1 |
/*************************************************
|
2 |
* Perl-Compatible Regular Expressions *
|
3 |
*************************************************/
|
4 |
|
5 |
/* PCRE is a library of functions to support regular expressions whose syntax
|
6 |
and semantics are as close as possible to those of the Perl 5 language.
|
7 |
|
8 |
Written by Philip Hazel
|
9 |
Copyright (c) 1997-2007 University of Cambridge
|
10 |
|
11 |
-----------------------------------------------------------------------------
|
12 |
Redistribution and use in source and binary forms, with or without
|
13 |
modification, are permitted provided that the following conditions are met:
|
14 |
|
15 |
* Redistributions of source code must retain the above copyright notice,
|
16 |
this list of conditions and the following disclaimer.
|
17 |
|
18 |
* Redistributions in binary form must reproduce the above copyright
|
19 |
notice, this list of conditions and the following disclaimer in the
|
20 |
documentation and/or other materials provided with the distribution.
|
21 |
|
22 |
* Neither the name of the University of Cambridge nor the names of its
|
23 |
contributors may be used to endorse or promote products derived from
|
24 |
this software without specific prior written permission.
|
25 |
|
26 |
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
27 |
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
28 |
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
29 |
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
30 |
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
31 |
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
32 |
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
33 |
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
34 |
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
35 |
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
36 |
POSSIBILITY OF SUCH DAMAGE.
|
37 |
-----------------------------------------------------------------------------
|
38 |
*/
|
39 |
|
40 |
|
41 |
/* This module contains the external function pcre_compile(), along with
|
42 |
supporting internal functions that are not used by other modules. */
|
43 |
|
44 |
|
45 |
#define NLBLOCK cd /* Block containing newline information */
|
46 |
#define PSSTART start_pattern /* Field containing processed string start */
|
47 |
#define PSEND end_pattern /* Field containing processed string end */
|
48 |
|
49 |
|
50 |
#include "pcre_internal.h"
|
51 |
|
52 |
|
53 |
/* When DEBUG is defined, we need the pcre_printint() function, which is also
|
54 |
used by pcretest. DEBUG is not defined when building a production library. */
|
55 |
|
56 |
#ifdef DEBUG
|
57 |
#include "pcre_printint.src"
|
58 |
#endif
|
59 |
|
60 |
|
61 |
/* Macro for setting individual bits in class bitmaps. */
|
62 |
|
63 |
#define SETBIT(a,b) a[b/8] |= (1 << (b%8))
|
64 |
|
65 |
|
66 |
/*************************************************
|
67 |
* Code parameters and static tables *
|
68 |
*************************************************/
|
69 |
|
70 |
/* This value specifies the size of stack workspace that is used during the
|
71 |
first pre-compile phase that determines how much memory is required. The regex
|
72 |
is partly compiled into this space, but the compiled parts are discarded as
|
73 |
soon as they can be, so that hopefully there will never be an overrun. The code
|
74 |
does, however, check for an overrun. The largest amount I've seen used is 218,
|
75 |
so this number is very generous.
|
76 |
|
77 |
The same workspace is used during the second, actual compile phase for
|
78 |
remembering forward references to groups so that they can be filled in at the
|
79 |
end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE
|
80 |
is 4 there is plenty of room. */
|
81 |
|
82 |
#define COMPILE_WORK_SIZE (4096)
|
83 |
|
84 |
|
85 |
/* Table for handling escaped characters in the range '0'-'z'. Positive returns
|
86 |
are simple data values; negative values are for special things like \d and so
|
87 |
on. Zero means further processing is needed (for things like \x), or the escape
|
88 |
is invalid. */
|
89 |
|
90 |
#ifndef EBCDIC /* This is the "normal" table for ASCII systems */
|
91 |
static const short int escapes[] = {
|
92 |
0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 7 */
|
93 |
0, 0, ':', ';', '<', '=', '>', '?', /* 8 - ? */
|
94 |
'@', -ESC_A, -ESC_B, -ESC_C, -ESC_D, -ESC_E, 0, -ESC_G, /* @ - G */
|
95 |
-ESC_H, 0, 0, -ESC_K, 0, 0, 0, 0, /* H - O */
|
96 |
-ESC_P, -ESC_Q, -ESC_R, -ESC_S, 0, 0, -ESC_V, -ESC_W, /* P - W */
|
97 |
-ESC_X, 0, -ESC_Z, '[', '\\', ']', '^', '_', /* X - _ */
|
98 |
'`', 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, /* ` - g */
|
99 |
-ESC_h, 0, 0, -ESC_k, 0, 0, ESC_n, 0, /* h - o */
|
100 |
-ESC_p, 0, ESC_r, -ESC_s, ESC_tee, 0, -ESC_v, -ESC_w, /* p - w */
|
101 |
0, 0, -ESC_z /* x - z */
|
102 |
};
|
103 |
|
104 |
#else /* This is the "abnormal" table for EBCDIC systems */
|
105 |
static const short int escapes[] = {
|
106 |
/* 48 */ 0, 0, 0, '.', '<', '(', '+', '|',
|
107 |
/* 50 */ '&', 0, 0, 0, 0, 0, 0, 0,
|
108 |
/* 58 */ 0, 0, '!', '$', '*', ')', ';', '~',
|
109 |
/* 60 */ '-', '/', 0, 0, 0, 0, 0, 0,
|
110 |
/* 68 */ 0, 0, '|', ',', '%', '_', '>', '?',
|
111 |
/* 70 */ 0, 0, 0, 0, 0, 0, 0, 0,
|
112 |
/* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"',
|
113 |
/* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0,
|
114 |
/* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0,
|
115 |
/* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p,
|
116 |
/* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0,
|
117 |
/* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0,
|
118 |
/* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0,
|
119 |
/* B0 */ 0, 0, 0, 0, 0, 0, 0, 0,
|
120 |
/* B8 */ 0, 0, 0, 0, 0, ']', '=', '-',
|
121 |
/* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G,
|
122 |
/* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0,
|
123 |
/* D0 */ '}', 0, -ESC_K, 0, 0, 0, 0, -ESC_P,
|
124 |
/* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0,
|
125 |
/* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X,
|
126 |
/* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0,
|
127 |
/* F0 */ 0, 0, 0, 0, 0, 0, 0, 0,
|
128 |
/* F8 */ 0, 0, 0, 0, 0, 0, 0, 0
|
129 |
};
|
130 |
#endif
|
131 |
|
132 |
|
133 |
/* Tables of names of POSIX character classes and their lengths. The list is
|
134 |
terminated by a zero length entry. The first three must be alpha, lower, upper,
|
135 |
as this is assumed for handling case independence. */
|
136 |
|
137 |
static const char *const posix_names[] = {
|
138 |
"alpha", "lower", "upper",
|
139 |
"alnum", "ascii", "blank", "cntrl", "digit", "graph",
|
140 |
"print", "punct", "space", "word", "xdigit" };
|
141 |
|
142 |
static const uschar posix_name_lengths[] = {
|
143 |
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 };
|
144 |
|
145 |
/* Table of class bit maps for each POSIX class. Each class is formed from a
|
146 |
base map, with an optional addition or removal of another map. Then, for some
|
147 |
classes, there is some additional tweaking: for [:blank:] the vertical space
|
148 |
characters are removed, and for [:alpha:] and [:alnum:] the underscore
|
149 |
character is removed. The triples in the table consist of the base map offset,
|
150 |
second map offset or -1 if no second map, and a non-negative value for map
|
151 |
addition or a negative value for map subtraction (if there are two maps). The
|
152 |
absolute value of the third field has these meanings: 0 => no tweaking, 1 =>
|
153 |
remove vertical space characters, 2 => remove underscore. */
|
154 |
|
155 |
static const int posix_class_maps[] = {
|
156 |
cbit_word, cbit_digit, -2, /* alpha */
|
157 |
cbit_lower, -1, 0, /* lower */
|
158 |
cbit_upper, -1, 0, /* upper */
|
159 |
cbit_word, -1, 2, /* alnum - word without underscore */
|
160 |
cbit_print, cbit_cntrl, 0, /* ascii */
|
161 |
cbit_space, -1, 1, /* blank - a GNU extension */
|
162 |
cbit_cntrl, -1, 0, /* cntrl */
|
163 |
cbit_digit, -1, 0, /* digit */
|
164 |
cbit_graph, -1, 0, /* graph */
|
165 |
cbit_print, -1, 0, /* print */
|
166 |
cbit_punct, -1, 0, /* punct */
|
167 |
cbit_space, -1, 0, /* space */
|
168 |
cbit_word, -1, 0, /* word - a Perl extension */
|
169 |
cbit_xdigit,-1, 0 /* xdigit */
|
170 |
};
|
171 |
|
172 |
|
173 |
#define STRING(a) # a
|
174 |
#define XSTRING(s) STRING(s)
|
175 |
|
176 |
/* The texts of compile-time error messages. These are "char *" because they
|
177 |
are passed to the outside world. Do not ever re-use any error number, because
|
178 |
they are documented. Always add a new error instead. Messages marked DEAD below
|
179 |
are no longer used. */
|
180 |
|
181 |
static const char *error_texts[] = {
|
182 |
"no error",
|
183 |
"\\ at end of pattern",
|
184 |
"\\c at end of pattern",
|
185 |
"unrecognized character follows \\",
|
186 |
"numbers out of order in {} quantifier",
|
187 |
/* 5 */
|
188 |
"number too big in {} quantifier",
|
189 |
"missing terminating ] for character class",
|
190 |
"invalid escape sequence in character class",
|
191 |
"range out of order in character class",
|
192 |
"nothing to repeat",
|
193 |
/* 10 */
|
194 |
"operand of unlimited repeat could match the empty string", /** DEAD **/
|
195 |
"internal error: unexpected repeat",
|
196 |
"unrecognized character after (?",
|
197 |
"POSIX named classes are supported only within a class",
|
198 |
"missing )",
|
199 |
/* 15 */
|
200 |
"reference to non-existent subpattern",
|
201 |
"erroffset passed as NULL",
|
202 |
"unknown option bit(s) set",
|
203 |
"missing ) after comment",
|
204 |
"parentheses nested too deeply", /** DEAD **/
|
205 |
/* 20 */
|
206 |
"regular expression too large",
|
207 |
"failed to get memory",
|
208 |
"unmatched parentheses",
|
209 |
"internal error: code overflow",
|
210 |
"unrecognized character after (?<",
|
211 |
/* 25 */
|
212 |
"lookbehind assertion is not fixed length",
|
213 |
"malformed number or name after (?(",
|
214 |
"conditional group contains more than two branches",
|
215 |
"assertion expected after (?(",
|
216 |
"(?R or (?[+-]digits must be followed by )",
|
217 |
/* 30 */
|
218 |
"unknown POSIX class name",
|
219 |
"POSIX collating elements are not supported",
|
220 |
"this version of PCRE is not compiled with PCRE_UTF8 support",
|
221 |
"spare error", /** DEAD **/
|
222 |
"character value in \\x{...} sequence is too large",
|
223 |
/* 35 */
|
224 |
"invalid condition (?(0)",
|
225 |
"\\C not allowed in lookbehind assertion",
|
226 |
"PCRE does not support \\L, \\l, \\N, \\U, or \\u",
|
227 |
"number after (?C is > 255",
|
228 |
"closing ) for (?C expected",
|
229 |
/* 40 */
|
230 |
"recursive call could loop indefinitely",
|
231 |
"unrecognized character after (?P",
|
232 |
"syntax error in subpattern name (missing terminator)",
|
233 |
"two named subpatterns have the same name",
|
234 |
"invalid UTF-8 string",
|
235 |
/* 45 */
|
236 |
"support for \\P, \\p, and \\X has not been compiled",
|
237 |
"malformed \\P or \\p sequence",
|
238 |
"unknown property name after \\P or \\p",
|
239 |
"subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)",
|
240 |
"too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")",
|
241 |
/* 50 */
|
242 |
"repeated subpattern is too long",
|
243 |
"octal value is greater than \\377 (not in UTF-8 mode)",
|
244 |
"internal error: overran compiling workspace",
|
245 |
"internal error: previously-checked referenced subpattern not found",
|
246 |
"DEFINE group contains more than one branch",
|
247 |
/* 55 */
|
248 |
"repeating a DEFINE group is not allowed",
|
249 |
"inconsistent NEWLINE options",
|
250 |
"\\g is not followed by a braced name or an optionally braced non-zero number",
|
251 |
"(?+ or (?- or (?(+ or (?(- must be followed by a non-zero number"
|
252 |
};
|
253 |
|
254 |
|
255 |
/* Table to identify digits and hex digits. This is used when compiling
|
256 |
patterns. Note that the tables in chartables are dependent on the locale, and
|
257 |
may mark arbitrary characters as digits - but the PCRE compiling code expects
|
258 |
to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have
|
259 |
a private table here. It costs 256 bytes, but it is a lot faster than doing
|
260 |
character value tests (at least in some simple cases I timed), and in some
|
261 |
applications one wants PCRE to compile efficiently as well as match
|
262 |
efficiently.
|
263 |
|
264 |
For convenience, we use the same bit definitions as in chartables:
|
265 |
|
266 |
0x04 decimal digit
|
267 |
0x08 hexadecimal digit
|
268 |
|
269 |
Then we can use ctype_digit and ctype_xdigit in the code. */
|
270 |
|
271 |
#ifndef EBCDIC /* This is the "normal" case, for ASCII systems */
|
272 |
static const unsigned char digitab[] =
|
273 |
{
|
274 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */
|
275 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
|
276 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */
|
277 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
|
278 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */
|
279 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */
|
280 |
0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */
|
281 |
0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */
|
282 |
0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */
|
283 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */
|
284 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */
|
285 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */
|
286 |
0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */
|
287 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */
|
288 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */
|
289 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */
|
290 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */
|
291 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */
|
292 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */
|
293 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */
|
294 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */
|
295 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */
|
296 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */
|
297 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
|
298 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */
|
299 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */
|
300 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */
|
301 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */
|
302 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */
|
303 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */
|
304 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */
|
305 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */
|
306 |
|
307 |
#else /* This is the "abnormal" case, for EBCDIC systems */
|
308 |
static const unsigned char digitab[] =
|
309 |
{
|
310 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */
|
311 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
|
312 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */
|
313 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
|
314 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */
|
315 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
|
316 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */
|
317 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
|
318 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */
|
319 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */
|
320 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */
|
321 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */
|
322 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */
|
323 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */
|
324 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */
|
325 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
|
326 |
0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */
|
327 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
|
328 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */
|
329 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
|
330 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */
|
331 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
|
332 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */
|
333 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
|
334 |
0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */
|
335 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
|
336 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */
|
337 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
|
338 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */
|
339 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
|
340 |
0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */
|
341 |
0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
|
342 |
|
343 |
static const unsigned char ebcdic_chartab[] = { /* chartable partial dup */
|
344 |
0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */
|
345 |
0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */
|
346 |
0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */
|
347 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
|
348 |
0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */
|
349 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
|
350 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */
|
351 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
|
352 |
0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */
|
353 |
0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */
|
354 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */
|
355 |
0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */
|
356 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */
|
357 |
0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */
|
358 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */
|
359 |
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
|
360 |
0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */
|
361 |
0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
|
362 |
0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */
|
363 |
0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
|
364 |
0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */
|
365 |
0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
|
366 |
0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */
|
367 |
0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
|
368 |
0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */
|
369 |
0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
|
370 |
0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */
|
371 |
0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
|
372 |
0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */
|
373 |
0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
|
374 |
0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */
|
375 |
0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
|
376 |
#endif
|
377 |
|
378 |
|
379 |
/* Definition to allow mutual recursion */
|
380 |
|
381 |
static BOOL
|
382 |
compile_regex(int, int, uschar **, const uschar **, int *, BOOL, BOOL, int,
|
383 |
int *, int *, branch_chain *, compile_data *, int *);
|
384 |
|
385 |
|
386 |
|
387 |
/*************************************************
|
388 |
* Handle escapes *
|
389 |
*************************************************/
|
390 |
|
391 |
/* This function is called when a \ has been encountered. It either returns a
|
392 |
positive value for a simple escape such as \n, or a negative value which
|
393 |
encodes one of the more complicated things such as \d. A backreference to group
|
394 |
n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When
|
395 |
UTF-8 is enabled, a positive value greater than 255 may be returned. On entry,
|
396 |
ptr is pointing at the \. On exit, it is on the final character of the escape
|
397 |
sequence.
|
398 |
|
399 |
Arguments:
|
400 |
ptrptr points to the pattern position pointer
|
401 |
errorcodeptr points to the errorcode variable
|
402 |
bracount number of previous extracting brackets
|
403 |
options the options bits
|
404 |
isclass TRUE if inside a character class
|
405 |
|
406 |
Returns: zero or positive => a data character
|
407 |
negative => a special escape sequence
|
408 |
on error, errorptr is set
|
409 |
*/
|
410 |
|
411 |
static int
|
412 |
check_escape(const uschar **ptrptr, int *errorcodeptr, int bracount,
|
413 |
int options, BOOL isclass)
|
414 |
{
|
415 |
BOOL utf8 = (options & PCRE_UTF8) != 0;
|
416 |
const uschar *ptr = *ptrptr + 1;
|
417 |
int c, i;
|
418 |
|
419 |
GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */
|
420 |
ptr--; /* Set pointer back to the last byte */
|
421 |
|
422 |
/* If backslash is at the end of the pattern, it's an error. */
|
423 |
|
424 |
if (c == 0) *errorcodeptr = ERR1;
|
425 |
|
426 |
/* Non-alphamerics are literals. For digits or letters, do an initial lookup in
|
427 |
a table. A non-zero result is something that can be returned immediately.
|
428 |
Otherwise further processing may be required. */
|
429 |
|
430 |
#ifndef EBCDIC /* ASCII coding */
|
431 |
else if (c < '0' || c > 'z') {} /* Not alphameric */
|
432 |
else if ((i = escapes[c - '0']) != 0) c = i;
|
433 |
|
434 |
#else /* EBCDIC coding */
|
435 |
else if (c < 'a' || (ebcdic_chartab[c] & 0x0E) == 0) {} /* Not alphameric */
|
436 |
else if ((i = escapes[c - 0x48]) != 0) c = i;
|
437 |
#endif
|
438 |
|
439 |
/* Escapes that need further processing, or are illegal. */
|
440 |
|
441 |
else
|
442 |
{
|
443 |
const uschar *oldptr;
|
444 |
BOOL braced, negated;
|
445 |
|
446 |
switch (c)
|
447 |
{
|
448 |
/* A number of Perl escapes are not handled by PCRE. We give an explicit
|
449 |
error. */
|
450 |
|
451 |
case 'l':
|
452 |
case 'L':
|
453 |
case 'N':
|
454 |
case 'u':
|
455 |
case 'U':
|
456 |
*errorcodeptr = ERR37;
|
457 |
break;
|
458 |
|
459 |
/* \g must be followed by a number, either plain or braced. If positive, it
|
460 |
is an absolute backreference. If negative, it is a relative backreference.
|
461 |
This is a Perl 5.10 feature. Perl 5.10 also supports \g{name} as a
|
462 |
reference to a named group. This is part of Perl's movement towards a
|
463 |
unified syntax for back references. As this is synonymous with \k{name}, we
|
464 |
fudge it up by pretending it really was \k. */
|
465 |
|
466 |
case 'g':
|
467 |
if (ptr[1] == '{')
|
468 |
{
|
469 |
const uschar *p;
|
470 |
for (p = ptr+2; *p != 0 && *p != '}'; p++)
|
471 |
if (*p != '-' && (digitab[*p] & ctype_digit) == 0) break;
|
472 |
if (*p != 0 && *p != '}')
|
473 |
{
|
474 |
c = -ESC_k;
|
475 |
break;
|
476 |
}
|
477 |
braced = TRUE;
|
478 |
ptr++;
|
479 |
}
|
480 |
else braced = FALSE;
|
481 |
|
482 |
if (ptr[1] == '-')
|
483 |
{
|
484 |
negated = TRUE;
|
485 |
ptr++;
|
486 |
}
|
487 |
else negated = FALSE;
|
488 |
|
489 |
c = 0;
|
490 |
while ((digitab[ptr[1]] & ctype_digit) != 0)
|
491 |
c = c * 10 + *(++ptr) - '0';
|
492 |
|
493 |
if (c == 0 || (braced && *(++ptr) != '}'))
|
494 |
{
|
495 |
*errorcodeptr = ERR57;
|
496 |
return 0;
|
497 |
}
|
498 |
|
499 |
if (negated)
|
500 |
{
|
501 |
if (c > bracount)
|
502 |
{
|
503 |
*errorcodeptr = ERR15;
|
504 |
return 0;
|
505 |
}
|
506 |
c = bracount - (c - 1);
|
507 |
}
|
508 |
|
509 |
c = -(ESC_REF + c);
|
510 |
break;
|
511 |
|
512 |
/* The handling of escape sequences consisting of a string of digits
|
513 |
starting with one that is not zero is not straightforward. By experiment,
|
514 |
the way Perl works seems to be as follows:
|
515 |
|
516 |
Outside a character class, the digits are read as a decimal number. If the
|
517 |
number is less than 10, or if there are that many previous extracting
|
518 |
left brackets, then it is a back reference. Otherwise, up to three octal
|
519 |
digits are read to form an escaped byte. Thus \123 is likely to be octal
|
520 |
123 (cf \0123, which is octal 012 followed by the literal 3). If the octal
|
521 |
value is greater than 377, the least significant 8 bits are taken. Inside a
|
522 |
character class, \ followed by a digit is always an octal number. */
|
523 |
|
524 |
case '1': case '2': case '3': case '4': case '5':
|
525 |
case '6': case '7': case '8': case '9':
|
526 |
|
527 |
if (!isclass)
|
528 |
{
|
529 |
oldptr = ptr;
|
530 |
c -= '0';
|
531 |
while ((digitab[ptr[1]] & ctype_digit) != 0)
|
532 |
c = c * 10 + *(++ptr) - '0';
|
533 |
if (c < 10 || c <= bracount)
|
534 |
{
|
535 |
c = -(ESC_REF + c);
|
536 |
break;
|
537 |
}
|
538 |
ptr = oldptr; /* Put the pointer back and fall through */
|
539 |
}
|
540 |
|
541 |
/* Handle an octal number following \. If the first digit is 8 or 9, Perl
|
542 |
generates a binary zero byte and treats the digit as a following literal.
|
543 |
Thus we have to pull back the pointer by one. */
|
544 |
|
545 |
if ((c = *ptr) >= '8')
|
546 |
{
|
547 |
ptr--;
|
548 |
c = 0;
|
549 |
break;
|
550 |
}
|
551 |
|
552 |
/* \0 always starts an octal number, but we may drop through to here with a
|
553 |
larger first octal digit. The original code used just to take the least
|
554 |
significant 8 bits of octal numbers (I think this is what early Perls used
|
555 |
to do). Nowadays we allow for larger numbers in UTF-8 mode, but no more
|
556 |
than 3 octal digits. */
|
557 |
|
558 |
case '0':
|
559 |
c -= '0';
|
560 |
while(i++ < 2 && ptr[1] >= '0' && ptr[1] <= '7')
|
561 |
c = c * 8 + *(++ptr) - '0';
|
562 |
if (!utf8 && c > 255) *errorcodeptr = ERR51;
|
563 |
break;
|
564 |
|
565 |
/* \x is complicated. \x{ddd} is a character number which can be greater
|
566 |
than 0xff in utf8 mode, but only if the ddd are hex digits. If not, { is
|
567 |
treated as a data character. */
|
568 |
|
569 |
case 'x':
|
570 |
if (ptr[1] == '{')
|
571 |
{
|
572 |
const uschar *pt = ptr + 2;
|
573 |
int count = 0;
|
574 |
|
575 |
c = 0;
|
576 |
while ((digitab[*pt] & ctype_xdigit) != 0)
|
577 |
{
|
578 |
register int cc = *pt++;
|
579 |
if (c == 0 && cc == '0') continue; /* Leading zeroes */
|
580 |
count++;
|
581 |
|
582 |
#ifndef EBCDIC /* ASCII coding */
|
583 |
if (cc >= 'a') cc -= 32; /* Convert to upper case */
|
584 |
c = (c << 4) + cc - ((cc < 'A')? '0' : ('A' - 10));
|
585 |
#else /* EBCDIC coding */
|
586 |
if (cc >= 'a' && cc <= 'z') cc += 64; /* Convert to upper case */
|
587 |
c = (c << 4) + cc - ((cc >= '0')? '0' : ('A' - 10));
|
588 |
#endif
|
589 |
}
|
590 |
|
591 |
if (*pt == '}')
|
592 |
{
|
593 |
if (c < 0 || count > (utf8? 8 : 2)) *errorcodeptr = ERR34;
|
594 |
ptr = pt;
|
595 |
break;
|
596 |
}
|
597 |
|
598 |
/* If the sequence of hex digits does not end with '}', then we don't
|
599 |
recognize this construct; fall through to the normal \x handling. */
|
600 |
}
|
601 |
|
602 |
/* Read just a single-byte hex-defined char */
|
603 |
|
604 |
c = 0;
|
605 |
while (i++ < 2 && (digitab[ptr[1]] & ctype_xdigit) != 0)
|
606 |
{
|
607 |
int cc; /* Some compilers don't like ++ */
|
608 |
cc = *(++ptr); /* in initializers */
|
609 |
#ifndef EBCDIC /* ASCII coding */
|
610 |
if (cc >= 'a') cc -= 32; /* Convert to upper case */
|
611 |
c = c * 16 + cc - ((cc < 'A')? '0' : ('A' - 10));
|
612 |
#else /* EBCDIC coding */
|
613 |
if (cc <= 'z') cc += 64; /* Convert to upper case */
|
614 |
c = c * 16 + cc - ((cc >= '0')? '0' : ('A' - 10));
|
615 |
#endif
|
616 |
}
|
617 |
break;
|
618 |
|
619 |
/* For \c, a following letter is upper-cased; then the 0x40 bit is flipped.
|
620 |
This coding is ASCII-specific, but then the whole concept of \cx is
|
621 |
ASCII-specific. (However, an EBCDIC equivalent has now been added.) */
|
622 |
|
623 |
case 'c':
|
624 |
c = *(++ptr);
|
625 |
if (c == 0)
|
626 |
{
|
627 |
*errorcodeptr = ERR2;
|
628 |
return 0;
|
629 |
}
|
630 |
|
631 |
#ifndef EBCDIC /* ASCII coding */
|
632 |
if (c >= 'a' && c <= 'z') c -= 32;
|
633 |
c ^= 0x40;
|
634 |
#else /* EBCDIC coding */
|
635 |
if (c >= 'a' && c <= 'z') c += 64;
|
636 |
c ^= 0xC0;
|
637 |
#endif
|
638 |
break;
|
639 |
|
640 |
/* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any
|
641 |
other alphameric following \ is an error if PCRE_EXTRA was set; otherwise,
|
642 |
for Perl compatibility, it is a literal. This code looks a bit odd, but
|
643 |
there used to be some cases other than the default, and there may be again
|
644 |
in future, so I haven't "optimized" it. */
|
645 |
|
646 |
default:
|
647 |
if ((options & PCRE_EXTRA) != 0) switch(c)
|
648 |
{
|
649 |
default:
|
650 |
*errorcodeptr = ERR3;
|
651 |
break;
|
652 |
}
|
653 |
break;
|
654 |
}
|
655 |
}
|
656 |
|
657 |
*ptrptr = ptr;
|
658 |
return c;
|
659 |
}
|
660 |
|
661 |
|
662 |
|
663 |
#ifdef SUPPORT_UCP
|
664 |
/*************************************************
|
665 |
* Handle \P and \p *
|
666 |
*************************************************/
|
667 |
|
668 |
/* This function is called after \P or \p has been encountered, provided that
|
669 |
PCRE is compiled with support for Unicode properties. On entry, ptrptr is
|
670 |
pointing at the P or p. On exit, it is pointing at the final character of the
|
671 |
escape sequence.
|
672 |
|
673 |
Argument:
|
674 |
ptrptr points to the pattern position pointer
|
675 |
negptr points to a boolean that is set TRUE for negation else FALSE
|
676 |
dptr points to an int that is set to the detailed property value
|
677 |
errorcodeptr points to the error code variable
|
678 |
|
679 |
Returns: type value from ucp_type_table, or -1 for an invalid type
|
680 |
*/
|
681 |
|
682 |
static int
|
683 |
get_ucp(const uschar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr)
|
684 |
{
|
685 |
int c, i, bot, top;
|
686 |
const uschar *ptr = *ptrptr;
|
687 |
char name[32];
|
688 |
|
689 |
c = *(++ptr);
|
690 |
if (c == 0) goto ERROR_RETURN;
|
691 |
|
692 |
*negptr = FALSE;
|
693 |
|
694 |
/* \P or \p can be followed by a name in {}, optionally preceded by ^ for
|
695 |
negation. */
|
696 |
|
697 |
if (c == '{')
|
698 |
{
|
699 |
if (ptr[1] == '^')
|
700 |
{
|
701 |
*negptr = TRUE;
|
702 |
ptr++;
|
703 |
}
|
704 |
for (i = 0; i < sizeof(name) - 1; i++)
|
705 |
{
|
706 |
c = *(++ptr);
|
707 |
if (c == 0) goto ERROR_RETURN;
|
708 |
if (c == '}') break;
|
709 |
name[i] = c;
|
710 |
}
|
711 |
if (c !='}') goto ERROR_RETURN;
|
712 |
name[i] = 0;
|
713 |
}
|
714 |
|
715 |
/* Otherwise there is just one following character */
|
716 |
|
717 |
else
|
718 |
{
|
719 |
name[0] = c;
|
720 |
name[1] = 0;
|
721 |
}
|
722 |
|
723 |
*ptrptr = ptr;
|
724 |
|
725 |
/* Search for a recognized property name using binary chop */
|
726 |
|
727 |
bot = 0;
|
728 |
top = _pcre_utt_size;
|
729 |
|
730 |
while (bot < top)
|
731 |
{
|
732 |
i = (bot + top) >> 1;
|
733 |
c = strcmp(name, _pcre_utt[i].name);
|
734 |
if (c == 0)
|
735 |
{
|
736 |
*dptr = _pcre_utt[i].value;
|
737 |
return _pcre_utt[i].type;
|
738 |
}
|
739 |
if (c > 0) bot = i + 1; else top = i;
|
740 |
}
|
741 |
|
742 |
*errorcodeptr = ERR47;
|
743 |
*ptrptr = ptr;
|
744 |
return -1;
|
745 |
|
746 |
ERROR_RETURN:
|
747 |
*errorcodeptr = ERR46;
|
748 |
*ptrptr = ptr;
|
749 |
return -1;
|
750 |
}
|
751 |
#endif
|
752 |
|
753 |
|
754 |
|
755 |
|
756 |
/*************************************************
|
757 |
* Check for counted repeat *
|
758 |
*************************************************/
|
759 |
|
760 |
/* This function is called when a '{' is encountered in a place where it might
|
761 |
start a quantifier. It looks ahead to see if it really is a quantifier or not.
