Parent Directory
|
Revision Log
Support \C in lookbehinds and DFA matching when not in UTF-8 mode.
1 | /************************************************* |
2 | * Perl-Compatible Regular Expressions * |
3 | *************************************************/ |
4 | |
5 | /* PCRE is a library of functions to support regular expressions whose syntax |
6 | and semantics are as close as possible to those of the Perl 5 language. |
7 | |
8 | Written by Philip Hazel |
9 | Copyright (c) 1997-2011 University of Cambridge |
10 | |
11 | ----------------------------------------------------------------------------- |
12 | Redistribution and use in source and binary forms, with or without |
13 | modification, are permitted provided that the following conditions are met: |
14 | |
15 | * Redistributions of source code must retain the above copyright notice, |
16 | this list of conditions and the following disclaimer. |
17 | |
18 | * Redistributions in binary form must reproduce the above copyright |
19 | notice, this list of conditions and the following disclaimer in the |
20 | documentation and/or other materials provided with the distribution. |
21 | |
22 | * Neither the name of the University of Cambridge nor the names of its |
23 | contributors may be used to endorse or promote products derived from |
24 | this software without specific prior written permission. |
25 | |
26 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
27 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
28 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
29 | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
30 | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
31 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
32 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
33 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
34 | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
35 | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
36 | POSSIBILITY OF SUCH DAMAGE. |
37 | ----------------------------------------------------------------------------- |
38 | */ |
39 | |
40 | |
41 | /* This module contains the external function pcre_compile(), along with |
42 | supporting internal functions that are not used by other modules. */ |
43 | |
44 | |
45 | #ifdef HAVE_CONFIG_H |
46 | #include "config.h" |
47 | #endif |
48 | |
49 | #define NLBLOCK cd /* Block containing newline information */ |
50 | #define PSSTART start_pattern /* Field containing processed string start */ |
51 | #define PSEND end_pattern /* Field containing processed string end */ |
52 | |
53 | #include "pcre_internal.h" |
54 | |
55 | |
56 | /* When PCRE_DEBUG is defined, we need the pcre_printint() function, which is |
57 | also used by pcretest. PCRE_DEBUG is not defined when building a production |
58 | library. */ |
59 | |
60 | #ifdef PCRE_DEBUG |
61 | #include "pcre_printint.src" |
62 | #endif |
63 | |
64 | |
65 | /* Macro for setting individual bits in class bitmaps. */ |
66 | |
67 | #define SETBIT(a,b) a[b/8] |= (1 << (b%8)) |
68 | |
69 | /* Maximum length value to check against when making sure that the integer that |
70 | holds the compiled pattern length does not overflow. We make it a bit less than |
71 | INT_MAX to allow for adding in group terminating bytes, so that we don't have |
72 | to check them every time. */ |
73 | |
74 | #define OFLOW_MAX (INT_MAX - 20) |
75 | |
76 | |
77 | /************************************************* |
78 | * Code parameters and static tables * |
79 | *************************************************/ |
80 | |
81 | /* This value specifies the size of stack workspace that is used during the |
82 | first pre-compile phase that determines how much memory is required. The regex |
83 | is partly compiled into this space, but the compiled parts are discarded as |
84 | soon as they can be, so that hopefully there will never be an overrun. The code |
85 | does, however, check for an overrun. The largest amount I've seen used is 218, |
86 | so this number is very generous. |
87 | |
88 | The same workspace is used during the second, actual compile phase for |
89 | remembering forward references to groups so that they can be filled in at the |
90 | end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE |
91 | is 4 there is plenty of room. */ |
92 | |
93 | #define COMPILE_WORK_SIZE (4096) |
94 | |
95 | /* The overrun tests check for a slightly smaller size so that they detect the |
96 | overrun before it actually does run off the end of the data block. */ |
97 | |
98 | #define WORK_SIZE_CHECK (COMPILE_WORK_SIZE - 100) |
99 | |
100 | |
101 | /* Table for handling escaped characters in the range '0'-'z'. Positive returns |
102 | are simple data values; negative values are for special things like \d and so |
103 | on. Zero means further processing is needed (for things like \x), or the escape |
104 | is invalid. */ |
105 | |
106 | #ifndef EBCDIC |
107 | |
108 | /* This is the "normal" table for ASCII systems or for EBCDIC systems running |
109 | in UTF-8 mode. */ |
110 | |
111 | static const short int escapes[] = { |
112 | 0, 0, |
113 | 0, 0, |
114 | 0, 0, |
115 | 0, 0, |
116 | 0, 0, |
117 | CHAR_COLON, CHAR_SEMICOLON, |
118 | CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN, |
119 | CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK, |
120 | CHAR_COMMERCIAL_AT, -ESC_A, |
121 | -ESC_B, -ESC_C, |
122 | -ESC_D, -ESC_E, |
123 | 0, -ESC_G, |
124 | -ESC_H, 0, |
125 | 0, -ESC_K, |
126 | 0, 0, |
127 | -ESC_N, 0, |
128 | -ESC_P, -ESC_Q, |
129 | -ESC_R, -ESC_S, |
130 | 0, 0, |
131 | -ESC_V, -ESC_W, |
132 | -ESC_X, 0, |
133 | -ESC_Z, CHAR_LEFT_SQUARE_BRACKET, |
134 | CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET, |
135 | CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE, |
136 | CHAR_GRAVE_ACCENT, 7, |
137 | -ESC_b, 0, |
138 | -ESC_d, ESC_e, |
139 | ESC_f, 0, |
140 | -ESC_h, 0, |
141 | 0, -ESC_k, |
142 | 0, 0, |
143 | ESC_n, 0, |
144 | -ESC_p, 0, |
145 | ESC_r, -ESC_s, |
146 | ESC_tee, 0, |
147 | -ESC_v, -ESC_w, |
148 | 0, 0, |
149 | -ESC_z |
150 | }; |
151 | |
152 | #else |
153 | |
154 | /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */ |
155 | |
156 | static const short int escapes[] = { |
157 | /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|', |
158 | /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0, |
159 | /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~', |
160 | /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0, |
161 | /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?', |
162 | /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0, |
163 | /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"', |
164 | /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, |
165 | /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0, |
166 | /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p, |
167 | /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0, |
168 | /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0, |
169 | /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0, |
170 | /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
171 | /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-', |
172 | /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G, |
173 | /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0, |
174 | /* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P, |
175 | /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0, |
176 | /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X, |
177 | /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0, |
178 | /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
179 | /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0 |
180 | }; |
181 | #endif |
182 | |
183 | |
184 | /* Table of special "verbs" like (*PRUNE). This is a short table, so it is |
185 | searched linearly. Put all the names into a single string, in order to reduce |
186 | the number of relocations when a shared library is dynamically linked. The |
187 | string is built from string macros so that it works in UTF-8 mode on EBCDIC |
188 | platforms. */ |
189 | |
190 | typedef struct verbitem { |
191 | int len; /* Length of verb name */ |
192 | int op; /* Op when no arg, or -1 if arg mandatory */ |
193 | int op_arg; /* Op when arg present, or -1 if not allowed */ |
194 | } verbitem; |
195 | |
196 | static const char verbnames[] = |
197 | "\0" /* Empty name is a shorthand for MARK */ |
198 | STRING_MARK0 |
199 | STRING_ACCEPT0 |
200 | STRING_COMMIT0 |
201 | STRING_F0 |
202 | STRING_FAIL0 |
203 | STRING_PRUNE0 |
204 | STRING_SKIP0 |
205 | STRING_THEN; |
206 | |
207 | static const verbitem verbs[] = { |
208 | { 0, -1, OP_MARK }, |
209 | { 4, -1, OP_MARK }, |
210 | { 6, OP_ACCEPT, -1 }, |
211 | { 6, OP_COMMIT, -1 }, |
212 | { 1, OP_FAIL, -1 }, |
213 | { 4, OP_FAIL, -1 }, |
214 | { 5, OP_PRUNE, OP_PRUNE_ARG }, |
215 | { 4, OP_SKIP, OP_SKIP_ARG }, |
216 | { 4, OP_THEN, OP_THEN_ARG } |
217 | }; |
218 | |
219 | static const int verbcount = sizeof(verbs)/sizeof(verbitem); |
220 | |
221 | |
222 | /* Tables of names of POSIX character classes and their lengths. The names are |
223 | now all in a single string, to reduce the number of relocations when a shared |
224 | library is dynamically loaded. The list of lengths is terminated by a zero |
225 | length entry. The first three must be alpha, lower, upper, as this is assumed |
226 | for handling case independence. */ |
227 | |
228 | static const char posix_names[] = |
229 | STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0 |
230 | STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0 |
231 | STRING_graph0 STRING_print0 STRING_punct0 STRING_space0 |
232 | STRING_word0 STRING_xdigit; |
233 | |
234 | static const uschar posix_name_lengths[] = { |
235 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 }; |
236 | |
237 | /* Table of class bit maps for each POSIX class. Each class is formed from a |
238 | base map, with an optional addition or removal of another map. Then, for some |
239 | classes, there is some additional tweaking: for [:blank:] the vertical space |
240 | characters are removed, and for [:alpha:] and [:alnum:] the underscore |
241 | character is removed. The triples in the table consist of the base map offset, |
242 | second map offset or -1 if no second map, and a non-negative value for map |
243 | addition or a negative value for map subtraction (if there are two maps). The |
244 | absolute value of the third field has these meanings: 0 => no tweaking, 1 => |
245 | remove vertical space characters, 2 => remove underscore. */ |
246 | |
247 | static const int posix_class_maps[] = { |
248 | cbit_word, cbit_digit, -2, /* alpha */ |
249 | cbit_lower, -1, 0, /* lower */ |
250 | cbit_upper, -1, 0, /* upper */ |
251 | cbit_word, -1, 2, /* alnum - word without underscore */ |
252 | cbit_print, cbit_cntrl, 0, /* ascii */ |
253 | cbit_space, -1, 1, /* blank - a GNU extension */ |
254 | cbit_cntrl, -1, 0, /* cntrl */ |
255 | cbit_digit, -1, 0, /* digit */ |
256 | cbit_graph, -1, 0, /* graph */ |
257 | cbit_print, -1, 0, /* print */ |
258 | cbit_punct, -1, 0, /* punct */ |
259 | cbit_space, -1, 0, /* space */ |
260 | cbit_word, -1, 0, /* word - a Perl extension */ |
261 | cbit_xdigit,-1, 0 /* xdigit */ |
262 | }; |
263 | |
264 | /* Table of substitutes for \d etc when PCRE_UCP is set. The POSIX class |
265 | substitutes must be in the order of the names, defined above, and there are |
266 | both positive and negative cases. NULL means no substitute. */ |
267 | |
268 | #ifdef SUPPORT_UCP |
269 | static const uschar *substitutes[] = { |
