previous item. We also set the |
6515 | "follows varying string" flag for subsequently encountered reqchars if |
6516 | it isn't already set and we have just passed a varying length item. */ |
6517 | |
6518 | END_REPEAT: |
6519 | previous = NULL; |
6520 | cd->req_varyopt |= reqvary; |
6521 | break; |
6522 | |
6523 | |
6524 | /* ===================================================================*/ |
6525 | /* Start of nested parenthesized sub-expression, or comment or lookahead or |
6526 | lookbehind or option setting or condition or all the other extended |
6527 | parenthesis forms. */ |
6528 | |
6529 | case CHAR_LEFT_PARENTHESIS: |
6530 | ptr++; |
6531 | |
6532 | /* First deal with comments. Putting this code right at the start ensures |
6533 | that comments have no bad side effects. */ |
6534 | |
6535 | if (ptr[0] == CHAR_QUESTION_MARK && ptr[1] == CHAR_NUMBER_SIGN) |
6536 | { |
6537 | ptr += 2; |
6538 | while (*ptr != CHAR_NULL && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
6539 | if (*ptr == CHAR_NULL) |
6540 | { |
6541 | *errorcodeptr = ERR18; |
6542 | goto FAILED; |
6543 | } |
6544 | continue; |
6545 | } |
6546 | |
6547 | /* Now deal with various "verbs" that can be introduced by '*'. */ |
6548 | |
6549 | if (ptr[0] == CHAR_ASTERISK && (ptr[1] == ':' |
6550 | || (MAX_255(ptr[1]) && ((cd->ctypes[ptr[1]] & ctype_letter) != 0)))) |
6551 | { |
6552 | int i, namelen; |
6553 | int arglen = 0; |
6554 | const char *vn = verbnames; |
6555 | const pcre_uchar *name = ptr + 1; |
6556 | const pcre_uchar *arg = NULL; |
6557 | previous = NULL; |
6558 | ptr++; |
6559 | while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_letter) != 0) ptr++; |
6560 | namelen = (int)(ptr - name); |
6561 | |
6562 | /* It appears that Perl allows any characters whatsoever, other than |
6563 | a closing parenthesis, to appear in arguments, so we no longer insist on |
6564 | letters, digits, and underscores. */ |
6565 | |
6566 | if (*ptr == CHAR_COLON) |
6567 | { |
6568 | arg = ++ptr; |
6569 | while (*ptr != CHAR_NULL && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
6570 | arglen = (int)(ptr - arg); |
6571 | if ((unsigned int)arglen > MAX_MARK) |
6572 | { |
6573 | *errorcodeptr = ERR75; |
6574 | goto FAILED; |
6575 | } |
6576 | } |
6577 | |
6578 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
6579 | { |
6580 | *errorcodeptr = ERR60; |
6581 | goto FAILED; |
6582 | } |
6583 | |
6584 | /* Scan the table of verb names */ |
6585 | |
6586 | for (i = 0; i < verbcount; i++) |
6587 | { |
6588 | if (namelen == verbs[i].len && |
6589 | STRNCMP_UC_C8(name, vn, namelen) == 0) |
6590 | { |
6591 | int setverb; |
6592 | |
6593 | /* Check for open captures before ACCEPT and convert it to |
6594 | ASSERT_ACCEPT if in an assertion. */ |
6595 | |
6596 | if (verbs[i].op == OP_ACCEPT) |
6597 | { |
6598 | open_capitem *oc; |
6599 | if (arglen != 0) |
6600 | { |
6601 | *errorcodeptr = ERR59; |
6602 | goto FAILED; |
6603 | } |
6604 | cd->had_accept = TRUE; |
6605 | for (oc = cd->open_caps; oc != NULL; oc = oc->next) |
6606 | { |
6607 | *code++ = OP_CLOSE; |
6608 | PUT2INC(code, 0, oc->number); |
6609 | } |
6610 | setverb = *code++ = |
6611 | (cd->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT; |
6612 | |
6613 | /* Do not set firstchar after *ACCEPT */ |
6614 | if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE; |
6615 | } |
6616 | |
6617 | /* Handle other cases with/without an argument */ |
6618 | |
6619 | else if (arglen == 0) |
6620 | { |
6621 | if (verbs[i].op < 0) /* Argument is mandatory */ |
6622 | { |
6623 | *errorcodeptr = ERR66; |
6624 | goto FAILED; |
6625 | } |
6626 | setverb = *code++ = verbs[i].op; |
6627 | } |
6628 | |
6629 | else |
6630 | { |
6631 | if (verbs[i].op_arg < 0) /* Argument is forbidden */ |
6632 | { |
6633 | *errorcodeptr = ERR59; |
6634 | goto FAILED; |
6635 | } |
6636 | setverb = *code++ = verbs[i].op_arg; |
6637 | if (lengthptr != NULL) /* In pass 1 just add in the length */ |
6638 | { /* to avoid potential workspace */ |
6639 | *lengthptr += arglen; /* overflow. */ |
6640 | *code++ = 0; |
6641 | } |
6642 | else |
6643 | { |
6644 | *code++ = arglen; |
6645 | memcpy(code, arg, IN_UCHARS(arglen)); |
6646 | code += arglen; |
6647 | } |
6648 | *code++ = 0; |
6649 | } |
6650 | |
6651 | switch (setverb) |
6652 | { |
6653 | case OP_THEN: |
6654 | case OP_THEN_ARG: |
6655 | cd->external_flags |= PCRE_HASTHEN; |
6656 | break; |
6657 |