|
762 |
It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd}
|
763 |
where the ddds are digits.
|
764 |
|
765 |
Arguments:
|
766 |
p pointer to the first char after '{'
|
767 |
|
768 |
Returns: TRUE or FALSE
|
769 |
*/
|
770 |
|
771 |
static BOOL
|
772 |
is_counted_repeat(const uschar *p)
|
773 |
{
|
774 |
if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
|
775 |
while ((digitab[*p] & ctype_digit) != 0) p++;
|
776 |
if (*p == '}') return TRUE;
|
777 |
|
778 |
if (*p++ != ',') return FALSE;
|
779 |
if (*p == '}') return TRUE;
|
780 |
|
781 |
if ((digitab[*p++] & ctype_digit) == 0) return FALSE;
|
782 |
while ((digitab[*p] & ctype_digit) != 0) p++;
|
783 |
|
784 |
return (*p == '}');
|
785 |
}
|
786 |
|
787 |
|
788 |
|
789 |
/*************************************************
|
790 |
* Read repeat counts *
|
791 |
*************************************************/
|
792 |
|
793 |
/* Read an item of the form {n,m} and return the values. This is called only
|
794 |
after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
|
795 |
so the syntax is guaranteed to be correct, but we need to check the values.
|
796 |
|
797 |
Arguments:
|
798 |
p pointer to first char after '{'
|
799 |
minp pointer to int for min
|
800 |
maxp pointer to int for max
|
801 |
returned as -1 if no max
|
802 |
errorcodeptr points to error code variable
|
803 |
|
804 |
Returns: pointer to '}' on success;
|
805 |
current ptr on error, with errorcodeptr set non-zero
|
806 |
*/
|
807 |
|
808 |
static const uschar *
|
809 |
read_repeat_counts(const uschar *p, int *minp, int *maxp, int *errorcodeptr)
|
810 |
{
|
811 |
int min = 0;
|
812 |
int max = -1;
|
813 |
|
814 |
/* Read the minimum value and do a paranoid check: a negative value indicates
|
815 |
an integer overflow. */
|
816 |
|
817 |
while ((digitab[*p] & ctype_digit) != 0) min = min * 10 + *p++ - '0';
|
818 |
if (min < 0 || min > 65535)
|
819 |
{
|
820 |
*errorcodeptr = ERR5;
|
821 |
return p;
|
822 |
}
|
823 |
|
824 |
/* Read the maximum value if there is one, and again do a paranoid on its size.
|
825 |
Also, max must not be less than min. */
|
826 |
|
827 |
if (*p == '}') max = min; else
|
828 |
{
|
829 |
if (*(++p) != '}')
|
830 |
{
|
831 |
max = 0;
|
832 |
while((digitab[*p] & ctype_digit) != 0) max = max * 10 + *p++ - '0';
|
833 |
if (max < 0 || max > 65535)
|
834 |
{
|
835 |
*errorcodeptr = ERR5;
|
836 |
return p;
|
837 |
}
|
838 |
if (max < min)
|
839 |
{
|
840 |
*errorcodeptr = ERR4;
|
841 |
return p;
|
842 |
}
|
843 |
}
|
844 |
}
|
845 |
|
846 |
/* Fill in the required variables, and pass back the pointer to the terminating
|
847 |
'}'. */
|
848 |
|
849 |
*minp = min;
|
850 |
*maxp = max;
|
851 |
return p;
|
852 |
}
|
853 |
|
854 |
|
855 |
|
856 |
/*************************************************
|
857 |
* Find forward referenced subpattern *
|
858 |
*************************************************/
|
859 |
|
860 |
/* This function scans along a pattern's text looking for capturing
|
861 |
subpatterns, and counting them. If it finds a named pattern that matches the
|
862 |
name it is given, it returns its number. Alternatively, if the name is NULL, it
|
863 |
returns when it reaches a given numbered subpattern. This is used for forward
|
864 |
references to subpatterns. We know that if (?P< is encountered, the name will
|
865 |
be terminated by '>' because that is checked in the first pass.
|
866 |
|
867 |
Arguments:
|
868 |
ptr current position in the pattern
|
869 |
count current count of capturing parens so far encountered
|
870 |
name name to seek, or NULL if seeking a numbered subpattern
|
871 |
lorn name length, or subpattern number if name is NULL
|
872 |
xmode TRUE if we are in /x mode
|
873 |
|
874 |
Returns: the number of the named subpattern, or -1 if not found
|
875 |
*/
|
876 |
|
877 |
static int
|
878 |
find_parens(const uschar *ptr, int count, const uschar *name, int lorn,
|
879 |
BOOL xmode)
|
880 |
{
|
881 |
const uschar *thisname;
|
882 |
|
883 |
for (; *ptr != 0; ptr++)
|
884 |
{
|
885 |
int term;
|
886 |
|
887 |
/* Skip over backslashed characters and also entire \Q...\E */
|
888 |
|
889 |
if (*ptr == '\\')
|
890 |
{
|
891 |
if (*(++ptr) == 0) return -1;
|
892 |
if (*ptr == 'Q') for (;;)
|
893 |
{
|
894 |
while (*(++ptr) != 0 && *ptr != '\\');
|
895 |
if (*ptr == 0) return -1;
|
896 |
if (*(++ptr) == 'E') break;
|
897 |
}
|
898 |
continue;
|
899 |
}
|
900 |
|
901 |
/* Skip over character classes */
|
902 |
|
903 |
if (*ptr == '[')
|
904 |
{
|
905 |
while (*(++ptr) != ']')
|
906 |
{
|
907 |
if (*ptr == '\\')
|
908 |
{
|
909 |
if (*(++ptr) == 0) return -1;
|
910 |
if (*ptr == 'Q') for (;;)
|
911 |
{
|
912 |
while (*(++ptr) != 0 && *ptr != '\\');
|
913 |
if (*ptr == 0) return -1;
|
914 |
if (*(++ptr) == 'E') break;
|
915 |
}
|
916 |
continue;
|
917 |
}
|
918 |
}
|
919 |
continue;
|
920 |
}
|
921 |
|
922 |
/* Skip comments in /x mode */
|
923 |
|
924 |
if (xmode && *ptr == '#')
|
925 |
{
|
926 |
while (*(++ptr) != 0 && *ptr != '\n');
|
927 |
if (*ptr == 0) return -1;
|
928 |
continue;
|
929 |
}
|
930 |
|
931 |
/* An opening parens must now be a real metacharacter */
|
932 |
|
933 |
if (*ptr != '(') continue;
|
934 |
if (ptr[1] != '?')
|
935 |
{
|
936 |
count++;
|
937 |
if (name == NULL && count == lorn) return count;
|
938 |
continue;
|
939 |
}
|
940 |
|
941 |
ptr += 2;
|
942 |
if (*ptr == 'P') ptr++; /* Allow optional P */
|
943 |
|
944 |
/* We have to disambiguate (?<! and (?<= from (?<name> */
|
945 |
|
946 |
if ((*ptr != '<' || ptr[1] == '!' || ptr[1] == '=') &&
|
947 |
*ptr != '\'')
|
948 |
continue;
|
949 |
|
950 |
count++;
|
951 |
|
952 |
if (name == NULL && count == lorn) return count;
|
953 |
term = *ptr++;
|
954 |
if (term == '<') term = '>';
|
955 |
thisname = ptr;
|
956 |
while (*ptr != term) ptr++;
|
957 |
if (name != NULL && lorn == ptr - thisname &&
|
958 |
strncmp((const char *)name, (const char *)thisname, lorn) == 0)
|
959 |
return count;
|
960 |
}
|
961 |
|
962 |
return -1;
|
963 |
}
|
964 |
|
965 |
|
966 |
|
967 |
/*************************************************
|
968 |
* Find first significant op code *
|
969 |
*************************************************/
|
970 |
|
971 |
/* This is called by several functions that scan a compiled expression looking
|
972 |
for a fixed first character, or an anchoring op code etc. It skips over things
|
973 |
that do not influence this. For some calls, a change of option is important.
|
974 |
For some calls, it makes sense to skip negative forward and all backward
|
975 |
assertions, and also the \b assertion; for others it does not.
|
976 |
|
977 |
Arguments:
|
978 |
code pointer to the start of the group
|
979 |
options pointer to external options
|
980 |
optbit the option bit whose changing is significant, or
|
981 |
zero if none are
|
982 |
skipassert TRUE if certain assertions are to be skipped
|
983 |
|
984 |
Returns: pointer to the first significant opcode
|
985 |
*/
|
986 |
|
987 |
static const uschar*
|
988 |
first_significant_code(const uschar *code, int *options, int optbit,
|
989 |
BOOL skipassert)
|
990 |
{
|
991 |
for (;;)
|
992 |
{
|
993 |
switch ((int)*code)
|
994 |
{
|
995 |
case OP_OPT:
|
996 |
if (optbit > 0 && ((int)code[1] & optbit) != (*options & optbit))
|
997 |
*options = (int)code[1];
|
998 |
code += 2;
|
999 |
break;
|
1000 |
|
1001 |
case OP_ASSERT_NOT:
|
1002 |
case OP_ASSERTBACK:
|
1003 |
case OP_ASSERTBACK_NOT:
|
1004 |
if (!skipassert) return code;
|
1005 |
do code += GET(code, 1); while (*code == OP_ALT);
|
1006 |
code += _pcre_OP_lengths[*code];
|
1007 |
break;
|
1008 |
|
1009 |
case OP_WORD_BOUNDARY:
|
1010 |
case OP_NOT_WORD_BOUNDARY:
|
1011 |
if (!skipassert) return code;
|
1012 |
/* Fall through */
|
1013 |
|
1014 |
case OP_CALLOUT:
|
1015 |
case OP_CREF:
|
1016 |
case OP_RREF:
|
1017 |
case OP_DEF:
|
1018 |
code += _pcre_OP_lengths[*code];
|
1019 |
break;
|
1020 |
|
1021 |
default:
|
1022 |
return code;
|
1023 |
}
|
1024 |
}
|
1025 |
/* Control never reaches here */
|
1026 |
}
|
1027 |
|
1028 |
|
1029 |
|
1030 |
|
1031 |
/*************************************************
|
1032 |
* Find the fixed length of a pattern *
|
1033 |
*************************************************/
|
1034 |
|
1035 |
/* Scan a pattern and compute the fixed length of subject that will match it,
|
1036 |
if the length is fixed. This is needed for dealing with backward assertions.
|
1037 |
In UTF8 mode, the result is in characters rather than bytes.
|
1038 |
|
1039 |
Arguments:
|
1040 |
code points to the start of the pattern (the bracket)
|
1041 |
options the compiling options
|
1042 |
|
1043 |
Returns: the fixed length, or -1 if there is no fixed length,
|
1044 |
or -2 if \C was encountered
|
1045 |
*/
|
1046 |
|
1047 |
static int
|
1048 |
find_fixedlength(uschar *code, int options)
|
1049 |
{
|
1050 |
int length = -1;
|
1051 |
|
1052 |
register int branchlength = 0;
|
1053 |
register uschar *cc = code + 1 + LINK_SIZE;
|
1054 |
|
1055 |
/* Scan along the opcodes for this branch. If we get to the end of the
|
1056 |
branch, check the length against that of the other branches. */
|
1057 |
|
1058 |
for (;;)
|
1059 |
{
|
1060 |
int d;
|
1061 |
register int op = *cc;
|
1062 |
|
1063 |
switch (op)
|
1064 |
{
|
1065 |
case OP_CBRA:
|
1066 |
case OP_BRA:
|
1067 |
case OP_ONCE:
|
1068 |
case OP_COND:
|
1069 |
d = find_fixedlength(cc + ((op == OP_CBRA)? 2:0), options);
|
1070 |
if (d < 0) return d;
|
1071 |
branchlength += d;
|
1072 |
do cc += GET(cc, 1); while (*cc == OP_ALT);
|
1073 |
cc += 1 + LINK_SIZE;
|
1074 |
break;
|
1075 |
|
1076 |
/* Reached end of a branch; if it's a ket it is the end of a nested
|
1077 |
call. If it's ALT it is an alternation in a nested call. If it is
|
1078 |
END it's the end of the outer call. All can be handled by the same code. */
|
1079 |
|
1080 |
case OP_ALT:
|
1081 |
case OP_KET:
|
1082 |
case OP_KETRMAX:
|
1083 |
case OP_KETRMIN:
|
1084 |
case OP_END:
|
1085 |
if (length < 0) length = branchlength;
|
1086 |
else if (length != branchlength) return -1;
|
1087 |
if (*cc != OP_ALT) return length;
|
1088 |
cc += 1 + LINK_SIZE;
|
1089 |
branchlength = 0;
|
1090 |
break;
|
1091 |
|
1092 |
/* Skip over assertive subpatterns */
|
1093 |
|
1094 |
case OP_ASSERT:
|
1095 |
case OP_ASSERT_NOT:
|
1096 |
case OP_ASSERTBACK:
|
1097 |
case OP_ASSERTBACK_NOT:
|
1098 |
do cc += GET(cc, 1); while (*cc == OP_ALT);
|
1099 |
/* Fall through */
|
1100 |
|
1101 |
/* Skip over things that don't match chars */
|
1102 |
|
1103 |
case OP_REVERSE:
|
1104 |
case OP_CREF:
|
1105 |
case OP_RREF:
|
1106 |
case OP_DEF:
|
1107 |
case OP_OPT:
|
1108 |
case OP_CALLOUT:
|
1109 |
case OP_SOD:
|
1110 |
case OP_SOM:
|
1111 |
case OP_EOD:
|
1112 |
case OP_EODN:
|
1113 |
case OP_CIRC:
|
1114 |
case OP_DOLL:
|
1115 |
case OP_NOT_WORD_BOUNDARY:
|
1116 |
case OP_WORD_BOUNDARY:
|
1117 |
cc += _pcre_OP_lengths[*cc];
|
1118 |
break;
|
1119 |
|
1120 |
/* Handle literal characters */
|
1121 |
|
1122 |
case OP_CHAR:
|
1123 |
case OP_CHARNC:
|
1124 |
case OP_NOT:
|
1125 |
branchlength++;
|
1126 |
cc += 2;
|
1127 |
#ifdef SUPPORT_UTF8
|
1128 |
if ((options & PCRE_UTF8) != 0)
|
1129 |
{
|
1130 |
while ((*cc & 0xc0) == 0x80) cc++;
|
1131 |
}
|
1132 |
#endif
|
1133 |
break;
|
1134 |
|
1135 |
/* Handle exact repetitions. The count is already in characters, but we
|
1136 |
need to skip over a multibyte character in UTF8 mode. */
|
1137 |
|
1138 |
case OP_EXACT:
|
1139 |
branchlength += GET2(cc,1);
|
1140 |
cc += 4;
|
1141 |
#ifdef SUPPORT_UTF8
|
1142 |
if ((options & PCRE_UTF8) != 0)
|
1143 |
{
|
1144 |
while((*cc & 0x80) == 0x80) cc++;
|
1145 |
}
|
1146 |
#endif
|
1147 |
break;
|
1148 |
|
1149 |
case OP_TYPEEXACT:
|
1150 |
branchlength += GET2(cc,1);
|
1151 |
cc += 4;
|
1152 |
break;
|
1153 |
|
1154 |
/* Handle single-char matchers */
|
1155 |
|
1156 |
case OP_PROP:
|
1157 |
case OP_NOTPROP:
|
1158 |
cc += 2;
|
1159 |
/* Fall through */
|
1160 |
|
1161 |
case OP_NOT_DIGIT:
|
1162 |
case OP_DIGIT:
|
1163 |
case OP_NOT_WHITESPACE:
|
1164 |
case OP_WHITESPACE:
|
1165 |
case OP_NOT_WORDCHAR:
|
1166 |
case OP_WORDCHAR:
|
1167 |
case OP_ANY:
|
1168 |
branchlength++;
|
1169 |
cc++;
|
1170 |
break;
|
1171 |
|
1172 |
/* The single-byte matcher isn't allowed */
|
1173 |
|
1174 |
case OP_ANYBYTE:
|
1175 |
return -2;
|
1176 |
|
1177 |
/* Check a class for variable quantification */
|
1178 |
|
1179 |
#ifdef SUPPORT_UTF8
|
1180 |
case OP_XCLASS:
|
1181 |
cc += GET(cc, 1) - 33;
|
1182 |
/* Fall through */
|
1183 |
#endif
|
1184 |
|
1185 |
case OP_CLASS:
|
1186 |
case OP_NCLASS:
|
1187 |
cc += 33;
|
1188 |
|
1189 |
switch (*cc)
|
1190 |
{
|
1191 |
case OP_CRSTAR:
|
1192 |
case OP_CRMINSTAR:
|
1193 |
case OP_CRQUERY:
|
1194 |
case OP_CRMINQUERY:
|
1195 |
return -1;
|
1196 |
|
1197 |
case OP_CRRANGE:
|
1198 |
case OP_CRMINRANGE:
|
1199 |
if (GET2(cc,1) != GET2(cc,3)) return -1;
|
1200 |
branchlength += GET2(cc,1);
|
1201 |
cc += 5;
|
1202 |
break;
|
1203 |
|
1204 |
default:
|
1205 |
branchlength++;
|
1206 |
}
|
1207 |
break;
|
1208 |
|
1209 |
/* Anything else is variable length */
|
1210 |
|
1211 |
default:
|
1212 |
return -1;
|
1213 |
}
|
1214 |
}
|
1215 |
/* Control never gets here */
|
1216 |
}
|
1217 |
|
1218 |
|
1219 |
|
1220 |
|
1221 |
/*************************************************
|
1222 |
* Scan compiled regex for numbered bracket *
|
1223 |
*************************************************/
|
1224 |
|
1225 |
/* This little function scans through a compiled pattern until it finds a
|
1226 |
capturing bracket with the given number.
|
1227 |
|
1228 |
Arguments:
|
1229 |
code points to start of expression
|
1230 |
utf8 TRUE in UTF-8 mode
|
1231 |
number the required bracket number
|
1232 |
|
1233 |
Returns: pointer to the opcode for the bracket, or NULL if not found
|
1234 |
*/
|
1235 |
|
1236 |
static const uschar *
|
1237 |
find_bracket(const uschar *code, BOOL utf8, int number)
|
1238 |
{
|
1239 |
for (;;)
|
1240 |
{
|
1241 |
register int c = *code;
|
1242 |
if (c == OP_END) return NULL;
|
1243 |
|
1244 |
/* XCLASS is used for classes that cannot be represented just by a bit
|
1245 |
map. This includes negated single high-valued characters. The length in
|
1246 |
the table is zero; the actual length is stored in the compiled code. */
|
1247 |
|
1248 |
if (c == OP_XCLASS) code += GET(code, 1);
|
1249 |
|
1250 |
/* Handle capturing bracket */
|
1251 |
|
1252 |
else if (c == OP_CBRA)
|
1253 |
{
|
1254 |
int n = GET2(code, 1+LINK_SIZE);
|
1255 |
if (n == number) return (uschar *)code;
|
1256 |
code += _pcre_OP_lengths[c];
|
1257 |
}
|
1258 |
|
1259 |
/* In UTF-8 mode, opcodes that are followed by a character may be followed by
|
1260 |
a multi-byte character. The length in the table is a minimum, so we have to
|
1261 |
arrange to skip the extra bytes. */
|
1262 |
|
1263 |
else
|
1264 |
{
|
1265 |
code += _pcre_OP_lengths[c];
|
1266 |
#ifdef SUPPORT_UTF8
|
1267 |
if (utf8) switch(c)
|
1268 |
{
|
1269 |
case OP_CHAR:
|
1270 |
case OP_CHARNC:
|
1271 |
case OP_EXACT:
|
1272 |
case OP_UPTO:
|
1273 |
case OP_MINUPTO:
|
1274 |
case OP_POSUPTO:
|
1275 |
case OP_STAR:
|
1276 |
case OP_MINSTAR:
|
1277 |
case OP_POSSTAR:
|
1278 |
case OP_PLUS:
|
1279 |
case OP_MINPLUS:
|
1280 |
case OP_POSPLUS:
|
1281 |
case OP_QUERY:
|
1282 |
case OP_MINQUERY:
|
1283 |
case OP_POSQUERY:
|
1284 |
if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
|
1285 |
break;
|
1286 |
}
|
1287 |
#endif
|
1288 |
}
|
1289 |
}
|
1290 |
}
|
1291 |
|
1292 |
|
1293 |
|
1294 |
/*************************************************
|
1295 |
* Scan compiled regex for recursion reference *
|
1296 |
*************************************************/
|
1297 |
|
1298 |
/* This little function scans through a compiled pattern until it finds an
|
1299 |
instance of OP_RECURSE.
|
1300 |
|
1301 |
Arguments:
|
1302 |
code points to start of expression
|
1303 |
utf8 TRUE in UTF-8 mode
|
1304 |
|
1305 |
Returns: pointer to the opcode for OP_RECURSE, or NULL if not found
|
1306 |
*/
|
1307 |
|
1308 |
static const uschar *
|
1309 |
find_recurse(const uschar *code, BOOL utf8)
|
1310 |
{
|
1311 |
for (;;)
|
1312 |
{
|
1313 |
register int c = *code;
|
1314 |
if (c == OP_END) return NULL;
|
1315 |
if (c == OP_RECURSE) return code;
|
1316 |
|
1317 |
/* XCLASS is used for classes that cannot be represented just by a bit
|
1318 |
map. This includes negated single high-valued characters. The length in
|
1319 |
the table is zero; the actual length is stored in the compiled code. */
|
1320 |
|
1321 |
if (c == OP_XCLASS) code += GET(code, 1);
|
1322 |
|
1323 |
/* Otherwise, we get the item's length from the table. In UTF-8 mode, opcodes
|
1324 |
that are followed by a character may be followed by a multi-byte character.
|
1325 |
The length in the table is a minimum, so we have to arrange to skip the extra
|
1326 |
bytes. */
|
1327 |
|
1328 |
else
|
1329 |
{
|
1330 |
code += _pcre_OP_lengths[c];
|
1331 |
#ifdef SUPPORT_UTF8
|
1332 |
if (utf8) switch(c)
|
1333 |
{
|
1334 |
case OP_CHAR:
|
1335 |
case OP_CHARNC:
|
1336 |
case OP_EXACT:
|
1337 |
case OP_UPTO:
|
1338 |
case OP_MINUPTO:
|
1339 |
case OP_POSUPTO:
|
1340 |
case OP_STAR:
|
1341 |
case OP_MINSTAR:
|
1342 |
case OP_POSSTAR:
|
1343 |
case OP_PLUS:
|
1344 |
case OP_MINPLUS:
|
1345 |
case OP_POSPLUS:
|
1346 |
case OP_QUERY:
|
1347 |
case OP_MINQUERY:
|
1348 |
case OP_POSQUERY:
|
1349 |
if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
|
1350 |
break;
|
1351 |
}
|
1352 |
#endif
|
1353 |
}
|
1354 |
}
|
1355 |
}
|
1356 |
|
1357 |
|
1358 |
|
1359 |
/*************************************************
|
1360 |
* Scan compiled branch for non-emptiness *
|
1361 |
*************************************************/
|
1362 |
|
1363 |
/* This function scans through a branch of a compiled pattern to see whether it
|
1364 |
can match the empty string or not. It is called from could_be_empty()
|
1365 |
below and from compile_branch() when checking for an unlimited repeat of a
|
1366 |
group that can match nothing. Note that first_significant_code() skips over
|
1367 |
assertions. If we hit an unclosed bracket, we return "empty" - this means we've
|
1368 |
struck an inner bracket whose current branch will already have been scanned.
|
1369 |
|
1370 |
Arguments:
|
1371 |
code points to start of search
|
1372 |
endcode points to where to stop
|
1373 |
utf8 TRUE if in UTF8 mode
|
1374 |
|
1375 |
Returns: TRUE if what is matched could be empty
|
1376 |
*/
|
1377 |
|
1378 |
static BOOL
|
1379 |
could_be_empty_branch(const uschar *code, const uschar *endcode, BOOL utf8)
|
1380 |
{
|
1381 |
register int c;
|
1382 |
for (code = first_significant_code(code + _pcre_OP_lengths[*code], NULL, 0, TRUE);
|
1383 |
code < endcode;
|
1384 |
code = first_significant_code(code + _pcre_OP_lengths[c], NULL, 0, TRUE))
|
1385 |
{
|
1386 |
const uschar *ccode;
|
1387 |
|
1388 |
c = *code;
|
1389 |
|
1390 |
/* Groups with zero repeats can of course be empty; skip them. */
|
1391 |
|
1392 |
if (c == OP_BRAZERO || c == OP_BRAMINZERO)
|
1393 |
{
|
1394 |
code += _pcre_OP_lengths[c];
|
1395 |
do code += GET(code, 1); while (*code == OP_ALT);
|
1396 |
c = *code;
|
1397 |
continue;
|
1398 |
}
|
1399 |
|
1400 |
/* For other groups, scan the branches. */
|
1401 |
|
1402 |
if (c == OP_BRA || c == OP_CBRA || c == OP_ONCE)
|
1403 |
{
|
1404 |
BOOL empty_branch;
|
1405 |
if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */
|
1406 |
|
1407 |
/* Scan a closed bracket */
|
1408 |
|
1409 |
empty_branch = FALSE;
|
1410 |
do
|
1411 |
{
|
1412 |
if (!empty_branch && could_be_empty_branch(code, endcode, utf8))
|
1413 |
empty_branch = TRUE;
|
1414 |
code += GET(code, 1);
|
1415 |
}
|
1416 |
while (*code == OP_ALT);
|
1417 |
if (!empty_branch) return FALSE; /* All branches are non-empty */
|
1418 |
c = *code;
|
1419 |
continue;
|
1420 |
}
|
1421 |
|
1422 |
/* Handle the other opcodes */
|
1423 |
|
1424 |
switch (c)
|
1425 |
{
|
1426 |
/* Check for quantifiers after a class */
|
1427 |
|
1428 |
#ifdef SUPPORT_UTF8
|
1429 |
case OP_XCLASS:
|
1430 |
ccode = code + GET(code, 1);
|
1431 |
goto CHECK_CLASS_REPEAT;
|
1432 |
#endif
|
1433 |
|
1434 |
case OP_CLASS:
|
1435 |
case OP_NCLASS:
|
1436 |
ccode = code + 33;
|
1437 |
|
1438 |
#ifdef SUPPORT_UTF8
|
1439 |
CHECK_CLASS_REPEAT:
|
1440 |
#endif
|
1441 |
|
1442 |
switch (*ccode)
|
1443 |
{
|
1444 |
case OP_CRSTAR: /* These could be empty; continue */
|
1445 |
case OP_CRMINSTAR:
|
1446 |
case OP_CRQUERY:
|
1447 |
case OP_CRMINQUERY:
|
1448 |
break;
|
1449 |
|
1450 |
default: /* Non-repeat => class must match */
|
1451 |
case OP_CRPLUS: /* These repeats aren't empty */
|
1452 |
case OP_CRMINPLUS:
|
1453 |
return FALSE;
|
1454 |
|
1455 |
case OP_CRRANGE:
|
1456 |
case OP_CRMINRANGE:
|
1457 |
if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */
|
1458 |
break;
|
1459 |
}
|
1460 |
break;
|
1461 |
|
1462 |
/* Opcodes that must match a character */
|
1463 |
|
1464 |
case OP_PROP:
|
1465 |
case OP_NOTPROP:
|
1466 |
case OP_EXTUNI:
|
1467 |
case OP_NOT_DIGIT:
|
1468 |
case OP_DIGIT:
|
1469 |
case OP_NOT_WHITESPACE:
|
1470 |
case OP_WHITESPACE:
|
1471 |
case OP_NOT_WORDCHAR:
|
1472 |
case OP_WORDCHAR:
|
1473 |
case OP_ANY:
|
1474 |
case OP_ANYBYTE:
|
1475 |
case OP_CHAR:
|
1476 |
case OP_CHARNC:
|
1477 |
case OP_NOT:
|
1478 |
case OP_PLUS:
|
1479 |
case OP_MINPLUS:
|
1480 |
case OP_POSPLUS:
|
1481 |
case OP_EXACT:
|
1482 |
case OP_NOTPLUS:
|
1483 |
case OP_NOTMINPLUS:
|
1484 |
case OP_NOTPOSPLUS:
|
1485 |
case OP_NOTEXACT:
|
1486 |
case OP_TYPEPLUS:
|
1487 |
case OP_TYPEMINPLUS:
|
1488 |
case OP_TYPEPOSPLUS:
|
1489 |
case OP_TYPEEXACT:
|
1490 |
return FALSE;
|
1491 |
|
1492 |
/* End of branch */
|
1493 |
|
1494 |
case OP_KET:
|
1495 |
case OP_KETRMAX:
|
1496 |
case OP_KETRMIN:
|
1497 |
case OP_ALT:
|
1498 |
return TRUE;
|
1499 |
|
1500 |
/* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO,
|
1501 |
MINUPTO, and POSUPTO may be followed by a multibyte character */
|
1502 |
|
1503 |
#ifdef SUPPORT_UTF8
|
1504 |
case OP_STAR:
|
1505 |
case OP_MINSTAR:
|
1506 |
case OP_POSSTAR:
|
1507 |
case OP_QUERY:
|
1508 |
case OP_MINQUERY:
|
1509 |
case OP_POSQUERY:
|
1510 |
case OP_UPTO:
|
1511 |
case OP_MINUPTO:
|
1512 |
case OP_POSUPTO:
|
1513 |
if (utf8) while ((code[2] & 0xc0) == 0x80) code++;
|
1514 |
break;
|
1515 |
#endif
|
1516 |
}
|
1517 |
}
|
1518 |
|
1519 |
return TRUE;
|
1520 |
}
|
1521 |
|
1522 |
|
1523 |
|
1524 |
/*************************************************
|
1525 |
* Scan compiled regex for non-emptiness *
|
1526 |
*************************************************/
|
1527 |
|
1528 |
/* This function is called to check for left recursive calls. We want to check
|
1529 |
the current branch of the current pattern to see if it could match the empty
|
1530 |
string. If it could, we must look outwards for branches at other levels,
|
1531 |
stopping when we pass beyond the bracket which is the subject of the recursion.
|
1532 |
|
1533 |
Arguments:
|
1534 |
code points to start of the recursion
|
1535 |
endcode points to where to stop (current RECURSE item)
|
1536 |
bcptr points to the chain of current (unclosed) branch starts
|
1537 |
utf8 TRUE if in UTF-8 mode
|
1538 |
|
1539 |
Returns: TRUE if what is matched could be empty
|
1540 |
*/
|
1541 |
|
1542 |
static BOOL
|
1543 |
could_be_empty(const uschar *code, const uschar *endcode, branch_chain *bcptr,
|
1544 |
BOOL utf8)
|
1545 |
{
|
1546 |
while (bcptr != NULL && bcptr->current >= code)
|
1547 |
{
|
1548 |
if (!could_be_empty_branch(bcptr->current, endcode, utf8)) return FALSE;
|
1549 |
bcptr = bcptr->outer;
|
1550 |
}
|
1551 |
return TRUE;
|
1552 |
}
|
1553 |
|
1554 |
|
1555 |
|
1556 |
/*************************************************
|
1557 |
* Check for POSIX class syntax *
|
1558 |
*************************************************/
|
1559 |
|
1560 |
/* This function is called when the sequence "[:" or "[." or "[=" is
|
1561 |
encountered in a character class. It checks whether this is followed by an
|
1562 |
optional ^ and then a sequence of letters, terminated by a matching ":]" or
|
1563 |
".]" or "=]".