270 | (uschar *)"\\P{Nd}", /* \D */ |
271 | (uschar *)"\\p{Nd}", /* \d */ |
272 | (uschar *)"\\P{Xsp}", /* \S */ /* NOTE: Xsp is Perl space */ |
273 | (uschar *)"\\p{Xsp}", /* \s */ |
274 | (uschar *)"\\P{Xwd}", /* \W */ |
275 | (uschar *)"\\p{Xwd}" /* \w */ |
276 | }; |
277 | |
278 | static const uschar *posix_substitutes[] = { |
279 | (uschar *)"\\p{L}", /* alpha */ |
280 | (uschar *)"\\p{Ll}", /* lower */ |
281 | (uschar *)"\\p{Lu}", /* upper */ |
282 | (uschar *)"\\p{Xan}", /* alnum */ |
283 | NULL, /* ascii */ |
284 | (uschar *)"\\h", /* blank */ |
285 | NULL, /* cntrl */ |
286 | (uschar *)"\\p{Nd}", /* digit */ |
287 | NULL, /* graph */ |
288 | NULL, /* print */ |
289 | NULL, /* punct */ |
290 | (uschar *)"\\p{Xps}", /* space */ /* NOTE: Xps is POSIX space */ |
291 | (uschar *)"\\p{Xwd}", /* word */ |
292 | NULL, /* xdigit */ |
293 | /* Negated cases */ |
294 | (uschar *)"\\P{L}", /* ^alpha */ |
295 | (uschar *)"\\P{Ll}", /* ^lower */ |
296 | (uschar *)"\\P{Lu}", /* ^upper */ |
297 | (uschar *)"\\P{Xan}", /* ^alnum */ |
298 | NULL, /* ^ascii */ |
299 | (uschar *)"\\H", /* ^blank */ |
300 | NULL, /* ^cntrl */ |
301 | (uschar *)"\\P{Nd}", /* ^digit */ |
302 | NULL, /* ^graph */ |
303 | NULL, /* ^print */ |
304 | NULL, /* ^punct */ |
305 | (uschar *)"\\P{Xps}", /* ^space */ /* NOTE: Xps is POSIX space */ |
306 | (uschar *)"\\P{Xwd}", /* ^word */ |
307 | NULL /* ^xdigit */ |
308 | }; |
309 | #define POSIX_SUBSIZE (sizeof(posix_substitutes)/sizeof(uschar *)) |
310 | #endif |
311 | |
312 | #define STRING(a) # a |
313 | #define XSTRING(s) STRING(s) |
314 | |
315 | /* The texts of compile-time error messages. These are "char *" because they |
316 | are passed to the outside world. Do not ever re-use any error number, because |
317 | they are documented. Always add a new error instead. Messages marked DEAD below |
318 | are no longer used. This used to be a table of strings, but in order to reduce |
319 | the number of relocations needed when a shared library is loaded dynamically, |
320 | it is now one long string. We cannot use a table of offsets, because the |
321 | lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we |
322 | simply count through to the one we want - this isn't a performance issue |
323 | because these strings are used only when there is a compilation error. |
324 | |
325 | Each substring ends with \0 to insert a null character. This includes the final |
326 | substring, so that the whole string ends with \0\0, which can be detected when |
327 | counting through. */ |
328 | |
329 | static const char error_texts[] = |
330 | "no error\0" |
331 | "\\ at end of pattern\0" |
332 | "\\c at end of pattern\0" |
333 | "unrecognized character follows \\\0" |
334 | "numbers out of order in {} quantifier\0" |
335 | /* 5 */ |
336 | "number too big in {} quantifier\0" |
337 | "missing terminating ] for character class\0" |
338 | "invalid escape sequence in character class\0" |
339 | "range out of order in character class\0" |
340 | "nothing to repeat\0" |
341 | /* 10 */ |
342 | "operand of unlimited repeat could match the empty string\0" /** DEAD **/ |
343 | "internal error: unexpected repeat\0" |
344 | "unrecognized character after (? or (?-\0" |
345 | "POSIX named classes are supported only within a class\0" |
346 | "missing )\0" |
347 | /* 15 */ |
348 | "reference to non-existent subpattern\0" |
349 | "erroffset passed as NULL\0" |
350 | "unknown option bit(s) set\0" |
351 | "missing ) after comment\0" |
352 | "parentheses nested too deeply\0" /** DEAD **/ |
353 | /* 20 */ |
354 | "regular expression is too large\0" |
355 | "failed to get memory\0" |
356 | "unmatched parentheses\0" |
357 | "internal error: code overflow\0" |
358 | "unrecognized character after (?<\0" |
359 | /* 25 */ |
360 | "lookbehind assertion is not fixed length\0" |
361 | "malformed number or name after (?(\0" |
362 | "conditional group contains more than two branches\0" |
363 | "assertion expected after (?(\0" |
364 | "(?R or (?[+-]digits must be followed by )\0" |
365 | /* 30 */ |
366 | "unknown POSIX class name\0" |
367 | "POSIX collating elements are not supported\0" |
368 | "this version of PCRE is not compiled with PCRE_UTF8 support\0" |
369 | "spare error\0" /** DEAD **/ |
370 | "character value in \\x{...} sequence is too large\0" |
371 | /* 35 */ |
372 | "invalid condition (?(0)\0" |
373 | "\\C not allowed in lookbehind assertion\0" |
374 | "PCRE does not support \\L, \\l, \\N{name}, \\U, or \\u\0" |
375 | "number after (?C is > 255\0" |
376 | "closing ) for (?C expected\0" |
377 | /* 40 */ |
378 | "recursive call could loop indefinitely\0" |
379 | "unrecognized character after (?P\0" |
380 | "syntax error in subpattern name (missing terminator)\0" |
381 | "two named subpatterns have the same name\0" |
382 | "invalid UTF-8 string\0" |
383 | /* 45 */ |
384 | "support for \\P, \\p, and \\X has not been compiled\0" |
385 | "malformed \\P or \\p sequence\0" |
386 | "unknown property name after \\P or \\p\0" |
387 | "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0" |
388 | "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0" |
389 | /* 50 */ |
390 | "repeated subpattern is too long\0" /** DEAD **/ |
391 | "octal value is greater than \\377 (not in UTF-8 mode)\0" |
392 | "internal error: overran compiling workspace\0" |
393 | "internal error: previously-checked referenced subpattern not found\0" |
394 | "DEFINE group contains more than one branch\0" |
395 | /* 55 */ |
396 | "repeating a DEFINE group is not allowed\0" /** DEAD **/ |
397 | "inconsistent NEWLINE options\0" |
398 | "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0" |
399 | "a numbered reference must not be zero\0" |
400 | "an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0" |
401 | /* 60 */ |
402 | "(*VERB) not recognized\0" |
403 | "number is too big\0" |
404 | "subpattern name expected\0" |
405 | "digit expected after (?+\0" |
406 | "] is an invalid data character in JavaScript compatibility mode\0" |
407 | /* 65 */ |
408 | "different names for subpatterns of the same number are not allowed\0" |
409 | "(*MARK) must have an argument\0" |
410 | "this version of PCRE is not compiled with PCRE_UCP support\0" |
411 | "\\c must be followed by an ASCII character\0" |
412 | "\\k is not followed by a braced, angle-bracketed, or quoted name\0" |
413 | /* 70 */ |
414 | "internal error: unknown opcode in find_fixedlength()\0" |
415 | ; |
416 | |
417 | /* Table to identify digits and hex digits. This is used when compiling |
418 | patterns. Note that the tables in chartables are dependent on the locale, and |
419 | may mark arbitrary characters as digits - but the PCRE compiling code expects |
420 | to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have |
421 | a private table here. It costs 256 bytes, but it is a lot faster than doing |
422 | character value tests (at least in some simple cases I timed), and in some |
423 | applications one wants PCRE to compile efficiently as well as match |
424 | efficiently. |
425 | |
426 | For convenience, we use the same bit definitions as in chartables: |
427 | |
428 | 0x04 decimal digit |
429 | 0x08 hexadecimal digit |
430 | |
431 | Then we can use ctype_digit and ctype_xdigit in the code. */ |
432 | |
433 | #ifndef EBCDIC |
434 | |
435 | /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in |
436 | UTF-8 mode. */ |
437 | |
438 | static const unsigned char digitab[] = |
439 | { |
440 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */ |
441 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
442 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */ |
443 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
444 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */ |
445 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */ |
446 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */ |
447 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */ |
448 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */ |
449 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */ |
450 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */ |
451 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */ |
452 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */ |
453 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */ |
454 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */ |
455 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */ |
456 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */ |
457 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */ |
458 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */ |
459 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */ |
460 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */ |
461 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */ |
462 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */ |
463 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
464 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */ |
465 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */ |
466 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */ |
467 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */ |
468 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */ |
469 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */ |
470 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */ |
471 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */ |
472 | |
473 | #else |
474 | |
475 | /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */ |
476 | |
477 | static const unsigned char digitab[] = |
478 | { |
479 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */ |
480 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
481 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */ |
482 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
483 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */ |
484 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
485 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */ |
486 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
487 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */ |
488 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */ |
489 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */ |
490 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */ |
491 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */ |
492 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */ |
493 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */ |
494 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
495 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */ |
496 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
497 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */ |
498 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
499 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */ |
500 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
501 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */ |
502 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
503 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */ |
504 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
505 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */ |
506 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
507 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */ |
508 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
509 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */ |
510 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
511 | |
512 | static const unsigned char ebcdic_chartab[] = { /* chartable partial dup */ |
513 | 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */ |
514 | 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */ |
515 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */ |
516 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
517 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */ |
518 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
519 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */ |
520 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
521 | 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */ |
522 | 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */ |
523 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */ |
524 | 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */ |
525 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */ |
526 | 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */ |
527 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */ |
528 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
529 | 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */ |
530 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
531 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */ |
532 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
533 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */ |
534 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
535 | 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */ |
536 | 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
537 | 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */ |
538 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
539 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */ |
540 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
541 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */ |
542 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
543 | 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */ |
544 | 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
545 | #endif |
546 | |
547 | |
548 | /* Definition to allow mutual recursion */ |
549 | |
550 | static BOOL |
551 | compile_regex(int, uschar **, const uschar **, int *, BOOL, BOOL, int, int, |
552 | int *, int *, branch_chain *, compile_data *, int *); |
553 | |
554 | |
555 | |
556 | /************************************************* |
557 | * Find an error text * |
558 | *************************************************/ |
559 | |
560 | /* The error texts are now all in one long string, to save on relocations. As |
561 | some of the text is of unknown length, we can't use a table of offsets. |
562 | Instead, just count through the strings. This is not a performance issue |
563 | because it happens only when there has been a compilation error. |
564 | |
565 | Argument: the error number |
566 | Returns: pointer to the error string |
567 | */ |
568 | |
569 | static const char * |
570 | find_error_text(int n) |
571 | { |
572 | const char *s = error_texts; |
573 | for (; n > 0; n--) |
574 | { |
575 | while (*s++ != 0) {}; |
576 | if (*s == 0) return "Error text not found (please report)"; |
577 | } |
578 | return s; |
579 | } |
580 | |
581 | |
582 | /************************************************* |
583 | * Check for counted repeat * |
584 | *************************************************/ |
585 | |
586 | /* This function is called when a '{' is encountered in a place where it might |
587 | start a quantifier. It looks ahead to see if it really is a quantifier or not. |
588 | It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd} |
589 | where the ddds are digits. |
590 | |
591 | Arguments: |
592 | p pointer to the first char after '{' |
593 | |
594 | Returns: TRUE or FALSE |
595 | */ |
596 | |
597 | static BOOL |
598 | is_counted_repeat(const uschar *p) |
599 | { |
600 | if ((digitab[*p++] & ctype_digit) == 0) return FALSE; |
601 | while ((digitab[*p] & ctype_digit) != 0) p++; |
602 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
603 | |
604 | if (*p++ != CHAR_COMMA) return FALSE; |
605 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
606 | |
607 | if ((digitab[*p++] & ctype_digit) == 0) return FALSE; |
608 | while ((digitab[*p] & ctype_digit) != 0) p++; |
609 | |
610 | return (*p == CHAR_RIGHT_CURLY_BRACKET); |
611 | } |
612 | |
613 | |
614 | |
615 | /************************************************* |
616 | * Handle escapes * |
617 | *************************************************/ |
618 | |
619 | /* This function is called when a \ has been encountered. It either returns a |
620 | positive value for a simple escape such as \n, or a negative value which |
621 | encodes one of the more complicated things such as \d. A backreference to group |
622 | n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When |
623 | UTF-8 is enabled, a positive value greater than 255 may be returned. On entry, |
624 | ptr is pointing at the \. On exit, it is on the final character of the escape |
625 | sequence. |
626 | |
627 | Arguments: |
628 | ptrptr points to the pattern position pointer |
629 | errorcodeptr points to the errorcode variable |
630 | bracount number of previous extracting brackets |
631 | options the options bits |
632 | isclass TRUE if inside a character class |
633 | |
634 | Returns: zero or positive => a data character |
635 | negative => a special escape sequence |
636 | on error, errorcodeptr is set |
637 | */ |
638 | |
639 | static int |
640 | check_escape(const uschar **ptrptr, int *errorcodeptr, int bracount, |
641 | int options, BOOL isclass) |
642 | { |
643 | BOOL utf8 = (options & PCRE_UTF8) != 0; |
644 | const uschar *ptr = *ptrptr + 1; |
645 | int c, i; |
646 | |
647 | GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */ |
648 | ptr--; /* Set pointer back to the last byte */ |
649 | |
650 | /* If backslash is at the end of the pattern, it's an error. */ |
651 | |
652 | if (c == 0) *errorcodeptr = ERR1; |
653 | |
654 | /* Non-alphanumerics are literals. For digits or letters, do an initial lookup |
655 | in a table. A non-zero result is something that can be returned immediately. |
656 | Otherwise further processing may be required. */ |
657 | |
658 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
659 | else if (c < CHAR_0 || c > CHAR_z) {} /* Not alphanumeric */ |
660 | else if ((i = escapes[c - CHAR_0]) != 0) c = i; |
661 | |
662 | #else /* EBCDIC coding */ |
663 | else if (c < 'a' || (ebcdic_chartab[c] & 0x0E) == 0) {} /* Not alphanumeric */ |
664 | else if ((i = escapes[c - 0x48]) != 0) c = i; |
665 | #endif |
666 | |
667 | /* Escapes that need further processing, or are illegal. */ |
668 | |
669 | else |
670 | { |
671 | const uschar *oldptr; |
672 | BOOL braced, negated; |
673 | |
674 | switch (c) |
675 | { |
676 | /* A number of Perl escapes are not handled by PCRE. We give an explicit |
677 | error. */ |
678 | |
679 | case CHAR_l: |
680 | case CHAR_L: |
681 | *errorcodeptr = ERR37; |
682 | break; |
683 | |
684 | case CHAR_u: |
685 | if ((options & PCRE_JAVASCRIPT_COMPAT) != 0) |
686 | { |
687 | /* In JavaScript, \u must be followed by four hexadecimal numbers. |
688 | Otherwise it is a lowercase u letter. */ |
689 | if ((digitab[ptr[1]] & ctype_xdigit) != 0 && (digitab[ptr[2]] & ctype_xdigit) != 0 |
690 | && (digitab[ptr[3]] & ctype_xdigit) != 0 && (digitab[ptr[4]] & ctype_xdigit) != 0) |
691 | { |
692 | c = 0; |
693 | for (i = 0; i < 4; ++i) |
694 | { |
695 | register int cc = *(++ptr); |
696 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
697 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
698 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
699 | #else /* EBCDIC coding */ |
700 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
701 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
702 | #endif |
703 | } |
704 | } |
705 | } |
706 | else |
707 | *errorcodeptr = ERR37; |
708 | break; |
709 | |
710 | case CHAR_U: |
711 | /* In JavaScript, \U is an uppercase U letter. */ |
712 | if ((options & PCRE_JAVASCRIPT_COMPAT) == 0) *errorcodeptr = ERR37; |
713 | break; |
714 | |
715 | /* In a character class, \g is just a literal "g". Outside a character |
716 | class, \g must be followed by one of a number of specific things: |
717 | |
718 | (1) A number, either plain or braced. If positive, it is an absolute |
719 | backreference. If negative, it is a relative backreference. This is a Perl |
720 | 5.10 feature. |
721 | |
722 | (2) Perl 5.10 also supports \g{name} as a reference to a named group. This |
723 | is part of Perl's movement towards a unified syntax for back references. As |
724 | this is synonymous with \k{name}, we fudge it up by pretending it really |
725 | was \k. |
726 | |
727 | (3) For Oniguruma compatibility we also support \g followed by a name or a |
728 | number either in angle brackets or in single quotes. However, these are |
729 | (possibly recursive) subroutine calls, _not_ backreferences. Just return |
730 | the -ESC_g code (cf \k). */ |
731 | |
732 | case CHAR_g: |
733 | if (isclass) break; |
734 | if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE) |
735 | { |
736 | c = -ESC_g; |
737 | break; |
738 | } |
739 | |
740 | /* Handle the Perl-compatible cases */ |
741 | |
742 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
743 | { |
744 | const uschar *p; |
745 | for (p = ptr+2; *p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET; p++) |
746 | if (*p != CHAR_MINUS && (digitab[*p] & ctype_digit) == 0) break; |
747 | if (*p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET) |
748 | { |
749 | c = -ESC_k; |
750 | break; |
751 | } |
752 | braced = TRUE; |
753 | ptr++; |
754 | } |
755 | else braced = FALSE; |
756 | |
757 | if (ptr[1] == CHAR_MINUS) |
758 | { |
759 | negated = TRUE; |
760 | ptr++; |
761 | } |
762 | else negated = FALSE; |
763 | |
764 | c = 0; |
765 | while ((digitab[ptr[1]] & ctype_digit) != 0) |
766 | c = c * 10 + *(++ptr) - CHAR_0; |
767 | |
768 | if (c < 0) /* Integer overflow */ |
769 | { |
770 | *errorcodeptr = ERR61; |
771 | break; |
772 | } |
773 | |
774 | if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET) |
775 | { |
776 | *errorcodeptr = ERR57; |
777 | break; |
778 | } |
779 | |
780 | if (c == 0) |
781 | { |
782 | *errorcodeptr = ERR58; |
783 | break; |
784 | } |
785 | |
786 | if (negated) |
787 | { |
788 | if (c > bracount) |
789 | { |
790 | *errorcodeptr = ERR15; |
791 | break; |
792 | } |
793 | c = bracount - (c - 1); |
794 | } |
795 | |
796 | c = -(ESC_REF + c); |
797 | break; |
798 | |
799 | /* The handling of escape sequences consisting of a string of digits |
800 | starting with one that is not zero is not straightforward. By experiment, |
801 | the way Perl works seems to be as follows: |
802 | |
803 | Outside a character class, the digits are read as a decimal number. If the |
804 | number is less than 10, or if there are that many previous extracting |
805 | left brackets, then it is a back reference. Otherwise, up to three octal |
806 | digits are read to form an escaped byte. Thus \123 is likely to be octal |
807 | 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal |
808 | value is greater than 377, the least significant 8 bits are taken. Inside a |
809 | character class, \ followed by a digit is always an octal number. */ |
810 | |
811 | case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5: |
812 | case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
813 | |
814 | if (!isclass) |
815 | { |
816 | oldptr = ptr; |
817 | c -= CHAR_0; |
818 | while ((digitab[ptr[1]] & ctype_digit) != 0) |
819 | c = c * 10 + *(++ptr) - CHAR_0; |
820 | if (c < 0) /* Integer overflow */ |
821 | { |
822 | *errorcodeptr = ERR61; |
823 | break; |
824 | } |
825 | if (c < 10 || c <= bracount) |
