Parent Directory
|
Revision Log
Revert handling of atomic groups that do not include captures to the old way of handling, thus reducing stack usage.
1 | /************************************************* |
2 | * Perl-Compatible Regular Expressions * |
3 | *************************************************/ |
4 | |
5 | /* PCRE is a library of functions to support regular expressions whose syntax |
6 | and semantics are as close as possible to those of the Perl 5 language. |
7 | |
8 | Written by Philip Hazel |
9 | Copyright (c) 1997-2011 University of Cambridge |
10 | |
11 | ----------------------------------------------------------------------------- |
12 | Redistribution and use in source and binary forms, with or without |
13 | modification, are permitted provided that the following conditions are met: |
14 | |
15 | * Redistributions of source code must retain the above copyright notice, |
16 | this list of conditions and the following disclaimer. |
17 | |
18 | * Redistributions in binary form must reproduce the above copyright |
19 | notice, this list of conditions and the following disclaimer in the |
20 | documentation and/or other materials provided with the distribution. |
21 | |
22 | * Neither the name of the University of Cambridge nor the names of its |
23 | contributors may be used to endorse or promote products derived from |
24 | this software without specific prior written permission. |
25 | |
26 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
27 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
28 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
29 | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
30 | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
31 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
32 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
33 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
34 | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
35 | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
36 | POSSIBILITY OF SUCH DAMAGE. |
37 | ----------------------------------------------------------------------------- |
38 | */ |
39 | |
40 | |
41 | /* This module contains the external function pcre_compile(), along with |
42 | supporting internal functions that are not used by other modules. */ |
43 | |
44 | |
45 | #ifdef HAVE_CONFIG_H |
46 | #include "config.h" |
47 | #endif |
48 | |
49 | #define NLBLOCK cd /* Block containing newline information */ |
50 | #define PSSTART start_pattern /* Field containing processed string start */ |
51 | #define PSEND end_pattern /* Field containing processed string end */ |
52 | |
53 | #include "pcre_internal.h" |
54 | |
55 | |
56 | /* When PCRE_DEBUG is defined, we need the pcre_printint() function, which is |
57 | also used by pcretest. PCRE_DEBUG is not defined when building a production |
58 | library. */ |
59 | |
60 | #ifdef PCRE_DEBUG |
61 | #include "pcre_printint.src" |
62 | #endif |
63 | |
64 | |
65 | /* Macro for setting individual bits in class bitmaps. */ |
66 | |
67 | #define SETBIT(a,b) a[b/8] |= (1 << (b%8)) |
68 | |
69 | /* Maximum length value to check against when making sure that the integer that |
70 | holds the compiled pattern length does not overflow. We make it a bit less than |
71 | INT_MAX to allow for adding in group terminating bytes, so that we don't have |
72 | to check them every time. */ |
73 | |
74 | #define OFLOW_MAX (INT_MAX - 20) |
75 | |
76 | |
77 | /************************************************* |
78 | * Code parameters and static tables * |
79 | *************************************************/ |
80 | |
81 | /* This value specifies the size of stack workspace that is used during the |
82 | first pre-compile phase that determines how much memory is required. The regex |
83 | is partly compiled into this space, but the compiled parts are discarded as |
84 | soon as they can be, so that hopefully there will never be an overrun. The code |
85 | does, however, check for an overrun. The largest amount I've seen used is 218, |
86 | so this number is very generous. |
87 | |
88 | The same workspace is used during the second, actual compile phase for |
89 | remembering forward references to groups so that they can be filled in at the |
90 | end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE |
91 | is 4 there is plenty of room. */ |
92 | |
93 | #define COMPILE_WORK_SIZE (4096) |
94 | |
95 | /* The overrun tests check for a slightly smaller size so that they detect the |
96 | overrun before it actually does run off the end of the data block. */ |
97 | |
98 | #define WORK_SIZE_CHECK (COMPILE_WORK_SIZE - 100) |
99 | |
100 | |
101 | /* Table for handling escaped characters in the range '0'-'z'. Positive returns |
102 | are simple data values; negative values are for special things like \d and so |
103 | on. Zero means further processing is needed (for things like \x), or the escape |
104 | is invalid. */ |
105 | |
106 | #ifndef EBCDIC |
107 | |
108 | /* This is the "normal" table for ASCII systems or for EBCDIC systems running |
109 | in UTF-8 mode. */ |
110 | |
111 | static const short int escapes[] = { |
112 | 0, 0, |
113 | 0, 0, |
114 | 0, 0, |
115 | 0, 0, |
116 | 0, 0, |
117 | CHAR_COLON, CHAR_SEMICOLON, |
118 | CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN, |
119 | CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK, |
120 | CHAR_COMMERCIAL_AT, -ESC_A, |
121 | -ESC_B, -ESC_C, |
122 | -ESC_D, -ESC_E, |
123 | 0, -ESC_G, |
124 | -ESC_H, 0, |
125 | 0, -ESC_K, |
126 | 0, 0, |
127 | -ESC_N, 0, |
128 | -ESC_P, -ESC_Q, |
129 | -ESC_R, -ESC_S, |
130 | 0, 0, |
131 | -ESC_V, -ESC_W, |
132 | -ESC_X, 0, |
133 | -ESC_Z, CHAR_LEFT_SQUARE_BRACKET, |
134 | CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET, |
135 | CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE, |
136 | CHAR_GRAVE_ACCENT, 7, |
137 | -ESC_b, 0, |
138 | -ESC_d, ESC_e, |
139 | ESC_f, 0, |
140 | -ESC_h, 0, |
141 | 0, -ESC_k, |
142 | 0, 0, |
143 | ESC_n, 0, |
144 | -ESC_p, 0, |
145 | ESC_r, -ESC_s, |
146 | ESC_tee, 0, |
147 | -ESC_v, -ESC_w, |
148 | 0, 0, |
149 | -ESC_z |
150 | }; |
151 | |
152 | #else |
153 | |
154 | /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */ |
155 | |
156 | static const short int escapes[] = { |
157 | /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|', |
158 | /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0, |
159 | /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~', |
160 | /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0, |
161 | /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?', |
162 | /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0, |
163 | /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"', |
164 | /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, |
165 | /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0, |
166 | /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p, |
167 | /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0, |
168 | /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0, |
169 | /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0, |
170 | /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
171 | /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-', |
172 | /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G, |
173 | /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0, |
174 | /* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P, |
175 | /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0, |
176 | /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X, |
177 | /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0, |
178 | /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
179 | /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0 |
180 | }; |
181 | #endif |
182 | |
183 | |
184 | /* Table of special "verbs" like (*PRUNE). This is a short table, so it is |
185 | searched linearly. Put all the names into a single string, in order to reduce |
186 | the number of relocations when a shared library is dynamically linked. The |
187 | string is built from string macros so that it works in UTF-8 mode on EBCDIC |
188 | platforms. */ |
189 | |
190 | typedef struct verbitem { |
191 | int len; /* Length of verb name */ |
192 | int op; /* Op when no arg, or -1 if arg mandatory */ |
193 | int op_arg; /* Op when arg present, or -1 if not allowed */ |
194 | } verbitem; |
195 | |
196 | static const char verbnames[] = |
197 | "\0" /* Empty name is a shorthand for MARK */ |
198 | STRING_MARK0 |
199 | STRING_ACCEPT0 |
200 | STRING_COMMIT0 |
201 | STRING_F0 |
202 | STRING_FAIL0 |
203 | STRING_PRUNE0 |
204 | STRING_SKIP0 |
205 | STRING_THEN; |
206 | |
207 | static const verbitem verbs[] = { |
208 | { 0, -1, OP_MARK }, |
209 | { 4, -1, OP_MARK }, |
210 | { 6, OP_ACCEPT, -1 }, |
211 | { 6, OP_COMMIT, -1 }, |
212 | { 1, OP_FAIL, -1 }, |
213 | { 4, OP_FAIL, -1 }, |
214 | { 5, OP_PRUNE, OP_PRUNE_ARG }, |
215 | { 4, OP_SKIP, OP_SKIP_ARG }, |
216 | { 4, OP_THEN, OP_THEN_ARG } |
217 | }; |
218 | |
219 | static const int verbcount = sizeof(verbs)/sizeof(verbitem); |
220 | |
221 | |
222 | /* Tables of names of POSIX character classes and their lengths. The names are |
223 | now all in a single string, to reduce the number of relocations when a shared |
224 | library is dynamically loaded. The list of lengths is terminated by a zero |
225 | length entry. The first three must be alpha, lower, upper, as this is assumed |
226 | for handling case independence. */ |
227 | |
228 | static const char posix_names[] = |
229 | STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0 |
230 | STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0 |
231 | STRING_graph0 STRING_print0 STRING_punct0 STRING_space0 |
232 | STRING_word0 STRING_xdigit; |
233 | |
234 | static const uschar posix_name_lengths[] = { |
235 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 }; |
236 | |
237 | /* Table of class bit maps for each POSIX class. Each class is formed from a |
238 | base map, with an optional addition or removal of another map. Then, for some |
239 | classes, there is some additional tweaking: for [:blank:] the vertical space |
240 | characters are removed, and for [:alpha:] and [:alnum:] the underscore |
241 | character is removed. The triples in the table consist of the base map offset, |
242 | second map offset or -1 if no second map, and a non-negative value for map |
243 | addition or a negative value for map subtraction (if there are two maps). The |
244 | absolute value of the third field has these meanings: 0 => no tweaking, 1 => |
245 | remove vertical space characters, 2 => remove underscore. */ |
246 | |
247 | static const int posix_class_maps[] = { |
248 | cbit_word, cbit_digit, -2, /* alpha */ |
249 | cbit_lower, -1, 0, /* lower */ |
250 | cbit_upper, -1, 0, /* upper */ |
251 | cbit_word, -1, 2, /* alnum - word without underscore */ |
252 | cbit_print, cbit_cntrl, 0, /* ascii */ |
253 | cbit_space, -1, 1, /* blank - a GNU extension */ |
254 | cbit_cntrl, -1, 0, /* cntrl */ |
255 | cbit_digit, -1, 0, /* digit */ |
256 | cbit_graph, -1, 0, /* graph */ |
257 | cbit_print, -1, 0, /* print */ |
258 | cbit_punct, -1, 0, /* punct */ |
259 | cbit_space, -1, 0, /* space */ |
260 | cbit_word, -1, 0, /* word - a Perl extension */ |
261 | cbit_xdigit,-1, 0 /* xdigit */ |
262 | }; |
263 | |
264 | /* Table of substitutes for \d etc when PCRE_UCP is set. The POSIX class |
265 | substitutes must be in the order of the names, defined above, and there are |
266 | both positive and negative cases. NULL means no substitute. */ |
267 | |
268 | #ifdef SUPPORT_UCP |
269 | static const uschar *substitutes[] = { |
270 | (uschar *)"\\P{Nd}", /* \D */ |
271 | (uschar *)"\\p{Nd}", /* \d */ |
272 | (uschar *)"\\P{Xsp}", /* \S */ /* NOTE: Xsp is Perl space */ |
273 | (uschar *)"\\p{Xsp}", /* \s */ |
274 | (uschar *)"\\P{Xwd}", /* \W */ |
275 | (uschar *)"\\p{Xwd}" /* \w */ |
276 | }; |
277 | |
278 | static const uschar *posix_substitutes[] = { |
279 | (uschar *)"\\p{L}", /* alpha */ |
280 | (uschar *)"\\p{Ll}", /* lower */ |
281 | (uschar *)"\\p{Lu}", /* upper */ |
282 | (uschar *)"\\p{Xan}", /* alnum */ |
283 | NULL, /* ascii */ |
284 | (uschar *)"\\h", /* blank */ |
285 | NULL, /* cntrl */ |
286 | (uschar *)"\\p{Nd}", /* digit */ |
287 | NULL, /* graph */ |
288 | NULL, /* print */ |
289 | NULL, /* punct */ |
290 | (uschar *)"\\p{Xps}", /* space */ /* NOTE: Xps is POSIX space */ |
291 | (uschar *)"\\p{Xwd}", /* word */ |
292 | NULL, /* xdigit */ |
293 | /* Negated cases */ |
294 | (uschar *)"\\P{L}", /* ^alpha */ |
295 | (uschar *)"\\P{Ll}", /* ^lower */ |
296 | (uschar *)"\\P{Lu}", /* ^upper */ |
297 | (uschar *)"\\P{Xan}", /* ^alnum */ |
298 | NULL, /* ^ascii */ |
299 | (uschar *)"\\H", /* ^blank */ |
300 | NULL, /* ^cntrl */ |
301 | (uschar *)"\\P{Nd}", /* ^digit */ |
302 | NULL, /* ^graph */ |
303 | NULL, /* ^print */ |
304 | NULL, /* ^punct */ |
305 | (uschar *)"\\P{Xps}", /* ^space */ /* NOTE: Xps is POSIX space */ |
306 | (uschar *)"\\P{Xwd}", /* ^word */ |
307 | NULL /* ^xdigit */ |
308 | }; |
309 | #define POSIX_SUBSIZE (sizeof(posix_substitutes)/sizeof(uschar *)) |
310 | #endif |
311 | |
312 | #define STRING(a) # a |
313 | #define XSTRING(s) STRING(s) |
314 | |
315 | /* The texts of compile-time error messages. These are "char *" because they |
316 | are passed to the outside world. Do not ever re-use any error number, because |
317 | they are documented. Always add a new error instead. Messages marked DEAD below |
318 | are no longer used. This used to be a table of strings, but in order to reduce |
319 | the number of relocations needed when a shared library is loaded dynamically, |
320 | it is now one long string. We cannot use a table of offsets, because the |
321 | lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we |
322 | simply count through to the one we want - this isn't a performance issue |
323 | because these strings are used only when there is a compilation error. |
324 | |
325 | Each substring ends with \0 to insert a null character. This includes the final |
326 | substring, so that the whole string ends with \0\0, which can be detected when |
327 | counting through. */ |
328 | |
329 | static const char error_texts[] = |
330 | "no error\0" |
331 | "\\ at end of pattern\0" |
332 | "\\c at end of pattern\0" |
333 | "unrecognized character follows \\\0" |
334 | "numbers out of order in {} quantifier\0" |
335 | /* 5 */ |
336 | "number too big in {} quantifier\0" |
337 | "missing terminating ] for character class\0" |
338 | "invalid escape sequence in character class\0" |
339 | "range out of order in character class\0" |
340 | "nothing to repeat\0" |
341 | /* 10 */ |
342 | "operand of unlimited repeat could match the empty string\0" /** DEAD **/ |
343 | "internal error: unexpected repeat\0" |
344 | "unrecognized character after (? or (?-\0" |
345 | "POSIX named classes are supported only within a class\0" |
346 | "missing )\0" |
347 | /* 15 */ |
348 | "reference to non-existent subpattern\0" |
349 | "erroffset passed as NULL\0" |
350 | "unknown option bit(s) set\0" |
351 | "missing ) after comment\0" |
352 | "parentheses nested too deeply\0" /** DEAD **/ |
353 | /* 20 */ |
354 | "regular expression is too large\0" |
355 | "failed to get memory\0" |
356 | "unmatched parentheses\0" |
357 | "internal error: code overflow\0" |
358 | "unrecognized character after (?<\0" |
359 | /* 25 */ |
360 | "lookbehind assertion is not fixed length\0" |
361 | "malformed number or name after (?(\0" |
362 | "conditional group contains more than two branches\0" |
363 | "assertion expected after (?(\0" |
364 | "(?R or (?[+-]digits must be followed by )\0" |
365 | /* 30 */ |
366 | "unknown POSIX class name\0" |
367 | "POSIX collating elements are not supported\0" |
368 | "this version of PCRE is not compiled with PCRE_UTF8 support\0" |
369 | "spare error\0" /** DEAD **/ |
370 | "character value in \\x{...} sequence is too large\0" |
371 | /* 35 */ |
372 | "invalid condition (?(0)\0" |
373 | "\\C not allowed in lookbehind assertion\0" |
374 | "PCRE does not support \\L, \\l, \\N{name}, \\U, or \\u\0" |
375 | "number after (?C is > 255\0" |
376 | "closing ) for (?C expected\0" |
377 | /* 40 */ |
378 | "recursive call could loop indefinitely\0" |
379 | "unrecognized character after (?P\0" |
380 | "syntax error in subpattern name (missing terminator)\0" |
381 | "two named subpatterns have the same name\0" |
382 | "invalid UTF-8 string\0" |
383 | /* 45 */ |
384 | "support for \\P, \\p, and \\X has not been compiled\0" |
385 | "malformed \\P or \\p sequence\0" |
386 | "unknown property name after \\P or \\p\0" |
387 | "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0" |
388 | "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0" |
389 | /* 50 */ |
390 | "repeated subpattern is too long\0" /** DEAD **/ |
391 | "octal value is greater than \\377 (not in UTF-8 mode)\0" |
392 | "internal error: overran compiling workspace\0" |
393 | "internal error: previously-checked referenced subpattern not found\0" |
394 | "DEFINE group contains more than one branch\0" |
395 | /* 55 */ |
396 | "repeating a DEFINE group is not allowed\0" /** DEAD **/ |
397 | "inconsistent NEWLINE options\0" |
398 | "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0" |
399 | "a numbered reference must not be zero\0" |
400 | "an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0" |
401 | /* 60 */ |
402 | "(*VERB) not recognized\0" |
403 | "number is too big\0" |
404 | "subpattern name expected\0" |
405 | "digit expected after (?+\0" |
406 | "] is an invalid data character in JavaScript compatibility mode\0" |
407 | /* 65 */ |
408 | "different names for subpatterns of the same number are not allowed\0" |
409 | "(*MARK) must have an argument\0" |
410 | "this version of PCRE is not compiled with PCRE_UCP support\0" |
411 | "\\c must be followed by an ASCII character\0" |
412 | "\\k is not followed by a braced, angle-bracketed, or quoted name\0" |
413 | ; |
414 | |
415 | /* Table to identify digits and hex digits. This is used when compiling |
416 | patterns. Note that the tables in chartables are dependent on the locale, and |
417 | may mark arbitrary characters as digits - but the PCRE compiling code expects |
418 | to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have |
419 | a private table here. It costs 256 bytes, but it is a lot faster than doing |
420 | character value tests (at least in some simple cases I timed), and in some |
421 | applications one wants PCRE to compile efficiently as well as match |
422 | efficiently. |
423 | |
424 | For convenience, we use the same bit definitions as in chartables: |
425 | |
426 | 0x04 decimal digit |
427 | 0x08 hexadecimal digit |
428 | |
429 | Then we can use ctype_digit and ctype_xdigit in the code. */ |
430 | |
431 | #ifndef EBCDIC |
432 | |
433 | /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in |
434 | UTF-8 mode. */ |
435 | |
436 | static const unsigned char digitab[] = |
437 | { |
438 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */ |
439 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
440 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */ |
441 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
442 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */ |
443 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */ |
444 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */ |
445 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */ |
446 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */ |
447 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */ |
448 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */ |
449 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */ |
450 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */ |
451 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */ |
452 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */ |
453 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */ |
454 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */ |
455 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */ |
456 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */ |
457 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */ |
458 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */ |
459 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */ |
460 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */ |
461 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
462 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */ |
463 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */ |
464 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */ |
465 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */ |
466 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */ |
467 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */ |
468 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */ |
469 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */ |
470 | |
471 | #else |
472 | |
473 | /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */ |
474 | |
475 | static const unsigned char digitab[] = |
476 | { |
477 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */ |
478 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
479 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */ |
480 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
481 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */ |
482 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
483 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */ |
484 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
485 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */ |
486 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */ |
487 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */ |
488 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */ |
489 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */ |
490 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */ |
491 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */ |
492 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
493 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */ |
494 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
495 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */ |
496 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
497 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */ |
498 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
499 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */ |
500 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
501 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */ |
502 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
503 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */ |
504 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
505 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */ |
506 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
507 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */ |
508 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
509 | |
510 | static const unsigned char ebcdic_chartab[] = { /* chartable partial dup */ |
511 | 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */ |
512 | 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */ |
513 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */ |
514 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
515 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */ |
516 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
517 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */ |
518 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
519 | 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */ |
520 | 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */ |
521 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */ |
522 | 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */ |
523 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */ |
524 | 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */ |
525 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */ |
526 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
527 | 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */ |
528 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
529 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */ |
530 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
531 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */ |
532 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
533 | 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */ |
534 | 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
535 | 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */ |
536 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
537 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */ |
538 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
539 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */ |
540 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
541 | 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */ |
542 | 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
543 | #endif |
544 | |
545 | |
546 | /* Definition to allow mutual recursion */ |
547 | |
548 | static BOOL |
549 | compile_regex(int, uschar **, const uschar **, int *, BOOL, BOOL, int, int, |
550 | int *, int *, branch_chain *, compile_data *, int *); |
551 | |
552 | |
553 | |
554 | /************************************************* |
555 | * Find an error text * |
556 | *************************************************/ |
557 | |
558 | /* The error texts are now all in one long string, to save on relocations. As |
559 | some of the text is of unknown length, we can't use a table of offsets. |
560 | Instead, just count through the strings. This is not a performance issue |
561 | because it happens only when there has been a compilation error. |
562 | |
563 | Argument: the error number |
564 | Returns: pointer to the error string |
565 | */ |
566 | |
567 | static const char * |
568 | find_error_text(int n) |
569 | { |
570 | const char *s = error_texts; |
571 | for (; n > 0; n--) |
572 | { |
573 | while (*s++ != 0) {}; |
574 | if (*s == 0) return "Error text not found (please report)"; |
575 | } |
576 | return s; |
577 | } |
578 | |
579 | |
580 | /************************************************* |
581 | * Check for counted repeat * |
582 | *************************************************/ |
583 | |
584 | /* This function is called when a '{' is encountered in a place where it might |
585 | start a quantifier. It looks ahead to see if it really is a quantifier or not. |
586 | It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd} |
587 | where the ddds are digits. |
588 | |
589 | Arguments: |
590 | p pointer to the first char after '{' |
591 | |
592 | Returns: TRUE or FALSE |
593 | */ |
594 | |
595 | static BOOL |
596 | is_counted_repeat(const uschar *p) |
597 | { |
598 | if ((digitab[*p++] & ctype_digit) == 0) return FALSE; |
599 | while ((digitab[*p] & ctype_digit) != 0) p++; |
600 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
601 | |
602 | if (*p++ != CHAR_COMMA) return FALSE; |
603 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
604 | |
605 | if ((digitab[*p++] & ctype_digit) == 0) return FALSE; |
606 | while ((digitab[*p] & ctype_digit) != 0) p++; |
607 | |
608 | return (*p == CHAR_RIGHT_CURLY_BRACKET); |
609 | } |
610 | |
611 | |
612 | |
613 | /************************************************* |
614 | * Handle escapes * |
615 | *************************************************/ |
616 | |
617 | /* This function is called when a \ has been encountered. It either returns a |
618 | positive value for a simple escape such as \n, or a negative value which |
619 | encodes one of the more complicated things such as \d. A backreference to group |
620 | n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When |
621 | UTF-8 is enabled, a positive value greater than 255 may be returned. On entry, |
622 | ptr is pointing at the \. On exit, it is on the final character of the escape |
623 | sequence. |
624 | |
625 | Arguments: |
626 | ptrptr points to the pattern position pointer |
627 | errorcodeptr points to the errorcode variable |
628 | bracount number of previous extracting brackets |
629 | options the options bits |
630 | isclass TRUE if inside a character class |
631 | |
632 | Returns: zero or positive => a data character |
633 | negative => a special escape sequence |
634 | on error, errorcodeptr is set |
635 | */ |
636 | |
637 | static int |
638 | check_escape(const uschar **ptrptr, int *errorcodeptr, int bracount, |
639 | int options, BOOL isclass) |
640 | { |
641 | BOOL utf8 = (options & PCRE_UTF8) != 0; |
642 | const uschar *ptr = *ptrptr + 1; |
643 | int c, i; |
644 | |
645 | GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */ |
646 | ptr--; /* Set pointer back to the last byte */ |
647 | |
648 | /* If backslash is at the end of the pattern, it's an error. */ |
649 | |
650 | if (c == 0) *errorcodeptr = ERR1; |
651 | |
652 | /* Non-alphanumerics are literals. For digits or letters, do an initial lookup |
653 | in a table. A non-zero result is something that can be returned immediately. |
654 | Otherwise further processing may be required. */ |
655 | |
656 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
657 | else if (c < CHAR_0 || c > CHAR_z) {} /* Not alphanumeric */ |
658 | else if ((i = escapes[c - CHAR_0]) != 0) c = i; |
659 | |
660 | #else /* EBCDIC coding */ |
661 | else if (c < 'a' || (ebcdic_chartab[c] & 0x0E) == 0) {} /* Not alphanumeric */ |
662 | else if ((i = escapes[c - 0x48]) != 0) c = i; |
663 | #endif |
664 | |
665 | /* Escapes that need further processing, or are illegal. */ |
666 | |
667 | else |
668 | { |
669 | const uschar *oldptr; |
670 | BOOL braced, negated; |
671 | |
672 | switch (c) |
673 | { |