|
1564 |
|
1565 |
Argument:
|
1566 |
ptr pointer to the initial [
|
1567 |
endptr where to return the end pointer
|
1568 |
cd pointer to compile data
|
1569 |
|
1570 |
Returns: TRUE or FALSE
|
1571 |
*/
|
1572 |
|
1573 |
static BOOL
|
1574 |
check_posix_syntax(const uschar *ptr, const uschar **endptr, compile_data *cd)
|
1575 |
{
|
1576 |
int terminator; /* Don't combine these lines; the Solaris cc */
|
1577 |
terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */
|
1578 |
if (*(++ptr) == '^') ptr++;
|
1579 |
while ((cd->ctypes[*ptr] & ctype_letter) != 0) ptr++;
|
1580 |
if (*ptr == terminator && ptr[1] == ']')
|
1581 |
{
|
1582 |
*endptr = ptr;
|
1583 |
return TRUE;
|
1584 |
}
|
1585 |
return FALSE;
|
1586 |
}
|
1587 |
|
1588 |
|
1589 |
|
1590 |
|
1591 |
/*************************************************
|
1592 |
* Check POSIX class name *
|
1593 |
*************************************************/
|
1594 |
|
1595 |
/* This function is called to check the name given in a POSIX-style class entry
|
1596 |
such as [:alnum:].
|
1597 |
|
1598 |
Arguments:
|
1599 |
ptr points to the first letter
|
1600 |
len the length of the name
|
1601 |
|
1602 |
Returns: a value representing the name, or -1 if unknown
|
1603 |
*/
|
1604 |
|
1605 |
static int
|
1606 |
check_posix_name(const uschar *ptr, int len)
|
1607 |
{
|
1608 |
register int yield = 0;
|
1609 |
while (posix_name_lengths[yield] != 0)
|
1610 |
{
|
1611 |
if (len == posix_name_lengths[yield] &&
|
1612 |
strncmp((const char *)ptr, posix_names[yield], len) == 0) return yield;
|
1613 |
yield++;
|
1614 |
}
|
1615 |
return -1;
|
1616 |
}
|
1617 |
|
1618 |
|
1619 |
/*************************************************
|
1620 |
* Adjust OP_RECURSE items in repeated group *
|
1621 |
*************************************************/
|
1622 |
|
1623 |
/* OP_RECURSE items contain an offset from the start of the regex to the group
|
1624 |
that is referenced. This means that groups can be replicated for fixed
|
1625 |
repetition simply by copying (because the recursion is allowed to refer to
|
1626 |
earlier groups that are outside the current group). However, when a group is
|
1627 |
optional (i.e. the minimum quantifier is zero), OP_BRAZERO is inserted before
|
1628 |
it, after it has been compiled. This means that any OP_RECURSE items within it
|
1629 |
that refer to the group itself or any contained groups have to have their
|
1630 |
offsets adjusted. That one of the jobs of this function. Before it is called,
|
1631 |
the partially compiled regex must be temporarily terminated with OP_END.
|
1632 |
|
1633 |
This function has been extended with the possibility of forward references for
|
1634 |
recursions and subroutine calls. It must also check the list of such references
|
1635 |
for the group we are dealing with. If it finds that one of the recursions in
|
1636 |
the current group is on this list, it adjusts the offset in the list, not the
|
1637 |
value in the reference (which is a group number).
|
1638 |
|
1639 |
Arguments:
|
1640 |
group points to the start of the group
|
1641 |
adjust the amount by which the group is to be moved
|
1642 |
utf8 TRUE in UTF-8 mode
|
1643 |
cd contains pointers to tables etc.
|
1644 |
save_hwm the hwm forward reference pointer at the start of the group
|
1645 |
|
1646 |
Returns: nothing
|
1647 |
*/
|
1648 |
|
1649 |
static void
|
1650 |
adjust_recurse(uschar *group, int adjust, BOOL utf8, compile_data *cd,
|
1651 |
uschar *save_hwm)
|
1652 |
{
|
1653 |
uschar *ptr = group;
|
1654 |
while ((ptr = (uschar *)find_recurse(ptr, utf8)) != NULL)
|
1655 |
{
|
1656 |
int offset;
|
1657 |
uschar *hc;
|
1658 |
|
1659 |
/* See if this recursion is on the forward reference list. If so, adjust the
|
1660 |
reference. */
|
1661 |
|
1662 |
for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE)
|
1663 |
{
|
1664 |
offset = GET(hc, 0);
|
1665 |
if (cd->start_code + offset == ptr + 1)
|
1666 |
{
|
1667 |
PUT(hc, 0, offset + adjust);
|
1668 |
break;
|
1669 |
}
|
1670 |
}
|
1671 |
|
1672 |
/* Otherwise, adjust the recursion offset if it's after the start of this
|
1673 |
group. */
|
1674 |
|
1675 |
if (hc >= cd->hwm)
|
1676 |
{
|
1677 |
offset = GET(ptr, 1);
|
1678 |
if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust);
|
1679 |
}
|
1680 |
|
1681 |
ptr += 1 + LINK_SIZE;
|
1682 |
}
|
1683 |
}
|
1684 |
|
1685 |
|
1686 |
|
1687 |
/*************************************************
|
1688 |
* Insert an automatic callout point *
|
1689 |
*************************************************/
|
1690 |
|
1691 |
/* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert
|
1692 |
callout points before each pattern item.
|
1693 |
|
1694 |
Arguments:
|
1695 |
code current code pointer
|
1696 |
ptr current pattern pointer
|
1697 |
cd pointers to tables etc
|
1698 |
|
1699 |
Returns: new code pointer
|
1700 |
*/
|
1701 |
|
1702 |
static uschar *
|
1703 |
auto_callout(uschar *code, const uschar *ptr, compile_data *cd)
|
1704 |
{
|
1705 |
*code++ = OP_CALLOUT;
|
1706 |
*code++ = 255;
|
1707 |
PUT(code, 0, ptr - cd->start_pattern); /* Pattern offset */
|
1708 |
PUT(code, LINK_SIZE, 0); /* Default length */
|
1709 |
return code + 2*LINK_SIZE;
|
1710 |
}
|
1711 |
|
1712 |
|
1713 |
|
1714 |
/*************************************************
|
1715 |
* Complete a callout item *
|
1716 |
*************************************************/
|
1717 |
|
1718 |
/* A callout item contains the length of the next item in the pattern, which
|
1719 |
we can't fill in till after we have reached the relevant point. This is used
|
1720 |
for both automatic and manual callouts.
|
1721 |
|
1722 |
Arguments:
|
1723 |
previous_callout points to previous callout item
|
1724 |
ptr current pattern pointer
|
1725 |
cd pointers to tables etc
|
1726 |
|
1727 |
Returns: nothing
|
1728 |
*/
|
1729 |
|
1730 |
static void
|
1731 |
complete_callout(uschar *previous_callout, const uschar *ptr, compile_data *cd)
|
1732 |
{
|
1733 |
int length = ptr - cd->start_pattern - GET(previous_callout, 2);
|
1734 |
PUT(previous_callout, 2 + LINK_SIZE, length);
|
1735 |
}
|
1736 |
|
1737 |
|
1738 |
|
1739 |
#ifdef SUPPORT_UCP
|
1740 |
/*************************************************
|
1741 |
* Get othercase range *
|
1742 |
*************************************************/
|
1743 |
|
1744 |
/* This function is passed the start and end of a class range, in UTF-8 mode
|
1745 |
with UCP support. It searches up the characters, looking for internal ranges of
|
1746 |
characters in the "other" case. Each call returns the next one, updating the
|
1747 |
start address.
|
1748 |
|
1749 |
Arguments:
|
1750 |
cptr points to starting character value; updated
|
1751 |
d end value
|
1752 |
ocptr where to put start of othercase range
|
1753 |
odptr where to put end of othercase range
|
1754 |
|
1755 |
Yield: TRUE when range returned; FALSE when no more
|
1756 |
*/
|
1757 |
|
1758 |
static BOOL
|
1759 |
get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr,
|
1760 |
unsigned int *odptr)
|
1761 |
{
|
1762 |
unsigned int c, othercase, next;
|
1763 |
|
1764 |
for (c = *cptr; c <= d; c++)
|
1765 |
{ if ((othercase = _pcre_ucp_othercase(c)) != NOTACHAR) break; }
|
1766 |
|
1767 |
if (c > d) return FALSE;
|
1768 |
|
1769 |
*ocptr = othercase;
|
1770 |
next = othercase + 1;
|
1771 |
|
1772 |
for (++c; c <= d; c++)
|
1773 |
{
|
1774 |
if (_pcre_ucp_othercase(c) != next) break;
|
1775 |
next++;
|
1776 |
}
|
1777 |
|
1778 |
*odptr = next - 1;
|
1779 |
*cptr = c;
|
1780 |
|
1781 |
return TRUE;
|
1782 |
}
|
1783 |
#endif /* SUPPORT_UCP */
|
1784 |
|
1785 |
|
1786 |
|
1787 |
/*************************************************
|
1788 |
* Check if auto-possessifying is possible *
|
1789 |
*************************************************/
|
1790 |
|
1791 |
/* This function is called for unlimited repeats of certain items, to see
|
1792 |
whether the next thing could possibly match the repeated item. If not, it makes
|
1793 |
sense to automatically possessify the repeated item.
|
1794 |
|
1795 |
Arguments:
|
1796 |
op_code the repeated op code
|
1797 |
this data for this item, depends on the opcode
|
1798 |
utf8 TRUE in UTF-8 mode
|
1799 |
utf8_char used for utf8 character bytes, NULL if not relevant
|
1800 |
ptr next character in pattern
|
1801 |
options options bits
|
1802 |
cd contains pointers to tables etc.
|
1803 |
|
1804 |
Returns: TRUE if possessifying is wanted
|
1805 |
*/
|
1806 |
|
1807 |
static BOOL
|
1808 |
check_auto_possessive(int op_code, int item, BOOL utf8, uschar *utf8_char,
|
1809 |
const uschar *ptr, int options, compile_data *cd)
|
1810 |
{
|
1811 |
int next;
|
1812 |
|
1813 |
/* Skip whitespace and comments in extended mode */
|
1814 |
|
1815 |
if ((options & PCRE_EXTENDED) != 0)
|
1816 |
{
|
1817 |
for (;;)
|
1818 |
{
|
1819 |
while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
|
1820 |
if (*ptr == '#')
|
1821 |
{
|
1822 |
while (*(++ptr) != 0)
|
1823 |
if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
|
1824 |
}
|
1825 |
else break;
|
1826 |
}
|
1827 |
}
|
1828 |
|
1829 |
/* If the next item is one that we can handle, get its value. A non-negative
|
1830 |
value is a character, a negative value is an escape value. */
|
1831 |
|
1832 |
if (*ptr == '\\')
|
1833 |
{
|
1834 |
int temperrorcode = 0;
|
1835 |
next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE);
|
1836 |
if (temperrorcode != 0) return FALSE;
|
1837 |
ptr++; /* Point after the escape sequence */
|
1838 |
}
|
1839 |
|
1840 |
else if ((cd->ctypes[*ptr] & ctype_meta) == 0)
|
1841 |
{
|
1842 |
#ifdef SUPPORT_UTF8
|
1843 |
if (utf8) { GETCHARINC(next, ptr); } else
|
1844 |
#endif
|
1845 |
next = *ptr++;
|
1846 |
}
|
1847 |
|
1848 |
else return FALSE;
|
1849 |
|
1850 |
/* Skip whitespace and comments in extended mode */
|
1851 |
|
1852 |
if ((options & PCRE_EXTENDED) != 0)
|
1853 |
{
|
1854 |
for (;;)
|
1855 |
{
|
1856 |
while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
|
1857 |
if (*ptr == '#')
|
1858 |
{
|
1859 |
while (*(++ptr) != 0)
|
1860 |
if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
|
1861 |
}
|
1862 |
else break;
|
1863 |
}
|
1864 |
}
|
1865 |
|
1866 |
/* If the next thing is itself optional, we have to give up. */
|
1867 |
|
1868 |
if (*ptr == '*' || *ptr == '?' || strncmp((char *)ptr, "{0,", 3) == 0)
|
1869 |
return FALSE;
|
1870 |
|
1871 |
/* Now compare the next item with the previous opcode. If the previous is a
|
1872 |
positive single character match, "item" either contains the character or, if
|
1873 |
"item" is greater than 127 in utf8 mode, the character's bytes are in
|
1874 |
utf8_char. */
|
1875 |
|
1876 |
|
1877 |
/* Handle cases when the next item is a character. */
|
1878 |
|
1879 |
if (next >= 0) switch(op_code)
|
1880 |
{
|
1881 |
case OP_CHAR:
|
1882 |
#ifdef SUPPORT_UTF8
|
1883 |
if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
|
1884 |
#endif
|
1885 |
return item != next;
|
1886 |
|
1887 |
/* For CHARNC (caseless character) we must check the other case. If we have
|
1888 |
Unicode property support, we can use it to test the other case of
|
1889 |
high-valued characters. */
|
1890 |
|
1891 |
case OP_CHARNC:
|
1892 |
#ifdef SUPPORT_UTF8
|
1893 |
if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
|
1894 |
#endif
|
1895 |
if (item == next) return FALSE;
|
1896 |
#ifdef SUPPORT_UTF8
|
1897 |
if (utf8)
|
1898 |
{
|
1899 |
unsigned int othercase;
|
1900 |
if (next < 128) othercase = cd->fcc[next]; else
|
1901 |
#ifdef SUPPORT_UCP
|
1902 |
othercase = _pcre_ucp_othercase((unsigned int)next);
|
1903 |
#else
|
1904 |
othercase = NOTACHAR;
|
1905 |
#endif
|
1906 |
return (unsigned int)item != othercase;
|
1907 |
}
|
1908 |
else
|
1909 |
#endif /* SUPPORT_UTF8 */
|
1910 |
return (item != cd->fcc[next]); /* Non-UTF-8 mode */
|
1911 |
|
1912 |
/* For OP_NOT, "item" must be a single-byte character. */
|
1913 |
|
1914 |
case OP_NOT:
|
1915 |
if (next < 0) return FALSE; /* Not a character */
|
1916 |
if (item == next) return TRUE;
|
1917 |
if ((options & PCRE_CASELESS) == 0) return FALSE;
|
1918 |
#ifdef SUPPORT_UTF8
|
1919 |
if (utf8)
|
1920 |
{
|
1921 |
unsigned int othercase;
|
1922 |
if (next < 128) othercase = cd->fcc[next]; else
|
1923 |
#ifdef SUPPORT_UCP
|
1924 |
othercase = _pcre_ucp_othercase(next);
|
1925 |
#else
|
1926 |
othercase = NOTACHAR;
|
1927 |
#endif
|
1928 |
return (unsigned int)item == othercase;
|
1929 |
}
|
1930 |
else
|
1931 |
#endif /* SUPPORT_UTF8 */
|
1932 |
return (item == cd->fcc[next]); /* Non-UTF-8 mode */
|
1933 |
|
1934 |
case OP_DIGIT:
|
1935 |
return next > 127 || (cd->ctypes[next] & ctype_digit) == 0;
|
1936 |
|
1937 |
case OP_NOT_DIGIT:
|
1938 |
return next <= 127 && (cd->ctypes[next] & ctype_digit) != 0;
|
1939 |
|
1940 |
case OP_WHITESPACE:
|
1941 |
return next > 127 || (cd->ctypes[next] & ctype_space) == 0;
|
1942 |
|
1943 |
case OP_NOT_WHITESPACE:
|
1944 |
return next <= 127 && (cd->ctypes[next] & ctype_space) != 0;
|
1945 |
|
1946 |
case OP_WORDCHAR:
|
1947 |
return next > 127 || (cd->ctypes[next] & ctype_word) == 0;
|
1948 |
|
1949 |
case OP_NOT_WORDCHAR:
|
1950 |
return next <= 127 && (cd->ctypes[next] & ctype_word) != 0;
|
1951 |
|
1952 |
case OP_HSPACE:
|
1953 |
case OP_NOT_HSPACE:
|
1954 |
switch(next)
|
1955 |
{
|
1956 |
case 0x09:
|
1957 |
case 0x20:
|
1958 |
case 0xa0:
|
1959 |
case 0x1680:
|
1960 |
case 0x180e:
|
1961 |
case 0x2000:
|
1962 |
case 0x2001:
|
1963 |
case 0x2002:
|
1964 |
case 0x2003:
|
1965 |
case 0x2004:
|
1966 |
case 0x2005:
|
1967 |
case 0x2006:
|
1968 |
case 0x2007:
|
1969 |
case 0x2008:
|
1970 |
case 0x2009:
|
1971 |
case 0x200A:
|
1972 |
case 0x202f:
|
1973 |
case 0x205f:
|
1974 |
case 0x3000:
|
1975 |
return op_code != OP_HSPACE;
|
1976 |
default:
|
1977 |
return op_code == OP_HSPACE;
|
1978 |
}
|
1979 |
|
1980 |
case OP_VSPACE:
|
1981 |
case OP_NOT_VSPACE:
|
1982 |
switch(next)
|
1983 |
{
|
1984 |
case 0x0a:
|
1985 |
case 0x0b:
|
1986 |
case 0x0c:
|
1987 |
case 0x0d:
|
1988 |
case 0x85:
|
1989 |
case 0x2028:
|
1990 |
case 0x2029:
|
1991 |
return op_code != OP_VSPACE;
|
1992 |
default:
|
1993 |
return op_code == OP_VSPACE;
|
1994 |
}
|
1995 |
|
1996 |
default:
|
1997 |
return FALSE;
|
1998 |
}
|
1999 |
|
2000 |
|
2001 |
/* Handle the case when the next item is \d, \s, etc. */
|
2002 |
|
2003 |
switch(op_code)
|
2004 |
{
|
2005 |
case OP_CHAR:
|
2006 |
case OP_CHARNC:
|
2007 |
#ifdef SUPPORT_UTF8
|
2008 |
if (utf8 && item > 127) { GETCHAR(item, utf8_char); }
|
2009 |
#endif
|
2010 |
switch(-next)
|
2011 |
{
|
2012 |
case ESC_d:
|
2013 |
return item > 127 || (cd->ctypes[item] & ctype_digit) == 0;
|
2014 |
|
2015 |
case ESC_D:
|
2016 |
return item <= 127 && (cd->ctypes[item] & ctype_digit) != 0;
|
2017 |
|
2018 |
case ESC_s:
|
2019 |
return item > 127 || (cd->ctypes[item] & ctype_space) == 0;
|
2020 |
|
2021 |
case ESC_S:
|
2022 |
return item <= 127 && (cd->ctypes[item] & ctype_space) != 0;
|
2023 |
|
2024 |
case ESC_w:
|
2025 |
return item > 127 || (cd->ctypes[item] & ctype_word) == 0;
|
2026 |
|
2027 |
case ESC_W:
|
2028 |
return item <= 127 && (cd->ctypes[item] & ctype_word) != 0;
|
2029 |
|
2030 |
case ESC_h:
|
2031 |
case ESC_H:
|
2032 |
switch(item)
|
2033 |
{
|
2034 |
case 0x09:
|
2035 |
case 0x20:
|
2036 |
case 0xa0:
|
2037 |
case 0x1680:
|
2038 |
case 0x180e:
|
2039 |
case 0x2000:
|
2040 |
case 0x2001:
|
2041 |
case 0x2002:
|
2042 |
case 0x2003:
|
2043 |
case 0x2004:
|
2044 |
case 0x2005:
|
2045 |
case 0x2006:
|
2046 |
case 0x2007:
|
2047 |
case 0x2008:
|
2048 |
case 0x2009:
|
2049 |
case 0x200A:
|
2050 |
case 0x202f:
|
2051 |
case 0x205f:
|
2052 |
case 0x3000:
|
2053 |
return -next != ESC_h;
|
2054 |
default:
|
2055 |
return -next == ESC_h;
|
2056 |
}
|
2057 |
|
2058 |
case ESC_v:
|
2059 |
case ESC_V:
|
2060 |
switch(item)
|
2061 |
{
|
2062 |
case 0x0a:
|
2063 |
case 0x0b:
|
2064 |
case 0x0c:
|
2065 |
case 0x0d:
|
2066 |
case 0x85:
|
2067 |
case 0x2028:
|
2068 |
case 0x2029:
|
2069 |
return -next != ESC_v;
|
2070 |
default:
|
2071 |
return -next == ESC_v;
|
2072 |
}
|
2073 |
|
2074 |
default:
|
2075 |
return FALSE;
|
2076 |
}
|
2077 |
|
2078 |
case OP_DIGIT:
|
2079 |
return next == -ESC_D || next == -ESC_s || next == -ESC_W ||
|
2080 |
next == -ESC_h || next == -ESC_v;
|
2081 |
|
2082 |
case OP_NOT_DIGIT:
|
2083 |
return next == -ESC_d;
|
2084 |
|
2085 |
case OP_WHITESPACE:
|
2086 |
return next == -ESC_S || next == -ESC_d || next == -ESC_w;
|
2087 |
|
2088 |
case OP_NOT_WHITESPACE:
|
2089 |
return next == -ESC_s || next == -ESC_h || next == -ESC_v;
|
2090 |
|
2091 |
case OP_HSPACE:
|
2092 |
return next == -ESC_S || next == -ESC_H || next == -ESC_d || next == -ESC_w;
|
2093 |
|
2094 |
case OP_NOT_HSPACE:
|
2095 |
return next == -ESC_h;
|
2096 |
|
2097 |
/* Can't have \S in here because VT matches \S (Perl anomaly) */
|
2098 |
case OP_VSPACE:
|
2099 |
return next == -ESC_V || next == -ESC_d || next == -ESC_w;
|
2100 |
|
2101 |
case OP_NOT_VSPACE:
|
2102 |
return next == -ESC_v;
|
2103 |
|
2104 |
case OP_WORDCHAR:
|
2105 |
return next == -ESC_W || next == -ESC_s || next == -ESC_h || next == -ESC_v;
|
2106 |
|
2107 |
case OP_NOT_WORDCHAR:
|
2108 |
return next == -ESC_w || next == -ESC_d;
|
2109 |
|
2110 |
default:
|
2111 |
return FALSE;
|
2112 |
}
|
2113 |
|
2114 |
/* Control does not reach here */
|
2115 |
}
|
2116 |
|
2117 |
|
2118 |
|
2119 |
/*************************************************
|
2120 |
* Compile one branch *
|
2121 |
*************************************************/
|
2122 |
|
2123 |
/* Scan the pattern, compiling it into the a vector. If the options are
|
2124 |
changed during the branch, the pointer is used to change the external options
|
2125 |
bits. This function is used during the pre-compile phase when we are trying
|
2126 |
to find out the amount of memory needed, as well as during the real compile
|
2127 |
phase. The value of lengthptr distinguishes the two phases.
|
2128 |
|
2129 |
Arguments:
|
2130 |
optionsptr pointer to the option bits
|
2131 |
codeptr points to the pointer to the current code point
|
2132 |
ptrptr points to the current pattern pointer
|
2133 |
errorcodeptr points to error code variable
|
2134 |
firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE)
|
2135 |
reqbyteptr set to the last literal character required, else < 0
|
2136 |
bcptr points to current branch chain
|
2137 |
cd contains pointers to tables etc.
|
2138 |
lengthptr NULL during the real compile phase
|
2139 |
points to length accumulator during pre-compile phase
|
2140 |
|
2141 |
Returns: TRUE on success
|
2142 |
FALSE, with *errorcodeptr set non-zero on error
|
2143 |
*/
|
2144 |
|
2145 |
static BOOL
|
2146 |
compile_branch(int *optionsptr, uschar **codeptr, const uschar **ptrptr,
|
2147 |
int *errorcodeptr, int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr,
|
2148 |
compile_data *cd, int *lengthptr)
|
2149 |
{
|
2150 |
int repeat_type, op_type;
|
2151 |
int repeat_min = 0, repeat_max = 0; /* To please picky compilers */
|
2152 |
int bravalue = 0;
|
2153 |
int greedy_default, greedy_non_default;
|
2154 |
int firstbyte, reqbyte;
|
2155 |
int zeroreqbyte, zerofirstbyte;
|
2156 |
int req_caseopt, reqvary, tempreqvary;
|
2157 |
int options = *optionsptr;
|
2158 |
int after_manual_callout = 0;
|
2159 |
int length_prevgroup = 0;
|
2160 |
register int c;
|
2161 |
register uschar *code = *codeptr;
|
2162 |
uschar *last_code = code;
|
2163 |
uschar *orig_code = code;
|
2164 |
uschar *tempcode;
|
2165 |
BOOL inescq = FALSE;
|
2166 |
BOOL groupsetfirstbyte = FALSE;
|
2167 |
const uschar *ptr = *ptrptr;
|
2168 |
const uschar *tempptr;
|
2169 |
uschar *previous = NULL;
|
2170 |
uschar *previous_callout = NULL;
|
2171 |
uschar *save_hwm = NULL;
|
2172 |
uschar classbits[32];
|
2173 |
|
2174 |
#ifdef SUPPORT_UTF8
|
2175 |
BOOL class_utf8;
|
2176 |
BOOL utf8 = (options & PCRE_UTF8) != 0;
|
2177 |
uschar *class_utf8data;
|
2178 |
uschar utf8_char[6];
|
2179 |
#else
|
2180 |
BOOL utf8 = FALSE;
|
2181 |
uschar *utf8_char = NULL;
|
2182 |
#endif
|
2183 |
|
2184 |
#ifdef DEBUG
|
2185 |
if (lengthptr != NULL) DPRINTF((">> start branch\n"));
|
2186 |
#endif
|
2187 |
|
2188 |
/* Set up the default and non-default settings for greediness */
|
2189 |
|
2190 |
greedy_default = ((options & PCRE_UNGREEDY) != 0);
|
2191 |
greedy_non_default = greedy_default ^ 1;
|
2192 |
|
2193 |
/* Initialize no first byte, no required byte. REQ_UNSET means "no char
|
2194 |
matching encountered yet". It gets changed to REQ_NONE if we hit something that
|
2195 |
matches a non-fixed char first char; reqbyte just remains unset if we never
|
2196 |
find one.
|
2197 |
|
2198 |
When we hit a repeat whose minimum is zero, we may have to adjust these values
|
2199 |
to take the zero repeat into account. This is implemented by setting them to
|
2200 |
zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual
|
2201 |
item types that can be repeated set these backoff variables appropriately. */
|
2202 |
|
2203 |
firstbyte = reqbyte = zerofirstbyte = zeroreqbyte = REQ_UNSET;
|
2204 |
|
2205 |
/* The variable req_caseopt contains either the REQ_CASELESS value or zero,
|
2206 |
according to the current setting of the caseless flag. REQ_CASELESS is a bit
|
2207 |
value > 255. It is added into the firstbyte or reqbyte variables to record the
|
2208 |
case status of the value. This is used only for ASCII characters. */
|
2209 |
|
2210 |
req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
|
2211 |
|
2212 |
/* Switch on next character until the end of the branch */
|
2213 |
|
2214 |
for (;; ptr++)
|
2215 |
{
|
2216 |
BOOL negate_class;
|
2217 |
BOOL possessive_quantifier;
|
2218 |
BOOL is_quantifier;
|
2219 |
BOOL is_recurse;
|
2220 |
BOOL reset_bracount;
|
2221 |
int class_charcount;
|
2222 |
int class_lastchar;
|
2223 |
int newoptions;
|
2224 |
int recno;
|
2225 |
int refsign;
|
2226 |
int skipbytes;
|
2227 |
int subreqbyte;
|
2228 |
int subfirstbyte;
|
2229 |
int terminator;
|
2230 |
int mclength;
|
2231 |
uschar mcbuffer[8];
|
2232 |
|
2233 |
/* Get next byte in the pattern */
|
2234 |
|
2235 |
c = *ptr;
|
2236 |
|
2237 |
/* If we are in the pre-compile phase, accumulate the length used for the
|
2238 |
previous cycle of this loop. */
|
2239 |
|
2240 |
if (lengthptr != NULL)
|
2241 |
{
|
2242 |
#ifdef DEBUG
|
2243 |
if (code > cd->hwm) cd->hwm = code; /* High water info */
|
2244 |
#endif
|
2245 |
if (code > cd->start_workspace + COMPILE_WORK_SIZE) /* Check for overrun */
|
2246 |
{
|
2247 |
*errorcodeptr = ERR52;
|
2248 |
goto FAILED;
|
2249 |
}
|
2250 |
|
2251 |
/* There is at least one situation where code goes backwards: this is the
|
2252 |
case of a zero quantifier after a class (e.g. [ab]{0}). At compile time,
|
2253 |
the class is simply eliminated. However, it is created first, so we have to
|
2254 |
allow memory for it. Therefore, don't ever reduce the length at this point.
