Parent Directory
|
Revision Log
Added lower bound length-finding to pcre_study() and use it when matching; make the value available via pcre_fullinfo(); also fixed bugs connected with pcre_study() in pcre_dfa_exec().
1 | /************************************************* |
2 | * Perl-Compatible Regular Expressions * |
3 | *************************************************/ |
4 | |
5 | /* PCRE is a library of functions to support regular expressions whose syntax |
6 | and semantics are as close as possible to those of the Perl 5 language. |
7 | |
8 | Written by Philip Hazel |
9 | Copyright (c) 1997-2009 University of Cambridge |
10 | |
11 | ----------------------------------------------------------------------------- |
12 | Redistribution and use in source and binary forms, with or without |
13 | modification, are permitted provided that the following conditions are met: |
14 | |
15 | * Redistributions of source code must retain the above copyright notice, |
16 | this list of conditions and the following disclaimer. |
17 | |
18 | * Redistributions in binary form must reproduce the above copyright |
19 | notice, this list of conditions and the following disclaimer in the |
20 | documentation and/or other materials provided with the distribution. |
21 | |
22 | * Neither the name of the University of Cambridge nor the names of its |
23 | contributors may be used to endorse or promote products derived from |
24 | this software without specific prior written permission. |
25 | |
26 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
27 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
28 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
29 | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
30 | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
31 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
32 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
33 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
34 | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
35 | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
36 | POSSIBILITY OF SUCH DAMAGE. |
37 | ----------------------------------------------------------------------------- |
38 | */ |
39 | |
40 | |
41 | /* This module contains the external function pcre_compile(), along with |
42 | supporting internal functions that are not used by other modules. */ |
43 | |
44 | |
45 | #ifdef HAVE_CONFIG_H |
46 | #include "config.h" |
47 | #endif |
48 | |
49 | #define NLBLOCK cd /* Block containing newline information */ |
50 | #define PSSTART start_pattern /* Field containing processed string start */ |
51 | #define PSEND end_pattern /* Field containing processed string end */ |
52 | |
53 | #include "pcre_internal.h" |
54 | |
55 | |
56 | /* When DEBUG is defined, we need the pcre_printint() function, which is also |
57 | used by pcretest. DEBUG is not defined when building a production library. */ |
58 | |
59 | #ifdef DEBUG |
60 | #include "pcre_printint.src" |
61 | #endif |
62 | |
63 | |
64 | /* Macro for setting individual bits in class bitmaps. */ |
65 | |
66 | #define SETBIT(a,b) a[b/8] |= (1 << (b%8)) |
67 | |
68 | /* Maximum length value to check against when making sure that the integer that |
69 | holds the compiled pattern length does not overflow. We make it a bit less than |
70 | INT_MAX to allow for adding in group terminating bytes, so that we don't have |
71 | to check them every time. */ |
72 | |
73 | #define OFLOW_MAX (INT_MAX - 20) |
74 | |
75 | |
76 | /************************************************* |
77 | * Code parameters and static tables * |
78 | *************************************************/ |
79 | |
80 | /* This value specifies the size of stack workspace that is used during the |
81 | first pre-compile phase that determines how much memory is required. The regex |
82 | is partly compiled into this space, but the compiled parts are discarded as |
83 | soon as they can be, so that hopefully there will never be an overrun. The code |
84 | does, however, check for an overrun. The largest amount I've seen used is 218, |
85 | so this number is very generous. |
86 | |
87 | The same workspace is used during the second, actual compile phase for |
88 | remembering forward references to groups so that they can be filled in at the |
89 | end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE |
90 | is 4 there is plenty of room. */ |
91 | |
92 | #define COMPILE_WORK_SIZE (4096) |
93 | |
94 | |
95 | /* Table for handling escaped characters in the range '0'-'z'. Positive returns |
96 | are simple data values; negative values are for special things like \d and so |
97 | on. Zero means further processing is needed (for things like \x), or the escape |
98 | is invalid. */ |
99 | |
100 | #ifndef EBCDIC |
101 | |
102 | /* This is the "normal" table for ASCII systems or for EBCDIC systems running |
103 | in UTF-8 mode. */ |
104 | |
105 | static const short int escapes[] = { |
106 | 0, 0, |
107 | 0, 0, |
108 | 0, 0, |
109 | 0, 0, |
110 | 0, 0, |
111 | CHAR_COLON, CHAR_SEMICOLON, |
112 | CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN, |
113 | CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK, |
114 | CHAR_COMMERCIAL_AT, -ESC_A, |
115 | -ESC_B, -ESC_C, |
116 | -ESC_D, -ESC_E, |
117 | 0, -ESC_G, |
118 | -ESC_H, 0, |
119 | 0, -ESC_K, |
120 | 0, 0, |
121 | 0, 0, |
122 | -ESC_P, -ESC_Q, |
123 | -ESC_R, -ESC_S, |
124 | 0, 0, |
125 | -ESC_V, -ESC_W, |
126 | -ESC_X, 0, |
127 | -ESC_Z, CHAR_LEFT_SQUARE_BRACKET, |
128 | CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET, |
129 | CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE, |
130 | CHAR_GRAVE_ACCENT, 7, |
131 | -ESC_b, 0, |
132 | -ESC_d, ESC_e, |
133 | ESC_f, 0, |
134 | -ESC_h, 0, |
135 | 0, -ESC_k, |
136 | 0, 0, |
137 | ESC_n, 0, |
138 | -ESC_p, 0, |
139 | ESC_r, -ESC_s, |
140 | ESC_tee, 0, |
141 | -ESC_v, -ESC_w, |
142 | 0, 0, |
143 | -ESC_z |
144 | }; |
145 | |
146 | #else |
147 | |
148 | /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */ |
149 | |
150 | static const short int escapes[] = { |
151 | /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|', |
152 | /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0, |
153 | /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~', |
154 | /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0, |
155 | /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?', |
156 | /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0, |
157 | /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"', |
158 | /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, |
159 | /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0, |
160 | /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p, |
161 | /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0, |
162 | /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0, |
163 | /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0, |
164 | /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
165 | /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-', |
166 | /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G, |
167 | /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0, |
168 | /* D0 */ '}', 0, -ESC_K, 0, 0, 0, 0, -ESC_P, |
169 | /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0, |
170 | /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X, |
171 | /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0, |
172 | /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
173 | /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0 |
174 | }; |
175 | #endif |
176 | |
177 | |
178 | /* Table of special "verbs" like (*PRUNE). This is a short table, so it is |
179 | searched linearly. Put all the names into a single string, in order to reduce |
180 | the number of relocations when a shared library is dynamically linked. The |
181 | string is built from string macros so that it works in UTF-8 mode on EBCDIC |
182 | platforms. */ |
183 | |
184 | typedef struct verbitem { |
185 | int len; |
186 | int op; |
187 | } verbitem; |
188 | |
189 | static const char verbnames[] = |
190 | STRING_ACCEPT0 |
191 | STRING_COMMIT0 |
192 | STRING_F0 |
193 | STRING_FAIL0 |
194 | STRING_PRUNE0 |
195 | STRING_SKIP0 |
196 | STRING_THEN; |
197 | |
198 | static const verbitem verbs[] = { |
199 | { 6, OP_ACCEPT }, |
200 | { 6, OP_COMMIT }, |
201 | { 1, OP_FAIL }, |
202 | { 4, OP_FAIL }, |
203 | { 5, OP_PRUNE }, |
204 | { 4, OP_SKIP }, |
205 | { 4, OP_THEN } |
206 | }; |
207 | |
208 | static const int verbcount = sizeof(verbs)/sizeof(verbitem); |
209 | |
210 | |
211 | /* Tables of names of POSIX character classes and their lengths. The names are |
212 | now all in a single string, to reduce the number of relocations when a shared |
213 | library is dynamically loaded. The list of lengths is terminated by a zero |
214 | length entry. The first three must be alpha, lower, upper, as this is assumed |
215 | for handling case independence. */ |
216 | |
217 | static const char posix_names[] = |
218 | STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0 |
219 | STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0 |
220 | STRING_graph0 STRING_print0 STRING_punct0 STRING_space0 |
221 | STRING_word0 STRING_xdigit; |
222 | |
223 | static const uschar posix_name_lengths[] = { |
224 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 }; |
225 | |
226 | /* Table of class bit maps for each POSIX class. Each class is formed from a |
227 | base map, with an optional addition or removal of another map. Then, for some |
228 | classes, there is some additional tweaking: for [:blank:] the vertical space |
229 | characters are removed, and for [:alpha:] and [:alnum:] the underscore |
230 | character is removed. The triples in the table consist of the base map offset, |
231 | second map offset or -1 if no second map, and a non-negative value for map |
232 | addition or a negative value for map subtraction (if there are two maps). The |
233 | absolute value of the third field has these meanings: 0 => no tweaking, 1 => |
234 | remove vertical space characters, 2 => remove underscore. */ |
235 | |
236 | static const int posix_class_maps[] = { |
237 | cbit_word, cbit_digit, -2, /* alpha */ |
238 | cbit_lower, -1, 0, /* lower */ |
239 | cbit_upper, -1, 0, /* upper */ |
240 | cbit_word, -1, 2, /* alnum - word without underscore */ |
241 | cbit_print, cbit_cntrl, 0, /* ascii */ |
242 | cbit_space, -1, 1, /* blank - a GNU extension */ |
243 | cbit_cntrl, -1, 0, /* cntrl */ |
244 | cbit_digit, -1, 0, /* digit */ |
245 | cbit_graph, -1, 0, /* graph */ |
246 | cbit_print, -1, 0, /* print */ |
247 | cbit_punct, -1, 0, /* punct */ |
248 | cbit_space, -1, 0, /* space */ |
249 | cbit_word, -1, 0, /* word - a Perl extension */ |
250 | cbit_xdigit,-1, 0 /* xdigit */ |
251 | }; |
252 | |
253 | |
254 | #define STRING(a) # a |
255 | #define XSTRING(s) STRING(s) |
256 | |
257 | /* The texts of compile-time error messages. These are "char *" because they |
258 | are passed to the outside world. Do not ever re-use any error number, because |
259 | they are documented. Always add a new error instead. Messages marked DEAD below |
260 | are no longer used. This used to be a table of strings, but in order to reduce |
261 | the number of relocations needed when a shared library is loaded dynamically, |
262 | it is now one long string. We cannot use a table of offsets, because the |
263 | lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we |
264 | simply count through to the one we want - this isn't a performance issue |
265 | because these strings are used only when there is a compilation error. */ |
266 | |
267 | static const char error_texts[] = |
268 | "no error\0" |
269 | "\\ at end of pattern\0" |
270 | "\\c at end of pattern\0" |
271 | "unrecognized character follows \\\0" |
272 | "numbers out of order in {} quantifier\0" |
273 | /* 5 */ |
274 | "number too big in {} quantifier\0" |
275 | "missing terminating ] for character class\0" |
276 | "invalid escape sequence in character class\0" |
277 | "range out of order in character class\0" |
278 | "nothing to repeat\0" |
279 | /* 10 */ |
280 | "operand of unlimited repeat could match the empty string\0" /** DEAD **/ |
281 | "internal error: unexpected repeat\0" |
282 | "unrecognized character after (? or (?-\0" |
283 | "POSIX named classes are supported only within a class\0" |
284 | "missing )\0" |
285 | /* 15 */ |
286 | "reference to non-existent subpattern\0" |
287 | "erroffset passed as NULL\0" |
288 | "unknown option bit(s) set\0" |
289 | "missing ) after comment\0" |
290 | "parentheses nested too deeply\0" /** DEAD **/ |
291 | /* 20 */ |
292 | "regular expression is too large\0" |
293 | "failed to get memory\0" |
294 | "unmatched parentheses\0" |
295 | "internal error: code overflow\0" |
296 | "unrecognized character after (?<\0" |
297 | /* 25 */ |
298 | "lookbehind assertion is not fixed length\0" |
299 | "malformed number or name after (?(\0" |
300 | "conditional group contains more than two branches\0" |
301 | "assertion expected after (?(\0" |
302 | "(?R or (?[+-]digits must be followed by )\0" |
303 | /* 30 */ |
304 | "unknown POSIX class name\0" |
305 | "POSIX collating elements are not supported\0" |
306 | "this version of PCRE is not compiled with PCRE_UTF8 support\0" |
307 | "spare error\0" /** DEAD **/ |
308 | "character value in \\x{...} sequence is too large\0" |
309 | /* 35 */ |
310 | "invalid condition (?(0)\0" |
311 | "\\C not allowed in lookbehind assertion\0" |
312 | "PCRE does not support \\L, \\l, \\N, \\U, or \\u\0" |
313 | "number after (?C is > 255\0" |
314 | "closing ) for (?C expected\0" |
315 | /* 40 */ |
316 | "recursive call could loop indefinitely\0" |
317 | "unrecognized character after (?P\0" |
318 | "syntax error in subpattern name (missing terminator)\0" |
319 | "two named subpatterns have the same name\0" |
320 | "invalid UTF-8 string\0" |
321 | /* 45 */ |
322 | "support for \\P, \\p, and \\X has not been compiled\0" |
323 | "malformed \\P or \\p sequence\0" |
324 | "unknown property name after \\P or \\p\0" |
325 | "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0" |
326 | "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0" |
327 | /* 50 */ |
328 | "repeated subpattern is too long\0" /** DEAD **/ |
329 | "octal value is greater than \\377 (not in UTF-8 mode)\0" |
330 | "internal error: overran compiling workspace\0" |
331 | "internal error: previously-checked referenced subpattern not found\0" |
332 | "DEFINE group contains more than one branch\0" |
333 | /* 55 */ |
334 | "repeating a DEFINE group is not allowed\0" |
335 | "inconsistent NEWLINE options\0" |
336 | "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0" |
337 | "a numbered reference must not be zero\0" |
338 | "(*VERB) with an argument is not supported\0" |
339 | /* 60 */ |
340 | "(*VERB) not recognized\0" |
341 | "number is too big\0" |
342 | "subpattern name expected\0" |
343 | "digit expected after (?+\0" |
344 | "] is an invalid data character in JavaScript compatibility mode"; |
345 | |
346 | |
347 | /* Table to identify digits and hex digits. This is used when compiling |
348 | patterns. Note that the tables in chartables are dependent on the locale, and |
349 | may mark arbitrary characters as digits - but the PCRE compiling code expects |
350 | to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have |
351 | a private table here. It costs 256 bytes, but it is a lot faster than doing |
352 | character value tests (at least in some simple cases I timed), and in some |
353 | applications one wants PCRE to compile efficiently as well as match |
354 | efficiently. |
355 | |
356 | For convenience, we use the same bit definitions as in chartables: |
357 | |
358 | 0x04 decimal digit |
359 | 0x08 hexadecimal digit |
360 | |
361 | Then we can use ctype_digit and ctype_xdigit in the code. */ |
362 | |
363 | #ifndef EBCDIC |
364 | |
365 | /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in |
366 | UTF-8 mode. */ |
367 | |
368 | static const unsigned char digitab[] = |
369 | { |
370 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */ |
371 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
372 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */ |
373 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
374 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */ |
375 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */ |
376 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */ |
377 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */ |
378 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */ |
379 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */ |
380 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */ |
381 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */ |
382 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */ |
383 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */ |
384 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */ |
385 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */ |
386 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */ |
387 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */ |
388 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */ |
389 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */ |
390 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */ |
391 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */ |
392 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */ |
393 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
394 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */ |
395 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */ |
396 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */ |
397 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */ |
398 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */ |
399 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */ |
400 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */ |
401 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */ |
402 | |
403 | #else |
404 | |
405 | /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */ |
406 | |
407 | static const unsigned char digitab[] = |
408 | { |
409 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */ |
410 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
411 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */ |
412 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
413 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */ |
414 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
415 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */ |
416 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
417 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */ |
418 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */ |
419 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */ |
420 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */ |
421 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */ |
422 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */ |
423 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */ |
424 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
425 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */ |
426 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
427 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */ |
428 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
429 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */ |
430 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
431 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */ |
432 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
433 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */ |
434 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
435 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */ |
436 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
437 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */ |
438 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
439 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */ |
440 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
441 | |
442 | static const unsigned char ebcdic_chartab[] = { /* chartable partial dup */ |
443 | 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */ |
444 | 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */ |
445 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */ |
446 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
447 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */ |
448 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
449 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */ |
450 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
451 | 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */ |
452 | 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */ |
453 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */ |
454 | 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */ |
455 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */ |
456 | 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */ |
457 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */ |
458 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
459 | 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */ |
460 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
461 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */ |
462 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
463 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */ |
464 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
465 | 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */ |
466 | 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
467 | 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */ |
468 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
469 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */ |
470 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
471 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */ |
472 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
473 | 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */ |
474 | 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
475 | #endif |
476 | |
477 | |
478 | /* Definition to allow mutual recursion */ |
479 | |
480 | static BOOL |
481 | compile_regex(int, int, uschar **, const uschar **, int *, BOOL, BOOL, int, |
482 | int *, int *, branch_chain *, compile_data *, int *); |
483 | |
484 | |
485 | |
486 | /************************************************* |
487 | * Find an error text * |
488 | *************************************************/ |
489 | |
490 | /* The error texts are now all in one long string, to save on relocations. As |
491 | some of the text is of unknown length, we can't use a table of offsets. |
492 | Instead, just count through the strings. This is not a performance issue |
493 | because it happens only when there has been a compilation error. |
494 | |
495 | Argument: the error number |
496 | Returns: pointer to the error string |
497 | */ |
498 | |
499 | static const char * |
500 | find_error_text(int n) |
501 | { |
502 | const char *s = error_texts; |
503 | for (; n > 0; n--) while (*s++ != 0) {}; |
504 | return s; |
505 | } |
506 | |
507 | |
508 | /************************************************* |
509 | * Handle escapes * |
510 | *************************************************/ |
511 | |
512 | /* This function is called when a \ has been encountered. It either returns a |
513 | positive value for a simple escape such as \n, or a negative value which |
514 | encodes one of the more complicated things such as \d. A backreference to group |
515 | n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When |
516 | UTF-8 is enabled, a positive value greater than 255 may be returned. On entry, |
517 | ptr is pointing at the \. On exit, it is on the final character of the escape |
518 | sequence. |
519 | |
520 | Arguments: |
521 | ptrptr points to the pattern position pointer |
522 | errorcodeptr points to the errorcode variable |
523 | bracount number of previous extracting brackets |
524 | options the options bits |
525 | isclass TRUE if inside a character class |
526 | |
527 | Returns: zero or positive => a data character |
528 | negative => a special escape sequence |
529 | on error, errorcodeptr is set |
530 | */ |
531 | |
532 | static int |
533 | check_escape(const uschar **ptrptr, int *errorcodeptr, int bracount, |
534 | int options, BOOL isclass) |
535 | { |
536 | BOOL utf8 = (options & PCRE_UTF8) != 0; |
537 | const uschar *ptr = *ptrptr + 1; |
538 | int c, i; |
539 | |
540 | GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */ |
541 | ptr--; /* Set pointer back to the last byte */ |
542 | |
543 | /* If backslash is at the end of the pattern, it's an error. */ |
544 | |
545 | if (c == 0) *errorcodeptr = ERR1; |
546 | |
547 | /* Non-alphanumerics are literals. For digits or letters, do an initial lookup |
548 | in a table. A non-zero result is something that can be returned immediately. |
549 | Otherwise further processing may be required. */ |
550 | |
551 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
552 | else if (c < CHAR_0 || c > CHAR_z) {} /* Not alphanumeric */ |
553 | else if ((i = escapes[c - CHAR_0]) != 0) c = i; |
554 | |
555 | #else /* EBCDIC coding */ |
556 | else if (c < 'a' || (ebcdic_chartab[c] & 0x0E) == 0) {} /* Not alphanumeric */ |
557 | else if ((i = escapes[c - 0x48]) != 0) c = i; |
558 | #endif |
559 | |
560 | /* Escapes that need further processing, or are illegal. */ |
561 | |
562 | else |
563 | { |
564 | const uschar *oldptr; |
565 | BOOL braced, negated; |
566 | |
567 | switch (c) |
568 | { |
569 | /* A number of Perl escapes are not handled by PCRE. We give an explicit |
570 | error. */ |
571 | |
572 | case CHAR_l: |
573 | case CHAR_L: |
574 | case CHAR_N: |
575 | case CHAR_u: |
576 | case CHAR_U: |
577 | *errorcodeptr = ERR37; |
578 | break; |
579 | |
580 | /* \g must be followed by one of a number of specific things: |
581 | |
582 | (1) A number, either plain or braced. If positive, it is an absolute |
583 | backreference. If negative, it is a relative backreference. This is a Perl |
584 | 5.10 feature. |
585 | |
586 | (2) Perl 5.10 also supports \g{name} as a reference to a named group. This |
587 | is part of Perl's movement towards a unified syntax for back references. As |
588 | this is synonymous with \k{name}, we fudge it up by pretending it really |
589 | was \k. |
590 | |
591 | (3) For Oniguruma compatibility we also support \g followed by a name or a |
592 | number either in angle brackets or in single quotes. However, these are |
593 | (possibly recursive) subroutine calls, _not_ backreferences. Just return |
594 | the -ESC_g code (cf \k). */ |
595 | |
596 | case CHAR_g: |
597 | if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE) |
598 | { |
599 | c = -ESC_g; |
600 | break; |
601 | } |
602 | |
603 | /* Handle the Perl-compatible cases */ |
604 | |
605 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
606 | { |
607 | const uschar *p; |
608 | for (p = ptr+2; *p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET; p++) |
609 | if (*p != CHAR_MINUS && (digitab[*p] & ctype_digit) == 0) break; |
610 | if (*p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET) |
611 | { |
612 | c = -ESC_k; |
613 | break; |
614 | } |
615 | braced = TRUE; |
616 | ptr++; |
617 | } |
618 | else braced = FALSE; |
619 | |
620 | if (ptr[1] == CHAR_MINUS) |
621 | { |
622 | negated = TRUE; |
623 | ptr++; |
624 | } |
625 | else negated = FALSE; |
626 | |
627 | c = 0; |
628 | while ((digitab[ptr[1]] & ctype_digit) != 0) |
629 | c = c * 10 + *(++ptr) - CHAR_0; |
630 | |
631 | if (c < 0) /* Integer overflow */ |
632 | { |
633 | *errorcodeptr = ERR61; |
634 | break; |
635 | } |
636 | |
637 | if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET) |
638 | { |
639 | *errorcodeptr = ERR57; |
640 | break; |
641 | } |
642 | |
643 | if (c == 0) |
644 | { |
645 | *errorcodeptr = ERR58; |
646 | break; |
647 | } |
648 | |
649 | if (negated) |
650 | { |
651 | if (c > bracount) |
652 | { |
653 | *errorcodeptr = ERR15; |
654 | break; |
655 | } |
656 | c = bracount - (c - 1); |
657 | } |
658 | |
659 | c = -(ESC_REF + c); |
660 | break; |
661 | |
662 | /* The handling of escape sequences consisting of a string of digits |
663 | starting with one that is not zero is not straightforward. By experiment, |
664 | the way Perl works seems to be as follows: |
665 | |
666 | Outside a character class, the digits are read as a decimal number. If the |
667 | number is less than 10, or if there are that many previous extracting |
668 | left brackets, then it is a back reference. Otherwise, up to three octal |
669 | digits are read to form an escaped byte. Thus \123 is likely to be octal |
670 | 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal |
671 | value is greater than 377, the least significant 8 bits are taken. Inside a |
672 | character class, \ followed by a digit is always an octal number. */ |
673 | |
674 | case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5: |
675 | case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
676 | |
677 | if (!isclass) |
678 | { |
679 | oldptr = ptr; |
680 | c -= CHAR_0; |
681 | while ((digitab[ptr[1]] & ctype_digit) != 0) |
682 | c = c * 10 + *(++ptr) - CHAR_0; |
683 | if (c < 0) /* Integer overflow */ |
684 | { |
685 | *errorcodeptr = ERR61; |
686 | break; |
687 | } |
688 | if (c < 10 || c <= bracount) |
689 | { |
690 | c = -(ESC_REF + c); |
691 | break; |
692 | } |
693 | ptr = oldptr; /* Put the pointer back and fall through */ |
694 | } |
695 | |
696 | /* Handle an octal number following \. If the first digit is 8 or 9, Perl |
697 | generates a binary zero byte and treats the digit as a following literal. |
698 | Thus we have to pull back the pointer by one. */ |
699 | |
700 | if ((c = *ptr) >= CHAR_8) |