674 | /* A number of Perl escapes are not handled by PCRE. We give an explicit |
675 | error. */ |
676 | |
677 | case CHAR_l: |
678 | case CHAR_L: |
679 | case CHAR_u: |
680 | case CHAR_U: |
681 | *errorcodeptr = ERR37; |
682 | break; |
683 | |
684 | /* In a character class, \g is just a literal "g". Outside a character |
685 | class, \g must be followed by one of a number of specific things: |
686 | |
687 | (1) A number, either plain or braced. If positive, it is an absolute |
688 | backreference. If negative, it is a relative backreference. This is a Perl |
689 | 5.10 feature. |
690 | |
691 | (2) Perl 5.10 also supports \g{name} as a reference to a named group. This |
692 | is part of Perl's movement towards a unified syntax for back references. As |
693 | this is synonymous with \k{name}, we fudge it up by pretending it really |
694 | was \k. |
695 | |
696 | (3) For Oniguruma compatibility we also support \g followed by a name or a |
697 | number either in angle brackets or in single quotes. However, these are |
698 | (possibly recursive) subroutine calls, _not_ backreferences. Just return |
699 | the -ESC_g code (cf \k). */ |
700 | |
701 | case CHAR_g: |
702 | if (isclass) break; |
703 | if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE) |
704 | { |
705 | c = -ESC_g; |
706 | break; |
707 | } |
708 | |
709 | /* Handle the Perl-compatible cases */ |
710 | |
711 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
712 | { |
713 | const uschar *p; |
714 | for (p = ptr+2; *p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET; p++) |
715 | if (*p != CHAR_MINUS && (digitab[*p] & ctype_digit) == 0) break; |
716 | if (*p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET) |
717 | { |
718 | c = -ESC_k; |
719 | break; |
720 | } |
721 | braced = TRUE; |
722 | ptr++; |
723 | } |
724 | else braced = FALSE; |
725 | |
726 | if (ptr[1] == CHAR_MINUS) |
727 | { |
728 | negated = TRUE; |
729 | ptr++; |
730 | } |
731 | else negated = FALSE; |
732 | |
733 | c = 0; |
734 | while ((digitab[ptr[1]] & ctype_digit) != 0) |
735 | c = c * 10 + *(++ptr) - CHAR_0; |
736 | |
737 | if (c < 0) /* Integer overflow */ |
738 | { |
739 | *errorcodeptr = ERR61; |
740 | break; |
741 | } |
742 | |
743 | if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET) |
744 | { |
745 | *errorcodeptr = ERR57; |
746 | break; |
747 | } |
748 | |
749 | if (c == 0) |
750 | { |
751 | *errorcodeptr = ERR58; |
752 | break; |
753 | } |
754 | |
755 | if (negated) |
756 | { |
757 | if (c > bracount) |
758 | { |
759 | *errorcodeptr = ERR15; |
760 | break; |
761 | } |
762 | c = bracount - (c - 1); |
763 | } |
764 | |
765 | c = -(ESC_REF + c); |
766 | break; |
767 | |
768 | /* The handling of escape sequences consisting of a string of digits |
769 | starting with one that is not zero is not straightforward. By experiment, |
770 | the way Perl works seems to be as follows: |
771 | |
772 | Outside a character class, the digits are read as a decimal number. If the |
773 | number is less than 10, or if there are that many previous extracting |
774 | left brackets, then it is a back reference. Otherwise, up to three octal |
775 | digits are read to form an escaped byte. Thus \123 is likely to be octal |
776 | 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal |
777 | value is greater than 377, the least significant 8 bits are taken. Inside a |
778 | character class, \ followed by a digit is always an octal number. */ |
779 | |
780 | case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5: |
781 | case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
782 | |
783 | if (!isclass) |
784 | { |
785 | oldptr = ptr; |
786 | c -= CHAR_0; |
787 | while ((digitab[ptr[1]] & ctype_digit) != 0) |
788 | c = c * 10 + *(++ptr) - CHAR_0; |
789 | if (c < 0) /* Integer overflow */ |
790 | { |
791 | *errorcodeptr = ERR61; |
792 | break; |
793 | } |
794 | if (c < 10 || c <= bracount) |
795 | { |
796 | c = -(ESC_REF + c); |
797 | break; |
798 | } |
799 | ptr = oldptr; /* Put the pointer back and fall through */ |
800 | } |
801 | |
802 | /* Handle an octal number following \. If the first digit is 8 or 9, Perl |
803 | generates a binary zero byte and treats the digit as a following literal. |
804 | Thus we have to pull back the pointer by one. */ |
805 | |
806 | if ((c = *ptr) >= CHAR_8) |
807 | { |
808 | ptr--; |
809 | c = 0; |
810 | break; |
811 | } |
812 | |
813 | /* \0 always starts an octal number, but we may drop through to here with a |
814 | larger first octal digit. The original code used just to take the least |
815 | significant 8 bits of octal numbers (I think this is what early Perls used |
816 | to do). Nowadays we allow for larger numbers in UTF-8 mode, but no more |
817 | than 3 octal digits. */ |
818 | |
819 | case CHAR_0: |
820 | c -= CHAR_0; |
821 | while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7) |
822 | c = c * 8 + *(++ptr) - CHAR_0; |
823 | if (!utf8 && c > 255) *errorcodeptr = ERR51; |
824 | break; |
825 | |
826 | /* \x is complicated. \x{ddd} is a character number which can be greater |
827 | than 0xff in utf8 mode, but only if the ddd are hex digits. If not, { is |
828 | treated as a data character. */ |
829 | |
830 | case CHAR_x: |
831 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
832 | { |
833 | const uschar *pt = ptr + 2; |
834 | int count = 0; |
835 | |
836 | c = 0; |
837 | while ((digitab[*pt] & ctype_xdigit) != 0) |
838 | { |
839 | register int cc = *pt++; |
840 | if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */ |
841 | count++; |
842 | |
843 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
844 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
845 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
846 | #else /* EBCDIC coding */ |
847 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
848 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
849 | #endif |
850 | } |
851 | |
852 | if (*pt == CHAR_RIGHT_CURLY_BRACKET) |
853 | { |
854 | if (c < 0 || count > (utf8? 8 : 2)) *errorcodeptr = ERR34; |
855 | ptr = pt; |
856 | break; |
857 | } |
858 | |
859 | /* If the sequence of hex digits does not end with '}', then we don't |
860 | recognize this construct; fall through to the normal \x handling. */ |
861 | } |
862 | |
863 | /* Read just a single-byte hex-defined char */ |
864 | |
865 | c = 0; |
866 | while (i++ < 2 && (digitab[ptr[1]] & ctype_xdigit) != 0) |
867 | { |
868 | int cc; /* Some compilers don't like */ |
869 | cc = *(++ptr); /* ++ in initializers */ |
870 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
871 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
872 | c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
873 | #else /* EBCDIC coding */ |
874 | if (cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
875 | c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
876 | #endif |
877 | } |
878 | break; |
879 | |
880 | /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped. |
881 | An error is given if the byte following \c is not an ASCII character. This |
882 | coding is ASCII-specific, but then the whole concept of \cx is |
883 | ASCII-specific. (However, an EBCDIC equivalent has now been added.) */ |
884 | |
885 | case CHAR_c: |
886 | c = *(++ptr); |
887 | if (c == 0) |
888 | { |
889 | *errorcodeptr = ERR2; |
890 | break; |
891 | } |
892 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
893 | if (c > 127) /* Excludes all non-ASCII in either mode */ |
894 | { |
895 | *errorcodeptr = ERR68; |
896 | break; |
897 | } |
898 | if (c >= CHAR_a && c <= CHAR_z) c -= 32; |
899 | c ^= 0x40; |
900 | #else /* EBCDIC coding */ |
901 | if (c >= CHAR_a && c <= CHAR_z) c += 64; |
902 | c ^= 0xC0; |
903 | #endif |
904 | break; |
905 | |
906 | /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any |
907 | other alphanumeric following \ is an error if PCRE_EXTRA was set; |
908 | otherwise, for Perl compatibility, it is a literal. This code looks a bit |
909 | odd, but there used to be some cases other than the default, and there may |
910 | be again in future, so I haven't "optimized" it. */ |
911 | |
912 | default: |
913 | if ((options & PCRE_EXTRA) != 0) switch(c) |
914 | { |
915 | default: |
916 | *errorcodeptr = ERR3; |
917 | break; |
918 | } |
919 | break; |
920 | } |
921 | } |
922 | |
923 | /* Perl supports \N{name} for character names, as well as plain \N for "not |
924 | newline". PCRE does not support \N{name}. However, it does support |
925 | quantification such as \N{2,3}. */ |
926 | |
927 | if (c == -ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET && |
928 | !is_counted_repeat(ptr+2)) |
929 | *errorcodeptr = ERR37; |
930 | |
931 | /* If PCRE_UCP is set, we change the values for \d etc. */ |
932 | |
933 | if ((options & PCRE_UCP) != 0 && c <= -ESC_D && c >= -ESC_w) |
934 | c -= (ESC_DU - ESC_D); |
935 | |
936 | /* Set the pointer to the final character before returning. */ |
937 | |
938 | *ptrptr = ptr; |
939 | return c; |
940 | } |
941 | |
942 | |
943 | |
944 | #ifdef SUPPORT_UCP |
945 | /************************************************* |
946 | * Handle \P and \p * |
947 | *************************************************/ |
948 | |
949 | /* This function is called after \P or \p has been encountered, provided that |
950 | PCRE is compiled with support for Unicode properties. On entry, ptrptr is |
951 | pointing at the P or p. On exit, it is pointing at the final character of the |
952 | escape sequence. |
953 | |
954 | Argument: |
955 | ptrptr points to the pattern position pointer |
956 | negptr points to a boolean that is set TRUE for negation else FALSE |
957 | dptr points to an int that is set to the detailed property value |
958 | errorcodeptr points to the error code variable |
959 | |
960 | Returns: type value from ucp_type_table, or -1 for an invalid type |
961 | */ |
962 | |
963 | static int |
964 | get_ucp(const uschar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr) |
965 | { |
966 | int c, i, bot, top; |
967 | const uschar *ptr = *ptrptr; |
968 | char name[32]; |
969 | |
970 | c = *(++ptr); |
971 | if (c == 0) goto ERROR_RETURN; |
972 | |
973 | *negptr = FALSE; |
974 | |
975 | /* \P or \p can be followed by a name in {}, optionally preceded by ^ for |
976 | negation. */ |
977 | |
978 | if (c == CHAR_LEFT_CURLY_BRACKET) |
979 | { |
980 | if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
981 | { |
982 | *negptr = TRUE; |
983 | ptr++; |
984 | } |
985 | for (i = 0; i < (int)sizeof(name) - 1; i++) |
986 | { |
987 | c = *(++ptr); |
988 | if (c == 0) goto ERROR_RETURN; |
989 | if (c == CHAR_RIGHT_CURLY_BRACKET) break; |
990 | name[i] = c; |
991 | } |
992 | if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN; |
993 | name[i] = 0; |
994 | } |
995 | |
996 | /* Otherwise there is just one following character */ |
997 | |
998 | else |
999 | { |
1000 | name[0] = c; |
1001 | name[1] = 0; |
1002 | } |
1003 | |
1004 | *ptrptr = ptr; |
1005 | |
1006 | /* Search for a recognized property name using binary chop */ |
1007 | |
1008 | bot = 0; |
1009 | top = _pcre_utt_size; |
1010 | |
1011 | while (bot < top) |
1012 | { |
1013 | i = (bot + top) >> 1; |
1014 | c = strcmp(name, _pcre_utt_names + _pcre_utt[i].name_offset); |
1015 | if (c == 0) |
1016 | { |
1017 | *dptr = _pcre_utt[i].value; |
1018 | return _pcre_utt[i].type; |
1019 | } |
1020 | if (c > 0) bot = i + 1; else top = i; |
1021 | } |
1022 | |
1023 | *errorcodeptr = ERR47; |
1024 | *ptrptr = ptr; |
1025 | return -1; |
1026 | |
1027 | ERROR_RETURN: |
1028 | *errorcodeptr = ERR46; |
1029 | *ptrptr = ptr; |
1030 | return -1; |
1031 | } |
1032 | #endif |
1033 | |
1034 | |
1035 | |
1036 | |
1037 | /************************************************* |
1038 | * Read repeat counts * |
1039 | *************************************************/ |
1040 | |
1041 | /* Read an item of the form {n,m} and return the values. This is called only |
1042 | after is_counted_repeat() has confirmed that a repeat-count quantifier exists, |
1043 | so the syntax is guaranteed to be correct, but we need to check the values. |
1044 | |
1045 | Arguments: |
1046 | p pointer to first char after '{' |
1047 | minp pointer to int for min |
1048 | maxp pointer to int for max |
1049 | returned as -1 if no max |
1050 | errorcodeptr points to error code variable |
1051 | |
1052 | Returns: pointer to '}' on success; |
1053 | current ptr on error, with errorcodeptr set non-zero |
1054 | */ |
1055 | |
1056 | static const uschar * |
1057 | read_repeat_counts(const uschar *p, int *minp, int *maxp, int *errorcodeptr) |
1058 | { |
1059 | int min = 0; |
1060 | int max = -1; |
1061 | |
1062 | /* Read the minimum value and do a paranoid check: a negative value indicates |
1063 | an integer overflow. */ |
1064 | |
1065 | while ((digitab[*p] & ctype_digit) != 0) min = min * 10 + *p++ - CHAR_0; |
1066 | if (min < 0 || min > 65535) |
1067 | { |
1068 | *errorcodeptr = ERR5; |
1069 | return p; |
1070 | } |
1071 | |
1072 | /* Read the maximum value if there is one, and again do a paranoid on its size. |
1073 | Also, max must not be less than min. */ |
1074 | |
1075 | if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else |
1076 | { |
1077 | if (*(++p) != CHAR_RIGHT_CURLY_BRACKET) |
1078 | { |
1079 | max = 0; |
1080 | while((digitab[*p] & ctype_digit) != 0) max = max * 10 + *p++ - CHAR_0; |
1081 | if (max < 0 || max > 65535) |
1082 | { |
1083 | *errorcodeptr = ERR5; |
1084 | return p; |
1085 | } |
1086 | if (max < min) |
1087 | { |
1088 | *errorcodeptr = ERR4; |
1089 | return p; |
1090 | } |
1091 | } |
1092 | } |
1093 | |
1094 | /* Fill in the required variables, and pass back the pointer to the terminating |
1095 | '}'. */ |
1096 | |
1097 | *minp = min; |
1098 | *maxp = max; |
1099 | return p; |
1100 | } |
1101 | |
1102 | |
1103 | |
1104 | /************************************************* |
1105 | * Subroutine for finding forward reference * |
1106 | *************************************************/ |
1107 | |
1108 | /* This recursive function is called only from find_parens() below. The |
1109 | top-level call starts at the beginning of the pattern. All other calls must |
1110 | start at a parenthesis. It scans along a pattern's text looking for capturing |
1111 | subpatterns, and counting them. If it finds a named pattern that matches the |
1112 | name it is given, it returns its number. Alternatively, if the name is NULL, it |
1113 | returns when it reaches a given numbered subpattern. Recursion is used to keep |
1114 | track of subpatterns that reset the capturing group numbers - the (?| feature. |
1115 | |
1116 | This function was originally called only from the second pass, in which we know |
1117 | that if (?< or (?' or (?P< is encountered, the name will be correctly |
1118 | terminated because that is checked in the first pass. There is now one call to |
1119 | this function in the first pass, to check for a recursive back reference by |
1120 | name (so that we can make the whole group atomic). In this case, we need check |
1121 | only up to the current position in the pattern, and that is still OK because |
1122 | and previous occurrences will have been checked. To make this work, the test |
1123 | for "end of pattern" is a check against cd->end_pattern in the main loop, |
1124 | instead of looking for a binary zero. This means that the special first-pass |
1125 | call can adjust cd->end_pattern temporarily. (Checks for binary zero while |
1126 | processing items within the loop are OK, because afterwards the main loop will |
1127 | terminate.) |
1128 | |
1129 | Arguments: |
1130 | ptrptr address of the current character pointer (updated) |
1131 | cd compile background data |
1132 | name name to seek, or NULL if seeking a numbered subpattern |
1133 | lorn name length, or subpattern number if name is NULL |
1134 | xmode TRUE if we are in /x mode |
1135 | utf8 TRUE if we are in UTF-8 mode |
1136 | count pointer to the current capturing subpattern number (updated) |
1137 | |
1138 | Returns: the number of the named subpattern, or -1 if not found |
1139 | */ |
1140 | |
1141 | static int |
1142 | find_parens_sub(uschar **ptrptr, compile_data *cd, const uschar *name, int lorn, |
1143 | BOOL xmode, BOOL utf8, int *count) |
1144 | { |
1145 | uschar *ptr = *ptrptr; |
1146 | int start_count = *count; |
1147 | int hwm_count = start_count; |
1148 | BOOL dup_parens = FALSE; |
1149 | |
1150 | /* If the first character is a parenthesis, check on the type of group we are |
1151 | dealing with. The very first call may not start with a parenthesis. */ |
1152 | |
1153 | if (ptr[0] == CHAR_LEFT_PARENTHESIS) |
1154 | { |
1155 | /* Handle specials such as (*SKIP) or (*UTF8) etc. */ |
1156 | |
1157 | if (ptr[1] == CHAR_ASTERISK) ptr += 2; |
1158 | |
1159 | /* Handle a normal, unnamed capturing parenthesis. */ |
1160 | |
1161 | else if (ptr[1] != CHAR_QUESTION_MARK) |
1162 | { |
1163 | *count += 1; |
1164 | if (name == NULL && *count == lorn) return *count; |
1165 | ptr++; |
1166 | } |
1167 | |
1168 | /* All cases now have (? at the start. Remember when we are in a group |
1169 | where the parenthesis numbers are duplicated. */ |
1170 | |
1171 | else if (ptr[2] == CHAR_VERTICAL_LINE) |
1172 | { |
1173 | ptr += 3; |
1174 | dup_parens = TRUE; |
1175 | } |
1176 | |
1177 | /* Handle comments; all characters are allowed until a ket is reached. */ |
1178 | |
1179 | else if (ptr[2] == CHAR_NUMBER_SIGN) |
1180 | { |
1181 | for (ptr += 3; *ptr != 0; ptr++) if (*ptr == CHAR_RIGHT_PARENTHESIS) break; |
1182 | goto FAIL_EXIT; |
1183 | } |
1184 | |
1185 | /* Handle a condition. If it is an assertion, just carry on so that it |
1186 | is processed as normal. If not, skip to the closing parenthesis of the |
1187 | condition (there can't be any nested parens). */ |
1188 | |
1189 | else if (ptr[2] == CHAR_LEFT_PARENTHESIS) |
1190 | { |
1191 | ptr += 2; |
1192 | if (ptr[1] != CHAR_QUESTION_MARK) |
1193 | { |
1194 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
1195 | if (*ptr != 0) ptr++; |
1196 | } |
1197 | } |
1198 | |
1199 | /* Start with (? but not a condition. */ |
1200 | |
1201 | else |
1202 | { |
1203 | ptr += 2; |
1204 | if (*ptr == CHAR_P) ptr++; /* Allow optional P */ |
1205 | |
1206 | /* We have to disambiguate (?<! and (?<= from (?<name> for named groups */ |
1207 | |
1208 | if ((*ptr == CHAR_LESS_THAN_SIGN && ptr[1] != CHAR_EXCLAMATION_MARK && |
1209 | ptr[1] != CHAR_EQUALS_SIGN) || *ptr == CHAR_APOSTROPHE) |
1210 | { |
1211 | int term; |
1212 | const uschar *thisname; |
1213 | *count += 1; |
1214 | if (name == NULL && *count == lorn) return *count; |
1215 | term = *ptr++; |
1216 | if (term == CHAR_LESS_THAN_SIGN) term = CHAR_GREATER_THAN_SIGN; |
1217 | thisname = ptr; |
1218 | while (*ptr != term) ptr++; |
1219 | if (name != NULL && lorn == ptr - thisname && |
1220 | strncmp((const char *)name, (const char *)thisname, lorn) == 0) |
1221 | return *count; |
1222 | term++; |
1223 | } |
1224 | } |
1225 | } |
1226 | |
1227 | /* Past any initial parenthesis handling, scan for parentheses or vertical |
1228 | bars. Stop if we get to cd->end_pattern. Note that this is important for the |
1229 | first-pass call when this value is temporarily adjusted to stop at the current |
1230 | position. So DO NOT change this to a test for binary zero. */ |
1231 | |
1232 | for (; ptr < cd->end_pattern; ptr++) |
1233 | { |
1234 | /* Skip over backslashed characters and also entire \Q...\E */ |
1235 | |
1236 | if (*ptr == CHAR_BACKSLASH) |
1237 | { |
1238 | if (*(++ptr) == 0) goto FAIL_EXIT; |
1239 | if (*ptr == CHAR_Q) for (;;) |
1240 | { |
1241 | while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {}; |
1242 | if (*ptr == 0) goto FAIL_EXIT; |
1243 | if (*(++ptr) == CHAR_E) break; |
1244 | } |
1245 | continue; |
1246 | } |
1247 | |
1248 | /* Skip over character classes; this logic must be similar to the way they |
1249 | are handled for real. If the first character is '^', skip it. Also, if the |
1250 | first few characters (either before or after ^) are \Q\E or \E we skip them |
1251 | too. This makes for compatibility with Perl. Note the use of STR macros to |
1252 | encode "Q\\E" so that it works in UTF-8 on EBCDIC platforms. */ |
1253 | |
1254 | if (*ptr == CHAR_LEFT_SQUARE_BRACKET) |
1255 | { |
1256 | BOOL negate_class = FALSE; |
1257 | for (;;) |
1258 | { |
1259 | if (ptr[1] == CHAR_BACKSLASH) |
1260 | { |
1261 | if (ptr[2] == CHAR_E) |
1262 | ptr+= 2; |
1263 | else if (strncmp((const char *)ptr+2, |
1264 | STR_Q STR_BACKSLASH STR_E, 3) == 0) |
1265 | ptr += 4; |
1266 | else |
1267 | break; |
1268 | } |
1269 | else if (!negate_class && ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
1270 | { |
1271 | negate_class = TRUE; |
1272 | ptr++; |
1273 | } |
1274 | else break; |
1275 | } |
1276 | |
1277 | /* If the next character is ']', it is a data character that must be |
1278 | skipped, except in JavaScript compatibility mode. */ |
1279 | |
1280 | if (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET && |
1281 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) == 0) |
1282 | ptr++; |
1283 | |
1284 | while (*(++ptr) != CHAR_RIGHT_SQUARE_BRACKET) |
1285 | { |
1286 | if (*ptr == 0) return -1; |
1287 | if (*ptr == CHAR_BACKSLASH) |
1288 | { |
1289 | if (*(++ptr) == 0) goto FAIL_EXIT; |
1290 | if (*ptr == CHAR_Q) for (;;) |
1291 | { |
1292 | while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {}; |
1293 | if (*ptr == 0) goto FAIL_EXIT; |
1294 | if (*(++ptr) == CHAR_E) break; |
1295 | } |
1296 | continue; |
1297 | } |
1298 | } |
1299 | continue; |
1300 | } |
1301 | |
1302 | /* Skip comments in /x mode */ |
1303 | |
1304 | if (xmode && *ptr == CHAR_NUMBER_SIGN) |
1305 | { |
1306 | ptr++; |
1307 | while (*ptr != 0) |
1308 | { |
1309 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; } |
1310 | ptr++; |
1311 | #ifdef SUPPORT_UTF8 |
1312 | if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++; |
1313 | #endif |
1314 | } |
1315 | if (*ptr == 0) goto FAIL_EXIT; |
1316 | continue; |
1317 | } |
1318 | |
1319 | /* Check for the special metacharacters */ |
1320 | |
1321 | if (*ptr == CHAR_LEFT_PARENTHESIS) |
1322 | { |
1323 | int rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf8, count); |
1324 | if (rc > 0) return rc; |
1325 | if (*ptr == 0) goto FAIL_EXIT; |
1326 | } |
1327 | |
1328 | else if (*ptr == CHAR_RIGHT_PARENTHESIS) |
1329 | { |
1330 | if (dup_parens && *count < hwm_count) *count = hwm_count; |
1331 | goto FAIL_EXIT; |
1332 | } |
1333 | |
1334 | else if (*ptr == CHAR_VERTICAL_LINE && dup_parens) |
1335 | { |
1336 | if (*count > hwm_count) hwm_count = *count; |
1337 | *count = start_count; |
1338 | } |
1339 | } |
1340 | |
1341 | FAIL_EXIT: |
1342 | *ptrptr = ptr; |
1343 | return -1; |
1344 | } |
1345 | |
1346 | |
1347 | |
1348 | |
1349 | /************************************************* |
1350 | * Find forward referenced subpattern * |
1351 | *************************************************/ |
1352 | |
1353 | /* This function scans along a pattern's text looking for capturing |
1354 | subpatterns, and counting them. If it finds a named pattern that matches the |
1355 | name it is given, it returns its number. Alternatively, if the name is NULL, it |
1356 | returns when it reaches a given numbered subpattern. This is used for forward |
1357 | references to subpatterns. We used to be able to start this scan from the |
1358 | current compiling point, using the current count value from cd->bracount, and |
1359 | do it all in a single loop, but the addition of the possibility of duplicate |
1360 | subpattern numbers means that we have to scan from the very start, in order to |
1361 | take account of such duplicates, and to use a recursive function to keep track |
1362 | of the different types of group. |
1363 | |
1364 | Arguments: |
1365 | cd compile background data |
1366 | name name to seek, or NULL if seeking a numbered subpattern |
1367 | lorn name length, or subpattern number if name is NULL |
1368 | xmode TRUE if we are in /x mode |
1369 | utf8 TRUE if we are in UTF-8 mode |
1370 | |
1371 | Returns: the number of the found subpattern, or -1 if not found |
1372 | */ |
1373 | |
1374 | static int |
1375 | find_parens(compile_data *cd, const uschar *name, int lorn, BOOL xmode, |
1376 | BOOL utf8) |
1377 | { |
1378 | uschar *ptr = (uschar *)cd->start_pattern; |
1379 | int count = 0; |
1380 | int rc; |
1381 | |
1382 | /* If the pattern does not start with an opening parenthesis, the first call |
1383 | to find_parens_sub() will scan right to the end (if necessary). However, if it |
1384 | does start with a parenthesis, find_parens_sub() will return when it hits the |
1385 | matching closing parens. That is why we have to have a loop. */ |
1386 | |
1387 | for (;;) |
1388 | { |
1389 | rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf8, &count); |
1390 | if (rc > 0 || *ptr++ == 0) break; |
1391 | } |
1392 | |
1393 | return rc; |
1394 | } |
1395 | |
1396 | |
1397 | |
1398 | |
1399 | /************************************************* |
1400 | * Find first significant op code * |
1401 | *************************************************/ |
1402 | |
1403 | /* This is called by several functions that scan a compiled expression looking |
1404 | for a fixed first character, or an anchoring op code etc. It skips over things |
1405 | that do not influence this. For some calls, it makes sense to skip negative |
1406 | forward and all backward assertions, and also the \b assertion; for others it |
1407 | does not. |
1408 | |
1409 | Arguments: |
1410 | code pointer to the start of the group |
1411 | skipassert TRUE if certain assertions are to be skipped |
1412 | |
1413 | Returns: pointer to the first significant opcode |
1414 | */ |
1415 | |
1416 | static const uschar* |
1417 | first_significant_code(const uschar *code, BOOL skipassert) |
1418 | { |
1419 | for (;;) |
1420 | { |
1421 | switch ((int)*code) |
1422 | { |
1423 | case OP_ASSERT_NOT: |
1424 | case OP_ASSERTBACK: |
1425 | case OP_ASSERTBACK_NOT: |
1426 | if (!skipassert) return code; |
1427 | do code += GET(code, 1); while (*code == OP_ALT); |
1428 | code += _pcre_OP_lengths[*code]; |
1429 | break; |
1430 | |
1431 | case OP_WORD_BOUNDARY: |
1432 | case OP_NOT_WORD_BOUNDARY: |
1433 | if (!skipassert) return code; |
1434 | /* Fall through */ |
1435 | |
1436 | case OP_CALLOUT: |
1437 | case OP_CREF: |
1438 | case OP_NCREF: |
1439 | case OP_RREF: |
1440 | case OP_NRREF: |
1441 | case OP_DEF: |
1442 | code += _pcre_OP_lengths[*code]; |
1443 | break; |
1444 | |
1445 | default: |
1446 | return code; |
1447 | } |
1448 | } |
1449 | /* Control never reaches here */ |
1450 | } |
1451 | |
1452 | |
1453 | |
1454 | |
1455 | /************************************************* |
1456 | * Find the fixed length of a branch * |
1457 | *************************************************/ |
1458 | |
1459 | /* Scan a branch and compute the fixed length of subject that will match it, |
1460 | if the length is fixed. This is needed for dealing with backward assertions. |
1461 | In UTF8 mode, the result is in characters rather than bytes. The branch is |
1462 | temporarily terminated with OP_END when this function is called. |
1463 | |
1464 | This function is called when a backward assertion is encountered, so that if it |
1465 | fails, the error message can point to the correct place in the pattern. |
1466 | However, we cannot do this when the assertion contains subroutine calls, |
1467 | because they can be forward references. We solve this by remembering this case |
1468 | and doing the check at the end; a flag specifies which mode we are running in. |
1469 | |
1470 | Arguments: |
1471 | code points to the start of the pattern (the bracket) |
1472 | utf8 TRUE in UTF-8 mode |
1473 | atend TRUE if called when the pattern is complete |
1474 | cd the "compile data" structure |
1475 | |
1476 | Returns: the fixed length, |
1477 | or -1 if there is no fixed length, |
1478 | or -2 if \C was encountered |
1479 | or -3 if an OP_RECURSE item was encountered and atend is FALSE |
1480 | */ |
1481 | |
1482 | static int |
1483 | find_fixedlength(uschar *code, BOOL utf8, BOOL atend, compile_data *cd) |
1484 | { |
1485 | int length = -1; |
1486 | |
1487 | register int branchlength = 0; |
1488 | register uschar *cc = code + 1 + LINK_SIZE; |
1489 | |
1490 | /* Scan along the opcodes for this branch. If we get to the end of the |
1491 | branch, check the length against that of the other branches. */ |
1492 | |
1493 | for (;;) |
1494 | { |
1495 | int d; |
1496 | uschar *ce, *cs; |
1497 | register int op = *cc; |
1498 | switch (op) |
1499 | { |
1500 | /* We only need to continue for OP_CBRA (normal capturing bracket) and |
1501 | OP_BRA (normal non-capturing bracket) because the other variants of these |
1502 | opcodes are all concerned with unlimited repeated groups, which of course |
1503 | are not of fixed length. They will cause a -1 response from the default |
1504 | case of this switch. */ |
1505 | |
1506 | case OP_CBRA: |
1507 | case OP_BRA: |
1508 | case OP_ONCE: |
1509 | case OP_ONCE_NC: |
1510 | case OP_COND: |
1511 | d = find_fixedlength(cc + ((op == OP_CBRA)? 2:0), utf8, atend, cd); |
1512 | if (d < 0) return d; |
1513 | branchlength += d; |
1514 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1515 | cc += 1 + LINK_SIZE; |
1516 | break; |
1517 | |
1518 | /* Reached end of a branch; if it's a ket it is the end of a nested |
1519 | call. If it's ALT it is an alternation in a nested call. If it is |
1520 | END it's the end of the outer call. All can be handled by the same code. |
1521 | Note that we must not include the OP_KETRxxx opcodes here, because they |
1522 | all imply an unlimited repeat. */ |
1523 | |
1524 | case OP_ALT: |
1525 | case OP_KET: |
1526 | case OP_END: |
1527 | if (length < 0) length = branchlength; |
1528 | else if (length != branchlength) return -1; |
1529 | if (*cc != OP_ALT) return length; |
1530 | cc += 1 + LINK_SIZE; |