826 | { |
827 | c = -(ESC_REF + c); |
828 | break; |
829 | } |
830 | ptr = oldptr; /* Put the pointer back and fall through */ |
831 | } |
832 | |
833 | /* Handle an octal number following \. If the first digit is 8 or 9, Perl |
834 | generates a binary zero byte and treats the digit as a following literal. |
835 | Thus we have to pull back the pointer by one. */ |
836 | |
837 | if ((c = *ptr) >= CHAR_8) |
838 | { |
839 | ptr--; |
840 | c = 0; |
841 | break; |
842 | } |
843 | |
844 | /* \0 always starts an octal number, but we may drop through to here with a |
845 | larger first octal digit. The original code used just to take the least |
846 | significant 8 bits of octal numbers (I think this is what early Perls used |
847 | to do). Nowadays we allow for larger numbers in UTF-8 mode, but no more |
848 | than 3 octal digits. */ |
849 | |
850 | case CHAR_0: |
851 | c -= CHAR_0; |
852 | while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7) |
853 | c = c * 8 + *(++ptr) - CHAR_0; |
854 | if (!utf8 && c > 255) *errorcodeptr = ERR51; |
855 | break; |
856 | |
857 | /* \x is complicated. \x{ddd} is a character number which can be greater |
858 | than 0xff in utf8 mode, but only if the ddd are hex digits. If not, { is |
859 | treated as a data character. */ |
860 | |
861 | case CHAR_x: |
862 | if ((options & PCRE_JAVASCRIPT_COMPAT) != 0) |
863 | { |
864 | /* In JavaScript, \x must be followed by two hexadecimal numbers. |
865 | Otherwise it is a lowercase x letter. */ |
866 | if ((digitab[ptr[1]] & ctype_xdigit) != 0 && (digitab[ptr[2]] & ctype_xdigit) != 0) |
867 | { |
868 | c = 0; |
869 | for (i = 0; i < 2; ++i) |
870 | { |
871 | register int cc = *(++ptr); |
872 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
873 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
874 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
875 | #else /* EBCDIC coding */ |
876 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
877 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
878 | #endif |
879 | } |
880 | } |
881 | break; |
882 | } |
883 | |
884 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
885 | { |
886 | const uschar *pt = ptr + 2; |
887 | int count = 0; |
888 | |
889 | c = 0; |
890 | while ((digitab[*pt] & ctype_xdigit) != 0) |
891 | { |
892 | register int cc = *pt++; |
893 | if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */ |
894 | count++; |
895 | |
896 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
897 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
898 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
899 | #else /* EBCDIC coding */ |
900 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
901 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
902 | #endif |
903 | } |
904 | |
905 | if (*pt == CHAR_RIGHT_CURLY_BRACKET) |
906 | { |
907 | if (c < 0 || count > (utf8? 8 : 2)) *errorcodeptr = ERR34; |
908 | ptr = pt; |
909 | break; |
910 | } |
911 | |
912 | /* If the sequence of hex digits does not end with '}', then we don't |
913 | recognize this construct; fall through to the normal \x handling. */ |
914 | } |
915 | |
916 | /* Read just a single-byte hex-defined char */ |
917 | |
918 | c = 0; |
919 | while (i++ < 2 && (digitab[ptr[1]] & ctype_xdigit) != 0) |
920 | { |
921 | int cc; /* Some compilers don't like */ |
922 | cc = *(++ptr); /* ++ in initializers */ |
923 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
924 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
925 | c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
926 | #else /* EBCDIC coding */ |
927 | if (cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
928 | c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
929 | #endif |
930 | } |
931 | break; |
932 | |
933 | /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped. |
934 | An error is given if the byte following \c is not an ASCII character. This |
935 | coding is ASCII-specific, but then the whole concept of \cx is |
936 | ASCII-specific. (However, an EBCDIC equivalent has now been added.) */ |
937 | |
938 | case CHAR_c: |
939 | c = *(++ptr); |
940 | if (c == 0) |
941 | { |
942 | *errorcodeptr = ERR2; |
943 | break; |
944 | } |
945 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
946 | if (c > 127) /* Excludes all non-ASCII in either mode */ |
947 | { |
948 | *errorcodeptr = ERR68; |
949 | break; |
950 | } |
951 | if (c >= CHAR_a && c <= CHAR_z) c -= 32; |
952 | c ^= 0x40; |
953 | #else /* EBCDIC coding */ |
954 | if (c >= CHAR_a && c <= CHAR_z) c += 64; |
955 | c ^= 0xC0; |
956 | #endif |
957 | break; |
958 | |
959 | /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any |
960 | other alphanumeric following \ is an error if PCRE_EXTRA was set; |
961 | otherwise, for Perl compatibility, it is a literal. This code looks a bit |
962 | odd, but there used to be some cases other than the default, and there may |
963 | be again in future, so I haven't "optimized" it. */ |
964 | |
965 | default: |
966 | if ((options & PCRE_EXTRA) != 0) switch(c) |
967 | { |
968 | default: |
969 | *errorcodeptr = ERR3; |
970 | break; |
971 | } |
972 | break; |
973 | } |
974 | } |
975 | |
976 | /* Perl supports \N{name} for character names, as well as plain \N for "not |
977 | newline". PCRE does not support \N{name}. However, it does support |
978 | quantification such as \N{2,3}. */ |
979 | |
980 | if (c == -ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET && |
981 | !is_counted_repeat(ptr+2)) |
982 | *errorcodeptr = ERR37; |
983 | |
984 | /* If PCRE_UCP is set, we change the values for \d etc. */ |
985 | |
986 | if ((options & PCRE_UCP) != 0 && c <= -ESC_D && c >= -ESC_w) |
987 | c -= (ESC_DU - ESC_D); |
988 | |
989 | /* Set the pointer to the final character before returning. */ |
990 | |
991 | *ptrptr = ptr; |
992 | return c; |
993 | } |
994 | |
995 | |
996 | |
997 | #ifdef SUPPORT_UCP |
998 | /************************************************* |
999 | * Handle \P and \p * |
1000 | *************************************************/ |
1001 | |
1002 | /* This function is called after \P or \p has been encountered, provided that |
1003 | PCRE is compiled with support for Unicode properties. On entry, ptrptr is |
1004 | pointing at the P or p. On exit, it is pointing at the final character of the |
1005 | escape sequence. |
1006 | |
1007 | Argument: |
1008 | ptrptr points to the pattern position pointer |
1009 | negptr points to a boolean that is set TRUE for negation else FALSE |
1010 | dptr points to an int that is set to the detailed property value |
1011 | errorcodeptr points to the error code variable |
1012 | |
1013 | Returns: type value from ucp_type_table, or -1 for an invalid type |
1014 | */ |
1015 | |
1016 | static int |
1017 | get_ucp(const uschar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr) |
1018 | { |
1019 | int c, i, bot, top; |
1020 | const uschar *ptr = *ptrptr; |
1021 | char name[32]; |
1022 | |
1023 | c = *(++ptr); |
1024 | if (c == 0) goto ERROR_RETURN; |
1025 | |
1026 | *negptr = FALSE; |
1027 | |
1028 | /* \P or \p can be followed by a name in {}, optionally preceded by ^ for |
1029 | negation. */ |
1030 | |
1031 | if (c == CHAR_LEFT_CURLY_BRACKET) |
1032 | { |
1033 | if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
1034 | { |
1035 | *negptr = TRUE; |
1036 | ptr++; |
1037 | } |
1038 | for (i = 0; i < (int)sizeof(name) - 1; i++) |
1039 | { |
1040 | c = *(++ptr); |
1041 | if (c == 0) goto ERROR_RETURN; |
1042 | if (c == CHAR_RIGHT_CURLY_BRACKET) break; |
1043 | name[i] = c; |
1044 | } |
1045 | if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN; |
1046 | name[i] = 0; |
1047 | } |
1048 | |
1049 | /* Otherwise there is just one following character */ |
1050 | |
1051 | else |
1052 | { |
1053 | name[0] = c; |
1054 | name[1] = 0; |
1055 | } |
1056 | |
1057 | *ptrptr = ptr; |
1058 | |
1059 | /* Search for a recognized property name using binary chop */ |
1060 | |
1061 | bot = 0; |
1062 | top = _pcre_utt_size; |
1063 | |
1064 | while (bot < top) |
1065 | { |
1066 | i = (bot + top) >> 1; |
1067 | c = strcmp(name, _pcre_utt_names + _pcre_utt[i].name_offset); |
1068 | if (c == 0) |
1069 | { |
1070 | *dptr = _pcre_utt[i].value; |
1071 | return _pcre_utt[i].type; |
1072 | } |
1073 | if (c > 0) bot = i + 1; else top = i; |
1074 | } |
1075 | |
1076 | *errorcodeptr = ERR47; |
1077 | *ptrptr = ptr; |
1078 | return -1; |
1079 | |
1080 | ERROR_RETURN: |
1081 | *errorcodeptr = ERR46; |
1082 | *ptrptr = ptr; |
1083 | return -1; |
1084 | } |
1085 | #endif |
1086 | |
1087 | |
1088 | |
1089 | |
1090 | /************************************************* |
1091 | * Read repeat counts * |
1092 | *************************************************/ |
1093 | |
1094 | /* Read an item of the form {n,m} and return the values. This is called only |
1095 | after is_counted_repeat() has confirmed that a repeat-count quantifier exists, |
1096 | so the syntax is guaranteed to be correct, but we need to check the values. |
1097 | |
1098 | Arguments: |
1099 | p pointer to first char after '{' |
1100 | minp pointer to int for min |
1101 | maxp pointer to int for max |
1102 | returned as -1 if no max |
1103 | errorcodeptr points to error code variable |
1104 | |
1105 | Returns: pointer to '}' on success; |
1106 | current ptr on error, with errorcodeptr set non-zero |
1107 | */ |
1108 | |
1109 | static const uschar * |
1110 | read_repeat_counts(const uschar *p, int *minp, int *maxp, int *errorcodeptr) |
1111 | { |
1112 | int min = 0; |
1113 | int max = -1; |
1114 | |
1115 | /* Read the minimum value and do a paranoid check: a negative value indicates |
1116 | an integer overflow. */ |
1117 | |
1118 | while ((digitab[*p] & ctype_digit) != 0) min = min * 10 + *p++ - CHAR_0; |
1119 | if (min < 0 || min > 65535) |
1120 | { |
1121 | *errorcodeptr = ERR5; |
1122 | return p; |
1123 | } |
1124 | |
1125 | /* Read the maximum value if there is one, and again do a paranoid on its size. |
1126 | Also, max must not be less than min. */ |
1127 | |
1128 | if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else |
1129 | { |
1130 | if (*(++p) != CHAR_RIGHT_CURLY_BRACKET) |
1131 | { |
1132 | max = 0; |
1133 | while((digitab[*p] & ctype_digit) != 0) max = max * 10 + *p++ - CHAR_0; |
1134 | if (max < 0 || max > 65535) |
1135 | { |
1136 | *errorcodeptr = ERR5; |
1137 | return p; |
1138 | } |
1139 | if (max < min) |
1140 | { |
1141 | *errorcodeptr = ERR4; |
1142 | return p; |
1143 | } |
1144 | } |
1145 | } |
1146 | |
1147 | /* Fill in the required variables, and pass back the pointer to the terminating |
1148 | '}'. */ |
1149 | |
1150 | *minp = min; |
1151 | *maxp = max; |
1152 | return p; |
1153 | } |
1154 | |
1155 | |
1156 | |
1157 | /************************************************* |
1158 | * Subroutine for finding forward reference * |
1159 | *************************************************/ |
1160 | |
1161 | /* This recursive function is called only from find_parens() below. The |
1162 | top-level call starts at the beginning of the pattern. All other calls must |
1163 | start at a parenthesis. It scans along a pattern's text looking for capturing |
1164 | subpatterns, and counting them. If it finds a named pattern that matches the |
1165 | name it is given, it returns its number. Alternatively, if the name is NULL, it |
1166 | returns when it reaches a given numbered subpattern. Recursion is used to keep |
1167 | track of subpatterns that reset the capturing group numbers - the (?| feature. |
1168 | |
1169 | This function was originally called only from the second pass, in which we know |
1170 | that if (?< or (?' or (?P< is encountered, the name will be correctly |