701 | { |
702 | ptr--; |
703 | c = 0; |
704 | break; |
705 | } |
706 | |
707 | /* \0 always starts an octal number, but we may drop through to here with a |
708 | larger first octal digit. The original code used just to take the least |
709 | significant 8 bits of octal numbers (I think this is what early Perls used |
710 | to do). Nowadays we allow for larger numbers in UTF-8 mode, but no more |
711 | than 3 octal digits. */ |
712 | |
713 | case CHAR_0: |
714 | c -= CHAR_0; |
715 | while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7) |
716 | c = c * 8 + *(++ptr) - CHAR_0; |
717 | if (!utf8 && c > 255) *errorcodeptr = ERR51; |
718 | break; |
719 | |
720 | /* \x is complicated. \x{ddd} is a character number which can be greater |
721 | than 0xff in utf8 mode, but only if the ddd are hex digits. If not, { is |
722 | treated as a data character. */ |
723 | |
724 | case CHAR_x: |
725 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
726 | { |
727 | const uschar *pt = ptr + 2; |
728 | int count = 0; |
729 | |
730 | c = 0; |
731 | while ((digitab[*pt] & ctype_xdigit) != 0) |
732 | { |
733 | register int cc = *pt++; |
734 | if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */ |
735 | count++; |
736 | |
737 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
738 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
739 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
740 | #else /* EBCDIC coding */ |
741 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
742 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
743 | #endif |
744 | } |
745 | |
746 | if (*pt == CHAR_RIGHT_CURLY_BRACKET) |
747 | { |
748 | if (c < 0 || count > (utf8? 8 : 2)) *errorcodeptr = ERR34; |
749 | ptr = pt; |
750 | break; |
751 | } |
752 | |
753 | /* If the sequence of hex digits does not end with '}', then we don't |
754 | recognize this construct; fall through to the normal \x handling. */ |
755 | } |
756 | |
757 | /* Read just a single-byte hex-defined char */ |
758 | |
759 | c = 0; |
760 | while (i++ < 2 && (digitab[ptr[1]] & ctype_xdigit) != 0) |
761 | { |
762 | int cc; /* Some compilers don't like */ |
763 | cc = *(++ptr); /* ++ in initializers */ |
764 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
765 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
766 | c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
767 | #else /* EBCDIC coding */ |
768 | if (cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
769 | c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
770 | #endif |
771 | } |
772 | break; |
773 | |
774 | /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped. |
775 | This coding is ASCII-specific, but then the whole concept of \cx is |
776 | ASCII-specific. (However, an EBCDIC equivalent has now been added.) */ |
777 | |
778 | case CHAR_c: |
779 | c = *(++ptr); |
780 | if (c == 0) |
781 | { |
782 | *errorcodeptr = ERR2; |
783 | break; |
784 | } |
785 | |
786 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
787 | if (c >= CHAR_a && c <= CHAR_z) c -= 32; |
788 | c ^= 0x40; |
789 | #else /* EBCDIC coding */ |
790 | if (c >= CHAR_a && c <= CHAR_z) c += 64; |
791 | c ^= 0xC0; |
792 | #endif |
793 | break; |
794 | |
795 | /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any |
796 | other alphanumeric following \ is an error if PCRE_EXTRA was set; |
797 | otherwise, for Perl compatibility, it is a literal. This code looks a bit |
798 | odd, but there used to be some cases other than the default, and there may |
799 | be again in future, so I haven't "optimized" it. */ |
800 | |
801 | default: |
802 | if ((options & PCRE_EXTRA) != 0) switch(c) |
803 | { |
804 | default: |
805 | *errorcodeptr = ERR3; |
806 | break; |
807 | } |
808 | break; |
809 | } |
810 | } |
811 | |
812 | *ptrptr = ptr; |
813 | return c; |
814 | } |
815 | |
816 | |
817 | |
818 | #ifdef SUPPORT_UCP |
819 | /************************************************* |
820 | * Handle \P and \p * |
821 | *************************************************/ |
822 | |
823 | /* This function is called after \P or \p has been encountered, provided that |
824 | PCRE is compiled with support for Unicode properties. On entry, ptrptr is |
825 | pointing at the P or p. On exit, it is pointing at the final character of the |
826 | escape sequence. |
827 | |
828 | Argument: |
829 | ptrptr points to the pattern position pointer |
830 | negptr points to a boolean that is set TRUE for negation else FALSE |
831 | dptr points to an int that is set to the detailed property value |
832 | errorcodeptr points to the error code variable |
833 | |
834 | Returns: type value from ucp_type_table, or -1 for an invalid type |
835 | */ |
836 | |
837 | static int |
838 | get_ucp(const uschar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr) |
839 | { |
840 | int c, i, bot, top; |
841 | const uschar *ptr = *ptrptr; |
842 | char name[32]; |
843 | |
844 | c = *(++ptr); |
845 | if (c == 0) goto ERROR_RETURN; |
846 | |
847 | *negptr = FALSE; |
848 | |
849 | /* \P or \p can be followed by a name in {}, optionally preceded by ^ for |
850 | negation. */ |
851 | |
852 | if (c == CHAR_LEFT_CURLY_BRACKET) |
853 | { |
854 | if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
855 | { |
856 | *negptr = TRUE; |
857 | ptr++; |
858 | } |
859 | for (i = 0; i < (int)sizeof(name) - 1; i++) |
860 | { |
861 | c = *(++ptr); |
862 | if (c == 0) goto ERROR_RETURN; |
863 | if (c == CHAR_RIGHT_CURLY_BRACKET) break; |
864 | name[i] = c; |
865 | } |
866 | if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN; |
867 | name[i] = 0; |
868 | } |
869 | |
870 | /* Otherwise there is just one following character */ |
871 | |
872 | else |
873 | { |
874 | name[0] = c; |
875 | name[1] = 0; |
876 | } |
877 | |
878 | *ptrptr = ptr; |
879 | |
880 | /* Search for a recognized property name using binary chop */ |
881 | |
882 | bot = 0; |
883 | top = _pcre_utt_size; |
884 | |
885 | while (bot < top) |
886 | { |
887 | i = (bot + top) >> 1; |
888 | c = strcmp(name, _pcre_utt_names + _pcre_utt[i].name_offset); |
889 | if (c == 0) |
890 | { |
891 | *dptr = _pcre_utt[i].value; |
892 | return _pcre_utt[i].type; |
893 | } |
894 | if (c > 0) bot = i + 1; else top = i; |
895 | } |
896 | |
897 | *errorcodeptr = ERR47; |
898 | *ptrptr = ptr; |
899 | return -1; |
900 | |
901 | ERROR_RETURN: |
902 | *errorcodeptr = ERR46; |
903 | *ptrptr = ptr; |
904 | return -1; |
905 | } |
906 | #endif |
907 | |
908 | |
909 | |
910 | |
911 | /************************************************* |
912 | * Check for counted repeat * |
913 | *************************************************/ |
914 | |
915 | /* This function is called when a '{' is encountered in a place where it might |
916 | start a quantifier. It looks ahead to see if it really is a quantifier or not. |
917 | It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd} |
918 | where the ddds are digits. |
919 | |
920 | Arguments: |
921 | p pointer to the first char after '{' |
922 | |
923 | Returns: TRUE or FALSE |
924 | */ |
925 | |
926 | static BOOL |
927 | is_counted_repeat(const uschar *p) |
928 | { |
929 | if ((digitab[*p++] & ctype_digit) == 0) return FALSE; |
930 | while ((digitab[*p] & ctype_digit) != 0) p++; |
931 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
932 | |
933 | if (*p++ != CHAR_COMMA) return FALSE; |
934 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
935 | |
936 | if ((digitab[*p++] & ctype_digit) == 0) return FALSE; |
937 | while ((digitab[*p] & ctype_digit) != 0) p++; |
938 | |
939 | return (*p == CHAR_RIGHT_CURLY_BRACKET); |
940 | } |
941 | |
942 | |
943 | |
944 | /************************************************* |
945 | * Read repeat counts * |
946 | *************************************************/ |
947 | |
948 | /* Read an item of the form {n,m} and return the values. This is called only |
949 | after is_counted_repeat() has confirmed that a repeat-count quantifier exists, |
950 | so the syntax is guaranteed to be correct, but we need to check the values. |
951 | |
952 | Arguments: |
953 | p pointer to first char after '{' |
954 | minp pointer to int for min |
955 | maxp pointer to int for max |
956 | returned as -1 if no max |
957 | errorcodeptr points to error code variable |
958 | |
959 | Returns: pointer to '}' on success; |
960 | current ptr on error, with errorcodeptr set non-zero |
961 | */ |
962 | |
963 | static const uschar * |
964 | read_repeat_counts(const uschar *p, int *minp, int *maxp, int *errorcodeptr) |
965 | { |
966 | int min = 0; |
967 | int max = -1; |
968 | |
969 | /* Read the minimum value and do a paranoid check: a negative value indicates |
970 | an integer overflow. */ |
971 | |
972 | while ((digitab[*p] & ctype_digit) != 0) min = min * 10 + *p++ - CHAR_0; |
973 | if (min < 0 || min > 65535) |
974 | { |
975 | *errorcodeptr = ERR5; |
976 | return p; |
977 | } |
978 | |
979 | /* Read the maximum value if there is one, and again do a paranoid on its size. |
980 | Also, max must not be less than min. */ |
981 | |
982 | if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else |
983 | { |
984 | if (*(++p) != CHAR_RIGHT_CURLY_BRACKET) |
985 | { |
986 | max = 0; |
987 | while((digitab[*p] & ctype_digit) != 0) max = max * 10 + *p++ - CHAR_0; |
988 | if (max < 0 || max > 65535) |
989 | { |
990 | *errorcodeptr = ERR5; |
991 | return p; |
992 | } |
993 | if (max < min) |
994 | { |
995 | *errorcodeptr = ERR4; |
996 | return p; |
997 | } |
998 | } |
999 | } |
1000 | |
1001 | /* Fill in the required variables, and pass back the pointer to the terminating |
1002 | '}'. */ |
1003 | |
1004 | *minp = min; |
1005 | *maxp = max; |
1006 | return p; |
1007 | } |
1008 | |
1009 | |
1010 | |
1011 | /************************************************* |
1012 | * Subroutine for finding forward reference * |
1013 | *************************************************/ |
1014 | |
1015 | /* This recursive function is called only from find_parens() below. The |
1016 | top-level call starts at the beginning of the pattern. All other calls must |
1017 | start at a parenthesis. It scans along a pattern's text looking for capturing |
1018 | subpatterns, and counting them. If it finds a named pattern that matches the |
1019 | name it is given, it returns its number. Alternatively, if the name is NULL, it |
1020 | returns when it reaches a given numbered subpattern. We know that if (?P< is |
1021 | encountered, the name will be terminated by '>' because that is checked in the |
1022 | first pass. Recursion is used to keep track of subpatterns that reset the |
1023 | capturing group numbers - the (?| feature. |
1024 | |
1025 | Arguments: |
1026 | ptrptr address of the current character pointer (updated) |
1027 | cd compile background data |
1028 | name name to seek, or NULL if seeking a numbered subpattern |
1029 | lorn name length, or subpattern number if name is NULL |
1030 | xmode TRUE if we are in /x mode |
1031 | count pointer to the current capturing subpattern number (updated) |
1032 | |
1033 | Returns: the number of the named subpattern, or -1 if not found |
1034 | */ |
1035 | |
1036 | static int |
1037 | find_parens_sub(uschar **ptrptr, compile_data *cd, const uschar *name, int lorn, |
1038 | BOOL xmode, int *count) |
1039 | { |
1040 | uschar *ptr = *ptrptr; |
1041 | int start_count = *count; |
1042 | int hwm_count = start_count; |
1043 | BOOL dup_parens = FALSE; |
1044 | |
1045 | /* If the first character is a parenthesis, check on the type of group we are |
1046 | dealing with. The very first call may not start with a parenthesis. */ |
1047 | |
1048 | if (ptr[0] == CHAR_LEFT_PARENTHESIS) |
1049 | { |
1050 | if (ptr[1] == CHAR_QUESTION_MARK && |
1051 | ptr[2] == CHAR_VERTICAL_LINE) |
1052 | { |
1053 | ptr += 3; |
1054 | dup_parens = TRUE; |
1055 | } |
1056 | |
1057 | /* Handle a normal, unnamed capturing parenthesis */ |
1058 | |
1059 | else if (ptr[1] != CHAR_QUESTION_MARK && ptr[1] != CHAR_ASTERISK) |
1060 | { |
1061 | *count += 1; |
1062 | if (name == NULL && *count == lorn) return *count; |
1063 | ptr++; |
1064 | } |
1065 | |
1066 | /* Handle a condition. If it is an assertion, just carry on so that it |
1067 | is processed as normal. If not, skip to the closing parenthesis of the |
1068 | condition (there can't be any nested parens. */ |
1069 | |
1070 | else if (ptr[2] == CHAR_LEFT_PARENTHESIS) |
1071 | { |
1072 | ptr += 2; |
1073 | if (ptr[1] != CHAR_QUESTION_MARK) |
1074 | { |
1075 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
1076 | if (*ptr != 0) ptr++; |
1077 | } |
1078 | } |
1079 | |
1080 | /* We have either (? or (* and not a condition */ |
1081 | |
1082 | else |
1083 | { |
1084 | ptr += 2; |
1085 | if (*ptr == CHAR_P) ptr++; /* Allow optional P */ |
1086 | |
1087 | /* We have to disambiguate (?<! and (?<= from (?<name> for named groups */ |
1088 | |
1089 | if ((*ptr == CHAR_LESS_THAN_SIGN && ptr[1] != CHAR_EXCLAMATION_MARK && |
1090 | ptr[1] != CHAR_EQUALS_SIGN) || *ptr == CHAR_APOSTROPHE) |
1091 | { |
1092 | int term; |
1093 | const uschar *thisname; |
1094 | *count += 1; |
1095 | if (name == NULL && *count == lorn) return *count; |
1096 | term = *ptr++; |
1097 | if (term == CHAR_LESS_THAN_SIGN) term = CHAR_GREATER_THAN_SIGN; |
1098 | thisname = ptr; |
1099 | while (*ptr != term) ptr++; |
1100 | if (name != NULL && lorn == ptr - thisname && |
1101 | strncmp((const char *)name, (const char *)thisname, lorn) == 0) |
1102 | return *count; |
1103 | term++; |
1104 | } |
1105 | } |
1106 | } |
1107 | |
1108 | /* Past any initial parenthesis handling, scan for parentheses or vertical |
1109 | bars. */ |
1110 | |
1111 | for (; *ptr != 0; ptr++) |
1112 | { |
1113 | /* Skip over backslashed characters and also entire \Q...\E */ |
1114 | |
1115 | if (*ptr == CHAR_BACKSLASH) |
1116 | { |
1117 | if (*(++ptr) == 0) goto FAIL_EXIT; |
1118 | if (*ptr == CHAR_Q) for (;;) |
1119 | { |
1120 | while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {}; |
1121 | if (*ptr == 0) goto FAIL_EXIT; |
1122 | if (*(++ptr) == CHAR_E) break; |
1123 | } |
1124 | continue; |
1125 | } |
1126 | |
1127 | /* Skip over character classes; this logic must be similar to the way they |
1128 | are handled for real. If the first character is '^', skip it. Also, if the |
1129 | first few characters (either before or after ^) are \Q\E or \E we skip them |
1130 | too. This makes for compatibility with Perl. Note the use of STR macros to |
1131 | encode "Q\\E" so that it works in UTF-8 on EBCDIC platforms. */ |
1132 | |
1133 | if (*ptr == CHAR_LEFT_SQUARE_BRACKET) |
1134 | { |
1135 | BOOL negate_class = FALSE; |
1136 | for (;;) |
1137 | { |
1138 | if (ptr[1] == CHAR_BACKSLASH) |
1139 | { |
1140 | if (ptr[2] == CHAR_E) |
1141 | ptr+= 2; |
1142 | else if (strncmp((const char *)ptr+2, |
1143 | STR_Q STR_BACKSLASH STR_E, 3) == 0) |
1144 | ptr += 4; |
1145 | else |
1146 | break; |
1147 | } |
1148 | else if (!negate_class && ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
1149 | { |
1150 | negate_class = TRUE; |
1151 | ptr++; |
1152 | } |
1153 | else break; |
1154 | } |
1155 | |
1156 | /* If the next character is ']', it is a data character that must be |
1157 | skipped, except in JavaScript compatibility mode. */ |
1158 | |
1159 | if (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET && |
1160 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) == 0) |
1161 | ptr++; |
1162 | |
1163 | while (*(++ptr) != CHAR_RIGHT_SQUARE_BRACKET) |
1164 | { |
1165 | if (*ptr == 0) return -1; |
1166 | if (*ptr == CHAR_BACKSLASH) |
1167 | { |
1168 | if (*(++ptr) == 0) goto FAIL_EXIT; |
1169 | if (*ptr == CHAR_Q) for (;;) |
1170 | { |
1171 | while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {}; |
1172 | if (*ptr == 0) goto FAIL_EXIT; |
1173 | if (*(++ptr) == CHAR_E) break; |
1174 | } |
1175 | continue; |
1176 | } |
1177 | } |
1178 | continue; |
1179 | } |
1180 | |
1181 | /* Skip comments in /x mode */ |
1182 | |
1183 | if (xmode && *ptr == CHAR_NUMBER_SIGN) |
1184 | { |
1185 | while (*(++ptr) != 0 && *ptr != CHAR_NL) {}; |
1186 | if (*ptr == 0) goto FAIL_EXIT; |
1187 | continue; |
1188 | } |
1189 | |
1190 | /* Check for the special metacharacters */ |
1191 | |
1192 | if (*ptr == CHAR_LEFT_PARENTHESIS) |
1193 | { |
1194 | int rc = find_parens_sub(&ptr, cd, name, lorn, xmode, count); |
1195 | if (rc > 0) return rc; |
1196 | if (*ptr == 0) goto FAIL_EXIT; |
1197 | } |
1198 | |
1199 | else if (*ptr == CHAR_RIGHT_PARENTHESIS) |
1200 | { |
1201 | if (dup_parens && *count < hwm_count) *count = hwm_count; |
1202 | *ptrptr = ptr; |
1203 | return -1; |
1204 | } |
1205 | |
1206 | else if (*ptr == CHAR_VERTICAL_LINE && dup_parens) |
1207 | { |
1208 | if (*count > hwm_count) hwm_count = *count; |
1209 | *count = start_count; |
1210 | } |
1211 | } |
1212 | |
1213 | FAIL_EXIT: |
1214 | *ptrptr = ptr; |
1215 | return -1; |
1216 | } |
1217 | |
1218 | |
1219 | |
1220 | |
1221 | /************************************************* |
1222 | * Find forward referenced subpattern * |
1223 | *************************************************/ |
1224 | |
1225 | /* This function scans along a pattern's text looking for capturing |
1226 | subpatterns, and counting them. If it finds a named pattern that matches the |
1227 | name it is given, it returns its number. Alternatively, if the name is NULL, it |
1228 | returns when it reaches a given numbered subpattern. This is used for forward |
1229 | references to subpatterns. We used to be able to start this scan from the |
1230 | current compiling point, using the current count value from cd->bracount, and |
1231 | do it all in a single loop, but the addition of the possibility of duplicate |
1232 | subpattern numbers means that we have to scan from the very start, in order to |
1233 | take account of such duplicates, and to use a recursive function to keep track |
1234 | of the different types of group. |
1235 | |
1236 | Arguments: |
1237 | cd compile background data |
1238 | name name to seek, or NULL if seeking a numbered subpattern |
1239 | lorn name length, or subpattern number if name is NULL |
1240 | xmode TRUE if we are in /x mode |
1241 | |
1242 | Returns: the number of the found subpattern, or -1 if not found |
1243 | */ |
1244 | |
1245 | static int |
1246 | find_parens(compile_data *cd, const uschar *name, int lorn, BOOL xmode) |
1247 | { |
1248 | uschar *ptr = (uschar *)cd->start_pattern; |
1249 | int count = 0; |
1250 | int rc; |
1251 | |
1252 | /* If the pattern does not start with an opening parenthesis, the first call |
1253 | to find_parens_sub() will scan right to the end (if necessary). However, if it |
1254 | does start with a parenthesis, find_parens_sub() will return when it hits the |
1255 | matching closing parens. That is why we have to have a loop. */ |
1256 | |
1257 | for (;;) |
1258 | { |
1259 | rc = find_parens_sub(&ptr, cd, name, lorn, xmode, &count); |
1260 | if (rc > 0 || *ptr++ == 0) break; |
1261 | } |
1262 | |
1263 | return rc; |
1264 | } |
1265 | |
1266 | |
1267 | |
1268 | |
1269 | /************************************************* |
1270 | * Find first significant op code * |
1271 | *************************************************/ |
1272 | |
1273 | /* This is called by several functions that scan a compiled expression looking |
1274 | for a fixed first character, or an anchoring op code etc. It skips over things |
1275 | that do not influence this. For some calls, a change of option is important. |
1276 | For some calls, it makes sense to skip negative forward and all backward |
1277 | assertions, and also the \b assertion; for others it does not. |
1278 | |
1279 | Arguments: |
1280 | code pointer to the start of the group |
1281 | options pointer to external options |
1282 | optbit the option bit whose changing is significant, or |
1283 | zero if none are |
1284 | skipassert TRUE if certain assertions are to be skipped |
1285 | |
1286 | Returns: pointer to the first significant opcode |
1287 | */ |
1288 | |
1289 | static const uschar* |
1290 | first_significant_code(const uschar *code, int *options, int optbit, |
1291 | BOOL skipassert) |
1292 | { |
1293 | for (;;) |
1294 | { |
1295 | switch ((int)*code) |
1296 | { |
1297 | case OP_OPT: |
1298 | if (optbit > 0 && ((int)code[1] & optbit) != (*options & optbit)) |
1299 | *options = (int)code[1]; |
1300 | code += 2; |
1301 | break; |
1302 | |
1303 | case OP_ASSERT_NOT: |
1304 | case OP_ASSERTBACK: |
1305 | case OP_ASSERTBACK_NOT: |
1306 | if (!skipassert) return code; |
1307 | do code += GET(code, 1); while (*code == OP_ALT); |
1308 | code += _pcre_OP_lengths[*code]; |
1309 | break; |
1310 | |
1311 | case OP_WORD_BOUNDARY: |
1312 | case OP_NOT_WORD_BOUNDARY: |
1313 | if (!skipassert) return code; |
1314 | /* Fall through */ |
1315 | |
1316 | case OP_CALLOUT: |
1317 | case OP_CREF: |
1318 | case OP_RREF: |
1319 | case OP_DEF: |
1320 | code += _pcre_OP_lengths[*code]; |
1321 | break; |
1322 | |
1323 | default: |
1324 | return code; |
1325 | } |
1326 | } |
1327 | /* Control never reaches here */ |
1328 | } |
1329 | |
1330 | |
1331 | |
1332 | |
1333 | /************************************************* |
1334 | * Find the fixed length of a branch * |
1335 | *************************************************/ |
1336 | |
1337 | /* Scan a branch and compute the fixed length of subject that will match it, |
1338 | if the length is fixed. This is needed for dealing with backward assertions. |
1339 | In UTF8 mode, the result is in characters rather than bytes. The branch is |
1340 | temporarily terminated with OP_END when this function is called. |
1341 | |
1342 | This function is called when a backward assertion is encountered, so that if it |
1343 | fails, the error message can point to the correct place in the pattern. |
1344 | However, we cannot do this when the assertion contains subroutine calls, |
1345 | because they can be forward references. We solve this by remembering this case |
1346 | and doing the check at the end; a flag specifies which mode we are running in. |
1347 | |
1348 | Arguments: |
1349 | code points to the start of the pattern (the bracket) |
1350 | options the compiling options |
1351 | atend TRUE if called when the pattern is complete |
1352 | cd the "compile data" structure |
1353 | |
1354 | Returns: the fixed length, |
1355 | or -1 if there is no fixed length, |
1356 | or -2 if \C was encountered |
1357 | or -3 if an OP_RECURSE item was encountered and atend is FALSE |
1358 | */ |
1359 | |
1360 | static int |
1361 | find_fixedlength(uschar *code, int options, BOOL atend, compile_data *cd) |
1362 | { |
1363 | int length = -1; |
1364 | |
1365 | register int branchlength = 0; |
1366 | register uschar *cc = code + 1 + LINK_SIZE; |
1367 | |
1368 | /* Scan along the opcodes for this branch. If we get to the end of the |
1369 | branch, check the length against that of the other branches. */ |
1370 | |
1371 | for (;;) |
1372 | { |
1373 | int d; |
1374 | uschar *ce, *cs; |
1375 | register int op = *cc; |
1376 | switch (op) |
1377 | { |
1378 | case OP_CBRA: |
1379 | case OP_BRA: |
1380 | case OP_ONCE: |
1381 | case OP_COND: |
1382 | d = find_fixedlength(cc + ((op == OP_CBRA)? 2:0), options, atend, cd); |
1383 | if (d < 0) return d; |
1384 | branchlength += d; |
1385 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1386 | cc += 1 + LINK_SIZE; |
1387 | break; |
1388 | |
1389 | /* Reached end of a branch; if it's a ket it is the end of a nested |
1390 | call. If it's ALT it is an alternation in a nested call. If it is |
1391 | END it's the end of the outer call. All can be handled by the same code. */ |
1392 | |
1393 | case OP_ALT: |
1394 | case OP_KET: |
1395 | case OP_KETRMAX: |
1396 | case OP_KETRMIN: |
1397 | case OP_END: |
1398 | if (length < 0) length = branchlength; |
1399 | else if (length != branchlength) return -1; |
1400 | if (*cc != OP_ALT) return length; |
1401 | cc += 1 + LINK_SIZE; |
1402 | branchlength = 0; |
1403 | break; |
1404 | |
1405 | /* A true recursion implies not fixed length, but a subroutine call may |
1406 | be OK. If the subroutine is a forward reference, we can't deal with |
1407 | it until the end of the pattern, so return -3. */ |
1408 | |
1409 | case OP_RECURSE: |
1410 | if (!atend) return -3; |
1411 | cs = ce = (uschar *)cd->start_code + GET(cc, 1); /* Start subpattern */ |
1412 | do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */ |
1413 | if (cc > cs && cc < ce) return -1; /* Recursion */ |
1414 | d = find_fixedlength(cs + 2, options, atend, cd); |
1415 | if (d < 0) return d; |
1416 | branchlength += d; |
1417 | cc += 1 + LINK_SIZE; |
1418 | break; |
1419 | |
1420 | /* Skip over assertive subpatterns */ |
1421 | |
1422 | case OP_ASSERT: |
1423 | case OP_ASSERT_NOT: |
1424 | case OP_ASSERTBACK: |
1425 | case OP_ASSERTBACK_NOT: |
1426 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1427 | /* Fall through */ |
1428 | |
1429 | /* Skip over things that don't match chars */ |
1430 | |
1431 | case OP_REVERSE: |
1432 | case OP_CREF: |
1433 | case OP_RREF: |
1434 | case OP_DEF: |
1435 | case OP_OPT: |
1436 | case OP_CALLOUT: |
1437 | case OP_SOD: |
1438 | case OP_SOM: |
1439 | case OP_EOD: |
1440 | case OP_EODN: |
1441 | case OP_CIRC: |
1442 | case OP_DOLL: |
1443 | case OP_NOT_WORD_BOUNDARY: |
1444 | case OP_WORD_BOUNDARY: |
1445 | cc += _pcre_OP_lengths[*cc]; |
1446 | break; |
1447 | |
1448 | /* Handle literal characters */ |
1449 | |
1450 | case OP_CHAR: |
1451 | case OP_CHARNC: |
1452 | case OP_NOT: |
1453 | branchlength++; |
1454 | cc += 2; |
1455 | #ifdef SUPPORT_UTF8 |
1456 | if ((options & PCRE_UTF8) != 0 && cc[-1] >= 0xc0) |
1457 | cc += _pcre_utf8_table4[cc[-1] & 0x3f]; |
1458 | #endif |
1459 | break; |
1460 | |
1461 | /* Handle exact repetitions. The count is already in characters, but we |
1462 | need to skip over a multibyte character in UTF8 mode. */ |
1463 | |
1464 | case OP_EXACT: |
1465 | branchlength += GET2(cc,1); |
1466 | cc += 4; |
1467 | #ifdef SUPPORT_UTF8 |
1468 | if ((options & PCRE_UTF8) != 0 && cc[-1] >= 0xc0) |
1469 | cc += _pcre_utf8_table4[cc[-1] & 0x3f]; |
1470 | #endif |
1471 | break; |
1472 | |
1473 | case OP_TYPEEXACT: |
1474 | branchlength += GET2(cc,1); |
1475 | if (cc[3] == OP_PROP || cc[3] == OP_NOTPROP) cc += 2; |
1476 | cc += 4; |
1477 | break; |
1478 | |
1479 | /* Handle single-char matchers */ |
1480 | |
1481 | case OP_PROP: |
1482 | case OP_NOTPROP: |
1483 | cc += 2; |
1484 | /* Fall through */ |
1485 | |
1486 | case OP_NOT_DIGIT: |
1487 | case OP_DIGIT: |
1488 | case OP_NOT_WHITESPACE: |
1489 | case OP_WHITESPACE: |
1490 | case OP_NOT_WORDCHAR: |
1491 | case OP_WORDCHAR: |
1492 | case OP_ANY: |
1493 | case OP_ALLANY: |
1494 | branchlength++; |
1495 | cc++; |
1496 | break; |
1497 | |
1498 | /* The single-byte matcher isn't allowed */ |
1499 | |
1500 | case OP_ANYBYTE: |
1501 | return -2; |
1502 | |
1503 | /* Check a class for variable quantification */ |
1504 | |
1505 | #ifdef SUPPORT_UTF8 |
1506 | case OP_XCLASS: |
1507 | cc += GET(cc, 1) - 33; |
1508 | /* Fall through */ |
1509 | #endif |
1510 | |
1511 | case OP_CLASS: |
1512 | case OP_NCLASS: |
1513 | cc += 33; |
1514 | |
1515 | switch (*cc) |
1516 | { |
1517 | case OP_CRSTAR: |
1518 | case OP_CRMINSTAR: |
1519 | case OP_CRQUERY: |
1520 | case OP_CRMINQUERY: |
1521 | return -1; |
1522 | |
1523 | case OP_CRRANGE: |
1524 | case OP_CRMINRANGE: |
1525 | if (GET2(cc,1) != GET2(cc,3)) return -1; |
1526 | branchlength += GET2(cc,1); |
1527 | cc += 5; |
1528 | break; |
1529 | |
1530 | default: |
1531 | branchlength++; |
1532 | } |
1533 | break; |
1534 | |
1535 | /* Anything else is variable length */ |
1536 | |
1537 | default: |
1538 | return -1; |
1539 | } |
1540 | } |
1541 | /* Control never gets here */ |
1542 | } |
1543 | |
1544 | |
1545 | |
1546 | |
1547 | /************************************************* |
1548 | * Scan compiled regex for specific bracket * |
1549 | *************************************************/ |
1550 | |
1551 | /* This little function scans through a compiled pattern until it finds a |
1552 | capturing bracket with the given number, or, if the number is negative, an |
1553 | instance of OP_REVERSE for a lookbehind. The function is global in the C sense |
1554 | so that it can be called from pcre_study() when finding the minimum matching |
1555 | length. |
1556 | |
1557 | Arguments: |
1558 | code points to start of expression |
1559 | utf8 TRUE in UTF-8 mode |
1560 | number the required bracket number or negative to find a lookbehind |
1561 | |
1562 | Returns: pointer to the opcode for the bracket, or NULL if not found |
1563 | */ |
1564 | |
1565 | const uschar * |
1566 | _pcre_find_bracket(const uschar *code, BOOL utf8, int number) |
1567 | { |
1568 | for (;;) |
1569 | { |
1570 | register int c = *code; |
1571 | if (c == OP_END) return NULL; |
1572 | |
1573 | /* XCLASS is used for classes that cannot be represented just by a bit |
1574 | map. This includes negated single high-valued characters. The length in |
1575 | the table is zero; the actual length is stored in the compiled code. */ |
1576 | |
1577 | if (c == OP_XCLASS) code += GET(code, 1); |
1578 | |
1579 | /* Handle recursion */ |
1580 | |
1581 | else if (c == OP_REVERSE) |
1582 | { |
1583 | if (number < 0) return (uschar *)code; |
1584 | code += _pcre_OP_lengths[c]; |
1585 | } |
1586 | |
1587 | /* Handle capturing bracket */ |
1588 | |
1589 | else if (c == OP_CBRA) |
1590 | { |
1591 | int n = GET2(code, 1+LINK_SIZE); |
1592 | if (n == number) return (uschar *)code; |
1593 | code += _pcre_OP_lengths[c]; |
1594 | } |
1595 | |
1596 | /* Otherwise, we can get the item's length from the table, except that for |
1597 | repeated character types, we have to test for \p and \P, which have an extra |
1598 | two bytes of parameters. */ |
1599 | |
1600 | else |
1601 | { |
1602 | switch(c) |
1603 | { |
1604 | case OP_TYPESTAR: |
1605 | case OP_TYPEMINSTAR: |
1606 | case OP_TYPEPLUS: |
1607 | case OP_TYPEMINPLUS: |