1531 | branchlength = 0; |
1532 | break; |
1533 | |
1534 | /* A true recursion implies not fixed length, but a subroutine call may |
1535 | be OK. If the subroutine is a forward reference, we can't deal with |
1536 | it until the end of the pattern, so return -3. */ |
1537 | |
1538 | case OP_RECURSE: |
1539 | if (!atend) return -3; |
1540 | cs = ce = (uschar *)cd->start_code + GET(cc, 1); /* Start subpattern */ |
1541 | do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */ |
1542 | if (cc > cs && cc < ce) return -1; /* Recursion */ |
1543 | d = find_fixedlength(cs + 2, utf8, atend, cd); |
1544 | if (d < 0) return d; |
1545 | branchlength += d; |
1546 | cc += 1 + LINK_SIZE; |
1547 | break; |
1548 | |
1549 | /* Skip over assertive subpatterns */ |
1550 | |
1551 | case OP_ASSERT: |
1552 | case OP_ASSERT_NOT: |
1553 | case OP_ASSERTBACK: |
1554 | case OP_ASSERTBACK_NOT: |
1555 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1556 | /* Fall through */ |
1557 | |
1558 | /* Skip over things that don't match chars */ |
1559 | |
1560 | case OP_REVERSE: |
1561 | case OP_CREF: |
1562 | case OP_NCREF: |
1563 | case OP_RREF: |
1564 | case OP_NRREF: |
1565 | case OP_DEF: |
1566 | case OP_CALLOUT: |
1567 | case OP_SOD: |
1568 | case OP_SOM: |
1569 | case OP_SET_SOM: |
1570 | case OP_EOD: |
1571 | case OP_EODN: |
1572 | case OP_CIRC: |
1573 | case OP_CIRCM: |
1574 | case OP_DOLL: |
1575 | case OP_DOLLM: |
1576 | case OP_NOT_WORD_BOUNDARY: |
1577 | case OP_WORD_BOUNDARY: |
1578 | cc += _pcre_OP_lengths[*cc]; |
1579 | break; |
1580 | |
1581 | /* Handle literal characters */ |
1582 | |
1583 | case OP_CHAR: |
1584 | case OP_CHARI: |
1585 | case OP_NOT: |
1586 | case OP_NOTI: |
1587 | branchlength++; |
1588 | cc += 2; |
1589 | #ifdef SUPPORT_UTF8 |
1590 | if (utf8 && cc[-1] >= 0xc0) cc += _pcre_utf8_table4[cc[-1] & 0x3f]; |
1591 | #endif |
1592 | break; |
1593 | |
1594 | /* Handle exact repetitions. The count is already in characters, but we |
1595 | need to skip over a multibyte character in UTF8 mode. */ |
1596 | |
1597 | case OP_EXACT: |
1598 | branchlength += GET2(cc,1); |
1599 | cc += 4; |
1600 | #ifdef SUPPORT_UTF8 |
1601 | if (utf8 && cc[-1] >= 0xc0) cc += _pcre_utf8_table4[cc[-1] & 0x3f]; |
1602 | #endif |
1603 | break; |
1604 | |
1605 | case OP_TYPEEXACT: |
1606 | branchlength += GET2(cc,1); |
1607 | if (cc[3] == OP_PROP || cc[3] == OP_NOTPROP) cc += 2; |
1608 | cc += 4; |
1609 | break; |
1610 | |
1611 | /* Handle single-char matchers */ |
1612 | |
1613 | case OP_PROP: |
1614 | case OP_NOTPROP: |
1615 | cc += 2; |
1616 | /* Fall through */ |
1617 | |
1618 | case OP_NOT_DIGIT: |
1619 | case OP_DIGIT: |
1620 | case OP_NOT_WHITESPACE: |
1621 | case OP_WHITESPACE: |
1622 | case OP_NOT_WORDCHAR: |
1623 | case OP_WORDCHAR: |
1624 | case OP_ANY: |
1625 | case OP_ALLANY: |
1626 | branchlength++; |
1627 | cc++; |
1628 | break; |
1629 | |
1630 | /* The single-byte matcher isn't allowed */ |
1631 | |
1632 | case OP_ANYBYTE: |
1633 | return -2; |
1634 | |
1635 | /* Check a class for variable quantification */ |
1636 | |
1637 | #ifdef SUPPORT_UTF8 |
1638 | case OP_XCLASS: |
1639 | cc += GET(cc, 1) - 33; |
1640 | /* Fall through */ |
1641 | #endif |
1642 | |
1643 | case OP_CLASS: |
1644 | case OP_NCLASS: |
1645 | cc += 33; |
1646 | |
1647 | switch (*cc) |
1648 | { |
1649 | case OP_CRSTAR: |
1650 | case OP_CRMINSTAR: |
1651 | case OP_CRQUERY: |
1652 | case OP_CRMINQUERY: |
1653 | return -1; |
1654 | |
1655 | case OP_CRRANGE: |
1656 | case OP_CRMINRANGE: |
1657 | if (GET2(cc,1) != GET2(cc,3)) return -1; |
1658 | branchlength += GET2(cc,1); |
1659 | cc += 5; |
1660 | break; |
1661 | |
1662 | default: |
1663 | branchlength++; |
1664 | } |
1665 | break; |
1666 | |
1667 | /* Anything else is variable length */ |
1668 | |
1669 | default: |
1670 | return -1; |
1671 | } |
1672 | } |
1673 | /* Control never gets here */ |
1674 | } |
1675 | |
1676 | |
1677 | |
1678 | |
1679 | /************************************************* |
1680 | * Scan compiled regex for specific bracket * |
1681 | *************************************************/ |
1682 | |
1683 | /* This little function scans through a compiled pattern until it finds a |
1684 | capturing bracket with the given number, or, if the number is negative, an |
1685 | instance of OP_REVERSE for a lookbehind. The function is global in the C sense |
1686 | so that it can be called from pcre_study() when finding the minimum matching |
1687 | length. |
1688 | |
1689 | Arguments: |
1690 | code points to start of expression |
1691 | utf8 TRUE in UTF-8 mode |
1692 | number the required bracket number or negative to find a lookbehind |
1693 | |
1694 | Returns: pointer to the opcode for the bracket, or NULL if not found |
1695 | */ |
1696 | |
1697 | const uschar * |
1698 | _pcre_find_bracket(const uschar *code, BOOL utf8, int number) |
1699 | { |
1700 | for (;;) |
1701 | { |
1702 | register int c = *code; |
1703 | |
1704 | if (c == OP_END) return NULL; |
1705 | |
1706 | /* XCLASS is used for classes that cannot be represented just by a bit |
1707 | map. This includes negated single high-valued characters. The length in |
1708 | the table is zero; the actual length is stored in the compiled code. */ |
1709 | |
1710 | if (c == OP_XCLASS) code += GET(code, 1); |
1711 | |
1712 | /* Handle recursion */ |
1713 | |
1714 | else if (c == OP_REVERSE) |
1715 | { |
1716 | if (number < 0) return (uschar *)code; |
1717 | code += _pcre_OP_lengths[c]; |
1718 | } |
1719 | |
1720 | /* Handle capturing bracket */ |
1721 | |
1722 | else if (c == OP_CBRA || c == OP_SCBRA || |
1723 | c == OP_CBRAPOS || c == OP_SCBRAPOS) |
1724 | { |
1725 | int n = GET2(code, 1+LINK_SIZE); |
1726 | if (n == number) return (uschar *)code; |
1727 | code += _pcre_OP_lengths[c]; |
1728 | } |
1729 | |
1730 | /* Otherwise, we can get the item's length from the table, except that for |
1731 | repeated character types, we have to test for \p and \P, which have an extra |
1732 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
1733 | must add in its length. */ |
1734 | |
1735 | else |
1736 | { |
1737 | switch(c) |
1738 | { |
1739 | case OP_TYPESTAR: |
1740 | case OP_TYPEMINSTAR: |
1741 | case OP_TYPEPLUS: |
1742 | case OP_TYPEMINPLUS: |
1743 | case OP_TYPEQUERY: |
1744 | case OP_TYPEMINQUERY: |
1745 | case OP_TYPEPOSSTAR: |
1746 | case OP_TYPEPOSPLUS: |
1747 | case OP_TYPEPOSQUERY: |
1748 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
1749 | break; |
1750 | |
1751 | case OP_TYPEUPTO: |
1752 | case OP_TYPEMINUPTO: |
1753 | case OP_TYPEEXACT: |
1754 | case OP_TYPEPOSUPTO: |
1755 | if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; |
1756 | break; |
1757 | |
1758 | case OP_MARK: |
1759 | case OP_PRUNE_ARG: |
1760 | case OP_SKIP_ARG: |
1761 | code += code[1]; |
1762 | break; |
1763 | |
1764 | case OP_THEN_ARG: |
1765 | code += code[1]; |
1766 | break; |
1767 | } |
1768 | |
1769 | /* Add in the fixed length from the table */ |
1770 | |
1771 | code += _pcre_OP_lengths[c]; |
1772 | |
1773 | /* In UTF-8 mode, opcodes that are followed by a character may be followed by |
1774 | a multi-byte character. The length in the table is a minimum, so we have to |
1775 | arrange to skip the extra bytes. */ |
1776 | |
1777 | #ifdef SUPPORT_UTF8 |
1778 | if (utf8) switch(c) |
1779 | { |
1780 | case OP_CHAR: |
1781 | case OP_CHARI: |
1782 | case OP_EXACT: |
1783 | case OP_EXACTI: |
1784 | case OP_UPTO: |
1785 | case OP_UPTOI: |
1786 | case OP_MINUPTO: |
1787 | case OP_MINUPTOI: |
1788 | case OP_POSUPTO: |
1789 | case OP_POSUPTOI: |
1790 | case OP_STAR: |
1791 | case OP_STARI: |
1792 | case OP_MINSTAR: |
1793 | case OP_MINSTARI: |
1794 | case OP_POSSTAR: |
1795 | case OP_POSSTARI: |
1796 | case OP_PLUS: |
1797 | case OP_PLUSI: |
1798 | case OP_MINPLUS: |
1799 | case OP_MINPLUSI: |
1800 | case OP_POSPLUS: |
1801 | case OP_POSPLUSI: |
1802 | case OP_QUERY: |
1803 | case OP_QUERYI: |
1804 | case OP_MINQUERY: |
1805 | case OP_MINQUERYI: |
1806 | case OP_POSQUERY: |
1807 | case OP_POSQUERYI: |
1808 | if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f]; |
1809 | break; |
1810 | } |
1811 | #else |
1812 | (void)(utf8); /* Keep compiler happy by referencing function argument */ |
1813 | #endif |
1814 | } |
1815 | } |
1816 | } |
1817 | |
1818 | |
1819 | |
1820 | /************************************************* |
1821 | * Scan compiled regex for recursion reference * |
1822 | *************************************************/ |
1823 | |
1824 | /* This little function scans through a compiled pattern until it finds an |
1825 | instance of OP_RECURSE. |
1826 | |
1827 | Arguments: |
1828 | code points to start of expression |
1829 | utf8 TRUE in UTF-8 mode |
1830 | |
1831 | Returns: pointer to the opcode for OP_RECURSE, or NULL if not found |
1832 | */ |
1833 | |
1834 | static const uschar * |
1835 | find_recurse(const uschar *code, BOOL utf8) |
1836 | { |
1837 | for (;;) |
1838 | { |
1839 | register int c = *code; |
1840 | if (c == OP_END) return NULL; |
1841 | if (c == OP_RECURSE) return code; |
1842 | |
1843 | /* XCLASS is used for classes that cannot be represented just by a bit |
1844 | map. This includes negated single high-valued characters. The length in |
1845 | the table is zero; the actual length is stored in the compiled code. */ |
1846 | |
1847 | if (c == OP_XCLASS) code += GET(code, 1); |
1848 | |
1849 | /* Otherwise, we can get the item's length from the table, except that for |
1850 | repeated character types, we have to test for \p and \P, which have an extra |
1851 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
1852 | must add in its length. */ |
1853 | |
1854 | else |
1855 | { |
1856 | switch(c) |
1857 | { |
1858 | case OP_TYPESTAR: |
1859 | case OP_TYPEMINSTAR: |
1860 | case OP_TYPEPLUS: |
1861 | case OP_TYPEMINPLUS: |
1862 | case OP_TYPEQUERY: |
1863 | case OP_TYPEMINQUERY: |
1864 | case OP_TYPEPOSSTAR: |
1865 | case OP_TYPEPOSPLUS: |
1866 | case OP_TYPEPOSQUERY: |
1867 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
1868 | break; |
1869 | |
1870 | case OP_TYPEPOSUPTO: |
1871 | case OP_TYPEUPTO: |
1872 | case OP_TYPEMINUPTO: |
1873 | case OP_TYPEEXACT: |
1874 | if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; |
1875 | break; |
1876 | |
1877 | case OP_MARK: |
1878 | case OP_PRUNE_ARG: |
1879 | case OP_SKIP_ARG: |
1880 | code += code[1]; |
1881 | break; |
1882 | |
1883 | case OP_THEN_ARG: |
1884 | code += code[1]; |
1885 | break; |
1886 | } |
1887 | |
1888 | /* Add in the fixed length from the table */ |
1889 | |
1890 | code += _pcre_OP_lengths[c]; |
1891 | |
1892 | /* In UTF-8 mode, opcodes that are followed by a character may be followed |
1893 | by a multi-byte character. The length in the table is a minimum, so we have |
1894 | to arrange to skip the extra bytes. */ |
1895 | |
1896 | #ifdef SUPPORT_UTF8 |
1897 | if (utf8) switch(c) |
1898 | { |
1899 | case OP_CHAR: |
1900 | case OP_CHARI: |
1901 | case OP_EXACT: |
1902 | case OP_EXACTI: |
1903 | case OP_UPTO: |
1904 | case OP_UPTOI: |
1905 | case OP_MINUPTO: |
1906 | case OP_MINUPTOI: |
1907 | case OP_POSUPTO: |
1908 | case OP_POSUPTOI: |
1909 | case OP_STAR: |
1910 | case OP_STARI: |
1911 | case OP_MINSTAR: |
1912 | case OP_MINSTARI: |
1913 | case OP_POSSTAR: |
1914 | case OP_POSSTARI: |
1915 | case OP_PLUS: |
1916 | case OP_PLUSI: |
1917 | case OP_MINPLUS: |
1918 | case OP_MINPLUSI: |
1919 | case OP_POSPLUS: |
1920 | case OP_POSPLUSI: |
1921 | case OP_QUERY: |
1922 | case OP_QUERYI: |
1923 | case OP_MINQUERY: |
1924 | case OP_MINQUERYI: |
1925 | case OP_POSQUERY: |
1926 | case OP_POSQUERYI: |
1927 | if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f]; |
1928 | break; |
1929 | } |
1930 | #else |
1931 | (void)(utf8); /* Keep compiler happy by referencing function argument */ |
1932 | #endif |
1933 | } |
1934 | } |
1935 | } |
1936 | |
1937 | |
1938 | |
1939 | /************************************************* |
1940 | * Scan compiled branch for non-emptiness * |
1941 | *************************************************/ |
1942 | |
1943 | /* This function scans through a branch of a compiled pattern to see whether it |
1944 | can match the empty string or not. It is called from could_be_empty() |
1945 | below and from compile_branch() when checking for an unlimited repeat of a |
1946 | group that can match nothing. Note that first_significant_code() skips over |
1947 | backward and negative forward assertions when its final argument is TRUE. If we |
1948 | hit an unclosed bracket, we return "empty" - this means we've struck an inner |
1949 | bracket whose current branch will already have been scanned. |
1950 | |
1951 | Arguments: |
1952 | code points to start of search |
1953 | endcode points to where to stop |
1954 | utf8 TRUE if in UTF8 mode |
1955 | cd contains pointers to tables etc. |
1956 | |
1957 | Returns: TRUE if what is matched could be empty |
1958 | */ |
1959 | |
1960 | static BOOL |
1961 | could_be_empty_branch(const uschar *code, const uschar *endcode, BOOL utf8, |
1962 | compile_data *cd) |
1963 | { |
1964 | register int c; |
1965 | for (code = first_significant_code(code + _pcre_OP_lengths[*code], TRUE); |
1966 | code < endcode; |
1967 | code = first_significant_code(code + _pcre_OP_lengths[c], TRUE)) |
1968 | { |
1969 | const uschar *ccode; |
1970 | |
1971 | c = *code; |
1972 | |
1973 | /* Skip over forward assertions; the other assertions are skipped by |
1974 | first_significant_code() with a TRUE final argument. */ |
1975 | |
1976 | if (c == OP_ASSERT) |
1977 | { |
1978 | do code += GET(code, 1); while (*code == OP_ALT); |
1979 | c = *code; |
1980 | continue; |
1981 | } |
1982 | |
1983 | /* For a recursion/subroutine call, if its end has been reached, which |
1984 | implies a backward reference subroutine call, we can scan it. If it's a |
1985 | forward reference subroutine call, we can't. To detect forward reference |
1986 | we have to scan up the list that is kept in the workspace. This function is |
1987 | called only when doing the real compile, not during the pre-compile that |
1988 | measures the size of the compiled pattern. */ |
1989 | |
1990 | if (c == OP_RECURSE) |
1991 | { |
1992 | const uschar *scode; |
1993 | BOOL empty_branch; |
1994 | |
1995 | /* Test for forward reference */ |
1996 | |
1997 | for (scode = cd->start_workspace; scode < cd->hwm; scode += LINK_SIZE) |
1998 | if (GET(scode, 0) == code + 1 - cd->start_code) return TRUE; |
1999 | |
2000 | /* Not a forward reference, test for completed backward reference */ |
2001 | |
2002 | empty_branch = FALSE; |
2003 | scode = cd->start_code + GET(code, 1); |
2004 | if (GET(scode, 1) == 0) return TRUE; /* Unclosed */ |
2005 | |
2006 | /* Completed backwards reference */ |
2007 | |
2008 | do |
2009 | { |
2010 | if (could_be_empty_branch(scode, endcode, utf8, cd)) |
2011 | { |
2012 | empty_branch = TRUE; |
2013 | break; |
2014 | } |
2015 | scode += GET(scode, 1); |
2016 | } |
2017 | while (*scode == OP_ALT); |
2018 | |
2019 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
2020 | continue; |
2021 | } |
2022 | |
2023 | /* Groups with zero repeats can of course be empty; skip them. */ |
2024 | |
2025 | if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO || |
2026 | c == OP_BRAPOSZERO) |
2027 | { |
2028 | code += _pcre_OP_lengths[c]; |
2029 | do code += GET(code, 1); while (*code == OP_ALT); |
2030 | c = *code; |
2031 | continue; |
2032 | } |
2033 | |
2034 | /* A nested group that is already marked as "could be empty" can just be |
2035 | skipped. */ |
2036 | |
2037 | if (c == OP_SBRA || c == OP_SBRAPOS || |
2038 | c == OP_SCBRA || c == OP_SCBRAPOS) |
2039 | { |
2040 | do code += GET(code, 1); while (*code == OP_ALT); |
2041 | c = *code; |
2042 | continue; |
2043 | } |
2044 | |
2045 | /* For other groups, scan the branches. */ |
2046 | |
2047 | if (c == OP_BRA || c == OP_BRAPOS || |
2048 | c == OP_CBRA || c == OP_CBRAPOS || |
2049 | c == OP_ONCE || c == OP_ONCE_NC || |
2050 | c == OP_COND) |
2051 | { |
2052 | BOOL empty_branch; |
2053 | if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */ |
2054 | |
2055 | /* If a conditional group has only one branch, there is a second, implied, |
2056 | empty branch, so just skip over the conditional, because it could be empty. |
2057 | Otherwise, scan the individual branches of the group. */ |
2058 | |
2059 | if (c == OP_COND && code[GET(code, 1)] != OP_ALT) |
2060 | code += GET(code, 1); |
2061 | else |
2062 | { |
2063 | empty_branch = FALSE; |
2064 | do |
2065 | { |
2066 | if (!empty_branch && could_be_empty_branch(code, endcode, utf8, cd)) |
2067 | empty_branch = TRUE; |
2068 | code += GET(code, 1); |
2069 | } |
2070 | while (*code == OP_ALT); |
2071 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
2072 | } |
2073 | |
2074 | c = *code; |
2075 | continue; |
2076 | } |
2077 | |
2078 | /* Handle the other opcodes */ |
2079 | |
2080 | switch (c) |
2081 | { |
2082 | /* Check for quantifiers after a class. XCLASS is used for classes that |
2083 | cannot be represented just by a bit map. This includes negated single |
2084 | high-valued characters. The length in _pcre_OP_lengths[] is zero; the |
2085 | actual length is stored in the compiled code, so we must update "code" |
2086 | here. */ |
2087 | |
2088 | #ifdef SUPPORT_UTF8 |
2089 | case OP_XCLASS: |
2090 | ccode = code += GET(code, 1); |
2091 | goto CHECK_CLASS_REPEAT; |
2092 | #endif |
2093 | |
2094 | case OP_CLASS: |
2095 | case OP_NCLASS: |
2096 | ccode = code + 33; |
2097 | |
2098 | #ifdef SUPPORT_UTF8 |
2099 | CHECK_CLASS_REPEAT: |
2100 | #endif |
2101 | |
2102 | switch (*ccode) |
2103 | { |
2104 | case OP_CRSTAR: /* These could be empty; continue */ |
2105 | case OP_CRMINSTAR: |
2106 | case OP_CRQUERY: |
2107 | case OP_CRMINQUERY: |
2108 | break; |
2109 | |
2110 | default: /* Non-repeat => class must match */ |
2111 | case OP_CRPLUS: /* These repeats aren't empty */ |
2112 | case OP_CRMINPLUS: |
2113 | return FALSE; |
2114 | |
2115 | case OP_CRRANGE: |
2116 | case OP_CRMINRANGE: |
2117 | if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */ |
2118 | break; |
2119 | } |
2120 | break; |
2121 | |
2122 | /* Opcodes that must match a character */ |
2123 | |
2124 | case OP_PROP: |
2125 | case OP_NOTPROP: |
2126 | case OP_EXTUNI: |
2127 | case OP_NOT_DIGIT: |
2128 | case OP_DIGIT: |
2129 | case OP_NOT_WHITESPACE: |
2130 | case OP_WHITESPACE: |
2131 | case OP_NOT_WORDCHAR: |
2132 | case OP_WORDCHAR: |
2133 | case OP_ANY: |
2134 | case OP_ALLANY: |
2135 | case OP_ANYBYTE: |
2136 | case OP_CHAR: |
2137 | case OP_CHARI: |
2138 | case OP_NOT: |
2139 | case OP_NOTI: |
2140 | case OP_PLUS: |
2141 | case OP_MINPLUS: |
2142 | case OP_POSPLUS: |
2143 | case OP_EXACT: |
2144 | case OP_NOTPLUS: |
2145 | case OP_NOTMINPLUS: |
2146 | case OP_NOTPOSPLUS: |
2147 | case OP_NOTEXACT: |
2148 | case OP_TYPEPLUS: |
2149 | case OP_TYPEMINPLUS: |
2150 | case OP_TYPEPOSPLUS: |
2151 | case OP_TYPEEXACT: |
2152 | return FALSE; |
2153 | |
2154 | /* These are going to continue, as they may be empty, but we have to |
2155 | fudge the length for the \p and \P cases. */ |
2156 | |
2157 | case OP_TYPESTAR: |
2158 | case OP_TYPEMINSTAR: |
2159 | case OP_TYPEPOSSTAR: |
2160 | case OP_TYPEQUERY: |
2161 | case OP_TYPEMINQUERY: |
2162 | case OP_TYPEPOSQUERY: |
2163 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2164 | break; |
2165 | |
2166 | /* Same for these */ |
2167 | |
2168 | case OP_TYPEUPTO: |
2169 | case OP_TYPEMINUPTO: |
2170 | case OP_TYPEPOSUPTO: |
2171 | if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; |
2172 | break; |
2173 | |
2174 | /* End of branch */ |
2175 | |
2176 | case OP_KET: |
2177 | case OP_KETRMAX: |
2178 | case OP_KETRMIN: |
2179 | case OP_KETRPOS: |
2180 | case OP_ALT: |
2181 | return TRUE; |
2182 | |
2183 | /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO, |
2184 | MINUPTO, and POSUPTO may be followed by a multibyte character */ |
2185 | |
2186 | #ifdef SUPPORT_UTF8 |
2187 | case OP_STAR: |
2188 | case OP_STARI: |
2189 | case OP_MINSTAR: |
2190 | case OP_MINSTARI: |
2191 | case OP_POSSTAR: |
2192 | case OP_POSSTARI: |
2193 | case OP_QUERY: |
2194 | case OP_QUERYI: |
2195 | case OP_MINQUERY: |
2196 | case OP_MINQUERYI: |
2197 | case OP_POSQUERY: |
2198 | case OP_POSQUERYI: |
2199 | if (utf8 && code[1] >= 0xc0) code += _pcre_utf8_table4[code[1] & 0x3f]; |
2200 | break; |
2201 | |
2202 | case OP_UPTO: |
2203 | case OP_UPTOI: |
2204 | case OP_MINUPTO: |
2205 | case OP_MINUPTOI: |
2206 | case OP_POSUPTO: |
2207 | case OP_POSUPTOI: |
2208 | if (utf8 && code[3] >= 0xc0) code += _pcre_utf8_table4[code[3] & 0x3f]; |
2209 | break; |
2210 | #endif |
2211 | |
2212 | /* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument |
2213 | string. */ |
2214 | |
2215 | case OP_MARK: |
2216 | case OP_PRUNE_ARG: |
2217 | case OP_SKIP_ARG: |
2218 | code += code[1]; |
2219 | break; |
2220 | |
2221 | case OP_THEN_ARG: |
2222 | code += code[1]; |
2223 | break; |
2224 | |
2225 | /* None of the remaining opcodes are required to match a character. */ |
2226 | |
2227 | default: |
2228 | break; |
2229 | } |
2230 | } |
2231 | |
2232 | return TRUE; |
2233 | } |
2234 | |
2235 | |
2236 | |
2237 | /************************************************* |
2238 | * Scan compiled regex for non-emptiness * |
2239 | *************************************************/ |
2240 | |
2241 | /* This function is called to check for left recursive calls. We want to check |
2242 | the current branch of the current pattern to see if it could match the empty |
2243 | string. If it could, we must look outwards for branches at other levels, |
2244 | stopping when we pass beyond the bracket which is the subject of the recursion. |
2245 | This function is called only during the real compile, not during the |
2246 | pre-compile. |
2247 | |
2248 | Arguments: |
2249 | code points to start of the recursion |
2250 | endcode points to where to stop (current RECURSE item) |
2251 | bcptr points to the chain of current (unclosed) branch starts |
2252 | utf8 TRUE if in UTF-8 mode |
2253 | cd pointers to tables etc |
2254 | |
2255 | Returns: TRUE if what is matched could be empty |
2256 | */ |
2257 | |
2258 | static BOOL |
2259 | could_be_empty(const uschar *code, const uschar *endcode, branch_chain *bcptr, |
2260 | BOOL utf8, compile_data *cd) |
2261 | { |
2262 | while (bcptr != NULL && bcptr->current_branch >= code) |
2263 | { |
2264 | if (!could_be_empty_branch(bcptr->current_branch, endcode, utf8, cd)) |
2265 | return FALSE; |
2266 | bcptr = bcptr->outer; |
2267 | } |
2268 | return TRUE; |
2269 | } |
2270 | |
2271 | |
2272 | |
2273 | /************************************************* |
2274 | * Check for POSIX class syntax * |
2275 | *************************************************/ |
2276 | |
2277 | /* This function is called when the sequence "[:" or "[." or "[=" is |
2278 | encountered in a character class. It checks whether this is followed by a |
2279 | sequence of characters terminated by a matching ":]" or ".]" or "=]". If we |
2280 | reach an unescaped ']' without the special preceding character, return FALSE. |
2281 | |
2282 | Originally, this function only recognized a sequence of letters between the |
2283 | terminators, but it seems that Perl recognizes any sequence of characters, |
2284 | though of course unknown POSIX names are subsequently rejected. Perl gives an |
2285 | "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE |
2286 | didn't consider this to be a POSIX class. Likewise for [:1234:]. |
2287 | |
2288 | The problem in trying to be exactly like Perl is in the handling of escapes. We |
2289 | have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX |
2290 | class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code |
2291 | below handles the special case of \], but does not try to do any other escape |
2292 | processing. This makes it different from Perl for cases such as [:l\ower:] |
2293 | where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize |
2294 | "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does, |
2295 | I think. |
2296 | |
2297 | A user pointed out that PCRE was rejecting [:a[:digit:]] whereas Perl was not. |
2298 | It seems that the appearance of a nested POSIX class supersedes an apparent |
2299 | external class. For example, [:a[:digit:]b:] matches "a", "b", ":", or |
2300 | a digit. |
2301 | |
2302 | In Perl, unescaped square brackets may also appear as part of class names. For |
2303 | example, [:a[:abc]b:] gives unknown POSIX class "[:abc]b:]". However, for |
2304 | [:a[:abc]b][b:] it gives unknown POSIX class "[:abc]b][b:]", which does not |
2305 | seem right at all. PCRE does not allow closing square brackets in POSIX class |
2306 | names. |
2307 | |
2308 | Arguments: |
2309 | ptr pointer to the initial [ |
2310 | endptr where to return the end pointer |
2311 | |
2312 | Returns: TRUE or FALSE |
2313 | */ |
2314 | |
2315 | static BOOL |
2316 | check_posix_syntax(const uschar *ptr, const uschar **endptr) |
2317 | { |
2318 | int terminator; /* Don't combine these lines; the Solaris cc */ |
2319 | terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */ |
2320 | for (++ptr; *ptr != 0; ptr++) |
2321 | { |
2322 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
2323 | ptr++; |
2324 | else if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE; |
2325 | else |
2326 | { |
2327 | if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
2328 | { |
2329 | *endptr = ptr; |
2330 | return TRUE; |
2331 | } |
2332 | if (*ptr == CHAR_LEFT_SQUARE_BRACKET && |
2333 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
2334 | ptr[1] == CHAR_EQUALS_SIGN) && |
2335 | check_posix_syntax(ptr, endptr)) |
2336 | return FALSE; |
2337 | } |
2338 | } |
2339 | return FALSE; |
2340 | } |
2341 | |
2342 | |
2343 | |
2344 | |
2345 | /************************************************* |
2346 | * Check POSIX class name * |
2347 | *************************************************/ |
2348 | |
2349 | /* This function is called to check the name given in a POSIX-style class entry |
2350 | such as [:alnum:]. |
2351 | |
2352 | Arguments: |
2353 | ptr points to the first letter |
2354 | len the length of the name |
2355 | |
2356 | Returns: a value representing the name, or -1 if unknown |
2357 | */ |
2358 | |
2359 | static int |
2360 | check_posix_name(const uschar *ptr, int len) |
2361 | { |
2362 | const char *pn = posix_names; |
2363 | register int yield = 0; |
2364 | while (posix_name_lengths[yield] != 0) |
2365 | { |
2366 | if (len == posix_name_lengths[yield] && |
2367 | strncmp((const char *)ptr, pn, len) == 0) return yield; |
2368 | pn += posix_name_lengths[yield] + 1; |
2369 | yield++; |
2370 | } |
2371 | return -1; |
2372 | } |
2373 | |
2374 | |
2375 | /************************************************* |
2376 | * Adjust OP_RECURSE items in repeated group * |
2377 | *************************************************/ |
2378 | |
2379 | /* OP_RECURSE items contain an offset from the start of the regex to the group |
2380 | that is referenced. This means that groups can be replicated for fixed |
2381 | repetition simply by copying (because the recursion is allowed to refer to |
2382 | earlier groups that are outside the current group). However, when a group is |
2383 | optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is |
2384 | inserted before it, after it has been compiled. This means that any OP_RECURSE |
2385 | items within it that refer to the group itself or any contained groups have to |
2386 | have their offsets adjusted. That one of the jobs of this function. Before it |
2387 | is called, the partially compiled regex must be temporarily terminated with |
2388 | OP_END. |
2389 | |
2390 | This function has been extended with the possibility of forward references for |
2391 | recursions and subroutine calls. It must also check the list of such references |
2392 | for the group we are dealing with. If it finds that one of the recursions in |
2393 | the current group is on this list, it adjusts the offset in the list, not the |
2394 | value in the reference (which is a group number). |
2395 | |
2396 | Arguments: |
2397 | group points to the start of the group |
2398 | adjust the amount by which the group is to be moved |
2399 | utf8 TRUE in UTF-8 mode |
2400 | cd contains pointers to tables etc. |
2401 | save_hwm the hwm forward reference pointer at the start of the group |
2402 | |
2403 | Returns: nothing |
2404 | */ |
2405 | |
2406 | static void |
2407 | adjust_recurse(uschar *group, int adjust, BOOL utf8, compile_data *cd, |
2408 | uschar *save_hwm) |
2409 | { |
2410 | uschar *ptr = group; |
2411 | |
2412 | while ((ptr = (uschar *)find_recurse(ptr, utf8)) != NULL) |
2413 | { |
2414 | int offset; |
2415 | uschar *hc; |
2416 | |
2417 | /* See if this recursion is on the forward reference list. If so, adjust the |
2418 | reference. */ |
2419 | |
2420 | for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE) |
2421 | { |
2422 | offset = GET(hc, 0); |
2423 | if (cd->start_code + offset == ptr + 1) |
2424 | { |
2425 | PUT(hc, 0, offset + adjust); |
2426 | break; |
2427 | } |
2428 | } |
2429 | |
2430 | /* Otherwise, adjust the recursion offset if it's after the start of this |
2431 | group. */ |
2432 | |
2433 | if (hc >= cd->hwm) |
2434 | { |
2435 | offset = GET(ptr, 1); |
2436 | if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust); |
2437 | } |
2438 | |
2439 | ptr += 1 + LINK_SIZE; |
2440 | } |
2441 | } |
2442 | |
2443 | |
2444 | |
2445 | /************************************************* |
2446 | * Insert an automatic callout point * |
2447 | *************************************************/ |
2448 | |
2449 | /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert |
2450 | callout points before each pattern item. |
2451 | |
2452 | Arguments: |
2453 | code current code pointer |
2454 | ptr current pattern pointer |
2455 | cd pointers to tables etc |
2456 | |
2457 | Returns: new code pointer |