1171 | terminated because that is checked in the first pass. There is now one call to |
1172 | this function in the first pass, to check for a recursive back reference by |
1173 | name (so that we can make the whole group atomic). In this case, we need check |
1174 | only up to the current position in the pattern, and that is still OK because |
1175 | and previous occurrences will have been checked. To make this work, the test |
1176 | for "end of pattern" is a check against cd->end_pattern in the main loop, |
1177 | instead of looking for a binary zero. This means that the special first-pass |
1178 | call can adjust cd->end_pattern temporarily. (Checks for binary zero while |
1179 | processing items within the loop are OK, because afterwards the main loop will |
1180 | terminate.) |
1181 | |
1182 | Arguments: |
1183 | ptrptr address of the current character pointer (updated) |
1184 | cd compile background data |
1185 | name name to seek, or NULL if seeking a numbered subpattern |
1186 | lorn name length, or subpattern number if name is NULL |
1187 | xmode TRUE if we are in /x mode |
1188 | utf8 TRUE if we are in UTF-8 mode |
1189 | count pointer to the current capturing subpattern number (updated) |
1190 | |
1191 | Returns: the number of the named subpattern, or -1 if not found |
1192 | */ |
1193 | |
1194 | static int |
1195 | find_parens_sub(uschar **ptrptr, compile_data *cd, const uschar *name, int lorn, |
1196 | BOOL xmode, BOOL utf8, int *count) |
1197 | { |
1198 | uschar *ptr = *ptrptr; |
1199 | int start_count = *count; |
1200 | int hwm_count = start_count; |
1201 | BOOL dup_parens = FALSE; |
1202 | |
1203 | /* If the first character is a parenthesis, check on the type of group we are |
1204 | dealing with. The very first call may not start with a parenthesis. */ |
1205 | |
1206 | if (ptr[0] == CHAR_LEFT_PARENTHESIS) |
1207 | { |
1208 | /* Handle specials such as (*SKIP) or (*UTF8) etc. */ |
1209 | |
1210 | if (ptr[1] == CHAR_ASTERISK) ptr += 2; |
1211 | |
1212 | /* Handle a normal, unnamed capturing parenthesis. */ |
1213 | |
1214 | else if (ptr[1] != CHAR_QUESTION_MARK) |
1215 | { |
1216 | *count += 1; |
1217 | if (name == NULL && *count == lorn) return *count; |
1218 | ptr++; |
1219 | } |
1220 | |
1221 | /* All cases now have (? at the start. Remember when we are in a group |
1222 | where the parenthesis numbers are duplicated. */ |
1223 | |
1224 | else if (ptr[2] == CHAR_VERTICAL_LINE) |
1225 | { |
1226 | ptr += 3; |
1227 | dup_parens = TRUE; |
1228 | } |
1229 | |
1230 | /* Handle comments; all characters are allowed until a ket is reached. */ |
1231 | |
1232 | else if (ptr[2] == CHAR_NUMBER_SIGN) |
1233 | { |
1234 | for (ptr += 3; *ptr != 0; ptr++) if (*ptr == CHAR_RIGHT_PARENTHESIS) break; |
1235 | goto FAIL_EXIT; |
1236 | } |
1237 | |
1238 | /* Handle a condition. If it is an assertion, just carry on so that it |
1239 | is processed as normal. If not, skip to the closing parenthesis of the |
1240 | condition (there can't be any nested parens). */ |
1241 | |
1242 | else if (ptr[2] == CHAR_LEFT_PARENTHESIS) |
1243 | { |
1244 | ptr += 2; |
1245 | if (ptr[1] != CHAR_QUESTION_MARK) |
1246 | { |
1247 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
1248 | if (*ptr != 0) ptr++; |
1249 | } |
1250 | } |
1251 | |
1252 | /* Start with (? but not a condition. */ |
1253 | |
1254 | else |
1255 | { |
1256 | ptr += 2; |
1257 | if (*ptr == CHAR_P) ptr++; /* Allow optional P */ |
1258 | |
1259 | /* We have to disambiguate (?<! and (?<= from (?<name> for named groups */ |
1260 | |
1261 | if ((*ptr == CHAR_LESS_THAN_SIGN && ptr[1] != CHAR_EXCLAMATION_MARK && |
1262 | ptr[1] != CHAR_EQUALS_SIGN) || *ptr == CHAR_APOSTROPHE) |
1263 | { |
1264 | int term; |
1265 | const uschar *thisname; |
1266 | *count += 1; |
1267 | if (name == NULL && *count == lorn) return *count; |
1268 | term = *ptr++; |
1269 | if (term == CHAR_LESS_THAN_SIGN) term = CHAR_GREATER_THAN_SIGN; |
1270 | thisname = ptr; |
1271 | while (*ptr != term) ptr++; |
1272 | if (name != NULL && lorn == ptr - thisname && |
1273 | strncmp((const char *)name, (const char *)thisname, lorn) == 0) |
1274 | return *count; |
1275 | term++; |
1276 | } |
1277 | } |
1278 | } |
1279 | |
1280 | /* Past any initial parenthesis handling, scan for parentheses or vertical |
1281 | bars. Stop if we get to cd->end_pattern. Note that this is important for the |
1282 | first-pass call when this value is temporarily adjusted to stop at the current |
1283 | position. So DO NOT change this to a test for binary zero. */ |
1284 | |
1285 | for (; ptr < cd->end_pattern; ptr++) |
1286 | { |
1287 | /* Skip over backslashed characters and also entire \Q...\E */ |
1288 | |
1289 | if (*ptr == CHAR_BACKSLASH) |
1290 | { |
1291 | if (*(++ptr) == 0) goto FAIL_EXIT; |
1292 | if (*ptr == CHAR_Q) for (;;) |
1293 | { |
1294 | while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {}; |
1295 | if (*ptr == 0) goto FAIL_EXIT; |
1296 | if (*(++ptr) == CHAR_E) break; |
1297 | } |
1298 | continue; |
1299 | } |
1300 | |
1301 | /* Skip over character classes; this logic must be similar to the way they |
1302 | are handled for real. If the first character is '^', skip it. Also, if the |
1303 | first few characters (either before or after ^) are \Q\E or \E we skip them |
1304 | too. This makes for compatibility with Perl. Note the use of STR macros to |
1305 | encode "Q\\E" so that it works in UTF-8 on EBCDIC platforms. */ |
1306 | |
1307 | if (*ptr == CHAR_LEFT_SQUARE_BRACKET) |
1308 | { |
1309 | BOOL negate_class = FALSE; |
1310 | for (;;) |
1311 | { |
1312 | if (ptr[1] == CHAR_BACKSLASH) |
1313 | { |
1314 | if (ptr[2] == CHAR_E) |
1315 | ptr+= 2; |
1316 | else if (strncmp((const char *)ptr+2, |
1317 | STR_Q STR_BACKSLASH STR_E, 3) == 0) |
1318 | ptr += 4; |
1319 | else |
1320 | break; |
1321 | } |
1322 | else if (!negate_class && ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
1323 | { |
1324 | negate_class = TRUE; |
1325 | ptr++; |
1326 | } |
1327 | else break; |
1328 | } |
1329 | |
1330 | /* If the next character is ']', it is a data character that must be |
1331 | skipped, except in JavaScript compatibility mode. */ |
1332 | |
1333 | if (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET && |
1334 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) == 0) |
1335 | ptr++; |
1336 | |
1337 | while (*(++ptr) != CHAR_RIGHT_SQUARE_BRACKET) |
1338 | { |
1339 | if (*ptr == 0) return -1; |
1340 | if (*ptr == CHAR_BACKSLASH) |
1341 | { |
1342 | if (*(++ptr) == 0) goto FAIL_EXIT; |
1343 | if (*ptr == CHAR_Q) for (;;) |
1344 | { |
1345 | while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {}; |
1346 | if (*ptr == 0) goto FAIL_EXIT; |
1347 | if (*(++ptr) == CHAR_E) break; |
1348 | } |
1349 | continue; |
1350 | } |
1351 | } |
1352 | continue; |
1353 | } |
1354 | |
1355 | /* Skip comments in /x mode */ |
1356 | |
1357 | if (xmode && *ptr == CHAR_NUMBER_SIGN) |
1358 | { |
1359 | ptr++; |
1360 | while (*ptr != 0) |
1361 | { |
1362 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; } |
1363 | ptr++; |
1364 | #ifdef SUPPORT_UTF8 |
1365 | if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++; |
1366 | #endif |
1367 | } |
1368 | if (*ptr == 0) goto FAIL_EXIT; |
1369 | continue; |
1370 | } |
1371 | |
1372 | /* Check for the special metacharacters */ |
1373 | |
1374 | if (*ptr == CHAR_LEFT_PARENTHESIS) |
1375 | { |
1376 | int rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf8, count); |
1377 | if (rc > 0) return rc; |
1378 | if (*ptr == 0) goto FAIL_EXIT; |
1379 | } |
1380 | |
1381 | else if (*ptr == CHAR_RIGHT_PARENTHESIS) |
1382 | { |
1383 | if (dup_parens && *count < hwm_count) *count = hwm_count; |
1384 | goto FAIL_EXIT; |
1385 | } |
1386 | |
1387 | else if (*ptr == CHAR_VERTICAL_LINE && dup_parens) |
1388 | { |
1389 | if (*count > hwm_count) hwm_count = *count; |
1390 | *count = start_count; |
1391 | } |
1392 | } |
1393 | |
1394 | FAIL_EXIT: |
1395 | *ptrptr = ptr; |
1396 | return -1; |
1397 | } |
1398 | |
1399 | |
1400 | |
1401 | |
1402 | /************************************************* |
1403 | * Find forward referenced subpattern * |
1404 | *************************************************/ |
1405 | |
1406 | /* This function scans along a pattern's text looking for capturing |
1407 | subpatterns, and counting them. If it finds a named pattern that matches the |
1408 | name it is given, it returns its number. Alternatively, if the name is NULL, it |
1409 | returns when it reaches a given numbered subpattern. This is used for forward |
1410 | references to subpatterns. We used to be able to start this scan from the |
1411 | current compiling point, using the current count value from cd->bracount, and |
1412 | do it all in a single loop, but the addition of the possibility of duplicate |
1413 | subpattern numbers means that we have to scan from the very start, in order to |
1414 | take account of such duplicates, and to use a recursive function to keep track |
1415 | of the different types of group. |
1416 | |
1417 | Arguments: |
1418 | cd compile background data |
1419 | name name to seek, or NULL if seeking a numbered subpattern |
1420 | lorn name length, or subpattern number if name is NULL |
1421 | xmode TRUE if we are in /x mode |
1422 | utf8 TRUE if we are in UTF-8 mode |
1423 | |
1424 | Returns: the number of the found subpattern, or -1 if not found |
1425 | */ |
1426 | |
1427 | static int |
1428 | find_parens(compile_data *cd, const uschar *name, int lorn, BOOL xmode, |
1429 | BOOL utf8) |
1430 | { |
1431 | uschar *ptr = (uschar *)cd->start_pattern; |
1432 | int count = 0; |
1433 | int rc; |
1434 | |
1435 | /* If the pattern does not start with an opening parenthesis, the first call |
1436 | to find_parens_sub() will scan right to the end (if necessary). However, if it |
1437 | does start with a parenthesis, find_parens_sub() will return when it hits the |
1438 | matching closing parens. That is why we have to have a loop. */ |
1439 | |
1440 | for (;;) |
1441 | { |
1442 | rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf8, &count); |
1443 | if (rc > 0 || *ptr++ == 0) break; |
1444 | } |
1445 | |
1446 | return rc; |
1447 | } |
1448 | |
1449 | |
1450 | |
1451 | |
1452 | /************************************************* |
1453 | * Find first significant op code * |
1454 | *************************************************/ |
1455 | |
1456 | /* This is called by several functions that scan a compiled expression looking |
1457 | for a fixed first character, or an anchoring op code etc. It skips over things |
1458 | that do not influence this. For some calls, it makes sense to skip negative |
1459 | forward and all backward assertions, and also the \b assertion; for others it |
1460 | does not. |
1461 | |
1462 | Arguments: |
1463 | code pointer to the start of the group |
1464 | skipassert TRUE if certain assertions are to be skipped |
1465 | |
1466 | Returns: pointer to the first significant opcode |
1467 | */ |
1468 | |
1469 | static const uschar* |
1470 | first_significant_code(const uschar *code, BOOL skipassert) |
1471 | { |
1472 | for (;;) |
1473 | { |
1474 | switch ((int)*code) |
1475 | { |
1476 | case OP_ASSERT_NOT: |
1477 | case OP_ASSERTBACK: |
1478 | case OP_ASSERTBACK_NOT: |
1479 | if (!skipassert) return code; |
1480 | do code += GET(code, 1); while (*code == OP_ALT); |
1481 | code += _pcre_OP_lengths[*code]; |
1482 | break; |
1483 | |
1484 | case OP_WORD_BOUNDARY: |
1485 | case OP_NOT_WORD_BOUNDARY: |
1486 | if (!skipassert) return code; |
1487 | /* Fall through */ |
1488 | |
1489 | case OP_CALLOUT: |