1608 | case OP_TYPEQUERY: |
1609 | case OP_TYPEMINQUERY: |
1610 | case OP_TYPEPOSSTAR: |
1611 | case OP_TYPEPOSPLUS: |
1612 | case OP_TYPEPOSQUERY: |
1613 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
1614 | break; |
1615 | |
1616 | case OP_TYPEUPTO: |
1617 | case OP_TYPEMINUPTO: |
1618 | case OP_TYPEEXACT: |
1619 | case OP_TYPEPOSUPTO: |
1620 | if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; |
1621 | break; |
1622 | } |
1623 | |
1624 | /* Add in the fixed length from the table */ |
1625 | |
1626 | code += _pcre_OP_lengths[c]; |
1627 | |
1628 | /* In UTF-8 mode, opcodes that are followed by a character may be followed by |
1629 | a multi-byte character. The length in the table is a minimum, so we have to |
1630 | arrange to skip the extra bytes. */ |
1631 | |
1632 | #ifdef SUPPORT_UTF8 |
1633 | if (utf8) switch(c) |
1634 | { |
1635 | case OP_CHAR: |
1636 | case OP_CHARNC: |
1637 | case OP_EXACT: |
1638 | case OP_UPTO: |
1639 | case OP_MINUPTO: |
1640 | case OP_POSUPTO: |
1641 | case OP_STAR: |
1642 | case OP_MINSTAR: |
1643 | case OP_POSSTAR: |
1644 | case OP_PLUS: |
1645 | case OP_MINPLUS: |
1646 | case OP_POSPLUS: |
1647 | case OP_QUERY: |
1648 | case OP_MINQUERY: |
1649 | case OP_POSQUERY: |
1650 | if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f]; |
1651 | break; |
1652 | } |
1653 | #else |
1654 | (void)(utf8); /* Keep compiler happy by referencing function argument */ |
1655 | #endif |
1656 | } |
1657 | } |
1658 | } |
1659 | |
1660 | |
1661 | |
1662 | /************************************************* |
1663 | * Scan compiled regex for recursion reference * |
1664 | *************************************************/ |
1665 | |
1666 | /* This little function scans through a compiled pattern until it finds an |
1667 | instance of OP_RECURSE. |
1668 | |
1669 | Arguments: |
1670 | code points to start of expression |
1671 | utf8 TRUE in UTF-8 mode |
1672 | |
1673 | Returns: pointer to the opcode for OP_RECURSE, or NULL if not found |
1674 | */ |
1675 | |
1676 | static const uschar * |
1677 | find_recurse(const uschar *code, BOOL utf8) |
1678 | { |
1679 | for (;;) |
1680 | { |
1681 | register int c = *code; |
1682 | if (c == OP_END) return NULL; |
1683 | if (c == OP_RECURSE) return code; |
1684 | |
1685 | /* XCLASS is used for classes that cannot be represented just by a bit |
1686 | map. This includes negated single high-valued characters. The length in |
1687 | the table is zero; the actual length is stored in the compiled code. */ |
1688 | |
1689 | if (c == OP_XCLASS) code += GET(code, 1); |
1690 | |
1691 | /* Otherwise, we can get the item's length from the table, except that for |
1692 | repeated character types, we have to test for \p and \P, which have an extra |
1693 | two bytes of parameters. */ |
1694 | |
1695 | else |
1696 | { |
1697 | switch(c) |
1698 | { |
1699 | case OP_TYPESTAR: |
1700 | case OP_TYPEMINSTAR: |
1701 | case OP_TYPEPLUS: |
1702 | case OP_TYPEMINPLUS: |
1703 | case OP_TYPEQUERY: |
1704 | case OP_TYPEMINQUERY: |
1705 | case OP_TYPEPOSSTAR: |
1706 | case OP_TYPEPOSPLUS: |
1707 | case OP_TYPEPOSQUERY: |
1708 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
1709 | break; |
1710 | |
1711 | case OP_TYPEPOSUPTO: |
1712 | case OP_TYPEUPTO: |
1713 | case OP_TYPEMINUPTO: |
1714 | case OP_TYPEEXACT: |
1715 | if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; |
1716 | break; |
1717 | } |
1718 | |
1719 | /* Add in the fixed length from the table */ |
1720 | |
1721 | code += _pcre_OP_lengths[c]; |
1722 | |
1723 | /* In UTF-8 mode, opcodes that are followed by a character may be followed |
1724 | by a multi-byte character. The length in the table is a minimum, so we have |
1725 | to arrange to skip the extra bytes. */ |
1726 | |
1727 | #ifdef SUPPORT_UTF8 |
1728 | if (utf8) switch(c) |
1729 | { |
1730 | case OP_CHAR: |
1731 | case OP_CHARNC: |
1732 | case OP_EXACT: |
1733 | case OP_UPTO: |
1734 | case OP_MINUPTO: |
1735 | case OP_POSUPTO: |
1736 | case OP_STAR: |
1737 | case OP_MINSTAR: |
1738 | case OP_POSSTAR: |
1739 | case OP_PLUS: |
1740 | case OP_MINPLUS: |
1741 | case OP_POSPLUS: |
1742 | case OP_QUERY: |
1743 | case OP_MINQUERY: |
1744 | case OP_POSQUERY: |
1745 | if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f]; |
1746 | break; |
1747 | } |
1748 | #else |
1749 | (void)(utf8); /* Keep compiler happy by referencing function argument */ |
1750 | #endif |
1751 | } |
1752 | } |
1753 | } |
1754 | |
1755 | |
1756 | |
1757 | /************************************************* |
1758 | * Scan compiled branch for non-emptiness * |
1759 | *************************************************/ |
1760 | |
1761 | /* This function scans through a branch of a compiled pattern to see whether it |
1762 | can match the empty string or not. It is called from could_be_empty() |
1763 | below and from compile_branch() when checking for an unlimited repeat of a |
1764 | group that can match nothing. Note that first_significant_code() skips over |
1765 | backward and negative forward assertions when its final argument is TRUE. If we |
1766 | hit an unclosed bracket, we return "empty" - this means we've struck an inner |
1767 | bracket whose current branch will already have been scanned. |
1768 | |
1769 | Arguments: |
1770 | code points to start of search |
1771 | endcode points to where to stop |
1772 | utf8 TRUE if in UTF8 mode |
1773 | |
1774 | Returns: TRUE if what is matched could be empty |
1775 | */ |
1776 | |
1777 | static BOOL |
1778 | could_be_empty_branch(const uschar *code, const uschar *endcode, BOOL utf8) |
1779 | { |
1780 | register int c; |
1781 | for (code = first_significant_code(code + _pcre_OP_lengths[*code], NULL, 0, TRUE); |
1782 | code < endcode; |
1783 | code = first_significant_code(code + _pcre_OP_lengths[c], NULL, 0, TRUE)) |
1784 | { |
1785 | const uschar *ccode; |
1786 | |
1787 | c = *code; |
1788 | |
1789 | /* Skip over forward assertions; the other assertions are skipped by |
1790 | first_significant_code() with a TRUE final argument. */ |
1791 | |
1792 | if (c == OP_ASSERT) |
1793 | { |
1794 | do code += GET(code, 1); while (*code == OP_ALT); |
1795 | c = *code; |
1796 | continue; |
1797 | } |
1798 | |
1799 | /* Groups with zero repeats can of course be empty; skip them. */ |
1800 | |
1801 | if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO) |
1802 | { |
1803 | code += _pcre_OP_lengths[c]; |
1804 | do code += GET(code, 1); while (*code == OP_ALT); |
1805 | c = *code; |
1806 | continue; |
1807 | } |
1808 | |
1809 | /* For other groups, scan the branches. */ |
1810 | |
1811 | if (c == OP_BRA || c == OP_CBRA || c == OP_ONCE || c == OP_COND) |
1812 | { |
1813 | BOOL empty_branch; |
1814 | if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */ |
1815 | |
1816 | /* If a conditional group has only one branch, there is a second, implied, |
1817 | empty branch, so just skip over the conditional, because it could be empty. |
1818 | Otherwise, scan the individual branches of the group. */ |
1819 | |
1820 | if (c == OP_COND && code[GET(code, 1)] != OP_ALT) |
1821 | code += GET(code, 1); |
1822 | else |
1823 | { |
1824 | empty_branch = FALSE; |
1825 | do |
1826 | { |
1827 | if (!empty_branch && could_be_empty_branch(code, endcode, utf8)) |
1828 | empty_branch = TRUE; |
1829 | code += GET(code, 1); |
1830 | } |
1831 | while (*code == OP_ALT); |
1832 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
1833 | } |
1834 | |
1835 | c = *code; |
1836 | continue; |
1837 | } |
1838 | |
1839 | /* Handle the other opcodes */ |
1840 | |
1841 | switch (c) |
1842 | { |
1843 | /* Check for quantifiers after a class. XCLASS is used for classes that |
1844 | cannot be represented just by a bit map. This includes negated single |
1845 | high-valued characters. The length in _pcre_OP_lengths[] is zero; the |
1846 | actual length is stored in the compiled code, so we must update "code" |
1847 | here. */ |
1848 | |
1849 | #ifdef SUPPORT_UTF8 |
1850 | case OP_XCLASS: |
1851 | ccode = code += GET(code, 1); |
1852 | goto CHECK_CLASS_REPEAT; |
1853 | #endif |
1854 | |
1855 | case OP_CLASS: |
1856 | case OP_NCLASS: |
1857 | ccode = code + 33; |
1858 | |
1859 | #ifdef SUPPORT_UTF8 |
1860 | CHECK_CLASS_REPEAT: |
1861 | #endif |
1862 | |
1863 | switch (*ccode) |
1864 | { |
1865 | case OP_CRSTAR: /* These could be empty; continue */ |
1866 | case OP_CRMINSTAR: |
1867 | case OP_CRQUERY: |
1868 | case OP_CRMINQUERY: |
1869 | break; |
1870 | |
1871 | default: /* Non-repeat => class must match */ |
1872 | case OP_CRPLUS: /* These repeats aren't empty */ |
1873 | case OP_CRMINPLUS: |
1874 | return FALSE; |
1875 | |
1876 | case OP_CRRANGE: |
1877 | case OP_CRMINRANGE: |
1878 | if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */ |
1879 | break; |
1880 | } |
1881 | break; |
1882 | |
1883 | /* Opcodes that must match a character */ |
1884 | |
1885 | case OP_PROP: |
1886 | case OP_NOTPROP: |
1887 | case OP_EXTUNI: |
1888 | case OP_NOT_DIGIT: |
1889 | case OP_DIGIT: |
1890 | case OP_NOT_WHITESPACE: |
1891 | case OP_WHITESPACE: |
1892 | case OP_NOT_WORDCHAR: |
1893 | case OP_WORDCHAR: |
1894 | case OP_ANY: |
1895 | case OP_ALLANY: |
1896 | case OP_ANYBYTE: |
1897 | case OP_CHAR: |
1898 | case OP_CHARNC: |
1899 | case OP_NOT: |
1900 | case OP_PLUS: |
1901 | case OP_MINPLUS: |
1902 | case OP_POSPLUS: |
1903 | case OP_EXACT: |
1904 | case OP_NOTPLUS: |
1905 | case OP_NOTMINPLUS: |
1906 | case OP_NOTPOSPLUS: |
1907 | case OP_NOTEXACT: |
1908 | case OP_TYPEPLUS: |
1909 | case OP_TYPEMINPLUS: |
1910 | case OP_TYPEPOSPLUS: |
1911 | case OP_TYPEEXACT: |
1912 | return FALSE; |
1913 | |
1914 | /* These are going to continue, as they may be empty, but we have to |
1915 | fudge the length for the \p and \P cases. */ |
1916 | |
1917 | case OP_TYPESTAR: |
1918 | case OP_TYPEMINSTAR: |
1919 | case OP_TYPEPOSSTAR: |
1920 | case OP_TYPEQUERY: |
1921 | case OP_TYPEMINQUERY: |
1922 | case OP_TYPEPOSQUERY: |
1923 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
1924 | break; |
1925 | |
1926 | /* Same for these */ |
1927 | |
1928 | case OP_TYPEUPTO: |
1929 | case OP_TYPEMINUPTO: |
1930 | case OP_TYPEPOSUPTO: |
1931 | if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; |
1932 | break; |
1933 | |
1934 | /* End of branch */ |
1935 | |
1936 | case OP_KET: |
1937 | case OP_KETRMAX: |
1938 | case OP_KETRMIN: |
1939 | case OP_ALT: |
1940 | return TRUE; |
1941 | |
1942 | /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO, |
1943 | MINUPTO, and POSUPTO may be followed by a multibyte character */ |
1944 | |
1945 | #ifdef SUPPORT_UTF8 |
1946 | case OP_STAR: |
1947 | case OP_MINSTAR: |
1948 | case OP_POSSTAR: |
1949 | case OP_QUERY: |
1950 | case OP_MINQUERY: |
1951 | case OP_POSQUERY: |
1952 | if (utf8 && code[1] >= 0xc0) code += _pcre_utf8_table4[code[1] & 0x3f]; |
1953 | break; |
1954 | |
1955 | case OP_UPTO: |
1956 | case OP_MINUPTO: |
1957 | case OP_POSUPTO: |
1958 | if (utf8 && code[3] >= 0xc0) code += _pcre_utf8_table4[code[3] & 0x3f]; |
1959 | break; |
1960 | #endif |
1961 | } |
1962 | } |
1963 | |
1964 | return TRUE; |
1965 | } |
1966 | |
1967 | |
1968 | |
1969 | /************************************************* |
1970 | * Scan compiled regex for non-emptiness * |
1971 | *************************************************/ |
1972 | |
1973 | /* This function is called to check for left recursive calls. We want to check |
1974 | the current branch of the current pattern to see if it could match the empty |
1975 | string. If it could, we must look outwards for branches at other levels, |
1976 | stopping when we pass beyond the bracket which is the subject of the recursion. |
1977 | |
1978 | Arguments: |
1979 | code points to start of the recursion |
1980 | endcode points to where to stop (current RECURSE item) |
1981 | bcptr points to the chain of current (unclosed) branch starts |
1982 | utf8 TRUE if in UTF-8 mode |
1983 | |
1984 | Returns: TRUE if what is matched could be empty |
1985 | */ |
1986 | |
1987 | static BOOL |
1988 | could_be_empty(const uschar *code, const uschar *endcode, branch_chain *bcptr, |
1989 | BOOL utf8) |
1990 | { |
1991 | while (bcptr != NULL && bcptr->current >= code) |
1992 | { |
1993 | if (!could_be_empty_branch(bcptr->current, endcode, utf8)) return FALSE; |
1994 | bcptr = bcptr->outer; |
1995 | } |
1996 | return TRUE; |
1997 | } |
1998 | |
1999 | |
2000 | |
2001 | /************************************************* |
2002 | * Check for POSIX class syntax * |
2003 | *************************************************/ |
2004 | |
2005 | /* This function is called when the sequence "[:" or "[." or "[=" is |
2006 | encountered in a character class. It checks whether this is followed by a |
2007 | sequence of characters terminated by a matching ":]" or ".]" or "=]". If we |
2008 | reach an unescaped ']' without the special preceding character, return FALSE. |
2009 | |
2010 | Originally, this function only recognized a sequence of letters between the |
2011 | terminators, but it seems that Perl recognizes any sequence of characters, |
2012 | though of course unknown POSIX names are subsequently rejected. Perl gives an |
2013 | "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE |
2014 | didn't consider this to be a POSIX class. Likewise for [:1234:]. |
2015 | |
2016 | The problem in trying to be exactly like Perl is in the handling of escapes. We |
2017 | have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX |
2018 | class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code |
2019 | below handles the special case of \], but does not try to do any other escape |
2020 | processing. This makes it different from Perl for cases such as [:l\ower:] |
2021 | where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize |
2022 | "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does, |
2023 | I think. |
2024 | |
2025 | Arguments: |
2026 | ptr pointer to the initial [ |
2027 | endptr where to return the end pointer |
2028 | |
2029 | Returns: TRUE or FALSE |
2030 | */ |
2031 | |
2032 | static BOOL |
2033 | check_posix_syntax(const uschar *ptr, const uschar **endptr) |
2034 | { |
2035 | int terminator; /* Don't combine these lines; the Solaris cc */ |
2036 | terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */ |
2037 | for (++ptr; *ptr != 0; ptr++) |
2038 | { |
2039 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) ptr++; else |
2040 | { |
2041 | if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE; |
2042 | if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
2043 | { |
2044 | *endptr = ptr; |
2045 | return TRUE; |
2046 | } |
2047 | } |
2048 | } |
2049 | return FALSE; |
2050 | } |
2051 | |
2052 | |
2053 | |
2054 | |
2055 | /************************************************* |
2056 | * Check POSIX class name * |
2057 | *************************************************/ |
2058 | |
2059 | /* This function is called to check the name given in a POSIX-style class entry |
2060 | such as [:alnum:]. |
2061 | |
2062 | Arguments: |
2063 | ptr points to the first letter |
2064 | len the length of the name |
2065 | |
2066 | Returns: a value representing the name, or -1 if unknown |
2067 | */ |
2068 | |
2069 | static int |
2070 | check_posix_name(const uschar *ptr, int len) |
2071 | { |
2072 | const char *pn = posix_names; |
2073 | register int yield = 0; |
2074 | while (posix_name_lengths[yield] != 0) |
2075 | { |
2076 | if (len == posix_name_lengths[yield] && |
2077 | strncmp((const char *)ptr, pn, len) == 0) return yield; |
2078 | pn += posix_name_lengths[yield] + 1; |
2079 | yield++; |
2080 | } |
2081 | return -1; |
2082 | } |
2083 | |
2084 | |
2085 | /************************************************* |
2086 | * Adjust OP_RECURSE items in repeated group * |
2087 | *************************************************/ |
2088 | |
2089 | /* OP_RECURSE items contain an offset from the start of the regex to the group |
2090 | that is referenced. This means that groups can be replicated for fixed |
2091 | repetition simply by copying (because the recursion is allowed to refer to |
2092 | earlier groups that are outside the current group). However, when a group is |
2093 | optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is |
2094 | inserted before it, after it has been compiled. This means that any OP_RECURSE |
2095 | items within it that refer to the group itself or any contained groups have to |
2096 | have their offsets adjusted. That one of the jobs of this function. Before it |
2097 | is called, the partially compiled regex must be temporarily terminated with |
2098 | OP_END. |
2099 | |
2100 | This function has been extended with the possibility of forward references for |
2101 | recursions and subroutine calls. It must also check the list of such references |
2102 | for the group we are dealing with. If it finds that one of the recursions in |
2103 | the current group is on this list, it adjusts the offset in the list, not the |
2104 | value in the reference (which is a group number). |
2105 | |
2106 | Arguments: |
2107 | group points to the start of the group |
2108 | adjust the amount by which the group is to be moved |
2109 | utf8 TRUE in UTF-8 mode |
2110 | cd contains pointers to tables etc. |
2111 | save_hwm the hwm forward reference pointer at the start of the group |
2112 | |
2113 | Returns: nothing |
2114 | */ |
2115 | |
2116 | static void |
2117 | adjust_recurse(uschar *group, int adjust, BOOL utf8, compile_data *cd, |
2118 | uschar *save_hwm) |
2119 | { |
2120 | uschar *ptr = group; |
2121 | |
2122 | while ((ptr = (uschar *)find_recurse(ptr, utf8)) != NULL) |
2123 | { |
2124 | int offset; |
2125 | uschar *hc; |
2126 | |
2127 | /* See if this recursion is on the forward reference list. If so, adjust the |
2128 | reference. */ |
2129 | |
2130 | for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE) |
2131 | { |
2132 | offset = GET(hc, 0); |
2133 | if (cd->start_code + offset == ptr + 1) |
2134 | { |
2135 | PUT(hc, 0, offset + adjust); |
2136 | break; |
2137 | } |
2138 | } |
2139 | |
2140 | /* Otherwise, adjust the recursion offset if it's after the start of this |
2141 | group. */ |
2142 | |
2143 | if (hc >= cd->hwm) |
2144 | { |
2145 | offset = GET(ptr, 1); |
2146 | if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust); |
2147 | } |
2148 | |
2149 | ptr += 1 + LINK_SIZE; |
2150 | } |
2151 | } |
2152 | |
2153 | |
2154 | |
2155 | /************************************************* |
2156 | * Insert an automatic callout point * |
2157 | *************************************************/ |
2158 | |
2159 | /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert |
2160 | callout points before each pattern item. |
2161 | |
2162 | Arguments: |
2163 | code current code pointer |
2164 | ptr current pattern pointer |
2165 | cd pointers to tables etc |
2166 | |
2167 | Returns: new code pointer |
2168 | */ |
2169 | |
2170 | static uschar * |
2171 | auto_callout(uschar *code, const uschar *ptr, compile_data *cd) |
2172 | { |
2173 | *code++ = OP_CALLOUT; |
2174 | *code++ = 255; |
2175 | PUT(code, 0, ptr - cd->start_pattern); /* Pattern offset */ |
2176 | PUT(code, LINK_SIZE, 0); /* Default length */ |
2177 | return code + 2*LINK_SIZE; |
2178 | } |
2179 | |
2180 | |
2181 | |
2182 | /************************************************* |
2183 | * Complete a callout item * |
2184 | *************************************************/ |
2185 | |
2186 | /* A callout item contains the length of the next item in the pattern, which |
2187 | we can't fill in till after we have reached the relevant point. This is used |
2188 | for both automatic and manual callouts. |
2189 | |
2190 | Arguments: |
2191 | previous_callout points to previous callout item |
2192 | ptr current pattern pointer |
2193 | cd pointers to tables etc |
2194 | |
2195 | Returns: nothing |
2196 | */ |
2197 | |
2198 | static void |
2199 | complete_callout(uschar *previous_callout, const uschar *ptr, compile_data *cd) |
2200 | { |
2201 | int length = ptr - cd->start_pattern - GET(previous_callout, 2); |
2202 | PUT(previous_callout, 2 + LINK_SIZE, length); |
2203 | } |
2204 | |
2205 | |
2206 | |
2207 | #ifdef SUPPORT_UCP |
2208 | /************************************************* |
2209 | * Get othercase range * |
2210 | *************************************************/ |
2211 | |
2212 | /* This function is passed the start and end of a class range, in UTF-8 mode |
2213 | with UCP support. It searches up the characters, looking for internal ranges of |
2214 | characters in the "other" case. Each call returns the next one, updating the |
2215 | start address. |
2216 | |
2217 | Arguments: |
2218 | cptr points to starting character value; updated |
2219 | d end value |
2220 | ocptr where to put start of othercase range |
2221 | odptr where to put end of othercase range |
2222 | |
2223 | Yield: TRUE when range returned; FALSE when no more |
2224 | */ |
2225 | |
2226 | static BOOL |
2227 | get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr, |
2228 | unsigned int *odptr) |
2229 | { |
2230 | unsigned int c, othercase, next; |
2231 | |
2232 | for (c = *cptr; c <= d; c++) |
2233 | { if ((othercase = UCD_OTHERCASE(c)) != c) break; } |
2234 | |
2235 | if (c > d) return FALSE; |
2236 | |
2237 | *ocptr = othercase; |
2238 | next = othercase + 1; |
2239 | |
2240 | for (++c; c <= d; c++) |
2241 | { |
2242 | if (UCD_OTHERCASE(c) != next) break; |
2243 | next++; |
2244 | } |
2245 | |
2246 | *odptr = next - 1; |
2247 | *cptr = c; |
2248 | |
2249 | return TRUE; |
2250 | } |
2251 | #endif /* SUPPORT_UCP */ |
2252 | |
2253 | |
2254 | |
2255 | /************************************************* |
2256 | * Check if auto-possessifying is possible * |
2257 | *************************************************/ |
2258 | |
2259 | /* This function is called for unlimited repeats of certain items, to see |
2260 | whether the next thing could possibly match the repeated item. If not, it makes |
2261 | sense to automatically possessify the repeated item. |
2262 | |
2263 | Arguments: |
2264 | op_code the repeated op code |
2265 | this data for this item, depends on the opcode |
2266 | utf8 TRUE in UTF-8 mode |
2267 | utf8_char used for utf8 character bytes, NULL if not relevant |
2268 | ptr next character in pattern |
2269 | options options bits |
2270 | cd contains pointers to tables etc. |
2271 | |
2272 | Returns: TRUE if possessifying is wanted |
2273 | */ |
2274 | |
2275 | static BOOL |
2276 | check_auto_possessive(int op_code, int item, BOOL utf8, uschar *utf8_char, |
2277 | const uschar *ptr, int options, compile_data *cd) |
2278 | { |
2279 | int next; |
2280 | |
2281 | /* Skip whitespace and comments in extended mode */ |
2282 | |
2283 | if ((options & PCRE_EXTENDED) != 0) |
2284 | { |
2285 | for (;;) |
2286 | { |
2287 | while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++; |
2288 | if (*ptr == CHAR_NUMBER_SIGN) |
2289 | { |
2290 | while (*(++ptr) != 0) |
2291 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } |
2292 | } |
2293 | else break; |
2294 | } |
2295 | } |
2296 | |
2297 | /* If the next item is one that we can handle, get its value. A non-negative |
2298 | value is a character, a negative value is an escape value. */ |
2299 | |
2300 | if (*ptr == CHAR_BACKSLASH) |
2301 | { |
2302 | int temperrorcode = 0; |
2303 | next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE); |
2304 | if (temperrorcode != 0) return FALSE; |
2305 | ptr++; /* Point after the escape sequence */ |
2306 | } |
2307 | |
2308 | else if ((cd->ctypes[*ptr] & ctype_meta) == 0) |
2309 | { |
2310 | #ifdef SUPPORT_UTF8 |
2311 | if (utf8) { GETCHARINC(next, ptr); } else |
2312 | #endif |
2313 | next = *ptr++; |
2314 | } |
2315 | |
2316 | else return FALSE; |
2317 | |
2318 | /* Skip whitespace and comments in extended mode */ |
2319 | |
2320 | if ((options & PCRE_EXTENDED) != 0) |
2321 | { |
2322 | for (;;) |
2323 | { |
2324 | while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++; |
2325 | if (*ptr == CHAR_NUMBER_SIGN) |
2326 | { |
2327 | while (*(++ptr) != 0) |
2328 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } |
2329 | } |
2330 | else break; |
2331 | } |
2332 | } |
2333 | |
2334 | /* If the next thing is itself optional, we have to give up. */ |
2335 | |
2336 | if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK || |
2337 | strncmp((char *)ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0) |
2338 | return FALSE; |
2339 | |
2340 | /* Now compare the next item with the previous opcode. If the previous is a |
2341 | positive single character match, "item" either contains the character or, if |
2342 | "item" is greater than 127 in utf8 mode, the character's bytes are in |
2343 | utf8_char. */ |
2344 | |
2345 | |
2346 | /* Handle cases when the next item is a character. */ |
2347 | |
2348 | if (next >= 0) switch(op_code) |
2349 | { |
2350 | case OP_CHAR: |
2351 | #ifdef SUPPORT_UTF8 |
2352 | if (utf8 && item > 127) { GETCHAR(item, utf8_char); } |
2353 | #else |
2354 | (void)(utf8_char); /* Keep compiler happy by referencing function argument */ |
2355 | #endif |
2356 | return item != next; |
2357 | |
2358 | /* For CHARNC (caseless character) we must check the other case. If we have |
2359 | Unicode property support, we can use it to test the other case of |
2360 | high-valued characters. */ |
2361 | |
2362 | case OP_CHARNC: |
2363 | #ifdef SUPPORT_UTF8 |
2364 | if (utf8 && item > 127) { GETCHAR(item, utf8_char); } |
2365 | #endif |
2366 | if (item == next) return FALSE; |
2367 | #ifdef SUPPORT_UTF8 |
2368 | if (utf8) |
2369 | { |
2370 | unsigned int othercase; |
2371 | if (next < 128) othercase = cd->fcc[next]; else |
2372 | #ifdef SUPPORT_UCP |
2373 | othercase = UCD_OTHERCASE((unsigned int)next); |
2374 | #else |
2375 | othercase = NOTACHAR; |
2376 | #endif |
2377 | return (unsigned int)item != othercase; |
2378 | } |
2379 | else |
2380 | #endif /* SUPPORT_UTF8 */ |
2381 | return (item != cd->fcc[next]); /* Non-UTF-8 mode */ |
2382 | |
2383 | /* For OP_NOT, "item" must be a single-byte character. */ |
2384 | |
2385 | case OP_NOT: |
2386 | if (item == next) return TRUE; |
2387 | if ((options & PCRE_CASELESS) == 0) return FALSE; |
2388 | #ifdef SUPPORT_UTF8 |
2389 | if (utf8) |
2390 | { |
2391 | unsigned int othercase; |
2392 | if (next < 128) othercase = cd->fcc[next]; else |
2393 | #ifdef SUPPORT_UCP |
2394 | othercase = UCD_OTHERCASE(next); |
2395 | #else |
2396 | othercase = NOTACHAR; |
2397 | #endif |
2398 | return (unsigned int)item == othercase; |
2399 | } |
2400 | else |
2401 | #endif /* SUPPORT_UTF8 */ |
2402 | return (item == cd->fcc[next]); /* Non-UTF-8 mode */ |
2403 | |
2404 | case OP_DIGIT: |
2405 | return next > 127 || (cd->ctypes[next] & ctype_digit) == 0; |
2406 | |
2407 | case OP_NOT_DIGIT: |
2408 | return next <= 127 && (cd->ctypes[next] & ctype_digit) != 0; |
2409 | |
2410 | case OP_WHITESPACE: |
2411 | return next > 127 || (cd->ctypes[next] & ctype_space) == 0; |
2412 | |
2413 | case OP_NOT_WHITESPACE: |
2414 | return next <= 127 && (cd->ctypes[next] & ctype_space) != 0; |
2415 | |
2416 | case OP_WORDCHAR: |
2417 | return next > 127 || (cd->ctypes[next] & ctype_word) == 0; |
2418 | |
2419 | case OP_NOT_WORDCHAR: |
2420 | return next <= 127 && (cd->ctypes[next] & ctype_word) != 0; |
2421 | |
2422 | case OP_HSPACE: |
2423 | case OP_NOT_HSPACE: |
2424 | switch(next) |
2425 | { |
2426 | case 0x09: |
2427 | case 0x20: |
2428 | case 0xa0: |
2429 | case 0x1680: |
2430 | case 0x180e: |
2431 | case 0x2000: |
2432 | case 0x2001: |
2433 | case 0x2002: |
2434 | case 0x2003: |
2435 | case 0x2004: |
2436 | case 0x2005: |
2437 | case 0x2006: |
2438 | case 0x2007: |
2439 | case 0x2008: |
2440 | case 0x2009: |
2441 | case 0x200A: |
2442 | case 0x202f: |
2443 | case 0x205f: |
2444 | case 0x3000: |
2445 | return op_code != OP_HSPACE; |
2446 | default: |
2447 | return op_code == OP_HSPACE; |
2448 | } |
2449 | |
2450 | case OP_VSPACE: |
2451 | case OP_NOT_VSPACE: |
2452 | switch(next) |
2453 | { |
2454 | case 0x0a: |
2455 | case 0x0b: |
2456 | case 0x0c: |
2457 | case 0x0d: |
2458 | case 0x85: |
2459 | case 0x2028: |
2460 | case 0x2029: |
2461 | return op_code != OP_VSPACE; |
2462 | default: |
2463 | return op_code == OP_VSPACE; |
2464 | } |
2465 | |
2466 | default: |
2467 | return FALSE; |
2468 | } |
2469 | |
2470 | |
2471 | /* Handle the case when the next item is \d, \s, etc. */ |
2472 | |
2473 | switch(op_code) |
2474 | { |
2475 | case OP_CHAR: |
2476 | case OP_CHARNC: |
2477 | #ifdef SUPPORT_UTF8 |
2478 | if (utf8 && item > 127) { GETCHAR(item, utf8_char); } |
2479 | #endif |
2480 | switch(-next) |
2481 | { |
2482 | case ESC_d: |
2483 | return item > 127 || (cd->ctypes[item] & ctype_digit) == 0; |
2484 | |
2485 | case ESC_D: |
2486 | return item <= 127 && (cd->ctypes[item] & ctype_digit) != 0; |
2487 | |
2488 | case ESC_s: |
2489 | return item > 127 || (cd->ctypes[item] & ctype_space) == 0; |
2490 | |
2491 | case ESC_S: |
2492 | return item <= 127 && (cd->ctypes[item] & ctype_space) != 0; |
2493 | |
2494 | case ESC_w: |
2495 | return item > 127 || (cd->ctypes[item] & ctype_word) == 0; |
2496 | |
2497 | case ESC_W: |
2498 | return item <= 127 && (cd->ctypes[item] & ctype_word) != 0; |
2499 | |
2500 | case ESC_h: |
2501 | case ESC_H: |
2502 | switch(item) |
2503 | { |
2504 | case 0x09: |
2505 | case 0x20: |
2506 | case 0xa0: |
2507 | case 0x1680: |
2508 | case 0x180e: |
2509 | case 0x2000: |
2510 | case 0x2001: |
2511 | case 0x2002: |
2512 | case 0x2003: |
2513 | case 0x2004: |
2514 | case 0x2005: |
2515 | case 0x2006: |
2516 | case 0x2007: |
2517 | case 0x2008: |
2518 | case 0x2009: |
2519 | case 0x200A: |
2520 | case 0x202f: |
2521 | case 0x205f: |
2522 | case 0x3000: |
2523 | return -next != ESC_h; |
2524 | default: |
2525 | return -next == ESC_h; |
2526 | } |
2527 | |
2528 | case ESC_v: |
2529 | case ESC_V: |
2530 | switch(item) |
2531 | { |
2532 | case 0x0a: |
2533 | case 0x0b: |
2534 | case 0x0c: |