2458 | */ |
2459 | |
2460 | static uschar * |
2461 | auto_callout(uschar *code, const uschar *ptr, compile_data *cd) |
2462 | { |
2463 | *code++ = OP_CALLOUT; |
2464 | *code++ = 255; |
2465 | PUT(code, 0, (int)(ptr - cd->start_pattern)); /* Pattern offset */ |
2466 | PUT(code, LINK_SIZE, 0); /* Default length */ |
2467 | return code + 2*LINK_SIZE; |
2468 | } |
2469 | |
2470 | |
2471 | |
2472 | /************************************************* |
2473 | * Complete a callout item * |
2474 | *************************************************/ |
2475 | |
2476 | /* A callout item contains the length of the next item in the pattern, which |
2477 | we can't fill in till after we have reached the relevant point. This is used |
2478 | for both automatic and manual callouts. |
2479 | |
2480 | Arguments: |
2481 | previous_callout points to previous callout item |
2482 | ptr current pattern pointer |
2483 | cd pointers to tables etc |
2484 | |
2485 | Returns: nothing |
2486 | */ |
2487 | |
2488 | static void |
2489 | complete_callout(uschar *previous_callout, const uschar *ptr, compile_data *cd) |
2490 | { |
2491 | int length = (int)(ptr - cd->start_pattern - GET(previous_callout, 2)); |
2492 | PUT(previous_callout, 2 + LINK_SIZE, length); |
2493 | } |
2494 | |
2495 | |
2496 | |
2497 | #ifdef SUPPORT_UCP |
2498 | /************************************************* |
2499 | * Get othercase range * |
2500 | *************************************************/ |
2501 | |
2502 | /* This function is passed the start and end of a class range, in UTF-8 mode |
2503 | with UCP support. It searches up the characters, looking for internal ranges of |
2504 | characters in the "other" case. Each call returns the next one, updating the |
2505 | start address. |
2506 | |
2507 | Arguments: |
2508 | cptr points to starting character value; updated |
2509 | d end value |
2510 | ocptr where to put start of othercase range |
2511 | odptr where to put end of othercase range |
2512 | |
2513 | Yield: TRUE when range returned; FALSE when no more |
2514 | */ |
2515 | |
2516 | static BOOL |
2517 | get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr, |
2518 | unsigned int *odptr) |
2519 | { |
2520 | unsigned int c, othercase, next; |
2521 | |
2522 | for (c = *cptr; c <= d; c++) |
2523 | { if ((othercase = UCD_OTHERCASE(c)) != c) break; } |
2524 | |
2525 | if (c > d) return FALSE; |
2526 | |
2527 | *ocptr = othercase; |
2528 | next = othercase + 1; |
2529 | |
2530 | for (++c; c <= d; c++) |
2531 | { |
2532 | if (UCD_OTHERCASE(c) != next) break; |
2533 | next++; |
2534 | } |
2535 | |
2536 | *odptr = next - 1; |
2537 | *cptr = c; |
2538 | |
2539 | return TRUE; |
2540 | } |
2541 | |
2542 | |
2543 | |
2544 | /************************************************* |
2545 | * Check a character and a property * |
2546 | *************************************************/ |
2547 | |
2548 | /* This function is called by check_auto_possessive() when a property item |
2549 | is adjacent to a fixed character. |
2550 | |
2551 | Arguments: |
2552 | c the character |
2553 | ptype the property type |
2554 | pdata the data for the type |
2555 | negated TRUE if it's a negated property (\P or \p{^) |
2556 | |
2557 | Returns: TRUE if auto-possessifying is OK |
2558 | */ |
2559 | |
2560 | static BOOL |
2561 | check_char_prop(int c, int ptype, int pdata, BOOL negated) |
2562 | { |
2563 | const ucd_record *prop = GET_UCD(c); |
2564 | switch(ptype) |
2565 | { |
2566 | case PT_LAMP: |
2567 | return (prop->chartype == ucp_Lu || |
2568 | prop->chartype == ucp_Ll || |
2569 | prop->chartype == ucp_Lt) == negated; |
2570 | |
2571 | case PT_GC: |
2572 | return (pdata == _pcre_ucp_gentype[prop->chartype]) == negated; |
2573 | |
2574 | case PT_PC: |
2575 | return (pdata == prop->chartype) == negated; |
2576 | |
2577 | case PT_SC: |
2578 | return (pdata == prop->script) == negated; |
2579 | |
2580 | /* These are specials */ |
2581 | |
2582 | case PT_ALNUM: |
2583 | return (_pcre_ucp_gentype[prop->chartype] == ucp_L || |
2584 | _pcre_ucp_gentype[prop->chartype] == ucp_N) == negated; |
2585 | |
2586 | case PT_SPACE: /* Perl space */ |
2587 | return (_pcre_ucp_gentype[prop->chartype] == ucp_Z || |
2588 | c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR) |
2589 | == negated; |
2590 | |
2591 | case PT_PXSPACE: /* POSIX space */ |
2592 | return (_pcre_ucp_gentype[prop->chartype] == ucp_Z || |
2593 | c == CHAR_HT || c == CHAR_NL || c == CHAR_VT || |
2594 | c == CHAR_FF || c == CHAR_CR) |
2595 | == negated; |
2596 | |
2597 | case PT_WORD: |
2598 | return (_pcre_ucp_gentype[prop->chartype] == ucp_L || |
2599 | _pcre_ucp_gentype[prop->chartype] == ucp_N || |
2600 | c == CHAR_UNDERSCORE) == negated; |
2601 | } |
2602 | return FALSE; |
2603 | } |
2604 | #endif /* SUPPORT_UCP */ |
2605 | |
2606 | |
2607 | |
2608 | /************************************************* |
2609 | * Check if auto-possessifying is possible * |
2610 | *************************************************/ |
2611 | |
2612 | /* This function is called for unlimited repeats of certain items, to see |
2613 | whether the next thing could possibly match the repeated item. If not, it makes |
2614 | sense to automatically possessify the repeated item. |
2615 | |
2616 | Arguments: |
2617 | previous pointer to the repeated opcode |
2618 | utf8 TRUE in UTF-8 mode |
2619 | ptr next character in pattern |
2620 | options options bits |
2621 | cd contains pointers to tables etc. |
2622 | |
2623 | Returns: TRUE if possessifying is wanted |
2624 | */ |
2625 | |
2626 | static BOOL |
2627 | check_auto_possessive(const uschar *previous, BOOL utf8, const uschar *ptr, |
2628 | int options, compile_data *cd) |
2629 | { |
2630 | int c, next; |
2631 | int op_code = *previous++; |
2632 | |
2633 | /* Skip whitespace and comments in extended mode */ |
2634 | |
2635 | if ((options & PCRE_EXTENDED) != 0) |
2636 | { |
2637 | for (;;) |
2638 | { |
2639 | while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++; |
2640 | if (*ptr == CHAR_NUMBER_SIGN) |
2641 | { |
2642 | ptr++; |
2643 | while (*ptr != 0) |
2644 | { |
2645 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } |
2646 | ptr++; |
2647 | #ifdef SUPPORT_UTF8 |
2648 | if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++; |
2649 | #endif |
2650 | } |
2651 | } |
2652 | else break; |
2653 | } |
2654 | } |
2655 | |
2656 | /* If the next item is one that we can handle, get its value. A non-negative |
2657 | value is a character, a negative value is an escape value. */ |
2658 | |
2659 | if (*ptr == CHAR_BACKSLASH) |
2660 | { |
2661 | int temperrorcode = 0; |
2662 | next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE); |
2663 | if (temperrorcode != 0) return FALSE; |
2664 | ptr++; /* Point after the escape sequence */ |
2665 | } |
2666 | |
2667 | else if ((cd->ctypes[*ptr] & ctype_meta) == 0) |
2668 | { |
2669 | #ifdef SUPPORT_UTF8 |
2670 | if (utf8) { GETCHARINC(next, ptr); } else |
2671 | #endif |
2672 | next = *ptr++; |
2673 | } |
2674 | |
2675 | else return FALSE; |
2676 | |
2677 | /* Skip whitespace and comments in extended mode */ |
2678 | |
2679 | if ((options & PCRE_EXTENDED) != 0) |
2680 | { |
2681 | for (;;) |
2682 | { |
2683 | while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++; |
2684 | if (*ptr == CHAR_NUMBER_SIGN) |
2685 | { |
2686 | ptr++; |
2687 | while (*ptr != 0) |
2688 | { |
2689 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } |
2690 | ptr++; |
2691 | #ifdef SUPPORT_UTF8 |
2692 | if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++; |
2693 | #endif |
2694 | } |
2695 | } |
2696 | else break; |
2697 | } |
2698 | } |
2699 | |
2700 | /* If the next thing is itself optional, we have to give up. */ |
2701 | |
2702 | if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK || |
2703 | strncmp((char *)ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0) |
2704 | return FALSE; |
2705 | |
2706 | /* Now compare the next item with the previous opcode. First, handle cases when |
2707 | the next item is a character. */ |
2708 | |
2709 | if (next >= 0) switch(op_code) |
2710 | { |
2711 | case OP_CHAR: |
2712 | #ifdef SUPPORT_UTF8 |
2713 | GETCHARTEST(c, previous); |
2714 | #else |
2715 | c = *previous; |
2716 | #endif |
2717 | return c != next; |
2718 | |
2719 | /* For CHARI (caseless character) we must check the other case. If we have |
2720 | Unicode property support, we can use it to test the other case of |
2721 | high-valued characters. */ |
2722 | |
2723 | case OP_CHARI: |
2724 | #ifdef SUPPORT_UTF8 |
2725 | GETCHARTEST(c, previous); |
2726 | #else |
2727 | c = *previous; |
2728 | #endif |
2729 | if (c == next) return FALSE; |
2730 | #ifdef SUPPORT_UTF8 |
2731 | if (utf8) |
2732 | { |
2733 | unsigned int othercase; |
2734 | if (next < 128) othercase = cd->fcc[next]; else |
2735 | #ifdef SUPPORT_UCP |
2736 | othercase = UCD_OTHERCASE((unsigned int)next); |
2737 | #else |
2738 | othercase = NOTACHAR; |
2739 | #endif |
2740 | return (unsigned int)c != othercase; |
2741 | } |
2742 | else |
2743 | #endif /* SUPPORT_UTF8 */ |
2744 | return (c != cd->fcc[next]); /* Non-UTF-8 mode */ |
2745 | |
2746 | /* For OP_NOT and OP_NOTI, the data is always a single-byte character. These |
2747 | opcodes are not used for multi-byte characters, because they are coded using |
2748 | an XCLASS instead. */ |
2749 | |
2750 | case OP_NOT: |
2751 | return (c = *previous) == next; |
2752 | |
2753 | case OP_NOTI: |
2754 | if ((c = *previous) == next) return TRUE; |
2755 | #ifdef SUPPORT_UTF8 |
2756 | if (utf8) |
2757 | { |
2758 | unsigned int othercase; |
2759 | if (next < 128) othercase = cd->fcc[next]; else |
2760 | #ifdef SUPPORT_UCP |
2761 | othercase = UCD_OTHERCASE(next); |
2762 | #else |
2763 | othercase = NOTACHAR; |
2764 | #endif |
2765 | return (unsigned int)c == othercase; |
2766 | } |
2767 | else |
2768 | #endif /* SUPPORT_UTF8 */ |
2769 | return (c == cd->fcc[next]); /* Non-UTF-8 mode */ |
2770 | |
2771 | /* Note that OP_DIGIT etc. are generated only when PCRE_UCP is *not* set. |
2772 | When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */ |
2773 | |
2774 | case OP_DIGIT: |
2775 | return next > 127 || (cd->ctypes[next] & ctype_digit) == 0; |
2776 | |
2777 | case OP_NOT_DIGIT: |
2778 | return next <= 127 && (cd->ctypes[next] & ctype_digit) != 0; |
2779 | |
2780 | case OP_WHITESPACE: |
2781 | return next > 127 || (cd->ctypes[next] & ctype_space) == 0; |
2782 | |
2783 | case OP_NOT_WHITESPACE: |
2784 | return next <= 127 && (cd->ctypes[next] & ctype_space) != 0; |
2785 | |
2786 | case OP_WORDCHAR: |
2787 | return next > 127 || (cd->ctypes[next] & ctype_word) == 0; |
2788 | |
2789 | case OP_NOT_WORDCHAR: |
2790 | return next <= 127 && (cd->ctypes[next] & ctype_word) != 0; |
2791 | |
2792 | case OP_HSPACE: |
2793 | case OP_NOT_HSPACE: |
2794 | switch(next) |
2795 | { |
2796 | case 0x09: |
2797 | case 0x20: |
2798 | case 0xa0: |
2799 | case 0x1680: |
2800 | case 0x180e: |
2801 | case 0x2000: |
2802 | case 0x2001: |
2803 | case 0x2002: |
2804 | case 0x2003: |
2805 | case 0x2004: |
2806 | case 0x2005: |
2807 | case 0x2006: |
2808 | case 0x2007: |
2809 | case 0x2008: |
2810 | case 0x2009: |
2811 | case 0x200A: |
2812 | case 0x202f: |
2813 | case 0x205f: |
2814 | case 0x3000: |
2815 | return op_code == OP_NOT_HSPACE; |
2816 | default: |
2817 | return op_code != OP_NOT_HSPACE; |
2818 | } |
2819 | |
2820 | case OP_ANYNL: |
2821 | case OP_VSPACE: |
2822 | case OP_NOT_VSPACE: |
2823 | switch(next) |
2824 | { |
2825 | case 0x0a: |
2826 | case 0x0b: |
2827 | case 0x0c: |
2828 | case 0x0d: |
2829 | case 0x85: |
2830 | case 0x2028: |
2831 | case 0x2029: |
2832 | return op_code == OP_NOT_VSPACE; |
2833 | default: |
2834 | return op_code != OP_NOT_VSPACE; |
2835 | } |
2836 | |
2837 | #ifdef SUPPORT_UCP |
2838 | case OP_PROP: |
2839 | return check_char_prop(next, previous[0], previous[1], FALSE); |
2840 | |
2841 | case OP_NOTPROP: |
2842 | return check_char_prop(next, previous[0], previous[1], TRUE); |
2843 | #endif |
2844 | |
2845 | default: |
2846 | return FALSE; |
2847 | } |
2848 | |
2849 | |
2850 | /* Handle the case when the next item is \d, \s, etc. Note that when PCRE_UCP |
2851 | is set, \d turns into ESC_du rather than ESC_d, etc., so ESC_d etc. are |
2852 | generated only when PCRE_UCP is *not* set, that is, when only ASCII |
2853 | characteristics are recognized. Similarly, the opcodes OP_DIGIT etc. are |
2854 | replaced by OP_PROP codes when PCRE_UCP is set. */ |
2855 | |
2856 | switch(op_code) |
2857 | { |
2858 | case OP_CHAR: |
2859 | case OP_CHARI: |
2860 | #ifdef SUPPORT_UTF8 |
2861 | GETCHARTEST(c, previous); |
2862 | #else |
2863 | c = *previous; |
2864 | #endif |
2865 | switch(-next) |
2866 | { |
2867 | case ESC_d: |
2868 | return c > 127 || (cd->ctypes[c] & ctype_digit) == 0; |
2869 | |
2870 | case ESC_D: |
2871 | return c <= 127 && (cd->ctypes[c] & ctype_digit) != 0; |
2872 | |
2873 | case ESC_s: |
2874 | return c > 127 || (cd->ctypes[c] & ctype_space) == 0; |
2875 | |
2876 | case ESC_S: |
2877 | return c <= 127 && (cd->ctypes[c] & ctype_space) != 0; |
2878 | |
2879 | case ESC_w: |
2880 | return c > 127 || (cd->ctypes[c] & ctype_word) == 0; |
2881 | |
2882 | case ESC_W: |
2883 | return c <= 127 && (cd->ctypes[c] & ctype_word) != 0; |
2884 | |
2885 | case ESC_h: |
2886 | case ESC_H: |
2887 | switch(c) |
2888 | { |
2889 | case 0x09: |
2890 | case 0x20: |
2891 | case 0xa0: |
2892 | case 0x1680: |
2893 | case 0x180e: |
2894 | case 0x2000: |
2895 | case 0x2001: |
2896 | case 0x2002: |
2897 | case 0x2003: |
2898 | case 0x2004: |
2899 | case 0x2005: |
2900 | case 0x2006: |
2901 | case 0x2007: |
2902 | case 0x2008: |
2903 | case 0x2009: |
2904 | case 0x200A: |
2905 | case 0x202f: |
2906 | case 0x205f: |
2907 | case 0x3000: |
2908 | return -next != ESC_h; |
2909 | default: |
2910 | return -next == ESC_h; |
2911 | } |
2912 | |
2913 | case ESC_v: |
2914 | case ESC_V: |
2915 | switch(c) |
2916 | { |
2917 | case 0x0a: |
2918 | case 0x0b: |
2919 | case 0x0c: |
2920 | case 0x0d: |
2921 | case 0x85: |
2922 | case 0x2028: |
2923 | case 0x2029: |
2924 | return -next != ESC_v; |
2925 | default: |
2926 | return -next == ESC_v; |
2927 | } |
2928 | |
2929 | /* When PCRE_UCP is set, these values get generated for \d etc. Find |
2930 | their substitutions and process them. The result will always be either |
2931 | -ESC_p or -ESC_P. Then fall through to process those values. */ |
2932 | |
2933 | #ifdef SUPPORT_UCP |
2934 | case ESC_du: |
2935 | case ESC_DU: |
2936 | case ESC_wu: |
2937 | case ESC_WU: |
2938 | case ESC_su: |
2939 | case ESC_SU: |
2940 | { |
2941 | int temperrorcode = 0; |
2942 | ptr = substitutes[-next - ESC_DU]; |
2943 | next = check_escape(&ptr, &temperrorcode, 0, options, FALSE); |
2944 | if (temperrorcode != 0) return FALSE; |
2945 | ptr++; /* For compatibility */ |
2946 | } |
2947 | /* Fall through */ |
2948 | |
2949 | case ESC_p: |
2950 | case ESC_P: |
2951 | { |
2952 | int ptype, pdata, errorcodeptr; |
2953 | BOOL negated; |
2954 | |
2955 | ptr--; /* Make ptr point at the p or P */ |
2956 | ptype = get_ucp(&ptr, &negated, &pdata, &errorcodeptr); |
2957 | if (ptype < 0) return FALSE; |
2958 | ptr++; /* Point past the final curly ket */ |
2959 | |
2960 | /* If the property item is optional, we have to give up. (When generated |
2961 | from \d etc by PCRE_UCP, this test will have been applied much earlier, |
2962 | to the original \d etc. At this point, ptr will point to a zero byte. */ |
2963 | |
2964 | if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK || |
2965 | strncmp((char *)ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0) |
2966 | return FALSE; |
2967 | |
2968 | /* Do the property check. */ |
2969 | |
2970 | return check_char_prop(c, ptype, pdata, (next == -ESC_P) != negated); |
2971 | } |
2972 | #endif |
2973 | |
2974 | default: |
2975 | return FALSE; |
2976 | } |
2977 | |
2978 | /* In principle, support for Unicode properties should be integrated here as |
2979 | well. It means re-organizing the above code so as to get hold of the property |
2980 | values before switching on the op-code. However, I wonder how many patterns |
2981 | combine ASCII \d etc with Unicode properties? (Note that if PCRE_UCP is set, |
2982 | these op-codes are never generated.) */ |
2983 | |
2984 | case OP_DIGIT: |
2985 | return next == -ESC_D || next == -ESC_s || next == -ESC_W || |
2986 | next == -ESC_h || next == -ESC_v || next == -ESC_R; |
2987 | |
2988 | case OP_NOT_DIGIT: |
2989 | return next == -ESC_d; |
2990 | |
2991 | case OP_WHITESPACE: |
2992 | return next == -ESC_S || next == -ESC_d || next == -ESC_w || next == -ESC_R; |
2993 | |
2994 | case OP_NOT_WHITESPACE: |
2995 | return next == -ESC_s || next == -ESC_h || next == -ESC_v; |
2996 | |
2997 | case OP_HSPACE: |
2998 | return next == -ESC_S || next == -ESC_H || next == -ESC_d || |
2999 | next == -ESC_w || next == -ESC_v || next == -ESC_R; |
3000 | |
3001 | case OP_NOT_HSPACE: |
3002 | return next == -ESC_h; |
3003 | |
3004 | /* Can't have \S in here because VT matches \S (Perl anomaly) */ |
3005 | case OP_ANYNL: |
3006 | case OP_VSPACE: |
3007 | return next == -ESC_V || next == -ESC_d || next == -ESC_w; |
3008 | |
3009 | case OP_NOT_VSPACE: |
3010 | return next == -ESC_v || next == -ESC_R; |
3011 | |
3012 | case OP_WORDCHAR: |
3013 | return next == -ESC_W || next == -ESC_s || next == -ESC_h || |
3014 | next == -ESC_v || next == -ESC_R; |
3015 | |
3016 | case OP_NOT_WORDCHAR: |
3017 | return next == -ESC_w || next == -ESC_d; |
3018 | |
3019 | default: |
3020 | return FALSE; |
3021 | } |
3022 | |
3023 | /* Control does not reach here */ |
3024 | } |
3025 | |
3026 | |
3027 | |
3028 | /************************************************* |
3029 | * Compile one branch * |
3030 | *************************************************/ |
3031 | |
3032 | /* Scan the pattern, compiling it into the a vector. If the options are |
3033 | changed during the branch, the pointer is used to change the external options |
3034 | bits. This function is used during the pre-compile phase when we are trying |
3035 | to find out the amount of memory needed, as well as during the real compile |
3036 | phase. The value of lengthptr distinguishes the two phases. |
3037 | |
3038 | Arguments: |
3039 | optionsptr pointer to the option bits |
3040 | codeptr points to the pointer to the current code point |
3041 | ptrptr points to the current pattern pointer |
3042 | errorcodeptr points to error code variable |
3043 | firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE) |
3044 | reqbyteptr set to the last literal character required, else < 0 |
3045 | bcptr points to current branch chain |
3046 | cond_depth conditional nesting depth |
3047 | cd contains pointers to tables etc. |
3048 | lengthptr NULL during the real compile phase |
3049 | points to length accumulator during pre-compile phase |
3050 | |
3051 | Returns: TRUE on success |
3052 | FALSE, with *errorcodeptr set non-zero on error |
3053 | */ |
3054 | |
3055 | static BOOL |
3056 | compile_branch(int *optionsptr, uschar **codeptr, const uschar **ptrptr, |
3057 | int *errorcodeptr, int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, |
3058 | int cond_depth, compile_data *cd, int *lengthptr) |
3059 | { |
3060 | int repeat_type, op_type; |
3061 | int repeat_min = 0, repeat_max = 0; /* To please picky compilers */ |
3062 | int bravalue = 0; |
3063 | int greedy_default, greedy_non_default; |
3064 | int firstbyte, reqbyte; |
3065 | int zeroreqbyte, zerofirstbyte; |
3066 | int req_caseopt, reqvary, tempreqvary; |
3067 | int options = *optionsptr; /* May change dynamically */ |
3068 | int after_manual_callout = 0; |
3069 | int length_prevgroup = 0; |
3070 | register int c; |
3071 | register uschar *code = *codeptr; |
3072 | uschar *last_code = code; |
3073 | uschar *orig_code = code; |
3074 | uschar *tempcode; |
3075 | BOOL inescq = FALSE; |
3076 | BOOL groupsetfirstbyte = FALSE; |
3077 | const uschar *ptr = *ptrptr; |
3078 | const uschar *tempptr; |
3079 | const uschar *nestptr = NULL; |
3080 | uschar *previous = NULL; |
3081 | uschar *previous_callout = NULL; |
3082 | uschar *save_hwm = NULL; |
3083 | uschar classbits[32]; |
3084 | |
3085 | /* We can fish out the UTF-8 setting once and for all into a BOOL, but we |
3086 | must not do this for other options (e.g. PCRE_EXTENDED) because they may change |
3087 | dynamically as we process the pattern. */ |
3088 | |
3089 | #ifdef SUPPORT_UTF8 |
3090 | BOOL class_utf8; |
3091 | BOOL utf8 = (options & PCRE_UTF8) != 0; |
3092 | uschar *class_utf8data; |
3093 | uschar *class_utf8data_base; |
3094 | uschar utf8_char[6]; |
3095 | #else |
3096 | BOOL utf8 = FALSE; |
3097 | #endif |
3098 | |
3099 | #ifdef PCRE_DEBUG |
3100 | if (lengthptr != NULL) DPRINTF((">> start branch\n")); |
3101 | #endif |
3102 | |
3103 | /* Set up the default and non-default settings for greediness */ |
3104 | |
3105 | greedy_default = ((options & PCRE_UNGREEDY) != 0); |
3106 | greedy_non_default = greedy_default ^ 1; |
3107 | |
3108 | /* Initialize no first byte, no required byte. REQ_UNSET means "no char |
3109 | matching encountered yet". It gets changed to REQ_NONE if we hit something that |
3110 | matches a non-fixed char first char; reqbyte just remains unset if we never |
3111 | find one. |
3112 | |
3113 | When we hit a repeat whose minimum is zero, we may have to adjust these values |
3114 | to take the zero repeat into account. This is implemented by setting them to |
3115 | zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual |
3116 | item types that can be repeated set these backoff variables appropriately. */ |
3117 | |
3118 | firstbyte = reqbyte = zerofirstbyte = zeroreqbyte = REQ_UNSET; |
3119 | |
3120 | /* The variable req_caseopt contains either the REQ_CASELESS value or zero, |
3121 | according to the current setting of the caseless flag. REQ_CASELESS is a bit |
3122 | value > 255. It is added into the firstbyte or reqbyte variables to record the |
3123 | case status of the value. This is used only for ASCII characters. */ |
3124 | |
3125 | req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0; |
3126 | |
3127 | /* Switch on next character until the end of the branch */ |
3128 | |
3129 | for (;; ptr++) |
3130 | { |
3131 | BOOL negate_class; |
3132 | BOOL should_flip_negation; |
3133 | BOOL possessive_quantifier; |
3134 | BOOL is_quantifier; |
3135 | BOOL is_recurse; |
3136 | BOOL reset_bracount; |
3137 | int class_charcount; |
3138 | int class_lastchar; |
3139 | int newoptions; |
3140 | int recno; |
3141 | int refsign; |
3142 | int skipbytes; |
3143 | int subreqbyte; |
3144 | int subfirstbyte; |
3145 | int terminator; |
3146 | int mclength; |
3147 | int tempbracount; |
3148 | uschar mcbuffer[8]; |
3149 | |
3150 | /* Get next byte in the pattern */ |
3151 | |
3152 | c = *ptr; |
3153 | |
3154 | /* If we are at the end of a nested substitution, revert to the outer level |
3155 | string. Nesting only happens one level deep. */ |
3156 | |
3157 | if (c == 0 && nestptr != NULL) |
3158 | { |
3159 | ptr = nestptr; |
3160 | nestptr = NULL; |
3161 | c = *ptr; |
3162 | } |
3163 | |
3164 | /* If we are in the pre-compile phase, accumulate the length used for the |
3165 | previous cycle of this loop. */ |
3166 | |
3167 | if (lengthptr != NULL) |
3168 | { |
3169 | #ifdef PCRE_DEBUG |
3170 | if (code > cd->hwm) cd->hwm = code; /* High water info */ |
3171 | #endif |
3172 | if (code > cd->start_workspace + WORK_SIZE_CHECK) /* Check for overrun */ |
3173 | { |
3174 | *errorcodeptr = ERR52; |
3175 | goto FAILED; |
3176 | } |
3177 | |
3178 | /* There is at least one situation where code goes backwards: this is the |
3179 | case of a zero quantifier after a class (e.g. [ab]{0}). At compile time, |
3180 | the class is simply eliminated. However, it is created first, so we have to |
3181 | allow memory for it. Therefore, don't ever reduce the length at this point. |
3182 | */ |
3183 | |
3184 | if (code < last_code) code = last_code; |
3185 | |
3186 | /* Paranoid check for integer overflow */ |
3187 | |
3188 | if (OFLOW_MAX - *lengthptr < code - last_code) |
3189 | { |
3190 | *errorcodeptr = ERR20; |
3191 | goto FAILED; |
3192 | } |
3193 | |
3194 | *lengthptr += (int)(code - last_code); |
3195 | DPRINTF(("length=%d added %d c=%c\n", *lengthptr, code - last_code, c)); |
3196 | |
3197 | /* If "previous" is set and it is not at the start of the work space, move |
3198 | it back to there, in order to avoid filling up the work space. Otherwise, |
3199 | if "previous" is NULL, reset the current code pointer to the start. */ |
3200 | |
3201 | if (previous != NULL) |
3202 | { |
3203 | if (previous > orig_code) |
3204 | { |
3205 | memmove(orig_code, previous, code - previous); |
3206 | code -= previous - orig_code; |
3207 | previous = orig_code; |
3208 | } |
3209 | } |
3210 | else code = orig_code; |
3211 | |
3212 | /* Remember where this code item starts so we can pick up the length |
3213 | next time round. */ |
3214 | |
3215 | last_code = code; |
3216 | } |
3217 | |
3218 | /* In the real compile phase, just check the workspace used by the forward |
3219 | reference list. */ |
3220 | |
3221 | else if (cd->hwm > cd->start_workspace + WORK_SIZE_CHECK) |
3222 | { |
3223 | *errorcodeptr = ERR52; |
3224 | goto FAILED; |
3225 | } |
3226 | |
3227 | /* If in \Q...\E, check for the end; if not, we have a literal */ |
3228 | |
3229 | if (inescq && c != 0) |
3230 | { |
3231 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
3232 | { |
3233 | inescq = FALSE; |
3234 | ptr++; |
3235 | continue; |
3236 | } |
3237 | else |
3238 | { |
3239 | if (previous_callout != NULL) |
3240 | { |
3241 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
3242 | complete_callout(previous_callout, ptr, cd); |
3243 | previous_callout = NULL; |
3244 | } |
3245 | if ((options & PCRE_AUTO_CALLOUT) != 0) |
3246 | { |
3247 | previous_callout = code; |
3248 | code = auto_callout(code, ptr, cd); |
3249 | } |
3250 | goto NORMAL_CHAR; |
3251 | } |
3252 | } |
3253 | |
3254 | /* Fill in length of a previous callout, except when the next thing is |
3255 | a quantifier. */ |
3256 | |
3257 | is_quantifier = |
3258 | c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK || |
3259 | (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1)); |
3260 | |
3261 | if (!is_quantifier && previous_callout != NULL && |
3262 | after_manual_callout-- <= 0) |
3263 | { |
3264 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
3265 | complete_callout(previous_callout, ptr, cd); |
3266 | previous_callout = NULL; |
3267 | } |
3268 | |
3269 | /* In extended mode, skip white space and comments. */ |
3270 | |
3271 | if ((options & PCRE_EXTENDED) != 0) |
3272 | { |
3273 | if ((cd->ctypes[c] & ctype_space) != 0) continue; |
3274 | if (c == CHAR_NUMBER_SIGN) |
3275 | { |
3276 | ptr++; |
3277 | while (*ptr != 0) |
3278 | { |
3279 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; } |
3280 | ptr++; |
3281 | #ifdef SUPPORT_UTF8 |
3282 | if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++; |
3283 | #endif |
3284 | } |
3285 | if (*ptr != 0) continue; |
3286 | |
3287 | /* Else fall through to handle end of string */ |
3288 | c = 0; |
3289 | } |
3290 | } |
3291 | |
3292 | /* No auto callout for quantifiers. */ |
3293 | |
3294 | if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier) |
3295 | { |
3296 | previous_callout = code; |
3297 | code = auto_callout(code, ptr, cd); |
3298 | } |
3299 | |
3300 | switch(c) |
3301 | { |
3302 | /* ===================================================================*/ |
3303 | case 0: /* The branch terminates at string end */ |
3304 | case CHAR_VERTICAL_LINE: /* or | or ) */ |
3305 | case CHAR_RIGHT_PARENTHESIS: |
3306 | *firstbyteptr = firstbyte; |
3307 | *reqbyteptr = reqbyte; |
3308 | *codeptr = code; |
3309 | *ptrptr = ptr; |
3310 | if (lengthptr != NULL) |
3311 | { |
3312 | if (OFLOW_MAX - *lengthptr < code - last_code) |
3313 | { |
3314 | *errorcodeptr = ERR20; |
3315 | goto FAILED; |
3316 | } |
3317 | *lengthptr += (int)(code - last_code); /* To include callout length */ |
3318 | DPRINTF((">> end branch\n")); |
3319 | } |
3320 | return TRUE; |
3321 | |
3322 | |
3323 | /* ===================================================================*/ |
3324 | /* Handle single-character metacharacters. In multiline mode, ^ disables |
3325 | the setting of any following char as a first character. */ |
3326 | |
3327 | case CHAR_CIRCUMFLEX_ACCENT: |
3328 | previous = NULL; |
3329 | if ((options & PCRE_MULTILINE) != 0) |
3330 | { |
3331 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
3332 | *code++ = OP_CIRCM; |
3333 | } |
3334 | else *code++ = OP_CIRC; |
3335 | break; |
3336 | |
3337 | case CHAR_DOLLAR_SIGN: |
3338 | previous = NULL; |
3339 | *code++ = ((options & PCRE_MULTILINE) != 0)? OP_DOLLM : OP_DOLL; |
3340 | break; |
3341 | |
3342 | /* There can never be a first char if '.' is first, whatever happens about |
3343 | repeats. The value of reqbyte doesn't change either. */ |
3344 | |
3345 | case CHAR_DOT: |
3346 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
3347 | zerofirstbyte = firstbyte; |
3348 | zeroreqbyte = reqbyte; |
3349 | previous = code; |
3350 | *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY; |
3351 | break; |
3352 | |
3353 | |
3354 | /* ===================================================================*/ |
3355 | /* Character classes. If the included characters are all < 256, we build a |
3356 | 32-byte bitmap of the permitted characters, except in the special case |
3357 | where there is only one such character. For negated classes, we build the |
3358 | map as usual, then invert it at the end. However, we use a different opcode |
3359 | so that data characters > 255 can be handled correctly. |
3360 | |
3361 | If the class contains characters outside the 0-255 range, a different |
3362 | opcode is compiled. It may optionally have a bit map for characters < 256, |