1490 | case OP_CREF: |
1491 | case OP_NCREF: |
1492 | case OP_RREF: |
1493 | case OP_NRREF: |
1494 | case OP_DEF: |
1495 | code += _pcre_OP_lengths[*code]; |
1496 | break; |
1497 | |
1498 | default: |
1499 | return code; |
1500 | } |
1501 | } |
1502 | /* Control never reaches here */ |
1503 | } |
1504 | |
1505 | |
1506 | |
1507 | |
1508 | /************************************************* |
1509 | * Find the fixed length of a branch * |
1510 | *************************************************/ |
1511 | |
1512 | /* Scan a branch and compute the fixed length of subject that will match it, |
1513 | if the length is fixed. This is needed for dealing with backward assertions. |
1514 | In UTF8 mode, the result is in characters rather than bytes. The branch is |
1515 | temporarily terminated with OP_END when this function is called. |
1516 | |
1517 | This function is called when a backward assertion is encountered, so that if it |
1518 | fails, the error message can point to the correct place in the pattern. |
1519 | However, we cannot do this when the assertion contains subroutine calls, |
1520 | because they can be forward references. We solve this by remembering this case |
1521 | and doing the check at the end; a flag specifies which mode we are running in. |
1522 | |
1523 | Arguments: |
1524 | code points to the start of the pattern (the bracket) |
1525 | utf8 TRUE in UTF-8 mode |
1526 | atend TRUE if called when the pattern is complete |
1527 | cd the "compile data" structure |
1528 | |
1529 | Returns: the fixed length, |
1530 | or -1 if there is no fixed length, |
1531 | or -2 if \C was encountered (in UTF-8 mode only) |
1532 | or -3 if an OP_RECURSE item was encountered and atend is FALSE |
1533 | or -4 if an unknown opcode was encountered (internal error) |
1534 | */ |
1535 | |
1536 | static int |
1537 | find_fixedlength(uschar *code, BOOL utf8, BOOL atend, compile_data *cd) |
1538 | { |
1539 | int length = -1; |
1540 | |
1541 | register int branchlength = 0; |
1542 | register uschar *cc = code + 1 + LINK_SIZE; |
1543 | |
1544 | /* Scan along the opcodes for this branch. If we get to the end of the |
1545 | branch, check the length against that of the other branches. */ |
1546 | |
1547 | for (;;) |
1548 | { |
1549 | int d; |
1550 | uschar *ce, *cs; |
1551 | register int op = *cc; |
1552 | switch (op) |
1553 | { |
1554 | /* We only need to continue for OP_CBRA (normal capturing bracket) and |
1555 | OP_BRA (normal non-capturing bracket) because the other variants of these |
1556 | opcodes are all concerned with unlimited repeated groups, which of course |
1557 | are not of fixed length. */ |
1558 | |
1559 | case OP_CBRA: |
1560 | case OP_BRA: |
1561 | case OP_ONCE: |
1562 | case OP_ONCE_NC: |
1563 | case OP_COND: |
1564 | d = find_fixedlength(cc + ((op == OP_CBRA)? 2:0), utf8, atend, cd); |
1565 | if (d < 0) return d; |
1566 | branchlength += d; |
1567 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1568 | cc += 1 + LINK_SIZE; |
1569 | break; |
1570 | |
1571 | /* Reached end of a branch; if it's a ket it is the end of a nested call. |
1572 | If it's ALT it is an alternation in a nested call. An ACCEPT is effectively |
1573 | an ALT. If it is END it's the end of the outer call. All can be handled by |
1574 | the same code. Note that we must not include the OP_KETRxxx opcodes here, |
1575 | because they all imply an unlimited repeat. */ |
1576 | |
1577 | case OP_ALT: |
1578 | case OP_KET: |
1579 | case OP_END: |
1580 | case OP_ACCEPT: |
1581 | case OP_ASSERT_ACCEPT: |
1582 | if (length < 0) length = branchlength; |
1583 | else if (length != branchlength) return -1; |
1584 | if (*cc != OP_ALT) return length; |
1585 | cc += 1 + LINK_SIZE; |
1586 | branchlength = 0; |
1587 | break; |
1588 | |
1589 | /* A true recursion implies not fixed length, but a subroutine call may |
1590 | be OK. If the subroutine is a forward reference, we can't deal with |
1591 | it until the end of the pattern, so return -3. */ |
1592 | |
1593 | case OP_RECURSE: |
1594 | if (!atend) return -3; |
1595 | cs = ce = (uschar *)cd->start_code + GET(cc, 1); /* Start subpattern */ |
1596 | do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */ |
1597 | if (cc > cs && cc < ce) return -1; /* Recursion */ |
1598 | d = find_fixedlength(cs + 2, utf8, atend, cd); |
1599 | if (d < 0) return d; |
1600 | branchlength += d; |
1601 | cc += 1 + LINK_SIZE; |
1602 | break; |
1603 | |
1604 | /* Skip over assertive subpatterns */ |
1605 | |
1606 | case OP_ASSERT: |
1607 | case OP_ASSERT_NOT: |
1608 | case OP_ASSERTBACK: |
1609 | case OP_ASSERTBACK_NOT: |
1610 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1611 | /* Fall through */ |
1612 | |
1613 | /* Skip over things that don't match chars */ |
1614 | |
1615 | case OP_MARK: |
1616 | case OP_PRUNE_ARG: |
1617 | case OP_SKIP_ARG: |
1618 | case OP_THEN_ARG: |
1619 | cc += cc[1] + _pcre_OP_lengths[*cc]; |
1620 | break; |
1621 | |
1622 | case OP_CALLOUT: |
1623 | case OP_CIRC: |
1624 | case OP_CIRCM: |
1625 | case OP_CLOSE: |
1626 | case OP_COMMIT: |
1627 | case OP_CREF: |
1628 | case OP_DEF: |
1629 | case OP_DOLL: |
1630 | case OP_DOLLM: |
1631 | case OP_EOD: |
1632 | case OP_EODN: |
1633 | case OP_FAIL: |
1634 | case OP_NCREF: |
1635 | case OP_NRREF: |
1636 | case OP_NOT_WORD_BOUNDARY: |
1637 | case OP_PRUNE: |
1638 | case OP_REVERSE: |
1639 | case OP_RREF: |
1640 | case OP_SET_SOM: |
1641 | case OP_SKIP: |
1642 | case OP_SOD: |
1643 | case OP_SOM: |
1644 | case OP_THEN: |
1645 | case OP_WORD_BOUNDARY: |
1646 | cc += _pcre_OP_lengths[*cc]; |
1647 | break; |
1648 | |
1649 | /* Handle literal characters */ |
1650 | |
1651 | case OP_CHAR: |
1652 | case OP_CHARI: |
1653 | case OP_NOT: |
1654 | case OP_NOTI: |
1655 | branchlength++; |
1656 | cc += 2; |
1657 | #ifdef SUPPORT_UTF8 |
1658 | if (utf8 && cc[-1] >= 0xc0) cc += _pcre_utf8_table4[cc[-1] & 0x3f]; |
1659 | #endif |
1660 | break; |
1661 | |
1662 | /* Handle exact repetitions. The count is already in characters, but we |
1663 | need to skip over a multibyte character in UTF8 mode. */ |
1664 | |
1665 | case OP_EXACT: |
1666 | case OP_EXACTI: |
1667 | case OP_NOTEXACT: |
1668 | case OP_NOTEXACTI: |
1669 | branchlength += GET2(cc,1); |
1670 | cc += 4; |
1671 | #ifdef SUPPORT_UTF8 |
1672 | if (utf8 && cc[-1] >= 0xc0) cc += _pcre_utf8_table4[cc[-1] & 0x3f]; |
1673 | #endif |
1674 | break; |
1675 | |
1676 | case OP_TYPEEXACT: |
1677 | branchlength += GET2(cc,1); |
1678 | if (cc[3] == OP_PROP || cc[3] == OP_NOTPROP) cc += 2; |
1679 | cc += 4; |
1680 | break; |
1681 | |
1682 | /* Handle single-char matchers */ |
1683 | |
1684 | case OP_PROP: |
1685 | case OP_NOTPROP: |
1686 | cc += 2; |
1687 | /* Fall through */ |
1688 | |
1689 | case OP_HSPACE: |
1690 | case OP_VSPACE: |
1691 | case OP_NOT_HSPACE: |
1692 | case OP_NOT_VSPACE: |
1693 | case OP_NOT_DIGIT: |
1694 | case OP_DIGIT: |
1695 | case OP_NOT_WHITESPACE: |
1696 | case OP_WHITESPACE: |
1697 | case OP_NOT_WORDCHAR: |
1698 | case OP_WORDCHAR: |
1699 | case OP_ANY: |
1700 | case OP_ALLANY: |
1701 | branchlength++; |
1702 | cc++; |
1703 | break; |
1704 | |
1705 | /* The single-byte matcher isn't allowed. This only happens in UTF-8 mode; |
1706 | otherwise \C is coded as OP_ALLANY. */ |
1707 | |
1708 | case OP_ANYBYTE: |
1709 | return -2; |
1710 | |
1711 | /* Check a class for variable quantification */ |
1712 | |
1713 | #ifdef SUPPORT_UTF8 |
1714 | case OP_XCLASS: |
1715 | cc += GET(cc, 1) - 33; |
1716 | /* Fall through */ |
1717 | #endif |
1718 | |
1719 | case OP_CLASS: |
1720 | case OP_NCLASS: |
1721 | cc += 33; |
1722 | |
1723 | switch (*cc) |
1724 | { |
1725 | case OP_CRPLUS: |
1726 | case OP_CRMINPLUS: |
1727 | case OP_CRSTAR: |
1728 | case OP_CRMINSTAR: |
1729 | case OP_CRQUERY: |
1730 | case OP_CRMINQUERY: |
1731 | return -1; |
1732 | |
1733 | case OP_CRRANGE: |
1734 | case OP_CRMINRANGE: |
1735 | if (GET2(cc,1) != GET2(cc,3)) return -1; |
1736 | branchlength += GET2(cc,1); |
1737 | cc += 5; |
1738 | break; |
1739 | |
1740 | default: |
1741 | branchlength++; |
1742 | } |
1743 | break; |
1744 | |
1745 | /* Anything else is variable length */ |
1746 | |
1747 | case OP_ANYNL: |
1748 | case OP_BRAMINZERO: |
1749 | case OP_BRAPOS: |
1750 | case OP_BRAPOSZERO: |
1751 | case OP_BRAZERO: |
1752 | case OP_CBRAPOS: |
1753 | case OP_EXTUNI: |
1754 | case OP_KETRMAX: |
1755 | case OP_KETRMIN: |
1756 | case OP_KETRPOS: |
1757 | case OP_MINPLUS: |
1758 | case OP_MINPLUSI: |
1759 | case OP_MINQUERY: |
1760 | case OP_MINQUERYI: |
1761 | case OP_MINSTAR: |
1762 | case OP_MINSTARI: |
1763 | case OP_MINUPTO: |
1764 | case OP_MINUPTOI: |
1765 | case OP_NOTMINPLUS: |
1766 | case OP_NOTMINPLUSI: |
1767 | case OP_NOTMINQUERY: |
1768 | case OP_NOTMINQUERYI: |
1769 | case OP_NOTMINSTAR: |
1770 | case OP_NOTMINSTARI: |
1771 | case OP_NOTMINUPTO: |
1772 | case OP_NOTMINUPTOI: |
1773 | case OP_NOTPLUS: |
1774 | case OP_NOTPLUSI: |
1775 | case OP_NOTPOSPLUS: |
1776 | case OP_NOTPOSPLUSI: |
1777 | case OP_NOTPOSQUERY: |
1778 | case OP_NOTPOSQUERYI: |
1779 | case OP_NOTPOSSTAR: |
1780 | case OP_NOTPOSSTARI: |
1781 | case OP_NOTPOSUPTO: |
1782 | case OP_NOTPOSUPTOI: |
1783 | case OP_NOTQUERY: |
1784 | case OP_NOTQUERYI: |
1785 | case OP_NOTSTAR: |
1786 | case OP_NOTSTARI: |
1787 | case OP_NOTUPTO: |
1788 | case OP_NOTUPTOI: |
1789 | case OP_PLUS: |
1790 | case OP_PLUSI: |
1791 | case OP_POSPLUS: |
1792 | case OP_POSPLUSI: |
1793 | case OP_POSQUERY: |
1794 | case OP_POSQUERYI: |
1795 | case OP_POSSTAR: |
1796 | case OP_POSSTARI: |
1797 | case OP_POSUPTO: |
1798 | case OP_POSUPTOI: |
1799 | case OP_QUERY: |
1800 | case OP_QUERYI: |
1801 | case OP_REF: |
1802 | case OP_REFI: |
1803 | case OP_SBRA: |
1804 | case OP_SBRAPOS: |
1805 | case OP_SCBRA: |
1806 | case OP_SCBRAPOS: |
1807 | case OP_SCOND: |
1808 | case OP_SKIPZERO: |
1809 | case OP_STAR: |
1810 | case OP_STARI: |
1811 | case OP_TYPEMINPLUS: |
1812 | case OP_TYPEMINQUERY: |
1813 | case OP_TYPEMINSTAR: |
1814 | case OP_TYPEMINUPTO: |
1815 | case OP_TYPEPLUS: |
1816 | case OP_TYPEPOSPLUS: |
1817 | case OP_TYPEPOSQUERY: |
1818 | case OP_TYPEPOSSTAR: |
1819 | case OP_TYPEPOSUPTO: |
1820 | case OP_TYPEQUERY: |
1821 | case OP_TYPESTAR: |
1822 | case OP_TYPEUPTO: |
1823 | case OP_UPTO: |
1824 | case OP_UPTOI: |
1825 | return -1; |
1826 | |
1827 | /* Catch unrecognized opcodes so that when new ones are added they |
1828 | are not forgotten, as has happened in the past. */ |
1829 | |
1830 | default: |
1831 | return -4; |
1832 | } |
1833 | } |
1834 | /* Control never gets here */ |
1835 | } |
1836 | |
1837 | |
1838 | |
1839 | |
1840 | /************************************************* |
1841 | * Scan compiled regex for specific bracket * |
1842 | *************************************************/ |
1843 | |
1844 | /* This little function scans through a compiled pattern until it finds a |
1845 | capturing bracket with the given number, or, if the number is negative, an |
1846 | instance of OP_REVERSE for a lookbehind. The function is global in the C sense |
1847 | so that it can be called from pcre_study() when finding the minimum matching |
1848 | length. |
1849 | |
1850 | Arguments: |
1851 | code points to start of expression |
1852 | utf8 TRUE in UTF-8 mode |
1853 | number the required bracket number or negative to find a lookbehind |
1854 | |
1855 | Returns: pointer to the opcode for the bracket, or NULL if not found |
1856 | */ |
1857 | |
1858 | const uschar * |
1859 | _pcre_find_bracket(const uschar *code, BOOL utf8, int number) |
1860 | { |
1861 | for (;;) |
1862 | { |
1863 | register int c = *code; |
1864 | |
1865 | if (c == OP_END) return NULL; |
1866 | |