2535 | case 0x0d: |
2536 | case 0x85: |
2537 | case 0x2028: |
2538 | case 0x2029: |
2539 | return -next != ESC_v; |
2540 | default: |
2541 | return -next == ESC_v; |
2542 | } |
2543 | |
2544 | default: |
2545 | return FALSE; |
2546 | } |
2547 | |
2548 | case OP_DIGIT: |
2549 | return next == -ESC_D || next == -ESC_s || next == -ESC_W || |
2550 | next == -ESC_h || next == -ESC_v; |
2551 | |
2552 | case OP_NOT_DIGIT: |
2553 | return next == -ESC_d; |
2554 | |
2555 | case OP_WHITESPACE: |
2556 | return next == -ESC_S || next == -ESC_d || next == -ESC_w; |
2557 | |
2558 | case OP_NOT_WHITESPACE: |
2559 | return next == -ESC_s || next == -ESC_h || next == -ESC_v; |
2560 | |
2561 | case OP_HSPACE: |
2562 | return next == -ESC_S || next == -ESC_H || next == -ESC_d || next == -ESC_w; |
2563 | |
2564 | case OP_NOT_HSPACE: |
2565 | return next == -ESC_h; |
2566 | |
2567 | /* Can't have \S in here because VT matches \S (Perl anomaly) */ |
2568 | case OP_VSPACE: |
2569 | return next == -ESC_V || next == -ESC_d || next == -ESC_w; |
2570 | |
2571 | case OP_NOT_VSPACE: |
2572 | return next == -ESC_v; |
2573 | |
2574 | case OP_WORDCHAR: |
2575 | return next == -ESC_W || next == -ESC_s || next == -ESC_h || next == -ESC_v; |
2576 | |
2577 | case OP_NOT_WORDCHAR: |
2578 | return next == -ESC_w || next == -ESC_d; |
2579 | |
2580 | default: |
2581 | return FALSE; |
2582 | } |
2583 | |
2584 | /* Control does not reach here */ |
2585 | } |
2586 | |
2587 | |
2588 | |
2589 | /************************************************* |
2590 | * Compile one branch * |
2591 | *************************************************/ |
2592 | |
2593 | /* Scan the pattern, compiling it into the a vector. If the options are |
2594 | changed during the branch, the pointer is used to change the external options |
2595 | bits. This function is used during the pre-compile phase when we are trying |
2596 | to find out the amount of memory needed, as well as during the real compile |
2597 | phase. The value of lengthptr distinguishes the two phases. |
2598 | |
2599 | Arguments: |
2600 | optionsptr pointer to the option bits |
2601 | codeptr points to the pointer to the current code point |
2602 | ptrptr points to the current pattern pointer |
2603 | errorcodeptr points to error code variable |
2604 | firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE) |
2605 | reqbyteptr set to the last literal character required, else < 0 |
2606 | bcptr points to current branch chain |
2607 | cd contains pointers to tables etc. |
2608 | lengthptr NULL during the real compile phase |
2609 | points to length accumulator during pre-compile phase |
2610 | |
2611 | Returns: TRUE on success |
2612 | FALSE, with *errorcodeptr set non-zero on error |
2613 | */ |
2614 | |
2615 | static BOOL |
2616 | compile_branch(int *optionsptr, uschar **codeptr, const uschar **ptrptr, |
2617 | int *errorcodeptr, int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, |
2618 | compile_data *cd, int *lengthptr) |
2619 | { |
2620 | int repeat_type, op_type; |
2621 | int repeat_min = 0, repeat_max = 0; /* To please picky compilers */ |
2622 | int bravalue = 0; |
2623 | int greedy_default, greedy_non_default; |
2624 | int firstbyte, reqbyte; |
2625 | int zeroreqbyte, zerofirstbyte; |
2626 | int req_caseopt, reqvary, tempreqvary; |
2627 | int options = *optionsptr; |
2628 | int after_manual_callout = 0; |
2629 | int length_prevgroup = 0; |
2630 | register int c; |
2631 | register uschar *code = *codeptr; |
2632 | uschar *last_code = code; |
2633 | uschar *orig_code = code; |
2634 | uschar *tempcode; |
2635 | BOOL inescq = FALSE; |
2636 | BOOL groupsetfirstbyte = FALSE; |
2637 | const uschar *ptr = *ptrptr; |
2638 | const uschar *tempptr; |
2639 | uschar *previous = NULL; |
2640 | uschar *previous_callout = NULL; |
2641 | uschar *save_hwm = NULL; |
2642 | uschar classbits[32]; |
2643 | |
2644 | #ifdef SUPPORT_UTF8 |
2645 | BOOL class_utf8; |
2646 | BOOL utf8 = (options & PCRE_UTF8) != 0; |
2647 | uschar *class_utf8data; |
2648 | uschar *class_utf8data_base; |
2649 | uschar utf8_char[6]; |
2650 | #else |
2651 | BOOL utf8 = FALSE; |
2652 | uschar *utf8_char = NULL; |
2653 | #endif |
2654 | |
2655 | #ifdef DEBUG |
2656 | if (lengthptr != NULL) DPRINTF((">> start branch\n")); |
2657 | #endif |
2658 | |
2659 | /* Set up the default and non-default settings for greediness */ |
2660 | |
2661 | greedy_default = ((options & PCRE_UNGREEDY) != 0); |
2662 | greedy_non_default = greedy_default ^ 1; |
2663 | |
2664 | /* Initialize no first byte, no required byte. REQ_UNSET means "no char |
2665 | matching encountered yet". It gets changed to REQ_NONE if we hit something that |
2666 | matches a non-fixed char first char; reqbyte just remains unset if we never |
2667 | find one. |
2668 | |
2669 | When we hit a repeat whose minimum is zero, we may have to adjust these values |
2670 | to take the zero repeat into account. This is implemented by setting them to |
2671 | zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual |
2672 | item types that can be repeated set these backoff variables appropriately. */ |
2673 | |
2674 | firstbyte = reqbyte = zerofirstbyte = zeroreqbyte = REQ_UNSET; |
2675 | |
2676 | /* The variable req_caseopt contains either the REQ_CASELESS value or zero, |
2677 | according to the current setting of the caseless flag. REQ_CASELESS is a bit |
2678 | value > 255. It is added into the firstbyte or reqbyte variables to record the |
2679 | case status of the value. This is used only for ASCII characters. */ |
2680 | |
2681 | req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0; |
2682 | |
2683 | /* Switch on next character until the end of the branch */ |
2684 | |
2685 | for (;; ptr++) |
2686 | { |
2687 | BOOL negate_class; |
2688 | BOOL should_flip_negation; |
2689 | BOOL possessive_quantifier; |
2690 | BOOL is_quantifier; |
2691 | BOOL is_recurse; |
2692 | BOOL reset_bracount; |
2693 | int class_charcount; |
2694 | int class_lastchar; |
2695 | int newoptions; |
2696 | int recno; |
2697 | int refsign; |
2698 | int skipbytes; |
2699 | int subreqbyte; |
2700 | int subfirstbyte; |
2701 | int terminator; |
2702 | int mclength; |
2703 | uschar mcbuffer[8]; |
2704 | |
2705 | /* Get next byte in the pattern */ |
2706 | |
2707 | c = *ptr; |
2708 | |
2709 | /* If we are in the pre-compile phase, accumulate the length used for the |
2710 | previous cycle of this loop. */ |
2711 | |
2712 | if (lengthptr != NULL) |
2713 | { |
2714 | #ifdef DEBUG |
2715 | if (code > cd->hwm) cd->hwm = code; /* High water info */ |
2716 | #endif |
2717 | if (code > cd->start_workspace + COMPILE_WORK_SIZE) /* Check for overrun */ |
2718 | { |
2719 | *errorcodeptr = ERR52; |
2720 | goto FAILED; |
2721 | } |
2722 | |
2723 | /* There is at least one situation where code goes backwards: this is the |
2724 | case of a zero quantifier after a class (e.g. [ab]{0}). At compile time, |
2725 | the class is simply eliminated. However, it is created first, so we have to |
2726 | allow memory for it. Therefore, don't ever reduce the length at this point. |
2727 | */ |
2728 | |
2729 | if (code < last_code) code = last_code; |
2730 | |
2731 | /* Paranoid check for integer overflow */ |
2732 | |
2733 | if (OFLOW_MAX - *lengthptr < code - last_code) |
2734 | { |
2735 | *errorcodeptr = ERR20; |
2736 | goto FAILED; |
2737 | } |
2738 | |
2739 | *lengthptr += code - last_code; |
2740 | DPRINTF(("length=%d added %d c=%c\n", *lengthptr, code - last_code, c)); |
2741 | |
2742 | /* If "previous" is set and it is not at the start of the work space, move |
2743 | it back to there, in order to avoid filling up the work space. Otherwise, |
2744 | if "previous" is NULL, reset the current code pointer to the start. */ |
2745 | |
2746 | if (previous != NULL) |
2747 | { |
2748 | if (previous > orig_code) |
2749 | { |
2750 | memmove(orig_code, previous, code - previous); |
2751 | code -= previous - orig_code; |
2752 | previous = orig_code; |
2753 | } |
2754 | } |
2755 | else code = orig_code; |
2756 | |
2757 | /* Remember where this code item starts so we can pick up the length |
2758 | next time round. */ |
2759 | |
2760 | last_code = code; |
2761 | } |
2762 | |
2763 | /* In the real compile phase, just check the workspace used by the forward |
2764 | reference list. */ |
2765 | |
2766 | else if (cd->hwm > cd->start_workspace + COMPILE_WORK_SIZE) |
2767 | { |
2768 | *errorcodeptr = ERR52; |
2769 | goto FAILED; |
2770 | } |
2771 | |
2772 | /* If in \Q...\E, check for the end; if not, we have a literal */ |
2773 | |
2774 | if (inescq && c != 0) |
2775 | { |
2776 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
2777 | { |
2778 | inescq = FALSE; |
2779 | ptr++; |
2780 | continue; |
2781 | } |
2782 | else |
2783 | { |
2784 | if (previous_callout != NULL) |
2785 | { |
2786 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
2787 | complete_callout(previous_callout, ptr, cd); |
2788 | previous_callout = NULL; |
2789 | } |
2790 | if ((options & PCRE_AUTO_CALLOUT) != 0) |
2791 | { |
2792 | previous_callout = code; |
2793 | code = auto_callout(code, ptr, cd); |
2794 | } |
2795 | goto NORMAL_CHAR; |
2796 | } |
2797 | } |
2798 | |
2799 | /* Fill in length of a previous callout, except when the next thing is |
2800 | a quantifier. */ |
2801 | |
2802 | is_quantifier = |
2803 | c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK || |
2804 | (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1)); |
2805 | |
2806 | if (!is_quantifier && previous_callout != NULL && |
2807 | after_manual_callout-- <= 0) |
2808 | { |
2809 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
2810 | complete_callout(previous_callout, ptr, cd); |
2811 | previous_callout = NULL; |
2812 | } |
2813 | |
2814 | /* In extended mode, skip white space and comments */ |
2815 | |
2816 | if ((options & PCRE_EXTENDED) != 0) |
2817 | { |
2818 | if ((cd->ctypes[c] & ctype_space) != 0) continue; |
2819 | if (c == CHAR_NUMBER_SIGN) |
2820 | { |
2821 | while (*(++ptr) != 0) |
2822 | { |
2823 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; } |
2824 | } |
2825 | if (*ptr != 0) continue; |
2826 | |
2827 | /* Else fall through to handle end of string */ |
2828 | c = 0; |
2829 | } |
2830 | } |
2831 | |
2832 | /* No auto callout for quantifiers. */ |
2833 | |
2834 | if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier) |
2835 | { |
2836 | previous_callout = code; |
2837 | code = auto_callout(code, ptr, cd); |
2838 | } |
2839 | |
2840 | switch(c) |
2841 | { |
2842 | /* ===================================================================*/ |
2843 | case 0: /* The branch terminates at string end */ |
2844 | case CHAR_VERTICAL_LINE: /* or | or ) */ |
2845 | case CHAR_RIGHT_PARENTHESIS: |
2846 | *firstbyteptr = firstbyte; |
2847 | *reqbyteptr = reqbyte; |
2848 | *codeptr = code; |
2849 | *ptrptr = ptr; |
2850 | if (lengthptr != NULL) |
2851 | { |
2852 | if (OFLOW_MAX - *lengthptr < code - last_code) |
2853 | { |
2854 | *errorcodeptr = ERR20; |
2855 | goto FAILED; |
2856 | } |
2857 | *lengthptr += code - last_code; /* To include callout length */ |
2858 | DPRINTF((">> end branch\n")); |
2859 | } |
2860 | return TRUE; |
2861 | |
2862 | |
2863 | /* ===================================================================*/ |
2864 | /* Handle single-character metacharacters. In multiline mode, ^ disables |
2865 | the setting of any following char as a first character. */ |
2866 | |
2867 | case CHAR_CIRCUMFLEX_ACCENT: |
2868 | if ((options & PCRE_MULTILINE) != 0) |
2869 | { |
2870 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
2871 | } |
2872 | previous = NULL; |
2873 | *code++ = OP_CIRC; |
2874 | break; |
2875 | |
2876 | case CHAR_DOLLAR_SIGN: |
2877 | previous = NULL; |
2878 | *code++ = OP_DOLL; |
2879 | break; |
2880 | |
2881 | /* There can never be a first char if '.' is first, whatever happens about |
2882 | repeats. The value of reqbyte doesn't change either. */ |
2883 | |
2884 | case CHAR_DOT: |
2885 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
2886 | zerofirstbyte = firstbyte; |
2887 | zeroreqbyte = reqbyte; |
2888 | previous = code; |
2889 | *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY; |
2890 | break; |
2891 | |
2892 | |
2893 | /* ===================================================================*/ |
2894 | /* Character classes. If the included characters are all < 256, we build a |
2895 | 32-byte bitmap of the permitted characters, except in the special case |
2896 | where there is only one such character. For negated classes, we build the |
2897 | map as usual, then invert it at the end. However, we use a different opcode |
2898 | so that data characters > 255 can be handled correctly. |
2899 | |
2900 | If the class contains characters outside the 0-255 range, a different |
2901 | opcode is compiled. It may optionally have a bit map for characters < 256, |
2902 | but those above are are explicitly listed afterwards. A flag byte tells |
2903 | whether the bitmap is present, and whether this is a negated class or not. |
2904 | |
2905 | In JavaScript compatibility mode, an isolated ']' causes an error. In |
2906 | default (Perl) mode, it is treated as a data character. */ |
2907 | |
2908 | case CHAR_RIGHT_SQUARE_BRACKET: |
2909 | if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
2910 | { |
2911 | *errorcodeptr = ERR64; |
2912 | goto FAILED; |
2913 | } |
2914 | goto NORMAL_CHAR; |
2915 | |
2916 | case CHAR_LEFT_SQUARE_BRACKET: |
2917 | previous = code; |
2918 | |
2919 | /* PCRE supports POSIX class stuff inside a class. Perl gives an error if |
2920 | they are encountered at the top level, so we'll do that too. */ |
2921 | |
2922 | if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
2923 | ptr[1] == CHAR_EQUALS_SIGN) && |
2924 | check_posix_syntax(ptr, &tempptr)) |
2925 | { |
2926 | *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31; |
2927 | goto FAILED; |
2928 | } |
2929 | |
2930 | /* If the first character is '^', set the negation flag and skip it. Also, |
2931 | if the first few characters (either before or after ^) are \Q\E or \E we |
2932 | skip them too. This makes for compatibility with Perl. */ |
2933 | |
2934 | negate_class = FALSE; |
2935 | for (;;) |
2936 | { |
2937 | c = *(++ptr); |
2938 | if (c == CHAR_BACKSLASH) |
2939 | { |
2940 | if (ptr[1] == CHAR_E) |
2941 | ptr++; |
2942 | else if (strncmp((const char *)ptr+1, |
2943 | STR_Q STR_BACKSLASH STR_E, 3) == 0) |
2944 | ptr += 3; |
2945 | else |
2946 | break; |
2947 | } |
2948 | else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT) |
2949 | negate_class = TRUE; |
2950 | else break; |
2951 | } |
2952 | |
2953 | /* Empty classes are allowed in JavaScript compatibility mode. Otherwise, |
2954 | an initial ']' is taken as a data character -- the code below handles |
2955 | that. In JS mode, [] must always fail, so generate OP_FAIL, whereas |
2956 | [^] must match any character, so generate OP_ALLANY. */ |
2957 | |
2958 | if (c == CHAR_RIGHT_SQUARE_BRACKET && |
2959 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
2960 | { |
2961 | *code++ = negate_class? OP_ALLANY : OP_FAIL; |
2962 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
2963 | zerofirstbyte = firstbyte; |
2964 | break; |
2965 | } |
2966 | |
2967 | /* If a class contains a negative special such as \S, we need to flip the |
2968 | negation flag at the end, so that support for characters > 255 works |
2969 | correctly (they are all included in the class). */ |
2970 | |
2971 | should_flip_negation = FALSE; |
2972 | |
2973 | /* Keep a count of chars with values < 256 so that we can optimize the case |
2974 | of just a single character (as long as it's < 256). However, For higher |
2975 | valued UTF-8 characters, we don't yet do any optimization. */ |
2976 | |
2977 | class_charcount = 0; |
2978 | class_lastchar = -1; |
2979 | |
2980 | /* Initialize the 32-char bit map to all zeros. We build the map in a |
2981 | temporary bit of memory, in case the class contains only 1 character (less |
2982 | than 256), because in that case the compiled code doesn't use the bit map. |
2983 | */ |
2984 | |
2985 | memset(classbits, 0, 32 * sizeof(uschar)); |
2986 | |
2987 | #ifdef SUPPORT_UTF8 |
2988 | class_utf8 = FALSE; /* No chars >= 256 */ |
2989 | class_utf8data = code + LINK_SIZE + 2; /* For UTF-8 items */ |
2990 | class_utf8data_base = class_utf8data; /* For resetting in pass 1 */ |
2991 | #endif |
2992 | |
2993 | /* Process characters until ] is reached. By writing this as a "do" it |
2994 | means that an initial ] is taken as a data character. At the start of the |
2995 | loop, c contains the first byte of the character. */ |
2996 | |
2997 | if (c != 0) do |
2998 | { |
2999 | const uschar *oldptr; |
3000 | |
3001 | #ifdef SUPPORT_UTF8 |
3002 | if (utf8 && c > 127) |
3003 | { /* Braces are required because the */ |
3004 | GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */ |
3005 | } |
3006 | |
3007 | /* In the pre-compile phase, accumulate the length of any UTF-8 extra |
3008 | data and reset the pointer. This is so that very large classes that |
3009 | contain a zillion UTF-8 characters no longer overwrite the work space |
3010 | (which is on the stack). */ |
3011 | |
3012 | if (lengthptr != NULL) |
3013 | { |
3014 | *lengthptr += class_utf8data - class_utf8data_base; |
3015 | class_utf8data = class_utf8data_base; |
3016 | } |
3017 | |
3018 | #endif |
3019 | |
3020 | /* Inside \Q...\E everything is literal except \E */ |
3021 | |
3022 | if (inescq) |
3023 | { |
3024 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */ |
3025 | { |
3026 | inescq = FALSE; /* Reset literal state */ |
3027 | ptr++; /* Skip the 'E' */ |
3028 | continue; /* Carry on with next */ |
3029 | } |
3030 | goto CHECK_RANGE; /* Could be range if \E follows */ |
3031 | } |
3032 | |
3033 | /* Handle POSIX class names. Perl allows a negation extension of the |
3034 | form [:^name:]. A square bracket that doesn't match the syntax is |
3035 | treated as a literal. We also recognize the POSIX constructions |
3036 | [.ch.] and [=ch=] ("collating elements") and fault them, as Perl |
3037 | 5.6 and 5.8 do. */ |
3038 | |
3039 | if (c == CHAR_LEFT_SQUARE_BRACKET && |
3040 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
3041 | ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr)) |
3042 | { |
3043 | BOOL local_negate = FALSE; |
3044 | int posix_class, taboffset, tabopt; |
3045 | register const uschar *cbits = cd->cbits; |
3046 | uschar pbits[32]; |
3047 | |
3048 | if (ptr[1] != CHAR_COLON) |
3049 | { |
3050 | *errorcodeptr = ERR31; |
3051 | goto FAILED; |
3052 | } |
3053 | |
3054 | ptr += 2; |
3055 | if (*ptr == CHAR_CIRCUMFLEX_ACCENT) |
3056 | { |
3057 | local_negate = TRUE; |
3058 | should_flip_negation = TRUE; /* Note negative special */ |
3059 | ptr++; |
3060 | } |
3061 | |
3062 | posix_class = check_posix_name(ptr, tempptr - ptr); |
3063 | if (posix_class < 0) |
3064 | { |
3065 | *errorcodeptr = ERR30; |
3066 | goto FAILED; |
3067 | } |
3068 | |
3069 | /* If matching is caseless, upper and lower are converted to |
3070 | alpha. This relies on the fact that the class table starts with |
3071 | alpha, lower, upper as the first 3 entries. */ |
3072 | |
3073 | if ((options & PCRE_CASELESS) != 0 && posix_class <= 2) |
3074 | posix_class = 0; |
3075 | |
3076 | /* We build the bit map for the POSIX class in a chunk of local store |
3077 | because we may be adding and subtracting from it, and we don't want to |
3078 | subtract bits that may be in the main map already. At the end we or the |
3079 | result into the bit map that is being built. */ |
3080 | |
3081 | posix_class *= 3; |
3082 | |
3083 | /* Copy in the first table (always present) */ |
3084 | |
3085 | memcpy(pbits, cbits + posix_class_maps[posix_class], |
3086 | 32 * sizeof(uschar)); |
3087 | |
3088 | /* If there is a second table, add or remove it as required. */ |
3089 | |
3090 | taboffset = posix_class_maps[posix_class + 1]; |
3091 | tabopt = posix_class_maps[posix_class + 2]; |
3092 | |
3093 | if (taboffset >= 0) |
3094 | { |
3095 | if (tabopt >= 0) |
3096 | for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset]; |
3097 | else |
3098 | for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset]; |
3099 | } |
3100 | |
3101 | /* Not see if we need to remove any special characters. An option |
3102 | value of 1 removes vertical space and 2 removes underscore. */ |
3103 | |
3104 | if (tabopt < 0) tabopt = -tabopt; |
3105 | if (tabopt == 1) pbits[1] &= ~0x3c; |
3106 | else if (tabopt == 2) pbits[11] &= 0x7f; |
3107 | |
3108 | /* Add the POSIX table or its complement into the main table that is |
3109 | being built and we are done. */ |
3110 | |
3111 | if (local_negate) |
3112 | for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c]; |
3113 | else |
3114 | for (c = 0; c < 32; c++) classbits[c] |= pbits[c]; |
3115 | |
3116 | ptr = tempptr + 1; |
3117 | class_charcount = 10; /* Set > 1; assumes more than 1 per class */ |
3118 | continue; /* End of POSIX syntax handling */ |
3119 | } |
3120 | |
3121 | /* Backslash may introduce a single character, or it may introduce one |
3122 | of the specials, which just set a flag. The sequence \b is a special |
3123 | case. Inside a class (and only there) it is treated as backspace. |
3124 | Elsewhere it marks a word boundary. Other escapes have preset maps ready |
3125 | to 'or' into the one we are building. We assume they have more than one |
3126 | character in them, so set class_charcount bigger than one. */ |
3127 | |
3128 | if (c == CHAR_BACKSLASH) |
3129 | { |
3130 | c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE); |
3131 | if (*errorcodeptr != 0) goto FAILED; |
3132 | |
3133 | if (-c == ESC_b) c = CHAR_BS; /* \b is backspace in a class */ |
3134 | else if (-c == ESC_X) c = CHAR_X; /* \X is literal X in a class */ |
3135 | else if (-c == ESC_R) c = CHAR_R; /* \R is literal R in a class */ |
3136 | else if (-c == ESC_Q) /* Handle start of quoted string */ |
3137 | { |
3138 | if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
3139 | { |
3140 | ptr += 2; /* avoid empty string */ |
3141 | } |
3142 | else inescq = TRUE; |
3143 | continue; |
3144 | } |
3145 | else if (-c == ESC_E) continue; /* Ignore orphan \E */ |
3146 | |
3147 | if (c < 0) |
3148 | { |
3149 | register const uschar *cbits = cd->cbits; |
3150 | class_charcount += 2; /* Greater than 1 is what matters */ |
3151 | |
3152 | /* Save time by not doing this in the pre-compile phase. */ |
3153 | |
3154 | if (lengthptr == NULL) switch (-c) |
3155 | { |
3156 | case ESC_d: |
3157 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit]; |
3158 | continue; |
3159 | |
3160 | case ESC_D: |
3161 | should_flip_negation = TRUE; |
3162 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit]; |
3163 | continue; |
3164 | |
3165 | case ESC_w: |
3166 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word]; |
3167 | continue; |
3168 | |
3169 | case ESC_W: |
3170 | should_flip_negation = TRUE; |
3171 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word]; |
3172 | continue; |
3173 | |
3174 | case ESC_s: |
3175 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_space]; |
3176 | classbits[1] &= ~0x08; /* Perl 5.004 onwards omits VT from \s */ |
3177 | continue; |
3178 | |
3179 | case ESC_S: |
3180 | should_flip_negation = TRUE; |
3181 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space]; |
3182 | classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */ |
3183 | continue; |
3184 | |
3185 | default: /* Not recognized; fall through */ |
3186 | break; /* Need "default" setting to stop compiler warning. */ |
3187 | } |
3188 | |
3189 | /* In the pre-compile phase, just do the recognition. */ |
3190 | |
3191 | else if (c == -ESC_d || c == -ESC_D || c == -ESC_w || |
3192 | c == -ESC_W || c == -ESC_s || c == -ESC_S) continue; |
3193 | |
3194 | /* We need to deal with \H, \h, \V, and \v in both phases because |
3195 | they use extra memory. */ |
3196 | |
3197 | if (-c == ESC_h) |
3198 | { |
3199 | SETBIT(classbits, 0x09); /* VT */ |
3200 | SETBIT(classbits, 0x20); /* SPACE */ |
3201 | SETBIT(classbits, 0xa0); /* NSBP */ |
3202 | #ifdef SUPPORT_UTF8 |
3203 | if (utf8) |
3204 | { |
3205 | class_utf8 = TRUE; |
3206 | *class_utf8data++ = XCL_SINGLE; |
3207 | class_utf8data += _pcre_ord2utf8(0x1680, class_utf8data); |
3208 | *class_utf8data++ = XCL_SINGLE; |
3209 | class_utf8data += _pcre_ord2utf8(0x180e, class_utf8data); |
3210 | *class_utf8data++ = XCL_RANGE; |
3211 | class_utf8data += _pcre_ord2utf8(0x2000, class_utf8data); |
3212 | class_utf8data += _pcre_ord2utf8(0x200A, class_utf8data); |
3213 | *class_utf8data++ = XCL_SINGLE; |
3214 | class_utf8data += _pcre_ord2utf8(0x202f, class_utf8data); |
3215 | *class_utf8data++ = XCL_SINGLE; |
3216 | class_utf8data += _pcre_ord2utf8(0x205f, class_utf8data); |
3217 | *class_utf8data++ = XCL_SINGLE; |
3218 | class_utf8data += _pcre_ord2utf8(0x3000, class_utf8data); |
3219 | } |
3220 | #endif |
3221 | continue; |
3222 | } |
3223 | |
3224 | if (-c == ESC_H) |
3225 | { |
3226 | for (c = 0; c < 32; c++) |
3227 | { |
3228 | int x = 0xff; |
3229 | switch (c) |
3230 | { |
3231 | case 0x09/8: x ^= 1 << (0x09%8); break; |
3232 | case 0x20/8: x ^= 1 << (0x20%8); break; |
3233 | case 0xa0/8: x ^= 1 << (0xa0%8); break; |
3234 | default: break; |
3235 | } |
3236 | classbits[c] |= x; |
3237 | } |
3238 | |
3239 | #ifdef SUPPORT_UTF8 |
3240 | if (utf8) |
3241 | { |
3242 | class_utf8 = TRUE; |
3243 | *class_utf8data++ = XCL_RANGE; |
3244 | class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data); |
3245 | class_utf8data += _pcre_ord2utf8(0x167f, class_utf8data); |
3246 | *class_utf8data++ = XCL_RANGE; |
3247 | class_utf8data += _pcre_ord2utf8(0x1681, class_utf8data); |
3248 | class_utf8data += _pcre_ord2utf8(0x180d, class_utf8data); |
3249 | *class_utf8data++ = XCL_RANGE; |
3250 | class_utf8data += _pcre_ord2utf8(0x180f, class_utf8data); |
3251 | class_utf8data += _pcre_ord2utf8(0x1fff, class_utf8data); |
3252 | *class_utf8data++ = XCL_RANGE; |
3253 | class_utf8data += _pcre_ord2utf8(0x200B, class_utf8data); |
3254 | class_utf8data += _pcre_ord2utf8(0x202e, class_utf8data); |
3255 | *class_utf8data++ = XCL_RANGE; |
3256 | class_utf8data += _pcre_ord2utf8(0x2030, class_utf8data); |
3257 | class_utf8data += _pcre_ord2utf8(0x205e, class_utf8data); |
3258 | *class_utf8data++ = XCL_RANGE; |
3259 | class_utf8data += _pcre_ord2utf8(0x2060, class_utf8data); |
3260 | class_utf8data += _pcre_ord2utf8(0x2fff, class_utf8data); |
3261 | *class_utf8data++ = XCL_RANGE; |
3262 | class_utf8data += _pcre_ord2utf8(0x3001, class_utf8data); |
3263 | class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data); |
3264 | } |
3265 | #endif |
3266 | continue; |
3267 | } |
3268 | |
3269 | if (-c == ESC_v) |
3270 | { |
3271 | SETBIT(classbits, 0x0a); /* LF */ |
3272 | SETBIT(classbits, 0x0b); /* VT */ |
3273 | SETBIT(classbits, 0x0c); /* FF */ |
3274 | SETBIT(classbits, 0x0d); /* CR */ |
3275 | SETBIT(classbits, 0x85); /* NEL */ |
3276 | #ifdef SUPPORT_UTF8 |
3277 | if (utf8) |
3278 | { |
3279 | class_utf8 = TRUE; |
3280 | *class_utf8data++ = XCL_RANGE; |
3281 | class_utf8data += _pcre_ord2utf8(0x2028, class_utf8data); |
3282 | class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data); |
3283 | } |
3284 | #endif |
3285 | continue; |
3286 | } |
3287 | |
3288 | if (-c == ESC_V) |
3289 | { |
3290 | for (c = 0; c < 32; c++) |
3291 | { |
3292 | int x = 0xff; |
3293 | switch (c) |
3294 | { |
3295 | case 0x0a/8: x ^= 1 << (0x0a%8); |
3296 | x ^= 1 << (0x0b%8); |
3297 | x ^= 1 << (0x0c%8); |
3298 | x ^= 1 << (0x0d%8); |
3299 | break; |
3300 | case 0x85/8: x ^= 1 << (0x85%8); break; |
3301 | default: break; |
3302 | } |
3303 | classbits[c] |= x; |
3304 | } |
3305 | |
3306 | #ifdef SUPPORT_UTF8 |
3307 | if (utf8) |
3308 | { |
3309 | class_utf8 = TRUE; |
3310 | *class_utf8data++ = XCL_RANGE; |
3311 | class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data); |
3312 | class_utf8data += _pcre_ord2utf8(0x2027, class_utf8data); |
3313 | *class_utf8data++ = XCL_RANGE; |
3314 | class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data); |
3315 | class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data); |
3316 | } |
3317 | #endif |
3318 | continue; |
3319 | } |
3320 | |
3321 | /* We need to deal with \P and \p in both phases. */ |
3322 | |
3323 | #ifdef SUPPORT_UCP |
3324 | if (-c == ESC_p || -c == ESC_P) |
3325 | { |
3326 | BOOL negated; |
3327 | int pdata; |
3328 | int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr); |
3329 | if (ptype < 0) goto FAILED; |
3330 | class_utf8 = TRUE; |
3331 | *class_utf8data++ = ((-c == ESC_p) != negated)? |
3332 | XCL_PROP : XCL_NOTPROP; |
3333 | *class_utf8data++ = ptype; |
3334 | *class_utf8data++ = pdata; |
3335 | class_charcount -= 2; /* Not a < 256 character */ |
3336 | continue; |
3337 | } |
3338 | #endif |
3339 | /* Unrecognized escapes are faulted if PCRE is running in its |
3340 | strict mode. By default, for compatibility with Perl, they are |
3341 | treated as literals. */ |
3342 | |
3343 | if ((options & PCRE_EXTRA) != 0) |
3344 | { |
3345 | *errorcodeptr = ERR7; |
3346 | goto FAILED; |
3347 | } |
3348 | |
3349 | class_charcount -= 2; /* Undo the default count from above */ |
3350 | c = *ptr; /* Get the final character and fall through */ |
3351 | } |
3352 | |
3353 | /* Fall through if we have a single character (c >= 0). This may be |
3354 | greater than 256 in UTF-8 mode. */ |
3355 | |
3356 | } /* End of backslash handling */ |
3357 | |
3358 | /* A single character may be followed by '-' to form a range. However, |
3359 | Perl does not permit ']' to be the end of the range. A '-' character |
3360 | at the end is treated as a literal. Perl ignores orphaned \E sequences |
3361 | entirely. The code for handling \Q and \E is messy. */ |
3362 | |
3363 | CHECK_RANGE: |
3364 | while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