3363 | but those above are are explicitly listed afterwards. A flag byte tells |
3364 | whether the bitmap is present, and whether this is a negated class or not. |
3365 | |
3366 | In JavaScript compatibility mode, an isolated ']' causes an error. In |
3367 | default (Perl) mode, it is treated as a data character. */ |
3368 | |
3369 | case CHAR_RIGHT_SQUARE_BRACKET: |
3370 | if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
3371 | { |
3372 | *errorcodeptr = ERR64; |
3373 | goto FAILED; |
3374 | } |
3375 | goto NORMAL_CHAR; |
3376 | |
3377 | case CHAR_LEFT_SQUARE_BRACKET: |
3378 | previous = code; |
3379 | |
3380 | /* PCRE supports POSIX class stuff inside a class. Perl gives an error if |
3381 | they are encountered at the top level, so we'll do that too. */ |
3382 | |
3383 | if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
3384 | ptr[1] == CHAR_EQUALS_SIGN) && |
3385 | check_posix_syntax(ptr, &tempptr)) |
3386 | { |
3387 | *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31; |
3388 | goto FAILED; |
3389 | } |
3390 | |
3391 | /* If the first character is '^', set the negation flag and skip it. Also, |
3392 | if the first few characters (either before or after ^) are \Q\E or \E we |
3393 | skip them too. This makes for compatibility with Perl. */ |
3394 | |
3395 | negate_class = FALSE; |
3396 | for (;;) |
3397 | { |
3398 | c = *(++ptr); |
3399 | if (c == CHAR_BACKSLASH) |
3400 | { |
3401 | if (ptr[1] == CHAR_E) |
3402 | ptr++; |
3403 | else if (strncmp((const char *)ptr+1, |
3404 | STR_Q STR_BACKSLASH STR_E, 3) == 0) |
3405 | ptr += 3; |
3406 | else |
3407 | break; |
3408 | } |
3409 | else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT) |
3410 | negate_class = TRUE; |
3411 | else break; |
3412 | } |
3413 | |
3414 | /* Empty classes are allowed in JavaScript compatibility mode. Otherwise, |
3415 | an initial ']' is taken as a data character -- the code below handles |
3416 | that. In JS mode, [] must always fail, so generate OP_FAIL, whereas |
3417 | [^] must match any character, so generate OP_ALLANY. */ |
3418 | |
3419 | if (c == CHAR_RIGHT_SQUARE_BRACKET && |
3420 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
3421 | { |
3422 | *code++ = negate_class? OP_ALLANY : OP_FAIL; |
3423 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
3424 | zerofirstbyte = firstbyte; |
3425 | break; |
3426 | } |
3427 | |
3428 | /* If a class contains a negative special such as \S, we need to flip the |
3429 | negation flag at the end, so that support for characters > 255 works |
3430 | correctly (they are all included in the class). */ |
3431 | |
3432 | should_flip_negation = FALSE; |
3433 | |
3434 | /* Keep a count of chars with values < 256 so that we can optimize the case |
3435 | of just a single character (as long as it's < 256). However, For higher |
3436 | valued UTF-8 characters, we don't yet do any optimization. */ |
3437 | |
3438 | class_charcount = 0; |
3439 | class_lastchar = -1; |
3440 | |
3441 | /* Initialize the 32-char bit map to all zeros. We build the map in a |
3442 | temporary bit of memory, in case the class contains only 1 character (less |
3443 | than 256), because in that case the compiled code doesn't use the bit map. |
3444 | */ |
3445 | |
3446 | memset(classbits, 0, 32 * sizeof(uschar)); |
3447 | |
3448 | #ifdef SUPPORT_UTF8 |
3449 | class_utf8 = FALSE; /* No chars >= 256 */ |
3450 | class_utf8data = code + LINK_SIZE + 2; /* For UTF-8 items */ |
3451 | class_utf8data_base = class_utf8data; /* For resetting in pass 1 */ |
3452 | #endif |
3453 | |
3454 | /* Process characters until ] is reached. By writing this as a "do" it |
3455 | means that an initial ] is taken as a data character. At the start of the |
3456 | loop, c contains the first byte of the character. */ |
3457 | |
3458 | if (c != 0) do |
3459 | { |
3460 | const uschar *oldptr; |
3461 | |
3462 | #ifdef SUPPORT_UTF8 |
3463 | if (utf8 && c > 127) |
3464 | { /* Braces are required because the */ |
3465 | GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */ |
3466 | } |
3467 | |
3468 | /* In the pre-compile phase, accumulate the length of any UTF-8 extra |
3469 | data and reset the pointer. This is so that very large classes that |
3470 | contain a zillion UTF-8 characters no longer overwrite the work space |
3471 | (which is on the stack). */ |
3472 | |
3473 | if (lengthptr != NULL) |
3474 | { |
3475 | *lengthptr += class_utf8data - class_utf8data_base; |
3476 | class_utf8data = class_utf8data_base; |
3477 | } |
3478 | |
3479 | #endif |
3480 | |
3481 | /* Inside \Q...\E everything is literal except \E */ |
3482 | |
3483 | if (inescq) |
3484 | { |
3485 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */ |
3486 | { |
3487 | inescq = FALSE; /* Reset literal state */ |
3488 | ptr++; /* Skip the 'E' */ |
3489 | continue; /* Carry on with next */ |
3490 | } |
3491 | goto CHECK_RANGE; /* Could be range if \E follows */ |
3492 | } |
3493 | |
3494 | /* Handle POSIX class names. Perl allows a negation extension of the |
3495 | form [:^name:]. A square bracket that doesn't match the syntax is |
3496 | treated as a literal. We also recognize the POSIX constructions |
3497 | [.ch.] and [=ch=] ("collating elements") and fault them, as Perl |
3498 | 5.6 and 5.8 do. */ |
3499 | |
3500 | if (c == CHAR_LEFT_SQUARE_BRACKET && |
3501 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
3502 | ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr)) |
3503 | { |
3504 | BOOL local_negate = FALSE; |
3505 | int posix_class, taboffset, tabopt; |
3506 | register const uschar *cbits = cd->cbits; |
3507 | uschar pbits[32]; |
3508 | |
3509 | if (ptr[1] != CHAR_COLON) |
3510 | { |
3511 | *errorcodeptr = ERR31; |
3512 | goto FAILED; |
3513 | } |
3514 | |
3515 | ptr += 2; |
3516 | if (*ptr == CHAR_CIRCUMFLEX_ACCENT) |
3517 | { |
3518 | local_negate = TRUE; |
3519 | should_flip_negation = TRUE; /* Note negative special */ |
3520 | ptr++; |
3521 | } |
3522 | |
3523 | posix_class = check_posix_name(ptr, (int)(tempptr - ptr)); |
3524 | if (posix_class < 0) |
3525 | { |
3526 | *errorcodeptr = ERR30; |
3527 | goto FAILED; |
3528 | } |
3529 | |
3530 | /* If matching is caseless, upper and lower are converted to |
3531 | alpha. This relies on the fact that the class table starts with |
3532 | alpha, lower, upper as the first 3 entries. */ |
3533 | |
3534 | if ((options & PCRE_CASELESS) != 0 && posix_class <= 2) |
3535 | posix_class = 0; |
3536 | |
3537 | /* When PCRE_UCP is set, some of the POSIX classes are converted to |
3538 | different escape sequences that use Unicode properties. */ |
3539 | |
3540 | #ifdef SUPPORT_UCP |
3541 | if ((options & PCRE_UCP) != 0) |
3542 | { |
3543 | int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0); |
3544 | if (posix_substitutes[pc] != NULL) |
3545 | { |
3546 | nestptr = tempptr + 1; |
3547 | ptr = posix_substitutes[pc] - 1; |
3548 | continue; |
3549 | } |
3550 | } |
3551 | #endif |
3552 | /* In the non-UCP case, we build the bit map for the POSIX class in a |
3553 | chunk of local store because we may be adding and subtracting from it, |
3554 | and we don't want to subtract bits that may be in the main map already. |
3555 | At the end we or the result into the bit map that is being built. */ |
3556 | |
3557 | posix_class *= 3; |
3558 | |
3559 | /* Copy in the first table (always present) */ |
3560 | |
3561 | memcpy(pbits, cbits + posix_class_maps[posix_class], |
3562 | 32 * sizeof(uschar)); |
3563 | |
3564 | /* If there is a second table, add or remove it as required. */ |
3565 | |
3566 | taboffset = posix_class_maps[posix_class + 1]; |
3567 | tabopt = posix_class_maps[posix_class + 2]; |
3568 | |
3569 | if (taboffset >= 0) |
3570 | { |
3571 | if (tabopt >= 0) |
3572 | for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset]; |
3573 | else |
3574 | for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset]; |
3575 | } |
3576 | |
3577 | /* Not see if we need to remove any special characters. An option |
3578 | value of 1 removes vertical space and 2 removes underscore. */ |
3579 | |
3580 | if (tabopt < 0) tabopt = -tabopt; |
3581 | if (tabopt == 1) pbits[1] &= ~0x3c; |
3582 | else if (tabopt == 2) pbits[11] &= 0x7f; |
3583 | |
3584 | /* Add the POSIX table or its complement into the main table that is |
3585 | being built and we are done. */ |
3586 | |
3587 | if (local_negate) |
3588 | for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c]; |
3589 | else |
3590 | for (c = 0; c < 32; c++) classbits[c] |= pbits[c]; |
3591 | |
3592 | ptr = tempptr + 1; |
3593 | class_charcount = 10; /* Set > 1; assumes more than 1 per class */ |
3594 | continue; /* End of POSIX syntax handling */ |
3595 | } |
3596 | |
3597 | /* Backslash may introduce a single character, or it may introduce one |
3598 | of the specials, which just set a flag. The sequence \b is a special |
3599 | case. Inside a class (and only there) it is treated as backspace. We |
3600 | assume that other escapes have more than one character in them, so set |
3601 | class_charcount bigger than one. Unrecognized escapes fall through and |
3602 | are either treated as literal characters (by default), or are faulted if |
3603 | PCRE_EXTRA is set. */ |
3604 | |
3605 | if (c == CHAR_BACKSLASH) |
3606 | { |
3607 | c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE); |
3608 | if (*errorcodeptr != 0) goto FAILED; |
3609 | |
3610 | if (-c == ESC_b) c = CHAR_BS; /* \b is backspace in a class */ |
3611 | else if (-c == ESC_Q) /* Handle start of quoted string */ |
3612 | { |
3613 | if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
3614 | { |
3615 | ptr += 2; /* avoid empty string */ |
3616 | } |
3617 | else inescq = TRUE; |
3618 | continue; |
3619 | } |
3620 | else if (-c == ESC_E) continue; /* Ignore orphan \E */ |
3621 | |
3622 | if (c < 0) |
3623 | { |
3624 | register const uschar *cbits = cd->cbits; |
3625 | class_charcount += 2; /* Greater than 1 is what matters */ |
3626 | |
3627 | switch (-c) |
3628 | { |
3629 | #ifdef SUPPORT_UCP |
3630 | case ESC_du: /* These are the values given for \d etc */ |
3631 | case ESC_DU: /* when PCRE_UCP is set. We replace the */ |
3632 | case ESC_wu: /* escape sequence with an appropriate \p */ |
3633 | case ESC_WU: /* or \P to test Unicode properties instead */ |
3634 | case ESC_su: /* of the default ASCII testing. */ |
3635 | case ESC_SU: |
3636 | nestptr = ptr; |
3637 | ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */ |
3638 | class_charcount -= 2; /* Undo! */ |
3639 | continue; |
3640 | #endif |
3641 | case ESC_d: |
3642 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit]; |
3643 | continue; |
3644 | |
3645 | case ESC_D: |
3646 | should_flip_negation = TRUE; |
3647 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit]; |
3648 | continue; |
3649 | |
3650 | case ESC_w: |
3651 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word]; |
3652 | continue; |
3653 | |
3654 | case ESC_W: |
3655 | should_flip_negation = TRUE; |
3656 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word]; |
3657 | continue; |
3658 | |
3659 | /* Perl 5.004 onwards omits VT from \s, but we must preserve it |
3660 | if it was previously set by something earlier in the character |
3661 | class. */ |
3662 | |
3663 | case ESC_s: |
3664 | classbits[0] |= cbits[cbit_space]; |
3665 | classbits[1] |= cbits[cbit_space+1] & ~0x08; |
3666 | for (c = 2; c < 32; c++) classbits[c] |= cbits[c+cbit_space]; |
3667 | continue; |
3668 | |
3669 | case ESC_S: |
3670 | should_flip_negation = TRUE; |
3671 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space]; |
3672 | classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */ |
3673 | continue; |
3674 | |
3675 | case ESC_h: |
3676 | SETBIT(classbits, 0x09); /* VT */ |
3677 | SETBIT(classbits, 0x20); /* SPACE */ |
3678 | SETBIT(classbits, 0xa0); /* NSBP */ |
3679 | #ifdef SUPPORT_UTF8 |
3680 | if (utf8) |
3681 | { |
3682 | class_utf8 = TRUE; |
3683 | *class_utf8data++ = XCL_SINGLE; |
3684 | class_utf8data += _pcre_ord2utf8(0x1680, class_utf8data); |
3685 | *class_utf8data++ = XCL_SINGLE; |
3686 | class_utf8data += _pcre_ord2utf8(0x180e, class_utf8data); |
3687 | *class_utf8data++ = XCL_RANGE; |
3688 | class_utf8data += _pcre_ord2utf8(0x2000, class_utf8data); |
3689 | class_utf8data += _pcre_ord2utf8(0x200A, class_utf8data); |
3690 | *class_utf8data++ = XCL_SINGLE; |
3691 | class_utf8data += _pcre_ord2utf8(0x202f, class_utf8data); |
3692 | *class_utf8data++ = XCL_SINGLE; |
3693 | class_utf8data += _pcre_ord2utf8(0x205f, class_utf8data); |
3694 | *class_utf8data++ = XCL_SINGLE; |
3695 | class_utf8data += _pcre_ord2utf8(0x3000, class_utf8data); |
3696 | } |
3697 | #endif |
3698 | continue; |
3699 | |
3700 | case ESC_H: |
3701 | for (c = 0; c < 32; c++) |
3702 | { |
3703 | int x = 0xff; |
3704 | switch (c) |
3705 | { |
3706 | case 0x09/8: x ^= 1 << (0x09%8); break; |
3707 | case 0x20/8: x ^= 1 << (0x20%8); break; |
3708 | case 0xa0/8: x ^= 1 << (0xa0%8); break; |
3709 | default: break; |
3710 | } |
3711 | classbits[c] |= x; |
3712 | } |
3713 | |
3714 | #ifdef SUPPORT_UTF8 |
3715 | if (utf8) |
3716 | { |
3717 | class_utf8 = TRUE; |
3718 | *class_utf8data++ = XCL_RANGE; |
3719 | class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data); |
3720 | class_utf8data += _pcre_ord2utf8(0x167f, class_utf8data); |
3721 | *class_utf8data++ = XCL_RANGE; |
3722 | class_utf8data += _pcre_ord2utf8(0x1681, class_utf8data); |
3723 | class_utf8data += _pcre_ord2utf8(0x180d, class_utf8data); |
3724 | *class_utf8data++ = XCL_RANGE; |
3725 | class_utf8data += _pcre_ord2utf8(0x180f, class_utf8data); |
3726 | class_utf8data += _pcre_ord2utf8(0x1fff, class_utf8data); |
3727 | *class_utf8data++ = XCL_RANGE; |
3728 | class_utf8data += _pcre_ord2utf8(0x200B, class_utf8data); |
3729 | class_utf8data += _pcre_ord2utf8(0x202e, class_utf8data); |
3730 | *class_utf8data++ = XCL_RANGE; |
3731 | class_utf8data += _pcre_ord2utf8(0x2030, class_utf8data); |
3732 | class_utf8data += _pcre_ord2utf8(0x205e, class_utf8data); |
3733 | *class_utf8data++ = XCL_RANGE; |
3734 | class_utf8data += _pcre_ord2utf8(0x2060, class_utf8data); |
3735 | class_utf8data += _pcre_ord2utf8(0x2fff, class_utf8data); |
3736 | *class_utf8data++ = XCL_RANGE; |
3737 | class_utf8data += _pcre_ord2utf8(0x3001, class_utf8data); |
3738 | class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data); |
3739 | } |
3740 | #endif |
3741 | continue; |
3742 | |
3743 | case ESC_v: |
3744 | SETBIT(classbits, 0x0a); /* LF */ |
3745 | SETBIT(classbits, 0x0b); /* VT */ |
3746 | SETBIT(classbits, 0x0c); /* FF */ |
3747 | SETBIT(classbits, 0x0d); /* CR */ |
3748 | SETBIT(classbits, 0x85); /* NEL */ |
3749 | #ifdef SUPPORT_UTF8 |
3750 | if (utf8) |
3751 | { |
3752 | class_utf8 = TRUE; |
3753 | *class_utf8data++ = XCL_RANGE; |
3754 | class_utf8data += _pcre_ord2utf8(0x2028, class_utf8data); |
3755 | class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data); |
3756 | } |
3757 | #endif |
3758 | continue; |
3759 | |
3760 | case ESC_V: |
3761 | for (c = 0; c < 32; c++) |
3762 | { |
3763 | int x = 0xff; |
3764 | switch (c) |
3765 | { |
3766 | case 0x0a/8: x ^= 1 << (0x0a%8); |
3767 | x ^= 1 << (0x0b%8); |
3768 | x ^= 1 << (0x0c%8); |
3769 | x ^= 1 << (0x0d%8); |
3770 | break; |
3771 | case 0x85/8: x ^= 1 << (0x85%8); break; |
3772 | default: break; |
3773 | } |
3774 | classbits[c] |= x; |
3775 | } |
3776 | |
3777 | #ifdef SUPPORT_UTF8 |
3778 | if (utf8) |
3779 | { |
3780 | class_utf8 = TRUE; |
3781 | *class_utf8data++ = XCL_RANGE; |
3782 | class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data); |
3783 | class_utf8data += _pcre_ord2utf8(0x2027, class_utf8data); |
3784 | *class_utf8data++ = XCL_RANGE; |
3785 | class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data); |
3786 | class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data); |
3787 | } |
3788 | #endif |
3789 | continue; |
3790 | |
3791 | #ifdef SUPPORT_UCP |
3792 | case ESC_p: |
3793 | case ESC_P: |
3794 | { |
3795 | BOOL negated; |
3796 | int pdata; |
3797 | int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr); |
3798 | if (ptype < 0) goto FAILED; |
3799 | class_utf8 = TRUE; |
3800 | *class_utf8data++ = ((-c == ESC_p) != negated)? |
3801 | XCL_PROP : XCL_NOTPROP; |
3802 | *class_utf8data++ = ptype; |
3803 | *class_utf8data++ = pdata; |
3804 | class_charcount -= 2; /* Not a < 256 character */ |
3805 | continue; |
3806 | } |
3807 | #endif |
3808 | /* Unrecognized escapes are faulted if PCRE is running in its |
3809 | strict mode. By default, for compatibility with Perl, they are |
3810 | treated as literals. */ |
3811 | |
3812 | default: |
3813 | if ((options & PCRE_EXTRA) != 0) |
3814 | { |
3815 | *errorcodeptr = ERR7; |
3816 | goto FAILED; |
3817 | } |
3818 | class_charcount -= 2; /* Undo the default count from above */ |
3819 | c = *ptr; /* Get the final character and fall through */ |
3820 | break; |
3821 | } |
3822 | } |
3823 | |
3824 | /* Fall through if we have a single character (c >= 0). This may be |
3825 | greater than 256 in UTF-8 mode. */ |
3826 | |
3827 | } /* End of backslash handling */ |
3828 | |
3829 | /* A single character may be followed by '-' to form a range. However, |
3830 | Perl does not permit ']' to be the end of the range. A '-' character |
3831 | at the end is treated as a literal. Perl ignores orphaned \E sequences |
3832 | entirely. The code for handling \Q and \E is messy. */ |
3833 | |
3834 | CHECK_RANGE: |
3835 | while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
3836 | { |
3837 | inescq = FALSE; |
3838 | ptr += 2; |
3839 | } |
3840 | |
3841 | oldptr = ptr; |
3842 | |
3843 | /* Remember \r or \n */ |
3844 | |
3845 | if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
3846 | |
3847 | /* Check for range */ |
3848 | |
3849 | if (!inescq && ptr[1] == CHAR_MINUS) |
3850 | { |
3851 | int d; |
3852 | ptr += 2; |
3853 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2; |
3854 | |
3855 | /* If we hit \Q (not followed by \E) at this point, go into escaped |
3856 | mode. */ |
3857 | |
3858 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q) |
3859 | { |
3860 | ptr += 2; |
3861 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
3862 | { ptr += 2; continue; } |
3863 | inescq = TRUE; |
3864 | break; |
3865 | } |
3866 | |
3867 | if (*ptr == 0 || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET)) |
3868 | { |
3869 | ptr = oldptr; |
3870 | goto LONE_SINGLE_CHARACTER; |
3871 | } |
3872 | |
3873 | #ifdef SUPPORT_UTF8 |
3874 | if (utf8) |
3875 | { /* Braces are required because the */ |
3876 | GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */ |
3877 | } |
3878 | else |
3879 | #endif |
3880 | d = *ptr; /* Not UTF-8 mode */ |
3881 | |
3882 | /* The second part of a range can be a single-character escape, but |
3883 | not any of the other escapes. Perl 5.6 treats a hyphen as a literal |
3884 | in such circumstances. */ |
3885 | |
3886 | if (!inescq && d == CHAR_BACKSLASH) |
3887 | { |
3888 | d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE); |
3889 | if (*errorcodeptr != 0) goto FAILED; |
3890 | |
3891 | /* \b is backspace; any other special means the '-' was literal */ |
3892 | |
3893 | if (d < 0) |
3894 | { |
3895 | if (d == -ESC_b) d = CHAR_BS; else |
3896 | { |
3897 | ptr = oldptr; |
3898 | goto LONE_SINGLE_CHARACTER; /* A few lines below */ |
3899 | } |
3900 | } |
3901 | } |
3902 | |
3903 | /* Check that the two values are in the correct order. Optimize |
3904 | one-character ranges */ |
3905 | |
3906 | if (d < c) |
3907 | { |
3908 | *errorcodeptr = ERR8; |
3909 | goto FAILED; |
3910 | } |
3911 | |
3912 | if (d == c) goto LONE_SINGLE_CHARACTER; /* A few lines below */ |
3913 | |
3914 | /* Remember \r or \n */ |
3915 | |
3916 | if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
3917 | |
3918 | /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless |
3919 | matching, we have to use an XCLASS with extra data items. Caseless |
3920 | matching for characters > 127 is available only if UCP support is |
3921 | available. */ |
3922 | |
3923 | #ifdef SUPPORT_UTF8 |
3924 | if (utf8 && (d > 255 || ((options & PCRE_CASELESS) != 0 && d > 127))) |
3925 | { |
3926 | class_utf8 = TRUE; |
3927 | |
3928 | /* With UCP support, we can find the other case equivalents of |
3929 | the relevant characters. There may be several ranges. Optimize how |
3930 | they fit with the basic range. */ |
3931 | |
3932 | #ifdef SUPPORT_UCP |
3933 | if ((options & PCRE_CASELESS) != 0) |
3934 | { |
3935 | unsigned int occ, ocd; |
3936 | unsigned int cc = c; |
3937 | unsigned int origd = d; |
3938 | while (get_othercase_range(&cc, origd, &occ, &ocd)) |
3939 | { |
3940 | if (occ >= (unsigned int)c && |
3941 | ocd <= (unsigned int)d) |
3942 | continue; /* Skip embedded ranges */ |
3943 | |
3944 | if (occ < (unsigned int)c && |
3945 | ocd >= (unsigned int)c - 1) /* Extend the basic range */ |
3946 | { /* if there is overlap, */ |
3947 | c = occ; /* noting that if occ < c */ |
3948 | continue; /* we can't have ocd > d */ |
3949 | } /* because a subrange is */ |
3950 | if (ocd > (unsigned int)d && |
3951 | occ <= (unsigned int)d + 1) /* always shorter than */ |
3952 | { /* the basic range. */ |
3953 | d = ocd; |
3954 | continue; |
3955 | } |
3956 | |
3957 | if (occ == ocd) |
3958 | { |
3959 | *class_utf8data++ = XCL_SINGLE; |
3960 | } |
3961 | else |
3962 | { |
3963 | *class_utf8data++ = XCL_RANGE; |
3964 | class_utf8data += _pcre_ord2utf8(occ, class_utf8data); |
3965 | } |
3966 | class_utf8data += _pcre_ord2utf8(ocd, class_utf8data); |
3967 | } |
3968 | } |
3969 | #endif /* SUPPORT_UCP */ |
3970 | |
3971 | /* Now record the original range, possibly modified for UCP caseless |
3972 | overlapping ranges. */ |
3973 | |
3974 | *class_utf8data++ = XCL_RANGE; |
3975 | class_utf8data += _pcre_ord2utf8(c, class_utf8data); |
3976 | class_utf8data += _pcre_ord2utf8(d, class_utf8data); |
3977 | |
3978 | /* With UCP support, we are done. Without UCP support, there is no |
3979 | caseless matching for UTF-8 characters > 127; we can use the bit map |
3980 | for the smaller ones. */ |
3981 | |
3982 | #ifdef SUPPORT_UCP |
3983 | continue; /* With next character in the class */ |
3984 | #else |
3985 | if ((options & PCRE_CASELESS) == 0 || c > 127) continue; |
3986 | |
3987 | /* Adjust upper limit and fall through to set up the map */ |
3988 | |
3989 | d = 127; |
3990 | |
3991 | #endif /* SUPPORT_UCP */ |
3992 | } |
3993 | #endif /* SUPPORT_UTF8 */ |
3994 | |
3995 | /* We use the bit map for all cases when not in UTF-8 mode; else |
3996 | ranges that lie entirely within 0-127 when there is UCP support; else |
3997 | for partial ranges without UCP support. */ |
3998 | |
3999 | class_charcount += d - c + 1; |
4000 | class_lastchar = d; |
4001 | |
4002 | /* We can save a bit of time by skipping this in the pre-compile. */ |
4003 | |
4004 | if (lengthptr == NULL) for (; c <= d; c++) |
4005 | { |
4006 | classbits[c/8] |= (1 << (c&7)); |
4007 | if ((options & PCRE_CASELESS) != 0) |
4008 | { |
4009 | int uc = cd->fcc[c]; /* flip case */ |
4010 | classbits[uc/8] |= (1 << (uc&7)); |
4011 | } |
4012 | } |
4013 | |
4014 | continue; /* Go get the next char in the class */ |
4015 | } |
4016 | |
4017 | /* Handle a lone single character - we can get here for a normal |
4018 | non-escape char, or after \ that introduces a single character or for an |
4019 | apparent range that isn't. */ |
4020 | |
4021 | LONE_SINGLE_CHARACTER: |
4022 | |
4023 | /* Handle a character that cannot go in the bit map */ |
4024 | |
4025 | #ifdef SUPPORT_UTF8 |
4026 | if (utf8 && (c > 255 || ((options & PCRE_CASELESS) != 0 && c > 127))) |
4027 | { |
4028 | class_utf8 = TRUE; |
4029 | *class_utf8data++ = XCL_SINGLE; |
4030 | class_utf8data += _pcre_ord2utf8(c, class_utf8data); |
4031 | |
4032 | #ifdef SUPPORT_UCP |
4033 | if ((options & PCRE_CASELESS) != 0) |
4034 | { |
4035 | unsigned int othercase; |
4036 | if ((othercase = UCD_OTHERCASE(c)) != c) |
4037 | { |
4038 | *class_utf8data++ = XCL_SINGLE; |
4039 | class_utf8data += _pcre_ord2utf8(othercase, class_utf8data); |
4040 | } |
4041 | } |
4042 | #endif /* SUPPORT_UCP */ |
4043 | |
4044 | } |
4045 | else |
4046 | #endif /* SUPPORT_UTF8 */ |
4047 | |
4048 | /* Handle a single-byte character */ |
4049 | { |
4050 | classbits[c/8] |= (1 << (c&7)); |
4051 | if ((options & PCRE_CASELESS) != 0) |
4052 | { |
4053 | c = cd->fcc[c]; /* flip case */ |
4054 | classbits[c/8] |= (1 << (c&7)); |
4055 | } |
4056 | class_charcount++; |
4057 | class_lastchar = c; |
4058 | } |
4059 | } |
4060 | |
4061 | /* Loop until ']' reached. This "while" is the end of the "do" far above. |
4062 | If we are at the end of an internal nested string, revert to the outer |
4063 | string. */ |
4064 | |
4065 | while (((c = *(++ptr)) != 0 || |
4066 | (nestptr != NULL && |
4067 | (ptr = nestptr, nestptr = NULL, c = *(++ptr)) != 0)) && |
4068 | (c != CHAR_RIGHT_SQUARE_BRACKET || inescq)); |
4069 | |
4070 | /* Check for missing terminating ']' */ |
4071 | |
4072 | if (c == 0) |
4073 | { |
4074 | *errorcodeptr = ERR6; |
4075 | goto FAILED; |
4076 | } |
4077 | |
4078 | /* If class_charcount is 1, we saw precisely one character whose value is |
4079 | less than 256. As long as there were no characters >= 128 and there was no |
4080 | use of \p or \P, in other words, no use of any XCLASS features, we can |
4081 | optimize. |
4082 | |
4083 | In UTF-8 mode, we can optimize the negative case only if there were no |
4084 | characters >= 128 because OP_NOT and the related opcodes like OP_NOTSTAR |
4085 | operate on single-bytes characters only. This is an historical hangover. |
4086 | Maybe one day we can tidy these opcodes to handle multi-byte characters. |
4087 | |
4088 | The optimization throws away the bit map. We turn the item into a |
4089 | 1-character OP_CHAR[I] if it's positive, or OP_NOT[I] if it's negative. |
4090 | Note that OP_NOT[I] does not support multibyte characters. In the positive |
4091 | case, it can cause firstbyte to be set. Otherwise, there can be no first |
4092 | char if this item is first, whatever repeat count may follow. In the case |
4093 | of reqbyte, save the previous value for reinstating. */ |
4094 | |
4095 | #ifdef SUPPORT_UTF8 |
4096 | if (class_charcount == 1 && !class_utf8 && |
4097 | (!utf8 || !negate_class || class_lastchar < 128)) |
4098 | #else |
4099 | if (class_charcount == 1) |
4100 | #endif |
4101 | { |
4102 | zeroreqbyte = reqbyte; |
4103 | |
4104 | /* The OP_NOT[I] opcodes work on one-byte characters only. */ |
4105 | |
4106 | if (negate_class) |
4107 | { |
4108 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
4109 | zerofirstbyte = firstbyte; |
4110 | *code++ = ((options & PCRE_CASELESS) != 0)? OP_NOTI: OP_NOT; |
4111 | *code++ = class_lastchar; |
4112 | break; |
4113 | } |
4114 | |
4115 | /* For a single, positive character, get the value into mcbuffer, and |
4116 | then we can handle this with the normal one-character code. */ |
4117 | |
4118 | #ifdef SUPPORT_UTF8 |
4119 | if (utf8 && class_lastchar > 127) |
4120 | mclength = _pcre_ord2utf8(class_lastchar, mcbuffer); |
4121 | else |
4122 | #endif |
4123 | { |
4124 | mcbuffer[0] = class_lastchar; |
4125 | mclength = 1; |
4126 | } |
4127 | goto ONE_CHAR; |
4128 | } /* End of 1-char optimization */ |
4129 | |
4130 | /* The general case - not the one-char optimization. If this is the first |
4131 | thing in the branch, there can be no first char setting, whatever the |
4132 | repeat count. Any reqbyte setting must remain unchanged after any kind of |
4133 | repeat. */ |
4134 | |
4135 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
4136 | zerofirstbyte = firstbyte; |
4137 | zeroreqbyte = reqbyte; |
4138 | |
4139 | /* If there are characters with values > 255, we have to compile an |
4140 | extended class, with its own opcode, unless there was a negated special |
4141 | such as \S in the class, and PCRE_UCP is not set, because in that case all |
4142 | characters > 255 are in the class, so any that were explicitly given as |
4143 | well can be ignored. If (when there are explicit characters > 255 that must |
4144 | be listed) there are no characters < 256, we can omit the bitmap in the |
4145 | actual compiled code. */ |
4146 | |
4147 | #ifdef SUPPORT_UTF8 |
4148 | if (class_utf8 && (!should_flip_negation || (options & PCRE_UCP) != 0)) |
4149 | { |
4150 | *class_utf8data++ = XCL_END; /* Marks the end of extra data */ |
4151 | *code++ = OP_XCLASS; |
4152 | code += LINK_SIZE; |
4153 | *code = negate_class? XCL_NOT : 0; |
4154 | |
4155 | /* If the map is required, move up the extra data to make room for it; |
4156 | otherwise just move the code pointer to the end of the extra data. */ |
4157 | |
4158 | if (class_charcount > 0) |
4159 | { |
4160 | *code++ |= XCL_MAP; |
4161 | memmove(code + 32, code, class_utf8data - code); |
4162 | memcpy(code, classbits, 32); |
4163 | code = class_utf8data + 32; |
4164 | } |
4165 | else code = class_utf8data; |
4166 | |
4167 | /* Now fill in the complete length of the item */ |
4168 | |
4169 | PUT(previous, 1, code - previous); |
4170 | break; /* End of class handling */ |
4171 | } |
4172 | #endif |
4173 | |
4174 | /* If there are no characters > 255, or they are all to be included or |
4175 | excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the |
4176 | whole class was negated and whether there were negative specials such as \S |
4177 | (non-UCP) in the class. Then copy the 32-byte map into the code vector, |
4178 | negating it if necessary. */ |
4179 | |
4180 | *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS; |
4181 | if (negate_class) |
4182 | { |
4183 | if (lengthptr == NULL) /* Save time in the pre-compile phase */ |
4184 | for (c = 0; c < 32; c++) code[c] = ~classbits[c]; |
4185 | } |
4186 | else |
4187 | { |
4188 | memcpy(code, classbits, 32); |
4189 | } |
4190 | code += 32; |
4191 | break; |
4192 | |
4193 | |