|
2255 |
*/
|
2256 |
|
2257 |
if (code < last_code) code = last_code;
|
2258 |
*lengthptr += code - last_code;
|
2259 |
DPRINTF(("length=%d added %d c=%c\n", *lengthptr, code - last_code, c));
|
2260 |
|
2261 |
/* If "previous" is set and it is not at the start of the work space, move
|
2262 |
it back to there, in order to avoid filling up the work space. Otherwise,
|
2263 |
if "previous" is NULL, reset the current code pointer to the start. */
|
2264 |
|
2265 |
if (previous != NULL)
|
2266 |
{
|
2267 |
if (previous > orig_code)
|
2268 |
{
|
2269 |
memmove(orig_code, previous, code - previous);
|
2270 |
code -= previous - orig_code;
|
2271 |
previous = orig_code;
|
2272 |
}
|
2273 |
}
|
2274 |
else code = orig_code;
|
2275 |
|
2276 |
/* Remember where this code item starts so we can pick up the length
|
2277 |
next time round. */
|
2278 |
|
2279 |
last_code = code;
|
2280 |
}
|
2281 |
|
2282 |
/* In the real compile phase, just check the workspace used by the forward
|
2283 |
reference list. */
|
2284 |
|
2285 |
else if (cd->hwm > cd->start_workspace + COMPILE_WORK_SIZE)
|
2286 |
{
|
2287 |
*errorcodeptr = ERR52;
|
2288 |
goto FAILED;
|
2289 |
}
|
2290 |
|
2291 |
/* If in \Q...\E, check for the end; if not, we have a literal */
|
2292 |
|
2293 |
if (inescq && c != 0)
|
2294 |
{
|
2295 |
if (c == '\\' && ptr[1] == 'E')
|
2296 |
{
|
2297 |
inescq = FALSE;
|
2298 |
ptr++;
|
2299 |
continue;
|
2300 |
}
|
2301 |
else
|
2302 |
{
|
2303 |
if (previous_callout != NULL)
|
2304 |
{
|
2305 |
if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
|
2306 |
complete_callout(previous_callout, ptr, cd);
|
2307 |
previous_callout = NULL;
|
2308 |
}
|
2309 |
if ((options & PCRE_AUTO_CALLOUT) != 0)
|
2310 |
{
|
2311 |
previous_callout = code;
|
2312 |
code = auto_callout(code, ptr, cd);
|
2313 |
}
|
2314 |
goto NORMAL_CHAR;
|
2315 |
}
|
2316 |
}
|
2317 |
|
2318 |
/* Fill in length of a previous callout, except when the next thing is
|
2319 |
a quantifier. */
|
2320 |
|
2321 |
is_quantifier = c == '*' || c == '+' || c == '?' ||
|
2322 |
(c == '{' && is_counted_repeat(ptr+1));
|
2323 |
|
2324 |
if (!is_quantifier && previous_callout != NULL &&
|
2325 |
after_manual_callout-- <= 0)
|
2326 |
{
|
2327 |
if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
|
2328 |
complete_callout(previous_callout, ptr, cd);
|
2329 |
previous_callout = NULL;
|
2330 |
}
|
2331 |
|
2332 |
/* In extended mode, skip white space and comments */
|
2333 |
|
2334 |
if ((options & PCRE_EXTENDED) != 0)
|
2335 |
{
|
2336 |
if ((cd->ctypes[c] & ctype_space) != 0) continue;
|
2337 |
if (c == '#')
|
2338 |
{
|
2339 |
while (*(++ptr) != 0)
|
2340 |
{
|
2341 |
if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
|
2342 |
}
|
2343 |
if (*ptr != 0) continue;
|
2344 |
|
2345 |
/* Else fall through to handle end of string */
|
2346 |
c = 0;
|
2347 |
}
|
2348 |
}
|
2349 |
|
2350 |
/* No auto callout for quantifiers. */
|
2351 |
|
2352 |
if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier)
|
2353 |
{
|
2354 |
previous_callout = code;
|
2355 |
code = auto_callout(code, ptr, cd);
|
2356 |
}
|
2357 |
|
2358 |
switch(c)
|
2359 |
{
|
2360 |
/* ===================================================================*/
|
2361 |
case 0: /* The branch terminates at string end */
|
2362 |
case '|': /* or | or ) */
|
2363 |
case ')':
|
2364 |
*firstbyteptr = firstbyte;
|
2365 |
*reqbyteptr = reqbyte;
|
2366 |
*codeptr = code;
|
2367 |
*ptrptr = ptr;
|
2368 |
if (lengthptr != NULL)
|
2369 |
{
|
2370 |
*lengthptr += code - last_code; /* To include callout length */
|
2371 |
DPRINTF((">> end branch\n"));
|
2372 |
}
|
2373 |
return TRUE;
|
2374 |
|
2375 |
|
2376 |
/* ===================================================================*/
|
2377 |
/* Handle single-character metacharacters. In multiline mode, ^ disables
|
2378 |
the setting of any following char as a first character. */
|
2379 |
|
2380 |
case '^':
|
2381 |
if ((options & PCRE_MULTILINE) != 0)
|
2382 |
{
|
2383 |
if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
|
2384 |
}
|
2385 |
previous = NULL;
|
2386 |
*code++ = OP_CIRC;
|
2387 |
break;
|
2388 |
|
2389 |
case '$':
|
2390 |
previous = NULL;
|
2391 |
*code++ = OP_DOLL;
|
2392 |
break;
|
2393 |
|
2394 |
/* There can never be a first char if '.' is first, whatever happens about
|
2395 |
repeats. The value of reqbyte doesn't change either. */
|
2396 |
|
2397 |
case '.':
|
2398 |
if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
|
2399 |
zerofirstbyte = firstbyte;
|
2400 |
zeroreqbyte = reqbyte;
|
2401 |
previous = code;
|
2402 |
*code++ = OP_ANY;
|
2403 |
break;
|
2404 |
|
2405 |
|
2406 |
/* ===================================================================*/
|
2407 |
/* Character classes. If the included characters are all < 256, we build a
|
2408 |
32-byte bitmap of the permitted characters, except in the special case
|
2409 |
where there is only one such character. For negated classes, we build the
|
2410 |
map as usual, then invert it at the end. However, we use a different opcode
|
2411 |
so that data characters > 255 can be handled correctly.
|
2412 |
|
2413 |
If the class contains characters outside the 0-255 range, a different
|
2414 |
opcode is compiled. It may optionally have a bit map for characters < 256,
|
2415 |
but those above are are explicitly listed afterwards. A flag byte tells
|
2416 |
whether the bitmap is present, and whether this is a negated class or not.
|
2417 |
*/
|
2418 |
|
2419 |
case '[':
|
2420 |
previous = code;
|
2421 |
|
2422 |
/* PCRE supports POSIX class stuff inside a class. Perl gives an error if
|
2423 |
they are encountered at the top level, so we'll do that too. */
|
2424 |
|
2425 |
if ((ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') &&
|
2426 |
check_posix_syntax(ptr, &tempptr, cd))
|
2427 |
{
|
2428 |
*errorcodeptr = (ptr[1] == ':')? ERR13 : ERR31;
|
2429 |
goto FAILED;
|
2430 |
}
|
2431 |
|
2432 |
/* If the first character is '^', set the negation flag and skip it. */
|
2433 |
|
2434 |
if ((c = *(++ptr)) == '^')
|
2435 |
{
|
2436 |
negate_class = TRUE;
|
2437 |
c = *(++ptr);
|
2438 |
}
|
2439 |
else
|
2440 |
{
|
2441 |
negate_class = FALSE;
|
2442 |
}
|
2443 |
|
2444 |
/* Keep a count of chars with values < 256 so that we can optimize the case
|
2445 |
of just a single character (as long as it's < 256). However, For higher
|
2446 |
valued UTF-8 characters, we don't yet do any optimization. */
|
2447 |
|
2448 |
class_charcount = 0;
|
2449 |
class_lastchar = -1;
|
2450 |
|
2451 |
/* Initialize the 32-char bit map to all zeros. We build the map in a
|
2452 |
temporary bit of memory, in case the class contains only 1 character (less
|
2453 |
than 256), because in that case the compiled code doesn't use the bit map.
|
2454 |
*/
|
2455 |
|
2456 |
memset(classbits, 0, 32 * sizeof(uschar));
|
2457 |
|
2458 |
#ifdef SUPPORT_UTF8
|
2459 |
class_utf8 = FALSE; /* No chars >= 256 */
|
2460 |
class_utf8data = code + LINK_SIZE + 2; /* For UTF-8 items */
|
2461 |
#endif
|
2462 |
|
2463 |
/* Process characters until ] is reached. By writing this as a "do" it
|
2464 |
means that an initial ] is taken as a data character. At the start of the
|
2465 |
loop, c contains the first byte of the character. */
|
2466 |
|
2467 |
if (c != 0) do
|
2468 |
{
|
2469 |
const uschar *oldptr;
|
2470 |
|
2471 |
#ifdef SUPPORT_UTF8
|
2472 |
if (utf8 && c > 127)
|
2473 |
{ /* Braces are required because the */
|
2474 |
GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */
|
2475 |
}
|
2476 |
#endif
|
2477 |
|
2478 |
/* Inside \Q...\E everything is literal except \E */
|
2479 |
|
2480 |
if (inescq)
|
2481 |
{
|
2482 |
if (c == '\\' && ptr[1] == 'E') /* If we are at \E */
|
2483 |
{
|
2484 |
inescq = FALSE; /* Reset literal state */
|
2485 |
ptr++; /* Skip the 'E' */
|
2486 |
continue; /* Carry on with next */
|
2487 |
}
|
2488 |
goto CHECK_RANGE; /* Could be range if \E follows */
|
2489 |
}
|
2490 |
|
2491 |
/* Handle POSIX class names. Perl allows a negation extension of the
|
2492 |
form [:^name:]. A square bracket that doesn't match the syntax is
|
2493 |
treated as a literal. We also recognize the POSIX constructions
|
2494 |
[.ch.] and [=ch=] ("collating elements") and fault them, as Perl
|
2495 |
5.6 and 5.8 do. */
|
2496 |
|
2497 |
if (c == '[' &&
|
2498 |
(ptr[1] == ':' || ptr[1] == '.' || ptr[1] == '=') &&
|
2499 |
check_posix_syntax(ptr, &tempptr, cd))
|
2500 |
{
|
2501 |
BOOL local_negate = FALSE;
|
2502 |
int posix_class, taboffset, tabopt;
|
2503 |
register const uschar *cbits = cd->cbits;
|
2504 |
uschar pbits[32];
|
2505 |
|
2506 |
if (ptr[1] != ':')
|
2507 |
{
|
2508 |
*errorcodeptr = ERR31;
|
2509 |
goto FAILED;
|
2510 |
}
|
2511 |
|
2512 |
ptr += 2;
|
2513 |
if (*ptr == '^')
|
2514 |
{
|
2515 |
local_negate = TRUE;
|
2516 |
ptr++;
|
2517 |
}
|
2518 |
|
2519 |
posix_class = check_posix_name(ptr, tempptr - ptr);
|
2520 |
if (posix_class < 0)
|
2521 |
{
|
2522 |
*errorcodeptr = ERR30;
|
2523 |
goto FAILED;
|
2524 |
}
|
2525 |
|
2526 |
/* If matching is caseless, upper and lower are converted to
|
2527 |
alpha. This relies on the fact that the class table starts with
|
2528 |
alpha, lower, upper as the first 3 entries. */
|
2529 |
|
2530 |
if ((options & PCRE_CASELESS) != 0 && posix_class <= 2)
|
2531 |
posix_class = 0;
|
2532 |
|
2533 |
/* We build the bit map for the POSIX class in a chunk of local store
|
2534 |
because we may be adding and subtracting from it, and we don't want to
|
2535 |
subtract bits that may be in the main map already. At the end we or the
|
2536 |
result into the bit map that is being built. */
|
2537 |
|
2538 |
posix_class *= 3;
|
2539 |
|
2540 |
/* Copy in the first table (always present) */
|
2541 |
|
2542 |
memcpy(pbits, cbits + posix_class_maps[posix_class],
|
2543 |
32 * sizeof(uschar));
|
2544 |
|
2545 |
/* If there is a second table, add or remove it as required. */
|
2546 |
|
2547 |
taboffset = posix_class_maps[posix_class + 1];
|
2548 |
tabopt = posix_class_maps[posix_class + 2];
|
2549 |
|
2550 |
if (taboffset >= 0)
|
2551 |
{
|
2552 |
if (tabopt >= 0)
|
2553 |
for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset];
|
2554 |
else
|
2555 |
for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset];
|
2556 |
}
|
2557 |
|
2558 |
/* Not see if we need to remove any special characters. An option
|
2559 |
value of 1 removes vertical space and 2 removes underscore. */
|
2560 |
|
2561 |
if (tabopt < 0) tabopt = -tabopt;
|
2562 |
if (tabopt == 1) pbits[1] &= ~0x3c;
|
2563 |
else if (tabopt == 2) pbits[11] &= 0x7f;
|
2564 |
|
2565 |
/* Add the POSIX table or its complement into the main table that is
|
2566 |
being built and we are done. */
|
2567 |
|
2568 |
if (local_negate)
|
2569 |
for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c];
|
2570 |
else
|
2571 |
for (c = 0; c < 32; c++) classbits[c] |= pbits[c];
|
2572 |
|
2573 |
ptr = tempptr + 1;
|
2574 |
class_charcount = 10; /* Set > 1; assumes more than 1 per class */
|
2575 |
continue; /* End of POSIX syntax handling */
|
2576 |
}
|
2577 |
|
2578 |
/* Backslash may introduce a single character, or it may introduce one
|
2579 |
of the specials, which just set a flag. The sequence \b is a special
|
2580 |
case. Inside a class (and only there) it is treated as backspace.
|
2581 |
Elsewhere it marks a word boundary. Other escapes have preset maps ready
|
2582 |
to or into the one we are building. We assume they have more than one
|
2583 |
character in them, so set class_charcount bigger than one. */
|
2584 |
|
2585 |
if (c == '\\')
|
2586 |
{
|
2587 |
c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
|
2588 |
if (*errorcodeptr != 0) goto FAILED;
|
2589 |
|
2590 |
if (-c == ESC_b) c = '\b'; /* \b is backslash in a class */
|
2591 |
else if (-c == ESC_X) c = 'X'; /* \X is literal X in a class */
|
2592 |
else if (-c == ESC_R) c = 'R'; /* \R is literal R in a class */
|
2593 |
else if (-c == ESC_Q) /* Handle start of quoted string */
|
2594 |
{
|
2595 |
if (ptr[1] == '\\' && ptr[2] == 'E')
|
2596 |
{
|
2597 |
ptr += 2; /* avoid empty string */
|
2598 |
}
|
2599 |
else inescq = TRUE;
|
2600 |
continue;
|
2601 |
}
|
2602 |
|
2603 |
if (c < 0)
|
2604 |
{
|
2605 |
register const uschar *cbits = cd->cbits;
|
2606 |
class_charcount += 2; /* Greater than 1 is what matters */
|
2607 |
|
2608 |
/* Save time by not doing this in the pre-compile phase. */
|
2609 |
|
2610 |
if (lengthptr == NULL) switch (-c)
|
2611 |
{
|
2612 |
case ESC_d:
|
2613 |
for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit];
|
2614 |
continue;
|
2615 |
|
2616 |
case ESC_D:
|
2617 |
for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit];
|
2618 |
continue;
|
2619 |
|
2620 |
case ESC_w:
|
2621 |
for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word];
|
2622 |
continue;
|
2623 |
|
2624 |
case ESC_W:
|
2625 |
for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word];
|
2626 |
continue;
|
2627 |
|
2628 |
case ESC_s:
|
2629 |
for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_space];
|
2630 |
classbits[1] &= ~0x08; /* Perl 5.004 onwards omits VT from \s */
|
2631 |
continue;
|
2632 |
|
2633 |
case ESC_S:
|
2634 |
for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space];
|
2635 |
classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */
|
2636 |
continue;
|
2637 |
|
2638 |
case ESC_E: /* Perl ignores an orphan \E */
|
2639 |
continue;
|
2640 |
|
2641 |
default: /* Not recognized; fall through */
|
2642 |
break; /* Need "default" setting to stop compiler warning. */
|
2643 |
}
|
2644 |
|
2645 |
/* In the pre-compile phase, just do the recognition. */
|
2646 |
|
2647 |
else if (c == -ESC_d || c == -ESC_D || c == -ESC_w ||
|
2648 |
c == -ESC_W || c == -ESC_s || c == -ESC_S) continue;
|
2649 |
|
2650 |
/* We need to deal with \H, \h, \V, and \v in both phases because
|
2651 |
they use extra memory. */
|
2652 |
|
2653 |
if (-c == ESC_h)
|
2654 |
{
|
2655 |
SETBIT(classbits, 0x09); /* VT */
|
2656 |
SETBIT(classbits, 0x20); /* SPACE */
|
2657 |
SETBIT(classbits, 0xa0); /* NSBP */
|
2658 |
#ifdef SUPPORT_UTF8
|
2659 |
if (utf8)
|
2660 |
{
|
2661 |
class_utf8 = TRUE;
|
2662 |
*class_utf8data++ = XCL_SINGLE;
|
2663 |
class_utf8data += _pcre_ord2utf8(0x1680, class_utf8data);
|
2664 |
*class_utf8data++ = XCL_SINGLE;
|
2665 |
class_utf8data += _pcre_ord2utf8(0x180e, class_utf8data);
|
2666 |
*class_utf8data++ = XCL_RANGE;
|
2667 |
class_utf8data += _pcre_ord2utf8(0x2000, class_utf8data);
|
2668 |
class_utf8data += _pcre_ord2utf8(0x200A, class_utf8data);
|
2669 |
*class_utf8data++ = XCL_SINGLE;
|
2670 |
class_utf8data += _pcre_ord2utf8(0x202f, class_utf8data);
|
2671 |
*class_utf8data++ = XCL_SINGLE;
|
2672 |
class_utf8data += _pcre_ord2utf8(0x205f, class_utf8data);
|
2673 |
*class_utf8data++ = XCL_SINGLE;
|
2674 |
class_utf8data += _pcre_ord2utf8(0x3000, class_utf8data);
|
2675 |
}
|
2676 |
#endif
|
2677 |
continue;
|
2678 |
}
|
2679 |
|
2680 |
if (-c == ESC_H)
|
2681 |
{
|
2682 |
for (c = 0; c < 32; c++)
|
2683 |
{
|
2684 |
int x = 0xff;
|
2685 |
switch (c)
|
2686 |
{
|
2687 |
case 0x09/8: x ^= 1 << (0x09%8); break;
|
2688 |
case 0x20/8: x ^= 1 << (0x20%8); break;
|
2689 |
case 0xa0/8: x ^= 1 << (0xa0%8); break;
|
2690 |
default: break;
|
2691 |
}
|
2692 |
classbits[c] |= x;
|
2693 |
}
|
2694 |
|
2695 |
#ifdef SUPPORT_UTF8
|
2696 |
if (utf8)
|
2697 |
{
|
2698 |
class_utf8 = TRUE;
|
2699 |
*class_utf8data++ = XCL_RANGE;
|
2700 |
class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data);
|
2701 |
class_utf8data += _pcre_ord2utf8(0x167f, class_utf8data);
|
2702 |
*class_utf8data++ = XCL_RANGE;
|
2703 |
class_utf8data += _pcre_ord2utf8(0x1681, class_utf8data);
|
2704 |
class_utf8data += _pcre_ord2utf8(0x180d, class_utf8data);
|
2705 |
*class_utf8data++ = XCL_RANGE;
|
2706 |
class_utf8data += _pcre_ord2utf8(0x180f, class_utf8data);
|
2707 |
class_utf8data += _pcre_ord2utf8(0x1fff, class_utf8data);
|
2708 |
*class_utf8data++ = XCL_RANGE;
|
2709 |
class_utf8data += _pcre_ord2utf8(0x200B, class_utf8data);
|
2710 |
class_utf8data += _pcre_ord2utf8(0x202e, class_utf8data);
|
2711 |
*class_utf8data++ = XCL_RANGE;
|
2712 |
class_utf8data += _pcre_ord2utf8(0x2030, class_utf8data);
|
2713 |
class_utf8data += _pcre_ord2utf8(0x205e, class_utf8data);
|
2714 |
*class_utf8data++ = XCL_RANGE;
|
2715 |
class_utf8data += _pcre_ord2utf8(0x2060, class_utf8data);
|
2716 |
class_utf8data += _pcre_ord2utf8(0x2fff, class_utf8data);
|
2717 |
*class_utf8data++ = XCL_RANGE;
|
2718 |
class_utf8data += _pcre_ord2utf8(0x3001, class_utf8data);
|
2719 |
class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data);
|
2720 |
}
|
2721 |
#endif
|
2722 |
continue;
|
2723 |
}
|
2724 |
|
2725 |
if (-c == ESC_v)
|
2726 |
{
|
2727 |
SETBIT(classbits, 0x0a); /* LF */
|
2728 |
SETBIT(classbits, 0x0b); /* VT */
|
2729 |
SETBIT(classbits, 0x0c); /* FF */
|
2730 |
SETBIT(classbits, 0x0d); /* CR */
|
2731 |
SETBIT(classbits, 0x85); /* NEL */
|
2732 |
#ifdef SUPPORT_UTF8
|
2733 |
if (utf8)
|
2734 |
{
|
2735 |
class_utf8 = TRUE;
|
2736 |
*class_utf8data++ = XCL_RANGE;
|
2737 |
class_utf8data += _pcre_ord2utf8(0x2028, class_utf8data);
|
2738 |
class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data);
|
2739 |
}
|
2740 |
#endif
|
2741 |
continue;
|
2742 |
}
|
2743 |
|
2744 |
if (-c == ESC_V)
|
2745 |
{
|
2746 |
for (c = 0; c < 32; c++)
|
2747 |
{
|
2748 |
int x = 0xff;
|
2749 |
switch (c)
|
2750 |
{
|
2751 |
case 0x0a/8: x ^= 1 << (0x0a%8);
|
2752 |
x ^= 1 << (0x0b%8);
|
2753 |
x ^= 1 << (0x0c%8);
|
2754 |
x ^= 1 << (0x0d%8);
|
2755 |
break;
|
2756 |
case 0x85/8: x ^= 1 << (0x85%8); break;
|
2757 |
default: break;
|
2758 |
}
|
2759 |
classbits[c] |= x;
|
2760 |
}
|
2761 |
|
2762 |
#ifdef SUPPORT_UTF8
|
2763 |
if (utf8)
|
2764 |
{
|
2765 |
class_utf8 = TRUE;
|
2766 |
*class_utf8data++ = XCL_RANGE;
|
2767 |
class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data);
|
2768 |
class_utf8data += _pcre_ord2utf8(0x2027, class_utf8data);
|
2769 |
*class_utf8data++ = XCL_RANGE;
|
2770 |
class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data);
|
2771 |
class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data);
|
2772 |
}
|
2773 |
#endif
|
2774 |
continue;
|
2775 |
}
|
2776 |
|
2777 |
/* We need to deal with \P and \p in both phases. */
|
2778 |
|
2779 |
#ifdef SUPPORT_UCP
|
2780 |
if (-c == ESC_p || -c == ESC_P)
|
2781 |
{
|
2782 |
BOOL negated;
|
2783 |
int pdata;
|
2784 |
int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
|
2785 |
if (ptype < 0) goto FAILED;
|
2786 |
class_utf8 = TRUE;
|
2787 |
*class_utf8data++ = ((-c == ESC_p) != negated)?
|
2788 |
XCL_PROP : XCL_NOTPROP;
|
2789 |
*class_utf8data++ = ptype;
|
2790 |
*class_utf8data++ = pdata;
|
2791 |
class_charcount -= 2; /* Not a < 256 character */
|
2792 |
continue;
|
2793 |
}
|
2794 |
#endif
|
2795 |
/* Unrecognized escapes are faulted if PCRE is running in its
|
2796 |
strict mode. By default, for compatibility with Perl, they are
|
2797 |
treated as literals. */
|
2798 |
|
2799 |
if ((options & PCRE_EXTRA) != 0)
|
2800 |
{
|
2801 |
*errorcodeptr = ERR7;
|
2802 |
goto FAILED;
|
2803 |
}
|
2804 |
|
2805 |
class_charcount -= 2; /* Undo the default count from above */
|
2806 |
c = *ptr; /* Get the final character and fall through */
|
2807 |
}
|
2808 |
|
2809 |
/* Fall through if we have a single character (c >= 0). This may be
|
2810 |
greater than 256 in UTF-8 mode. */
|
2811 |
|
2812 |
} /* End of backslash handling */
|
2813 |
|
2814 |
/* A single character may be followed by '-' to form a range. However,
|
2815 |
Perl does not permit ']' to be the end of the range. A '-' character
|
2816 |
at the end is treated as a literal. Perl ignores orphaned \E sequences
|
2817 |
entirely. The code for handling \Q and \E is messy. */
|
2818 |
|
2819 |
CHECK_RANGE:
|
2820 |
while (ptr[1] == '\\' && ptr[2] == 'E')
|
2821 |
{
|
2822 |
inescq = FALSE;
|
2823 |
ptr += 2;
|
2824 |
}
|
2825 |
|
2826 |
oldptr = ptr;
|
2827 |
|
2828 |
if (!inescq && ptr[1] == '-')
|
2829 |
{
|
2830 |
int d;
|
2831 |
ptr += 2;
|
2832 |
while (*ptr == '\\' && ptr[1] == 'E') ptr += 2;
|
2833 |
|
2834 |
/* If we hit \Q (not followed by \E) at this point, go into escaped
|
2835 |
mode. */
|
2836 |
|
2837 |
while (*ptr == '\\' && ptr[1] == 'Q')
|
2838 |
{
|
2839 |
ptr += 2;
|
2840 |
if (*ptr == '\\' && ptr[1] == 'E') { ptr += 2; continue; }
|
2841 |
inescq = TRUE;
|
2842 |
break;
|
2843 |
}
|
2844 |
|
2845 |
if (*ptr == 0 || (!inescq && *ptr == ']'))
|
2846 |
{
|
2847 |
ptr = oldptr;
|
2848 |
goto LONE_SINGLE_CHARACTER;
|
2849 |
}
|
2850 |
|
2851 |
#ifdef SUPPORT_UTF8
|
2852 |
if (utf8)
|
2853 |
{ /* Braces are required because the */
|
2854 |
GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */
|
2855 |
}
|
2856 |
else
|
2857 |
#endif
|
2858 |
d = *ptr; /* Not UTF-8 mode */
|
2859 |
|
2860 |
/* The second part of a range can be a single-character escape, but
|
2861 |
not any of the other escapes. Perl 5.6 treats a hyphen as a literal
|
2862 |
in such circumstances. */
|
2863 |
|
2864 |
if (!inescq && d == '\\')
|
2865 |
{
|
2866 |
d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE);
|
2867 |
if (*errorcodeptr != 0) goto FAILED;
|
2868 |
|
2869 |
/* \b is backslash; \X is literal X; \R is literal R; any other
|
2870 |
special means the '-' was literal */
|
2871 |
|
2872 |
if (d < 0)
|
2873 |
{
|
2874 |
if (d == -ESC_b) d = '\b';
|
2875 |
else if (d == -ESC_X) d = 'X';
|
2876 |
else if (d == -ESC_R) d = 'R'; else
|
2877 |
{
|
2878 |
ptr = oldptr;
|
2879 |
goto LONE_SINGLE_CHARACTER; /* A few lines below */
|
2880 |
}
|
2881 |
}
|
2882 |
}
|
2883 |
|
2884 |
/* Check that the two values are in the correct order. Optimize
|
2885 |
one-character ranges */
|
2886 |
|
2887 |
if (d < c)
|
2888 |
{
|
2889 |
*errorcodeptr = ERR8;
|
2890 |
goto FAILED;
|
2891 |
}
|
2892 |
|
2893 |
if (d == c) goto LONE_SINGLE_CHARACTER; /* A few lines below */
|
2894 |
|
2895 |
/* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless
|
2896 |
matching, we have to use an XCLASS with extra data items. Caseless
|
2897 |
matching for characters > 127 is available only if UCP support is
|
2898 |
available. */
|
2899 |
|
2900 |
#ifdef SUPPORT_UTF8
|
2901 |
if (utf8 && (d > 255 || ((options & PCRE_CASELESS) != 0 && d > 127)))
|
2902 |
{
|
2903 |
class_utf8 = TRUE;
|
2904 |
|
2905 |
/* With UCP support, we can find the other case equivalents of
|
2906 |
the relevant characters. There may be several ranges. Optimize how
|
2907 |
they fit with the basic range. */
|
2908 |
|
2909 |
#ifdef SUPPORT_UCP
|
2910 |
if ((options & PCRE_CASELESS) != 0)
|
2911 |
{
|
2912 |
unsigned int occ, ocd;
|
2913 |
unsigned int cc = c;
|
2914 |
unsigned int origd = d;
|
2915 |
while (get_othercase_range(&cc, origd, &occ, &ocd))
|
2916 |
{
|
2917 |
if (occ >= (unsigned int)c &&
|
2918 |
ocd <= (unsigned int)d)
|
2919 |
continue; /* Skip embedded ranges */
|
2920 |
|
2921 |
if (occ < (unsigned int)c &&
|
2922 |
ocd >= (unsigned int)c - 1) /* Extend the basic range */
|
2923 |
{ /* if there is overlap, */
|
2924 |
c = occ; /* noting that if occ < c */
|
2925 |
continue; /* we can't have ocd > d */
|
2926 |
} /* because a subrange is */
|
2927 |
if (ocd > (unsigned int)d &&
|
2928 |
occ <= (unsigned int)d + 1) /* always shorter than */
|
2929 |
{ /* the basic range. */
|
2930 |
d = ocd;
|
2931 |
continue;
|
2932 |
}
|
2933 |
|
2934 |
if (occ == ocd)
|
2935 |
{
|
2936 |
*class_utf8data++ = XCL_SINGLE;
|
2937 |
}
|
2938 |
else
|
2939 |
{
|
2940 |
*class_utf8data++ = XCL_RANGE;
|
2941 |
class_utf8data += _pcre_ord2utf8(occ, class_utf8data);
|
2942 |
}
|
2943 |
class_utf8data += _pcre_ord2utf8(ocd, class_utf8data);
|
2944 |
}
|
2945 |
}
|
2946 |
#endif /* SUPPORT_UCP */
|
2947 |
|
2948 |
/* Now record the original range, possibly modified for UCP caseless
|
2949 |
overlapping ranges. */
|
2950 |
|
2951 |
*class_utf8data++ = XCL_RANGE;
|
2952 |
class_utf8data += _pcre_ord2utf8(c, class_utf8data);
|
2953 |
class_utf8data += _pcre_ord2utf8(d, class_utf8data);
|
2954 |
|
2955 |
/* With UCP support, we are done. Without UCP support, there is no
|
2956 |
caseless matching for UTF-8 characters > 127; we can use the bit map
|
2957 |
for the smaller ones. */
|
2958 |
|
2959 |
#ifdef SUPPORT_UCP
|
2960 |
continue; /* With next character in the class */
|
2961 |
#else
|
2962 |
if ((options & PCRE_CASELESS) == 0 || c > 127) continue;
|
2963 |
|
2964 |
/* Adjust upper limit and fall through to set up the map */
|
2965 |
|
2966 |
d = 127;
|
2967 |
|
2968 |
#endif /* SUPPORT_UCP */
|
2969 |
}
|
2970 |
#endif /* SUPPORT_UTF8 */
|
2971 |
|
2972 |
/* We use the bit map for all cases when not in UTF-8 mode; else
|
2973 |
ranges that lie entirely within 0-127 when there is UCP support; else
|
2974 |
for partial ranges without UCP support. */
|
2975 |
|
2976 |
class_charcount += d - c + 1;
|
2977 |
class_lastchar = d;
|
2978 |
|
2979 |
/* We can save a bit of time by skipping this in the pre-compile. */
|
2980 |
|
2981 |
if (lengthptr == NULL) for (; c <= d; c++)
|
2982 |
{
|
2983 |
classbits[c/8] |= (1 << (c&7));
|
2984 |
if ((options & PCRE_CASELESS) != 0)
|
2985 |
{
|
2986 |
int uc = cd->fcc[c]; /* flip case */
|
2987 |
classbits[uc/8] |= (1 << (uc&7));
|
2988 |
}
|
2989 |
}
|
2990 |
|
2991 |
continue; /* Go get the next char in the class */
|
2992 |
}
|
2993 |
|
2994 |
/* Handle a lone single character - we can get here for a normal
|
2995 |
non-escape char, or after \ that introduces a single character or for an
|
2996 |
apparent range that isn't. */
|
2997 |
|
2998 |
LONE_SINGLE_CHARACTER:
|
2999 |
|
3000 |
/* Handle a character that cannot go in the bit map */
|
3001 |
|
3002 |
#ifdef SUPPORT_UTF8
|
3003 |
if (utf8 && (c > 255 || ((options & PCRE_CASELESS) != 0 && c > 127)))
|
3004 |
{
|
3005 |
class_utf8 = TRUE;
|
3006 |
*class_utf8data++ = XCL_SINGLE;
|
3007 |
class_utf8data += _pcre_ord2utf8(c, class_utf8data);
|
3008 |
|
3009 |
#ifdef SUPPORT_UCP
|
3010 |
if ((options & PCRE_CASELESS) != 0)
|
3011 |
{
|
3012 |
unsigned int othercase;
|
3013 |
if ((othercase = _pcre_ucp_othercase(c)) != NOTACHAR)
|
3014 |
{
|
3015 |
*class_utf8data++ = XCL_SINGLE;
|
3016 |
class_utf8data += _pcre_ord2utf8(othercase, class_utf8data);
|
3017 |
}
|
3018 |
}
|
3019 |
#endif /* SUPPORT_UCP */
|
3020 |
|
3021 |
}
|
3022 |
else
|
3023 |
#endif /* SUPPORT_UTF8 */
|
3024 |
|
3025 |
/* Handle a single-byte character */
|
3026 |
{
|
3027 |
classbits[c/8] |= (1 << (c&7));
|
3028 |
if ((options & PCRE_CASELESS) != 0)
|
3029 |
{
|
3030 |
c = cd->fcc[c]; /* flip case */
|
3031 |
classbits[c/8] |= (1 << (c&7));
|
3032 |
}
|
3033 |
class_charcount++;
|
3034 |
class_lastchar = c;
|
3035 |
}
|
3036 |
}
|
3037 |
|
3038 |
/* Loop until ']' reached. This "while" is the end of the "do" above. */
|
3039 |
|
3040 |
while ((c = *(++ptr)) != 0 && (c != ']' || inescq));
|
3041 |
|
3042 |
if (c == 0) /* Missing terminating ']' */
|
3043 |
{
|
3044 |
*errorcodeptr = ERR6;
|
3045 |
goto FAILED;
|
3046 |
}
|
3047 |
|
3048 |
/* If class_charcount is 1, we saw precisely one character whose value is
|
3049 |
less than 256. In non-UTF-8 mode we can always optimize. In UTF-8 mode, we
|
3050 |
can optimize the negative case only if there were no characters >= 128
|
3051 |
because OP_NOT and the related opcodes like OP_NOTSTAR operate on
|
3052 |
single-bytes only. This is an historical hangover. Maybe one day we can
|
3053 |
tidy these opcodes to handle multi-byte characters.