1867 | /* XCLASS is used for classes that cannot be represented just by a bit |
1868 | map. This includes negated single high-valued characters. The length in |
1869 | the table is zero; the actual length is stored in the compiled code. */ |
1870 | |
1871 | if (c == OP_XCLASS) code += GET(code, 1); |
1872 | |
1873 | /* Handle recursion */ |
1874 | |
1875 | else if (c == OP_REVERSE) |
1876 | { |
1877 | if (number < 0) return (uschar *)code; |
1878 | code += _pcre_OP_lengths[c]; |
1879 | } |
1880 | |
1881 | /* Handle capturing bracket */ |
1882 | |
1883 | else if (c == OP_CBRA || c == OP_SCBRA || |
1884 | c == OP_CBRAPOS || c == OP_SCBRAPOS) |
1885 | { |
1886 | int n = GET2(code, 1+LINK_SIZE); |
1887 | if (n == number) return (uschar *)code; |
1888 | code += _pcre_OP_lengths[c]; |
1889 | } |
1890 | |
1891 | /* Otherwise, we can get the item's length from the table, except that for |
1892 | repeated character types, we have to test for \p and \P, which have an extra |
1893 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
1894 | must add in its length. */ |
1895 | |
1896 | else |
1897 | { |
1898 | switch(c) |
1899 | { |
1900 | case OP_TYPESTAR: |
1901 | case OP_TYPEMINSTAR: |
1902 | case OP_TYPEPLUS: |
1903 | case OP_TYPEMINPLUS: |
1904 | case OP_TYPEQUERY: |
1905 | case OP_TYPEMINQUERY: |
1906 | case OP_TYPEPOSSTAR: |
1907 | case OP_TYPEPOSPLUS: |
1908 | case OP_TYPEPOSQUERY: |
1909 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
1910 | break; |
1911 | |
1912 | case OP_TYPEUPTO: |
1913 | case OP_TYPEMINUPTO: |
1914 | case OP_TYPEEXACT: |
1915 | case OP_TYPEPOSUPTO: |
1916 | if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; |
1917 | break; |
1918 | |
1919 | case OP_MARK: |
1920 | case OP_PRUNE_ARG: |
1921 | case OP_SKIP_ARG: |
1922 | code += code[1]; |
1923 | break; |
1924 | |
1925 | case OP_THEN_ARG: |
1926 | code += code[1]; |
1927 | break; |
1928 | } |
1929 | |
1930 | /* Add in the fixed length from the table */ |
1931 | |
1932 | code += _pcre_OP_lengths[c]; |
1933 | |
1934 | /* In UTF-8 mode, opcodes that are followed by a character may be followed by |
1935 | a multi-byte character. The length in the table is a minimum, so we have to |
1936 | arrange to skip the extra bytes. */ |
1937 | |
1938 | #ifdef SUPPORT_UTF8 |
1939 | if (utf8) switch(c) |
1940 | { |
1941 | case OP_CHAR: |
1942 | case OP_CHARI: |
1943 | case OP_EXACT: |
1944 | case OP_EXACTI: |
1945 | case OP_UPTO: |
1946 | case OP_UPTOI: |
1947 | case OP_MINUPTO: |
1948 | case OP_MINUPTOI: |
1949 | case OP_POSUPTO: |
1950 | case OP_POSUPTOI: |
1951 | case OP_STAR: |
1952 | case OP_STARI: |
1953 | case OP_MINSTAR: |
1954 | case OP_MINSTARI: |
1955 | case OP_POSSTAR: |
1956 | case OP_POSSTARI: |
1957 | case OP_PLUS: |
1958 | case OP_PLUSI: |
1959 | case OP_MINPLUS: |
1960 | case OP_MINPLUSI: |
1961 | case OP_POSPLUS: |
1962 | case OP_POSPLUSI: |
1963 | case OP_QUERY: |
1964 | case OP_QUERYI: |
1965 | case OP_MINQUERY: |
1966 | case OP_MINQUERYI: |
1967 | case OP_POSQUERY: |
1968 | case OP_POSQUERYI: |
1969 | if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f]; |
1970 | break; |
1971 | } |
1972 | #else |
1973 | (void)(utf8); /* Keep compiler happy by referencing function argument */ |
1974 | #endif |
1975 | } |
1976 | } |
1977 | } |
1978 | |
1979 | |
1980 | |
1981 | /************************************************* |
1982 | * Scan compiled regex for recursion reference * |
1983 | *************************************************/ |
1984 | |
1985 | /* This little function scans through a compiled pattern until it finds an |
1986 | instance of OP_RECURSE. |
1987 | |
1988 | Arguments: |
1989 | code points to start of expression |
1990 | utf8 TRUE in UTF-8 mode |
1991 | |
1992 | Returns: pointer to the opcode for OP_RECURSE, or NULL if not found |
1993 | */ |
1994 | |
1995 | static const uschar * |
1996 | find_recurse(const uschar *code, BOOL utf8) |
1997 | { |
1998 | for (;;) |
1999 | { |
2000 | register int c = *code; |
2001 | if (c == OP_END) return NULL; |
2002 | if (c == OP_RECURSE) return code; |
2003 | |
2004 | /* XCLASS is used for classes that cannot be represented just by a bit |
2005 | map. This includes negated single high-valued characters. The length in |
2006 | the table is zero; the actual length is stored in the compiled code. */ |
2007 | |
2008 | if (c == OP_XCLASS) code += GET(code, 1); |
2009 | |
2010 | /* Otherwise, we can get the item's length from the table, except that for |
2011 | repeated character types, we have to test for \p and \P, which have an extra |
2012 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
2013 | must add in its length. */ |
2014 | |
2015 | else |
2016 | { |
2017 | switch(c) |
2018 | { |
2019 | case OP_TYPESTAR: |
2020 | case OP_TYPEMINSTAR: |
2021 | case OP_TYPEPLUS: |
2022 | case OP_TYPEMINPLUS: |
2023 | case OP_TYPEQUERY: |
2024 | case OP_TYPEMINQUERY: |
2025 | case OP_TYPEPOSSTAR: |
2026 | case OP_TYPEPOSPLUS: |
2027 | case OP_TYPEPOSQUERY: |
2028 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2029 | break; |
2030 | |
2031 | case OP_TYPEPOSUPTO: |
2032 | case OP_TYPEUPTO: |
2033 | case OP_TYPEMINUPTO: |
2034 | case OP_TYPEEXACT: |
2035 | if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; |
2036 | break; |
2037 | |
2038 | case OP_MARK: |
2039 | case OP_PRUNE_ARG: |
2040 | case OP_SKIP_ARG: |
2041 | code += code[1]; |
2042 | break; |
2043 | |
2044 | case OP_THEN_ARG: |
2045 | code += code[1]; |
2046 | break; |
2047 | } |
2048 | |
2049 | /* Add in the fixed length from the table */ |
2050 | |
2051 | code += _pcre_OP_lengths[c]; |
2052 | |
2053 | /* In UTF-8 mode, opcodes that are followed by a character may be followed |
2054 | by a multi-byte character. The length in the table is a minimum, so we have |
2055 | to arrange to skip the extra bytes. */ |
2056 | |
2057 | #ifdef SUPPORT_UTF8 |
2058 | if (utf8) switch(c) |
2059 | { |
2060 | case OP_CHAR: |
2061 | case OP_CHARI: |
2062 | case OP_EXACT: |
2063 | case OP_EXACTI: |
2064 | case OP_UPTO: |
2065 | case OP_UPTOI: |
2066 | case OP_MINUPTO: |
2067 | case OP_MINUPTOI: |
2068 | case OP_POSUPTO: |
2069 | case OP_POSUPTOI: |
2070 | case OP_STAR: |
2071 | case OP_STARI: |
2072 | case OP_MINSTAR: |
2073 | case OP_MINSTARI: |
2074 | case OP_POSSTAR: |
2075 | case OP_POSSTARI: |
2076 | case OP_PLUS: |
2077 | case OP_PLUSI: |
2078 | case OP_MINPLUS: |
2079 | case OP_MINPLUSI: |
2080 | case OP_POSPLUS: |
2081 | case OP_POSPLUSI: |
2082 | case OP_QUERY: |
2083 | case OP_QUERYI: |
2084 | case OP_MINQUERY: |
2085 | case OP_MINQUERYI: |
2086 | case OP_POSQUERY: |
2087 | case OP_POSQUERYI: |
2088 | if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f]; |
2089 | break; |
2090 | } |
2091 | #else |
2092 | (void)(utf8); /* Keep compiler happy by referencing function argument */ |
2093 | #endif |
2094 | } |
2095 | } |
2096 | } |
2097 | |
2098 | |
2099 | |
2100 | /************************************************* |
2101 | * Scan compiled branch for non-emptiness * |
2102 | *************************************************/ |
2103 | |
2104 | /* This function scans through a branch of a compiled pattern to see whether it |
2105 | can match the empty string or not. It is called from could_be_empty() |
2106 | below and from compile_branch() when checking for an unlimited repeat of a |
2107 | group that can match nothing. Note that first_significant_code() skips over |
2108 | backward and negative forward assertions when its final argument is TRUE. If we |
2109 | hit an unclosed bracket, we return "empty" - this means we've struck an inner |
2110 | bracket whose current branch will already have been scanned. |
2111 | |
2112 | Arguments: |
2113 | code points to start of search |
2114 | endcode points to where to stop |
2115 | utf8 TRUE if in UTF8 mode |
2116 | cd contains pointers to tables etc. |
2117 | |
2118 | Returns: TRUE if what is matched could be empty |
2119 | */ |
2120 | |
2121 | static BOOL |
2122 | could_be_empty_branch(const uschar *code, const uschar *endcode, BOOL utf8, |
2123 | compile_data *cd) |
2124 | { |
2125 | register int c; |
2126 | for (code = first_significant_code(code + _pcre_OP_lengths[*code], TRUE); |
2127 | code < endcode; |
2128 | code = first_significant_code(code + _pcre_OP_lengths[c], TRUE)) |
2129 | { |
2130 | const uschar *ccode; |
2131 | |
2132 | c = *code; |
2133 | |
2134 | /* Skip over forward assertions; the other assertions are skipped by |
2135 | first_significant_code() with a TRUE final argument. */ |
2136 | |
2137 | if (c == OP_ASSERT) |
2138 | { |
2139 | do code += GET(code, 1); while (*code == OP_ALT); |
2140 | c = *code; |
2141 | continue; |
2142 | } |
2143 | |
2144 | /* For a recursion/subroutine call, if its end has been reached, which |
2145 | implies a backward reference subroutine call, we can scan it. If it's a |
2146 | forward reference subroutine call, we can't. To detect forward reference |
2147 | we have to scan up the list that is kept in the workspace. This function is |
2148 | called only when doing the real compile, not during the pre-compile that |
2149 | measures the size of the compiled pattern. */ |
2150 | |
2151 | if (c == OP_RECURSE) |
2152 | { |
2153 | const uschar *scode; |
2154 | BOOL empty_branch; |
2155 | |
2156 | /* Test for forward reference */ |
2157 | |
2158 | for (scode = cd->start_workspace; scode < cd->hwm; scode += LINK_SIZE) |
2159 | if (GET(scode, 0) == code + 1 - cd->start_code) return TRUE; |
2160 | |
2161 | /* Not a forward reference, test for completed backward reference */ |
2162 | |
2163 | empty_branch = FALSE; |
2164 | scode = cd->start_code + GET(code, 1); |
2165 | if (GET(scode, 1) == 0) return TRUE; /* Unclosed */ |
2166 | |
2167 | /* Completed backwards reference */ |
2168 | |
2169 | do |
2170 | { |
2171 | if (could_be_empty_branch(scode, endcode, utf8, cd)) |
2172 | { |
2173 | empty_branch = TRUE; |
2174 | break; |
2175 | } |
2176 | scode += GET(scode, 1); |
2177 | } |
2178 | while (*scode == OP_ALT); |
2179 | |
2180 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
2181 | continue; |
2182 | } |
2183 | |
2184 | /* Groups with zero repeats can of course be empty; skip them. */ |
2185 | |
2186 | if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO || |
2187 | c == OP_BRAPOSZERO) |
2188 | { |
2189 | code += _pcre_OP_lengths[c]; |
2190 | do code += GET(code, 1); while (*code == OP_ALT); |
2191 | c = *code; |
2192 | continue; |
2193 | } |
2194 | |
2195 | /* A nested group that is already marked as "could be empty" can just be |
2196 | skipped. */ |
2197 | |
2198 | if (c == OP_SBRA || c == OP_SBRAPOS || |
2199 | c == OP_SCBRA || c == OP_SCBRAPOS) |
2200 | { |
2201 | do code += GET(code, 1); while (*code == OP_ALT); |
2202 | c = *code; |
2203 | continue; |
2204 | } |
2205 | |
2206 | /* For other groups, scan the branches. */ |
2207 | |
2208 | if (c == OP_BRA || c == OP_BRAPOS || |
2209 | c == OP_CBRA || c == OP_CBRAPOS || |
2210 | c == OP_ONCE || c == OP_ONCE_NC || |
2211 | c == OP_COND) |
2212 | { |
2213 | BOOL empty_branch; |
2214 | if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */ |
2215 | |
2216 | /* If a conditional group has only one branch, there is a second, implied, |
2217 | empty branch, so just skip over the conditional, because it could be empty. |
2218 | Otherwise, scan the individual branches of the group. */ |
2219 | |
2220 | if (c == OP_COND && code[GET(code, 1)] != OP_ALT) |
2221 | code += GET(code, 1); |
2222 | else |
2223 | { |
2224 | empty_branch = FALSE; |
2225 | do |
2226 | { |
2227 | if (!empty_branch && could_be_empty_branch(code, endcode, utf8, cd)) |
2228 | empty_branch = TRUE; |
2229 | code += GET(code, 1); |
2230 | } |