4194 | /* ===================================================================*/ |
4195 | /* Various kinds of repeat; '{' is not necessarily a quantifier, but this |
4196 | has been tested above. */ |
4197 | |
4198 | case CHAR_LEFT_CURLY_BRACKET: |
4199 | if (!is_quantifier) goto NORMAL_CHAR; |
4200 | ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr); |
4201 | if (*errorcodeptr != 0) goto FAILED; |
4202 | goto REPEAT; |
4203 | |
4204 | case CHAR_ASTERISK: |
4205 | repeat_min = 0; |
4206 | repeat_max = -1; |
4207 | goto REPEAT; |
4208 | |
4209 | case CHAR_PLUS: |
4210 | repeat_min = 1; |
4211 | repeat_max = -1; |
4212 | goto REPEAT; |
4213 | |
4214 | case CHAR_QUESTION_MARK: |
4215 | repeat_min = 0; |
4216 | repeat_max = 1; |
4217 | |
4218 | REPEAT: |
4219 | if (previous == NULL) |
4220 | { |
4221 | *errorcodeptr = ERR9; |
4222 | goto FAILED; |
4223 | } |
4224 | |
4225 | if (repeat_min == 0) |
4226 | { |
4227 | firstbyte = zerofirstbyte; /* Adjust for zero repeat */ |
4228 | reqbyte = zeroreqbyte; /* Ditto */ |
4229 | } |
4230 | |
4231 | /* Remember whether this is a variable length repeat */ |
4232 | |
4233 | reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY; |
4234 | |
4235 | op_type = 0; /* Default single-char op codes */ |
4236 | possessive_quantifier = FALSE; /* Default not possessive quantifier */ |
4237 | |
4238 | /* Save start of previous item, in case we have to move it up in order to |
4239 | insert something before it. */ |
4240 | |
4241 | tempcode = previous; |
4242 | |
4243 | /* If the next character is '+', we have a possessive quantifier. This |
4244 | implies greediness, whatever the setting of the PCRE_UNGREEDY option. |
4245 | If the next character is '?' this is a minimizing repeat, by default, |
4246 | but if PCRE_UNGREEDY is set, it works the other way round. We change the |
4247 | repeat type to the non-default. */ |
4248 | |
4249 | if (ptr[1] == CHAR_PLUS) |
4250 | { |
4251 | repeat_type = 0; /* Force greedy */ |
4252 | possessive_quantifier = TRUE; |
4253 | ptr++; |
4254 | } |
4255 | else if (ptr[1] == CHAR_QUESTION_MARK) |
4256 | { |
4257 | repeat_type = greedy_non_default; |
4258 | ptr++; |
4259 | } |
4260 | else repeat_type = greedy_default; |
4261 | |
4262 | /* If previous was a recursion call, wrap it in atomic brackets so that |
4263 | previous becomes the atomic group. All recursions were so wrapped in the |
4264 | past, but it no longer happens for non-repeated recursions. In fact, the |
4265 | repeated ones could be re-implemented independently so as not to need this, |
4266 | but for the moment we rely on the code for repeating groups. */ |
4267 | |
4268 | if (*previous == OP_RECURSE) |
4269 | { |
4270 | memmove(previous + 1 + LINK_SIZE, previous, 1 + LINK_SIZE); |
4271 | *previous = OP_ONCE; |
4272 | PUT(previous, 1, 2 + 2*LINK_SIZE); |
4273 | previous[2 + 2*LINK_SIZE] = OP_KET; |
4274 | PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE); |
4275 | code += 2 + 2 * LINK_SIZE; |
4276 | length_prevgroup = 3 + 3*LINK_SIZE; |
4277 | |
4278 | /* When actually compiling, we need to check whether this was a forward |
4279 | reference, and if so, adjust the offset. */ |
4280 | |
4281 | if (lengthptr == NULL && cd->hwm >= cd->start_workspace + LINK_SIZE) |
4282 | { |
4283 | int offset = GET(cd->hwm, -LINK_SIZE); |
4284 | if (offset == previous + 1 - cd->start_code) |
4285 | PUT(cd->hwm, -LINK_SIZE, offset + 1 + LINK_SIZE); |
4286 | } |
4287 | } |
4288 | |
4289 | /* Now handle repetition for the different types of item. */ |
4290 | |
4291 | /* If previous was a character match, abolish the item and generate a |
4292 | repeat item instead. If a char item has a minumum of more than one, ensure |
4293 | that it is set in reqbyte - it might not be if a sequence such as x{3} is |
4294 | the first thing in a branch because the x will have gone into firstbyte |
4295 | instead. */ |
4296 | |
4297 | if (*previous == OP_CHAR || *previous == OP_CHARI) |
4298 | { |
4299 | op_type = (*previous == OP_CHAR)? 0 : OP_STARI - OP_STAR; |
4300 | |
4301 | /* Deal with UTF-8 characters that take up more than one byte. It's |
4302 | easier to write this out separately than try to macrify it. Use c to |
4303 | hold the length of the character in bytes, plus 0x80 to flag that it's a |
4304 | length rather than a small character. */ |
4305 | |
4306 | #ifdef SUPPORT_UTF8 |
4307 | if (utf8 && (code[-1] & 0x80) != 0) |
4308 | { |
4309 | uschar *lastchar = code - 1; |
4310 | while((*lastchar & 0xc0) == 0x80) lastchar--; |
4311 | c = code - lastchar; /* Length of UTF-8 character */ |
4312 | memcpy(utf8_char, lastchar, c); /* Save the char */ |
4313 | c |= 0x80; /* Flag c as a length */ |
4314 | } |
4315 | else |
4316 | #endif |
4317 | |
4318 | /* Handle the case of a single byte - either with no UTF8 support, or |
4319 | with UTF-8 disabled, or for a UTF-8 character < 128. */ |
4320 | |
4321 | { |
4322 | c = code[-1]; |
4323 | if (repeat_min > 1) reqbyte = c | req_caseopt | cd->req_varyopt; |
4324 | } |
4325 | |
4326 | /* If the repetition is unlimited, it pays to see if the next thing on |
4327 | the line is something that cannot possibly match this character. If so, |
4328 | automatically possessifying this item gains some performance in the case |
4329 | where the match fails. */ |
4330 | |
4331 | if (!possessive_quantifier && |
4332 | repeat_max < 0 && |
4333 | check_auto_possessive(previous, utf8, ptr + 1, options, cd)) |
4334 | { |
4335 | repeat_type = 0; /* Force greedy */ |
4336 | possessive_quantifier = TRUE; |
4337 | } |
4338 | |
4339 | goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */ |
4340 | } |
4341 | |
4342 | /* If previous was a single negated character ([^a] or similar), we use |
4343 | one of the special opcodes, replacing it. The code is shared with single- |
4344 | character repeats by setting opt_type to add a suitable offset into |
4345 | repeat_type. We can also test for auto-possessification. OP_NOT and OP_NOTI |
4346 | are currently used only for single-byte chars. */ |
4347 | |
4348 | else if (*previous == OP_NOT || *previous == OP_NOTI) |
4349 | { |
4350 | op_type = ((*previous == OP_NOT)? OP_NOTSTAR : OP_NOTSTARI) - OP_STAR; |
4351 | c = previous[1]; |
4352 | if (!possessive_quantifier && |
4353 | repeat_max < 0 && |
4354 | check_auto_possessive(previous, utf8, ptr + 1, options, cd)) |
4355 | { |
4356 | repeat_type = 0; /* Force greedy */ |
4357 | possessive_quantifier = TRUE; |
4358 | } |
4359 | goto OUTPUT_SINGLE_REPEAT; |
4360 | } |
4361 | |
4362 | /* If previous was a character type match (\d or similar), abolish it and |
4363 | create a suitable repeat item. The code is shared with single-character |
4364 | repeats by setting op_type to add a suitable offset into repeat_type. Note |
4365 | the the Unicode property types will be present only when SUPPORT_UCP is |
4366 | defined, but we don't wrap the little bits of code here because it just |
4367 | makes it horribly messy. */ |
4368 | |
4369 | else if (*previous < OP_EODN) |
4370 | { |
4371 | uschar *oldcode; |
4372 | int prop_type, prop_value; |
4373 | op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ |
4374 | c = *previous; |
4375 | |
4376 | if (!possessive_quantifier && |
4377 | repeat_max < 0 && |
4378 | check_auto_possessive(previous, utf8, ptr + 1, options, cd)) |
4379 | { |
4380 | repeat_type = 0; /* Force greedy */ |
4381 | possessive_quantifier = TRUE; |
4382 | } |
4383 | |
4384 | OUTPUT_SINGLE_REPEAT: |
4385 | if (*previous == OP_PROP || *previous == OP_NOTPROP) |
4386 | { |
4387 | prop_type = previous[1]; |
4388 | prop_value = previous[2]; |
4389 | } |
4390 | else prop_type = prop_value = -1; |
4391 | |
4392 | oldcode = code; |
4393 | code = previous; /* Usually overwrite previous item */ |
4394 | |
4395 | /* If the maximum is zero then the minimum must also be zero; Perl allows |
4396 | this case, so we do too - by simply omitting the item altogether. */ |
4397 | |
4398 | if (repeat_max == 0) goto END_REPEAT; |
4399 | |
4400 | /*--------------------------------------------------------------------*/ |
4401 | /* This code is obsolete from release 8.00; the restriction was finally |
4402 | removed: */ |
4403 | |
4404 | /* All real repeats make it impossible to handle partial matching (maybe |
4405 | one day we will be able to remove this restriction). */ |
4406 | |
4407 | /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ |
4408 | /*--------------------------------------------------------------------*/ |
4409 | |
4410 | /* Combine the op_type with the repeat_type */ |
4411 | |
4412 | repeat_type += op_type; |
4413 | |
4414 | /* A minimum of zero is handled either as the special case * or ?, or as |
4415 | an UPTO, with the maximum given. */ |
4416 | |
4417 | if (repeat_min == 0) |
4418 | { |
4419 | if (repeat_max == -1) *code++ = OP_STAR + repeat_type; |
4420 | else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type; |
4421 | else |
4422 | { |
4423 | *code++ = OP_UPTO + repeat_type; |
4424 | PUT2INC(code, 0, repeat_max); |
4425 | } |
4426 | } |
4427 | |
4428 | /* A repeat minimum of 1 is optimized into some special cases. If the |
4429 | maximum is unlimited, we use OP_PLUS. Otherwise, the original item is |
4430 | left in place and, if the maximum is greater than 1, we use OP_UPTO with |
4431 | one less than the maximum. */ |
4432 | |
4433 | else if (repeat_min == 1) |
4434 | { |
4435 | if (repeat_max == -1) |
4436 | *code++ = OP_PLUS + repeat_type; |
4437 | else |
4438 | { |
4439 | code = oldcode; /* leave previous item in place */ |
4440 | if (repeat_max == 1) goto END_REPEAT; |
4441 | *code++ = OP_UPTO + repeat_type; |
4442 | PUT2INC(code, 0, repeat_max - 1); |
4443 | } |
4444 | } |
4445 | |
4446 | /* The case {n,n} is just an EXACT, while the general case {n,m} is |
4447 | handled as an EXACT followed by an UPTO. */ |
4448 | |
4449 | else |
4450 | { |
4451 | *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */ |
4452 | PUT2INC(code, 0, repeat_min); |
4453 | |
4454 | /* If the maximum is unlimited, insert an OP_STAR. Before doing so, |
4455 | we have to insert the character for the previous code. For a repeated |
4456 | Unicode property match, there are two extra bytes that define the |
4457 | required property. In UTF-8 mode, long characters have their length in |
4458 | c, with the 0x80 bit as a flag. */ |
4459 | |
4460 | if (repeat_max < 0) |
4461 | { |
4462 | #ifdef SUPPORT_UTF8 |
4463 | if (utf8 && c >= 128) |
4464 | { |
4465 | memcpy(code, utf8_char, c & 7); |
4466 | code += c & 7; |
4467 | } |
4468 | else |
4469 | #endif |
4470 | { |
4471 | *code++ = c; |
4472 | if (prop_type >= 0) |
4473 | { |
4474 | *code++ = prop_type; |
4475 | *code++ = prop_value; |
4476 | } |
4477 | } |
4478 | *code++ = OP_STAR + repeat_type; |
4479 | } |
4480 | |
4481 | /* Else insert an UPTO if the max is greater than the min, again |
4482 | preceded by the character, for the previously inserted code. If the |
4483 | UPTO is just for 1 instance, we can use QUERY instead. */ |
4484 | |
4485 | else if (repeat_max != repeat_min) |
4486 | { |
4487 | #ifdef SUPPORT_UTF8 |
4488 | if (utf8 && c >= 128) |
4489 | { |
4490 | memcpy(code, utf8_char, c & 7); |
4491 | code += c & 7; |
4492 | } |
4493 | else |
4494 | #endif |
4495 | *code++ = c; |
4496 | if (prop_type >= 0) |
4497 | { |
4498 | *code++ = prop_type; |
4499 | *code++ = prop_value; |
4500 | } |
4501 | repeat_max -= repeat_min; |
4502 | |
4503 | if (repeat_max == 1) |
4504 | { |
4505 | *code++ = OP_QUERY + repeat_type; |
4506 | } |
4507 | else |
4508 | { |
4509 | *code++ = OP_UPTO + repeat_type; |
4510 | PUT2INC(code, 0, repeat_max); |
4511 | } |
4512 | } |
4513 | } |
4514 | |
4515 | /* The character or character type itself comes last in all cases. */ |
4516 | |
4517 | #ifdef SUPPORT_UTF8 |
4518 | if (utf8 && c >= 128) |
4519 | { |
4520 | memcpy(code, utf8_char, c & 7); |
4521 | code += c & 7; |
4522 | } |
4523 | else |
4524 | #endif |
4525 | *code++ = c; |
4526 | |
4527 | /* For a repeated Unicode property match, there are two extra bytes that |
4528 | define the required property. */ |
4529 | |
4530 | #ifdef SUPPORT_UCP |
4531 | if (prop_type >= 0) |
4532 | { |
4533 | *code++ = prop_type; |
4534 | *code++ = prop_value; |
4535 | } |
4536 | #endif |
4537 | } |
4538 | |
4539 | /* If previous was a character class or a back reference, we put the repeat |
4540 | stuff after it, but just skip the item if the repeat was {0,0}. */ |
4541 | |
4542 | else if (*previous == OP_CLASS || |
4543 | *previous == OP_NCLASS || |
4544 | #ifdef SUPPORT_UTF8 |
4545 | *previous == OP_XCLASS || |
4546 | #endif |
4547 | *previous == OP_REF || |
4548 | *previous == OP_REFI) |
4549 | { |
4550 | if (repeat_max == 0) |
4551 | { |
4552 | code = previous; |
4553 | goto END_REPEAT; |
4554 | } |
4555 | |
4556 | /*--------------------------------------------------------------------*/ |
4557 | /* This code is obsolete from release 8.00; the restriction was finally |
4558 | removed: */ |
4559 | |
4560 | /* All real repeats make it impossible to handle partial matching (maybe |
4561 | one day we will be able to remove this restriction). */ |
4562 | |
4563 | /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ |
4564 | /*--------------------------------------------------------------------*/ |
4565 | |
4566 | if (repeat_min == 0 && repeat_max == -1) |
4567 | *code++ = OP_CRSTAR + repeat_type; |
4568 | else if (repeat_min == 1 && repeat_max == -1) |
4569 | *code++ = OP_CRPLUS + repeat_type; |
4570 | else if (repeat_min == 0 && repeat_max == 1) |
4571 | *code++ = OP_CRQUERY + repeat_type; |
4572 | else |
4573 | { |
4574 | *code++ = OP_CRRANGE + repeat_type; |
4575 | PUT2INC(code, 0, repeat_min); |
4576 | if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */ |
4577 | PUT2INC(code, 0, repeat_max); |
4578 | } |
4579 | } |
4580 | |
4581 | /* If previous was a bracket group, we may have to replicate it in certain |
4582 | cases. Note that at this point we can encounter only the "basic" bracket |
4583 | opcodes such as BRA and CBRA, as this is the place where they get converted |
4584 | into the more special varieties such as BRAPOS and SBRA. A test for >= |
4585 | OP_ASSERT and <= OP_COND includes ASSERT, ASSERT_NOT, ASSERTBACK, |
4586 | ASSERTBACK_NOT, ONCE, BRA, CBRA, and COND. Originally, PCRE did not allow |
4587 | repetition of assertions, but now it does, for Perl compatibility. */ |
4588 | |
4589 | else if (*previous >= OP_ASSERT && *previous <= OP_COND) |
4590 | { |
4591 | register int i; |
4592 | int len = (int)(code - previous); |
4593 | uschar *bralink = NULL; |
4594 | uschar *brazeroptr = NULL; |
4595 | |
4596 | /* Repeating a DEFINE group is pointless, but Perl allows the syntax, so |
4597 | we just ignore the repeat. */ |
4598 | |
4599 | if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF) |
4600 | goto END_REPEAT; |
4601 | |
4602 | /* There is no sense in actually repeating assertions. The only potential |
4603 | use of repetition is in cases when the assertion is optional. Therefore, |
4604 | if the minimum is greater than zero, just ignore the repeat. If the |
4605 | maximum is not not zero or one, set it to 1. */ |
4606 | |
4607 | if (*previous < OP_ONCE) /* Assertion */ |
4608 | { |
4609 | if (repeat_min > 0) goto END_REPEAT; |
4610 | if (repeat_max < 0 || repeat_max > 1) repeat_max = 1; |
4611 | } |
4612 | |
4613 | /* The case of a zero minimum is special because of the need to stick |
4614 | OP_BRAZERO in front of it, and because the group appears once in the |
4615 | data, whereas in other cases it appears the minimum number of times. For |
4616 | this reason, it is simplest to treat this case separately, as otherwise |
4617 | the code gets far too messy. There are several special subcases when the |
4618 | minimum is zero. */ |
4619 | |
4620 | if (repeat_min == 0) |
4621 | { |
4622 | /* If the maximum is also zero, we used to just omit the group from the |
4623 | output altogether, like this: |
4624 | |
4625 | ** if (repeat_max == 0) |
4626 | ** { |
4627 | ** code = previous; |
4628 | ** goto END_REPEAT; |
4629 | ** } |
4630 | |
4631 | However, that fails when a group or a subgroup within it is referenced |
4632 | as a subroutine from elsewhere in the pattern, so now we stick in |
4633 | OP_SKIPZERO in front of it so that it is skipped on execution. As we |
4634 | don't have a list of which groups are referenced, we cannot do this |
4635 | selectively. |
4636 | |
4637 | If the maximum is 1 or unlimited, we just have to stick in the BRAZERO |
4638 | and do no more at this point. However, we do need to adjust any |
4639 | OP_RECURSE calls inside the group that refer to the group itself or any |
4640 | internal or forward referenced group, because the offset is from the |
4641 | start of the whole regex. Temporarily terminate the pattern while doing |
4642 | this. */ |
4643 | |
4644 | if (repeat_max <= 1) /* Covers 0, 1, and unlimited */ |
4645 | { |
4646 | *code = OP_END; |
4647 | adjust_recurse(previous, 1, utf8, cd, save_hwm); |
4648 | memmove(previous+1, previous, len); |
4649 | code++; |
4650 | if (repeat_max == 0) |
4651 | { |
4652 | *previous++ = OP_SKIPZERO; |
4653 | goto END_REPEAT; |
4654 | } |
4655 | brazeroptr = previous; /* Save for possessive optimizing */ |
4656 | *previous++ = OP_BRAZERO + repeat_type; |
4657 | } |
4658 | |
4659 | /* If the maximum is greater than 1 and limited, we have to replicate |
4660 | in a nested fashion, sticking OP_BRAZERO before each set of brackets. |
4661 | The first one has to be handled carefully because it's the original |
4662 | copy, which has to be moved up. The remainder can be handled by code |
4663 | that is common with the non-zero minimum case below. We have to |
4664 | adjust the value or repeat_max, since one less copy is required. Once |
4665 | again, we may have to adjust any OP_RECURSE calls inside the group. */ |
4666 | |
4667 | else |
4668 | { |
4669 | int offset; |
4670 | *code = OP_END; |
4671 | adjust_recurse(previous, 2 + LINK_SIZE, utf8, cd, save_hwm); |
4672 | memmove(previous + 2 + LINK_SIZE, previous, len); |
4673 | code += 2 + LINK_SIZE; |
4674 | *previous++ = OP_BRAZERO + repeat_type; |
4675 | *previous++ = OP_BRA; |
4676 | |
4677 | /* We chain together the bracket offset fields that have to be |
4678 | filled in later when the ends of the brackets are reached. */ |
4679 | |
4680 | offset = (bralink == NULL)? 0 : (int)(previous - bralink); |
4681 | bralink = previous; |
4682 | PUTINC(previous, 0, offset); |
4683 | } |
4684 | |
4685 | repeat_max--; |
4686 | } |
4687 | |
4688 | /* If the minimum is greater than zero, replicate the group as many |
4689 | times as necessary, and adjust the maximum to the number of subsequent |
4690 | copies that we need. If we set a first char from the group, and didn't |
4691 | set a required char, copy the latter from the former. If there are any |
4692 | forward reference subroutine calls in the group, there will be entries on |
4693 | the workspace list; replicate these with an appropriate increment. */ |
4694 | |
4695 | else |
4696 | { |
4697 | if (repeat_min > 1) |
4698 | { |
4699 | /* In the pre-compile phase, we don't actually do the replication. We |
4700 | just adjust the length as if we had. Do some paranoid checks for |
4701 | potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit |
4702 | integer type when available, otherwise double. */ |
4703 | |
4704 | if (lengthptr != NULL) |
4705 | { |
4706 | int delta = (repeat_min - 1)*length_prevgroup; |
4707 | if ((INT64_OR_DOUBLE)(repeat_min - 1)* |
4708 | (INT64_OR_DOUBLE)length_prevgroup > |
4709 | (INT64_OR_DOUBLE)INT_MAX || |
4710 | OFLOW_MAX - *lengthptr < delta) |
4711 | { |
4712 | *errorcodeptr = ERR20; |
4713 | goto FAILED; |
4714 | } |
4715 | *lengthptr += delta; |
4716 | } |
4717 | |
4718 | /* This is compiling for real */ |
4719 | |
4720 | else |
4721 | { |
4722 | if (groupsetfirstbyte && reqbyte < 0) reqbyte = firstbyte; |
4723 | for (i = 1; i < repeat_min; i++) |
4724 | { |
4725 | uschar *hc; |
4726 | uschar *this_hwm = cd->hwm; |
4727 | memcpy(code, previous, len); |
4728 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
4729 | { |
4730 | PUT(cd->hwm, 0, GET(hc, 0) + len); |
4731 | cd->hwm += LINK_SIZE; |
4732 | } |
4733 | save_hwm = this_hwm; |
4734 | code += len; |
4735 | } |
4736 | } |
4737 | } |
4738 | |
4739 | if (repeat_max > 0) repeat_max -= repeat_min; |
4740 | } |
4741 | |
4742 | /* This code is common to both the zero and non-zero minimum cases. If |
4743 | the maximum is limited, it replicates the group in a nested fashion, |
4744 | remembering the bracket starts on a stack. In the case of a zero minimum, |
4745 | the first one was set up above. In all cases the repeat_max now specifies |
4746 | the number of additional copies needed. Again, we must remember to |
4747 | replicate entries on the forward reference list. */ |
4748 | |
4749 | if (repeat_max >= 0) |
4750 | { |
4751 | /* In the pre-compile phase, we don't actually do the replication. We |
4752 | just adjust the length as if we had. For each repetition we must add 1 |
4753 | to the length for BRAZERO and for all but the last repetition we must |
4754 | add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some |
4755 | paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is |
4756 | a 64-bit integer type when available, otherwise double. */ |
4757 | |
4758 | if (lengthptr != NULL && repeat_max > 0) |
4759 | { |
4760 | int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) - |
4761 | 2 - 2*LINK_SIZE; /* Last one doesn't nest */ |
4762 | if ((INT64_OR_DOUBLE)repeat_max * |
4763 | (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE) |
4764 | > (INT64_OR_DOUBLE)INT_MAX || |
4765 | OFLOW_MAX - *lengthptr < delta) |
4766 | { |
4767 | *errorcodeptr = ERR20; |
4768 | goto FAILED; |
4769 | } |
4770 | *lengthptr += delta; |
4771 | } |
4772 | |
4773 | /* This is compiling for real */ |
4774 | |
4775 | else for (i = repeat_max - 1; i >= 0; i--) |
4776 | { |
4777 | uschar *hc; |
4778 | uschar *this_hwm = cd->hwm; |
4779 | |
4780 | *code++ = OP_BRAZERO + repeat_type; |
4781 | |
4782 | /* All but the final copy start a new nesting, maintaining the |
4783 | chain of brackets outstanding. */ |
4784 | |
4785 | if (i != 0) |
4786 | { |
4787 | int offset; |
4788 | *code++ = OP_BRA; |
4789 | offset = (bralink == NULL)? 0 : (int)(code - bralink); |
4790 | bralink = code; |
4791 | PUTINC(code, 0, offset); |
4792 | } |
4793 | |
4794 | memcpy(code, previous, len); |
4795 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
4796 | { |
4797 | PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1)); |
4798 | cd->hwm += LINK_SIZE; |
4799 | } |
4800 | save_hwm = this_hwm; |
4801 | code += len; |
4802 | } |
4803 | |
4804 | /* Now chain through the pending brackets, and fill in their length |
4805 | fields (which are holding the chain links pro tem). */ |
4806 | |
4807 | while (bralink != NULL) |
4808 | { |
4809 | int oldlinkoffset; |
4810 | int offset = (int)(code - bralink + 1); |
4811 | uschar *bra = code - offset; |
4812 | oldlinkoffset = GET(bra, 1); |
4813 | bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset; |
4814 | *code++ = OP_KET; |
4815 | PUTINC(code, 0, offset); |
4816 | PUT(bra, 1, offset); |
4817 | } |
4818 | } |
4819 | |
4820 | /* If the maximum is unlimited, set a repeater in the final copy. For |
4821 | ONCE brackets, that's all we need to do. However, possessively repeated |
4822 | ONCE brackets can be converted into non-capturing brackets, as the |
4823 | behaviour of (?:xx)++ is the same as (?>xx)++ and this saves having to |
4824 | deal with possessive ONCEs specially. |
4825 | |
4826 | Otherwise, if the quantifier was possessive, we convert the BRA code to |
4827 | the POS form, and the KET code to KETRPOS. (It turns out to be convenient |
4828 | at runtime to detect this kind of subpattern at both the start and at the |
4829 | end.) The use of special opcodes makes it possible to reduce greatly the |
4830 | stack usage in pcre_exec(). If the group is preceded by OP_BRAZERO, |
4831 | convert this to OP_BRAPOSZERO. Then cancel the possessive flag so that |
4832 | the default action below, of wrapping everything inside atomic brackets, |
4833 | does not happen. |
4834 | |
4835 | Then, when we are doing the actual compile phase, check to see whether |
4836 | this group is one that could match an empty string. If so, convert the |
4837 | initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so that runtime |
4838 | checking can be done. [This check is also applied to ONCE groups at |
4839 | runtime, but in a different way.] */ |
4840 | |
4841 | else |
4842 | { |
4843 | uschar *ketcode = code - 1 - LINK_SIZE; |
4844 | uschar *bracode = ketcode - GET(ketcode, 1); |
4845 | |
4846 | if ((*bracode == OP_ONCE || *bracode == OP_ONCE_NC) && |
4847 | possessive_quantifier) *bracode = OP_BRA; |
4848 | |
4849 | if (*bracode == OP_ONCE || *bracode == OP_ONCE_NC) |
4850 | *ketcode = OP_KETRMAX + repeat_type; |
4851 | else |
4852 | { |
4853 | if (possessive_quantifier) |
4854 | { |
4855 | *bracode += 1; /* Switch to xxxPOS opcodes */ |
4856 | *ketcode = OP_KETRPOS; |
4857 | if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO; |
4858 | possessive_quantifier = FALSE; |
4859 | } |
4860 | else *ketcode = OP_KETRMAX + repeat_type; |
4861 | |
4862 | if (lengthptr == NULL) |
4863 | { |
4864 | uschar *scode = bracode; |
4865 | do |
4866 | { |
4867 | if (could_be_empty_branch(scode, ketcode, utf8, cd)) |
4868 | { |
4869 | *bracode += OP_SBRA - OP_BRA; |
4870 | break; |
4871 | } |
4872 | scode += GET(scode, 1); |
4873 | } |
4874 | while (*scode == OP_ALT); |
4875 | } |
4876 | } |
4877 | } |
4878 | } |
4879 | |
4880 | /* If previous is OP_FAIL, it was generated by an empty class [] in |
4881 | JavaScript mode. The other ways in which OP_FAIL can be generated, that is |
4882 | by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat" |
4883 | error above. We can just ignore the repeat in JS case. */ |
4884 | |
4885 | else if (*previous == OP_FAIL) goto END_REPEAT; |
4886 | |
4887 | /* Else there's some kind of shambles */ |
4888 | |
4889 | else |
4890 | { |
4891 | *errorcodeptr = ERR11; |
4892 | goto FAILED; |
4893 | } |
4894 | |
4895 | /* If the character following a repeat is '+', or if certain optimization |
4896 | tests above succeeded, possessive_quantifier is TRUE. For some opcodes, |
4897 | there are special alternative opcodes for this case. For anything else, we |
4898 | wrap the entire repeated item inside OP_ONCE brackets. Logically, the '+' |
4899 | notation is just syntactic sugar, taken from Sun's Java package, but the |
4900 | special opcodes can optimize it. |
4901 | |
4902 | Possessively repeated subpatterns have already been handled in the code |
4903 | just above, so possessive_quantifier is always FALSE for them at this |
4904 | stage. |
4905 | |
4906 | Note that the repeated item starts at tempcode, not at previous, which |
4907 | might be the first part of a string whose (former) last char we repeated. |
4908 | |
4909 | Possessifying an 'exact' quantifier has no effect, so we can ignore it. But |
4910 | an 'upto' may follow. We skip over an 'exact' item, and then test the |
4911 | length of what remains before proceeding. */ |
4912 | |
4913 | if (possessive_quantifier) |
4914 | { |
4915 | int len; |
4916 | |
4917 | if (*tempcode == OP_TYPEEXACT) |
4918 | tempcode += _pcre_OP_lengths[*tempcode] + |
4919 | ((tempcode[3] == OP_PROP || tempcode[3] == OP_NOTPROP)? 2 : 0); |
4920 | |
4921 | else if (*tempcode == OP_EXACT || *tempcode == OP_NOTEXACT) |
4922 | { |
4923 | tempcode += _pcre_OP_lengths[*tempcode]; |
4924 | #ifdef SUPPORT_UTF8 |
4925 | if (utf8 && tempcode[-1] >= 0xc0) |
4926 | tempcode += _pcre_utf8_table4[tempcode[-1] & 0x3f]; |
4927 | #endif |
4928 | } |
4929 | |
4930 | len = (int)(code - tempcode); |
4931 | if (len > 0) switch (*tempcode) |
4932 | { |
4933 | case OP_STAR: *tempcode = OP_POSSTAR; break; |
4934 | case OP_PLUS: *tempcode = OP_POSPLUS; break; |
4935 | case OP_QUERY: *tempcode = OP_POSQUERY; break; |
4936 | case OP_UPTO: *tempcode = OP_POSUPTO; break; |
4937 | |
4938 | case OP_STARI: *tempcode = OP_POSSTARI; break; |
4939 | case OP_PLUSI: *tempcode = OP_POSPLUSI; break; |
4940 | case OP_QUERYI: *tempcode = OP_POSQUERYI; break; |
4941 | case OP_UPTOI: *tempcode = OP_POSUPTOI; break; |
4942 | |
4943 | case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break; |
4944 | case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break; |
4945 | case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break; |
4946 | case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break; |
4947 | |
4948 | case OP_NOTSTARI: *tempcode = OP_NOTPOSSTARI; break; |
4949 | case OP_NOTPLUSI: *tempcode = OP_NOTPOSPLUSI; break; |
4950 | case OP_NOTQUERYI: *tempcode = OP_NOTPOSQUERYI; break; |
4951 | case OP_NOTUPTOI: *tempcode = OP_NOTPOSUPTOI; break; |
4952 | |
4953 | case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break; |
4954 | case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break; |
4955 | case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break; |
4956 | case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break; |
4957 | |
4958 | /* Because we are moving code along, we must ensure that any |
4959 | pending recursive references are updated. */ |
4960 | |
4961 | default: |
4962 | *code = OP_END; |
4963 | adjust_recurse(tempcode, 1 + LINK_SIZE, utf8, cd, save_hwm); |
4964 | memmove(tempcode + 1+LINK_SIZE, tempcode, len); |
4965 | code += 1 + LINK_SIZE; |
4966 | len += 1 + LINK_SIZE; |
4967 | tempcode[0] = OP_ONCE; |
4968 | *code++ = OP_KET; |
4969 | PUTINC(code, 0, len); |
4970 | PUT(tempcode, 1, len); |
4971 | break; |
4972 | } |
4973 | } |
4974 | |
4975 | /* In all case we no longer have a previous item. We also set the |
4976 | "follows varying string" flag for subsequently encountered reqbytes if |