3365 | { |
3366 | inescq = FALSE; |
3367 | ptr += 2; |
3368 | } |
3369 | |
3370 | oldptr = ptr; |
3371 | |
3372 | /* Remember \r or \n */ |
3373 | |
3374 | if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
3375 | |
3376 | /* Check for range */ |
3377 | |
3378 | if (!inescq && ptr[1] == CHAR_MINUS) |
3379 | { |
3380 | int d; |
3381 | ptr += 2; |
3382 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2; |
3383 | |
3384 | /* If we hit \Q (not followed by \E) at this point, go into escaped |
3385 | mode. */ |
3386 | |
3387 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q) |
3388 | { |
3389 | ptr += 2; |
3390 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
3391 | { ptr += 2; continue; } |
3392 | inescq = TRUE; |
3393 | break; |
3394 | } |
3395 | |
3396 | if (*ptr == 0 || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET)) |
3397 | { |
3398 | ptr = oldptr; |
3399 | goto LONE_SINGLE_CHARACTER; |
3400 | } |
3401 | |
3402 | #ifdef SUPPORT_UTF8 |
3403 | if (utf8) |
3404 | { /* Braces are required because the */ |
3405 | GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */ |
3406 | } |
3407 | else |
3408 | #endif |
3409 | d = *ptr; /* Not UTF-8 mode */ |
3410 | |
3411 | /* The second part of a range can be a single-character escape, but |
3412 | not any of the other escapes. Perl 5.6 treats a hyphen as a literal |
3413 | in such circumstances. */ |
3414 | |
3415 | if (!inescq && d == CHAR_BACKSLASH) |
3416 | { |
3417 | d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE); |
3418 | if (*errorcodeptr != 0) goto FAILED; |
3419 | |
3420 | /* \b is backspace; \X is literal X; \R is literal R; any other |
3421 | special means the '-' was literal */ |
3422 | |
3423 | if (d < 0) |
3424 | { |
3425 | if (d == -ESC_b) d = CHAR_BS; |
3426 | else if (d == -ESC_X) d = CHAR_X; |
3427 | else if (d == -ESC_R) d = CHAR_R; else |
3428 | { |
3429 | ptr = oldptr; |
3430 | goto LONE_SINGLE_CHARACTER; /* A few lines below */ |
3431 | } |
3432 | } |
3433 | } |
3434 | |
3435 | /* Check that the two values are in the correct order. Optimize |
3436 | one-character ranges */ |
3437 | |
3438 | if (d < c) |
3439 | { |
3440 | *errorcodeptr = ERR8; |
3441 | goto FAILED; |
3442 | } |
3443 | |
3444 | if (d == c) goto LONE_SINGLE_CHARACTER; /* A few lines below */ |
3445 | |
3446 | /* Remember \r or \n */ |
3447 | |
3448 | if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
3449 | |
3450 | /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless |
3451 | matching, we have to use an XCLASS with extra data items. Caseless |
3452 | matching for characters > 127 is available only if UCP support is |
3453 | available. */ |
3454 | |
3455 | #ifdef SUPPORT_UTF8 |
3456 | if (utf8 && (d > 255 || ((options & PCRE_CASELESS) != 0 && d > 127))) |
3457 | { |
3458 | class_utf8 = TRUE; |
3459 | |
3460 | /* With UCP support, we can find the other case equivalents of |
3461 | the relevant characters. There may be several ranges. Optimize how |
3462 | they fit with the basic range. */ |
3463 | |
3464 | #ifdef SUPPORT_UCP |
3465 | if ((options & PCRE_CASELESS) != 0) |
3466 | { |
3467 | unsigned int occ, ocd; |
3468 | unsigned int cc = c; |
3469 | unsigned int origd = d; |
3470 | while (get_othercase_range(&cc, origd, &occ, &ocd)) |
3471 | { |
3472 | if (occ >= (unsigned int)c && |
3473 | ocd <= (unsigned int)d) |
3474 | continue; /* Skip embedded ranges */ |
3475 | |
3476 | if (occ < (unsigned int)c && |
3477 | ocd >= (unsigned int)c - 1) /* Extend the basic range */ |
3478 | { /* if there is overlap, */ |
3479 | c = occ; /* noting that if occ < c */ |
3480 | continue; /* we can't have ocd > d */ |
3481 | } /* because a subrange is */ |
3482 | if (ocd > (unsigned int)d && |
3483 | occ <= (unsigned int)d + 1) /* always shorter than */ |
3484 | { /* the basic range. */ |
3485 | d = ocd; |
3486 | continue; |
3487 | } |
3488 | |
3489 | if (occ == ocd) |
3490 | { |
3491 | *class_utf8data++ = XCL_SINGLE; |
3492 | } |
3493 | else |
3494 | { |
3495 | *class_utf8data++ = XCL_RANGE; |
3496 | class_utf8data += _pcre_ord2utf8(occ, class_utf8data); |
3497 | } |
3498 | class_utf8data += _pcre_ord2utf8(ocd, class_utf8data); |
3499 | } |
3500 | } |
3501 | #endif /* SUPPORT_UCP */ |
3502 | |
3503 | /* Now record the original range, possibly modified for UCP caseless |
3504 | overlapping ranges. */ |
3505 | |
3506 | *class_utf8data++ = XCL_RANGE; |
3507 | class_utf8data += _pcre_ord2utf8(c, class_utf8data); |
3508 | class_utf8data += _pcre_ord2utf8(d, class_utf8data); |
3509 | |
3510 | /* With UCP support, we are done. Without UCP support, there is no |
3511 | caseless matching for UTF-8 characters > 127; we can use the bit map |
3512 | for the smaller ones. */ |
3513 | |
3514 | #ifdef SUPPORT_UCP |
3515 | continue; /* With next character in the class */ |
3516 | #else |
3517 | if ((options & PCRE_CASELESS) == 0 || c > 127) continue; |
3518 | |
3519 | /* Adjust upper limit and fall through to set up the map */ |
3520 | |
3521 | d = 127; |
3522 | |
3523 | #endif /* SUPPORT_UCP */ |
3524 | } |
3525 | #endif /* SUPPORT_UTF8 */ |
3526 | |
3527 | /* We use the bit map for all cases when not in UTF-8 mode; else |
3528 | ranges that lie entirely within 0-127 when there is UCP support; else |
3529 | for partial ranges without UCP support. */ |
3530 | |
3531 | class_charcount += d - c + 1; |
3532 | class_lastchar = d; |
3533 | |
3534 | /* We can save a bit of time by skipping this in the pre-compile. */ |
3535 | |
3536 | if (lengthptr == NULL) for (; c <= d; c++) |
3537 | { |
3538 | classbits[c/8] |= (1 << (c&7)); |
3539 | if ((options & PCRE_CASELESS) != 0) |
3540 | { |
3541 | int uc = cd->fcc[c]; /* flip case */ |
3542 | classbits[uc/8] |= (1 << (uc&7)); |
3543 | } |
3544 | } |
3545 | |
3546 | continue; /* Go get the next char in the class */ |
3547 | } |
3548 | |
3549 | /* Handle a lone single character - we can get here for a normal |
3550 | non-escape char, or after \ that introduces a single character or for an |
3551 | apparent range that isn't. */ |
3552 | |
3553 | LONE_SINGLE_CHARACTER: |
3554 | |
3555 | /* Handle a character that cannot go in the bit map */ |
3556 | |
3557 | #ifdef SUPPORT_UTF8 |
3558 | if (utf8 && (c > 255 || ((options & PCRE_CASELESS) != 0 && c > 127))) |
3559 | { |
3560 | class_utf8 = TRUE; |
3561 | *class_utf8data++ = XCL_SINGLE; |
3562 | class_utf8data += _pcre_ord2utf8(c, class_utf8data); |
3563 | |
3564 | #ifdef SUPPORT_UCP |
3565 | if ((options & PCRE_CASELESS) != 0) |
3566 | { |
3567 | unsigned int othercase; |
3568 | if ((othercase = UCD_OTHERCASE(c)) != c) |
3569 | { |
3570 | *class_utf8data++ = XCL_SINGLE; |
3571 | class_utf8data += _pcre_ord2utf8(othercase, class_utf8data); |
3572 | } |
3573 | } |
3574 | #endif /* SUPPORT_UCP */ |
3575 | |
3576 | } |
3577 | else |
3578 | #endif /* SUPPORT_UTF8 */ |
3579 | |
3580 | /* Handle a single-byte character */ |
3581 | { |
3582 | classbits[c/8] |= (1 << (c&7)); |
3583 | if ((options & PCRE_CASELESS) != 0) |
3584 | { |
3585 | c = cd->fcc[c]; /* flip case */ |
3586 | classbits[c/8] |= (1 << (c&7)); |
3587 | } |
3588 | class_charcount++; |
3589 | class_lastchar = c; |
3590 | } |
3591 | } |
3592 | |
3593 | /* Loop until ']' reached. This "while" is the end of the "do" above. */ |
3594 | |
3595 | while ((c = *(++ptr)) != 0 && (c != CHAR_RIGHT_SQUARE_BRACKET || inescq)); |
3596 | |
3597 | if (c == 0) /* Missing terminating ']' */ |
3598 | { |
3599 | *errorcodeptr = ERR6; |
3600 | goto FAILED; |
3601 | } |
3602 | |
3603 | |
3604 | /* This code has been disabled because it would mean that \s counts as |
3605 | an explicit \r or \n reference, and that's not really what is wanted. Now |
3606 | we set the flag only if there is a literal "\r" or "\n" in the class. */ |
3607 | |
3608 | #if 0 |
3609 | /* Remember whether \r or \n are in this class */ |
3610 | |
3611 | if (negate_class) |
3612 | { |
3613 | if ((classbits[1] & 0x24) != 0x24) cd->external_flags |= PCRE_HASCRORLF; |
3614 | } |
3615 | else |
3616 | { |
3617 | if ((classbits[1] & 0x24) != 0) cd->external_flags |= PCRE_HASCRORLF; |
3618 | } |
3619 | #endif |
3620 | |
3621 | |
3622 | /* If class_charcount is 1, we saw precisely one character whose value is |
3623 | less than 256. As long as there were no characters >= 128 and there was no |
3624 | use of \p or \P, in other words, no use of any XCLASS features, we can |
3625 | optimize. |
3626 | |
3627 | In UTF-8 mode, we can optimize the negative case only if there were no |
3628 | characters >= 128 because OP_NOT and the related opcodes like OP_NOTSTAR |
3629 | operate on single-bytes only. This is an historical hangover. Maybe one day |
3630 | we can tidy these opcodes to handle multi-byte characters. |
3631 | |
3632 | The optimization throws away the bit map. We turn the item into a |
3633 | 1-character OP_CHAR[NC] if it's positive, or OP_NOT if it's negative. Note |
3634 | that OP_NOT does not support multibyte characters. In the positive case, it |
3635 | can cause firstbyte to be set. Otherwise, there can be no first char if |
3636 | this item is first, whatever repeat count may follow. In the case of |
3637 | reqbyte, save the previous value for reinstating. */ |
3638 | |
3639 | #ifdef SUPPORT_UTF8 |
3640 | if (class_charcount == 1 && !class_utf8 && |
3641 | (!utf8 || !negate_class || class_lastchar < 128)) |
3642 | #else |
3643 | if (class_charcount == 1) |
3644 | #endif |
3645 | { |
3646 | zeroreqbyte = reqbyte; |
3647 | |
3648 | /* The OP_NOT opcode works on one-byte characters only. */ |
3649 | |
3650 | if (negate_class) |
3651 | { |
3652 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
3653 | zerofirstbyte = firstbyte; |
3654 | *code++ = OP_NOT; |
3655 | *code++ = class_lastchar; |
3656 | break; |
3657 | } |
3658 | |
3659 | /* For a single, positive character, get the value into mcbuffer, and |
3660 | then we can handle this with the normal one-character code. */ |
3661 | |
3662 | #ifdef SUPPORT_UTF8 |
3663 | if (utf8 && class_lastchar > 127) |
3664 | mclength = _pcre_ord2utf8(class_lastchar, mcbuffer); |
3665 | else |
3666 | #endif |
3667 | { |
3668 | mcbuffer[0] = class_lastchar; |
3669 | mclength = 1; |
3670 | } |
3671 | goto ONE_CHAR; |
3672 | } /* End of 1-char optimization */ |
3673 | |
3674 | /* The general case - not the one-char optimization. If this is the first |
3675 | thing in the branch, there can be no first char setting, whatever the |
3676 | repeat count. Any reqbyte setting must remain unchanged after any kind of |
3677 | repeat. */ |
3678 | |
3679 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
3680 | zerofirstbyte = firstbyte; |
3681 | zeroreqbyte = reqbyte; |
3682 | |
3683 | /* If there are characters with values > 255, we have to compile an |
3684 | extended class, with its own opcode, unless there was a negated special |
3685 | such as \S in the class, because in that case all characters > 255 are in |
3686 | the class, so any that were explicitly given as well can be ignored. If |
3687 | (when there are explicit characters > 255 that must be listed) there are no |
3688 | characters < 256, we can omit the bitmap in the actual compiled code. */ |
3689 | |
3690 | #ifdef SUPPORT_UTF8 |
3691 | if (class_utf8 && !should_flip_negation) |
3692 | { |
3693 | *class_utf8data++ = XCL_END; /* Marks the end of extra data */ |
3694 | *code++ = OP_XCLASS; |
3695 | code += LINK_SIZE; |
3696 | *code = negate_class? XCL_NOT : 0; |
3697 | |
3698 | /* If the map is required, move up the extra data to make room for it; |
3699 | otherwise just move the code pointer to the end of the extra data. */ |
3700 | |
3701 | if (class_charcount > 0) |
3702 | { |
3703 | *code++ |= XCL_MAP; |
3704 | memmove(code + 32, code, class_utf8data - code); |
3705 | memcpy(code, classbits, 32); |
3706 | code = class_utf8data + 32; |
3707 | } |
3708 | else code = class_utf8data; |
3709 | |
3710 | /* Now fill in the complete length of the item */ |
3711 | |
3712 | PUT(previous, 1, code - previous); |
3713 | break; /* End of class handling */ |
3714 | } |
3715 | #endif |
3716 | |
3717 | /* If there are no characters > 255, set the opcode to OP_CLASS or |
3718 | OP_NCLASS, depending on whether the whole class was negated and whether |
3719 | there were negative specials such as \S in the class. Then copy the 32-byte |
3720 | map into the code vector, negating it if necessary. */ |
3721 | |
3722 | *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS; |
3723 | if (negate_class) |
3724 | { |
3725 | if (lengthptr == NULL) /* Save time in the pre-compile phase */ |
3726 | for (c = 0; c < 32; c++) code[c] = ~classbits[c]; |
3727 | } |
3728 | else |
3729 | { |
3730 | memcpy(code, classbits, 32); |
3731 | } |
3732 | code += 32; |
3733 | break; |
3734 | |
3735 | |
3736 | /* ===================================================================*/ |
3737 | /* Various kinds of repeat; '{' is not necessarily a quantifier, but this |
3738 | has been tested above. */ |
3739 | |
3740 | case CHAR_LEFT_CURLY_BRACKET: |
3741 | if (!is_quantifier) goto NORMAL_CHAR; |
3742 | ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr); |
3743 | if (*errorcodeptr != 0) goto FAILED; |
3744 | goto REPEAT; |
3745 | |
3746 | case CHAR_ASTERISK: |
3747 | repeat_min = 0; |
3748 | repeat_max = -1; |
3749 | goto REPEAT; |
3750 | |
3751 | case CHAR_PLUS: |
3752 | repeat_min = 1; |
3753 | repeat_max = -1; |
3754 | goto REPEAT; |
3755 | |
3756 | case CHAR_QUESTION_MARK: |
3757 | repeat_min = 0; |
3758 | repeat_max = 1; |
3759 | |
3760 | REPEAT: |
3761 | if (previous == NULL) |
3762 | { |
3763 | *errorcodeptr = ERR9; |
3764 | goto FAILED; |
3765 | } |
3766 | |
3767 | if (repeat_min == 0) |
3768 | { |
3769 | firstbyte = zerofirstbyte; /* Adjust for zero repeat */ |
3770 | reqbyte = zeroreqbyte; /* Ditto */ |
3771 | } |
3772 | |
3773 | /* Remember whether this is a variable length repeat */ |
3774 | |
3775 | reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY; |
3776 | |
3777 | op_type = 0; /* Default single-char op codes */ |
3778 | possessive_quantifier = FALSE; /* Default not possessive quantifier */ |
3779 | |
3780 | /* Save start of previous item, in case we have to move it up to make space |
3781 | for an inserted OP_ONCE for the additional '+' extension. */ |
3782 | |
3783 | tempcode = previous; |
3784 | |
3785 | /* If the next character is '+', we have a possessive quantifier. This |
3786 | implies greediness, whatever the setting of the PCRE_UNGREEDY option. |
3787 | If the next character is '?' this is a minimizing repeat, by default, |
3788 | but if PCRE_UNGREEDY is set, it works the other way round. We change the |
3789 | repeat type to the non-default. */ |
3790 | |
3791 | if (ptr[1] == CHAR_PLUS) |
3792 | { |
3793 | repeat_type = 0; /* Force greedy */ |
3794 | possessive_quantifier = TRUE; |
3795 | ptr++; |
3796 | } |
3797 | else if (ptr[1] == CHAR_QUESTION_MARK) |
3798 | { |
3799 | repeat_type = greedy_non_default; |
3800 | ptr++; |
3801 | } |
3802 | else repeat_type = greedy_default; |
3803 | |
3804 | /* If previous was a character match, abolish the item and generate a |
3805 | repeat item instead. If a char item has a minumum of more than one, ensure |
3806 | that it is set in reqbyte - it might not be if a sequence such as x{3} is |
3807 | the first thing in a branch because the x will have gone into firstbyte |
3808 | instead. */ |
3809 | |
3810 | if (*previous == OP_CHAR || *previous == OP_CHARNC) |
3811 | { |
3812 | /* Deal with UTF-8 characters that take up more than one byte. It's |
3813 | easier to write this out separately than try to macrify it. Use c to |
3814 | hold the length of the character in bytes, plus 0x80 to flag that it's a |
3815 | length rather than a small character. */ |
3816 | |
3817 | #ifdef SUPPORT_UTF8 |
3818 | if (utf8 && (code[-1] & 0x80) != 0) |
3819 | { |
3820 | uschar *lastchar = code - 1; |
3821 | while((*lastchar & 0xc0) == 0x80) lastchar--; |
3822 | c = code - lastchar; /* Length of UTF-8 character */ |
3823 | memcpy(utf8_char, lastchar, c); /* Save the char */ |
3824 | c |= 0x80; /* Flag c as a length */ |
3825 | } |
3826 | else |
3827 | #endif |
3828 | |
3829 | /* Handle the case of a single byte - either with no UTF8 support, or |
3830 | with UTF-8 disabled, or for a UTF-8 character < 128. */ |
3831 | |
3832 | { |
3833 | c = code[-1]; |
3834 | if (repeat_min > 1) reqbyte = c | req_caseopt | cd->req_varyopt; |
3835 | } |
3836 | |
3837 | /* If the repetition is unlimited, it pays to see if the next thing on |
3838 | the line is something that cannot possibly match this character. If so, |
3839 | automatically possessifying this item gains some performance in the case |
3840 | where the match fails. */ |
3841 | |
3842 | if (!possessive_quantifier && |
3843 | repeat_max < 0 && |
3844 | check_auto_possessive(*previous, c, utf8, utf8_char, ptr + 1, |
3845 | options, cd)) |
3846 | { |
3847 | repeat_type = 0; /* Force greedy */ |
3848 | possessive_quantifier = TRUE; |
3849 | } |
3850 | |
3851 | goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */ |
3852 | } |
3853 | |
3854 | /* If previous was a single negated character ([^a] or similar), we use |
3855 | one of the special opcodes, replacing it. The code is shared with single- |
3856 | character repeats by setting opt_type to add a suitable offset into |
3857 | repeat_type. We can also test for auto-possessification. OP_NOT is |
3858 | currently used only for single-byte chars. */ |
3859 | |
3860 | else if (*previous == OP_NOT) |
3861 | { |
3862 | op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */ |
3863 | c = previous[1]; |
3864 | if (!possessive_quantifier && |
3865 | repeat_max < 0 && |
3866 | check_auto_possessive(OP_NOT, c, utf8, NULL, ptr + 1, options, cd)) |
3867 | { |
3868 | repeat_type = 0; /* Force greedy */ |
3869 | possessive_quantifier = TRUE; |
3870 | } |
3871 | goto OUTPUT_SINGLE_REPEAT; |
3872 | } |
3873 | |
3874 | /* If previous was a character type match (\d or similar), abolish it and |
3875 | create a suitable repeat item. The code is shared with single-character |
3876 | repeats by setting op_type to add a suitable offset into repeat_type. Note |
3877 | the the Unicode property types will be present only when SUPPORT_UCP is |
3878 | defined, but we don't wrap the little bits of code here because it just |
3879 | makes it horribly messy. */ |
3880 | |
3881 | else if (*previous < OP_EODN) |
3882 | { |
3883 | uschar *oldcode; |
3884 | int prop_type, prop_value; |
3885 | op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ |
3886 | c = *previous; |
3887 | |
3888 | if (!possessive_quantifier && |
3889 | repeat_max < 0 && |
3890 | check_auto_possessive(c, 0, utf8, NULL, ptr + 1, options, cd)) |
3891 | { |
3892 | repeat_type = 0; /* Force greedy */ |
3893 | possessive_quantifier = TRUE; |
3894 | } |
3895 | |
3896 | OUTPUT_SINGLE_REPEAT: |
3897 | if (*previous == OP_PROP || *previous == OP_NOTPROP) |
3898 | { |
3899 | prop_type = previous[1]; |
3900 | prop_value = previous[2]; |
3901 | } |
3902 | else prop_type = prop_value = -1; |
3903 | |
3904 | oldcode = code; |
3905 | code = previous; /* Usually overwrite previous item */ |
3906 | |
3907 | /* If the maximum is zero then the minimum must also be zero; Perl allows |
3908 | this case, so we do too - by simply omitting the item altogether. */ |
3909 | |
3910 | if (repeat_max == 0) goto END_REPEAT; |
3911 | |
3912 | /*--------------------------------------------------------------------*/ |
3913 | /* This code is obsolete from release 8.00; the restriction was finally |
3914 | removed: */ |
3915 | |
3916 | /* All real repeats make it impossible to handle partial matching (maybe |
3917 | one day we will be able to remove this restriction). */ |
3918 | |
3919 | /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ |
3920 | /*--------------------------------------------------------------------*/ |
3921 | |
3922 | /* Combine the op_type with the repeat_type */ |
3923 | |
3924 | repeat_type += op_type; |
3925 | |
3926 | /* A minimum of zero is handled either as the special case * or ?, or as |
3927 | an UPTO, with the maximum given. */ |
3928 | |
3929 | if (repeat_min == 0) |
3930 | { |
3931 | if (repeat_max == -1) *code++ = OP_STAR + repeat_type; |
3932 | else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type; |
3933 | else |
3934 | { |
3935 | *code++ = OP_UPTO + repeat_type; |
3936 | PUT2INC(code, 0, repeat_max); |
3937 | } |
3938 | } |
3939 | |
3940 | /* A repeat minimum of 1 is optimized into some special cases. If the |
3941 | maximum is unlimited, we use OP_PLUS. Otherwise, the original item is |
3942 | left in place and, if the maximum is greater than 1, we use OP_UPTO with |
3943 | one less than the maximum. */ |
3944 | |
3945 | else if (repeat_min == 1) |
3946 | { |
3947 | if (repeat_max == -1) |
3948 | *code++ = OP_PLUS + repeat_type; |
3949 | else |
3950 | { |
3951 | code = oldcode; /* leave previous item in place */ |
3952 | if (repeat_max == 1) goto END_REPEAT; |
3953 | *code++ = OP_UPTO + repeat_type; |
3954 | PUT2INC(code, 0, repeat_max - 1); |
3955 | } |
3956 | } |
3957 | |
3958 | /* The case {n,n} is just an EXACT, while the general case {n,m} is |
3959 | handled as an EXACT followed by an UPTO. */ |
3960 | |
3961 | else |
3962 | { |
3963 | *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */ |
3964 | PUT2INC(code, 0, repeat_min); |
3965 | |
3966 | /* If the maximum is unlimited, insert an OP_STAR. Before doing so, |
3967 | we have to insert the character for the previous code. For a repeated |
3968 | Unicode property match, there are two extra bytes that define the |
3969 | required property. In UTF-8 mode, long characters have their length in |
3970 | c, with the 0x80 bit as a flag. */ |
3971 | |
3972 | if (repeat_max < 0) |
3973 | { |
3974 | #ifdef SUPPORT_UTF8 |
3975 | if (utf8 && c >= 128) |
3976 | { |
3977 | memcpy(code, utf8_char, c & 7); |
3978 | code += c & 7; |
3979 | } |
3980 | else |
3981 | #endif |
3982 | { |
3983 | *code++ = c; |
3984 | if (prop_type >= 0) |
3985 | { |
3986 | *code++ = prop_type; |
3987 | *code++ = prop_value; |
3988 | } |
3989 | } |
3990 | *code++ = OP_STAR + repeat_type; |
3991 | } |
3992 | |
3993 | /* Else insert an UPTO if the max is greater than the min, again |
3994 | preceded by the character, for the previously inserted code. If the |
3995 | UPTO is just for 1 instance, we can use QUERY instead. */ |
3996 | |
3997 | else if (repeat_max != repeat_min) |
3998 | { |
3999 | #ifdef SUPPORT_UTF8 |
4000 | if (utf8 && c >= 128) |
4001 | { |
4002 | memcpy(code, utf8_char, c & 7); |
4003 | code += c & 7; |
4004 | } |
4005 | else |
4006 | #endif |
4007 | *code++ = c; |
4008 | if (prop_type >= 0) |
4009 | { |
4010 | *code++ = prop_type; |
4011 | *code++ = prop_value; |
4012 | } |
4013 | repeat_max -= repeat_min; |
4014 | |
4015 | if (repeat_max == 1) |
4016 | { |
4017 | *code++ = OP_QUERY + repeat_type; |
4018 | } |
4019 | else |
4020 | { |
4021 | *code++ = OP_UPTO + repeat_type; |
4022 | PUT2INC(code, 0, repeat_max); |
4023 | } |
4024 | } |
4025 | } |
4026 | |
4027 | /* The character or character type itself comes last in all cases. */ |
4028 | |
4029 | #ifdef SUPPORT_UTF8 |
4030 | if (utf8 && c >= 128) |
4031 | { |
4032 | memcpy(code, utf8_char, c & 7); |
4033 | code += c & 7; |
4034 | } |
4035 | else |
4036 | #endif |
4037 | *code++ = c; |
4038 | |
4039 | /* For a repeated Unicode property match, there are two extra bytes that |
4040 | define the required property. */ |
4041 | |
4042 | #ifdef SUPPORT_UCP |
4043 | if (prop_type >= 0) |
4044 | { |
4045 | *code++ = prop_type; |
4046 | *code++ = prop_value; |
4047 | } |
4048 | #endif |
4049 | } |
4050 | |
4051 | /* If previous was a character class or a back reference, we put the repeat |
4052 | stuff after it, but just skip the item if the repeat was {0,0}. */ |
4053 | |
4054 | else if (*previous == OP_CLASS || |
4055 | *previous == OP_NCLASS || |
4056 | #ifdef SUPPORT_UTF8 |
4057 | *previous == OP_XCLASS || |
4058 | #endif |
4059 | *previous == OP_REF) |
4060 | { |
4061 | if (repeat_max == 0) |
4062 | { |
4063 | code = previous; |
4064 | goto END_REPEAT; |
4065 | } |
4066 | |
4067 | /*--------------------------------------------------------------------*/ |
4068 | /* This code is obsolete from release 8.00; the restriction was finally |
4069 | removed: */ |
4070 | |
4071 | /* All real repeats make it impossible to handle partial matching (maybe |
4072 | one day we will be able to remove this restriction). */ |
4073 | |
4074 | /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ |
4075 | /*--------------------------------------------------------------------*/ |
4076 | |
4077 | if (repeat_min == 0 && repeat_max == -1) |
4078 | *code++ = OP_CRSTAR + repeat_type; |
4079 | else if (repeat_min == 1 && repeat_max == -1) |
4080 | *code++ = OP_CRPLUS + repeat_type; |
4081 | else if (repeat_min == 0 && repeat_max == 1) |
4082 | *code++ = OP_CRQUERY + repeat_type; |
4083 | else |
4084 | { |
4085 | *code++ = OP_CRRANGE + repeat_type; |
4086 | PUT2INC(code, 0, repeat_min); |
4087 | if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */ |
4088 | PUT2INC(code, 0, repeat_max); |
4089 | } |
4090 | } |
4091 | |
4092 | /* If previous was a bracket group, we may have to replicate it in certain |
4093 | cases. */ |
4094 | |
4095 | else if (*previous == OP_BRA || *previous == OP_CBRA || |
4096 | *previous == OP_ONCE || *previous == OP_COND) |
4097 | { |
4098 | register int i; |
4099 | int ketoffset = 0; |
4100 | int len = code - previous; |
4101 | uschar *bralink = NULL; |
4102 | |
4103 | /* Repeating a DEFINE group is pointless */ |
4104 | |
4105 | if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF) |
4106 | { |
4107 | *errorcodeptr = ERR55; |
4108 | goto FAILED; |
4109 | } |
4110 | |
4111 | /* If the maximum repeat count is unlimited, find the end of the bracket |
4112 | by scanning through from the start, and compute the offset back to it |
4113 | from the current code pointer. There may be an OP_OPT setting following |
4114 | the final KET, so we can't find the end just by going back from the code |
4115 | pointer. */ |
4116 | |
4117 | if (repeat_max == -1) |
4118 | { |
4119 | register uschar *ket = previous; |
4120 | do ket += GET(ket, 1); while (*ket != OP_KET); |
4121 | ketoffset = code - ket; |
4122 | } |
4123 | |
4124 | /* The case of a zero minimum is special because of the need to stick |
4125 | OP_BRAZERO in front of it, and because the group appears once in the |
4126 | data, whereas in other cases it appears the minimum number of times. For |
4127 | this reason, it is simplest to treat this case separately, as otherwise |
4128 | the code gets far too messy. There are several special subcases when the |
4129 | minimum is zero. */ |
4130 | |
4131 | if (repeat_min == 0) |
4132 | { |
4133 | /* If the maximum is also zero, we used to just omit the group from the |
4134 | output altogether, like this: |
4135 | |
4136 | ** if (repeat_max == 0) |
4137 | ** { |
4138 | ** code = previous; |
4139 | ** goto END_REPEAT; |
4140 | ** } |
4141 | |
4142 | However, that fails when a group is referenced as a subroutine from |
4143 | elsewhere in the pattern, so now we stick in OP_SKIPZERO in front of it |
4144 | so that it is skipped on execution. As we don't have a list of which |
4145 | groups are referenced, we cannot do this selectively. |
4146 | |
4147 | If the maximum is 1 or unlimited, we just have to stick in the BRAZERO |
4148 | and do no more at this point. However, we do need to adjust any |
4149 | OP_RECURSE calls inside the group that refer to the group itself or any |
4150 | internal or forward referenced group, because the offset is from the |
4151 | start of the whole regex. Temporarily terminate the pattern while doing |
4152 | this. */ |
4153 | |
4154 | if (repeat_max <= 1) /* Covers 0, 1, and unlimited */ |
4155 | { |
4156 | *code = OP_END; |
4157 | adjust_recurse(previous, 1, utf8, cd, save_hwm); |
4158 | memmove(previous+1, previous, len); |
4159 | code++; |
4160 | if (repeat_max == 0) |
4161 | { |
4162 | *previous++ = OP_SKIPZERO; |
4163 | goto END_REPEAT; |
4164 | } |
4165 | *previous++ = OP_BRAZERO + repeat_type; |
4166 | } |
4167 | |
4168 | /* If the maximum is greater than 1 and limited, we have to replicate |
4169 | in a nested fashion, sticking OP_BRAZERO before each set of brackets. |
4170 | The first one has to be handled carefully because it's the original |
4171 | copy, which has to be moved up. The remainder can be handled by code |
4172 | that is common with the non-zero minimum case below. We have to |
4173 | adjust the value or repeat_max, since one less copy is required. Once |
4174 | again, we may have to adjust any OP_RECURSE calls inside the group. */ |
4175 | |
4176 | else |
4177 | { |
4178 | int offset; |
4179 | *code = OP_END; |
4180 | adjust_recurse(previous, 2 + LINK_SIZE, utf8, cd, save_hwm); |
4181 | memmove(previous + 2 + LINK_SIZE, previous, len); |
4182 | code += 2 + LINK_SIZE; |
4183 | *previous++ = OP_BRAZERO + repeat_type; |
4184 | *previous++ = OP_BRA; |
4185 | |
4186 | /* We chain together the bracket offset fields that have to be |
4187 | filled in later when the ends of the brackets are reached. */ |
4188 | |
4189 | offset = (bralink == NULL)? 0 : previous - bralink; |
4190 | bralink = previous; |
4191 | PUTINC(previous, 0, offset); |
4192 | } |
4193 | |
4194 | repeat_max--; |
4195 | } |
4196 | |
4197 | /* If the minimum is greater than zero, replicate the group as many |
4198 | times as necessary, and adjust the maximum to the number of subsequent |
4199 | copies that we need. If we set a first char from the group, and didn't |
4200 | set a required char, copy the latter from the former. If there are any |
4201 | forward reference subroutine calls in the group, there will be entries on |
4202 | the workspace list; replicate these with an appropriate increment. */ |
4203 | |
4204 | else |