|
3054 |
|
3055 |
The optimization throws away the bit map. We turn the item into a
|
3056 |
1-character OP_CHAR[NC] if it's positive, or OP_NOT if it's negative. Note
|
3057 |
that OP_NOT does not support multibyte characters. In the positive case, it
|
3058 |
can cause firstbyte to be set. Otherwise, there can be no first char if
|
3059 |
this item is first, whatever repeat count may follow. In the case of
|
3060 |
reqbyte, save the previous value for reinstating. */
|
3061 |
|
3062 |
#ifdef SUPPORT_UTF8
|
3063 |
if (class_charcount == 1 &&
|
3064 |
(!utf8 ||
|
3065 |
(!class_utf8 && (!negate_class || class_lastchar < 128))))
|
3066 |
|
3067 |
#else
|
3068 |
if (class_charcount == 1)
|
3069 |
#endif
|
3070 |
{
|
3071 |
zeroreqbyte = reqbyte;
|
3072 |
|
3073 |
/* The OP_NOT opcode works on one-byte characters only. */
|
3074 |
|
3075 |
if (negate_class)
|
3076 |
{
|
3077 |
if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
|
3078 |
zerofirstbyte = firstbyte;
|
3079 |
*code++ = OP_NOT;
|
3080 |
*code++ = class_lastchar;
|
3081 |
break;
|
3082 |
}
|
3083 |
|
3084 |
/* For a single, positive character, get the value into mcbuffer, and
|
3085 |
then we can handle this with the normal one-character code. */
|
3086 |
|
3087 |
#ifdef SUPPORT_UTF8
|
3088 |
if (utf8 && class_lastchar > 127)
|
3089 |
mclength = _pcre_ord2utf8(class_lastchar, mcbuffer);
|
3090 |
else
|
3091 |
#endif
|
3092 |
{
|
3093 |
mcbuffer[0] = class_lastchar;
|
3094 |
mclength = 1;
|
3095 |
}
|
3096 |
goto ONE_CHAR;
|
3097 |
} /* End of 1-char optimization */
|
3098 |
|
3099 |
/* The general case - not the one-char optimization. If this is the first
|
3100 |
thing in the branch, there can be no first char setting, whatever the
|
3101 |
repeat count. Any reqbyte setting must remain unchanged after any kind of
|
3102 |
repeat. */
|
3103 |
|
3104 |
if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
|
3105 |
zerofirstbyte = firstbyte;
|
3106 |
zeroreqbyte = reqbyte;
|
3107 |
|
3108 |
/* If there are characters with values > 255, we have to compile an
|
3109 |
extended class, with its own opcode. If there are no characters < 256,
|
3110 |
we can omit the bitmap in the actual compiled code. */
|
3111 |
|
3112 |
#ifdef SUPPORT_UTF8
|
3113 |
if (class_utf8)
|
3114 |
{
|
3115 |
*class_utf8data++ = XCL_END; /* Marks the end of extra data */
|
3116 |
*code++ = OP_XCLASS;
|
3117 |
code += LINK_SIZE;
|
3118 |
*code = negate_class? XCL_NOT : 0;
|
3119 |
|
3120 |
/* If the map is required, move up the extra data to make room for it;
|
3121 |
otherwise just move the code pointer to the end of the extra data. */
|
3122 |
|
3123 |
if (class_charcount > 0)
|
3124 |
{
|
3125 |
*code++ |= XCL_MAP;
|
3126 |
memmove(code + 32, code, class_utf8data - code);
|
3127 |
memcpy(code, classbits, 32);
|
3128 |
code = class_utf8data + 32;
|
3129 |
}
|
3130 |
else code = class_utf8data;
|
3131 |
|
3132 |
/* Now fill in the complete length of the item */
|
3133 |
|
3134 |
PUT(previous, 1, code - previous);
|
3135 |
break; /* End of class handling */
|
3136 |
}
|
3137 |
#endif
|
3138 |
|
3139 |
/* If there are no characters > 255, negate the 32-byte map if necessary,
|
3140 |
and copy it into the code vector. If this is the first thing in the branch,
|
3141 |
there can be no first char setting, whatever the repeat count. Any reqbyte
|
3142 |
setting must remain unchanged after any kind of repeat. */
|
3143 |
|
3144 |
if (negate_class)
|
3145 |
{
|
3146 |
*code++ = OP_NCLASS;
|
3147 |
if (lengthptr == NULL) /* Save time in the pre-compile phase */
|
3148 |
for (c = 0; c < 32; c++) code[c] = ~classbits[c];
|
3149 |
}
|
3150 |
else
|
3151 |
{
|
3152 |
*code++ = OP_CLASS;
|
3153 |
memcpy(code, classbits, 32);
|
3154 |
}
|
3155 |
code += 32;
|
3156 |
break;
|
3157 |
|
3158 |
|
3159 |
/* ===================================================================*/
|
3160 |
/* Various kinds of repeat; '{' is not necessarily a quantifier, but this
|
3161 |
has been tested above. */
|
3162 |
|
3163 |
case '{':
|
3164 |
if (!is_quantifier) goto NORMAL_CHAR;
|
3165 |
ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr);
|
3166 |
if (*errorcodeptr != 0) goto FAILED;
|
3167 |
goto REPEAT;
|
3168 |
|
3169 |
case '*':
|
3170 |
repeat_min = 0;
|
3171 |
repeat_max = -1;
|
3172 |
goto REPEAT;
|
3173 |
|
3174 |
case '+':
|
3175 |
repeat_min = 1;
|
3176 |
repeat_max = -1;
|
3177 |
goto REPEAT;
|
3178 |
|
3179 |
case '?':
|
3180 |
repeat_min = 0;
|
3181 |
repeat_max = 1;
|
3182 |
|
3183 |
REPEAT:
|
3184 |
if (previous == NULL)
|
3185 |
{
|
3186 |
*errorcodeptr = ERR9;
|
3187 |
goto FAILED;
|
3188 |
}
|
3189 |
|
3190 |
if (repeat_min == 0)
|
3191 |
{
|
3192 |
firstbyte = zerofirstbyte; /* Adjust for zero repeat */
|
3193 |
reqbyte = zeroreqbyte; /* Ditto */
|
3194 |
}
|
3195 |
|
3196 |
/* Remember whether this is a variable length repeat */
|
3197 |
|
3198 |
reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY;
|
3199 |
|
3200 |
op_type = 0; /* Default single-char op codes */
|
3201 |
possessive_quantifier = FALSE; /* Default not possessive quantifier */
|
3202 |
|
3203 |
/* Save start of previous item, in case we have to move it up to make space
|
3204 |
for an inserted OP_ONCE for the additional '+' extension. */
|
3205 |
|
3206 |
tempcode = previous;
|
3207 |
|
3208 |
/* If the next character is '+', we have a possessive quantifier. This
|
3209 |
implies greediness, whatever the setting of the PCRE_UNGREEDY option.
|
3210 |
If the next character is '?' this is a minimizing repeat, by default,
|
3211 |
but if PCRE_UNGREEDY is set, it works the other way round. We change the
|
3212 |
repeat type to the non-default. */
|
3213 |
|
3214 |
if (ptr[1] == '+')
|
3215 |
{
|
3216 |
repeat_type = 0; /* Force greedy */
|
3217 |
possessive_quantifier = TRUE;
|
3218 |
ptr++;
|
3219 |
}
|
3220 |
else if (ptr[1] == '?')
|
3221 |
{
|
3222 |
repeat_type = greedy_non_default;
|
3223 |
ptr++;
|
3224 |
}
|
3225 |
else repeat_type = greedy_default;
|
3226 |
|
3227 |
/* If previous was a character match, abolish the item and generate a
|
3228 |
repeat item instead. If a char item has a minumum of more than one, ensure
|
3229 |
that it is set in reqbyte - it might not be if a sequence such as x{3} is
|
3230 |
the first thing in a branch because the x will have gone into firstbyte
|
3231 |
instead. */
|
3232 |
|
3233 |
if (*previous == OP_CHAR || *previous == OP_CHARNC)
|
3234 |
{
|
3235 |
/* Deal with UTF-8 characters that take up more than one byte. It's
|
3236 |
easier to write this out separately than try to macrify it. Use c to
|
3237 |
hold the length of the character in bytes, plus 0x80 to flag that it's a
|
3238 |
length rather than a small character. */
|
3239 |
|
3240 |
#ifdef SUPPORT_UTF8
|
3241 |
if (utf8 && (code[-1] & 0x80) != 0)
|
3242 |
{
|
3243 |
uschar *lastchar = code - 1;
|
3244 |
while((*lastchar & 0xc0) == 0x80) lastchar--;
|
3245 |
c = code - lastchar; /* Length of UTF-8 character */
|
3246 |
memcpy(utf8_char, lastchar, c); /* Save the char */
|
3247 |
c |= 0x80; /* Flag c as a length */
|
3248 |
}
|
3249 |
else
|
3250 |
#endif
|
3251 |
|
3252 |
/* Handle the case of a single byte - either with no UTF8 support, or
|
3253 |
with UTF-8 disabled, or for a UTF-8 character < 128. */
|
3254 |
|
3255 |
{
|
3256 |
c = code[-1];
|
3257 |
if (repeat_min > 1) reqbyte = c | req_caseopt | cd->req_varyopt;
|
3258 |
}
|
3259 |
|
3260 |
/* If the repetition is unlimited, it pays to see if the next thing on
|
3261 |
the line is something that cannot possibly match this character. If so,
|
3262 |
automatically possessifying this item gains some performance in the case
|
3263 |
where the match fails. */
|
3264 |
|
3265 |
if (!possessive_quantifier &&
|
3266 |
repeat_max < 0 &&
|
3267 |
check_auto_possessive(*previous, c, utf8, utf8_char, ptr + 1,
|
3268 |
options, cd))
|
3269 |
{
|
3270 |
repeat_type = 0; /* Force greedy */
|
3271 |
possessive_quantifier = TRUE;
|
3272 |
}
|
3273 |
|
3274 |
goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
|
3275 |
}
|
3276 |
|
3277 |
/* If previous was a single negated character ([^a] or similar), we use
|
3278 |
one of the special opcodes, replacing it. The code is shared with single-
|
3279 |
character repeats by setting opt_type to add a suitable offset into
|
3280 |
repeat_type. We can also test for auto-possessification. OP_NOT is
|
3281 |
currently used only for single-byte chars. */
|
3282 |
|
3283 |
else if (*previous == OP_NOT)
|
3284 |
{
|
3285 |
op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */
|
3286 |
c = previous[1];
|
3287 |
if (!possessive_quantifier &&
|
3288 |
repeat_max < 0 &&
|
3289 |
check_auto_possessive(OP_NOT, c, utf8, NULL, ptr + 1, options, cd))
|
3290 |
{
|
3291 |
repeat_type = 0; /* Force greedy */
|
3292 |
possessive_quantifier = TRUE;
|
3293 |
}
|
3294 |
goto OUTPUT_SINGLE_REPEAT;
|
3295 |
}
|
3296 |
|
3297 |
/* If previous was a character type match (\d or similar), abolish it and
|
3298 |
create a suitable repeat item. The code is shared with single-character
|
3299 |
repeats by setting op_type to add a suitable offset into repeat_type. Note
|
3300 |
the the Unicode property types will be present only when SUPPORT_UCP is
|
3301 |
defined, but we don't wrap the little bits of code here because it just
|
3302 |
makes it horribly messy. */
|
3303 |
|
3304 |
else if (*previous < OP_EODN)
|
3305 |
{
|
3306 |
uschar *oldcode;
|
3307 |
int prop_type, prop_value;
|
3308 |
op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
|
3309 |
c = *previous;
|
3310 |
|
3311 |
if (!possessive_quantifier &&
|
3312 |
repeat_max < 0 &&
|
3313 |
check_auto_possessive(c, 0, utf8, NULL, ptr + 1, options, cd))
|
3314 |
{
|
3315 |
repeat_type = 0; /* Force greedy */
|
3316 |
possessive_quantifier = TRUE;
|
3317 |
}
|
3318 |
|
3319 |
OUTPUT_SINGLE_REPEAT:
|
3320 |
if (*previous == OP_PROP || *previous == OP_NOTPROP)
|
3321 |
{
|
3322 |
prop_type = previous[1];
|
3323 |
prop_value = previous[2];
|
3324 |
}
|
3325 |
else prop_type = prop_value = -1;
|
3326 |
|
3327 |
oldcode = code;
|
3328 |
code = previous; /* Usually overwrite previous item */
|
3329 |
|
3330 |
/* If the maximum is zero then the minimum must also be zero; Perl allows
|
3331 |
this case, so we do too - by simply omitting the item altogether. */
|
3332 |
|
3333 |
if (repeat_max == 0) goto END_REPEAT;
|
3334 |
|
3335 |
/* All real repeats make it impossible to handle partial matching (maybe
|
3336 |
one day we will be able to remove this restriction). */
|
3337 |
|
3338 |
if (repeat_max != 1) cd->nopartial = TRUE;
|
3339 |
|
3340 |
/* Combine the op_type with the repeat_type */
|
3341 |
|
3342 |
repeat_type += op_type;
|
3343 |
|
3344 |
/* A minimum of zero is handled either as the special case * or ?, or as
|
3345 |
an UPTO, with the maximum given. */
|
3346 |
|
3347 |
if (repeat_min == 0)
|
3348 |
{
|
3349 |
if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
|
3350 |
else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
|
3351 |
else
|
3352 |
{
|
3353 |
*code++ = OP_UPTO + repeat_type;
|
3354 |
PUT2INC(code, 0, repeat_max);
|
3355 |
}
|
3356 |
}
|
3357 |
|
3358 |
/* A repeat minimum of 1 is optimized into some special cases. If the
|
3359 |
maximum is unlimited, we use OP_PLUS. Otherwise, the original item is
|
3360 |
left in place and, if the maximum is greater than 1, we use OP_UPTO with
|
3361 |
one less than the maximum. */
|
3362 |
|
3363 |
else if (repeat_min == 1)
|
3364 |
{
|
3365 |
if (repeat_max == -1)
|
3366 |
*code++ = OP_PLUS + repeat_type;
|
3367 |
else
|
3368 |
{
|
3369 |
code = oldcode; /* leave previous item in place */
|
3370 |
if (repeat_max == 1) goto END_REPEAT;
|
3371 |
*code++ = OP_UPTO + repeat_type;
|
3372 |
PUT2INC(code, 0, repeat_max - 1);
|
3373 |
}
|
3374 |
}
|
3375 |
|
3376 |
/* The case {n,n} is just an EXACT, while the general case {n,m} is
|
3377 |
handled as an EXACT followed by an UPTO. */
|
3378 |
|
3379 |
else
|
3380 |
{
|
3381 |
*code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
|
3382 |
PUT2INC(code, 0, repeat_min);
|
3383 |
|
3384 |
/* If the maximum is unlimited, insert an OP_STAR. Before doing so,
|
3385 |
we have to insert the character for the previous code. For a repeated
|
3386 |
Unicode property match, there are two extra bytes that define the
|
3387 |
required property. In UTF-8 mode, long characters have their length in
|
3388 |
c, with the 0x80 bit as a flag. */
|
3389 |
|
3390 |
if (repeat_max < 0)
|
3391 |
{
|
3392 |
#ifdef SUPPORT_UTF8
|
3393 |
if (utf8 && c >= 128)
|
3394 |
{
|
3395 |
memcpy(code, utf8_char, c & 7);
|
3396 |
code += c & 7;
|
3397 |
}
|
3398 |
else
|
3399 |
#endif
|
3400 |
{
|
3401 |
*code++ = c;
|
3402 |
if (prop_type >= 0)
|
3403 |
{
|
3404 |
*code++ = prop_type;
|
3405 |
*code++ = prop_value;
|
3406 |
}
|
3407 |
}
|
3408 |
*code++ = OP_STAR + repeat_type;
|
3409 |
}
|
3410 |
|
3411 |
/* Else insert an UPTO if the max is greater than the min, again
|
3412 |
preceded by the character, for the previously inserted code. If the
|
3413 |
UPTO is just for 1 instance, we can use QUERY instead. */
|
3414 |
|
3415 |
else if (repeat_max != repeat_min)
|
3416 |
{
|
3417 |
#ifdef SUPPORT_UTF8
|
3418 |
if (utf8 && c >= 128)
|
3419 |
{
|
3420 |
memcpy(code, utf8_char, c & 7);
|
3421 |
code += c & 7;
|
3422 |
}
|
3423 |
else
|
3424 |
#endif
|
3425 |
*code++ = c;
|
3426 |
if (prop_type >= 0)
|
3427 |
{
|
3428 |
*code++ = prop_type;
|
3429 |
*code++ = prop_value;
|
3430 |
}
|
3431 |
repeat_max -= repeat_min;
|
3432 |
|
3433 |
if (repeat_max == 1)
|
3434 |
{
|
3435 |
*code++ = OP_QUERY + repeat_type;
|
3436 |
}
|
3437 |
else
|
3438 |
{
|
3439 |
*code++ = OP_UPTO + repeat_type;
|
3440 |
PUT2INC(code, 0, repeat_max);
|
3441 |
}
|
3442 |
}
|
3443 |
}
|
3444 |
|
3445 |
/* The character or character type itself comes last in all cases. */
|
3446 |
|
3447 |
#ifdef SUPPORT_UTF8
|
3448 |
if (utf8 && c >= 128)
|
3449 |
{
|
3450 |
memcpy(code, utf8_char, c & 7);
|
3451 |
code += c & 7;
|
3452 |
}
|
3453 |
else
|
3454 |
#endif
|
3455 |
*code++ = c;
|
3456 |
|
3457 |
/* For a repeated Unicode property match, there are two extra bytes that
|
3458 |
define the required property. */
|
3459 |
|
3460 |
#ifdef SUPPORT_UCP
|
3461 |
if (prop_type >= 0)
|
3462 |
{
|
3463 |
*code++ = prop_type;
|
3464 |
*code++ = prop_value;
|
3465 |
}
|
3466 |
#endif
|
3467 |
}
|
3468 |
|
3469 |
/* If previous was a character class or a back reference, we put the repeat
|
3470 |
stuff after it, but just skip the item if the repeat was {0,0}. */
|
3471 |
|
3472 |
else if (*previous == OP_CLASS ||
|
3473 |
*previous == OP_NCLASS ||
|
3474 |
#ifdef SUPPORT_UTF8
|
3475 |
*previous == OP_XCLASS ||
|
3476 |
#endif
|
3477 |
*previous == OP_REF)
|
3478 |
{
|
3479 |
if (repeat_max == 0)
|
3480 |
{
|
3481 |
code = previous;
|
3482 |
goto END_REPEAT;
|
3483 |
}
|
3484 |
|
3485 |
/* All real repeats make it impossible to handle partial matching (maybe
|
3486 |
one day we will be able to remove this restriction). */
|
3487 |
|
3488 |
if (repeat_max != 1) cd->nopartial = TRUE;
|
3489 |
|
3490 |
if (repeat_min == 0 && repeat_max == -1)
|
3491 |
*code++ = OP_CRSTAR + repeat_type;
|
3492 |
else if (repeat_min == 1 && repeat_max == -1)
|
3493 |
*code++ = OP_CRPLUS + repeat_type;
|
3494 |
else if (repeat_min == 0 && repeat_max == 1)
|
3495 |
*code++ = OP_CRQUERY + repeat_type;
|
3496 |
else
|
3497 |
{
|
3498 |
*code++ = OP_CRRANGE + repeat_type;
|
3499 |
PUT2INC(code, 0, repeat_min);
|
3500 |
if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
|
3501 |
PUT2INC(code, 0, repeat_max);
|
3502 |
}
|
3503 |
}
|
3504 |
|
3505 |
/* If previous was a bracket group, we may have to replicate it in certain
|
3506 |
cases. */
|
3507 |
|
3508 |
else if (*previous == OP_BRA || *previous == OP_CBRA ||
|
3509 |
*previous == OP_ONCE || *previous == OP_COND)
|
3510 |
{
|
3511 |
register int i;
|
3512 |
int ketoffset = 0;
|
3513 |
int len = code - previous;
|
3514 |
uschar *bralink = NULL;
|
3515 |
|
3516 |
/* Repeating a DEFINE group is pointless */
|
3517 |
|
3518 |
if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF)
|
3519 |
{
|
3520 |
*errorcodeptr = ERR55;
|
3521 |
goto FAILED;
|
3522 |
}
|
3523 |
|
3524 |
/* This is a paranoid check to stop integer overflow later on */
|
3525 |
|
3526 |
if (len > MAX_DUPLENGTH)
|
3527 |
{
|
3528 |
*errorcodeptr = ERR50;
|
3529 |
goto FAILED;
|
3530 |
}
|
3531 |
|
3532 |
/* If the maximum repeat count is unlimited, find the end of the bracket
|
3533 |
by scanning through from the start, and compute the offset back to it
|
3534 |
from the current code pointer. There may be an OP_OPT setting following
|
3535 |
the final KET, so we can't find the end just by going back from the code
|
3536 |
pointer. */
|
3537 |
|
3538 |
if (repeat_max == -1)
|
3539 |
{
|
3540 |
register uschar *ket = previous;
|
3541 |
do ket += GET(ket, 1); while (*ket != OP_KET);
|
3542 |
ketoffset = code - ket;
|
3543 |
}
|
3544 |
|
3545 |
/* The case of a zero minimum is special because of the need to stick
|
3546 |
OP_BRAZERO in front of it, and because the group appears once in the
|
3547 |
data, whereas in other cases it appears the minimum number of times. For
|
3548 |
this reason, it is simplest to treat this case separately, as otherwise
|
3549 |
the code gets far too messy. There are several special subcases when the
|
3550 |
minimum is zero. */
|
3551 |
|
3552 |
if (repeat_min == 0)
|
3553 |
{
|
3554 |
/* If the maximum is also zero, we just omit the group from the output
|
3555 |
altogether. */
|
3556 |
|
3557 |
if (repeat_max == 0)
|
3558 |
{
|
3559 |
code = previous;
|
3560 |
goto END_REPEAT;
|
3561 |
}
|
3562 |
|
3563 |
/* If the maximum is 1 or unlimited, we just have to stick in the
|
3564 |
BRAZERO and do no more at this point. However, we do need to adjust
|
3565 |
any OP_RECURSE calls inside the group that refer to the group itself or
|
3566 |
any internal or forward referenced group, because the offset is from
|
3567 |
the start of the whole regex. Temporarily terminate the pattern while
|
3568 |
doing this. */
|
3569 |
|
3570 |
if (repeat_max <= 1)
|
3571 |
{
|
3572 |
*code = OP_END;
|
3573 |
adjust_recurse(previous, 1, utf8, cd, save_hwm);
|
3574 |
memmove(previous+1, previous, len);
|
3575 |
code++;
|
3576 |
*previous++ = OP_BRAZERO + repeat_type;
|
3577 |
}
|
3578 |
|
3579 |
/* If the maximum is greater than 1 and limited, we have to replicate
|
3580 |
in a nested fashion, sticking OP_BRAZERO before each set of brackets.
|
3581 |
The first one has to be handled carefully because it's the original
|
3582 |
copy, which has to be moved up. The remainder can be handled by code
|
3583 |
that is common with the non-zero minimum case below. We have to
|
3584 |
adjust the value or repeat_max, since one less copy is required. Once
|
3585 |
again, we may have to adjust any OP_RECURSE calls inside the group. */
|
3586 |
|
3587 |
else
|
3588 |
{
|
3589 |
int offset;
|
3590 |
*code = OP_END;
|
3591 |
adjust_recurse(previous, 2 + LINK_SIZE, utf8, cd, save_hwm);
|
3592 |
memmove(previous + 2 + LINK_SIZE, previous, len);
|
3593 |
code += 2 + LINK_SIZE;
|
3594 |
*previous++ = OP_BRAZERO + repeat_type;
|
3595 |
*previous++ = OP_BRA;
|
3596 |
|
3597 |
/* We chain together the bracket offset fields that have to be
|
3598 |
filled in later when the ends of the brackets are reached. */
|
3599 |
|
3600 |
offset = (bralink == NULL)? 0 : previous - bralink;
|
3601 |
bralink = previous;
|
3602 |
PUTINC(previous, 0, offset);
|
3603 |
}
|
3604 |
|
3605 |
repeat_max--;
|
3606 |
}
|
3607 |
|
3608 |
/* If the minimum is greater than zero, replicate the group as many
|
3609 |
times as necessary, and adjust the maximum to the number of subsequent
|
3610 |
copies that we need. If we set a first char from the group, and didn't
|
3611 |
set a required char, copy the latter from the former. If there are any
|
3612 |
forward reference subroutine calls in the group, there will be entries on
|
3613 |
the workspace list; replicate these with an appropriate increment. */
|
3614 |
|
3615 |
else
|
3616 |
{
|
3617 |
if (repeat_min > 1)
|
3618 |
{
|
3619 |
/* In the pre-compile phase, we don't actually do the replication. We
|
3620 |
just adjust the length as if we had. */
|
3621 |
|
3622 |
if (lengthptr != NULL)
|
3623 |
*lengthptr += (repeat_min - 1)*length_prevgroup;
|
3624 |
|
3625 |
/* This is compiling for real */
|
3626 |
|
3627 |
else
|
3628 |
{
|
3629 |
if (groupsetfirstbyte && reqbyte < 0) reqbyte = firstbyte;
|
3630 |
for (i = 1; i < repeat_min; i++)
|
3631 |
{
|
3632 |
uschar *hc;
|
3633 |
uschar *this_hwm = cd->hwm;
|
3634 |
memcpy(code, previous, len);
|
3635 |
for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
|
3636 |
{
|
3637 |
PUT(cd->hwm, 0, GET(hc, 0) + len);
|
3638 |
cd->hwm += LINK_SIZE;
|
3639 |
}
|
3640 |
save_hwm = this_hwm;
|
3641 |
code += len;
|
3642 |
}
|
3643 |
}
|
3644 |
}
|
3645 |
|
3646 |
if (repeat_max > 0) repeat_max -= repeat_min;
|
3647 |
}
|
3648 |
|
3649 |
/* This code is common to both the zero and non-zero minimum cases. If
|
3650 |
the maximum is limited, it replicates the group in a nested fashion,
|
3651 |
remembering the bracket starts on a stack. In the case of a zero minimum,
|
3652 |
the first one was set up above. In all cases the repeat_max now specifies
|
3653 |
the number of additional copies needed. Again, we must remember to
|
3654 |
replicate entries on the forward reference list. */
|
3655 |
|
3656 |
if (repeat_max >= 0)
|
3657 |
{
|
3658 |
/* In the pre-compile phase, we don't actually do the replication. We
|
3659 |
just adjust the length as if we had. For each repetition we must add 1
|
3660 |
to the length for BRAZERO and for all but the last repetition we must
|
3661 |
add 2 + 2*LINKSIZE to allow for the nesting that occurs. */
|
3662 |
|
3663 |
if (lengthptr != NULL && repeat_max > 0)
|
3664 |
*lengthptr += repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) -
|
3665 |
2 - 2*LINK_SIZE; /* Last one doesn't nest */
|
3666 |
|
3667 |
/* This is compiling for real */
|
3668 |
|
3669 |
else for (i = repeat_max - 1; i >= 0; i--)
|
3670 |
{
|
3671 |
uschar *hc;
|
3672 |
uschar *this_hwm = cd->hwm;
|
3673 |
|
3674 |
*code++ = OP_BRAZERO + repeat_type;
|
3675 |
|
3676 |
/* All but the final copy start a new nesting, maintaining the
|
3677 |
chain of brackets outstanding. */
|
3678 |
|
3679 |
if (i != 0)
|
3680 |
{
|
3681 |
int offset;
|
3682 |
*code++ = OP_BRA;
|
3683 |
offset = (bralink == NULL)? 0 : code - bralink;
|
3684 |
bralink = code;
|
3685 |
PUTINC(code, 0, offset);
|
3686 |
}
|
3687 |
|
3688 |
memcpy(code, previous, len);
|
3689 |
for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
|
3690 |
{
|
3691 |
PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1));
|
3692 |
cd->hwm += LINK_SIZE;
|
3693 |
}
|
3694 |
save_hwm = this_hwm;
|
3695 |
code += len;
|
3696 |
}
|
3697 |
|
3698 |
/* Now chain through the pending brackets, and fill in their length
|
3699 |
fields (which are holding the chain links pro tem). */
|
3700 |
|
3701 |
while (bralink != NULL)
|
3702 |
{
|
3703 |
int oldlinkoffset;
|
3704 |
int offset = code - bralink + 1;
|
3705 |
uschar *bra = code - offset;
|
3706 |
oldlinkoffset = GET(bra, 1);
|
3707 |
bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset;
|
3708 |
*code++ = OP_KET;
|
3709 |
PUTINC(code, 0, offset);
|
3710 |
PUT(bra, 1, offset);
|
3711 |
}
|
3712 |
}
|
3713 |
|
3714 |
/* If the maximum is unlimited, set a repeater in the final copy. We
|
3715 |
can't just offset backwards from the current code point, because we
|
3716 |
don't know if there's been an options resetting after the ket. The
|
3717 |
correct offset was computed above.