4977 | it isn't already set and we have just passed a varying length item. */ |
4978 | |
4979 | END_REPEAT: |
4980 | previous = NULL; |
4981 | cd->req_varyopt |= reqvary; |
4982 | break; |
4983 | |
4984 | |
4985 | /* ===================================================================*/ |
4986 | /* Start of nested parenthesized sub-expression, or comment or lookahead or |
4987 | lookbehind or option setting or condition or all the other extended |
4988 | parenthesis forms. */ |
4989 | |
4990 | case CHAR_LEFT_PARENTHESIS: |
4991 | newoptions = options; |
4992 | skipbytes = 0; |
4993 | bravalue = OP_CBRA; |
4994 | save_hwm = cd->hwm; |
4995 | reset_bracount = FALSE; |
4996 | |
4997 | /* First deal with various "verbs" that can be introduced by '*'. */ |
4998 | |
4999 | if (*(++ptr) == CHAR_ASTERISK && |
5000 | ((cd->ctypes[ptr[1]] & ctype_letter) != 0 || ptr[1] == ':')) |
5001 | { |
5002 | int i, namelen; |
5003 | int arglen = 0; |
5004 | const char *vn = verbnames; |
5005 | const uschar *name = ptr + 1; |
5006 | const uschar *arg = NULL; |
5007 | previous = NULL; |
5008 | while ((cd->ctypes[*++ptr] & ctype_letter) != 0) {}; |
5009 | namelen = (int)(ptr - name); |
5010 | |
5011 | /* It appears that Perl allows any characters whatsoever, other than |
5012 | a closing parenthesis, to appear in arguments, so we no longer insist on |
5013 | letters, digits, and underscores. */ |
5014 | |
5015 | if (*ptr == CHAR_COLON) |
5016 | { |
5017 | arg = ++ptr; |
5018 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
5019 | arglen = (int)(ptr - arg); |
5020 | } |
5021 | |
5022 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
5023 | { |
5024 | *errorcodeptr = ERR60; |
5025 | goto FAILED; |
5026 | } |
5027 | |
5028 | /* Scan the table of verb names */ |
5029 | |
5030 | for (i = 0; i < verbcount; i++) |
5031 | { |
5032 | if (namelen == verbs[i].len && |
5033 | strncmp((char *)name, vn, namelen) == 0) |
5034 | { |
5035 | /* Check for open captures before ACCEPT and convert it to |
5036 | ASSERT_ACCEPT if in an assertion. */ |
5037 | |
5038 | if (verbs[i].op == OP_ACCEPT) |
5039 | { |
5040 | open_capitem *oc; |
5041 | if (arglen != 0) |
5042 | { |
5043 | *errorcodeptr = ERR59; |
5044 | goto FAILED; |
5045 | } |
5046 | cd->had_accept = TRUE; |
5047 | for (oc = cd->open_caps; oc != NULL; oc = oc->next) |
5048 | { |
5049 | *code++ = OP_CLOSE; |
5050 | PUT2INC(code, 0, oc->number); |
5051 | } |
5052 | *code++ = (cd->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT; |
5053 | |
5054 | /* Do not set firstbyte after *ACCEPT */ |
5055 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
5056 | } |
5057 | |
5058 | /* Handle other cases with/without an argument */ |
5059 | |
5060 | else if (arglen == 0) |
5061 | { |
5062 | if (verbs[i].op < 0) /* Argument is mandatory */ |
5063 | { |
5064 | *errorcodeptr = ERR66; |
5065 | goto FAILED; |
5066 | } |
5067 | *code = verbs[i].op; |
5068 | if (*code++ == OP_THEN) cd->external_flags |= PCRE_HASTHEN; |
5069 | } |
5070 | |
5071 | else |
5072 | { |
5073 | if (verbs[i].op_arg < 0) /* Argument is forbidden */ |
5074 | { |
5075 | *errorcodeptr = ERR59; |
5076 | goto FAILED; |
5077 | } |
5078 | *code = verbs[i].op_arg; |
5079 | if (*code++ == OP_THEN_ARG) cd->external_flags |= PCRE_HASTHEN; |
5080 | *code++ = arglen; |
5081 | memcpy(code, arg, arglen); |
5082 | code += arglen; |
5083 | *code++ = 0; |
5084 | } |
5085 | |
5086 | break; /* Found verb, exit loop */ |
5087 | } |
5088 | |
5089 | vn += verbs[i].len + 1; |
5090 | } |
5091 | |
5092 | if (i < verbcount) continue; /* Successfully handled a verb */ |
5093 | *errorcodeptr = ERR60; /* Verb not recognized */ |
5094 | goto FAILED; |
5095 | } |
5096 | |
5097 | /* Deal with the extended parentheses; all are introduced by '?', and the |
5098 | appearance of any of them means that this is not a capturing group. */ |
5099 | |
5100 | else if (*ptr == CHAR_QUESTION_MARK) |
5101 | { |
5102 | int i, set, unset, namelen; |
5103 | int *optset; |
5104 | const uschar *name; |
5105 | uschar *slot; |
5106 | |
5107 | switch (*(++ptr)) |
5108 | { |
5109 | case CHAR_NUMBER_SIGN: /* Comment; skip to ket */ |
5110 | ptr++; |
5111 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
5112 | if (*ptr == 0) |
5113 | { |
5114 | *errorcodeptr = ERR18; |
5115 | goto FAILED; |
5116 | } |
5117 | continue; |
5118 | |
5119 | |
5120 | /* ------------------------------------------------------------ */ |
5121 | case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */ |
5122 | reset_bracount = TRUE; |
5123 | /* Fall through */ |
5124 | |
5125 | /* ------------------------------------------------------------ */ |
5126 | case CHAR_COLON: /* Non-capturing bracket */ |
5127 | bravalue = OP_BRA; |
5128 | ptr++; |
5129 | break; |
5130 | |
5131 | |
5132 | /* ------------------------------------------------------------ */ |
5133 | case CHAR_LEFT_PARENTHESIS: |
5134 | bravalue = OP_COND; /* Conditional group */ |
5135 | |
5136 | /* A condition can be an assertion, a number (referring to a numbered |
5137 | group), a name (referring to a named group), or 'R', referring to |
5138 | recursion. R<digits> and R&name are also permitted for recursion tests. |
5139 | |
5140 | There are several syntaxes for testing a named group: (?(name)) is used |
5141 | by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')). |
5142 | |
5143 | There are two unfortunate ambiguities, caused by history. (a) 'R' can |
5144 | be the recursive thing or the name 'R' (and similarly for 'R' followed |
5145 | by digits), and (b) a number could be a name that consists of digits. |
5146 | In both cases, we look for a name first; if not found, we try the other |
5147 | cases. */ |
5148 | |
5149 | /* For conditions that are assertions, check the syntax, and then exit |
5150 | the switch. This will take control down to where bracketed groups, |
5151 | including assertions, are processed. */ |
5152 | |
5153 | if (ptr[1] == CHAR_QUESTION_MARK && (ptr[2] == CHAR_EQUALS_SIGN || |
5154 | ptr[2] == CHAR_EXCLAMATION_MARK || ptr[2] == CHAR_LESS_THAN_SIGN)) |
5155 | break; |
5156 | |
5157 | /* Most other conditions use OP_CREF (a couple change to OP_RREF |
5158 | below), and all need to skip 3 bytes at the start of the group. */ |
5159 | |
5160 | code[1+LINK_SIZE] = OP_CREF; |
5161 | skipbytes = 3; |
5162 | refsign = -1; |
5163 | |
5164 | /* Check for a test for recursion in a named group. */ |
5165 | |
5166 | if (ptr[1] == CHAR_R && ptr[2] == CHAR_AMPERSAND) |
5167 | { |
5168 | terminator = -1; |
5169 | ptr += 2; |
5170 | code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */ |
5171 | } |
5172 | |
5173 | /* Check for a test for a named group's having been set, using the Perl |
5174 | syntax (?(<name>) or (?('name') */ |
5175 | |
5176 | else if (ptr[1] == CHAR_LESS_THAN_SIGN) |
5177 | { |
5178 | terminator = CHAR_GREATER_THAN_SIGN; |
5179 | ptr++; |
5180 | } |
5181 | else if (ptr[1] == CHAR_APOSTROPHE) |
5182 | { |
5183 | terminator = CHAR_APOSTROPHE; |
5184 | ptr++; |
5185 | } |
5186 | else |
5187 | { |
5188 | terminator = 0; |
5189 | if (ptr[1] == CHAR_MINUS || ptr[1] == CHAR_PLUS) refsign = *(++ptr); |
5190 | } |
5191 | |
5192 | /* We now expect to read a name; any thing else is an error */ |
5193 | |
5194 | if ((cd->ctypes[ptr[1]] & ctype_word) == 0) |
5195 | { |
5196 | ptr += 1; /* To get the right offset */ |
5197 | *errorcodeptr = ERR28; |
5198 | goto FAILED; |
5199 | } |
5200 | |
5201 | /* Read the name, but also get it as a number if it's all digits */ |
5202 | |
5203 | recno = 0; |
5204 | name = ++ptr; |
5205 | while ((cd->ctypes[*ptr] & ctype_word) != 0) |
5206 | { |
5207 | if (recno >= 0) |
5208 | recno = ((digitab[*ptr] & ctype_digit) != 0)? |
5209 | recno * 10 + *ptr - CHAR_0 : -1; |
5210 | ptr++; |
5211 | } |
5212 | namelen = (int)(ptr - name); |
5213 | |
5214 | if ((terminator > 0 && *ptr++ != terminator) || |
5215 | *ptr++ != CHAR_RIGHT_PARENTHESIS) |
5216 | { |
5217 | ptr--; /* Error offset */ |
5218 | *errorcodeptr = ERR26; |
5219 | goto FAILED; |
5220 | } |
5221 | |
5222 | /* Do no further checking in the pre-compile phase. */ |
5223 | |
5224 | if (lengthptr != NULL) break; |
5225 | |
5226 | /* In the real compile we do the work of looking for the actual |
5227 | reference. If the string started with "+" or "-" we require the rest to |
5228 | be digits, in which case recno will be set. */ |
5229 | |
5230 | if (refsign > 0) |
5231 | { |
5232 | if (recno <= 0) |
5233 | { |
5234 | *errorcodeptr = ERR58; |
5235 | goto FAILED; |
5236 | } |
5237 | recno = (refsign == CHAR_MINUS)? |
5238 | cd->bracount - recno + 1 : recno +cd->bracount; |
5239 | if (recno <= 0 || recno > cd->final_bracount) |
5240 | { |
5241 | *errorcodeptr = ERR15; |
5242 | goto FAILED; |
5243 | } |
5244 | PUT2(code, 2+LINK_SIZE, recno); |
5245 | break; |
5246 | } |
5247 | |
5248 | /* Otherwise (did not start with "+" or "-"), start by looking for the |
5249 | name. If we find a name, add one to the opcode to change OP_CREF or |
5250 | OP_RREF into OP_NCREF or OP_NRREF. These behave exactly the same, |
5251 | except they record that the reference was originally to a name. The |
5252 | information is used to check duplicate names. */ |
5253 | |
5254 | slot = cd->name_table; |
5255 | for (i = 0; i < cd->names_found; i++) |
5256 | { |
5257 | if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break; |
5258 | slot += cd->name_entry_size; |
5259 | } |
5260 | |
5261 | /* Found a previous named subpattern */ |
5262 | |
5263 | if (i < cd->names_found) |
5264 | { |
5265 | recno = GET2(slot, 0); |
5266 | PUT2(code, 2+LINK_SIZE, recno); |
5267 | code[1+LINK_SIZE]++; |
5268 | } |
5269 | |
5270 | /* Search the pattern for a forward reference */ |
5271 | |
5272 | else if ((i = find_parens(cd, name, namelen, |
5273 | (options & PCRE_EXTENDED) != 0, utf8)) > 0) |
5274 | { |
5275 | PUT2(code, 2+LINK_SIZE, i); |
5276 | code[1+LINK_SIZE]++; |
5277 | } |
5278 | |
5279 | /* If terminator == 0 it means that the name followed directly after |
5280 | the opening parenthesis [e.g. (?(abc)...] and in this case there are |
5281 | some further alternatives to try. For the cases where terminator != 0 |
5282 | [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have |
5283 | now checked all the possibilities, so give an error. */ |
5284 | |
5285 | else if (terminator != 0) |
5286 | { |
5287 | *errorcodeptr = ERR15; |
5288 | goto FAILED; |
5289 | } |
5290 | |
5291 | /* Check for (?(R) for recursion. Allow digits after R to specify a |
5292 | specific group number. */ |
5293 | |
5294 | else if (*name == CHAR_R) |
5295 | { |
5296 | recno = 0; |
5297 | for (i = 1; i < namelen; i++) |
5298 | { |
5299 | if ((digitab[name[i]] & ctype_digit) == 0) |
5300 | { |
5301 | *errorcodeptr = ERR15; |
5302 | goto FAILED; |
5303 | } |
5304 | recno = recno * 10 + name[i] - CHAR_0; |
5305 | } |
5306 | if (recno == 0) recno = RREF_ANY; |
5307 | code[1+LINK_SIZE] = OP_RREF; /* Change test type */ |
5308 | PUT2(code, 2+LINK_SIZE, recno); |
5309 | } |
5310 | |
5311 | /* Similarly, check for the (?(DEFINE) "condition", which is always |
5312 | false. */ |
5313 | |
5314 | else if (namelen == 6 && strncmp((char *)name, STRING_DEFINE, 6) == 0) |
5315 | { |
5316 | code[1+LINK_SIZE] = OP_DEF; |
5317 | skipbytes = 1; |
5318 | } |
5319 | |
5320 | /* Check for the "name" actually being a subpattern number. We are |
5321 | in the second pass here, so final_bracount is set. */ |
5322 | |
5323 | else if (recno > 0 && recno <= cd->final_bracount) |
5324 | { |
5325 | PUT2(code, 2+LINK_SIZE, recno); |
5326 | } |
5327 | |
5328 | /* Either an unidentified subpattern, or a reference to (?(0) */ |
5329 | |
5330 | else |
5331 | { |
5332 | *errorcodeptr = (recno == 0)? ERR35: ERR15; |
5333 | goto FAILED; |
5334 | } |
5335 | break; |
5336 | |
5337 | |
5338 | /* ------------------------------------------------------------ */ |
5339 | case CHAR_EQUALS_SIGN: /* Positive lookahead */ |
5340 | bravalue = OP_ASSERT; |
5341 | cd->assert_depth += 1; |
5342 | ptr++; |
5343 | break; |
5344 | |
5345 | |
5346 | /* ------------------------------------------------------------ */ |
5347 | case CHAR_EXCLAMATION_MARK: /* Negative lookahead */ |
5348 | ptr++; |
5349 | if (*ptr == CHAR_RIGHT_PARENTHESIS) /* Optimize (?!) */ |
5350 | { |
5351 | *code++ = OP_FAIL; |
5352 | previous = NULL; |
5353 | continue; |
5354 | } |
5355 | bravalue = OP_ASSERT_NOT; |
5356 | cd->assert_depth += 1; |
5357 | break; |
5358 | |
5359 | |
5360 | /* ------------------------------------------------------------ */ |
5361 | case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */ |
5362 | switch (ptr[1]) |
5363 | { |
5364 | case CHAR_EQUALS_SIGN: /* Positive lookbehind */ |
5365 | bravalue = OP_ASSERTBACK; |
5366 | cd->assert_depth += 1; |
5367 | ptr += 2; |
5368 | break; |
5369 | |
5370 | case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */ |
5371 | bravalue = OP_ASSERTBACK_NOT; |
5372 | cd->assert_depth += 1; |
5373 | ptr += 2; |
5374 | break; |
5375 | |
5376 | default: /* Could be name define, else bad */ |
5377 | if ((cd->ctypes[ptr[1]] & ctype_word) != 0) goto DEFINE_NAME; |
5378 | ptr++; /* Correct offset for error */ |
5379 | *errorcodeptr = ERR24; |
5380 | goto FAILED; |
5381 | } |
5382 | break; |
5383 | |
5384 | |
5385 | /* ------------------------------------------------------------ */ |
5386 | case CHAR_GREATER_THAN_SIGN: /* One-time brackets */ |
5387 | bravalue = OP_ONCE; |
5388 | ptr++; |
5389 | break; |
5390 | |
5391 | |
5392 | /* ------------------------------------------------------------ */ |
5393 | case CHAR_C: /* Callout - may be followed by digits; */ |
5394 | previous_callout = code; /* Save for later completion */ |
5395 | after_manual_callout = 1; /* Skip one item before completing */ |
5396 | *code++ = OP_CALLOUT; |
5397 | { |
5398 | int n = 0; |
5399 | while ((digitab[*(++ptr)] & ctype_digit) != 0) |
5400 | n = n * 10 + *ptr - CHAR_0; |
5401 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
5402 | { |
5403 | *errorcodeptr = ERR39; |
5404 | goto FAILED; |
5405 | } |
5406 | if (n > 255) |
5407 | { |
5408 | *errorcodeptr = ERR38; |
5409 | goto FAILED; |
5410 | } |
5411 | *code++ = n; |
5412 | PUT(code, 0, (int)(ptr - cd->start_pattern + 1)); /* Pattern offset */ |
5413 | PUT(code, LINK_SIZE, 0); /* Default length */ |
5414 | code += 2 * LINK_SIZE; |
5415 | } |
5416 | previous = NULL; |
5417 | continue; |
5418 | |
5419 | |
5420 | /* ------------------------------------------------------------ */ |
5421 | case CHAR_P: /* Python-style named subpattern handling */ |
5422 | if (*(++ptr) == CHAR_EQUALS_SIGN || |
5423 | *ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */ |
5424 | { |
5425 | is_recurse = *ptr == CHAR_GREATER_THAN_SIGN; |
5426 | terminator = CHAR_RIGHT_PARENTHESIS; |
5427 | goto NAMED_REF_OR_RECURSE; |
5428 | } |
5429 | else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */ |
5430 | { |
5431 | *errorcodeptr = ERR41; |
5432 | goto FAILED; |
5433 | } |
5434 | /* Fall through to handle (?P< as (?< is handled */ |
5435 | |
5436 | |
5437 | /* ------------------------------------------------------------ */ |
5438 | DEFINE_NAME: /* Come here from (?< handling */ |
5439 | case CHAR_APOSTROPHE: |
5440 | { |
5441 | terminator = (*ptr == CHAR_LESS_THAN_SIGN)? |
5442 | CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE; |
5443 | name = ++ptr; |
5444 | |
5445 | while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++; |
5446 | namelen = (int)(ptr - name); |
5447 | |
5448 | /* In the pre-compile phase, just do a syntax check. */ |
5449 | |
5450 | if (lengthptr != NULL) |
5451 | { |
5452 | if (*ptr != terminator) |
5453 | { |
5454 | *errorcodeptr = ERR42; |
5455 | goto FAILED; |
5456 | } |
5457 | if (cd->names_found >= MAX_NAME_COUNT) |
5458 | { |
5459 | *errorcodeptr = ERR49; |
5460 | goto FAILED; |
5461 | } |
5462 | if (namelen + 3 > cd->name_entry_size) |
5463 | { |
5464 | cd->name_entry_size = namelen + 3; |
5465 | if (namelen > MAX_NAME_SIZE) |
5466 | { |
5467 | *errorcodeptr = ERR48; |
5468 | goto FAILED; |
5469 | } |
5470 | } |
5471 | } |
5472 | |
5473 | /* In the real compile, create the entry in the table, maintaining |
5474 | alphabetical order. Duplicate names for different numbers are |
5475 | permitted only if PCRE_DUPNAMES is set. Duplicate names for the same |
5476 | number are always OK. (An existing number can be re-used if (?| |
5477 | appears in the pattern.) In either event, a duplicate name results in |
5478 | a duplicate entry in the table, even if the number is the same. This |
5479 | is because the number of names, and hence the table size, is computed |
5480 | in the pre-compile, and it affects various numbers and pointers which |
5481 | would all have to be modified, and the compiled code moved down, if |
5482 | duplicates with the same number were omitted from the table. This |
5483 | doesn't seem worth the hassle. However, *different* names for the |
5484 | same number are not permitted. */ |
5485 | |
5486 | else |
5487 | { |
5488 | BOOL dupname = FALSE; |
5489 | slot = cd->name_table; |
5490 | |
5491 | for (i = 0; i < cd->names_found; i++) |
5492 | { |
5493 | int crc = memcmp(name, slot+2, namelen); |
5494 | if (crc == 0) |
5495 | { |
5496 | if (slot[2+namelen] == 0) |
5497 | { |
5498 | if (GET2(slot, 0) != cd->bracount + 1 && |
5499 | (options & PCRE_DUPNAMES) == 0) |
5500 | { |
5501 | *errorcodeptr = ERR43; |
5502 | goto FAILED; |
5503 | } |
5504 | else dupname = TRUE; |
5505 | } |
5506 | else crc = -1; /* Current name is a substring */ |
5507 | } |
5508 | |
5509 | /* Make space in the table and break the loop for an earlier |
5510 | name. For a duplicate or later name, carry on. We do this for |
5511 | duplicates so that in the simple case (when ?(| is not used) they |
5512 | are in order of their numbers. */ |
5513 | |
5514 | if (crc < 0) |
5515 | { |
5516 | memmove(slot + cd->name_entry_size, slot, |
5517 | (cd->names_found - i) * cd->name_entry_size); |
5518 | break; |
5519 | } |
5520 | |
5521 | /* Continue the loop for a later or duplicate name */ |
5522 | |
5523 | slot += cd->name_entry_size; |
5524 | } |
5525 | |
5526 | /* For non-duplicate names, check for a duplicate number before |
5527 | adding the new name. */ |
5528 | |
5529 | if (!dupname) |
5530 | { |
5531 | uschar *cslot = cd->name_table; |
5532 | for (i = 0; i < cd->names_found; i++) |
5533 | { |
5534 | if (cslot != slot) |
5535 | { |
5536 | if (GET2(cslot, 0) == cd->bracount + 1) |
5537 | { |
5538 | *errorcodeptr = ERR65; |
5539 | goto FAILED; |
5540 | } |
5541 | } |
5542 | else i--; |
5543 | cslot += cd->name_entry_size; |
5544 | } |
5545 | } |
5546 | |
5547 | PUT2(slot, 0, cd->bracount + 1); |
5548 | memcpy(slot + 2, name, namelen); |
5549 | slot[2+namelen] = 0; |
5550 | } |
5551 | } |
5552 | |
5553 | /* In both pre-compile and compile, count the number of names we've |
5554 | encountered. */ |
5555 | |
5556 | cd->names_found++; |
5557 | ptr++; /* Move past > or ' */ |
5558 | goto NUMBERED_GROUP; |
5559 | |
5560 | |
5561 | /* ------------------------------------------------------------ */ |
5562 | case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */ |
5563 | terminator = CHAR_RIGHT_PARENTHESIS; |
5564 | is_recurse = TRUE; |
5565 | /* Fall through */ |
5566 | |
5567 | /* We come here from the Python syntax above that handles both |
5568 | references (?P=name) and recursion (?P>name), as well as falling |
5569 | through from the Perl recursion syntax (?&name). We also come here from |
5570 | the Perl \k<name> or \k'name' back reference syntax and the \k{name} |
5571 | .NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */ |
5572 | |
5573 | NAMED_REF_OR_RECURSE: |
5574 | name = ++ptr; |
5575 | while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++; |
5576 | namelen = (int)(ptr - name); |
5577 | |
5578 | /* In the pre-compile phase, do a syntax check. We used to just set |
5579 | a dummy reference number, because it was not used in the first pass. |
5580 | However, with the change of recursive back references to be atomic, |
5581 | we have to look for the number so that this state can be identified, as |
5582 | otherwise the incorrect length is computed. If it's not a backwards |
5583 | reference, the dummy number will do. */ |
5584 | |
5585 | if (lengthptr != NULL) |
5586 | { |
5587 | const uschar *temp; |
5588 | |
5589 | if (namelen == 0) |
5590 | { |
5591 | *errorcodeptr = ERR62; |
5592 | goto FAILED; |
5593 | } |
5594 | if (*ptr != terminator) |
5595 | { |
5596 | *errorcodeptr = ERR42; |
5597 | goto FAILED; |
5598 | } |
5599 | if (namelen > MAX_NAME_SIZE) |
5600 | { |
5601 | *errorcodeptr = ERR48; |
5602 | goto FAILED; |
5603 | } |
5604 | |
5605 | /* The name table does not exist in the first pass, so we cannot |
5606 | do a simple search as in the code below. Instead, we have to scan the |
5607 | pattern to find the number. It is important that we scan it only as |
5608 | far as we have got because the syntax of named subpatterns has not |
5609 | been checked for the rest of the pattern, and find_parens() assumes |
5610 | correct syntax. In any case, it's a waste of resources to scan |
5611 | further. We stop the scan at the current point by temporarily |
5612 | adjusting the value of cd->endpattern. */ |
5613 | |
5614 | temp = cd->end_pattern; |
5615 | cd->end_pattern = ptr; |
5616 | recno = find_parens(cd, name, namelen, |
5617 | (options & PCRE_EXTENDED) != 0, utf8); |
5618 | cd->end_pattern = temp; |
5619 | if (recno < 0) recno = 0; /* Forward ref; set dummy number */ |
5620 | } |
5621 | |
5622 | /* In the real compile, seek the name in the table. We check the name |
5623 | first, and then check that we have reached the end of the name in the |
5624 | table. That way, if the name that is longer than any in the table, |
5625 | the comparison will fail without reading beyond the table entry. */ |
5626 | |
5627 | else |
5628 | { |
5629 | slot = cd->name_table; |
5630 | for (i = 0; i < cd->names_found; i++) |
5631 | { |
5632 | if (strncmp((char *)name, (char *)slot+2, namelen) == 0 && |
5633 | slot[2+namelen] == 0) |
5634 | break; |
5635 | slot += cd->name_entry_size; |
5636 | } |
5637 | |
5638 | if (i < cd->names_found) /* Back reference */ |
5639 | { |
5640 | recno = GET2(slot, 0); |
5641 | } |
5642 | else if ((recno = /* Forward back reference */ |
5643 | find_parens(cd, name, namelen, |
5644 | (options & PCRE_EXTENDED) != 0, utf8)) <= 0) |
5645 | { |
5646 | *errorcodeptr = ERR15; |
5647 | goto FAILED; |
5648 | } |
5649 | } |
5650 | |
5651 | /* In both phases, we can now go to the code than handles numerical |
5652 | recursion or backreferences. */ |
5653 | |
5654 | if (is_recurse) goto HANDLE_RECURSION; |
5655 | else goto HANDLE_REFERENCE; |
5656 | |
5657 | |
5658 | /* ------------------------------------------------------------ */ |
5659 | case CHAR_R: /* Recursion */ |
5660 | ptr++; /* Same as (?0) */ |
5661 | /* Fall through */ |
5662 | |
5663 | |
5664 | /* ------------------------------------------------------------ */ |
5665 | case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */ |
5666 | case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: |
5667 | case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
5668 | { |
5669 | const uschar *called; |
5670 | terminator = CHAR_RIGHT_PARENTHESIS; |
5671 | |
5672 | /* Come here from the \g<...> and \g'...' code (Oniguruma |
5673 | compatibility). However, the syntax has been checked to ensure that |
5674 | the ... are a (signed) number, so that neither ERR63 nor ERR29 will |
5675 | be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY |
5676 | ever be taken. */ |
5677 | |
5678 | HANDLE_NUMERICAL_RECURSION: |
5679 | |
5680 | if ((refsign = *ptr) == CHAR_PLUS) |
5681 | { |
5682 | ptr++; |
5683 | if ((digitab[*ptr] & ctype_digit) == 0) |
5684 | { |
5685 | *errorcodeptr = ERR63; |
5686 | goto FAILED; |
5687 | } |
5688 | } |
5689 | else if (refsign == CHAR_MINUS) |
5690 | { |
5691 | if ((digitab[ptr[1]] & ctype_digit) == 0) |
5692 | goto OTHER_CHAR_AFTER_QUERY; |
5693 | ptr++; |
5694 | } |
5695 | |
5696 | recno = 0; |
5697 | while((digitab[*ptr] & ctype_digit) != 0) |
5698 | recno = recno * 10 + *ptr++ - CHAR_0; |
5699 | |
5700 | if (*ptr != terminator) |
5701 | { |
5702 | *errorcodeptr = ERR29; |
5703 | goto FAILED; |
5704 | } |
5705 | |
5706 | if (refsign == CHAR_MINUS) |
5707 | { |
5708 | if (recno == 0) |
5709 | { |
5710 | *errorcodeptr = ERR58; |
5711 | goto FAILED; |
5712 | } |
5713 | recno = cd->bracount - recno + 1; |
5714 | if (recno <= 0) |
5715 | { |
5716 | *errorcodeptr = ERR15; |
5717 | goto FAILED; |
5718 | } |
5719 | } |
5720 | else if (refsign == CHAR_PLUS) |
5721 | { |
5722 | if (recno == 0) |
5723 | { |
5724 | *errorcodeptr = ERR58; |
5725 | goto FAILED; |
5726 | } |
5727 | recno += cd->bracount; |
5728 | } |
5729 | |
5730 | /* Come here from code above that handles a named recursion */ |
5731 | |
5732 | HANDLE_RECURSION: |
5733 | |
5734 | previous = code; |
5735 | called = cd->start_code; |
5736 | |
5737 | /* When we are actually compiling, find the bracket that is being |
5738 | referenced. Temporarily end the regex in case it doesn't exist before |
5739 | this point. If we end up with a forward reference, first check that |
5740 | the bracket does occur later so we can give the error (and position) |
5741 | now. Then remember this forward reference in the workspace so it can |
5742 | be filled in at the end. */ |
5743 | |
5744 | if (lengthptr == NULL) |
5745 | { |
5746 | *code = OP_END; |
5747 | if (recno != 0) |
5748 | called = _pcre_find_bracket(cd->start_code, utf8, recno); |
5749 | |
5750 | /* Forward reference */ |
5751 | |
5752 | if (called == NULL) |
5753 | { |
5754 | if (find_parens(cd, NULL, recno, |
5755 | (options & PCRE_EXTENDED) != 0, utf8) < 0) |
5756 | { |
5757 | *errorcodeptr = ERR15; |
5758 | goto FAILED; |
5759 | } |
5760 | |
5761 | /* Fudge the value of "called" so that when it is inserted as an |
5762 | offset below, what it actually inserted is the reference number |
5763 | of the group. Then remember the forward reference. */ |
5764 | |
5765 | called = cd->start_code + recno; |
5766 | PUTINC(cd->hwm, 0, (int)(code + 1 - cd->start_code)); |
5767 | } |
5768 | |
5769 | /* If not a forward reference, and the subpattern is still open, |
5770 | this is a recursive call. We check to see if this is a left |
5771 | recursion that could loop for ever, and diagnose that case. We |
5772 | must not, however, do this check if we are in a conditional |
5773 | subpattern because the condition might be testing for recursion in |
5774 | a pattern such as /(?(R)a+|(?R)b)/, which is perfectly valid. |
5775 | Forever loops are also detected at runtime, so those that occur in |
5776 | conditional subpatterns will be picked up then. */ |
5777 | |
5778 | else if (GET(called, 1) == 0 && cond_depth <= 0 && |
5779 | could_be_empty(called, code, bcptr, utf8, cd)) |
5780 | { |
5781 | *errorcodeptr = ERR40; |
5782 | goto FAILED; |
5783 | } |
5784 | } |
5785 | |
5786 | /* Insert the recursion/subroutine item. */ |
5787 | |
5788 | *code = OP_RECURSE; |
5789 | PUT(code, 1, (int)(called - cd->start_code)); |
5790 | code += 1 + LINK_SIZE; |
5791 | } |
5792 | |
5793 | /* Can't determine a first byte now */ |
5794 | |
5795 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
5796 | continue; |
5797 | |
5798 | |
5799 | /* ------------------------------------------------------------ */ |
5800 | default: /* Other characters: check option setting */ |
5801 | OTHER_CHAR_AFTER_QUERY: |
5802 | set = unset = 0; |
5803 | optset = &set; |
5804 | |
5805 | while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON) |
5806 | { |
5807 | switch (*ptr++) |
5808 | { |
5809 | case CHAR_MINUS: optset = &unset; break; |
5810 | |
5811 | case CHAR_J: /* Record that it changed in the external options */ |
5812 | *optset |= PCRE_DUPNAMES; |
5813 | cd->external_flags |= PCRE_JCHANGED; |
5814 | break; |
5815 | |
5816 | case CHAR_i: *optset |= PCRE_CASELESS; break; |
5817 | case CHAR_m: *optset |= PCRE_MULTILINE; break; |
5818 | case CHAR_s: *optset |= PCRE_DOTALL; break; |
5819 | case CHAR_x: *optset |= PCRE_EXTENDED; break; |
5820 | case CHAR_U: *optset |= PCRE_UNGREEDY; break; |
5821 | case CHAR_X: *optset |= PCRE_EXTRA; break; |
5822 | |
5823 | default: *errorcodeptr = ERR12; |
5824 | ptr--; /* Correct the offset */ |
5825 | goto FAILED; |
5826 | } |
5827 | } |
5828 | |
5829 | /* Set up the changed option bits, but don't change anything yet. */ |
5830 | |
5831 | newoptions = (options | set) & (~unset); |
5832 | |
5833 | /* If the options ended with ')' this is not the start of a nested |
5834 | group with option changes, so the options change at this level. If this |
5835 | item is right at the start of the pattern, the options can be |
5836 | abstracted and made external in the pre-compile phase, and ignored in |
5837 | the compile phase. This can be helpful when matching -- for instance in |
5838 | caseless checking of required bytes. |
5839 | |
5840 | If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are |
5841 | definitely *not* at the start of the pattern because something has been |
5842 | compiled. In the pre-compile phase, however, the code pointer can have |
5843 | that value after the start, because it gets reset as code is discarded |
5844 | during the pre-compile. However, this can happen only at top level - if |
5845 | we are within parentheses, the starting BRA will still be present. At |
5846 | any parenthesis level, the length value can be used to test if anything |
5847 | has been compiled at that level. Thus, a test for both these conditions |
5848 | is necessary to ensure we correctly detect the start of the pattern in |
5849 | both phases. |
5850 | |
5851 | If we are not at the pattern start, reset the greedy defaults and the |
5852 | case value for firstbyte and reqbyte. */ |
5853 | |