4205 | { |
4206 | if (repeat_min > 1) |
4207 | { |
4208 | /* In the pre-compile phase, we don't actually do the replication. We |
4209 | just adjust the length as if we had. Do some paranoid checks for |
4210 | potential integer overflow. */ |
4211 | |
4212 | if (lengthptr != NULL) |
4213 | { |
4214 | int delta = (repeat_min - 1)*length_prevgroup; |
4215 | if ((double)(repeat_min - 1)*(double)length_prevgroup > |
4216 | (double)INT_MAX || |
4217 | OFLOW_MAX - *lengthptr < delta) |
4218 | { |
4219 | *errorcodeptr = ERR20; |
4220 | goto FAILED; |
4221 | } |
4222 | *lengthptr += delta; |
4223 | } |
4224 | |
4225 | /* This is compiling for real */ |
4226 | |
4227 | else |
4228 | { |
4229 | if (groupsetfirstbyte && reqbyte < 0) reqbyte = firstbyte; |
4230 | for (i = 1; i < repeat_min; i++) |
4231 | { |
4232 | uschar *hc; |
4233 | uschar *this_hwm = cd->hwm; |
4234 | memcpy(code, previous, len); |
4235 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
4236 | { |
4237 | PUT(cd->hwm, 0, GET(hc, 0) + len); |
4238 | cd->hwm += LINK_SIZE; |
4239 | } |
4240 | save_hwm = this_hwm; |
4241 | code += len; |
4242 | } |
4243 | } |
4244 | } |
4245 | |
4246 | if (repeat_max > 0) repeat_max -= repeat_min; |
4247 | } |
4248 | |
4249 | /* This code is common to both the zero and non-zero minimum cases. If |
4250 | the maximum is limited, it replicates the group in a nested fashion, |
4251 | remembering the bracket starts on a stack. In the case of a zero minimum, |
4252 | the first one was set up above. In all cases the repeat_max now specifies |
4253 | the number of additional copies needed. Again, we must remember to |
4254 | replicate entries on the forward reference list. */ |
4255 | |
4256 | if (repeat_max >= 0) |
4257 | { |
4258 | /* In the pre-compile phase, we don't actually do the replication. We |
4259 | just adjust the length as if we had. For each repetition we must add 1 |
4260 | to the length for BRAZERO and for all but the last repetition we must |
4261 | add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some |
4262 | paranoid checks to avoid integer overflow. */ |
4263 | |
4264 | if (lengthptr != NULL && repeat_max > 0) |
4265 | { |
4266 | int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) - |
4267 | 2 - 2*LINK_SIZE; /* Last one doesn't nest */ |
4268 | if ((double)repeat_max * |
4269 | (double)(length_prevgroup + 1 + 2 + 2*LINK_SIZE) |
4270 | > (double)INT_MAX || |
4271 | OFLOW_MAX - *lengthptr < delta) |
4272 | { |
4273 | *errorcodeptr = ERR20; |
4274 | goto FAILED; |
4275 | } |
4276 | *lengthptr += delta; |
4277 | } |
4278 | |
4279 | /* This is compiling for real */ |
4280 | |
4281 | else for (i = repeat_max - 1; i >= 0; i--) |
4282 | { |
4283 | uschar *hc; |
4284 | uschar *this_hwm = cd->hwm; |
4285 | |
4286 | *code++ = OP_BRAZERO + repeat_type; |
4287 | |
4288 | /* All but the final copy start a new nesting, maintaining the |
4289 | chain of brackets outstanding. */ |
4290 | |
4291 | if (i != 0) |
4292 | { |
4293 | int offset; |
4294 | *code++ = OP_BRA; |
4295 | offset = (bralink == NULL)? 0 : code - bralink; |
4296 | bralink = code; |
4297 | PUTINC(code, 0, offset); |
4298 | } |
4299 | |
4300 | memcpy(code, previous, len); |
4301 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
4302 | { |
4303 | PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1)); |
4304 | cd->hwm += LINK_SIZE; |
4305 | } |
4306 | save_hwm = this_hwm; |
4307 | code += len; |
4308 | } |
4309 | |
4310 | /* Now chain through the pending brackets, and fill in their length |
4311 | fields (which are holding the chain links pro tem). */ |
4312 | |
4313 | while (bralink != NULL) |
4314 | { |
4315 | int oldlinkoffset; |
4316 | int offset = code - bralink + 1; |
4317 | uschar *bra = code - offset; |
4318 | oldlinkoffset = GET(bra, 1); |
4319 | bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset; |
4320 | *code++ = OP_KET; |
4321 | PUTINC(code, 0, offset); |
4322 | PUT(bra, 1, offset); |
4323 | } |
4324 | } |
4325 | |
4326 | /* If the maximum is unlimited, set a repeater in the final copy. We |
4327 | can't just offset backwards from the current code point, because we |
4328 | don't know if there's been an options resetting after the ket. The |
4329 | correct offset was computed above. |
4330 | |
4331 | Then, when we are doing the actual compile phase, check to see whether |
4332 | this group is a non-atomic one that could match an empty string. If so, |
4333 | convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so |
4334 | that runtime checking can be done. [This check is also applied to |
4335 | atomic groups at runtime, but in a different way.] */ |
4336 | |
4337 | else |
4338 | { |
4339 | uschar *ketcode = code - ketoffset; |
4340 | uschar *bracode = ketcode - GET(ketcode, 1); |
4341 | *ketcode = OP_KETRMAX + repeat_type; |
4342 | if (lengthptr == NULL && *bracode != OP_ONCE) |
4343 | { |
4344 | uschar *scode = bracode; |
4345 | do |
4346 | { |
4347 | if (could_be_empty_branch(scode, ketcode, utf8)) |
4348 | { |
4349 | *bracode += OP_SBRA - OP_BRA; |
4350 | break; |
4351 | } |
4352 | scode += GET(scode, 1); |
4353 | } |
4354 | while (*scode == OP_ALT); |
4355 | } |
4356 | } |
4357 | } |
4358 | |
4359 | /* If previous is OP_FAIL, it was generated by an empty class [] in |
4360 | JavaScript mode. The other ways in which OP_FAIL can be generated, that is |
4361 | by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat" |
4362 | error above. We can just ignore the repeat in JS case. */ |
4363 | |
4364 | else if (*previous == OP_FAIL) goto END_REPEAT; |
4365 | |
4366 | /* Else there's some kind of shambles */ |
4367 | |
4368 | else |
4369 | { |
4370 | *errorcodeptr = ERR11; |
4371 | goto FAILED; |
4372 | } |
4373 | |
4374 | /* If the character following a repeat is '+', or if certain optimization |
4375 | tests above succeeded, possessive_quantifier is TRUE. For some of the |
4376 | simpler opcodes, there is an special alternative opcode for this. For |
4377 | anything else, we wrap the entire repeated item inside OP_ONCE brackets. |
4378 | The '+' notation is just syntactic sugar, taken from Sun's Java package, |
4379 | but the special opcodes can optimize it a bit. The repeated item starts at |
4380 | tempcode, not at previous, which might be the first part of a string whose |
4381 | (former) last char we repeated. |
4382 | |
4383 | Possessifying an 'exact' quantifier has no effect, so we can ignore it. But |
4384 | an 'upto' may follow. We skip over an 'exact' item, and then test the |
4385 | length of what remains before proceeding. */ |
4386 | |
4387 | if (possessive_quantifier) |
4388 | { |
4389 | int len; |
4390 | |
4391 | if (*tempcode == OP_TYPEEXACT) |
4392 | tempcode += _pcre_OP_lengths[*tempcode] + |
4393 | ((tempcode[3] == OP_PROP || tempcode[3] == OP_NOTPROP)? 2 : 0); |
4394 | |
4395 | else if (*tempcode == OP_EXACT || *tempcode == OP_NOTEXACT) |
4396 | { |
4397 | tempcode += _pcre_OP_lengths[*tempcode]; |
4398 | #ifdef SUPPORT_UTF8 |
4399 | if (utf8 && tempcode[-1] >= 0xc0) |
4400 | tempcode += _pcre_utf8_table4[tempcode[-1] & 0x3f]; |
4401 | #endif |
4402 | } |
4403 | |
4404 | len = code - tempcode; |
4405 | if (len > 0) switch (*tempcode) |
4406 | { |
4407 | case OP_STAR: *tempcode = OP_POSSTAR; break; |
4408 | case OP_PLUS: *tempcode = OP_POSPLUS; break; |
4409 | case OP_QUERY: *tempcode = OP_POSQUERY; break; |
4410 | case OP_UPTO: *tempcode = OP_POSUPTO; break; |
4411 | |
4412 | case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break; |
4413 | case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break; |
4414 | case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break; |
4415 | case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break; |
4416 | |
4417 | case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break; |
4418 | case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break; |
4419 | case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break; |
4420 | case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break; |
4421 | |
4422 | default: |
4423 | memmove(tempcode + 1+LINK_SIZE, tempcode, len); |
4424 | code += 1 + LINK_SIZE; |
4425 | len += 1 + LINK_SIZE; |
4426 | tempcode[0] = OP_ONCE; |
4427 | *code++ = OP_KET; |
4428 | PUTINC(code, 0, len); |
4429 | PUT(tempcode, 1, len); |
4430 | break; |
4431 | } |
4432 | } |
4433 | |
4434 | /* In all case we no longer have a previous item. We also set the |
4435 | "follows varying string" flag for subsequently encountered reqbytes if |
4436 | it isn't already set and we have just passed a varying length item. */ |
4437 | |
4438 | END_REPEAT: |
4439 | previous = NULL; |
4440 | cd->req_varyopt |= reqvary; |
4441 | break; |
4442 | |
4443 | |
4444 | /* ===================================================================*/ |
4445 | /* Start of nested parenthesized sub-expression, or comment or lookahead or |
4446 | lookbehind or option setting or condition or all the other extended |
4447 | parenthesis forms. */ |
4448 | |
4449 | case CHAR_LEFT_PARENTHESIS: |
4450 | newoptions = options; |
4451 | skipbytes = 0; |
4452 | bravalue = OP_CBRA; |
4453 | save_hwm = cd->hwm; |
4454 | reset_bracount = FALSE; |
4455 | |
4456 | /* First deal with various "verbs" that can be introduced by '*'. */ |
4457 | |
4458 | if (*(++ptr) == CHAR_ASTERISK && (cd->ctypes[ptr[1]] & ctype_letter) != 0) |
4459 | { |
4460 | int i, namelen; |
4461 | const char *vn = verbnames; |
4462 | const uschar *name = ++ptr; |
4463 | previous = NULL; |
4464 | while ((cd->ctypes[*++ptr] & ctype_letter) != 0) {}; |
4465 | if (*ptr == CHAR_COLON) |
4466 | { |
4467 | *errorcodeptr = ERR59; /* Not supported */ |
4468 | goto FAILED; |
4469 | } |
4470 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
4471 | { |
4472 | *errorcodeptr = ERR60; |
4473 | goto FAILED; |
4474 | } |
4475 | namelen = ptr - name; |
4476 | for (i = 0; i < verbcount; i++) |
4477 | { |
4478 | if (namelen == verbs[i].len && |
4479 | strncmp((char *)name, vn, namelen) == 0) |
4480 | { |
4481 | /* Check for open captures before ACCEPT */ |
4482 | |
4483 | if (verbs[i].op == OP_ACCEPT) |
4484 | { |
4485 | open_capitem *oc; |
4486 | cd->had_accept = TRUE; |
4487 | for (oc = cd->open_caps; oc != NULL; oc = oc->next) |
4488 | { |
4489 | *code++ = OP_CLOSE; |
4490 | PUT2INC(code, 0, oc->number); |
4491 | } |
4492 | } |
4493 | *code++ = verbs[i].op; |
4494 | break; |
4495 | } |
4496 | vn += verbs[i].len + 1; |
4497 | } |
4498 | if (i < verbcount) continue; |
4499 | *errorcodeptr = ERR60; |
4500 | goto FAILED; |
4501 | } |
4502 | |
4503 | /* Deal with the extended parentheses; all are introduced by '?', and the |
4504 | appearance of any of them means that this is not a capturing group. */ |
4505 | |
4506 | else if (*ptr == CHAR_QUESTION_MARK) |
4507 | { |
4508 | int i, set, unset, namelen; |
4509 | int *optset; |
4510 | const uschar *name; |
4511 | uschar *slot; |
4512 | |
4513 | switch (*(++ptr)) |
4514 | { |
4515 | case CHAR_NUMBER_SIGN: /* Comment; skip to ket */ |
4516 | ptr++; |
4517 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
4518 | if (*ptr == 0) |
4519 | { |
4520 | *errorcodeptr = ERR18; |
4521 | goto FAILED; |
4522 | } |
4523 | continue; |
4524 | |
4525 | |
4526 | /* ------------------------------------------------------------ */ |
4527 | case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */ |
4528 | reset_bracount = TRUE; |
4529 | /* Fall through */ |
4530 | |
4531 | /* ------------------------------------------------------------ */ |
4532 | case CHAR_COLON: /* Non-capturing bracket */ |
4533 | bravalue = OP_BRA; |
4534 | ptr++; |
4535 | break; |
4536 | |
4537 | |
4538 | /* ------------------------------------------------------------ */ |
4539 | case CHAR_LEFT_PARENTHESIS: |
4540 | bravalue = OP_COND; /* Conditional group */ |
4541 | |
4542 | /* A condition can be an assertion, a number (referring to a numbered |
4543 | group), a name (referring to a named group), or 'R', referring to |
4544 | recursion. R<digits> and R&name are also permitted for recursion tests. |
4545 | |
4546 | There are several syntaxes for testing a named group: (?(name)) is used |
4547 | by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')). |
4548 | |
4549 | There are two unfortunate ambiguities, caused by history. (a) 'R' can |
4550 | be the recursive thing or the name 'R' (and similarly for 'R' followed |
4551 | by digits), and (b) a number could be a name that consists of digits. |
4552 | In both cases, we look for a name first; if not found, we try the other |
4553 | cases. */ |
4554 | |
4555 | /* For conditions that are assertions, check the syntax, and then exit |
4556 | the switch. This will take control down to where bracketed groups, |
4557 | including assertions, are processed. */ |
4558 | |
4559 | if (ptr[1] == CHAR_QUESTION_MARK && (ptr[2] == CHAR_EQUALS_SIGN || |
4560 | ptr[2] == CHAR_EXCLAMATION_MARK || ptr[2] == CHAR_LESS_THAN_SIGN)) |
4561 | break; |
4562 | |
4563 | /* Most other conditions use OP_CREF (a couple change to OP_RREF |
4564 | below), and all need to skip 3 bytes at the start of the group. */ |
4565 | |
4566 | code[1+LINK_SIZE] = OP_CREF; |
4567 | skipbytes = 3; |
4568 | refsign = -1; |
4569 | |
4570 | /* Check for a test for recursion in a named group. */ |
4571 | |
4572 | if (ptr[1] == CHAR_R && ptr[2] == CHAR_AMPERSAND) |
4573 | { |
4574 | terminator = -1; |
4575 | ptr += 2; |
4576 | code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */ |
4577 | } |
4578 | |
4579 | /* Check for a test for a named group's having been set, using the Perl |
4580 | syntax (?(<name>) or (?('name') */ |
4581 | |
4582 | else if (ptr[1] == CHAR_LESS_THAN_SIGN) |
4583 | { |
4584 | terminator = CHAR_GREATER_THAN_SIGN; |
4585 | ptr++; |
4586 | } |
4587 | else if (ptr[1] == CHAR_APOSTROPHE) |
4588 | { |
4589 | terminator = CHAR_APOSTROPHE; |
4590 | ptr++; |
4591 | } |
4592 | else |
4593 | { |
4594 | terminator = 0; |
4595 | if (ptr[1] == CHAR_MINUS || ptr[1] == CHAR_PLUS) refsign = *(++ptr); |
4596 | } |
4597 | |
4598 | /* We now expect to read a name; any thing else is an error */ |
4599 | |
4600 | if ((cd->ctypes[ptr[1]] & ctype_word) == 0) |
4601 | { |
4602 | ptr += 1; /* To get the right offset */ |
4603 | *errorcodeptr = ERR28; |
4604 | goto FAILED; |
4605 | } |
4606 | |
4607 | /* Read the name, but also get it as a number if it's all digits */ |
4608 | |
4609 | recno = 0; |
4610 | name = ++ptr; |
4611 | while ((cd->ctypes[*ptr] & ctype_word) != 0) |
4612 | { |
4613 | if (recno >= 0) |
4614 | recno = ((digitab[*ptr] & ctype_digit) != 0)? |
4615 | recno * 10 + *ptr - CHAR_0 : -1; |
4616 | ptr++; |
4617 | } |
4618 | namelen = ptr - name; |
4619 | |
4620 | if ((terminator > 0 && *ptr++ != terminator) || |
4621 | *ptr++ != CHAR_RIGHT_PARENTHESIS) |
4622 | { |
4623 | ptr--; /* Error offset */ |
4624 | *errorcodeptr = ERR26; |
4625 | goto FAILED; |
4626 | } |
4627 | |
4628 | /* Do no further checking in the pre-compile phase. */ |
4629 | |
4630 | if (lengthptr != NULL) break; |
4631 | |
4632 | /* In the real compile we do the work of looking for the actual |
4633 | reference. If the string started with "+" or "-" we require the rest to |
4634 | be digits, in which case recno will be set. */ |
4635 | |
4636 | if (refsign > 0) |
4637 | { |
4638 | if (recno <= 0) |
4639 | { |
4640 | *errorcodeptr = ERR58; |
4641 | goto FAILED; |
4642 | } |
4643 | recno = (refsign == CHAR_MINUS)? |
4644 | cd->bracount - recno + 1 : recno +cd->bracount; |
4645 | if (recno <= 0 || recno > cd->final_bracount) |
4646 | { |
4647 | *errorcodeptr = ERR15; |
4648 | goto FAILED; |
4649 | } |
4650 | PUT2(code, 2+LINK_SIZE, recno); |
4651 | break; |
4652 | } |
4653 | |
4654 | /* Otherwise (did not start with "+" or "-"), start by looking for the |
4655 | name. */ |
4656 | |
4657 | slot = cd->name_table; |
4658 | for (i = 0; i < cd->names_found; i++) |
4659 | { |
4660 | if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break; |
4661 | slot += cd->name_entry_size; |
4662 | } |
4663 | |
4664 | /* Found a previous named subpattern */ |
4665 | |
4666 | if (i < cd->names_found) |
4667 | { |
4668 | recno = GET2(slot, 0); |
4669 | PUT2(code, 2+LINK_SIZE, recno); |
4670 | } |
4671 | |
4672 | /* Search the pattern for a forward reference */ |
4673 | |
4674 | else if ((i = find_parens(cd, name, namelen, |
4675 | (options & PCRE_EXTENDED) != 0)) > 0) |
4676 | { |
4677 | PUT2(code, 2+LINK_SIZE, i); |
4678 | } |
4679 | |
4680 | /* If terminator == 0 it means that the name followed directly after |
4681 | the opening parenthesis [e.g. (?(abc)...] and in this case there are |
4682 | some further alternatives to try. For the cases where terminator != 0 |
4683 | [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have |
4684 | now checked all the possibilities, so give an error. */ |
4685 | |
4686 | else if (terminator != 0) |
4687 | { |
4688 | *errorcodeptr = ERR15; |
4689 | goto FAILED; |
4690 | } |
4691 | |
4692 | /* Check for (?(R) for recursion. Allow digits after R to specify a |
4693 | specific group number. */ |
4694 | |
4695 | else if (*name == CHAR_R) |
4696 | { |
4697 | recno = 0; |
4698 | for (i = 1; i < namelen; i++) |
4699 | { |
4700 | if ((digitab[name[i]] & ctype_digit) == 0) |
4701 | { |
4702 | *errorcodeptr = ERR15; |
4703 | goto FAILED; |
4704 | } |
4705 | recno = recno * 10 + name[i] - CHAR_0; |
4706 | } |
4707 | if (recno == 0) recno = RREF_ANY; |
4708 | code[1+LINK_SIZE] = OP_RREF; /* Change test type */ |
4709 | PUT2(code, 2+LINK_SIZE, recno); |
4710 | } |
4711 | |
4712 | /* Similarly, check for the (?(DEFINE) "condition", which is always |
4713 | false. */ |
4714 | |
4715 | else if (namelen == 6 && strncmp((char *)name, STRING_DEFINE, 6) == 0) |
4716 | { |
4717 | code[1+LINK_SIZE] = OP_DEF; |
4718 | skipbytes = 1; |
4719 | } |
4720 | |
4721 | /* Check for the "name" actually being a subpattern number. We are |
4722 | in the second pass here, so final_bracount is set. */ |
4723 | |
4724 | else if (recno > 0 && recno <= cd->final_bracount) |
4725 | { |
4726 | PUT2(code, 2+LINK_SIZE, recno); |
4727 | } |
4728 | |
4729 | /* Either an unidentified subpattern, or a reference to (?(0) */ |
4730 | |
4731 | else |
4732 | { |
4733 | *errorcodeptr = (recno == 0)? ERR35: ERR15; |
4734 | goto FAILED; |
4735 | } |
4736 | break; |
4737 | |
4738 | |
4739 | /* ------------------------------------------------------------ */ |
4740 | case CHAR_EQUALS_SIGN: /* Positive lookahead */ |
4741 | bravalue = OP_ASSERT; |
4742 | ptr++; |
4743 | break; |
4744 | |
4745 | |
4746 | /* ------------------------------------------------------------ */ |
4747 | case CHAR_EXCLAMATION_MARK: /* Negative lookahead */ |
4748 | ptr++; |
4749 | if (*ptr == CHAR_RIGHT_PARENTHESIS) /* Optimize (?!) */ |
4750 | { |
4751 | *code++ = OP_FAIL; |
4752 | previous = NULL; |
4753 | continue; |
4754 | } |
4755 | bravalue = OP_ASSERT_NOT; |
4756 | break; |
4757 | |
4758 | |
4759 | /* ------------------------------------------------------------ */ |
4760 | case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */ |
4761 | switch (ptr[1]) |
4762 | { |
4763 | case CHAR_EQUALS_SIGN: /* Positive lookbehind */ |
4764 | bravalue = OP_ASSERTBACK; |
4765 | ptr += 2; |
4766 | break; |
4767 | |
4768 | case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */ |
4769 | bravalue = OP_ASSERTBACK_NOT; |
4770 | ptr += 2; |
4771 | break; |
4772 | |
4773 | default: /* Could be name define, else bad */ |
4774 | if ((cd->ctypes[ptr[1]] & ctype_word) != 0) goto DEFINE_NAME; |
4775 | ptr++; /* Correct offset for error */ |
4776 | *errorcodeptr = ERR24; |
4777 | goto FAILED; |
4778 | } |
4779 | break; |
4780 | |
4781 | |
4782 | /* ------------------------------------------------------------ */ |
4783 | case CHAR_GREATER_THAN_SIGN: /* One-time brackets */ |
4784 | bravalue = OP_ONCE; |
4785 | ptr++; |
4786 | break; |
4787 | |
4788 | |
4789 | /* ------------------------------------------------------------ */ |
4790 | case CHAR_C: /* Callout - may be followed by digits; */ |
4791 | previous_callout = code; /* Save for later completion */ |
4792 | after_manual_callout = 1; /* Skip one item before completing */ |
4793 | *code++ = OP_CALLOUT; |
4794 | { |
4795 | int n = 0; |
4796 | while ((digitab[*(++ptr)] & ctype_digit) != 0) |
4797 | n = n * 10 + *ptr - CHAR_0; |
4798 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
4799 | { |
4800 | *errorcodeptr = ERR39; |
4801 | goto FAILED; |
4802 | } |
4803 | if (n > 255) |
4804 | { |
4805 | *errorcodeptr = ERR38; |
4806 | goto FAILED; |
4807 | } |
4808 | *code++ = n; |
4809 | PUT(code, 0, ptr - cd->start_pattern + 1); /* Pattern offset */ |
4810 | PUT(code, LINK_SIZE, 0); /* Default length */ |
4811 | code += 2 * LINK_SIZE; |
4812 | } |
4813 | previous = NULL; |
4814 | continue; |
4815 | |
4816 | |
4817 | /* ------------------------------------------------------------ */ |
4818 | case CHAR_P: /* Python-style named subpattern handling */ |
4819 | if (*(++ptr) == CHAR_EQUALS_SIGN || |
4820 | *ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */ |
4821 | { |
4822 | is_recurse = *ptr == CHAR_GREATER_THAN_SIGN; |
4823 | terminator = CHAR_RIGHT_PARENTHESIS; |
4824 | goto NAMED_REF_OR_RECURSE; |
4825 | } |
4826 | else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */ |
4827 | { |
4828 | *errorcodeptr = ERR41; |
4829 | goto FAILED; |
4830 | } |
4831 | /* Fall through to handle (?P< as (?< is handled */ |
4832 | |
4833 | |
4834 | /* ------------------------------------------------------------ */ |
4835 | DEFINE_NAME: /* Come here from (?< handling */ |
4836 | case CHAR_APOSTROPHE: |
4837 | { |
4838 | terminator = (*ptr == CHAR_LESS_THAN_SIGN)? |
4839 | CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE; |
4840 | name = ++ptr; |
4841 | |
4842 | while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++; |
4843 | namelen = ptr - name; |
4844 | |
4845 | /* In the pre-compile phase, just do a syntax check. */ |
4846 | |
4847 | if (lengthptr != NULL) |
4848 | { |
4849 | if (*ptr != terminator) |
4850 | { |
4851 | *errorcodeptr = ERR42; |
4852 | goto FAILED; |
4853 | } |
4854 | if (cd->names_found >= MAX_NAME_COUNT) |
4855 | { |
4856 | *errorcodeptr = ERR49; |
4857 | goto FAILED; |
4858 | } |
4859 | if (namelen + 3 > cd->name_entry_size) |
4860 | { |
4861 | cd->name_entry_size = namelen + 3; |
4862 | if (namelen > MAX_NAME_SIZE) |
4863 | { |
4864 | *errorcodeptr = ERR48; |
4865 | goto FAILED; |
4866 | } |
4867 | } |
4868 | } |
4869 | |
4870 | /* In the real compile, create the entry in the table */ |
4871 | |
4872 | else |
4873 | { |
4874 | slot = cd->name_table; |
4875 | for (i = 0; i < cd->names_found; i++) |
4876 | { |
4877 | int crc = memcmp(name, slot+2, namelen); |
4878 | if (crc == 0) |
4879 | { |
4880 | if (slot[2+namelen] == 0) |
4881 | { |
4882 | if ((options & PCRE_DUPNAMES) == 0) |
4883 | { |
4884 | *errorcodeptr = ERR43; |
4885 | goto FAILED; |
4886 | } |
4887 | } |
4888 | else crc = -1; /* Current name is substring */ |
4889 | } |
4890 | if (crc < 0) |
4891 | { |
4892 | memmove(slot + cd->name_entry_size, slot, |
4893 | (cd->names_found - i) * cd->name_entry_size); |
4894 | break; |
4895 | } |
4896 | slot += cd->name_entry_size; |
4897 | } |
4898 | |
4899 | PUT2(slot, 0, cd->bracount + 1); |
4900 | memcpy(slot + 2, name, namelen); |
4901 | slot[2+namelen] = 0; |
4902 | } |
4903 | } |
4904 | |
4905 | /* In both cases, count the number of names we've encountered. */ |
4906 | |
4907 | ptr++; /* Move past > or ' */ |
4908 | cd->names_found++; |
4909 | goto NUMBERED_GROUP; |
4910 | |
4911 | |
4912 | /* ------------------------------------------------------------ */ |
4913 | case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */ |
4914 | terminator = CHAR_RIGHT_PARENTHESIS; |
4915 | is_recurse = TRUE; |
4916 | /* Fall through */ |
4917 | |
4918 | /* We come here from the Python syntax above that handles both |
4919 | references (?P=name) and recursion (?P>name), as well as falling |
4920 | through from the Perl recursion syntax (?&name). We also come here from |
4921 | the Perl \k<name> or \k'name' back reference syntax and the \k{name} |
4922 | .NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */ |
4923 | |
4924 | NAMED_REF_OR_RECURSE: |
4925 | name = ++ptr; |
4926 | while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++; |
4927 | namelen = ptr - name; |
4928 | |
4929 | /* In the pre-compile phase, do a syntax check and set a dummy |
4930 | reference number. */ |
4931 | |
4932 | if (lengthptr != NULL) |
4933 | { |
4934 | if (namelen == 0) |
4935 | { |
4936 | *errorcodeptr = ERR62; |
4937 | goto FAILED; |
4938 | } |
4939 | if (*ptr != terminator) |
4940 | { |
4941 | *errorcodeptr = ERR42; |
4942 | goto FAILED; |
4943 | } |
4944 | if (namelen > MAX_NAME_SIZE) |
4945 | { |
4946 | *errorcodeptr = ERR48; |
4947 | goto FAILED; |
4948 | } |
4949 | recno = 0; |
4950 | } |
4951 | |
4952 | /* In the real compile, seek the name in the table. We check the name |
4953 | first, and then check that we have reached the end of the name in the |
4954 | table. That way, if the name that is longer than any in the table, |
4955 | the comparison will fail without reading beyond the table entry. */ |
4956 | |
4957 | else |
4958 | { |
4959 | slot = cd->name_table; |
4960 | for (i = 0; i < cd->names_found; i++) |
4961 | { |
4962 | if (strncmp((char *)name, (char *)slot+2, namelen) == 0 && |
4963 | slot[2+namelen] == 0) |
4964 | break; |
4965 | slot += cd->name_entry_size; |
4966 | } |
4967 | |
4968 | if (i < cd->names_found) /* Back reference */ |
4969 | { |
4970 | recno = GET2(slot, 0); |
4971 | } |
4972 | else if ((recno = /* Forward back reference */ |
4973 | find_parens(cd, name, namelen, |
4974 | (options & PCRE_EXTENDED) != 0)) <= 0) |
4975 | { |
4976 | *errorcodeptr = ERR15; |
4977 | goto FAILED; |
4978 | } |
4979 | } |
4980 | |
4981 | /* In both phases, we can now go to the code than handles numerical |
4982 | recursion or backreferences. */ |
4983 | |
4984 | if (is_recurse) goto HANDLE_RECURSION; |
4985 | else goto HANDLE_REFERENCE; |
4986 | |
4987 | |
4988 | /* ------------------------------------------------------------ */ |
4989 | case CHAR_R: /* Recursion */ |
4990 | ptr++; /* Same as (?0) */ |
4991 | /* Fall through */ |
4992 | |
4993 | |
4994 | /* ------------------------------------------------------------ */ |
4995 | case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */ |
4996 | case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: |
4997 | case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
4998 | { |
4999 | const uschar *called; |
5000 | terminator = CHAR_RIGHT_PARENTHESIS; |
5001 | |
5002 | /* Come here from the \g<...> and \g'...' code (Oniguruma |
5003 | compatibility). However, the syntax has been checked to ensure that |
5004 | the ... are a (signed) number, so that neither ERR63 nor ERR29 will |
5005 | be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY |
5006 | ever be taken. */ |
5007 | |
5008 | HANDLE_NUMERICAL_RECURSION: |
5009 | |
5010 | if ((refsign = *ptr) == CHAR_PLUS) |
5011 | { |
5012 | ptr++; |
5013 | if ((digitab[*ptr] & ctype_digit) == 0) |
5014 | { |
5015 | *errorcodeptr = ERR63; |
5016 | goto FAILED; |
5017 | } |
5018 | } |
5019 | else if (refsign == CHAR_MINUS) |
5020 | { |
5021 | if ((digitab[ptr[1]] & ctype_digit) == 0) |
5022 | goto OTHER_CHAR_AFTER_QUERY; |
5023 | ptr++; |
5024 | } |
5025 | |
5026 | recno = 0; |
5027 | while((digitab[*ptr] & ctype_digit) != 0) |
5028 | recno = recno * 10 + *ptr++ - CHAR_0; |
5029 | |
5030 | if (*ptr != terminator) |
5031 | { |
5032 | *errorcodeptr = ERR29; |
5033 | goto FAILED; |
5034 | } |
5035 | |
5036 | if (refsign == CHAR_MINUS) |
5037 | { |
5038 | if (recno == 0) |
5039 | { |
5040 | *errorcodeptr = ERR58; |
5041 | goto FAILED; |
5042 | } |
5043 | recno = cd->bracount - recno + 1; |
5044 | if (recno <= 0) |
5045 | { |
5046 | *errorcodeptr = ERR15; |
5047 | goto FAILED; |
5048 | } |
5049 | } |
5050 | else if (refsign == CHAR_PLUS) |
5051 | { |
5052 | if (recno == 0) |
5053 | { |
5054 | *errorcodeptr = ERR58; |
5055 | goto FAILED; |
5056 | } |
5057 | recno += cd->bracount; |
5058 | } |
5059 | |
5060 | /* Come here from code above that handles a named recursion */ |
5061 | |
5062 | HANDLE_RECURSION: |
5063 | |
5064 | previous = code; |
5065 | called = cd->start_code; |
5066 | |
5067 | /* When we are actually compiling, find the bracket that is being |
5068 | referenced. Temporarily end the regex in case it doesn't exist before |
5069 | this point. If we end up with a forward reference, first check that |
5070 | the bracket does occur later so we can give the error (and position) |
5071 | now. Then remember this forward reference in the workspace so it can |
5072 | be filled in at the end. */ |
5073 | |
5074 | if (lengthptr == NULL) |
5075 | { |
5076 | *code = OP_END; |
5077 | if (recno != 0) |
5078 | called = _pcre_find_bracket(cd->start_code, utf8, recno); |
5079 | |
5080 | /* Forward reference */ |
5081 | |
5082 | if (called == NULL) |
5083 | { |
5084 | if (find_parens(cd, NULL, recno, |
5085 | (options & PCRE_EXTENDED) != 0) < 0) |
5086 | { |
5087 | *errorcodeptr = ERR15; |
5088 | goto FAILED; |
5089 | } |
5090 | called = cd->start_code + recno; |
5091 | PUTINC(cd->hwm, 0, code + 2 + LINK_SIZE - cd->start_code); |
5092 | } |
5093 | |
5094 | /* If not a forward reference, and the subpattern is still open, |
5095 | this is a recursive call. We check to see if this is a left |
5096 | recursion that could loop for ever, and diagnose that case. */ |
5097 | |
5098 | else if (GET(called, 1) == 0 && |
5099 | could_be_empty(called, code, bcptr, utf8)) |
5100 | { |
5101 | *errorcodeptr = ERR40; |
5102 | goto FAILED; |
5103 | } |
5104 | } |
5105 | |
5106 | /* Insert the recursion/subroutine item, automatically wrapped inside |
5107 | "once" brackets. Set up a "previous group" length so that a |
5108 | subsequent quantifier will work. */ |