|
3718 |
|
3719 |
Then, when we are doing the actual compile phase, check to see whether
|
3720 |
this group is a non-atomic one that could match an empty string. If so,
|
3721 |
convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so
|
3722 |
that runtime checking can be done. [This check is also applied to
|
3723 |
atomic groups at runtime, but in a different way.] */
|
3724 |
|
3725 |
else
|
3726 |
{
|
3727 |
uschar *ketcode = code - ketoffset;
|
3728 |
uschar *bracode = ketcode - GET(ketcode, 1);
|
3729 |
*ketcode = OP_KETRMAX + repeat_type;
|
3730 |
if (lengthptr == NULL && *bracode != OP_ONCE)
|
3731 |
{
|
3732 |
uschar *scode = bracode;
|
3733 |
do
|
3734 |
{
|
3735 |
if (could_be_empty_branch(scode, ketcode, utf8))
|
3736 |
{
|
3737 |
*bracode += OP_SBRA - OP_BRA;
|
3738 |
break;
|
3739 |
}
|
3740 |
scode += GET(scode, 1);
|
3741 |
}
|
3742 |
while (*scode == OP_ALT);
|
3743 |
}
|
3744 |
}
|
3745 |
}
|
3746 |
|
3747 |
/* Else there's some kind of shambles */
|
3748 |
|
3749 |
else
|
3750 |
{
|
3751 |
*errorcodeptr = ERR11;
|
3752 |
goto FAILED;
|
3753 |
}
|
3754 |
|
3755 |
/* If the character following a repeat is '+', or if certain optimization
|
3756 |
tests above succeeded, possessive_quantifier is TRUE. For some of the
|
3757 |
simpler opcodes, there is an special alternative opcode for this. For
|
3758 |
anything else, we wrap the entire repeated item inside OP_ONCE brackets.
|
3759 |
The '+' notation is just syntactic sugar, taken from Sun's Java package,
|
3760 |
but the special opcodes can optimize it a bit. The repeated item starts at
|
3761 |
tempcode, not at previous, which might be the first part of a string whose
|
3762 |
(former) last char we repeated.
|
3763 |
|
3764 |
Possessifying an 'exact' quantifier has no effect, so we can ignore it. But
|
3765 |
an 'upto' may follow. We skip over an 'exact' item, and then test the
|
3766 |
length of what remains before proceeding. */
|
3767 |
|
3768 |
if (possessive_quantifier)
|
3769 |
{
|
3770 |
int len;
|
3771 |
if (*tempcode == OP_EXACT || *tempcode == OP_TYPEEXACT ||
|
3772 |
*tempcode == OP_NOTEXACT)
|
3773 |
tempcode += _pcre_OP_lengths[*tempcode];
|
3774 |
len = code - tempcode;
|
3775 |
if (len > 0) switch (*tempcode)
|
3776 |
{
|
3777 |
case OP_STAR: *tempcode = OP_POSSTAR; break;
|
3778 |
case OP_PLUS: *tempcode = OP_POSPLUS; break;
|
3779 |
case OP_QUERY: *tempcode = OP_POSQUERY; break;
|
3780 |
case OP_UPTO: *tempcode = OP_POSUPTO; break;
|
3781 |
|
3782 |
case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break;
|
3783 |
case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break;
|
3784 |
case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break;
|
3785 |
case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break;
|
3786 |
|
3787 |
case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break;
|
3788 |
case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break;
|
3789 |
case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break;
|
3790 |
case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break;
|
3791 |
|
3792 |
default:
|
3793 |
memmove(tempcode + 1+LINK_SIZE, tempcode, len);
|
3794 |
code += 1 + LINK_SIZE;
|
3795 |
len += 1 + LINK_SIZE;
|
3796 |
tempcode[0] = OP_ONCE;
|
3797 |
*code++ = OP_KET;
|
3798 |
PUTINC(code, 0, len);
|
3799 |
PUT(tempcode, 1, len);
|
3800 |
break;
|
3801 |
}
|
3802 |
}
|
3803 |
|
3804 |
/* In all case we no longer have a previous item. We also set the
|
3805 |
"follows varying string" flag for subsequently encountered reqbytes if
|
3806 |
it isn't already set and we have just passed a varying length item. */
|
3807 |
|
3808 |
END_REPEAT:
|
3809 |
previous = NULL;
|
3810 |
cd->req_varyopt |= reqvary;
|
3811 |
break;
|
3812 |
|
3813 |
|
3814 |
/* ===================================================================*/
|
3815 |
/* Start of nested parenthesized sub-expression, or comment or lookahead or
|
3816 |
lookbehind or option setting or condition or all the other extended
|
3817 |
parenthesis forms. First deal with the specials; all are introduced by ?,
|
3818 |
and the appearance of any of them means that this is not a capturing
|
3819 |
group. */
|
3820 |
|
3821 |
case '(':
|
3822 |
newoptions = options;
|
3823 |
skipbytes = 0;
|
3824 |
bravalue = OP_CBRA;
|
3825 |
save_hwm = cd->hwm;
|
3826 |
reset_bracount = FALSE;
|
3827 |
|
3828 |
if (*(++ptr) == '?')
|
3829 |
{
|
3830 |
int i, set, unset, namelen;
|
3831 |
int *optset;
|
3832 |
const uschar *name;
|
3833 |
uschar *slot;
|
3834 |
|
3835 |
switch (*(++ptr))
|
3836 |
{
|
3837 |
case '#': /* Comment; skip to ket */
|
3838 |
ptr++;
|
3839 |
while (*ptr != 0 && *ptr != ')') ptr++;
|
3840 |
if (*ptr == 0)
|
3841 |
{
|
3842 |
*errorcodeptr = ERR18;
|
3843 |
goto FAILED;
|
3844 |
}
|
3845 |
continue;
|
3846 |
|
3847 |
|
3848 |
/* ------------------------------------------------------------ */
|
3849 |
case '|': /* Reset capture count for each branch */
|
3850 |
reset_bracount = TRUE;
|
3851 |
/* Fall through */
|
3852 |
|
3853 |
/* ------------------------------------------------------------ */
|
3854 |
case ':': /* Non-capturing bracket */
|
3855 |
bravalue = OP_BRA;
|
3856 |
ptr++;
|
3857 |
break;
|
3858 |
|
3859 |
|
3860 |
/* ------------------------------------------------------------ */
|
3861 |
case '(':
|
3862 |
bravalue = OP_COND; /* Conditional group */
|
3863 |
|
3864 |
/* A condition can be an assertion, a number (referring to a numbered
|
3865 |
group), a name (referring to a named group), or 'R', referring to
|
3866 |
recursion. R<digits> and R&name are also permitted for recursion tests.
|
3867 |
|
3868 |
There are several syntaxes for testing a named group: (?(name)) is used
|
3869 |
by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')).
|
3870 |
|
3871 |
There are two unfortunate ambiguities, caused by history. (a) 'R' can
|
3872 |
be the recursive thing or the name 'R' (and similarly for 'R' followed
|
3873 |
by digits), and (b) a number could be a name that consists of digits.
|
3874 |
In both cases, we look for a name first; if not found, we try the other
|
3875 |
cases. */
|
3876 |
|
3877 |
/* For conditions that are assertions, check the syntax, and then exit
|
3878 |
the switch. This will take control down to where bracketed groups,
|
3879 |
including assertions, are processed. */
|
3880 |
|
3881 |
if (ptr[1] == '?' && (ptr[2] == '=' || ptr[2] == '!' || ptr[2] == '<'))
|
3882 |
break;
|
3883 |
|
3884 |
/* Most other conditions use OP_CREF (a couple change to OP_RREF
|
3885 |
below), and all need to skip 3 bytes at the start of the group. */
|
3886 |
|
3887 |
code[1+LINK_SIZE] = OP_CREF;
|
3888 |
skipbytes = 3;
|
3889 |
refsign = -1;
|
3890 |
|
3891 |
/* Check for a test for recursion in a named group. */
|
3892 |
|
3893 |
if (ptr[1] == 'R' && ptr[2] == '&')
|
3894 |
{
|
3895 |
terminator = -1;
|
3896 |
ptr += 2;
|
3897 |
code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */
|
3898 |
}
|
3899 |
|
3900 |
/* Check for a test for a named group's having been set, using the Perl
|
3901 |
syntax (?(<name>) or (?('name') */
|
3902 |
|
3903 |
else if (ptr[1] == '<')
|
3904 |
{
|
3905 |
terminator = '>';
|
3906 |
ptr++;
|
3907 |
}
|
3908 |
else if (ptr[1] == '\'')
|
3909 |
{
|
3910 |
terminator = '\'';
|
3911 |
ptr++;
|
3912 |
}
|
3913 |
else
|
3914 |
{
|
3915 |
terminator = 0;
|
3916 |
if (ptr[1] == '-' || ptr[1] == '+') refsign = *(++ptr);
|
3917 |
}
|
3918 |
|
3919 |
/* We now expect to read a name; any thing else is an error */
|
3920 |
|
3921 |
if ((cd->ctypes[ptr[1]] & ctype_word) == 0)
|
3922 |
{
|
3923 |
ptr += 1; /* To get the right offset */
|
3924 |
*errorcodeptr = ERR28;
|
3925 |
goto FAILED;
|
3926 |
}
|
3927 |
|
3928 |
/* Read the name, but also get it as a number if it's all digits */
|
3929 |
|
3930 |
recno = 0;
|
3931 |
name = ++ptr;
|
3932 |
while ((cd->ctypes[*ptr] & ctype_word) != 0)
|
3933 |
{
|
3934 |
if (recno >= 0)
|
3935 |
recno = ((digitab[*ptr] & ctype_digit) != 0)?
|
3936 |
recno * 10 + *ptr - '0' : -1;
|
3937 |
ptr++;
|
3938 |
}
|
3939 |
namelen = ptr - name;
|
3940 |
|
3941 |
if ((terminator > 0 && *ptr++ != terminator) || *ptr++ != ')')
|
3942 |
{
|
3943 |
ptr--; /* Error offset */
|
3944 |
*errorcodeptr = ERR26;
|
3945 |
goto FAILED;
|
3946 |
}
|
3947 |
|
3948 |
/* Do no further checking in the pre-compile phase. */
|
3949 |
|
3950 |
if (lengthptr != NULL) break;
|
3951 |
|
3952 |
/* In the real compile we do the work of looking for the actual
|
3953 |
reference. If the string started with "+" or "-" we require the rest to
|
3954 |
be digits, in which case recno will be set. */
|
3955 |
|
3956 |
if (refsign > 0)
|
3957 |
{
|
3958 |
if (recno <= 0)
|
3959 |
{
|
3960 |
*errorcodeptr = ERR58;
|
3961 |
goto FAILED;
|
3962 |
}
|
3963 |
if (refsign == '-')
|
3964 |
{
|
3965 |
recno = cd->bracount - recno + 1;
|
3966 |
if (recno <= 0)
|
3967 |
{
|
3968 |
*errorcodeptr = ERR15;
|
3969 |
goto FAILED;
|
3970 |
}
|
3971 |
}
|
3972 |
else recno += cd->bracount;
|
3973 |
PUT2(code, 2+LINK_SIZE, recno);
|
3974 |
break;
|
3975 |
}
|
3976 |
|
3977 |
/* Otherwise (did not start with "+" or "-"), start by looking for the
|
3978 |
name. */
|
3979 |
|
3980 |
slot = cd->name_table;
|
3981 |
for (i = 0; i < cd->names_found; i++)
|
3982 |
{
|
3983 |
if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break;
|
3984 |
slot += cd->name_entry_size;
|
3985 |
}
|
3986 |
|
3987 |
/* Found a previous named subpattern */
|
3988 |
|
3989 |
if (i < cd->names_found)
|
3990 |
{
|
3991 |
recno = GET2(slot, 0);
|
3992 |
PUT2(code, 2+LINK_SIZE, recno);
|
3993 |
}
|
3994 |
|
3995 |
/* Search the pattern for a forward reference */
|
3996 |
|
3997 |
else if ((i = find_parens(ptr, cd->bracount, name, namelen,
|
3998 |
(options & PCRE_EXTENDED) != 0)) > 0)
|
3999 |
{
|
4000 |
PUT2(code, 2+LINK_SIZE, i);
|
4001 |
}
|
4002 |
|
4003 |
/* If terminator == 0 it means that the name followed directly after
|
4004 |
the opening parenthesis [e.g. (?(abc)...] and in this case there are
|
4005 |
some further alternatives to try. For the cases where terminator != 0
|
4006 |
[things like (?(<name>... or (?('name')... or (?(R&name)... ] we have
|
4007 |
now checked all the possibilities, so give an error. */
|
4008 |
|
4009 |
else if (terminator != 0)
|
4010 |
{
|
4011 |
*errorcodeptr = ERR15;
|
4012 |
goto FAILED;
|
4013 |
}
|
4014 |
|
4015 |
/* Check for (?(R) for recursion. Allow digits after R to specify a
|
4016 |
specific group number. */
|
4017 |
|
4018 |
else if (*name == 'R')
|
4019 |
{
|
4020 |
recno = 0;
|
4021 |
for (i = 1; i < namelen; i++)
|
4022 |
{
|
4023 |
if ((digitab[name[i]] & ctype_digit) == 0)
|
4024 |
{
|
4025 |
*errorcodeptr = ERR15;
|
4026 |
goto FAILED;
|
4027 |
}
|
4028 |
recno = recno * 10 + name[i] - '0';
|
4029 |
}
|
4030 |
if (recno == 0) recno = RREF_ANY;
|
4031 |
code[1+LINK_SIZE] = OP_RREF; /* Change test type */
|
4032 |
PUT2(code, 2+LINK_SIZE, recno);
|
4033 |
}
|
4034 |
|
4035 |
/* Similarly, check for the (?(DEFINE) "condition", which is always
|
4036 |
false. */
|
4037 |
|
4038 |
else if (namelen == 6 && strncmp((char *)name, "DEFINE", 6) == 0)
|
4039 |
{
|
4040 |
code[1+LINK_SIZE] = OP_DEF;
|
4041 |
skipbytes = 1;
|
4042 |
}
|
4043 |
|
4044 |
/* Check for the "name" actually being a subpattern number. */
|
4045 |
|
4046 |
else if (recno > 0)
|
4047 |
{
|
4048 |
PUT2(code, 2+LINK_SIZE, recno);
|
4049 |
}
|
4050 |
|
4051 |
/* Either an unidentified subpattern, or a reference to (?(0) */
|
4052 |
|
4053 |
else
|
4054 |
{
|
4055 |
*errorcodeptr = (recno == 0)? ERR35: ERR15;
|
4056 |
goto FAILED;
|
4057 |
}
|
4058 |
break;
|
4059 |
|
4060 |
|
4061 |
/* ------------------------------------------------------------ */
|
4062 |
case '=': /* Positive lookahead */
|
4063 |
bravalue = OP_ASSERT;
|
4064 |
ptr++;
|
4065 |
break;
|
4066 |
|
4067 |
|
4068 |
/* ------------------------------------------------------------ */
|
4069 |
case '!': /* Negative lookahead */
|
4070 |
bravalue = OP_ASSERT_NOT;
|
4071 |
ptr++;
|
4072 |
break;
|
4073 |
|
4074 |
|
4075 |
/* ------------------------------------------------------------ */
|
4076 |
case '<': /* Lookbehind or named define */
|
4077 |
switch (ptr[1])
|
4078 |
{
|
4079 |
case '=': /* Positive lookbehind */
|
4080 |
bravalue = OP_ASSERTBACK;
|
4081 |
ptr += 2;
|
4082 |
break;
|
4083 |
|
4084 |
case '!': /* Negative lookbehind */
|
4085 |
bravalue = OP_ASSERTBACK_NOT;
|
4086 |
ptr += 2;
|
4087 |
break;
|
4088 |
|
4089 |
default: /* Could be name define, else bad */
|
4090 |
if ((cd->ctypes[ptr[1]] & ctype_word) != 0) goto DEFINE_NAME;
|
4091 |
ptr++; /* Correct offset for error */
|
4092 |
*errorcodeptr = ERR24;
|
4093 |
goto FAILED;
|
4094 |
}
|
4095 |
break;
|
4096 |
|
4097 |
|
4098 |
/* ------------------------------------------------------------ */
|
4099 |
case '>': /* One-time brackets */
|
4100 |
bravalue = OP_ONCE;
|
4101 |
ptr++;
|
4102 |
break;
|
4103 |
|
4104 |
|
4105 |
/* ------------------------------------------------------------ */
|
4106 |
case 'C': /* Callout - may be followed by digits; */
|
4107 |
previous_callout = code; /* Save for later completion */
|
4108 |
after_manual_callout = 1; /* Skip one item before completing */
|
4109 |
*code++ = OP_CALLOUT;
|
4110 |
{
|
4111 |
int n = 0;
|
4112 |
while ((digitab[*(++ptr)] & ctype_digit) != 0)
|
4113 |
n = n * 10 + *ptr - '0';
|
4114 |
if (*ptr != ')')
|
4115 |
{
|
4116 |
*errorcodeptr = ERR39;
|
4117 |
goto FAILED;
|
4118 |
}
|
4119 |
if (n > 255)
|
4120 |
{
|
4121 |
*errorcodeptr = ERR38;
|
4122 |
goto FAILED;
|
4123 |
}
|
4124 |
*code++ = n;
|
4125 |
PUT(code, 0, ptr - cd->start_pattern + 1); /* Pattern offset */
|
4126 |
PUT(code, LINK_SIZE, 0); /* Default length */
|
4127 |
code += 2 * LINK_SIZE;
|
4128 |
}
|
4129 |
previous = NULL;
|
4130 |
continue;
|
4131 |
|
4132 |
|
4133 |
/* ------------------------------------------------------------ */
|
4134 |
case 'P': /* Python-style named subpattern handling */
|
4135 |
if (*(++ptr) == '=' || *ptr == '>') /* Reference or recursion */
|
4136 |
{
|
4137 |
is_recurse = *ptr == '>';
|
4138 |
terminator = ')';
|
4139 |
goto NAMED_REF_OR_RECURSE;
|
4140 |
}
|
4141 |
else if (*ptr != '<') /* Test for Python-style definition */
|
4142 |
{
|
4143 |
*errorcodeptr = ERR41;
|
4144 |
goto FAILED;
|
4145 |
}
|
4146 |
/* Fall through to handle (?P< as (?< is handled */
|
4147 |
|
4148 |
|
4149 |
/* ------------------------------------------------------------ */
|
4150 |
DEFINE_NAME: /* Come here from (?< handling */
|
4151 |
case '\'':
|
4152 |
{
|
4153 |
terminator = (*ptr == '<')? '>' : '\'';
|
4154 |
name = ++ptr;
|
4155 |
|
4156 |
while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
|
4157 |
namelen = ptr - name;
|
4158 |
|
4159 |
/* In the pre-compile phase, just do a syntax check. */
|
4160 |
|
4161 |
if (lengthptr != NULL)
|
4162 |
{
|
4163 |
if (*ptr != terminator)
|
4164 |
{
|
4165 |
*errorcodeptr = ERR42;
|
4166 |
goto FAILED;
|
4167 |
}
|
4168 |
if (cd->names_found >= MAX_NAME_COUNT)
|
4169 |
{
|
4170 |
*errorcodeptr = ERR49;
|
4171 |
goto FAILED;
|
4172 |
}
|
4173 |
if (namelen + 3 > cd->name_entry_size)
|
4174 |
{
|
4175 |
cd->name_entry_size = namelen + 3;
|
4176 |
if (namelen > MAX_NAME_SIZE)
|
4177 |
{
|
4178 |
*errorcodeptr = ERR48;
|
4179 |
goto FAILED;
|
4180 |
}
|
4181 |
}
|
4182 |
}
|
4183 |
|
4184 |
/* In the real compile, create the entry in the table */
|
4185 |
|
4186 |
else
|
4187 |
{
|
4188 |
slot = cd->name_table;
|
4189 |
for (i = 0; i < cd->names_found; i++)
|
4190 |
{
|
4191 |
int crc = memcmp(name, slot+2, namelen);
|
4192 |
if (crc == 0)
|
4193 |
{
|
4194 |
if (slot[2+namelen] == 0)
|
4195 |
{
|
4196 |
if ((options & PCRE_DUPNAMES) == 0)
|
4197 |
{
|
4198 |
*errorcodeptr = ERR43;
|
4199 |
goto FAILED;
|
4200 |
}
|
4201 |
}
|
4202 |
else crc = -1; /* Current name is substring */
|
4203 |
}
|
4204 |
if (crc < 0)
|
4205 |
{
|
4206 |
memmove(slot + cd->name_entry_size, slot,
|
4207 |
(cd->names_found - i) * cd->name_entry_size);
|
4208 |
break;
|
4209 |
}
|
4210 |
slot += cd->name_entry_size;
|
4211 |
}
|
4212 |
|
4213 |
PUT2(slot, 0, cd->bracount + 1);
|
4214 |
memcpy(slot + 2, name, namelen);
|
4215 |
slot[2+namelen] = 0;
|
4216 |
}
|
4217 |
}
|
4218 |
|
4219 |
/* In both cases, count the number of names we've encountered. */
|
4220 |
|
4221 |
ptr++; /* Move past > or ' */
|
4222 |
cd->names_found++;
|
4223 |
goto NUMBERED_GROUP;
|
4224 |
|
4225 |
|
4226 |
/* ------------------------------------------------------------ */
|
4227 |
case '&': /* Perl recursion/subroutine syntax */
|
4228 |
terminator = ')';
|
4229 |
is_recurse = TRUE;
|
4230 |
/* Fall through */
|
4231 |
|
4232 |
/* We come here from the Python syntax above that handles both
|
4233 |
references (?P=name) and recursion (?P>name), as well as falling
|
4234 |
through from the Perl recursion syntax (?&name). */
|
4235 |
|
4236 |
NAMED_REF_OR_RECURSE:
|
4237 |
name = ++ptr;
|
4238 |
while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
|
4239 |
namelen = ptr - name;
|
4240 |
|
4241 |
/* In the pre-compile phase, do a syntax check and set a dummy
|
4242 |
reference number. */
|
4243 |
|
4244 |
if (lengthptr != NULL)
|
4245 |
{
|
4246 |
if (*ptr != terminator)
|
4247 |
{
|
4248 |
*errorcodeptr = ERR42;
|
4249 |
goto FAILED;
|
4250 |
}
|
4251 |
if (namelen > MAX_NAME_SIZE)
|
4252 |
{
|
4253 |
*errorcodeptr = ERR48;
|
4254 |
goto FAILED;
|
4255 |
}
|
4256 |
recno = 0;
|
4257 |
}
|
4258 |
|
4259 |
/* In the real compile, seek the name in the table */
|
4260 |
|
4261 |
else
|
4262 |
{
|
4263 |
slot = cd->name_table;
|
4264 |
for (i = 0; i < cd->names_found; i++)
|
4265 |
{
|
4266 |
if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break;
|
4267 |
slot += cd->name_entry_size;
|
4268 |
}
|
4269 |
|
4270 |
if (i < cd->names_found) /* Back reference */
|
4271 |
{
|
4272 |
recno = GET2(slot, 0);
|
4273 |
}
|
4274 |
else if ((recno = /* Forward back reference */
|
4275 |
find_parens(ptr, cd->bracount, name, namelen,
|
4276 |
(options & PCRE_EXTENDED) != 0)) <= 0)
|
4277 |
{
|
4278 |
*errorcodeptr = ERR15;
|
4279 |
goto FAILED;
|
4280 |
}
|
4281 |
}
|
4282 |
|
4283 |
/* In both phases, we can now go to the code than handles numerical
|
4284 |
recursion or backreferences. */
|
4285 |
|
4286 |
if (is_recurse) goto HANDLE_RECURSION;
|
4287 |
else goto HANDLE_REFERENCE;
|
4288 |
|
4289 |
|
4290 |
/* ------------------------------------------------------------ */
|
4291 |
case 'R': /* Recursion */
|
4292 |
ptr++; /* Same as (?0) */
|
4293 |
/* Fall through */
|
4294 |
|
4295 |
|
4296 |
/* ------------------------------------------------------------ */
|
4297 |
case '-': case '+':
|
4298 |
case '0': case '1': case '2': case '3': case '4': /* Recursion or */
|
4299 |
case '5': case '6': case '7': case '8': case '9': /* subroutine */
|
4300 |
{
|
4301 |
const uschar *called;
|
4302 |
|
4303 |
if ((refsign = *ptr) == '+') ptr++;
|
4304 |
else if (refsign == '-')
|
4305 |
{
|
4306 |
if ((digitab[ptr[1]] & ctype_digit) == 0)
|
4307 |
goto OTHER_CHAR_AFTER_QUERY;
|
4308 |
ptr++;
|
4309 |
}
|
4310 |
|
4311 |
recno = 0;
|
4312 |
while((digitab[*ptr] & ctype_digit) != 0)
|
4313 |
recno = recno * 10 + *ptr++ - '0';
|
4314 |
|
4315 |
if (*ptr != ')')
|
4316 |
{
|
4317 |
*errorcodeptr = ERR29;
|
4318 |
goto FAILED;
|
4319 |
}
|
4320 |
|
4321 |
if (refsign == '-')
|
4322 |
{
|
4323 |
if (recno == 0)
|
4324 |
{
|
4325 |
*errorcodeptr = ERR58;
|
4326 |
goto FAILED;
|
4327 |
}
|
4328 |
recno = cd->bracount - recno + 1;
|
4329 |
if (recno <= 0)
|
4330 |
{
|
4331 |
*errorcodeptr = ERR15;
|
4332 |
goto FAILED;
|
4333 |
}
|
4334 |
}
|
4335 |
else if (refsign == '+')
|
4336 |
{
|
4337 |
if (recno == 0)
|
4338 |
{
|
4339 |
*errorcodeptr = ERR58;
|
4340 |
goto FAILED;
|
4341 |
}
|
4342 |
recno += cd->bracount;
|
4343 |
}
|
4344 |
|
4345 |
/* Come here from code above that handles a named recursion */
|
4346 |
|
4347 |
HANDLE_RECURSION:
|
4348 |
|
4349 |
previous = code;
|
4350 |
called = cd->start_code;
|
4351 |
|
4352 |
/* When we are actually compiling, find the bracket that is being
|
4353 |
referenced. Temporarily end the regex in case it doesn't exist before
|
4354 |
this point. If we end up with a forward reference, first check that
|
4355 |
the bracket does occur later so we can give the error (and position)
|
4356 |
now. Then remember this forward reference in the workspace so it can
|
4357 |
be filled in at the end. */
|
4358 |
|
4359 |
if (lengthptr == NULL)
|
4360 |
{
|
4361 |
*code = OP_END;
|
4362 |
if (recno != 0) called = find_bracket(cd->start_code, utf8, recno);
|
4363 |
|
4364 |
/* Forward reference */
|
4365 |
|
4366 |
if (called == NULL)
|
4367 |
{
|
4368 |
if (find_parens(ptr, cd->bracount, NULL, recno,
|
4369 |
(options & PCRE_EXTENDED) != 0) < 0)
|
4370 |
{
|
4371 |
*errorcodeptr = ERR15;
|
4372 |
goto FAILED;
|
4373 |
}
|
4374 |
called = cd->start_code + recno;
|
4375 |
PUTINC(cd->hwm, 0, code + 2 + LINK_SIZE - cd->start_code);
|
4376 |
}
|
4377 |
|
4378 |
/* If not a forward reference, and the subpattern is still open,
|
4379 |
this is a recursive call. We check to see if this is a left
|
4380 |
recursion that could loop for ever, and diagnose that case. */
|
4381 |
|
4382 |
else if (GET(called, 1) == 0 &&
|
4383 |
could_be_empty(called, code, bcptr, utf8))
|
4384 |
{
|
4385 |
*errorcodeptr = ERR40;
|
4386 |
goto FAILED;
|
4387 |
}
|
4388 |
}
|
4389 |
|
4390 |
/* Insert the recursion/subroutine item, automatically wrapped inside
|
4391 |
"once" brackets. Set up a "previous group" length so that a
|
4392 |
subsequent quantifier will work. */
|
4393 |
|
4394 |
*code = OP_ONCE;
|
4395 |
PUT(code, 1, 2 + 2*LINK_SIZE);
|
4396 |
code += 1 + LINK_SIZE;
|
4397 |
|
4398 |
*code = OP_RECURSE;
|
4399 |
PUT(code, 1, called - cd->start_code);
|
4400 |
code += 1 + LINK_SIZE;
|
4401 |
|
4402 |
*code = OP_KET;
|
4403 |
PUT(code, 1, 2 + 2*LINK_SIZE);
|
4404 |
code += 1 + LINK_SIZE;
|
4405 |
|
4406 |
length_prevgroup = 3 + 3*LINK_SIZE;
|
4407 |
}
|
4408 |
|
4409 |
/* Can't determine a first byte now */
|
4410 |
|
4411 |
if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
|
4412 |
continue;
|
4413 |
|
4414 |
|
4415 |
/* ------------------------------------------------------------ */
|
4416 |
default: /* Other characters: check option setting */
|
4417 |
OTHER_CHAR_AFTER_QUERY:
|
4418 |
set = unset = 0;
|
4419 |
optset = &set;
|
4420 |
|
4421 |
while (*ptr != ')' && *ptr != ':')
|
4422 |
{
|
4423 |
switch (*ptr++)
|
4424 |
{
|
4425 |
case '-': optset = &unset; break;
|
4426 |
|
4427 |
case 'J': /* Record that it changed in the external options */
|
4428 |
*optset |= PCRE_DUPNAMES;
|
4429 |
cd->external_options |= PCRE_JCHANGED;
|
4430 |
break;
|
4431 |
|
4432 |
case 'i': *optset |= PCRE_CASELESS; break;
|
4433 |
case 'm': *optset |= PCRE_MULTILINE; break;
|
4434 |
case 's': *optset |= PCRE_DOTALL; break;
|
4435 |
case 'x': *optset |= PCRE_EXTENDED; break;
|
4436 |
case 'U': *optset |= PCRE_UNGREEDY; break;
|
4437 |
case 'X': *optset |= PCRE_EXTRA; break;
|
4438 |
|
4439 |
default: *errorcodeptr = ERR12;
|
4440 |
ptr--; /* Correct the offset */
|
4441 |
goto FAILED;
|
4442 |
}
|
4443 |
}
|
4444 |
|
4445 |
/* Set up the changed option bits, but don't change anything yet. */
|
4446 |
|
4447 |
newoptions = (options | set) & (~unset);
|
4448 |
|
4449 |
/* If the options ended with ')' this is not the start of a nested
|
4450 |
group with option changes, so the options change at this level. If this
|
4451 |
item is right at the start of the pattern, the options can be
|
4452 |
abstracted and made external in the pre-compile phase, and ignored in
|
4453 |
the compile phase. This can be helpful when matching -- for instance in
|
4454 |
caseless checking of required bytes.
|
4455 |
|
4456 |
If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are
|
4457 |
definitely *not* at the start of the pattern because something has been
|
4458 |
compiled. In the pre-compile phase, however, the code pointer can have
|
4459 |
that value after the start, because it gets reset as code is discarded
|
4460 |
during the pre-compile. However, this can happen only at top level - if
|
4461 |
we are within parentheses, the starting BRA will still be present. At
|
4462 |
any parenthesis level, the length value can be used to test if anything
|
4463 |
has been compiled at that level. Thus, a test for both these conditions
|
4464 |
is necessary to ensure we correctly detect the start of the pattern in
|
4465 |
both phases.