5854 | if (*ptr == CHAR_RIGHT_PARENTHESIS) |
5855 | { |
5856 | if (code == cd->start_code + 1 + LINK_SIZE && |
5857 | (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE)) |
5858 | { |
5859 | cd->external_options = newoptions; |
5860 | } |
5861 | else |
5862 | { |
5863 | greedy_default = ((newoptions & PCRE_UNGREEDY) != 0); |
5864 | greedy_non_default = greedy_default ^ 1; |
5865 | req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS : 0; |
5866 | } |
5867 | |
5868 | /* Change options at this level, and pass them back for use |
5869 | in subsequent branches. */ |
5870 | |
5871 | *optionsptr = options = newoptions; |
5872 | previous = NULL; /* This item can't be repeated */ |
5873 | continue; /* It is complete */ |
5874 | } |
5875 | |
5876 | /* If the options ended with ':' we are heading into a nested group |
5877 | with possible change of options. Such groups are non-capturing and are |
5878 | not assertions of any kind. All we need to do is skip over the ':'; |
5879 | the newoptions value is handled below. */ |
5880 | |
5881 | bravalue = OP_BRA; |
5882 | ptr++; |
5883 | } /* End of switch for character following (? */ |
5884 | } /* End of (? handling */ |
5885 | |
5886 | /* Opening parenthesis not followed by '*' or '?'. If PCRE_NO_AUTO_CAPTURE |
5887 | is set, all unadorned brackets become non-capturing and behave like (?:...) |
5888 | brackets. */ |
5889 | |
5890 | else if ((options & PCRE_NO_AUTO_CAPTURE) != 0) |
5891 | { |
5892 | bravalue = OP_BRA; |
5893 | } |
5894 | |
5895 | /* Else we have a capturing group. */ |
5896 | |
5897 | else |
5898 | { |
5899 | NUMBERED_GROUP: |
5900 | cd->bracount += 1; |
5901 | PUT2(code, 1+LINK_SIZE, cd->bracount); |
5902 | skipbytes = 2; |
5903 | } |
5904 | |
5905 | /* Process nested bracketed regex. Assertions used not to be repeatable, |
5906 | but this was changed for Perl compatibility, so all kinds can now be |
5907 | repeated. We copy code into a non-register variable (tempcode) in order to |
5908 | be able to pass its address because some compilers complain otherwise. */ |
5909 | |
5910 | previous = code; /* For handling repetition */ |
5911 | *code = bravalue; |
5912 | tempcode = code; |
5913 | tempreqvary = cd->req_varyopt; /* Save value before bracket */ |
5914 | tempbracount = cd->bracount; /* Save value before bracket */ |
5915 | length_prevgroup = 0; /* Initialize for pre-compile phase */ |
5916 | |
5917 | if (!compile_regex( |
5918 | newoptions, /* The complete new option state */ |
5919 | &tempcode, /* Where to put code (updated) */ |
5920 | &ptr, /* Input pointer (updated) */ |
5921 | errorcodeptr, /* Where to put an error message */ |
5922 | (bravalue == OP_ASSERTBACK || |
5923 | bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */ |
5924 | reset_bracount, /* True if (?| group */ |
5925 | skipbytes, /* Skip over bracket number */ |
5926 | cond_depth + |
5927 | ((bravalue == OP_COND)?1:0), /* Depth of condition subpatterns */ |
5928 | &subfirstbyte, /* For possible first char */ |
5929 | &subreqbyte, /* For possible last char */ |
5930 | bcptr, /* Current branch chain */ |
5931 | cd, /* Tables block */ |
5932 | (lengthptr == NULL)? NULL : /* Actual compile phase */ |
5933 | &length_prevgroup /* Pre-compile phase */ |
5934 | )) |
5935 | goto FAILED; |
5936 | |
5937 | /* If this was an atomic group and there are no capturing groups within it, |
5938 | generate OP_ONCE_NC instead of OP_ONCE. */ |
5939 | |
5940 | if (bravalue == OP_ONCE && cd->bracount <= tempbracount) |
5941 | *code = OP_ONCE_NC; |
5942 | |
5943 | if (bravalue >= OP_ASSERT && bravalue <= OP_ASSERTBACK_NOT) |
5944 | cd->assert_depth -= 1; |
5945 | |
5946 | /* At the end of compiling, code is still pointing to the start of the |
5947 | group, while tempcode has been updated to point past the end of the group. |
5948 | The pattern pointer (ptr) is on the bracket. |
5949 | |
5950 | If this is a conditional bracket, check that there are no more than |
5951 | two branches in the group, or just one if it's a DEFINE group. We do this |
5952 | in the real compile phase, not in the pre-pass, where the whole group may |
5953 | not be available. */ |
5954 | |
5955 | if (bravalue == OP_COND && lengthptr == NULL) |
5956 | { |
5957 | uschar *tc = code; |
5958 | int condcount = 0; |
5959 | |
5960 | do { |
5961 | condcount++; |
5962 | tc += GET(tc,1); |
5963 | } |
5964 | while (*tc != OP_KET); |
5965 | |
5966 | /* A DEFINE group is never obeyed inline (the "condition" is always |
5967 | false). It must have only one branch. */ |
5968 | |
5969 | if (code[LINK_SIZE+1] == OP_DEF) |
5970 | { |
5971 | if (condcount > 1) |
5972 | { |
5973 | *errorcodeptr = ERR54; |
5974 | goto FAILED; |
5975 | } |
5976 | bravalue = OP_DEF; /* Just a flag to suppress char handling below */ |
5977 | } |
5978 | |
5979 | /* A "normal" conditional group. If there is just one branch, we must not |
5980 | make use of its firstbyte or reqbyte, because this is equivalent to an |
5981 | empty second branch. */ |
5982 | |
5983 | else |
5984 | { |
5985 | if (condcount > 2) |
5986 | { |
5987 | *errorcodeptr = ERR27; |
5988 | goto FAILED; |
5989 | } |
5990 | if (condcount == 1) subfirstbyte = subreqbyte = REQ_NONE; |
5991 | } |
5992 | } |
5993 | |
5994 | /* Error if hit end of pattern */ |
5995 | |
5996 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
5997 | { |
5998 | *errorcodeptr = ERR14; |
5999 | goto FAILED; |
6000 | } |
6001 | |
6002 | /* In the pre-compile phase, update the length by the length of the group, |
6003 | less the brackets at either end. Then reduce the compiled code to just a |
6004 | set of non-capturing brackets so that it doesn't use much memory if it is |
6005 | duplicated by a quantifier.*/ |
6006 | |
6007 | if (lengthptr != NULL) |
6008 | { |
6009 | if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE) |
6010 | { |
6011 | *errorcodeptr = ERR20; |
6012 | goto FAILED; |
6013 | } |
6014 | *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE; |
6015 | code++; /* This already contains bravalue */ |
6016 | PUTINC(code, 0, 1 + LINK_SIZE); |
6017 | *code++ = OP_KET; |
6018 | PUTINC(code, 0, 1 + LINK_SIZE); |
6019 | break; /* No need to waste time with special character handling */ |
6020 | } |
6021 | |
6022 | /* Otherwise update the main code pointer to the end of the group. */ |
6023 | |
6024 | code = tempcode; |
6025 | |
6026 | /* For a DEFINE group, required and first character settings are not |
6027 | relevant. */ |
6028 | |
6029 | if (bravalue == OP_DEF) break; |
6030 | |
6031 | /* Handle updating of the required and first characters for other types of |
6032 | group. Update for normal brackets of all kinds, and conditions with two |
6033 | branches (see code above). If the bracket is followed by a quantifier with |
6034 | zero repeat, we have to back off. Hence the definition of zeroreqbyte and |
6035 | zerofirstbyte outside the main loop so that they can be accessed for the |
6036 | back off. */ |
6037 | |
6038 | zeroreqbyte = reqbyte; |
6039 | zerofirstbyte = firstbyte; |
6040 | groupsetfirstbyte = FALSE; |
6041 | |
6042 | if (bravalue >= OP_ONCE) |
6043 | { |
6044 | /* If we have not yet set a firstbyte in this branch, take it from the |
6045 | subpattern, remembering that it was set here so that a repeat of more |
6046 | than one can replicate it as reqbyte if necessary. If the subpattern has |
6047 | no firstbyte, set "none" for the whole branch. In both cases, a zero |
6048 | repeat forces firstbyte to "none". */ |
6049 | |
6050 | if (firstbyte == REQ_UNSET) |
6051 | { |
6052 | if (subfirstbyte >= 0) |
6053 | { |
6054 | firstbyte = subfirstbyte; |
6055 | groupsetfirstbyte = TRUE; |
6056 | } |
6057 | else firstbyte = REQ_NONE; |
6058 | zerofirstbyte = REQ_NONE; |
6059 | } |
6060 | |
6061 | /* If firstbyte was previously set, convert the subpattern's firstbyte |
6062 | into reqbyte if there wasn't one, using the vary flag that was in |
6063 | existence beforehand. */ |
6064 | |
6065 | else if (subfirstbyte >= 0 && subreqbyte < 0) |
6066 | subreqbyte = subfirstbyte | tempreqvary; |
6067 | |
6068 | /* If the subpattern set a required byte (or set a first byte that isn't |
6069 | really the first byte - see above), set it. */ |
6070 | |
6071 | if (subreqbyte >= 0) reqbyte = subreqbyte; |
6072 | } |
6073 | |
6074 | /* For a forward assertion, we take the reqbyte, if set. This can be |
6075 | helpful if the pattern that follows the assertion doesn't set a different |
6076 | char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte |
6077 | for an assertion, however because it leads to incorrect effect for patterns |
6078 | such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead |
6079 | of a firstbyte. This is overcome by a scan at the end if there's no |
6080 | firstbyte, looking for an asserted first char. */ |
6081 | |
6082 | else if (bravalue == OP_ASSERT && subreqbyte >= 0) reqbyte = subreqbyte; |
6083 | break; /* End of processing '(' */ |
6084 | |
6085 | |
6086 | /* ===================================================================*/ |
6087 | /* Handle metasequences introduced by \. For ones like \d, the ESC_ values |
6088 | are arranged to be the negation of the corresponding OP_values in the |
6089 | default case when PCRE_UCP is not set. For the back references, the values |
6090 | are ESC_REF plus the reference number. Only back references and those types |
6091 | that consume a character may be repeated. We can test for values between |
6092 | ESC_b and ESC_Z for the latter; this may have to change if any new ones are |
6093 | ever created. */ |
6094 | |
6095 | case CHAR_BACKSLASH: |
6096 | tempptr = ptr; |
6097 | c = check_escape(&ptr, errorcodeptr, cd->bracount, options, FALSE); |
6098 | if (*errorcodeptr != 0) goto FAILED; |
6099 | |
6100 | if (c < 0) |
6101 | { |
6102 | if (-c == ESC_Q) /* Handle start of quoted string */ |
6103 | { |
6104 | if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
6105 | ptr += 2; /* avoid empty string */ |
6106 | else inescq = TRUE; |
6107 | continue; |
6108 | } |
6109 | |
6110 | if (-c == ESC_E) continue; /* Perl ignores an orphan \E */ |
6111 | |
6112 | /* For metasequences that actually match a character, we disable the |
6113 | setting of a first character if it hasn't already been set. */ |
6114 | |
6115 | if (firstbyte == REQ_UNSET && -c > ESC_b && -c < ESC_Z) |
6116 | firstbyte = REQ_NONE; |
6117 | |
6118 | /* Set values to reset to if this is followed by a zero repeat. */ |
6119 | |
6120 | zerofirstbyte = firstbyte; |
6121 | zeroreqbyte = reqbyte; |
6122 | |
6123 | /* \g<name> or \g'name' is a subroutine call by name and \g<n> or \g'n' |
6124 | is a subroutine call by number (Oniguruma syntax). In fact, the value |
6125 | -ESC_g is returned only for these cases. So we don't need to check for < |
6126 | or ' if the value is -ESC_g. For the Perl syntax \g{n} the value is |
6127 | -ESC_REF+n, and for the Perl syntax \g{name} the result is -ESC_k (as |
6128 | that is a synonym for a named back reference). */ |
6129 | |
6130 | if (-c == ESC_g) |
6131 | { |
6132 | const uschar *p; |
6133 | save_hwm = cd->hwm; /* Normally this is set when '(' is read */ |
6134 | terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)? |
6135 | CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE; |
6136 | |
6137 | /* These two statements stop the compiler for warning about possibly |
6138 | unset variables caused by the jump to HANDLE_NUMERICAL_RECURSION. In |
6139 | fact, because we actually check for a number below, the paths that |
6140 | would actually be in error are never taken. */ |
6141 | |
6142 | skipbytes = 0; |
6143 | reset_bracount = FALSE; |
6144 | |
6145 | /* Test for a name */ |
6146 | |
6147 | if (ptr[1] != CHAR_PLUS && ptr[1] != CHAR_MINUS) |
6148 | { |
6149 | BOOL isnumber = TRUE; |
6150 | for (p = ptr + 1; *p != 0 && *p != terminator; p++) |
6151 | { |
6152 | if ((cd->ctypes[*p] & ctype_digit) == 0) isnumber = FALSE; |
6153 | if ((cd->ctypes[*p] & ctype_word) == 0) break; |
6154 | } |
6155 | if (*p != terminator) |
6156 | { |
6157 | *errorcodeptr = ERR57; |
6158 | break; |
6159 | } |
6160 | if (isnumber) |
6161 | { |
6162 | ptr++; |
6163 | goto HANDLE_NUMERICAL_RECURSION; |
6164 | } |
6165 | is_recurse = TRUE; |
6166 | goto NAMED_REF_OR_RECURSE; |
6167 | } |
6168 | |
6169 | /* Test a signed number in angle brackets or quotes. */ |
6170 | |
6171 | p = ptr + 2; |
6172 | while ((digitab[*p] & ctype_digit) != 0) p++; |
6173 | if (*p != terminator) |
6174 | { |
6175 | *errorcodeptr = ERR57; |
6176 | break; |
6177 | } |
6178 | ptr++; |
6179 | goto HANDLE_NUMERICAL_RECURSION; |
6180 | } |
6181 | |
6182 | /* \k<name> or \k'name' is a back reference by name (Perl syntax). |
6183 | We also support \k{name} (.NET syntax). */ |
6184 | |
6185 | if (-c == ESC_k) |
6186 | { |
6187 | if ((ptr[1] != CHAR_LESS_THAN_SIGN && |
6188 | ptr[1] != CHAR_APOSTROPHE && ptr[1] != CHAR_LEFT_CURLY_BRACKET)) |
6189 | { |
6190 | *errorcodeptr = ERR69; |
6191 | break; |
6192 | } |
6193 | is_recurse = FALSE; |
6194 | terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)? |
6195 | CHAR_GREATER_THAN_SIGN : (*ptr == CHAR_APOSTROPHE)? |
6196 | CHAR_APOSTROPHE : CHAR_RIGHT_CURLY_BRACKET; |
6197 | goto NAMED_REF_OR_RECURSE; |
6198 | } |
6199 | |
6200 | /* Back references are handled specially; must disable firstbyte if |
6201 | not set to cope with cases like (?=(\w+))\1: which would otherwise set |
6202 | ':' later. */ |
6203 | |
6204 | if (-c >= ESC_REF) |
6205 | { |
6206 | open_capitem *oc; |
6207 | recno = -c - ESC_REF; |
6208 | |
6209 | HANDLE_REFERENCE: /* Come here from named backref handling */ |
6210 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
6211 | previous = code; |
6212 | *code++ = ((options & PCRE_CASELESS) != 0)? OP_REFI : OP_REF; |
6213 | PUT2INC(code, 0, recno); |
6214 | cd->backref_map |= (recno < 32)? (1 << recno) : 1; |
6215 | if (recno > cd->top_backref) cd->top_backref = recno; |
6216 | |
6217 | /* Check to see if this back reference is recursive, that it, it |
6218 | is inside the group that it references. A flag is set so that the |
6219 | group can be made atomic. */ |
6220 | |
6221 | for (oc = cd->open_caps; oc != NULL; oc = oc->next) |
6222 | { |
6223 | if (oc->number == recno) |
6224 | { |
6225 | oc->flag = TRUE; |
6226 | break; |
6227 | } |
6228 | } |
6229 | } |
6230 | |
6231 | /* So are Unicode property matches, if supported. */ |
6232 | |
6233 | #ifdef SUPPORT_UCP |
6234 | else if (-c == ESC_P || -c == ESC_p) |
6235 | { |
6236 | BOOL negated; |
6237 | int pdata; |
6238 | int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr); |
6239 | if (ptype < 0) goto FAILED; |
6240 | previous = code; |
6241 | *code++ = ((-c == ESC_p) != negated)? OP_PROP : OP_NOTPROP; |
6242 | *code++ = ptype; |
6243 | *code++ = pdata; |
6244 | } |
6245 | #else |
6246 | |
6247 | /* If Unicode properties are not supported, \X, \P, and \p are not |
6248 | allowed. */ |
6249 | |
6250 | else if (-c == ESC_X || -c == ESC_P || -c == ESC_p) |
6251 | { |
6252 | *errorcodeptr = ERR45; |
6253 | goto FAILED; |
6254 | } |
6255 | #endif |
6256 | |
6257 | /* For the rest (including \X when Unicode properties are supported), we |
6258 | can obtain the OP value by negating the escape value in the default |
6259 | situation when PCRE_UCP is not set. When it *is* set, we substitute |
6260 | Unicode property tests. */ |
6261 | |
6262 | else |
6263 | { |
6264 | #ifdef SUPPORT_UCP |
6265 | if (-c >= ESC_DU && -c <= ESC_wu) |
6266 | { |
6267 | nestptr = ptr + 1; /* Where to resume */ |
6268 | ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */ |
6269 | } |
6270 | else |
6271 | #endif |
6272 | { |
6273 | previous = (-c > ESC_b && -c < ESC_Z)? code : NULL; |
6274 | *code++ = -c; |
6275 | } |
6276 | } |
6277 | continue; |
6278 | } |
6279 | |
6280 | /* We have a data character whose value is in c. In UTF-8 mode it may have |
6281 | a value > 127. We set its representation in the length/buffer, and then |
6282 | handle it as a data character. */ |
6283 | |
6284 | #ifdef SUPPORT_UTF8 |
6285 | if (utf8 && c > 127) |
6286 | mclength = _pcre_ord2utf8(c, mcbuffer); |
6287 | else |
6288 | #endif |
6289 | |
6290 | { |
6291 | mcbuffer[0] = c; |
6292 | mclength = 1; |
6293 | } |
6294 | goto ONE_CHAR; |
6295 | |
6296 | |
6297 | /* ===================================================================*/ |
6298 | /* Handle a literal character. It is guaranteed not to be whitespace or # |
6299 | when the extended flag is set. If we are in UTF-8 mode, it may be a |
6300 | multi-byte literal character. */ |
6301 | |
6302 | default: |
6303 | NORMAL_CHAR: |
6304 | mclength = 1; |
6305 | mcbuffer[0] = c; |
6306 | |
6307 | #ifdef SUPPORT_UTF8 |
6308 | if (utf8 && c >= 0xc0) |
6309 | { |
6310 | while ((ptr[1] & 0xc0) == 0x80) |
6311 | mcbuffer[mclength++] = *(++ptr); |
6312 | } |
6313 | #endif |
6314 | |
6315 | /* At this point we have the character's bytes in mcbuffer, and the length |
6316 | in mclength. When not in UTF-8 mode, the length is always 1. */ |
6317 | |
6318 | ONE_CHAR: |
6319 | previous = code; |
6320 | *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARI : OP_CHAR; |
6321 | for (c = 0; c < mclength; c++) *code++ = mcbuffer[c]; |
6322 | |
6323 | /* Remember if \r or \n were seen */ |
6324 | |
6325 | if (mcbuffer[0] == CHAR_CR || mcbuffer[0] == CHAR_NL) |
6326 | cd->external_flags |= PCRE_HASCRORLF; |
6327 | |
6328 | /* Set the first and required bytes appropriately. If no previous first |
6329 | byte, set it from this character, but revert to none on a zero repeat. |
6330 | Otherwise, leave the firstbyte value alone, and don't change it on a zero |
6331 | repeat. */ |
6332 | |
6333 | if (firstbyte == REQ_UNSET) |
6334 | { |
6335 | zerofirstbyte = REQ_NONE; |
6336 | zeroreqbyte = reqbyte; |
6337 | |
6338 | /* If the character is more than one byte long, we can set firstbyte |
6339 | only if it is not to be matched caselessly. */ |
6340 | |
6341 | if (mclength == 1 || req_caseopt == 0) |
6342 | { |
6343 | firstbyte = mcbuffer[0] | req_caseopt; |
6344 | if (mclength != 1) reqbyte = code[-1] | cd->req_varyopt; |
6345 | } |
6346 | else firstbyte = reqbyte = REQ_NONE; |
6347 | } |
6348 | |
6349 | /* firstbyte was previously set; we can set reqbyte only if the length is |
6350 | 1 or the matching is caseful. */ |
6351 | |
6352 | else |
6353 | { |
6354 | zerofirstbyte = firstbyte; |
6355 | zeroreqbyte = reqbyte; |
6356 | if (mclength == 1 || req_caseopt == 0) |
6357 | reqbyte = code[-1] | req_caseopt | cd->req_varyopt; |
6358 | } |
6359 | |
6360 | break; /* End of literal character handling */ |
6361 | } |
6362 | } /* end of big loop */ |
6363 | |
6364 | |
6365 | /* Control never reaches here by falling through, only by a goto for all the |
6366 | error states. Pass back the position in the pattern so that it can be displayed |
6367 | to the user for diagnosing the error. */ |
6368 | |
6369 | FAILED: |
6370 | *ptrptr = ptr; |
6371 | return FALSE; |
6372 | } |
6373 | |
6374 | |
6375 | |
6376 | |
6377 | /************************************************* |
6378 | * Compile sequence of alternatives * |
6379 | *************************************************/ |
6380 | |
6381 | /* On entry, ptr is pointing past the bracket character, but on return it |
6382 | points to the closing bracket, or vertical bar, or end of string. The code |
6383 | variable is pointing at the byte into which the BRA operator has been stored. |
6384 | This function is used during the pre-compile phase when we are trying to find |
6385 | out the amount of memory needed, as well as during the real compile phase. The |
6386 | value of lengthptr distinguishes the two phases. |
6387 | |
6388 | Arguments: |
6389 | options option bits, including any changes for this subpattern |
6390 | codeptr -> the address of the current code pointer |
6391 | ptrptr -> the address of the current pattern pointer |
6392 | errorcodeptr -> pointer to error code variable |
6393 | lookbehind TRUE if this is a lookbehind assertion |
6394 | reset_bracount TRUE to reset the count for each branch |
6395 | skipbytes skip this many bytes at start (for brackets and OP_COND) |
6396 | cond_depth depth of nesting for conditional subpatterns |
6397 | firstbyteptr place to put the first required character, or a negative number |
6398 | reqbyteptr place to put the last required character, or a negative number |
6399 | bcptr pointer to the chain of currently open branches |
6400 | cd points to the data block with tables pointers etc. |
6401 | lengthptr NULL during the real compile phase |
6402 | points to length accumulator during pre-compile phase |
6403 | |
6404 | Returns: TRUE on success |
6405 | */ |
6406 | |
6407 | static BOOL |
6408 | compile_regex(int options, uschar **codeptr, const uschar **ptrptr, |
6409 | int *errorcodeptr, BOOL lookbehind, BOOL reset_bracount, int skipbytes, |
6410 | int cond_depth, int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, |
6411 | compile_data *cd, int *lengthptr) |
6412 | { |
6413 | const uschar *ptr = *ptrptr; |
6414 | uschar *code = *codeptr; |
6415 | uschar *last_branch = code; |
6416 | uschar *start_bracket = code; |
6417 | uschar *reverse_count = NULL; |
6418 | open_capitem capitem; |
6419 | int capnumber = 0; |
6420 | int firstbyte, reqbyte; |
6421 | int branchfirstbyte, branchreqbyte; |
6422 | int length; |
6423 | int orig_bracount; |
6424 | int max_bracount; |
6425 | branch_chain bc; |
6426 | |
6427 | bc.outer = bcptr; |
6428 | bc.current_branch = code; |
6429 | |
6430 | firstbyte = reqbyte = REQ_UNSET; |
6431 | |
6432 | /* Accumulate the length for use in the pre-compile phase. Start with the |
6433 | length of the BRA and KET and any extra bytes that are required at the |
6434 | beginning. We accumulate in a local variable to save frequent testing of |
6435 | lenthptr for NULL. We cannot do this by looking at the value of code at the |
6436 | start and end of each alternative, because compiled items are discarded during |
6437 | the pre-compile phase so that the work space is not exceeded. */ |
6438 | |
6439 | length = 2 + 2*LINK_SIZE + skipbytes; |
6440 | |
6441 | /* WARNING: If the above line is changed for any reason, you must also change |
6442 | the code that abstracts option settings at the start of the pattern and makes |
6443 | them global. It tests the value of length for (2 + 2*LINK_SIZE) in the |
6444 | pre-compile phase to find out whether anything has yet been compiled or not. */ |
6445 | |
6446 | /* If this is a capturing subpattern, add to the chain of open capturing items |
6447 | so that we can detect them if (*ACCEPT) is encountered. This is also used to |
6448 | detect groups that contain recursive back references to themselves. Note that |
6449 | only OP_CBRA need be tested here; changing this opcode to one of its variants, |
6450 | e.g. OP_SCBRAPOS, happens later, after the group has been compiled. */ |
6451 | |
6452 | if (*code == OP_CBRA) |
6453 | { |
6454 | capnumber = GET2(code, 1 + LINK_SIZE); |
6455 | capitem.number = capnumber; |
6456 | capitem.next = cd->open_caps; |
6457 | capitem.flag = FALSE; |
6458 | cd->open_caps = &capitem; |
6459 | } |
6460 | |
6461 | /* Offset is set zero to mark that this bracket is still open */ |
6462 | |
6463 | PUT(code, 1, 0); |
6464 | code += 1 + LINK_SIZE + skipbytes; |
6465 | |
6466 | /* Loop for each alternative branch */ |
6467 | |
6468 | orig_bracount = max_bracount = cd->bracount; |
6469 | for (;;) |
6470 | { |
6471 | /* For a (?| group, reset the capturing bracket count so that each branch |
6472 | uses the same numbers. */ |
6473 | |
6474 | if (reset_bracount) cd->bracount = orig_bracount; |
6475 | |
6476 | /* Set up dummy OP_REVERSE if lookbehind assertion */ |
6477 | |
6478 | if (lookbehind) |
6479 | { |
6480 | *code++ = OP_REVERSE; |
6481 | reverse_count = code; |
6482 | PUTINC(code, 0, 0); |
6483 | length += 1 + LINK_SIZE; |
6484 | } |
6485 | |
6486 | /* Now compile the branch; in the pre-compile phase its length gets added |
6487 | into the length. */ |
6488 | |
6489 | if (!compile_branch(&options, &code, &ptr, errorcodeptr, &branchfirstbyte, |
6490 | &branchreqbyte, &bc, cond_depth, cd, |
6491 | (lengthptr == NULL)? NULL : &length)) |
6492 | { |
6493 | *ptrptr = ptr; |
6494 | return FALSE; |
6495 | } |
6496 | |
6497 | /* Keep the highest bracket count in case (?| was used and some branch |
6498 | has fewer than the rest. */ |
6499 | |
6500 | if (cd->bracount > max_bracount) max_bracount = cd->bracount; |
6501 | |
6502 | /* In the real compile phase, there is some post-processing to be done. */ |
6503 | |
6504 | if (lengthptr == NULL) |
6505 | { |
6506 | /* If this is the first branch, the firstbyte and reqbyte values for the |
6507 | branch become the values for the regex. */ |
6508 | |
6509 | if (*last_branch != OP_ALT) |
6510 | { |
6511 | firstbyte = branchfirstbyte; |
6512 | reqbyte = branchreqbyte; |
6513 | } |
6514 | |
6515 | /* If this is not the first branch, the first char and reqbyte have to |
6516 | match the values from all the previous branches, except that if the |
6517 | previous value for reqbyte didn't have REQ_VARY set, it can still match, |
6518 | and we set REQ_VARY for the regex. */ |
6519 | |
6520 | else |
6521 | { |
6522 | /* If we previously had a firstbyte, but it doesn't match the new branch, |
6523 | we have to abandon the firstbyte for the regex, but if there was |
6524 | previously no reqbyte, it takes on the value of the old firstbyte. */ |
6525 | |
6526 | if (firstbyte >= 0 && firstbyte != branchfirstbyte) |
6527 | { |
6528 | if (reqbyte < 0) reqbyte = firstbyte; |
6529 | firstbyte = REQ_NONE; |
6530 | } |
6531 | |
6532 | /* If we (now or from before) have no firstbyte, a firstbyte from the |
6533 | branch becomes a reqbyte if there isn't a branch reqbyte. */ |
6534 | |
6535 | if (firstbyte < 0 && branchfirstbyte >= 0 && branchreqbyte < 0) |
6536 | branchreqbyte = branchfirstbyte; |
6537 | |
6538 | /* Now ensure that the reqbytes match */ |
6539 | |
6540 | if ((reqbyte & ~REQ_VARY) != (branchreqbyte & ~REQ_VARY)) |
6541 | reqbyte = REQ_NONE; |
6542 | else reqbyte |= branchreqbyte; /* To "or" REQ_VARY */ |
6543 | } |
6544 | |
6545 | /* If lookbehind, check that this branch matches a fixed-length string, and |
6546 | put the length into the OP_REVERSE item. Temporarily mark the end of the |
6547 | branch with OP_END. If the branch contains OP_RECURSE, the result is -3 |
6548 | because there may be forward references that we can't check here. Set a |
6549 | flag to cause another lookbehind check at the end. Why not do it all at the |
6550 | end? Because common, erroneous checks are picked up here and the offset of |
6551 | the problem can be shown. */ |
6552 | |
6553 | if (lookbehind) |
6554 | { |
6555 | int fixed_length; |
6556 | *code = OP_END; |
6557 | fixed_length = find_fixedlength(last_branch, (options & PCRE_UTF8) != 0, |
6558 | FALSE, cd); |
6559 | DPRINTF(("fixed length = %d\n", fixed_length)); |
6560 | if (fixed_length == -3) |
6561 | { |
6562 | cd->check_lookbehind = TRUE; |
6563 | } |
6564 | else if (fixed_length < 0) |
6565 | { |
6566 | *errorcodeptr = (fixed_length == -2)? ERR36 : ERR25; |
6567 | *ptrptr = ptr; |
6568 | return FALSE; |
6569 | } |
6570 | else { PUT(reverse_count, 0, fixed_length); } |
6571 | } |
6572 | } |
6573 | |
6574 | /* Reached end of expression, either ')' or end of pattern. In the real |
6575 | compile phase, go back through the alternative branches and reverse the chain |
6576 | of offsets, with the field in the BRA item now becoming an offset to the |
6577 | first alternative. If there are no alternatives, it points to the end of the |
6578 | group. The length in the terminating ket is always the length of the whole |
6579 | bracketed item. Return leaving the pointer at the terminating char. */ |
6580 | |
6581 | if (*ptr != CHAR_VERTICAL_LINE) |
6582 | { |
6583 | if (lengthptr == NULL) |
6584 | { |
6585 | int branch_length = (int)(code - last_branch); |
6586 | do |
6587 | { |
6588 | int prev_length = GET(last_branch, 1); |
6589 | PUT(last_branch, 1, branch_length); |
6590 | branch_length = prev_length; |
6591 | last_branch -= branch_length; |
6592 | } |
6593 | while (branch_length > 0); |
6594 | } |
6595 | |
6596 | /* Fill in the ket */ |
6597 | |
6598 | *code = OP_KET; |
6599 | PUT(code, 1, (int)(code - start_bracket)); |
6600 | code += 1 + LINK_SIZE; |
6601 | |
6602 | /* If it was a capturing subpattern, check to see if it contained any |
6603 | recursive back references. If so, we must wrap it in atomic brackets. |
6604 | In any event, remove the block from the chain. */ |
6605 | |
6606 | if (capnumber > 0) |
6607 | { |
6608 | if (cd->open_caps->flag) |
6609 | { |
6610 | memmove(start_bracket + 1 + LINK_SIZE, start_bracket, |
6611 | code - start_bracket); |
6612 | *start_bracket = OP_ONCE; |
6613 | code += 1 + LINK_SIZE; |
6614 | PUT(start_bracket, 1, (int)(code - start_bracket)); |
6615 | *code = OP_KET; |
6616 | PUT(code, 1, (int)(code - start_bracket)); |
6617 | code += 1 + LINK_SIZE; |
6618 | length += 2 + 2*LINK_SIZE; |
6619 | } |
6620 | cd->open_caps = cd->open_caps->next; |
6621 | } |
6622 | |
6623 | /* Retain the highest bracket number, in case resetting was used. */ |
6624 | |
6625 | cd->bracount = max_bracount; |
6626 | |
6627 | /* Set values to pass back */ |
6628 | |
6629 | *codeptr = code; |
6630 | *ptrptr = ptr; |
6631 | *firstbyteptr = firstbyte; |
6632 | *reqbyteptr = reqbyte; |
6633 | if (lengthptr != NULL) |
6634 | { |
6635 | if (OFLOW_MAX - *lengthptr < length) |
6636 | { |
6637 | *errorcodeptr = ERR20; |
6638 | return FALSE; |
6639 | } |
6640 | *lengthptr += length; |
6641 | } |
6642 | return TRUE; |
6643 | } |
6644 | |
6645 | /* Another branch follows. In the pre-compile phase, we can move the code |
6646 | pointer back to where it was for the start of the first branch. (That is, |
6647 | pretend that each branch is the only one.) |
6648 | |