5109 | |
5110 | *code = OP_ONCE; |
5111 | PUT(code, 1, 2 + 2*LINK_SIZE); |
5112 | code += 1 + LINK_SIZE; |
5113 | |
5114 | *code = OP_RECURSE; |
5115 | PUT(code, 1, called - cd->start_code); |
5116 | code += 1 + LINK_SIZE; |
5117 | |
5118 | *code = OP_KET; |
5119 | PUT(code, 1, 2 + 2*LINK_SIZE); |
5120 | code += 1 + LINK_SIZE; |
5121 | |
5122 | length_prevgroup = 3 + 3*LINK_SIZE; |
5123 | } |
5124 | |
5125 | /* Can't determine a first byte now */ |
5126 | |
5127 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
5128 | continue; |
5129 | |
5130 | |
5131 | /* ------------------------------------------------------------ */ |
5132 | default: /* Other characters: check option setting */ |
5133 | OTHER_CHAR_AFTER_QUERY: |
5134 | set = unset = 0; |
5135 | optset = &set; |
5136 | |
5137 | while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON) |
5138 | { |
5139 | switch (*ptr++) |
5140 | { |
5141 | case CHAR_MINUS: optset = &unset; break; |
5142 | |
5143 | case CHAR_J: /* Record that it changed in the external options */ |
5144 | *optset |= PCRE_DUPNAMES; |
5145 | cd->external_flags |= PCRE_JCHANGED; |
5146 | break; |
5147 | |
5148 | case CHAR_i: *optset |= PCRE_CASELESS; break; |
5149 | case CHAR_m: *optset |= PCRE_MULTILINE; break; |
5150 | case CHAR_s: *optset |= PCRE_DOTALL; break; |
5151 | case CHAR_x: *optset |= PCRE_EXTENDED; break; |
5152 | case CHAR_U: *optset |= PCRE_UNGREEDY; break; |
5153 | case CHAR_X: *optset |= PCRE_EXTRA; break; |
5154 | |
5155 | default: *errorcodeptr = ERR12; |
5156 | ptr--; /* Correct the offset */ |
5157 | goto FAILED; |
5158 | } |
5159 | } |
5160 | |
5161 | /* Set up the changed option bits, but don't change anything yet. */ |
5162 | |
5163 | newoptions = (options | set) & (~unset); |
5164 | |
5165 | /* If the options ended with ')' this is not the start of a nested |
5166 | group with option changes, so the options change at this level. If this |
5167 | item is right at the start of the pattern, the options can be |
5168 | abstracted and made external in the pre-compile phase, and ignored in |
5169 | the compile phase. This can be helpful when matching -- for instance in |
5170 | caseless checking of required bytes. |
5171 | |
5172 | If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are |
5173 | definitely *not* at the start of the pattern because something has been |
5174 | compiled. In the pre-compile phase, however, the code pointer can have |
5175 | that value after the start, because it gets reset as code is discarded |
5176 | during the pre-compile. However, this can happen only at top level - if |
5177 | we are within parentheses, the starting BRA will still be present. At |
5178 | any parenthesis level, the length value can be used to test if anything |
5179 | has been compiled at that level. Thus, a test for both these conditions |
5180 | is necessary to ensure we correctly detect the start of the pattern in |
5181 | both phases. |
5182 | |
5183 | If we are not at the pattern start, compile code to change the ims |
5184 | options if this setting actually changes any of them, and reset the |
5185 | greedy defaults and the case value for firstbyte and reqbyte. */ |
5186 | |
5187 | if (*ptr == CHAR_RIGHT_PARENTHESIS) |
5188 | { |
5189 | if (code == cd->start_code + 1 + LINK_SIZE && |
5190 | (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE)) |
5191 | { |
5192 | cd->external_options = newoptions; |
5193 | } |
5194 | else |
5195 | { |
5196 | if ((options & PCRE_IMS) != (newoptions & PCRE_IMS)) |
5197 | { |
5198 | *code++ = OP_OPT; |
5199 | *code++ = newoptions & PCRE_IMS; |
5200 | } |
5201 | greedy_default = ((newoptions & PCRE_UNGREEDY) != 0); |
5202 | greedy_non_default = greedy_default ^ 1; |
5203 | req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS : 0; |
5204 | } |
5205 | |
5206 | /* Change options at this level, and pass them back for use |
5207 | in subsequent branches. When not at the start of the pattern, this |
5208 | information is also necessary so that a resetting item can be |
5209 | compiled at the end of a group (if we are in a group). */ |
5210 | |
5211 | *optionsptr = options = newoptions; |
5212 | previous = NULL; /* This item can't be repeated */ |
5213 | continue; /* It is complete */ |
5214 | } |
5215 | |
5216 | /* If the options ended with ':' we are heading into a nested group |
5217 | with possible change of options. Such groups are non-capturing and are |
5218 | not assertions of any kind. All we need to do is skip over the ':'; |
5219 | the newoptions value is handled below. */ |
5220 | |
5221 | bravalue = OP_BRA; |
5222 | ptr++; |
5223 | } /* End of switch for character following (? */ |
5224 | } /* End of (? handling */ |
5225 | |
5226 | /* Opening parenthesis not followed by '?'. If PCRE_NO_AUTO_CAPTURE is set, |
5227 | all unadorned brackets become non-capturing and behave like (?:...) |
5228 | brackets. */ |
5229 | |
5230 | else if ((options & PCRE_NO_AUTO_CAPTURE) != 0) |
5231 | { |
5232 | bravalue = OP_BRA; |
5233 | } |
5234 | |
5235 | /* Else we have a capturing group. */ |
5236 | |
5237 | else |
5238 | { |
5239 | NUMBERED_GROUP: |
5240 | cd->bracount += 1; |
5241 | PUT2(code, 1+LINK_SIZE, cd->bracount); |
5242 | skipbytes = 2; |
5243 | } |
5244 | |
5245 | /* Process nested bracketed regex. Assertions may not be repeated, but |
5246 | other kinds can be. All their opcodes are >= OP_ONCE. We copy code into a |
5247 | non-register variable in order to be able to pass its address because some |
5248 | compilers complain otherwise. Pass in a new setting for the ims options if |
5249 | they have changed. */ |
5250 | |
5251 | previous = (bravalue >= OP_ONCE)? code : NULL; |
5252 | *code = bravalue; |
5253 | tempcode = code; |
5254 | tempreqvary = cd->req_varyopt; /* Save value before bracket */ |
5255 | length_prevgroup = 0; /* Initialize for pre-compile phase */ |
5256 | |
5257 | if (!compile_regex( |
5258 | newoptions, /* The complete new option state */ |
5259 | options & PCRE_IMS, /* The previous ims option state */ |
5260 | &tempcode, /* Where to put code (updated) */ |
5261 | &ptr, /* Input pointer (updated) */ |
5262 | errorcodeptr, /* Where to put an error message */ |
5263 | (bravalue == OP_ASSERTBACK || |
5264 | bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */ |
5265 | reset_bracount, /* True if (?| group */ |
5266 | skipbytes, /* Skip over bracket number */ |
5267 | &subfirstbyte, /* For possible first char */ |
5268 | &subreqbyte, /* For possible last char */ |
5269 | bcptr, /* Current branch chain */ |
5270 | cd, /* Tables block */ |
5271 | (lengthptr == NULL)? NULL : /* Actual compile phase */ |
5272 | &length_prevgroup /* Pre-compile phase */ |
5273 | )) |
5274 | goto FAILED; |
5275 | |
5276 | /* At the end of compiling, code is still pointing to the start of the |
5277 | group, while tempcode has been updated to point past the end of the group |
5278 | and any option resetting that may follow it. The pattern pointer (ptr) |
5279 | is on the bracket. */ |
5280 | |
5281 | /* If this is a conditional bracket, check that there are no more than |
5282 | two branches in the group, or just one if it's a DEFINE group. We do this |
5283 | in the real compile phase, not in the pre-pass, where the whole group may |
5284 | not be available. */ |
5285 | |
5286 | if (bravalue == OP_COND && lengthptr == NULL) |
5287 | { |
5288 | uschar *tc = code; |
5289 | int condcount = 0; |
5290 | |
5291 | do { |
5292 | condcount++; |
5293 | tc += GET(tc,1); |
5294 | } |
5295 | while (*tc != OP_KET); |
5296 | |
5297 | /* A DEFINE group is never obeyed inline (the "condition" is always |
5298 | false). It must have only one branch. */ |
5299 | |
5300 | if (code[LINK_SIZE+1] == OP_DEF) |
5301 | { |
5302 | if (condcount > 1) |
5303 | { |
5304 | *errorcodeptr = ERR54; |
5305 | goto FAILED; |
5306 | } |
5307 | bravalue = OP_DEF; /* Just a flag to suppress char handling below */ |
5308 | } |
5309 | |
5310 | /* A "normal" conditional group. If there is just one branch, we must not |
5311 | make use of its firstbyte or reqbyte, because this is equivalent to an |
5312 | empty second branch. */ |
5313 | |
5314 | else |
5315 | { |
5316 | if (condcount > 2) |
5317 | { |
5318 | *errorcodeptr = ERR27; |
5319 | goto FAILED; |
5320 | } |
5321 | if (condcount == 1) subfirstbyte = subreqbyte = REQ_NONE; |
5322 | } |
5323 | } |
5324 | |
5325 | /* Error if hit end of pattern */ |
5326 | |
5327 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
5328 | { |
5329 | *errorcodeptr = ERR14; |
5330 | goto FAILED; |
5331 | } |
5332 | |
5333 | /* In the pre-compile phase, update the length by the length of the group, |
5334 | less the brackets at either end. Then reduce the compiled code to just a |
5335 | set of non-capturing brackets so that it doesn't use much memory if it is |
5336 | duplicated by a quantifier.*/ |
5337 | |
5338 | if (lengthptr != NULL) |
5339 | { |
5340 | if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE) |
5341 | { |
5342 | *errorcodeptr = ERR20; |
5343 | goto FAILED; |
5344 | } |
5345 | *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE; |
5346 | *code++ = OP_BRA; |
5347 | PUTINC(code, 0, 1 + LINK_SIZE); |
5348 | *code++ = OP_KET; |
5349 | PUTINC(code, 0, 1 + LINK_SIZE); |
5350 | break; /* No need to waste time with special character handling */ |
5351 | } |
5352 | |
5353 | /* Otherwise update the main code pointer to the end of the group. */ |
5354 | |
5355 | code = tempcode; |
5356 | |
5357 | /* For a DEFINE group, required and first character settings are not |
5358 | relevant. */ |
5359 | |
5360 | if (bravalue == OP_DEF) break; |
5361 | |
5362 | /* Handle updating of the required and first characters for other types of |
5363 | group. Update for normal brackets of all kinds, and conditions with two |
5364 | branches (see code above). If the bracket is followed by a quantifier with |
5365 | zero repeat, we have to back off. Hence the definition of zeroreqbyte and |
5366 | zerofirstbyte outside the main loop so that they can be accessed for the |
5367 | back off. */ |
5368 | |
5369 | zeroreqbyte = reqbyte; |
5370 | zerofirstbyte = firstbyte; |
5371 | groupsetfirstbyte = FALSE; |
5372 | |
5373 | if (bravalue >= OP_ONCE) |
5374 | { |
5375 | /* If we have not yet set a firstbyte in this branch, take it from the |
5376 | subpattern, remembering that it was set here so that a repeat of more |
5377 | than one can replicate it as reqbyte if necessary. If the subpattern has |
5378 | no firstbyte, set "none" for the whole branch. In both cases, a zero |
5379 | repeat forces firstbyte to "none". */ |
5380 | |
5381 | if (firstbyte == REQ_UNSET) |
5382 | { |
5383 | if (subfirstbyte >= 0) |
5384 | { |
5385 | firstbyte = subfirstbyte; |
5386 | groupsetfirstbyte = TRUE; |
5387 | } |
5388 | else firstbyte = REQ_NONE; |
5389 | zerofirstbyte = REQ_NONE; |
5390 | } |
5391 | |
5392 | /* If firstbyte was previously set, convert the subpattern's firstbyte |
5393 | into reqbyte if there wasn't one, using the vary flag that was in |
5394 | existence beforehand. */ |
5395 | |
5396 | else if (subfirstbyte >= 0 && subreqbyte < 0) |
5397 | subreqbyte = subfirstbyte | tempreqvary; |
5398 | |
5399 | /* If the subpattern set a required byte (or set a first byte that isn't |
5400 | really the first byte - see above), set it. */ |
5401 | |
5402 | if (subreqbyte >= 0) reqbyte = subreqbyte; |
5403 | } |
5404 | |
5405 | /* For a forward assertion, we take the reqbyte, if set. This can be |
5406 | helpful if the pattern that follows the assertion doesn't set a different |
5407 | char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte |
5408 | for an assertion, however because it leads to incorrect effect for patterns |
5409 | such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead |
5410 | of a firstbyte. This is overcome by a scan at the end if there's no |
5411 | firstbyte, looking for an asserted first char. */ |
5412 | |
5413 | else if (bravalue == OP_ASSERT && subreqbyte >= 0) reqbyte = subreqbyte; |
5414 | break; /* End of processing '(' */ |
5415 | |
5416 | |
5417 | /* ===================================================================*/ |
5418 | /* Handle metasequences introduced by \. For ones like \d, the ESC_ values |
5419 | are arranged to be the negation of the corresponding OP_values. For the |
5420 | back references, the values are ESC_REF plus the reference number. Only |
5421 | back references and those types that consume a character may be repeated. |
5422 | We can test for values between ESC_b and ESC_Z for the latter; this may |
5423 | have to change if any new ones are ever created. */ |
5424 | |
5425 | case CHAR_BACKSLASH: |
5426 | tempptr = ptr; |
5427 | c = check_escape(&ptr, errorcodeptr, cd->bracount, options, FALSE); |
5428 | if (*errorcodeptr != 0) goto FAILED; |
5429 | |
5430 | if (c < 0) |
5431 | { |
5432 | if (-c == ESC_Q) /* Handle start of quoted string */ |
5433 | { |
5434 | if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
5435 | ptr += 2; /* avoid empty string */ |
5436 | else inescq = TRUE; |
5437 | continue; |
5438 | } |
5439 | |
5440 | if (-c == ESC_E) continue; /* Perl ignores an orphan \E */ |
5441 | |
5442 | /* For metasequences that actually match a character, we disable the |
5443 | setting of a first character if it hasn't already been set. */ |
5444 | |
5445 | if (firstbyte == REQ_UNSET && -c > ESC_b && -c < ESC_Z) |
5446 | firstbyte = REQ_NONE; |
5447 | |
5448 | /* Set values to reset to if this is followed by a zero repeat. */ |
5449 | |
5450 | zerofirstbyte = firstbyte; |
5451 | zeroreqbyte = reqbyte; |
5452 | |
5453 | /* \g<name> or \g'name' is a subroutine call by name and \g<n> or \g'n' |
5454 | is a subroutine call by number (Oniguruma syntax). In fact, the value |
5455 | -ESC_g is returned only for these cases. So we don't need to check for < |
5456 | or ' if the value is -ESC_g. For the Perl syntax \g{n} the value is |
5457 | -ESC_REF+n, and for the Perl syntax \g{name} the result is -ESC_k (as |
5458 | that is a synonym for a named back reference). */ |
5459 | |
5460 | if (-c == ESC_g) |
5461 | { |
5462 | const uschar *p; |
5463 | save_hwm = cd->hwm; /* Normally this is set when '(' is read */ |
5464 | terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)? |
5465 | CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE; |
5466 | |
5467 | /* These two statements stop the compiler for warning about possibly |
5468 | unset variables caused by the jump to HANDLE_NUMERICAL_RECURSION. In |
5469 | fact, because we actually check for a number below, the paths that |
5470 | would actually be in error are never taken. */ |
5471 | |
5472 | skipbytes = 0; |
5473 | reset_bracount = FALSE; |
5474 | |
5475 | /* Test for a name */ |
5476 | |
5477 | if (ptr[1] != CHAR_PLUS && ptr[1] != CHAR_MINUS) |
5478 | { |
5479 | BOOL isnumber = TRUE; |
5480 | for (p = ptr + 1; *p != 0 && *p != terminator; p++) |
5481 | { |
5482 | if ((cd->ctypes[*p] & ctype_digit) == 0) isnumber = FALSE; |
5483 | if ((cd->ctypes[*p] & ctype_word) == 0) break; |
5484 | } |
5485 | if (*p != terminator) |
5486 | { |
5487 | *errorcodeptr = ERR57; |
5488 | break; |
5489 | } |
5490 | if (isnumber) |
5491 | { |
5492 | ptr++; |
5493 | goto HANDLE_NUMERICAL_RECURSION; |
5494 | } |
5495 | is_recurse = TRUE; |
5496 | goto NAMED_REF_OR_RECURSE; |
5497 | } |
5498 | |
5499 | /* Test a signed number in angle brackets or quotes. */ |
5500 | |
5501 | p = ptr + 2; |
5502 | while ((digitab[*p] & ctype_digit) != 0) p++; |
5503 | if (*p != terminator) |
5504 | { |
5505 | *errorcodeptr = ERR57; |
5506 | break; |
5507 | } |
5508 | ptr++; |
5509 | goto HANDLE_NUMERICAL_RECURSION; |
5510 | } |
5511 | |
5512 | /* \k<name> or \k'name' is a back reference by name (Perl syntax). |
5513 | We also support \k{name} (.NET syntax) */ |
5514 | |
5515 | if (-c == ESC_k && (ptr[1] == CHAR_LESS_THAN_SIGN || |
5516 | ptr[1] == CHAR_APOSTROPHE || ptr[1] == CHAR_LEFT_CURLY_BRACKET)) |
5517 | { |
5518 | is_recurse = FALSE; |
5519 | terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)? |
5520 | CHAR_GREATER_THAN_SIGN : (*ptr == CHAR_APOSTROPHE)? |
5521 | CHAR_APOSTROPHE : CHAR_RIGHT_CURLY_BRACKET; |
5522 | goto NAMED_REF_OR_RECURSE; |
5523 | } |
5524 | |
5525 | /* Back references are handled specially; must disable firstbyte if |
5526 | not set to cope with cases like (?=(\w+))\1: which would otherwise set |
5527 | ':' later. */ |
5528 | |
5529 | if (-c >= ESC_REF) |
5530 | { |
5531 | recno = -c - ESC_REF; |
5532 | |
5533 | HANDLE_REFERENCE: /* Come here from named backref handling */ |
5534 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
5535 | previous = code; |
5536 | *code++ = OP_REF; |
5537 | PUT2INC(code, 0, recno); |
5538 | cd->backref_map |= (recno < 32)? (1 << recno) : 1; |
5539 | if (recno > cd->top_backref) cd->top_backref = recno; |
5540 | } |
5541 | |
5542 | /* So are Unicode property matches, if supported. */ |
5543 | |
5544 | #ifdef SUPPORT_UCP |
5545 | else if (-c == ESC_P || -c == ESC_p) |
5546 | { |
5547 | BOOL negated; |
5548 | int pdata; |
5549 | int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr); |
5550 | if (ptype < 0) goto FAILED; |
5551 | previous = code; |
5552 | *code++ = ((-c == ESC_p) != negated)? OP_PROP : OP_NOTPROP; |
5553 | *code++ = ptype; |
5554 | *code++ = pdata; |
5555 | } |
5556 | #else |
5557 | |
5558 | /* If Unicode properties are not supported, \X, \P, and \p are not |
5559 | allowed. */ |
5560 | |
5561 | else if (-c == ESC_X || -c == ESC_P || -c == ESC_p) |
5562 | { |
5563 | *errorcodeptr = ERR45; |
5564 | goto FAILED; |
5565 | } |
5566 | #endif |
5567 | |
5568 | /* For the rest (including \X when Unicode properties are supported), we |
5569 | can obtain the OP value by negating the escape value. */ |
5570 | |
5571 | else |
5572 | { |
5573 | previous = (-c > ESC_b && -c < ESC_Z)? code : NULL; |
5574 | *code++ = -c; |
5575 | } |
5576 | continue; |
5577 | } |
5578 | |
5579 | /* We have a data character whose value is in c. In UTF-8 mode it may have |
5580 | a value > 127. We set its representation in the length/buffer, and then |
5581 | handle it as a data character. */ |
5582 | |
5583 | #ifdef SUPPORT_UTF8 |
5584 | if (utf8 && c > 127) |
5585 | mclength = _pcre_ord2utf8(c, mcbuffer); |
5586 | else |
5587 | #endif |
5588 | |
5589 | { |
5590 | mcbuffer[0] = c; |
5591 | mclength = 1; |
5592 | } |
5593 | goto ONE_CHAR; |
5594 | |
5595 | |
5596 | /* ===================================================================*/ |
5597 | /* Handle a literal character. It is guaranteed not to be whitespace or # |
5598 | when the extended flag is set. If we are in UTF-8 mode, it may be a |
5599 | multi-byte literal character. */ |
5600 | |
5601 | default: |
5602 | NORMAL_CHAR: |
5603 | mclength = 1; |
5604 | mcbuffer[0] = c; |
5605 | |
5606 | #ifdef SUPPORT_UTF8 |
5607 | if (utf8 && c >= 0xc0) |
5608 | { |
5609 | while ((ptr[1] & 0xc0) == 0x80) |
5610 | mcbuffer[mclength++] = *(++ptr); |
5611 | } |
5612 | #endif |
5613 | |
5614 | /* At this point we have the character's bytes in mcbuffer, and the length |
5615 | in mclength. When not in UTF-8 mode, the length is always 1. */ |
5616 | |
5617 | ONE_CHAR: |
5618 | previous = code; |
5619 | *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARNC : OP_CHAR; |
5620 | for (c = 0; c < mclength; c++) *code++ = mcbuffer[c]; |
5621 | |
5622 | /* Remember if \r or \n were seen */ |
5623 | |
5624 | if (mcbuffer[0] == CHAR_CR || mcbuffer[0] == CHAR_NL) |
5625 | cd->external_flags |= PCRE_HASCRORLF; |
5626 | |
5627 | /* Set the first and required bytes appropriately. If no previous first |
5628 | byte, set it from this character, but revert to none on a zero repeat. |
5629 | Otherwise, leave the firstbyte value alone, and don't change it on a zero |
5630 | repeat. */ |
5631 | |
5632 | if (firstbyte == REQ_UNSET) |
5633 | { |
5634 | zerofirstbyte = REQ_NONE; |
5635 | zeroreqbyte = reqbyte; |
5636 | |
5637 | /* If the character is more than one byte long, we can set firstbyte |
5638 | only if it is not to be matched caselessly. */ |
5639 | |
5640 | if (mclength == 1 || req_caseopt == 0) |
5641 | { |
5642 | firstbyte = mcbuffer[0] | req_caseopt; |
5643 | if (mclength != 1) reqbyte = code[-1] | cd->req_varyopt; |
5644 | } |
5645 | else firstbyte = reqbyte = REQ_NONE; |
5646 | } |
5647 | |
5648 | /* firstbyte was previously set; we can set reqbyte only the length is |
5649 | 1 or the matching is caseful. */ |
5650 | |
5651 | else |
5652 | { |
5653 | zerofirstbyte = firstbyte; |
5654 | zeroreqbyte = reqbyte; |
5655 | if (mclength == 1 || req_caseopt == 0) |
5656 | reqbyte = code[-1] | req_caseopt | cd->req_varyopt; |
5657 | } |
5658 | |
5659 | break; /* End of literal character handling */ |
5660 | } |
5661 | } /* end of big loop */ |
5662 | |
5663 | |
5664 | /* Control never reaches here by falling through, only by a goto for all the |
5665 | error states. Pass back the position in the pattern so that it can be displayed |
5666 | to the user for diagnosing the error. */ |
5667 | |
5668 | FAILED: |
5669 | *ptrptr = ptr; |
5670 | return FALSE; |
5671 | } |
5672 | |
5673 | |
5674 | |
5675 | |
5676 | /************************************************* |
5677 | * Compile sequence of alternatives * |
5678 | *************************************************/ |
5679 | |
5680 | /* On entry, ptr is pointing past the bracket character, but on return it |
5681 | points to the closing bracket, or vertical bar, or end of string. The code |
5682 | variable is pointing at the byte into which the BRA operator has been stored. |
5683 | If the ims options are changed at the start (for a (?ims: group) or during any |
5684 | branch, we need to insert an OP_OPT item at the start of every following branch |
5685 | to ensure they get set correctly at run time, and also pass the new options |
5686 | into every subsequent branch compile. |
5687 | |
5688 | This function is used during the pre-compile phase when we are trying to find |
5689 | out the amount of memory needed, as well as during the real compile phase. The |
5690 | value of lengthptr distinguishes the two phases. |
5691 | |
5692 | Arguments: |
5693 | options option bits, including any changes for this subpattern |
5694 | oldims previous settings of ims option bits |
5695 | codeptr -> the address of the current code pointer |
5696 | ptrptr -> the address of the current pattern pointer |
5697 | errorcodeptr -> pointer to error code variable |
5698 | lookbehind TRUE if this is a lookbehind assertion |
5699 | reset_bracount TRUE to reset the count for each branch |
5700 | skipbytes skip this many bytes at start (for brackets and OP_COND) |
5701 | firstbyteptr place to put the first required character, or a negative number |
5702 | reqbyteptr place to put the last required character, or a negative number |
5703 | bcptr pointer to the chain of currently open branches |
5704 | cd points to the data block with tables pointers etc. |
5705 | lengthptr NULL during the real compile phase |
5706 | points to length accumulator during pre-compile phase |
5707 | |
5708 | Returns: TRUE on success |
5709 | */ |
5710 | |
5711 | static BOOL |
5712 | compile_regex(int options, int oldims, uschar **codeptr, const uschar **ptrptr, |
5713 | int *errorcodeptr, BOOL lookbehind, BOOL reset_bracount, int skipbytes, |
5714 | int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, compile_data *cd, |
5715 | int *lengthptr) |
5716 | { |
5717 | const uschar *ptr = *ptrptr; |
5718 | uschar *code = *codeptr; |
5719 | uschar *last_branch = code; |
5720 | uschar *start_bracket = code; |
5721 | uschar *reverse_count = NULL; |
5722 | open_capitem capitem; |
5723 | int capnumber = 0; |
5724 | int firstbyte, reqbyte; |
5725 | int branchfirstbyte, branchreqbyte; |
5726 | int length; |
5727 | int orig_bracount; |
5728 | int max_bracount; |
5729 | branch_chain bc; |
5730 | |
5731 | bc.outer = bcptr; |
5732 | bc.current = code; |
5733 | |
5734 | firstbyte = reqbyte = REQ_UNSET; |
5735 | |
5736 | /* Accumulate the length for use in the pre-compile phase. Start with the |
5737 | length of the BRA and KET and any extra bytes that are required at the |
5738 | beginning. We accumulate in a local variable to save frequent testing of |
5739 | lenthptr for NULL. We cannot do this by looking at the value of code at the |
5740 | start and end of each alternative, because compiled items are discarded during |
5741 | the pre-compile phase so that the work space is not exceeded. */ |
5742 | |
5743 | length = 2 + 2*LINK_SIZE + skipbytes; |
5744 | |
5745 | /* WARNING: If the above line is changed for any reason, you must also change |
5746 | the code that abstracts option settings at the start of the pattern and makes |
5747 | them global. It tests the value of length for (2 + 2*LINK_SIZE) in the |
5748 | pre-compile phase to find out whether anything has yet been compiled or not. */ |
5749 | |
5750 | /* If this is a capturing subpattern, add to the chain of open capturing items |
5751 | so that we can detect them if (*ACCEPT) is encountered. */ |
5752 | |
5753 | if (*code == OP_CBRA) |
5754 | { |
5755 | capnumber = GET2(code, 1 + LINK_SIZE); |
5756 | capitem.number = capnumber; |
5757 | capitem.next = cd->open_caps; |
5758 | cd->open_caps = &capitem; |
5759 | } |
5760 | |
5761 | /* Offset is set zero to mark that this bracket is still open */ |
5762 | |
5763 | PUT(code, 1, 0); |
5764 | code += 1 + LINK_SIZE + skipbytes; |
5765 | |
5766 | /* Loop for each alternative branch */ |
5767 | |
5768 | orig_bracount = max_bracount = cd->bracount; |
5769 | for (;;) |
5770 | { |
5771 | /* For a (?| group, reset the capturing bracket count so that each branch |
5772 | uses the same numbers. */ |
5773 | |
5774 | if (reset_bracount) cd->bracount = orig_bracount; |
5775 | |
5776 | /* Handle a change of ims options at the start of the branch */ |
5777 | |
5778 | if ((options & PCRE_IMS) != oldims) |
5779 | { |
5780 | *code++ = OP_OPT; |
5781 | *code++ = options & PCRE_IMS; |
5782 | length += 2; |
5783 | } |
5784 | |
5785 | /* Set up dummy OP_REVERSE if lookbehind assertion */ |
5786 | |
5787 | if (lookbehind) |
5788 | { |
5789 | *code++ = OP_REVERSE; |
5790 | reverse_count = code; |
5791 | PUTINC(code, 0, 0); |
5792 | length += 1 + LINK_SIZE; |
5793 | } |
5794 | |
5795 | /* Now compile the branch; in the pre-compile phase its length gets added |
5796 | into the length. */ |
5797 | |
5798 | if (!compile_branch(&options, &code, &ptr, errorcodeptr, &branchfirstbyte, |
5799 | &branchreqbyte, &bc, cd, (lengthptr == NULL)? NULL : &length)) |
5800 | { |
5801 | *ptrptr = ptr; |
5802 | return FALSE; |
5803 | } |
5804 | |
5805 | /* Keep the highest bracket count in case (?| was used and some branch |
5806 | has fewer than the rest. */ |
5807 | |
5808 | if (cd->bracount > max_bracount) max_bracount = cd->bracount; |
5809 | |
5810 | /* In the real compile phase, there is some post-processing to be done. */ |
5811 | |
5812 | if (lengthptr == NULL) |
5813 | { |
5814 | /* If this is the first branch, the firstbyte and reqbyte values for the |
5815 | branch become the values for the regex. */ |
5816 | |
5817 | if (*last_branch != OP_ALT) |
5818 | { |
5819 | firstbyte = branchfirstbyte; |
5820 | reqbyte = branchreqbyte; |
5821 | } |
5822 | |
5823 | /* If this is not the first branch, the first char and reqbyte have to |
5824 | match the values from all the previous branches, except that if the |
5825 | previous value for reqbyte didn't have REQ_VARY set, it can still match, |
5826 | and we set REQ_VARY for the regex. */ |
5827 | |
5828 | else |
5829 | { |
5830 | /* If we previously had a firstbyte, but it doesn't match the new branch, |
5831 | we have to abandon the firstbyte for the regex, but if there was |
5832 | previously no reqbyte, it takes on the value of the old firstbyte. */ |
5833 | |
5834 | if (firstbyte >= 0 && firstbyte != branchfirstbyte) |
5835 | { |
5836 | if (reqbyte < 0) reqbyte = firstbyte; |
5837 | firstbyte = REQ_NONE; |
5838 | } |
5839 | |
5840 | /* If we (now or from before) have no firstbyte, a firstbyte from the |
5841 | branch becomes a reqbyte if there isn't a branch reqbyte. */ |
5842 | |
5843 | if (firstbyte < 0 && branchfirstbyte >= 0 && branchreqbyte < 0) |
5844 | branchreqbyte = branchfirstbyte; |
5845 | |
5846 | /* Now ensure that the reqbytes match */ |
5847 | |
5848 | if ((reqbyte & ~REQ_VARY) != (branchreqbyte & ~REQ_VARY)) |
5849 | reqbyte = REQ_NONE; |
5850 | else reqbyte |= branchreqbyte; /* To "or" REQ_VARY */ |
5851 | } |
5852 | |
5853 | /* If lookbehind, check that this branch matches a fixed-length string, and |
5854 | put the length into the OP_REVERSE item. Temporarily mark the end of the |
5855 | branch with OP_END. If the branch contains OP_RECURSE, the result is -3 |
5856 | because there may be forward references that we can't check here. Set a |
5857 | flag to cause another lookbehind check at the end. Why not do it all at the |
5858 | end? Because common, erroneous checks are picked up here and the offset of |
5859 | the problem can be shown. */ |
5860 | |
5861 | if (lookbehind) |
5862 | { |
5863 | int fixed_length; |
5864 | *code = OP_END; |
5865 | fixed_length = find_fixedlength(last_branch, options, FALSE, cd); |
5866 | DPRINTF(("fixed length = %d\n", fixed_length)); |
5867 | if (fixed_length == -3) |
5868 | { |
5869 | cd->check_lookbehind = TRUE; |
5870 | } |
5871 | else if (fixed_length < 0) |
5872 | { |
5873 | *errorcodeptr = (fixed_length == -2)? ERR36 : ERR25; |
5874 | *ptrptr = ptr; |
5875 | return FALSE; |
5876 | } |
5877 | else { PUT(reverse_count, 0, fixed_length); } |
5878 | } |
5879 | } |
5880 | |
5881 | /* Reached end of expression, either ')' or end of pattern. In the real |
5882 | compile phase, go back through the alternative branches and reverse the chain |
5883 | of offsets, with the field in the BRA item now becoming an offset to the |