|
4466 |
|
4467 |
If we are not at the pattern start, compile code to change the ims
|
4468 |
options if this setting actually changes any of them. We also pass the
|
4469 |
new setting back so that it can be put at the start of any following
|
4470 |
branches, and when this group ends (if we are in a group), a resetting
|
4471 |
item can be compiled. */
|
4472 |
|
4473 |
if (*ptr == ')')
|
4474 |
{
|
4475 |
if (code == cd->start_code + 1 + LINK_SIZE &&
|
4476 |
(lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE))
|
4477 |
{
|
4478 |
cd->external_options = newoptions;
|
4479 |
options = newoptions;
|
4480 |
}
|
4481 |
else
|
4482 |
{
|
4483 |
if ((options & PCRE_IMS) != (newoptions & PCRE_IMS))
|
4484 |
{
|
4485 |
*code++ = OP_OPT;
|
4486 |
*code++ = newoptions & PCRE_IMS;
|
4487 |
}
|
4488 |
|
4489 |
/* Change options at this level, and pass them back for use
|
4490 |
in subsequent branches. Reset the greedy defaults and the case
|
4491 |
value for firstbyte and reqbyte. */
|
4492 |
|
4493 |
*optionsptr = options = newoptions;
|
4494 |
greedy_default = ((newoptions & PCRE_UNGREEDY) != 0);
|
4495 |
greedy_non_default = greedy_default ^ 1;
|
4496 |
req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
|
4497 |
}
|
4498 |
|
4499 |
previous = NULL; /* This item can't be repeated */
|
4500 |
continue; /* It is complete */
|
4501 |
}
|
4502 |
|
4503 |
/* If the options ended with ':' we are heading into a nested group
|
4504 |
with possible change of options. Such groups are non-capturing and are
|
4505 |
not assertions of any kind. All we need to do is skip over the ':';
|
4506 |
the newoptions value is handled below. */
|
4507 |
|
4508 |
bravalue = OP_BRA;
|
4509 |
ptr++;
|
4510 |
} /* End of switch for character following (? */
|
4511 |
} /* End of (? handling */
|
4512 |
|
4513 |
/* Opening parenthesis not followed by '?'. If PCRE_NO_AUTO_CAPTURE is set,
|
4514 |
all unadorned brackets become non-capturing and behave like (?:...)
|
4515 |
brackets. */
|
4516 |
|
4517 |
else if ((options & PCRE_NO_AUTO_CAPTURE) != 0)
|
4518 |
{
|
4519 |
bravalue = OP_BRA;
|
4520 |
}
|
4521 |
|
4522 |
/* Else we have a capturing group. */
|
4523 |
|
4524 |
else
|
4525 |
{
|
4526 |
NUMBERED_GROUP:
|
4527 |
cd->bracount += 1;
|
4528 |
PUT2(code, 1+LINK_SIZE, cd->bracount);
|
4529 |
skipbytes = 2;
|
4530 |
}
|
4531 |
|
4532 |
/* Process nested bracketed regex. Assertions may not be repeated, but
|
4533 |
other kinds can be. All their opcodes are >= OP_ONCE. We copy code into a
|
4534 |
non-register variable in order to be able to pass its address because some
|
4535 |
compilers complain otherwise. Pass in a new setting for the ims options if
|
4536 |
they have changed. */
|
4537 |
|
4538 |
previous = (bravalue >= OP_ONCE)? code : NULL;
|
4539 |
*code = bravalue;
|
4540 |
tempcode = code;
|
4541 |
tempreqvary = cd->req_varyopt; /* Save value before bracket */
|
4542 |
length_prevgroup = 0; /* Initialize for pre-compile phase */
|
4543 |
|
4544 |
if (!compile_regex(
|
4545 |
newoptions, /* The complete new option state */
|
4546 |
options & PCRE_IMS, /* The previous ims option state */
|
4547 |
&tempcode, /* Where to put code (updated) */
|
4548 |
&ptr, /* Input pointer (updated) */
|
4549 |
errorcodeptr, /* Where to put an error message */
|
4550 |
(bravalue == OP_ASSERTBACK ||
|
4551 |
bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */
|
4552 |
reset_bracount, /* True if (?| group */
|
4553 |
skipbytes, /* Skip over bracket number */
|
4554 |
&subfirstbyte, /* For possible first char */
|
4555 |
&subreqbyte, /* For possible last char */
|
4556 |
bcptr, /* Current branch chain */
|
4557 |
cd, /* Tables block */
|
4558 |
(lengthptr == NULL)? NULL : /* Actual compile phase */
|
4559 |
&length_prevgroup /* Pre-compile phase */
|
4560 |
))
|
4561 |
goto FAILED;
|
4562 |
|
4563 |
/* At the end of compiling, code is still pointing to the start of the
|
4564 |
group, while tempcode has been updated to point past the end of the group
|
4565 |
and any option resetting that may follow it. The pattern pointer (ptr)
|
4566 |
is on the bracket. */
|
4567 |
|
4568 |
/* If this is a conditional bracket, check that there are no more than
|
4569 |
two branches in the group, or just one if it's a DEFINE group. We do this
|
4570 |
in the real compile phase, not in the pre-pass, where the whole group may
|
4571 |
not be available. */
|
4572 |
|
4573 |
if (bravalue == OP_COND && lengthptr == NULL)
|
4574 |
{
|
4575 |
uschar *tc = code;
|
4576 |
int condcount = 0;
|
4577 |
|
4578 |
do {
|
4579 |
condcount++;
|
4580 |
tc += GET(tc,1);
|
4581 |
}
|
4582 |
while (*tc != OP_KET);
|
4583 |
|
4584 |
/* A DEFINE group is never obeyed inline (the "condition" is always
|
4585 |
false). It must have only one branch. */
|
4586 |
|
4587 |
if (code[LINK_SIZE+1] == OP_DEF)
|
4588 |
{
|
4589 |
if (condcount > 1)
|
4590 |
{
|
4591 |
*errorcodeptr = ERR54;
|
4592 |
goto FAILED;
|
4593 |
}
|
4594 |
bravalue = OP_DEF; /* Just a flag to suppress char handling below */
|
4595 |
}
|
4596 |
|
4597 |
/* A "normal" conditional group. If there is just one branch, we must not
|
4598 |
make use of its firstbyte or reqbyte, because this is equivalent to an
|
4599 |
empty second branch. */
|
4600 |
|
4601 |
else
|
4602 |
{
|
4603 |
if (condcount > 2)
|
4604 |
{
|
4605 |
*errorcodeptr = ERR27;
|
4606 |
goto FAILED;
|
4607 |
}
|
4608 |
if (condcount == 1) subfirstbyte = subreqbyte = REQ_NONE;
|
4609 |
}
|
4610 |
}
|
4611 |
|
4612 |
/* Error if hit end of pattern */
|
4613 |
|
4614 |
if (*ptr != ')')
|
4615 |
{
|
4616 |
*errorcodeptr = ERR14;
|
4617 |
goto FAILED;
|
4618 |
}
|
4619 |
|
4620 |
/* In the pre-compile phase, update the length by the length of the nested
|
4621 |
group, less the brackets at either end. Then reduce the compiled code to
|
4622 |
just the brackets so that it doesn't use much memory if it is duplicated by
|
4623 |
a quantifier. */
|
4624 |
|
4625 |
if (lengthptr != NULL)
|
4626 |
{
|
4627 |
*lengthptr += length_prevgroup - 2 - 2*LINK_SIZE;
|
4628 |
code++;
|
4629 |
PUTINC(code, 0, 1 + LINK_SIZE);
|
4630 |
*code++ = OP_KET;
|
4631 |
PUTINC(code, 0, 1 + LINK_SIZE);
|
4632 |
}
|
4633 |
|
4634 |
/* Otherwise update the main code pointer to the end of the group. */
|
4635 |
|
4636 |
else code = tempcode;
|
4637 |
|
4638 |
/* For a DEFINE group, required and first character settings are not
|
4639 |
relevant. */
|
4640 |
|
4641 |
if (bravalue == OP_DEF) break;
|
4642 |
|
4643 |
/* Handle updating of the required and first characters for other types of
|
4644 |
group. Update for normal brackets of all kinds, and conditions with two
|
4645 |
branches (see code above). If the bracket is followed by a quantifier with
|
4646 |
zero repeat, we have to back off. Hence the definition of zeroreqbyte and
|
4647 |
zerofirstbyte outside the main loop so that they can be accessed for the
|
4648 |
back off. */
|
4649 |
|
4650 |
zeroreqbyte = reqbyte;
|
4651 |
zerofirstbyte = firstbyte;
|
4652 |
groupsetfirstbyte = FALSE;
|
4653 |
|
4654 |
if (bravalue >= OP_ONCE)
|
4655 |
{
|
4656 |
/* If we have not yet set a firstbyte in this branch, take it from the
|
4657 |
subpattern, remembering that it was set here so that a repeat of more
|
4658 |
than one can replicate it as reqbyte if necessary. If the subpattern has
|
4659 |
no firstbyte, set "none" for the whole branch. In both cases, a zero
|
4660 |
repeat forces firstbyte to "none". */
|
4661 |
|
4662 |
if (firstbyte == REQ_UNSET)
|
4663 |
{
|
4664 |
if (subfirstbyte >= 0)
|
4665 |
{
|
4666 |
firstbyte = subfirstbyte;
|
4667 |
groupsetfirstbyte = TRUE;
|
4668 |
}
|
4669 |
else firstbyte = REQ_NONE;
|
4670 |
zerofirstbyte = REQ_NONE;
|
4671 |
}
|
4672 |
|
4673 |
/* If firstbyte was previously set, convert the subpattern's firstbyte
|
4674 |
into reqbyte if there wasn't one, using the vary flag that was in
|
4675 |
existence beforehand. */
|
4676 |
|
4677 |
else if (subfirstbyte >= 0 && subreqbyte < 0)
|
4678 |
subreqbyte = subfirstbyte | tempreqvary;
|
4679 |
|
4680 |
/* If the subpattern set a required byte (or set a first byte that isn't
|
4681 |
really the first byte - see above), set it. */
|
4682 |
|
4683 |
if (subreqbyte >= 0) reqbyte = subreqbyte;
|
4684 |
}
|
4685 |
|
4686 |
/* For a forward assertion, we take the reqbyte, if set. This can be
|
4687 |
helpful if the pattern that follows the assertion doesn't set a different
|
4688 |
char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte
|
4689 |
for an assertion, however because it leads to incorrect effect for patterns
|
4690 |
such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead
|
4691 |
of a firstbyte. This is overcome by a scan at the end if there's no
|
4692 |
firstbyte, looking for an asserted first char. */
|
4693 |
|
4694 |
else if (bravalue == OP_ASSERT && subreqbyte >= 0) reqbyte = subreqbyte;
|
4695 |
break; /* End of processing '(' */
|
4696 |
|
4697 |
|
4698 |
/* ===================================================================*/
|
4699 |
/* Handle metasequences introduced by \. For ones like \d, the ESC_ values
|
4700 |
are arranged to be the negation of the corresponding OP_values. For the
|
4701 |
back references, the values are ESC_REF plus the reference number. Only
|
4702 |
back references and those types that consume a character may be repeated.
|
4703 |
We can test for values between ESC_b and ESC_Z for the latter; this may
|
4704 |
have to change if any new ones are ever created. */
|
4705 |
|
4706 |
case '\\':
|
4707 |
tempptr = ptr;
|
4708 |
c = check_escape(&ptr, errorcodeptr, cd->bracount, options, FALSE);
|
4709 |
if (*errorcodeptr != 0) goto FAILED;
|
4710 |
|
4711 |
if (c < 0)
|
4712 |
{
|
4713 |
if (-c == ESC_Q) /* Handle start of quoted string */
|
4714 |
{
|
4715 |
if (ptr[1] == '\\' && ptr[2] == 'E') ptr += 2; /* avoid empty string */
|
4716 |
else inescq = TRUE;
|
4717 |
continue;
|
4718 |
}
|
4719 |
|
4720 |
if (-c == ESC_E) continue; /* Perl ignores an orphan \E */
|
4721 |
|
4722 |
/* For metasequences that actually match a character, we disable the
|
4723 |
setting of a first character if it hasn't already been set. */
|
4724 |
|
4725 |
if (firstbyte == REQ_UNSET && -c > ESC_b && -c < ESC_Z)
|
4726 |
firstbyte = REQ_NONE;
|
4727 |
|
4728 |
/* Set values to reset to if this is followed by a zero repeat. */
|
4729 |
|
4730 |
zerofirstbyte = firstbyte;
|
4731 |
zeroreqbyte = reqbyte;
|
4732 |
|
4733 |
/* \k<name> or \k'name' is a back reference by name (Perl syntax).
|
4734 |
We also support \k{name} (.NET syntax) */
|
4735 |
|
4736 |
if (-c == ESC_k && (ptr[1] == '<' || ptr[1] == '\'' || ptr[1] == '{'))
|
4737 |
{
|
4738 |
is_recurse = FALSE;
|
4739 |
terminator = (*(++ptr) == '<')? '>' : (*ptr == '\'')? '\'' : '}';
|
4740 |
goto NAMED_REF_OR_RECURSE;
|
4741 |
}
|
4742 |
|
4743 |
/* Back references are handled specially; must disable firstbyte if
|
4744 |
not set to cope with cases like (?=(\w+))\1: which would otherwise set
|
4745 |
':' later. */
|
4746 |
|
4747 |
if (-c >= ESC_REF)
|
4748 |
{
|
4749 |
recno = -c - ESC_REF;
|
4750 |
|
4751 |
HANDLE_REFERENCE: /* Come here from named backref handling */
|
4752 |
if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
|
4753 |
previous = code;
|
4754 |
*code++ = OP_REF;
|
4755 |
PUT2INC(code, 0, recno);
|
4756 |
cd->backref_map |= (recno < 32)? (1 << recno) : 1;
|
4757 |
if (recno > cd->top_backref) cd->top_backref = recno;
|
4758 |
}
|
4759 |
|
4760 |
/* So are Unicode property matches, if supported. */
|
4761 |
|
4762 |
#ifdef SUPPORT_UCP
|
4763 |
else if (-c == ESC_P || -c == ESC_p)
|
4764 |
{
|
4765 |
BOOL negated;
|
4766 |
int pdata;
|
4767 |
int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr);
|
4768 |
if (ptype < 0) goto FAILED;
|
4769 |
previous = code;
|
4770 |
*code++ = ((-c == ESC_p) != negated)? OP_PROP : OP_NOTPROP;
|
4771 |
*code++ = ptype;
|
4772 |
*code++ = pdata;
|
4773 |
}
|
4774 |
#else
|
4775 |
|
4776 |
/* If Unicode properties are not supported, \X, \P, and \p are not
|
4777 |
allowed. */
|
4778 |
|
4779 |
else if (-c == ESC_X || -c == ESC_P || -c == ESC_p)
|
4780 |
{
|
4781 |
*errorcodeptr = ERR45;
|
4782 |
goto FAILED;
|
4783 |
}
|
4784 |
#endif
|
4785 |
|
4786 |
/* For the rest (including \X when Unicode properties are supported), we
|
4787 |
can obtain the OP value by negating the escape value. */
|
4788 |
|
4789 |
else
|
4790 |
{
|
4791 |
previous = (-c > ESC_b && -c < ESC_Z)? code : NULL;
|
4792 |
*code++ = -c;
|
4793 |
}
|
4794 |
continue;
|
4795 |
}
|
4796 |
|
4797 |
/* We have a data character whose value is in c. In UTF-8 mode it may have
|
4798 |
a value > 127. We set its representation in the length/buffer, and then
|
4799 |
handle it as a data character. */
|
4800 |
|
4801 |
#ifdef SUPPORT_UTF8
|
4802 |
if (utf8 && c > 127)
|
4803 |
mclength = _pcre_ord2utf8(c, mcbuffer);
|
4804 |
else
|
4805 |
#endif
|
4806 |
|
4807 |
{
|
4808 |
mcbuffer[0] = c;
|
4809 |
mclength = 1;
|
4810 |
}
|
4811 |
goto ONE_CHAR;
|
4812 |
|
4813 |
|
4814 |
/* ===================================================================*/
|
4815 |
/* Handle a literal character. It is guaranteed not to be whitespace or #
|
4816 |
when the extended flag is set. If we are in UTF-8 mode, it may be a
|
4817 |
multi-byte literal character. */
|
4818 |
|
4819 |
default:
|
4820 |
NORMAL_CHAR:
|
4821 |
mclength = 1;
|
4822 |
mcbuffer[0] = c;
|
4823 |
|
4824 |
#ifdef SUPPORT_UTF8
|
4825 |
if (utf8 && c >= 0xc0)
|
4826 |
{
|
4827 |
while ((ptr[1] & 0xc0) == 0x80)
|
4828 |
mcbuffer[mclength++] = *(++ptr);
|
4829 |
}
|
4830 |
#endif
|
4831 |
|
4832 |
/* At this point we have the character's bytes in mcbuffer, and the length
|
4833 |
in mclength. When not in UTF-8 mode, the length is always 1. */
|
4834 |
|
4835 |
ONE_CHAR:
|
4836 |
previous = code;
|
4837 |
*code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARNC : OP_CHAR;
|
4838 |
for (c = 0; c < mclength; c++) *code++ = mcbuffer[c];
|
4839 |
|
4840 |
/* Set the first and required bytes appropriately. If no previous first
|
4841 |
byte, set it from this character, but revert to none on a zero repeat.
|
4842 |
Otherwise, leave the firstbyte value alone, and don't change it on a zero
|
4843 |
repeat. */
|
4844 |
|
4845 |
if (firstbyte == REQ_UNSET)
|
4846 |
{
|
4847 |
zerofirstbyte = REQ_NONE;
|
4848 |
zeroreqbyte = reqbyte;
|
4849 |
|
4850 |
/* If the character is more than one byte long, we can set firstbyte
|
4851 |
only if it is not to be matched caselessly. */
|
4852 |
|
4853 |
if (mclength == 1 || req_caseopt == 0)
|
4854 |
{
|
4855 |
firstbyte = mcbuffer[0] | req_caseopt;
|
4856 |
if (mclength != 1) reqbyte = code[-1] | cd->req_varyopt;
|
4857 |
}
|
4858 |
else firstbyte = reqbyte = REQ_NONE;
|
4859 |
}
|
4860 |
|
4861 |
/* firstbyte was previously set; we can set reqbyte only the length is
|
4862 |
1 or the matching is caseful. */
|
4863 |
|
4864 |
else
|
4865 |
{
|
4866 |
zerofirstbyte = firstbyte;
|
4867 |
zeroreqbyte = reqbyte;
|
4868 |
if (mclength == 1 || req_caseopt == 0)
|
4869 |
reqbyte = code[-1] | req_caseopt | cd->req_varyopt;
|
4870 |
}
|
4871 |
|
4872 |
break; /* End of literal character handling */
|
4873 |
}
|
4874 |
} /* end of big loop */
|
4875 |
|
4876 |
|
4877 |
/* Control never reaches here by falling through, only by a goto for all the
|
4878 |
error states. Pass back the position in the pattern so that it can be displayed
|
4879 |
to the user for diagnosing the error. */
|
4880 |
|
4881 |
FAILED:
|
4882 |
*ptrptr = ptr;
|
4883 |
return FALSE;
|
4884 |
}
|
4885 |
|
4886 |
|
4887 |
|
4888 |
|
4889 |
/*************************************************
|
4890 |
* Compile sequence of alternatives *
|
4891 |
*************************************************/
|
4892 |
|
4893 |
/* On entry, ptr is pointing past the bracket character, but on return it
|
4894 |
points to the closing bracket, or vertical bar, or end of string. The code
|
4895 |
variable is pointing at the byte into which the BRA operator has been stored.
|
4896 |
If the ims options are changed at the start (for a (?ims: group) or during any
|
4897 |
branch, we need to insert an OP_OPT item at the start of every following branch
|
4898 |
to ensure they get set correctly at run time, and also pass the new options
|
4899 |
into every subsequent branch compile.
|
4900 |
|
4901 |
This function is used during the pre-compile phase when we are trying to find
|
4902 |
out the amount of memory needed, as well as during the real compile phase. The
|
4903 |
value of lengthptr distinguishes the two phases.
|
4904 |
|
4905 |
Arguments:
|
4906 |
options option bits, including any changes for this subpattern
|
4907 |
oldims previous settings of ims option bits
|
4908 |
codeptr -> the address of the current code pointer
|
4909 |
ptrptr -> the address of the current pattern pointer
|
4910 |
errorcodeptr -> pointer to error code variable
|
4911 |
lookbehind TRUE if this is a lookbehind assertion
|
4912 |
reset_bracount TRUE to reset the count for each branch
|
4913 |
skipbytes skip this many bytes at start (for brackets and OP_COND)
|
4914 |
firstbyteptr place to put the first required character, or a negative number
|
4915 |
reqbyteptr place to put the last required character, or a negative number
|
4916 |
bcptr pointer to the chain of currently open branches
|
4917 |
cd points to the data block with tables pointers etc.
|
4918 |
lengthptr NULL during the real compile phase
|
4919 |
points to length accumulator during pre-compile phase
|
4920 |
|
4921 |
Returns: TRUE on success
|
4922 |
*/
|
4923 |
|
4924 |
static BOOL
|
4925 |
compile_regex(int options, int oldims, uschar **codeptr, const uschar **ptrptr,
|
4926 |
int *errorcodeptr, BOOL lookbehind, BOOL reset_bracount, int skipbytes,
|
4927 |
int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, compile_data *cd,
|
4928 |
int *lengthptr)
|
4929 |
{
|
4930 |
const uschar *ptr = *ptrptr;
|
4931 |
uschar *code = *codeptr;
|
4932 |
uschar *last_branch = code;
|
4933 |
uschar *start_bracket = code;
|
4934 |
uschar *reverse_count = NULL;
|
4935 |
int firstbyte, reqbyte;
|
4936 |
int branchfirstbyte, branchreqbyte;
|
4937 |
int length;
|
4938 |
int orig_bracount;
|
4939 |
int max_bracount;
|
4940 |
branch_chain bc;
|
4941 |
|
4942 |
bc.outer = bcptr;
|
4943 |
bc.current = code;
|
4944 |
|
4945 |
firstbyte = reqbyte = REQ_UNSET;
|
4946 |
|
4947 |
/* Accumulate the length for use in the pre-compile phase. Start with the
|
4948 |
length of the BRA and KET and any extra bytes that are required at the
|
4949 |
beginning. We accumulate in a local variable to save frequent testing of
|
4950 |
lenthptr for NULL. We cannot do this by looking at the value of code at the
|
4951 |
start and end of each alternative, because compiled items are discarded during
|
4952 |
the pre-compile phase so that the work space is not exceeded. */
|
4953 |
|
4954 |
length = 2 + 2*LINK_SIZE + skipbytes;
|
4955 |
|
4956 |
/* WARNING: If the above line is changed for any reason, you must also change
|
4957 |
the code that abstracts option settings at the start of the pattern and makes
|
4958 |
them global. It tests the value of length for (2 + 2*LINK_SIZE) in the
|
4959 |
pre-compile phase to find out whether anything has yet been compiled or not. */
|
4960 |
|
4961 |
/* Offset is set zero to mark that this bracket is still open */
|
4962 |
|
4963 |
PUT(code, 1, 0);
|
4964 |
code += 1 + LINK_SIZE + skipbytes;
|
4965 |
|
4966 |
/* Loop for each alternative branch */
|
4967 |
|
4968 |
orig_bracount = max_bracount = cd->bracount;
|
4969 |
for (;;)
|
4970 |
{
|
4971 |
/* For a (?| group, reset the capturing bracket count so that each branch
|
4972 |
uses the same numbers. */
|
4973 |
|
4974 |
if (reset_bracount) cd->bracount = orig_bracount;
|
4975 |
|
4976 |
/* Handle a change of ims options at the start of the branch */
|
4977 |
|
4978 |
if ((options & PCRE_IMS) != oldims)
|
4979 |
{
|
4980 |
*code++ = OP_OPT;
|
4981 |
*code++ = options & PCRE_IMS;
|
4982 |
length += 2;
|
4983 |
}
|
4984 |
|
4985 |
/* Set up dummy OP_REVERSE if lookbehind assertion */
|
4986 |
|
4987 |
if (lookbehind)
|
4988 |
{
|
4989 |
*code++ = OP_REVERSE;
|
4990 |
reverse_count = code;
|
4991 |
PUTINC(code, 0, 0);
|
4992 |
length += 1 + LINK_SIZE;
|
4993 |
}
|
4994 |
|
4995 |
/* Now compile the branch; in the pre-compile phase its length gets added
|
4996 |
into the length. */
|
4997 |
|
4998 |
if (!compile_branch(&options, &code, &ptr, errorcodeptr, &branchfirstbyte,
|
4999 |
&branchreqbyte, &bc, cd, (lengthptr == NULL)? NULL : &length))
|
5000 |
{
|
5001 |
*ptrptr = ptr;
|
5002 |
return FALSE;
|
5003 |
}
|
5004 |
|
5005 |
/* Keep the highest bracket count in case (?| was used and some branch
|
5006 |
has fewer than the rest. */
|
5007 |
|
5008 |
if (cd->bracount > max_bracount) max_bracount = cd->bracount;
|
5009 |
|
5010 |
/* In the real compile phase, there is some post-processing to be done. */
|
5011 |
|
5012 |
if (lengthptr == NULL)
|
5013 |
{
|
5014 |
/* If this is the first branch, the firstbyte and reqbyte values for the
|
5015 |
branch become the values for the regex. */
|
5016 |
|
5017 |
if (*last_branch != OP_ALT)
|
5018 |
{
|
5019 |
firstbyte = branchfirstbyte;
|
5020 |
reqbyte = branchreqbyte;
|
5021 |
}
|
5022 |
|
5023 |
/* If this is not the first branch, the first char and reqbyte have to
|
5024 |
match the values from all the previous branches, except that if the
|
5025 |
previous value for reqbyte didn't have REQ_VARY set, it can still match,
|
5026 |
and we set REQ_VARY for the regex. */
|
5027 |
|
5028 |
else
|
5029 |
{
|
5030 |
/* If we previously had a firstbyte, but it doesn't match the new branch,
|
5031 |
we have to abandon the firstbyte for the regex, but if there was
|
5032 |
previously no reqbyte, it takes on the value of the old firstbyte. */
|
5033 |
|
5034 |
if (firstbyte >= 0 && firstbyte != branchfirstbyte)
|
5035 |
{
|
5036 |
if (reqbyte < 0) reqbyte = firstbyte;
|
5037 |
firstbyte = REQ_NONE;
|
5038 |
}
|
5039 |
|
5040 |
/* If we (now or from before) have no firstbyte, a firstbyte from the
|
5041 |
branch becomes a reqbyte if there isn't a branch reqbyte. */
|
5042 |
|
5043 |
if (firstbyte < 0 && branchfirstbyte >= 0 && branchreqbyte < 0)
|
5044 |
branchreqbyte = branchfirstbyte;
|
5045 |
|
5046 |
/* Now ensure that the reqbytes match */
|
5047 |
|
5048 |
if ((reqbyte & ~REQ_VARY) != (branchreqbyte & ~REQ_VARY))
|
5049 |
reqbyte = REQ_NONE;
|
5050 |
else reqbyte |= branchreqbyte; /* To "or" REQ_VARY */
|
5051 |
}
|
5052 |
|
5053 |
/* If lookbehind, check that this branch matches a fixed-length string, and
|
5054 |
put the length into the OP_REVERSE item. Temporarily mark the end of the
|
5055 |
branch with OP_END. */
|
5056 |
|
5057 |
if (lookbehind)
|
5058 |
{
|
5059 |
int fixed_length;
|
5060 |
*code = OP_END;
|
5061 |
fixed_length = find_fixedlength(last_branch, options);
|
5062 |
DPRINTF(("fixed length = %d\n", fixed_length));
|
5063 |
if (fixed_length < 0)
|
5064 |
{
|
5065 |
*errorcodeptr = (fixed_length == -2)? ERR36 : ERR25;
|
5066 |
*ptrptr = ptr;
|
5067 |
return FALSE;
|
5068 |
}
|
5069 |
PUT(reverse_count, 0, fixed_length);
|
5070 |
}
|
5071 |
}
|
5072 |
|
5073 |
/* Reached end of expression, either ')' or end of pattern. In the real
|
5074 |
compile phase, go back through the alternative branches and reverse the chain
|
5075 |
of offsets, with the field in the BRA item now becoming an offset to the
|
5076 |
first alternative. If there are no alternatives, it points to the end of the
|
5077 |
group. The length in the terminating ket is always the length of the whole
|
5078 |
bracketed item. If any of the ims options were changed inside the group,
|
5079 |
compile a resetting op-code following, except at the very end of the pattern.
|
5080 |
Return leaving the pointer at the terminating char. */
|
5081 |
|
5082 |
if (*ptr != '|')
|
5083 |
{
|
5084 |
if (lengthptr == NULL)
|
5085 |
{
|
5086 |
int branch_length = code - last_branch;
|
5087 |
do
|
5088 |
{
|
5089 |
int prev_length = GET(last_branch, 1);
|
5090 |
PUT(last_branch, 1, branch_length);
|
5091 |
branch_length = prev_length;
|
5092 |
last_branch -= branch_length;
|
5093 |
}
|
5094 |
while (branch_length > 0);
|
5095 |
}
|
5096 |
|
5097 |
/* Fill in the ket */
|
5098 |
|
5099 |
*code = OP_KET;
|
5100 |
PUT(code, 1, code - start_bracket);
|
5101 |
code += 1 + LINK_SIZE;
|
5102 |
|
5103 |
/* Resetting option if needed */
|
5104 |
|
5105 |
if ((options & PCRE_IMS) != oldims && *ptr == ')')
|
5106 |
{
|
5107 |
*code++ = OP_OPT;
|
5108 |
*code++ = oldims;
|
5109 |
length += 2;
|
5110 |
}
|
5111 |
|
5112 |
/* Retain the highest bracket number, in case resetting was used. */
|
5113 |
|
5114 |
cd->bracount = max_bracount;
|
5115 |
|
5116 |
/* Set values to pass back */
|
5117 |
|
5118 |
*codeptr = code;
|
5119 |
*ptrptr = ptr;
|
5120 |
*firstbyteptr = firstbyte;
|
5121 |
*reqbyteptr = reqbyte;
|
5122 |
if (lengthptr != NULL) *lengthptr += length;
|
5123 |
return TRUE;
|
5124 |
}
|
5125 |
|
5126 |
/* Another branch follows. In the pre-compile phase, we can move the code
|
5127 |
pointer back to where it was for the start of the first branch. (That is,
|
5128 |
pretend that each branch is the only one.)