5884 | first alternative. If there are no alternatives, it points to the end of the |
5885 | group. The length in the terminating ket is always the length of the whole |
5886 | bracketed item. If any of the ims options were changed inside the group, |
5887 | compile a resetting op-code following, except at the very end of the pattern. |
5888 | Return leaving the pointer at the terminating char. */ |
5889 | |
5890 | if (*ptr != CHAR_VERTICAL_LINE) |
5891 | { |
5892 | if (lengthptr == NULL) |
5893 | { |
5894 | int branch_length = code - last_branch; |
5895 | do |
5896 | { |
5897 | int prev_length = GET(last_branch, 1); |
5898 | PUT(last_branch, 1, branch_length); |
5899 | branch_length = prev_length; |
5900 | last_branch -= branch_length; |
5901 | } |
5902 | while (branch_length > 0); |
5903 | } |
5904 | |
5905 | /* If it was a capturing subpattern, remove it from the chain. */ |
5906 | |
5907 | if (capnumber > 0) cd->open_caps = cd->open_caps->next; |
5908 | |
5909 | /* Fill in the ket */ |
5910 | |
5911 | *code = OP_KET; |
5912 | PUT(code, 1, code - start_bracket); |
5913 | code += 1 + LINK_SIZE; |
5914 | |
5915 | /* Resetting option if needed */ |
5916 | |
5917 | if ((options & PCRE_IMS) != oldims && *ptr == CHAR_RIGHT_PARENTHESIS) |
5918 | { |
5919 | *code++ = OP_OPT; |
5920 | *code++ = oldims; |
5921 | length += 2; |
5922 | } |
5923 | |
5924 | /* Retain the highest bracket number, in case resetting was used. */ |
5925 | |
5926 | cd->bracount = max_bracount; |
5927 | |
5928 | /* Set values to pass back */ |
5929 | |
5930 | *codeptr = code; |
5931 | *ptrptr = ptr; |
5932 | *firstbyteptr = firstbyte; |
5933 | *reqbyteptr = reqbyte; |
5934 | if (lengthptr != NULL) |
5935 | { |
5936 | if (OFLOW_MAX - *lengthptr < length) |
5937 | { |
5938 | *errorcodeptr = ERR20; |
5939 | return FALSE; |
5940 | } |
5941 | *lengthptr += length; |
5942 | } |
5943 | return TRUE; |
5944 | } |
5945 | |
5946 | /* Another branch follows. In the pre-compile phase, we can move the code |
5947 | pointer back to where it was for the start of the first branch. (That is, |
5948 | pretend that each branch is the only one.) |
5949 | |
5950 | In the real compile phase, insert an ALT node. Its length field points back |
5951 | to the previous branch while the bracket remains open. At the end the chain |
5952 | is reversed. It's done like this so that the start of the bracket has a |
5953 | zero offset until it is closed, making it possible to detect recursion. */ |
5954 | |
5955 | if (lengthptr != NULL) |
5956 | { |
5957 | code = *codeptr + 1 + LINK_SIZE + skipbytes; |
5958 | length += 1 + LINK_SIZE; |
5959 | } |
5960 | else |
5961 | { |
5962 | *code = OP_ALT; |
5963 | PUT(code, 1, code - last_branch); |
5964 | bc.current = last_branch = code; |
5965 | code += 1 + LINK_SIZE; |
5966 | } |
5967 | |
5968 | ptr++; |
5969 | } |
5970 | /* Control never reaches here */ |
5971 | } |
5972 | |
5973 | |
5974 | |
5975 | |
5976 | /************************************************* |
5977 | * Check for anchored expression * |
5978 | *************************************************/ |
5979 | |
5980 | /* Try to find out if this is an anchored regular expression. Consider each |
5981 | alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket |
5982 | all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then |
5983 | it's anchored. However, if this is a multiline pattern, then only OP_SOD |
5984 | counts, since OP_CIRC can match in the middle. |
5985 | |
5986 | We can also consider a regex to be anchored if OP_SOM starts all its branches. |
5987 | This is the code for \G, which means "match at start of match position, taking |
5988 | into account the match offset". |
5989 | |
5990 | A branch is also implicitly anchored if it starts with .* and DOTALL is set, |
5991 | because that will try the rest of the pattern at all possible matching points, |
5992 | so there is no point trying again.... er .... |
5993 | |
5994 | .... except when the .* appears inside capturing parentheses, and there is a |
5995 | subsequent back reference to those parentheses. We haven't enough information |
5996 | to catch that case precisely. |
5997 | |
5998 | At first, the best we could do was to detect when .* was in capturing brackets |
5999 | and the highest back reference was greater than or equal to that level. |
6000 | However, by keeping a bitmap of the first 31 back references, we can catch some |
6001 | of the more common cases more precisely. |
6002 | |
6003 | Arguments: |
6004 | code points to start of expression (the bracket) |
6005 | options points to the options setting |
6006 | bracket_map a bitmap of which brackets we are inside while testing; this |
6007 | handles up to substring 31; after that we just have to take |
6008 | the less precise approach |
6009 | backref_map the back reference bitmap |
6010 | |
6011 | Returns: TRUE or FALSE |
6012 | */ |
6013 | |
6014 | static BOOL |
6015 | is_anchored(register const uschar *code, int *options, unsigned int bracket_map, |
6016 | unsigned int backref_map) |
6017 | { |
6018 | do { |
6019 | const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code], |
6020 | options, PCRE_MULTILINE, FALSE); |
6021 | register int op = *scode; |
6022 | |
6023 | /* Non-capturing brackets */ |
6024 | |
6025 | if (op == OP_BRA) |
6026 | { |
6027 | if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE; |
6028 | } |
6029 | |
6030 | /* Capturing brackets */ |
6031 | |
6032 | else if (op == OP_CBRA) |
6033 | { |
6034 | int n = GET2(scode, 1+LINK_SIZE); |
6035 | int new_map = bracket_map | ((n < 32)? (1 << n) : 1); |
6036 | if (!is_anchored(scode, options, new_map, backref_map)) return FALSE; |
6037 | } |
6038 | |
6039 | /* Other brackets */ |
6040 | |
6041 | else if (op == OP_ASSERT || op == OP_ONCE || op == OP_COND) |
6042 | { |
6043 | if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE; |
6044 | } |
6045 | |
6046 | /* .* is not anchored unless DOTALL is set (which generates OP_ALLANY) and |
6047 | it isn't in brackets that are or may be referenced. */ |
6048 | |
6049 | else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR || |
6050 | op == OP_TYPEPOSSTAR)) |
6051 | { |
6052 | if (scode[1] != OP_ALLANY || (bracket_map & backref_map) != 0) |
6053 | return FALSE; |
6054 | } |
6055 | |
6056 | /* Check for explicit anchoring */ |
6057 | |
6058 | else if (op != OP_SOD && op != OP_SOM && |
6059 | ((*options & PCRE_MULTILINE) != 0 || op != OP_CIRC)) |
6060 | return FALSE; |
6061 | code += GET(code, 1); |
6062 | } |
6063 | while (*code == OP_ALT); /* Loop for each alternative */ |
6064 | return TRUE; |
6065 | } |
6066 | |
6067 | |
6068 | |
6069 | /************************************************* |
6070 | * Check for starting with ^ or .* * |
6071 | *************************************************/ |
6072 | |
6073 | /* This is called to find out if every branch starts with ^ or .* so that |
6074 | "first char" processing can be done to speed things up in multiline |
6075 | matching and for non-DOTALL patterns that start with .* (which must start at |
6076 | the beginning or after \n). As in the case of is_anchored() (see above), we |
6077 | have to take account of back references to capturing brackets that contain .* |
6078 | because in that case we can't make the assumption. |
6079 | |
6080 | Arguments: |
6081 | code points to start of expression (the bracket) |
6082 | bracket_map a bitmap of which brackets we are inside while testing; this |
6083 | handles up to substring 31; after that we just have to take |
6084 | the less precise approach |
6085 | backref_map the back reference bitmap |
6086 | |
6087 | Returns: TRUE or FALSE |
6088 | */ |
6089 | |
6090 | static BOOL |
6091 | is_startline(const uschar *code, unsigned int bracket_map, |
6092 | unsigned int backref_map) |
6093 | { |
6094 | do { |
6095 | const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code], |
6096 | NULL, 0, FALSE); |
6097 | register int op = *scode; |
6098 | |
6099 | /* If we are at the start of a conditional assertion group, *both* the |
6100 | conditional assertion *and* what follows the condition must satisfy the test |
6101 | for start of line. Other kinds of condition fail. Note that there may be an |
6102 | auto-callout at the start of a condition. */ |
6103 | |
6104 | if (op == OP_COND) |
6105 | { |
6106 | scode += 1 + LINK_SIZE; |
6107 | if (*scode == OP_CALLOUT) scode += _pcre_OP_lengths[OP_CALLOUT]; |
6108 | switch (*scode) |
6109 | { |
6110 | case OP_CREF: |
6111 | case OP_RREF: |
6112 | case OP_DEF: |
6113 | return FALSE; |
6114 | |
6115 | default: /* Assertion */ |
6116 | if (!is_startline(scode, bracket_map, backref_map)) return FALSE; |
6117 | do scode += GET(scode, 1); while (*scode == OP_ALT); |
6118 | scode += 1 + LINK_SIZE; |
6119 | break; |
6120 | } |
6121 | scode = first_significant_code(scode, NULL, 0, FALSE); |
6122 | op = *scode; |
6123 | } |
6124 | |
6125 | /* Non-capturing brackets */ |
6126 | |
6127 | if (op == OP_BRA) |
6128 | { |
6129 | if (!is_startline(scode, bracket_map, backref_map)) return FALSE; |
6130 | } |
6131 | |
6132 | /* Capturing brackets */ |
6133 | |
6134 | else if (op == OP_CBRA) |
6135 | { |
6136 | int n = GET2(scode, 1+LINK_SIZE); |
6137 | int new_map = bracket_map | ((n < 32)? (1 << n) : 1); |
6138 | if (!is_startline(scode, new_map, backref_map)) return FALSE; |
6139 | } |
6140 | |
6141 | /* Other brackets */ |
6142 | |
6143 | else if (op == OP_ASSERT || op == OP_ONCE) |
6144 | { |
6145 | if (!is_startline(scode, bracket_map, backref_map)) return FALSE; |
6146 | } |
6147 | |
6148 | /* .* means "start at start or after \n" if it isn't in brackets that |
6149 | may be referenced. */ |
6150 | |
6151 | else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR || op == OP_TYPEPOSSTAR) |
6152 | { |
6153 | if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE; |
6154 | } |
6155 | |
6156 | /* Check for explicit circumflex */ |
6157 | |
6158 | else if (op != OP_CIRC) return FALSE; |
6159 | |
6160 | /* Move on to the next alternative */ |
6161 | |
6162 | code += GET(code, 1); |
6163 | } |
6164 | while (*code == OP_ALT); /* Loop for each alternative */ |
6165 | return TRUE; |
6166 | } |
6167 | |
6168 | |
6169 | |
6170 | /************************************************* |
6171 | * Check for asserted fixed first char * |
6172 | *************************************************/ |
6173 | |
6174 | /* During compilation, the "first char" settings from forward assertions are |
6175 | discarded, because they can cause conflicts with actual literals that follow. |
6176 | However, if we end up without a first char setting for an unanchored pattern, |
6177 | it is worth scanning the regex to see if there is an initial asserted first |
6178 | char. If all branches start with the same asserted char, or with a bracket all |
6179 | of whose alternatives start with the same asserted char (recurse ad lib), then |
6180 | we return that char, otherwise -1. |
6181 | |
6182 | Arguments: |
6183 | code points to start of expression (the bracket) |
6184 | options pointer to the options (used to check casing changes) |
6185 | inassert TRUE if in an assertion |
6186 | |
6187 | Returns: -1 or the fixed first char |
6188 | */ |
6189 | |
6190 | static int |
6191 | find_firstassertedchar(const uschar *code, int *options, BOOL inassert) |
6192 | { |
6193 | register int c = -1; |
6194 | do { |
6195 | int d; |
6196 | const uschar *scode = |
6197 | first_significant_code(code + 1+LINK_SIZE, options, PCRE_CASELESS, TRUE); |
6198 | register int op = *scode; |
6199 | |
6200 | switch(op) |
6201 | { |
6202 | default: |
6203 | return -1; |
6204 | |
6205 | case OP_BRA: |
6206 | case OP_CBRA: |
6207 | case OP_ASSERT: |
6208 | case OP_ONCE: |
6209 | case OP_COND: |
6210 | if ((d = find_firstassertedchar(scode, options, op == OP_ASSERT)) < 0) |
6211 | return -1; |
6212 | if (c < 0) c = d; else if (c != d) return -1; |
6213 | break; |
6214 | |
6215 | case OP_EXACT: /* Fall through */ |
6216 | scode += 2; |
6217 | |
6218 | case OP_CHAR: |
6219 | case OP_CHARNC: |
6220 | case OP_PLUS: |
6221 | case OP_MINPLUS: |
6222 | case OP_POSPLUS: |
6223 | if (!inassert) return -1; |
6224 | if (c < 0) |
6225 | { |
6226 | c = scode[1]; |
6227 | if ((*options & PCRE_CASELESS) != 0) c |= REQ_CASELESS; |
6228 | } |
6229 | else if (c != scode[1]) return -1; |
6230 | break; |
6231 | } |
6232 | |
6233 | code += GET(code, 1); |
6234 | } |
6235 | while (*code == OP_ALT); |
6236 | return c; |
6237 | } |
6238 | |
6239 | |
6240 | |
6241 | /************************************************* |
6242 | * Compile a Regular Expression * |
6243 | *************************************************/ |
6244 | |
6245 | /* This function takes a string and returns a pointer to a block of store |
6246 | holding a compiled version of the expression. The original API for this |
6247 | function had no error code return variable; it is retained for backwards |
6248 | compatibility. The new function is given a new name. |
6249 | |
6250 | Arguments: |
6251 | pattern the regular expression |
6252 | options various option bits |
6253 | errorcodeptr pointer to error code variable (pcre_compile2() only) |
6254 | can be NULL if you don't want a code value |
6255 | errorptr pointer to pointer to error text |
6256 | erroroffset ptr offset in pattern where error was detected |
6257 | tables pointer to character tables or NULL |
6258 | |
6259 | Returns: pointer to compiled data block, or NULL on error, |
6260 | with errorptr and erroroffset set |
6261 | */ |
6262 | |
6263 | PCRE_EXP_DEFN pcre * PCRE_CALL_CONVENTION |
6264 | pcre_compile(const char *pattern, int options, const char **errorptr, |
6265 | int *erroroffset, const unsigned char *tables) |
6266 | { |
6267 | return pcre_compile2(pattern, options, NULL, errorptr, erroroffset, tables); |
6268 | } |
6269 | |
6270 | |
6271 | PCRE_EXP_DEFN pcre * PCRE_CALL_CONVENTION |
6272 | pcre_compile2(const char *pattern, int options, int *errorcodeptr, |
6273 | const char **errorptr, int *erroroffset, const unsigned char *tables) |
6274 | { |
6275 | real_pcre *re; |
6276 | int length = 1; /* For final END opcode */ |
6277 | int firstbyte, reqbyte, newline; |
6278 | int errorcode = 0; |
6279 | int skipatstart = 0; |
6280 | BOOL utf8 = (options & PCRE_UTF8) != 0; |
6281 | size_t size; |
6282 | uschar *code; |
6283 | const uschar *codestart; |
6284 | const uschar *ptr; |
6285 | compile_data compile_block; |
6286 | compile_data *cd = &compile_block; |
6287 | |
6288 | /* This space is used for "compiling" into during the first phase, when we are |
6289 | computing the amount of memory that is needed. Compiled items are thrown away |
6290 | as soon as possible, so that a fairly large buffer should be sufficient for |
6291 | this purpose. The same space is used in the second phase for remembering where |
6292 | to fill in forward references to subpatterns. */ |
6293 | |
6294 | uschar cworkspace[COMPILE_WORK_SIZE]; |
6295 | |
6296 | /* Set this early so that early errors get offset 0. */ |
6297 | |
6298 | ptr = (const uschar *)pattern; |
6299 | |
6300 | /* We can't pass back an error message if errorptr is NULL; I guess the best we |
6301 | can do is just return NULL, but we can set a code value if there is a code |
6302 | pointer. */ |
6303 | |
6304 | if (errorptr == NULL) |
6305 | { |
6306 | if (errorcodeptr != NULL) *errorcodeptr = 99; |
6307 | return NULL; |
6308 | } |
6309 | |
6310 | *errorptr = NULL; |
6311 | if (errorcodeptr != NULL) *errorcodeptr = ERR0; |
6312 | |
6313 | /* However, we can give a message for this error */ |
6314 | |
6315 | if (erroroffset == NULL) |
6316 | { |
6317 | errorcode = ERR16; |
6318 | goto PCRE_EARLY_ERROR_RETURN2; |
6319 | } |
6320 | |
6321 | *erroroffset = 0; |
6322 | |
6323 | /* Set up pointers to the individual character tables */ |
6324 | |
6325 | if (tables == NULL) tables = _pcre_default_tables; |
6326 | cd->lcc = tables + lcc_offset; |
6327 | cd->fcc = tables + fcc_offset; |
6328 | cd->cbits = tables + cbits_offset; |
6329 | cd->ctypes = tables + ctypes_offset; |
6330 | |
6331 | /* Check that all undefined public option bits are zero */ |
6332 | |
6333 | if ((options & ~PUBLIC_COMPILE_OPTIONS) != 0) |
6334 | { |
6335 | errorcode = ERR17; |
6336 | goto PCRE_EARLY_ERROR_RETURN; |
6337 | } |
6338 | |
6339 | /* Check for global one-time settings at the start of the pattern, and remember |
6340 | the offset for later. */ |
6341 | |
6342 | while (ptr[skipatstart] == CHAR_LEFT_PARENTHESIS && |
6343 | ptr[skipatstart+1] == CHAR_ASTERISK) |
6344 | { |
6345 | int newnl = 0; |
6346 | int newbsr = 0; |
6347 | |
6348 | if (strncmp((char *)(ptr+skipatstart+2), STRING_UTF8_RIGHTPAR, 5) == 0) |
6349 | { skipatstart += 7; options |= PCRE_UTF8; continue; } |
6350 | |
6351 | if (strncmp((char *)(ptr+skipatstart+2), STRING_CR_RIGHTPAR, 3) == 0) |
6352 | { skipatstart += 5; newnl = PCRE_NEWLINE_CR; } |
6353 | else if (strncmp((char *)(ptr+skipatstart+2), STRING_LF_RIGHTPAR, 3) == 0) |
6354 | { skipatstart += 5; newnl = PCRE_NEWLINE_LF; } |
6355 | else if (strncmp((char *)(ptr+skipatstart+2), STRING_CRLF_RIGHTPAR, 5) == 0) |
6356 | { skipatstart += 7; newnl = PCRE_NEWLINE_CR + PCRE_NEWLINE_LF; } |
6357 | else if (strncmp((char *)(ptr+skipatstart+2), STRING_ANY_RIGHTPAR, 4) == 0) |
6358 | { skipatstart += 6; newnl = PCRE_NEWLINE_ANY; } |
6359 | else if (strncmp((char *)(ptr+skipatstart+2), STRING_ANYCRLF_RIGHTPAR, 8) == 0) |
6360 | { skipatstart += 10; newnl = PCRE_NEWLINE_ANYCRLF; } |
6361 | |
6362 | else if (strncmp((char *)(ptr+skipatstart+2), STRING_BSR_ANYCRLF_RIGHTPAR, 12) == 0) |
6363 | { skipatstart += 14; newbsr = PCRE_BSR_ANYCRLF; } |
6364 | else if (strncmp((char *)(ptr+skipatstart+2), STRING_BSR_UNICODE_RIGHTPAR, 12) == 0) |
6365 | { skipatstart += 14; newbsr = PCRE_BSR_UNICODE; } |
6366 | |
6367 | if (newnl != 0) |
6368 | options = (options & ~PCRE_NEWLINE_BITS) | newnl; |
6369 | else if (newbsr != 0) |
6370 | options = (options & ~(PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) | newbsr; |
6371 | else break; |
6372 | } |
6373 | |
6374 | /* Can't support UTF8 unless PCRE has been compiled to include the code. */ |
6375 | |
6376 | #ifdef SUPPORT_UTF8 |
6377 | if (utf8 && (options & PCRE_NO_UTF8_CHECK) == 0 && |
6378 | (*erroroffset = _pcre_valid_utf8((uschar *)pattern, -1)) >= 0) |
6379 | { |
6380 | errorcode = ERR44; |
6381 | goto PCRE_EARLY_ERROR_RETURN2; |
6382 | } |
6383 | #else |
6384 | if (utf8) |
6385 | { |
6386 | errorcode = ERR32; |
6387 | goto PCRE_EARLY_ERROR_RETURN; |
6388 | } |
6389 | #endif |
6390 | |
6391 | /* Check validity of \R options. */ |
6392 | |
6393 | switch (options & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) |
6394 | { |
6395 | case 0: |
6396 | case PCRE_BSR_ANYCRLF: |
6397 | case PCRE_BSR_UNICODE: |
6398 | break; |
6399 | default: errorcode = ERR56; goto PCRE_EARLY_ERROR_RETURN; |
6400 | } |
6401 | |
6402 | /* Handle different types of newline. The three bits give seven cases. The |
6403 | current code allows for fixed one- or two-byte sequences, plus "any" and |
6404 | "anycrlf". */ |
6405 | |
6406 | switch (options & PCRE_NEWLINE_BITS) |
6407 | { |
6408 | case 0: newline = NEWLINE; break; /* Build-time default */ |
6409 | case PCRE_NEWLINE_CR: newline = CHAR_CR; break; |
6410 | case PCRE_NEWLINE_LF: newline = CHAR_NL; break; |
6411 | case PCRE_NEWLINE_CR+ |
6412 | PCRE_NEWLINE_LF: newline = (CHAR_CR << 8) | CHAR_NL; break; |
6413 | case PCRE_NEWLINE_ANY: newline = -1; break; |
6414 | case PCRE_NEWLINE_ANYCRLF: newline = -2; break; |
6415 | default: errorcode = ERR56; goto PCRE_EARLY_ERROR_RETURN; |
6416 | } |
6417 | |
6418 | if (newline == -2) |
6419 | { |
6420 | cd->nltype = NLTYPE_ANYCRLF; |
6421 | } |
6422 | else if (newline < 0) |
6423 | { |
6424 | cd->nltype = NLTYPE_ANY; |
6425 | } |
6426 | else |
6427 | { |
6428 | cd->nltype = NLTYPE_FIXED; |
6429 | if (newline > 255) |
6430 | { |
6431 | cd->nllen = 2; |
6432 | cd->nl[0] = (newline >> 8) & 255; |
6433 | cd->nl[1] = newline & 255; |
6434 | } |
6435 | else |
6436 | { |
6437 | cd->nllen = 1; |
6438 | cd->nl[0] = newline; |
6439 | } |
6440 | } |
6441 | |
6442 | /* Maximum back reference and backref bitmap. The bitmap records up to 31 back |
6443 | references to help in deciding whether (.*) can be treated as anchored or not. |
6444 | */ |
6445 | |
6446 | cd->top_backref = 0; |
6447 | cd->backref_map = 0; |
6448 | |
6449 | /* Reflect pattern for debugging output */ |
6450 | |
6451 | DPRINTF(("------------------------------------------------------------------\n")); |
6452 | DPRINTF(("%s\n", pattern)); |
6453 | |
6454 | /* Pretend to compile the pattern while actually just accumulating the length |
6455 | of memory required. This behaviour is triggered by passing a non-NULL final |
6456 | argument to compile_regex(). We pass a block of workspace (cworkspace) for it |
6457 | to compile parts of the pattern into; the compiled code is discarded when it is |
6458 | no longer needed, so hopefully this workspace will never overflow, though there |
6459 | is a test for its doing so. */ |
6460 | |
6461 | cd->bracount = cd->final_bracount = 0; |
6462 | cd->names_found = 0; |
6463 | cd->name_entry_size = 0; |
6464 | cd->name_table = NULL; |
6465 | cd->start_workspace = cworkspace; |
6466 | cd->start_code = cworkspace; |
6467 | cd->hwm = cworkspace; |
6468 | cd->start_pattern = (const uschar *)pattern; |
6469 | cd->end_pattern = (const uschar *)(pattern + strlen(pattern)); |
6470 | cd->req_varyopt = 0; |
6471 | cd->external_options = options; |
6472 | cd->external_flags = 0; |
6473 | cd->open_caps = NULL; |
6474 | |
6475 | /* Now do the pre-compile. On error, errorcode will be set non-zero, so we |
6476 | don't need to look at the result of the function here. The initial options have |
6477 | been put into the cd block so that they can be changed if an option setting is |
6478 | found within the regex right at the beginning. Bringing initial option settings |
6479 | outside can help speed up starting point checks. */ |
6480 | |
6481 | ptr += skipatstart; |
6482 | code = cworkspace; |
6483 | *code = OP_BRA; |
6484 | (void)compile_regex(cd->external_options, cd->external_options & PCRE_IMS, |
6485 | &code, &ptr, &errorcode, FALSE, FALSE, 0, &firstbyte, &reqbyte, NULL, cd, |
6486 | &length); |
6487 | if (errorcode != 0) goto PCRE_EARLY_ERROR_RETURN; |
6488 | |
6489 | DPRINTF(("end pre-compile: length=%d workspace=%d\n", length, |
6490 | cd->hwm - cworkspace)); |
6491 | |
6492 | if (length > MAX_PATTERN_SIZE) |
6493 | { |
6494 | errorcode = ERR20; |
6495 | goto PCRE_EARLY_ERROR_RETURN; |
6496 | } |
6497 | |
6498 | /* Compute the size of data block needed and get it, either from malloc or |
6499 | externally provided function. Integer overflow should no longer be possible |
6500 | because nowadays we limit the maximum value of cd->names_found and |
6501 | cd->name_entry_size. */ |
6502 | |
6503 | size = length + sizeof(real_pcre) + cd->names_found * (cd->name_entry_size + 3); |
6504 | re = (real_pcre *)(pcre_malloc)(size); |
6505 | |
6506 | if (re == NULL) |
6507 | { |
6508 | errorcode = ERR21; |
6509 | goto PCRE_EARLY_ERROR_RETURN; |
6510 | } |
6511 | |
6512 | /* Put in the magic number, and save the sizes, initial options, internal |
6513 | flags, and character table pointer. NULL is used for the default character |
6514 | tables. The nullpad field is at the end; it's there to help in the case when a |
6515 | regex compiled on a system with 4-byte pointers is run on another with 8-byte |
6516 | pointers. */ |
6517 | |
6518 | re->magic_number = MAGIC_NUMBER; |
6519 | re->size = size; |
6520 | re->options = cd->external_options; |
6521 | re->flags = cd->external_flags; |
6522 | re->dummy1 = 0; |
6523 | re->first_byte = 0; |
6524 | re->req_byte = 0; |
6525 | re->name_table_offset = sizeof(real_pcre); |
6526 | re->name_entry_size = cd->name_entry_size; |
6527 | re->name_count = cd->names_found; |
6528 | re->ref_count = 0; |
6529 | re->tables = (tables == _pcre_default_tables)? NULL : tables; |
6530 | re->nullpad = NULL; |
6531 | |
6532 | /* The starting points of the name/number translation table and of the code are |
6533 | passed around in the compile data block. The start/end pattern and initial |
6534 | options are already set from the pre-compile phase, as is the name_entry_size |
6535 | field. Reset the bracket count and the names_found field. Also reset the hwm |
6536 | field; this time it's used for remembering forward references to subpatterns. |
6537 | */ |
6538 | |
6539 | cd->final_bracount = cd->bracount; /* Save for checking forward references */ |
6540 | cd->bracount = 0; |
6541 | cd->names_found = 0; |
6542 | cd->name_table = (uschar *)re + re->name_table_offset; |
6543 | codestart = cd->name_table + re->name_entry_size * re->name_count; |
6544 | cd->start_code = codestart; |
6545 | cd->hwm = cworkspace; |
6546 | cd->req_varyopt = 0; |
6547 | cd->had_accept = FALSE; |
6548 | cd->check_lookbehind = FALSE; |
6549 | cd->open_caps = NULL; |
6550 | |
6551 | /* Set up a starting, non-extracting bracket, then compile the expression. On |
6552 | error, errorcode will be set non-zero, so we don't need to look at the result |
6553 | of the function here. */ |
6554 | |
6555 | ptr = (const uschar *)pattern + skipatstart; |
6556 | code = (uschar *)codestart; |
6557 | *code = OP_BRA; |
6558 | (void)compile_regex(re->options, re->options & PCRE_IMS, &code, &ptr, |
6559 | &errorcode, FALSE, FALSE, 0, &firstbyte, &reqbyte, NULL, cd, NULL); |
6560 | re->top_bracket = cd->bracount; |
6561 | re->top_backref = cd->top_backref; |
6562 | re->flags = cd->external_flags; |
6563 | |
6564 | if (cd->had_accept) reqbyte = -1; /* Must disable after (*ACCEPT) */ |
6565 | |
6566 | /* If not reached end of pattern on success, there's an excess bracket. */ |
6567 | |
6568 | if (errorcode == 0 && *ptr != 0) errorcode = ERR22; |
6569 | |
6570 | /* Fill in the terminating state and check for disastrous overflow, but |
6571 | if debugging, leave the test till after things are printed out. */ |
6572 | |
6573 | *code++ = OP_END; |
6574 | |
6575 | #ifndef DEBUG |
6576 | if (code - codestart > length) errorcode = ERR23; |
6577 | #endif |
6578 | |
6579 | /* Fill in any forward references that are required. */ |
6580 | |
6581 | while (errorcode == 0 && cd->hwm > cworkspace) |
6582 | { |
6583 | int offset, recno; |
6584 | const uschar *groupptr; |
6585 | cd->hwm -= LINK_SIZE; |
6586 | offset = GET(cd->hwm, 0); |
6587 | recno = GET(codestart, offset); |
6588 | groupptr = _pcre_find_bracket(codestart, utf8, recno); |
6589 | if (groupptr == NULL) errorcode = ERR53; |
6590 | else PUT(((uschar *)codestart), offset, groupptr - codestart); |
6591 | } |
6592 | |
6593 | /* Give an error if there's back reference to a non-existent capturing |
6594 | subpattern. */ |
6595 | |
6596 | if (errorcode == 0 && re->top_backref > re->top_bracket) errorcode = ERR15; |
6597 | |
6598 | /* If there were any lookbehind assertions that contained OP_RECURSE |
6599 | (recursions or subroutine calls), a flag is set for them to be checked here, |
6600 | because they may contain forward references. Actual recursions can't be fixed |
6601 | length, but subroutine calls can. It is done like this so that those without |
6602 | OP_RECURSE that are not fixed length get a diagnosic with a useful offset. The |
6603 | exceptional ones forgo this. We scan the pattern to check that they are fixed |
6604 | length, and set their lengths. */ |
6605 | |
6606 | if (cd->check_lookbehind) |
6607 | { |
6608 | uschar *cc = (uschar *)codestart; |
6609 | |
6610 | /* Loop, searching for OP_REVERSE items, and process those that do not have |
6611 | their length set. (Actually, it will also re-process any that have a length |
6612 | of zero, but that is a pathological case, and it does no harm.) When we find |
6613 | one, we temporarily terminate the branch it is in while we scan it. */ |
6614 | |
6615 | for (cc = (uschar *)_pcre_find_bracket(codestart, utf8, -1); |
6616 | cc != NULL; |
6617 | cc = (uschar *)_pcre_find_bracket(cc, utf8, -1)) |
6618 | { |
6619 | if (GET(cc, 1) == 0) |
6620 | { |
6621 | int fixed_length; |
6622 | uschar *be = cc - 1 - LINK_SIZE + GET(cc, -LINK_SIZE); |
6623 | int end_op = *be; |
6624 | *be = OP_END; |
6625 | fixed_length = find_fixedlength(cc, re->options, TRUE, cd); |
6626 | *be = end_op; |
6627 | DPRINTF(("fixed length = %d\n", fixed_length)); |
6628 | if (fixed_length < 0) |
6629 | { |
6630 | errorcode = (fixed_length == -2)? ERR36 : ERR25; |
6631 | break; |
6632 | } |
6633 | PUT(cc, 1, fixed_length); |
6634 | } |
6635 | cc += 1 + LINK_SIZE; |
6636 | } |
6637 | } |
6638 | |
6639 | /* Failed to compile, or error while post-processing */ |
6640 | |
6641 | if (errorcode != 0) |
6642 | { |
6643 | (pcre_free)(re); |
6644 | PCRE_EARLY_ERROR_RETURN: |
6645 | *erroroffset = ptr - (const uschar *)pattern; |
6646 | PCRE_EARLY_ERROR_RETURN2: |
6647 | *errorptr = find_error_text(errorcode); |
6648 | if (errorcodeptr != NULL) *errorcodeptr = errorcode; |
6649 | return NULL; |
6650 | } |
6651 | |
6652 | /* If the anchored option was not passed, set the flag if we can determine that |
6653 | the pattern is anchored by virtue of ^ characters or \A or anything else (such |
6654 | as starting with .* when DOTALL is set). |
6655 | |
6656 | Otherwise, if we know what the first byte has to be, save it, because that |
6657 | speeds up unanchored matches no end. If not, see if we can set the |
6658 | PCRE_STARTLINE flag. This is helpful for multiline matches when all branches |
6659 | start with ^. and also when all branches start with .* for non-DOTALL matches. |
6660 | */ |
6661 | |
6662 | if ((re->options & PCRE_ANCHORED) == 0) |
6663 | { |
6664 | int temp_options = re->options; /* May get changed during these scans */ |
6665 | if (is_anchored(codestart, &temp_options, 0, cd->backref_map)) |
6666 | re->options |= PCRE_ANCHORED; |
6667 | else |
6668 | { |
6669 |