|
5129 |
|
5130 |
In the real compile phase, insert an ALT node. Its length field points back
|
5131 |
to the previous branch while the bracket remains open. At the end the chain
|
5132 |
is reversed. It's done like this so that the start of the bracket has a
|
5133 |
zero offset until it is closed, making it possible to detect recursion. */
|
5134 |
|
5135 |
if (lengthptr != NULL)
|
5136 |
{
|
5137 |
code = *codeptr + 1 + LINK_SIZE + skipbytes;
|
5138 |
length += 1 + LINK_SIZE;
|
5139 |
}
|
5140 |
else
|
5141 |
{
|
5142 |
*code = OP_ALT;
|
5143 |
PUT(code, 1, code - last_branch);
|
5144 |
bc.current = last_branch = code;
|
5145 |
code += 1 + LINK_SIZE;
|
5146 |
}
|
5147 |
|
5148 |
ptr++;
|
5149 |
}
|
5150 |
/* Control never reaches here */
|
5151 |
}
|
5152 |
|
5153 |
|
5154 |
|
5155 |
|
5156 |
/*************************************************
|
5157 |
* Check for anchored expression *
|
5158 |
*************************************************/
|
5159 |
|
5160 |
/* Try to find out if this is an anchored regular expression. Consider each
|
5161 |
alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket
|
5162 |
all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then
|
5163 |
it's anchored. However, if this is a multiline pattern, then only OP_SOD
|
5164 |
counts, since OP_CIRC can match in the middle.
|
5165 |
|
5166 |
We can also consider a regex to be anchored if OP_SOM starts all its branches.
|
5167 |
This is the code for \G, which means "match at start of match position, taking
|
5168 |
into account the match offset".
|
5169 |
|
5170 |
A branch is also implicitly anchored if it starts with .* and DOTALL is set,
|
5171 |
because that will try the rest of the pattern at all possible matching points,
|
5172 |
so there is no point trying again.... er ....
|
5173 |
|
5174 |
.... except when the .* appears inside capturing parentheses, and there is a
|
5175 |
subsequent back reference to those parentheses. We haven't enough information
|
5176 |
to catch that case precisely.
|
5177 |
|
5178 |
At first, the best we could do was to detect when .* was in capturing brackets
|
5179 |
and the highest back reference was greater than or equal to that level.
|
5180 |
However, by keeping a bitmap of the first 31 back references, we can catch some
|
5181 |
of the more common cases more precisely.
|
5182 |
|
5183 |
Arguments:
|
5184 |
code points to start of expression (the bracket)
|
5185 |
options points to the options setting
|
5186 |
bracket_map a bitmap of which brackets we are inside while testing; this
|
5187 |
handles up to substring 31; after that we just have to take
|
5188 |
the less precise approach
|
5189 |
backref_map the back reference bitmap
|
5190 |
|
5191 |
Returns: TRUE or FALSE
|
5192 |
*/
|
5193 |
|
5194 |
static BOOL
|
5195 |
is_anchored(register const uschar *code, int *options, unsigned int bracket_map,
|
5196 |
unsigned int backref_map)
|
5197 |
{
|
5198 |
do {
|
5199 |
const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],
|
5200 |
options, PCRE_MULTILINE, FALSE);
|
5201 |
register int op = *scode;
|
5202 |
|
5203 |
/* Non-capturing brackets */
|
5204 |
|
5205 |
if (op == OP_BRA)
|
5206 |
{
|
5207 |
if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE;
|
5208 |
}
|
5209 |
|
5210 |
/* Capturing brackets */
|
5211 |
|
5212 |
else if (op == OP_CBRA)
|
5213 |
{
|
5214 |
int n = GET2(scode, 1+LINK_SIZE);
|
5215 |
int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
|
5216 |
if (!is_anchored(scode, options, new_map, backref_map)) return FALSE;
|
5217 |
}
|
5218 |
|
5219 |
/* Other brackets */
|
5220 |
|
5221 |
else if (op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
|
5222 |
{
|
5223 |
if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE;
|
5224 |
}
|
5225 |
|
5226 |
/* .* is not anchored unless DOTALL is set and it isn't in brackets that
|
5227 |
are or may be referenced. */
|
5228 |
|
5229 |
else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR ||
|
5230 |
op == OP_TYPEPOSSTAR) &&
|
5231 |
(*options & PCRE_DOTALL) != 0)
|
5232 |
{
|
5233 |
if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE;
|
5234 |
}
|
5235 |
|
5236 |
/* Check for explicit anchoring */
|
5237 |
|
5238 |
else if (op != OP_SOD && op != OP_SOM &&
|
5239 |
((*options & PCRE_MULTILINE) != 0 || op != OP_CIRC))
|
5240 |
return FALSE;
|
5241 |
code += GET(code, 1);
|
5242 |
}
|
5243 |
while (*code == OP_ALT); /* Loop for each alternative */
|
5244 |
return TRUE;
|
5245 |
}
|
5246 |
|
5247 |
|
5248 |
|
5249 |
/*************************************************
|
5250 |
* Check for starting with ^ or .* *
|
5251 |
*************************************************/
|
5252 |
|
5253 |
/* This is called to find out if every branch starts with ^ or .* so that
|
5254 |
"first char" processing can be done to speed things up in multiline
|
5255 |
matching and for non-DOTALL patterns that start with .* (which must start at
|
5256 |
the beginning or after \n). As in the case of is_anchored() (see above), we
|
5257 |
have to take account of back references to capturing brackets that contain .*
|
5258 |
because in that case we can't make the assumption.
|
5259 |
|
5260 |
Arguments:
|
5261 |
code points to start of expression (the bracket)
|
5262 |
bracket_map a bitmap of which brackets we are inside while testing; this
|
5263 |
handles up to substring 31; after that we just have to take
|
5264 |
the less precise approach
|
5265 |
backref_map the back reference bitmap
|
5266 |
|
5267 |
Returns: TRUE or FALSE
|
5268 |
*/
|
5269 |
|
5270 |
static BOOL
|
5271 |
is_startline(const uschar *code, unsigned int bracket_map,
|
5272 |
unsigned int backref_map)
|
5273 |
{
|
5274 |
do {
|
5275 |
const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],
|
5276 |
NULL, 0, FALSE);
|
5277 |
register int op = *scode;
|
5278 |
|
5279 |
/* Non-capturing brackets */
|
5280 |
|
5281 |
if (op == OP_BRA)
|
5282 |
{
|
5283 |
if (!is_startline(scode, bracket_map, backref_map)) return FALSE;
|
5284 |
}
|
5285 |
|
5286 |
/* Capturing brackets */
|
5287 |
|
5288 |
else if (op == OP_CBRA)
|
5289 |
{
|
5290 |
int n = GET2(scode, 1+LINK_SIZE);
|
5291 |
int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
|
5292 |
if (!is_startline(scode, new_map, backref_map)) return FALSE;
|
5293 |
}
|
5294 |
|
5295 |
/* Other brackets */
|
5296 |
|
5297 |
else if (op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
|
5298 |
{ if (!is_startline(scode, bracket_map, backref_map)) return FALSE; }
|
5299 |
|
5300 |
/* .* means "start at start or after \n" if it isn't in brackets that
|
5301 |
may be referenced. */
|
5302 |
|
5303 |
else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR || op == OP_TYPEPOSSTAR)
|
5304 |
{
|
5305 |
if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE;
|
5306 |
}
|
5307 |
|
5308 |
/* Check for explicit circumflex */
|
5309 |
|
5310 |
else if (op != OP_CIRC) return FALSE;
|
5311 |
|
5312 |
/* Move on to the next alternative */
|
5313 |
|
5314 |
code += GET(code, 1);
|
5315 |
}
|
5316 |
while (*code == OP_ALT); /* Loop for each alternative */
|
5317 |
return TRUE;
|
5318 |
}
|
5319 |
|
5320 |
|
5321 |
|
5322 |
/*************************************************
|
5323 |
* Check for asserted fixed first char *
|
5324 |
*************************************************/
|
5325 |
|
5326 |
/* During compilation, the "first char" settings from forward assertions are
|
5327 |
discarded, because they can cause conflicts with actual literals that follow.
|
5328 |
However, if we end up without a first char setting for an unanchored pattern,
|
5329 |
it is worth scanning the regex to see if there is an initial asserted first
|
5330 |
char. If all branches start with the same asserted char, or with a bracket all
|
5331 |
of whose alternatives start with the same asserted char (recurse ad lib), then
|
5332 |
we return that char, otherwise -1.
|
5333 |
|
5334 |
Arguments:
|
5335 |
code points to start of expression (the bracket)
|
5336 |
options pointer to the options (used to check casing changes)
|
5337 |
inassert TRUE if in an assertion
|
5338 |
|
5339 |
Returns: -1 or the fixed first char
|
5340 |
*/
|
5341 |
|
5342 |
static int
|
5343 |
find_firstassertedchar(const uschar *code, int *options, BOOL inassert)
|
5344 |
{
|
5345 |
register int c = -1;
|
5346 |
do {
|
5347 |
int d;
|
5348 |
const uschar *scode =
|
5349 |
first_significant_code(code + 1+LINK_SIZE, options, PCRE_CASELESS, TRUE);
|
5350 |
register int op = *scode;
|
5351 |
|
5352 |
switch(op)
|
5353 |
{
|
5354 |
default:
|
5355 |
return -1;
|
5356 |
|
5357 |
case OP_BRA:
|
5358 |
case OP_CBRA:
|
5359 |
case OP_ASSERT:
|
5360 |
case OP_ONCE:
|
5361 |
case OP_COND:
|
5362 |
if ((d = find_firstassertedchar(scode, options, op == OP_ASSERT)) < 0)
|
5363 |
return -1;
|
5364 |
if (c < 0) c = d; else if (c != d) return -1;
|
5365 |
break;
|
5366 |
|
5367 |
case OP_EXACT: /* Fall through */
|
5368 |
scode += 2;
|
5369 |
|
5370 |
case OP_CHAR:
|
5371 |
case OP_CHARNC:
|
5372 |
case OP_PLUS:
|
5373 |
case OP_MINPLUS:
|
5374 |
case OP_POSPLUS:
|
5375 |
if (!inassert) return -1;
|
5376 |
if (c < 0)
|
5377 |
{
|
5378 |
c = scode[1];
|
5379 |
if ((*options & PCRE_CASELESS) != 0) c |= REQ_CASELESS;
|
5380 |
}
|
5381 |
else if (c != scode[1]) return -1;
|
5382 |
break;
|
5383 |
}
|
5384 |
|
5385 |
code += GET(code, 1);
|
5386 |
}
|
5387 |
while (*code == OP_ALT);
|
5388 |
return c;
|
5389 |
}
|
5390 |
|
5391 |
|
5392 |
|
5393 |
/*************************************************
|
5394 |
* Compile a Regular Expression *
|
5395 |
*************************************************/
|
5396 |
|
5397 |
/* This function takes a string and returns a pointer to a block of store
|
5398 |
holding a compiled version of the expression. The original API for this
|
5399 |
function had no error code return variable; it is retained for backwards
|
5400 |
compatibility. The new function is given a new name.
|
5401 |
|
5402 |
Arguments:
|
5403 |
pattern the regular expression
|
5404 |
options various option bits
|
5405 |
errorcodeptr pointer to error code variable (pcre_compile2() only)
|
5406 |
can be NULL if you don't want a code value
|
5407 |
errorptr pointer to pointer to error text
|
5408 |
erroroffset ptr offset in pattern where error was detected
|
5409 |
tables pointer to character tables or NULL
|
5410 |
|
5411 |
Returns: pointer to compiled data block, or NULL on error,
|
5412 |
with errorptr and erroroffset set
|
5413 |
*/
|
5414 |
|
5415 |
PCRE_EXP_DEFN pcre *
|
5416 |
pcre_compile(const char *pattern, int options, const char **errorptr,
|
5417 |
int *erroroffset, const unsigned char *tables)
|
5418 |
{
|
5419 |
return pcre_compile2(pattern, options, NULL, errorptr, erroroffset, tables);
|
5420 |
}
|
5421 |
|
5422 |
|
5423 |
PCRE_EXP_DEFN pcre *
|
5424 |
pcre_compile2(const char *pattern, int options, int *errorcodeptr,
|
5425 |
const char **errorptr, int *erroroffset, const unsigned char *tables)
|
5426 |
{
|
5427 |
real_pcre *re;
|
5428 |
int length = 1; /* For final END opcode */
|
5429 |
int firstbyte, reqbyte, newline;
|
5430 |
int errorcode = 0;
|
5431 |
#ifdef SUPPORT_UTF8
|
5432 |
BOOL utf8;
|
5433 |
#endif
|
5434 |
size_t size;
|
5435 |
uschar *code;
|
5436 |
const uschar *codestart;
|
5437 |
const uschar *ptr;
|
5438 |
compile_data compile_block;
|
5439 |
compile_data *cd = &compile_block;
|
5440 |
|
5441 |
/* This space is used for "compiling" into during the first phase, when we are
|
5442 |
computing the amount of memory that is needed. Compiled items are thrown away
|
5443 |
as soon as possible, so that a fairly large buffer should be sufficient for
|
5444 |
this purpose. The same space is used in the second phase for remembering where
|
5445 |
to fill in forward references to subpatterns. */
|
5446 |
|
5447 |
uschar cworkspace[COMPILE_WORK_SIZE];
|
5448 |
|
5449 |
|
5450 |
/* Set this early so that early errors get offset 0. */
|
5451 |
|
5452 |
ptr = (const uschar *)pattern;
|
5453 |
|
5454 |
/* We can't pass back an error message if errorptr is NULL; I guess the best we
|
5455 |
can do is just return NULL, but we can set a code value if there is a code
|
5456 |
pointer. */
|
5457 |
|
5458 |
if (errorptr == NULL)
|
5459 |
{
|
5460 |
if (errorcodeptr != NULL) *errorcodeptr = 99;
|
5461 |
return NULL;
|
5462 |
}
|
5463 |
|
5464 |
*errorptr = NULL;
|
5465 |
if (errorcodeptr != NULL) *errorcodeptr = ERR0;
|
5466 |
|
5467 |
/* However, we can give a message for this error */
|
5468 |
|
5469 |
if (erroroffset == NULL)
|
5470 |
{
|
5471 |
errorcode = ERR16;
|
5472 |
goto PCRE_EARLY_ERROR_RETURN2;
|
5473 |
}
|
5474 |
|
5475 |
*erroroffset = 0;
|
5476 |
|
5477 |
/* Can't support UTF8 unless PCRE has been compiled to include the code. */
|
5478 |
|
5479 |
#ifdef SUPPORT_UTF8
|
5480 |
utf8 = (options & PCRE_UTF8) != 0;
|
5481 |
if (utf8 && (options & PCRE_NO_UTF8_CHECK) == 0 &&
|
5482 |
(*erroroffset = _pcre_valid_utf8((uschar *)pattern, -1)) >= 0)
|
5483 |
{
|
5484 |
errorcode = ERR44;
|
5485 |
goto PCRE_EARLY_ERROR_RETURN2;
|
5486 |
}
|
5487 |
#else
|
5488 |
if ((options & PCRE_UTF8) != 0)
|
5489 |
{
|
5490 |
errorcode = ERR32;
|
5491 |
goto PCRE_EARLY_ERROR_RETURN;
|
5492 |
}
|
5493 |
#endif
|
5494 |
|
5495 |
if ((options & ~PUBLIC_OPTIONS) != 0)
|
5496 |
{
|
5497 |
errorcode = ERR17;
|
5498 |
goto PCRE_EARLY_ERROR_RETURN;
|
5499 |
}
|
5500 |
|
5501 |
/* Set up pointers to the individual character tables */
|
5502 |
|
5503 |
if (tables == NULL) tables = _pcre_default_tables;
|
5504 |
cd->lcc = tables + lcc_offset;
|
5505 |
cd->fcc = tables + fcc_offset;
|
5506 |
cd->cbits = tables + cbits_offset;
|
5507 |
cd->ctypes = tables + ctypes_offset;
|
5508 |
|
5509 |
/* Handle different types of newline. The three bits give seven cases. The
|
5510 |
current code allows for fixed one- or two-byte sequences, plus "any" and
|
5511 |
"anycrlf". */
|
5512 |
|
5513 |
switch (options & (PCRE_NEWLINE_CRLF | PCRE_NEWLINE_ANY))
|
5514 |
{
|
5515 |
case 0: newline = NEWLINE; break; /* Compile-time default */
|
5516 |
case PCRE_NEWLINE_CR: newline = '\r'; break;
|
5517 |
case PCRE_NEWLINE_LF: newline = '\n'; break;
|
5518 |
case PCRE_NEWLINE_CR+
|
5519 |
PCRE_NEWLINE_LF: newline = ('\r' << 8) | '\n'; break;
|
5520 |
case PCRE_NEWLINE_ANY: newline = -1; break;
|
5521 |
case PCRE_NEWLINE_ANYCRLF: newline = -2; break;
|
5522 |
default: errorcode = ERR56; goto PCRE_EARLY_ERROR_RETURN;
|
5523 |
}
|
5524 |
|
5525 |
if (newline == -2)
|
5526 |
{
|
5527 |
cd->nltype = NLTYPE_ANYCRLF;
|
5528 |
}
|
5529 |
else if (newline < 0)
|
5530 |
{
|
5531 |
cd->nltype = NLTYPE_ANY;
|
5532 |
}
|
5533 |
else
|
5534 |
{
|
5535 |
cd->nltype = NLTYPE_FIXED;
|
5536 |
if (newline > 255)
|
5537 |
{
|
5538 |
cd->nllen = 2;
|
5539 |
cd->nl[0] = (newline >> 8) & 255;
|
5540 |
cd->nl[1] = newline & 255;
|
5541 |
}
|
5542 |
else
|
5543 |
{
|
5544 |
cd->nllen = 1;
|
5545 |
cd->nl[0] = newline;
|
5546 |
}
|
5547 |
}
|
5548 |
|
5549 |
/* Maximum back reference and backref bitmap. The bitmap records up to 31 back
|
5550 |
references to help in deciding whether (.*) can be treated as anchored or not.
|
5551 |
*/
|
5552 |
|
5553 |
cd->top_backref = 0;
|
5554 |
cd->backref_map = 0;
|
5555 |
|
5556 |
/* Reflect pattern for debugging output */
|
5557 |
|
5558 |
DPRINTF(("------------------------------------------------------------------\n"));
|
5559 |
DPRINTF(("%s\n", pattern));
|
5560 |
|
5561 |
/* Pretend to compile the pattern while actually just accumulating the length
|
5562 |
of memory required. This behaviour is triggered by passing a non-NULL final
|
5563 |
argument to compile_regex(). We pass a block of workspace (cworkspace) for it
|
5564 |
to compile parts of the pattern into; the compiled code is discarded when it is
|
5565 |
no longer needed, so hopefully this workspace will never overflow, though there
|
5566 |
is a test for its doing so. */
|
5567 |
|
5568 |
cd->bracount = 0;
|
5569 |
cd->names_found = 0;
|
5570 |
cd->name_entry_size = 0;
|
5571 |
cd->name_table = NULL;
|
5572 |
cd->start_workspace = cworkspace;
|
5573 |
cd->start_code = cworkspace;
|
5574 |
cd->hwm = cworkspace;
|
5575 |
cd->start_pattern = (const uschar *)pattern;
|
5576 |
cd->end_pattern = (const uschar *)(pattern + strlen(pattern));
|
5577 |
cd->req_varyopt = 0;
|
5578 |
cd->nopartial = FALSE;
|
5579 |
cd->external_options = options;
|
5580 |
|
5581 |
/* Now do the pre-compile. On error, errorcode will be set non-zero, so we
|
5582 |
don't need to look at the result of the function here. The initial options have
|
5583 |
been put into the cd block so that they can be changed if an option setting is
|
5584 |
found within the regex right at the beginning. Bringing initial option settings
|
5585 |
outside can help speed up starting point checks. */
|
5586 |
|
5587 |
code = cworkspace;
|
5588 |
*code = OP_BRA;
|
5589 |
(void)compile_regex(cd->external_options, cd->external_options & PCRE_IMS,
|
5590 |
&code, &ptr, &errorcode, FALSE, FALSE, 0, &firstbyte, &reqbyte, NULL, cd,
|
5591 |
&length);
|
5592 |
if (errorcode != 0) goto PCRE_EARLY_ERROR_RETURN;
|
5593 |
|
5594 |
DPRINTF(("end pre-compile: length=%d workspace=%d\n", length,
|
5595 |
cd->hwm - cworkspace));
|
5596 |
|
5597 |
if (length > MAX_PATTERN_SIZE)
|
5598 |
{
|
5599 |
errorcode = ERR20;
|
5600 |
goto PCRE_EARLY_ERROR_RETURN;
|
5601 |
}
|
5602 |
|
5603 |
/* Compute the size of data block needed and get it, either from malloc or
|
5604 |
externally provided function. Integer overflow should no longer be possible
|
5605 |
because nowadays we limit the maximum value of cd->names_found and
|
5606 |
cd->name_entry_size. */
|
5607 |
|
5608 |
size = length + sizeof(real_pcre) + cd->names_found * (cd->name_entry_size + 3);
|
5609 |
re = (real_pcre *)(pcre_malloc)(size);
|
5610 |
|
5611 |
if (re == NULL)
|
5612 |
{
|
5613 |
errorcode = ERR21;
|
5614 |
goto PCRE_EARLY_ERROR_RETURN;
|
5615 |
}
|
5616 |
|
5617 |
/* Put in the magic number, and save the sizes, initial options, and character
|
5618 |
table pointer. NULL is used for the default character tables. The nullpad field
|
5619 |
is at the end; it's there to help in the case when a regex compiled on a system
|
5620 |
with 4-byte pointers is run on another with 8-byte pointers. */
|
5621 |
|
5622 |
re->magic_number = MAGIC_NUMBER;
|
5623 |
re->size = size;
|
5624 |
re->options = cd->external_options;
|
5625 |
re->dummy1 = 0;
|
5626 |
re->first_byte = 0;
|
5627 |
re->req_byte = 0;
|
5628 |
re->name_table_offset = sizeof(real_pcre);
|
5629 |
re->name_entry_size = cd->name_entry_size;
|
5630 |
re->name_count = cd->names_found;
|
5631 |
re->ref_count = 0;
|
5632 |
re->tables = (tables == _pcre_default_tables)? NULL : tables;
|
5633 |
re->nullpad = NULL;
|
5634 |
|
5635 |
/* The starting points of the name/number translation table and of the code are
|
5636 |
passed around in the compile data block. The start/end pattern and initial
|
5637 |
options are already set from the pre-compile phase, as is the name_entry_size
|
5638 |
field. Reset the bracket count and the names_found field. Also reset the hwm
|
5639 |
field; this time it's used for remembering forward references to subpatterns.
|
5640 |
*/
|
5641 |
|
5642 |
cd->bracount = 0;
|
5643 |
cd->names_found = 0;
|
5644 |
cd->name_table = (uschar *)re + re->name_table_offset;
|
5645 |
codestart = cd->name_table + re->name_entry_size * re->name_count;
|
5646 |
cd->start_code = codestart;
|
5647 |
cd->hwm = cworkspace;
|
5648 |
cd->req_varyopt = 0;
|
5649 |
cd->nopartial = FALSE;
|
5650 |
|
5651 |
/* Set up a starting, non-extracting bracket, then compile the expression. On
|
5652 |
error, errorcode will be set non-zero, so we don't need to look at the result
|
5653 |
of the function here. */
|
5654 |
|
5655 |
ptr = (const uschar *)pattern;
|
5656 |
code = (uschar *)codestart;
|
5657 |
*code = OP_BRA;
|
5658 |
(void)compile_regex(re->options, re->options & PCRE_IMS, &code, &ptr,
|
5659 |
&errorcode, FALSE, FALSE, 0, &firstbyte, &reqbyte, NULL, cd, NULL);
|
5660 |
re->top_bracket = cd->bracount;
|
5661 |
re->top_backref = cd->top_backref;
|
5662 |
|
5663 |
if (cd->nopartial) re->options |= PCRE_NOPARTIAL;
|
5664 |
|
5665 |
/* If not reached end of pattern on success, there's an excess bracket. */
|
5666 |
|
5667 |
if (errorcode == 0 && *ptr != 0) errorcode = ERR22;
|
5668 |
|
5669 |
/* Fill in the terminating state and check for disastrous overflow, but
|
5670 |
if debugging, leave the test till after things are printed out. */
|
5671 |
|
5672 |
*code++ = OP_END;
|
5673 |
|
5674 |
#ifndef DEBUG
|
5675 |
if (code - codestart > length) errorcode = ERR23;
|
5676 |
#endif
|
5677 |
|
5678 |
/* Fill in any forward references that are required. */
|
5679 |
|
5680 |
while (errorcode == 0 && cd->hwm > cworkspace)
|
5681 |
{
|
5682 |
int offset, recno;
|
5683 |
const uschar *groupptr;
|
5684 |
cd->hwm -= LINK_SIZE;
|
5685 |
offset = GET(cd->hwm, 0);
|
5686 |
recno = GET(codestart, offset);
|
5687 |
groupptr = find_bracket(codestart, (re->options & PCRE_UTF8) != 0, recno);
|
5688 |
if (groupptr == NULL) errorcode = ERR53;
|
5689 |
else PUT(((uschar *)codestart), offset, groupptr - codestart);
|
5690 |
}
|
5691 |
|
5692 |
/* Give an error if there's back reference to a non-existent capturing
|
5693 |
subpattern. */
|
5694 |
|
5695 |
if (errorcode == 0 && re->top_backref > re->top_bracket) errorcode = ERR15;
|
5696 |
|
5697 |
/* Failed to compile, or error while post-processing */
|
5698 |
|
5699 |
if (errorcode != 0)
|
5700 |
{
|
5701 |
(pcre_free)(re);
|
5702 |
PCRE_EARLY_ERROR_RETURN:
|
5703 |
*erroroffset = ptr - (const uschar *)pattern;
|
5704 |
PCRE_EARLY_ERROR_RETURN2:
|
5705 |
*errorptr = error_texts[errorcode];
|
5706 |
if (errorcodeptr != NULL) *errorcodeptr = errorcode;
|
5707 |
return NULL;
|
5708 |
}
|
5709 |
|
5710 |
/* If the anchored option was not passed, set the flag if we can determine that
|
5711 |
the pattern is anchored by virtue of ^ characters or \A or anything else (such
|
5712 |
as starting with .* when DOTALL is set).
|
5713 |
|
5714 |
Otherwise, if we know what the first byte has to be, save it, because that
|
5715 |
speeds up unanchored matches no end. If not, see if we can set the
|
5716 |
PCRE_STARTLINE flag. This is helpful for multiline matches when all branches
|
5717 |
start with ^. and also when all branches start with .* for non-DOTALL matches.
|
5718 |
*/
|
5719 |
|
5720 |
if ((re->options & PCRE_ANCHORED) == 0)
|
5721 |
{
|
5722 |
int temp_options = re->options; /* May get changed during these scans */
|
5723 |
if (is_anchored(codestart, &temp_options, 0, cd->backref_map))
|
5724 |
re->options |= PCRE_ANCHORED;
|
5725 |
else
|
5726 |
{
|
5727 |
if (firstbyte < 0)
|
5728 |
firstbyte = find_firstassertedchar(codestart, &temp_options, FALSE);
|
5729 |
if (firstbyte >= 0) /* Remove caseless flag for non-caseable chars */
|
5730 |
{
|
5731 |
int ch = firstbyte & 255;
|
5732 |
re->first_byte = ((firstbyte & REQ_CASELESS) != 0 &&
|
5733 |
cd->fcc[ch] == ch)? ch : firstbyte;
|
5734 |
re->options |= PCRE_FIRSTSET;
|
5735 |
}
|
5736 |
else if (is_startline(codestart, 0, cd->backref_map))
|
5737 |
re->options |= PCRE_STARTLINE;
|
5738 |
}
|
5739 |
}
|
5740 |
|
5741 |
/* For an anchored pattern, we use the "required byte" only if it follows a
|
5742 |
variable length item in the regex. Remove the caseless flag for non-caseable
|
5743 |
bytes. */
|
5744 |
|
5745 |
if (reqbyte >= 0 &&
|
5746 |
((re->options & PCRE_ANCHORED) == 0 || (reqbyte & REQ_VARY) != 0))
|
5747 |
{
|
5748 |
int ch = reqbyte & 255;
|
5749 |
re->req_byte = ((reqbyte & REQ_CASELESS) != 0 &&
|
5750 |
cd->fcc[ch] == ch)? (reqbyte & ~REQ_CASELESS) : reqbyte;
|
5751 |
re->options |= PCRE_REQCHSET;
|
5752 |
}
|
5753 |
|
5754 |
/* Print out the compiled data if debugging is enabled. This is never the
|
5755 |
case when building a production library. */
|
5756 |
|
5757 |
#ifdef DEBUG
|
5758 |
|
5759 |
printf("Length = %d top_bracket = %d top_backref = %d\n",
|
5760 |
length, re->top_bracket, re->top_backref);
|
5761 |
|
5762 |
if (re->options != 0)
|
5763 |
{
|
5764 |
printf("%s%s%s%s%s%s%s%s%s\n",
|
5765 |
((re->options & PCRE_NOPARTIAL) != 0)? "nopartial " : "",
|
5766 |
((re->options & PCRE_ANCHORED) != 0)? "anchored " : "",
|
5767 |
((re->options & PCRE_CASELESS) != 0)? "caseless " : "",
|
5768 |
((re->options & PCRE_EXTENDED) != 0)? "extended " : "",
|
5769 |
((re->options & PCRE_MULTILINE) != 0)? "multiline " : "",
|
5770 |
((re->options & PCRE_DOTALL) != 0)? "dotall " : "",
|
5771 |
((re->options & PCRE_DOLLAR_ENDONLY) != 0)? "endonly " : "",
|
5772 |
((re->options & PCRE_EXTRA) != 0)? "extra " : "",
|
5773 |
((re->options & PCRE_UNGREEDY) != 0)? "ungreedy " : "");
|
5774 |
}
|
5775 |
|
5776 |
if ((re->options & PCRE_FIRSTSET) != 0)
|
5777 |
{
|
5778 |
int ch = re->first_byte & 255;
|
5779 |
const char *caseless = ((re->first_byte & REQ_CASELESS) == 0)?
|
5780 |
"" : " (caseless)";
|
5781 |
if (isprint(ch)) printf("First char = %c%s\n", ch, caseless);
|
5782 |
else printf("First char = \\x%02x%s\n", ch, caseless);
|
5783 |
}
|
5784 |
|
5785 |
if ((re->options & PCRE_REQCHSET) != 0)
|
5786 |
{
|
5787 |
int ch = re->req_byte & 255;
|
5788 |
const char *caseless = ((re->req_byte & REQ_CASELESS) == 0)?
|
5789 |
"" : " (caseless)";
|
5790 |
if (isprint(ch)) printf("Req char = %c%s\n", ch, caseless);
|
5791 |
else printf("Req char = \\x%02x%s\n", ch, caseless);
|
5792 |
}
|
5793 |
|
5794 |
pcre_printint(re, stdout, TRUE);
|
5795 |
|
5796 |
/* This check is done here in the debugging case so that the code that
|
5797 |
was compiled can be seen. */
|
5798 |
|
5799 |
if (code - codestart > length)
|
5800 |
{
|
5801 |
(pcre_free)(re);
|
5802 |
*errorptr = error_texts[ERR23];
|
5803 |
*erroroffset = ptr - (uschar *)pattern;
|
5804 |
if (errorcodeptr != NULL) *errorcodeptr = ERR23;
|
5805 |
return NULL;
|
5806 |
}
|
5807 |
#endif /* DEBUG */
|
5808 |
|
5809 |
return (pcre *)re;
|
5810 |
}
|
5811 |
|
5812 |
/* End of pcre_compile.c */
|