2231 | while (*code == OP_ALT); |
2232 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
2233 | } |
2234 | |
2235 | c = *code; |
2236 | continue; |
2237 | } |
2238 | |
2239 | /* Handle the other opcodes */ |
2240 | |
2241 | switch (c) |
2242 | { |
2243 | /* Check for quantifiers after a class. XCLASS is used for classes that |
2244 | cannot be represented just by a bit map. This includes negated single |
2245 | high-valued characters. The length in _pcre_OP_lengths[] is zero; the |
2246 | actual length is stored in the compiled code, so we must update "code" |
2247 | here. */ |
2248 | |
2249 | #ifdef SUPPORT_UTF8 |
2250 | case OP_XCLASS: |
2251 | ccode = code += GET(code, 1); |
2252 | goto CHECK_CLASS_REPEAT; |
2253 | #endif |
2254 | |
2255 | case OP_CLASS: |
2256 | case OP_NCLASS: |
2257 | ccode = code + 33; |
2258 | |
2259 | #ifdef SUPPORT_UTF8 |
2260 | CHECK_CLASS_REPEAT: |
2261 | #endif |
2262 | |
2263 | switch (*ccode) |
2264 | { |
2265 | case OP_CRSTAR: /* These could be empty; continue */ |
2266 | case OP_CRMINSTAR: |
2267 | case OP_CRQUERY: |
2268 | case OP_CRMINQUERY: |
2269 | break; |
2270 | |
2271 | default: /* Non-repeat => class must match */ |
2272 | case OP_CRPLUS: /* These repeats aren't empty */ |
2273 | case OP_CRMINPLUS: |
2274 | return FALSE; |
2275 | |
2276 | case OP_CRRANGE: |
2277 | case OP_CRMINRANGE: |
2278 | if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */ |
2279 | break; |
2280 | } |
2281 | break; |
2282 | |
2283 | /* Opcodes that must match a character */ |
2284 | |
2285 | case OP_PROP: |
2286 | case OP_NOTPROP: |
2287 | case OP_EXTUNI: |
2288 | case OP_NOT_DIGIT: |
2289 | case OP_DIGIT: |
2290 | case OP_NOT_WHITESPACE: |
2291 | case OP_WHITESPACE: |
2292 | case OP_NOT_WORDCHAR: |
2293 | case OP_WORDCHAR: |
2294 | case OP_ANY: |
2295 | case OP_ALLANY: |
2296 | case OP_ANYBYTE: |
2297 | case OP_CHAR: |
2298 | case OP_CHARI: |
2299 | case OP_NOT: |
2300 | case OP_NOTI: |
2301 | case OP_PLUS: |
2302 | case OP_MINPLUS: |
2303 | case OP_POSPLUS: |
2304 | case OP_EXACT: |
2305 | case OP_NOTPLUS: |
2306 | case OP_NOTMINPLUS: |
2307 | case OP_NOTPOSPLUS: |
2308 | case OP_NOTEXACT: |
2309 | case OP_TYPEPLUS: |
2310 | case OP_TYPEMINPLUS: |
2311 | case OP_TYPEPOSPLUS: |
2312 | case OP_TYPEEXACT: |
2313 | return FALSE; |
2314 | |
2315 | /* These are going to continue, as they may be empty, but we have to |
2316 | fudge the length for the \p and \P cases. */ |
2317 | |
2318 | case OP_TYPESTAR: |
2319 | case OP_TYPEMINSTAR: |
2320 | case OP_TYPEPOSSTAR: |
2321 | case OP_TYPEQUERY: |
2322 | case OP_TYPEMINQUERY: |
2323 | case OP_TYPEPOSQUERY: |
2324 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2325 | break; |
2326 | |
2327 | /* Same for these */ |
2328 | |
2329 | case OP_TYPEUPTO: |
2330 | case OP_TYPEMINUPTO: |
2331 | case OP_TYPEPOSUPTO: |
2332 | if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; |
2333 | break; |
2334 | |
2335 | /* End of branch */ |
2336 | |
2337 | case OP_KET: |
2338 | case OP_KETRMAX: |
2339 | case OP_KETRMIN: |
2340 | case OP_KETRPOS: |
2341 | case OP_ALT: |
2342 | return TRUE; |
2343 | |
2344 | /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO, |
2345 | MINUPTO, and POSUPTO may be followed by a multibyte character */ |
2346 | |
2347 | #ifdef SUPPORT_UTF8 |
2348 | case OP_STAR: |
2349 | case OP_STARI: |
2350 | case OP_MINSTAR: |
2351 | case OP_MINSTARI: |
2352 | case OP_POSSTAR: |
2353 | case OP_POSSTARI: |
2354 | case OP_QUERY: |
2355 | case OP_QUERYI: |
2356 | case OP_MINQUERY: |
2357 | case OP_MINQUERYI: |
2358 | case OP_POSQUERY: |
2359 | case OP_POSQUERYI: |
2360 | if (utf8 && code[1] >= 0xc0) code += _pcre_utf8_table4[code[1] & 0x3f]; |
2361 | break; |
2362 | |
2363 | case OP_UPTO: |
2364 | case OP_UPTOI: |
2365 | case OP_MINUPTO: |
2366 | case OP_MINUPTOI: |
2367 | case OP_POSUPTO: |
2368 | case OP_POSUPTOI: |
2369 | if (utf8 && code[3] >= 0xc0) code += _pcre_utf8_table4[code[3] & 0x3f]; |
2370 | break; |
2371 | #endif |
2372 | |
2373 | /* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument |
2374 | string. */ |
2375 | |
2376 | case OP_MARK: |
2377 | case OP_PRUNE_ARG: |
2378 | case OP_SKIP_ARG: |
2379 | code += code[1]; |
2380 | break; |
2381 | |
2382 | case OP_THEN_ARG: |
2383 | code += code[1]; |
2384 | break; |
2385 | |
2386 | /* None of the remaining opcodes are required to match a character. */ |
2387 | |
2388 | default: |
2389 | break; |
2390 | } |
2391 | } |
2392 | |
2393 | return TRUE; |
2394 | } |
2395 | |
2396 | |
2397 | |
2398 | /************************************************* |
2399 | * Scan compiled regex for non-emptiness * |
2400 | *************************************************/ |
2401 | |
2402 | /* This function is called to check for left recursive calls. We want to check |
2403 | the current branch of the current pattern to see if it could match the empty |
2404 | string. If it could, we must look outwards for branches at other levels, |
2405 | stopping when we pass beyond the bracket which is the subject of the recursion. |
2406 | This function is called only during the real compile, not during the |
2407 | pre-compile. |
2408 | |
2409 | Arguments: |
2410 | code points to start of the recursion |
2411 | endcode points to where to stop (current RECURSE item) |
2412 | bcptr points to the chain of current (unclosed) branch starts |
2413 | utf8 TRUE if in UTF-8 mode |
2414 | cd pointers to tables etc |
2415 | |
2416 | Returns: TRUE if what is matched could be empty |
2417 | */ |
2418 | |
2419 | static BOOL |
2420 | could_be_empty(const uschar *code, const uschar *endcode, branch_chain *bcptr, |
2421 | BOOL utf8, compile_data *cd) |
2422 | { |
2423 | while (bcptr != NULL && bcptr->current_branch >= code) |
2424 | { |
2425 | if (!could_be_empty_branch(bcptr->current_branch, endcode, utf8, cd)) |
2426 | return FALSE; |
2427 | bcptr = bcptr->outer; |
2428 | } |
2429 | return TRUE; |
2430 | } |
2431 | |
2432 | |
2433 | |
2434 | /************************************************* |
2435 | * Check for POSIX class syntax * |
2436 | *************************************************/ |
2437 | |
2438 | /* This function is called when the sequence "[:" or "[." or "[=" is |
2439 | encountered in a character class. It checks whether this is followed by a |
2440 | sequence of characters terminated by a matching ":]" or ".]" or "=]". If we |
2441 | reach an unescaped ']' without the special preceding character, return FALSE. |
2442 | |
2443 | Originally, this function only recognized a sequence of letters between the |
2444 | terminators, but it seems that Perl recognizes any sequence of characters, |
2445 | though of course unknown POSIX names are subsequently rejected. Perl gives an |
2446 | "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE |
2447 | didn't consider this to be a POSIX class. Likewise for [:1234:]. |
2448 | |
2449 | The problem in trying to be exactly like Perl is in the handling of escapes. We |
2450 | have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX |
2451 | class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code |
2452 | below handles the special case of \], but does not try to do any other escape |
2453 | processing. This makes it different from Perl for cases such as [:l\ower:] |
2454 | where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize |
2455 | "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does, |
2456 | I think. |
2457 | |
2458 | A user pointed out that PCRE was rejecting [:a[:digit:]] whereas Perl was not. |
2459 | It seems that the appearance of a nested POSIX class supersedes an apparent |
2460 | external class. For example, [:a[:digit:]b:] matches "a", "b", ":", or |
2461 | a digit. |
2462 | |
2463 | In Perl, unescaped square brackets may also appear as part of class names. For |
2464 | example, [:a[:abc]b:] gives unknown POSIX class "[:abc]b:]". However, for |
2465 | [:a[:abc]b][b:] it gives unknown POSIX class "[:abc]b][b:]", which does not |
2466 | seem right at all. PCRE does not allow closing square brackets in POSIX class |
2467 | names. |
2468 | |
2469 | Arguments: |
2470 | ptr pointer to the initial [ |
2471 | endptr where to return the end pointer |
2472 | |
2473 | Returns: TRUE or FALSE |
2474 | */ |
2475 | |
2476 | static BOOL |
2477 | check_posix_syntax(const uschar *ptr, const uschar **endptr) |
2478 | { |
2479 | int terminator; /* Don't combine these lines; the Solaris cc */ |
2480 | terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */ |
2481 | for (++ptr; *ptr != 0; ptr++) |
2482 | { |
2483 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
2484 | ptr++; |
2485 | else if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE; |
2486 | else |
2487 | { |
2488 | if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
2489 | { |
2490 | *endptr = ptr; |
2491 | return TRUE; |
2492 | } |
2493 | if (*ptr == CHAR_LEFT_SQUARE_BRACKET && |
2494 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
2495 | ptr[1] == CHAR_EQUALS_SIGN) && |
2496 | check_posix_syntax(ptr, endptr)) |
2497 | return FALSE; |
2498 | } |
2499 | } |
2500 | return FALSE; |
2501 | } |
2502 | |
2503 | |
2504 | |
2505 | |
2506 | /************************************************* |
2507 | * Check POSIX class name * |
2508 | *************************************************/ |
2509 | |
2510 | /* This function is called to check the name given in a POSIX-style class entry |
2511 | such as [:alnum:]. |
2512 | |
2513 | Arguments: |
2514 | ptr points to the first letter |
2515 | len the length of the name |
2516 | |
2517 | Returns: a value representing the name, or -1 if unknown |
2518 | */ |
2519 | |
2520 | static int |
2521 | check_posix_name(const uschar *ptr, int len) |
2522 | { |
2523 | const char *pn = posix_names; |
2524 | register int yield = 0; |
2525 | while (posix_name_lengths[yield] != 0) |
2526 | { |
2527 | if (len == posix_name_lengths[yield] && |
2528 | strncmp((const char *)ptr, pn, len) == 0) return yield; |
2529 | pn += posix_name_lengths[yield] + 1; |
2530 | yield++; |
2531 | } |
2532 | return -1; |
2533 | } |
2534 | |
2535 | |
2536 | /************************************************* |
2537 | * Adjust OP_RECURSE items in repeated group * |
2538 | *************************************************/ |
2539 | |
2540 | /* OP_RECURSE items contain an offset from the start of the regex to the group |
2541 | that is referenced. This means that groups can be replicated for fixed |
2542 | repetition simply by copying (because the recursion is allowed to refer to |
2543 | earlier groups that are outside the current group). However, when a group is |
2544 | optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is |
2545 | inserted before it, after it has been compiled. This means that any OP_RECURSE |
2546 | items within it that refer to the group itself or any contained groups have to |
2547 | have their offsets adjusted. That one of the jobs of this function. Before it |
2548 | is called, the partially compiled regex must be temporarily terminated with |
2549 | OP_END. |
2550 | |
2551 | This function has been extended with the possibility of forward references for |
2552 | recursions and subroutine calls. It must also check the list of such references |
2553 | for the group we are dealing with. If it finds that one of the recursions in |
2554 | the current group is on this list, it adjusts the offset in the list, not the |
2555 | value in the reference (which is a group number). |
2556 | |
2557 | Arguments: |
2558 | group points to the start of the group |
2559 | adjust the amount by which the group is to be moved |
2560 | utf8 TRUE in UTF-8 mode |
2561 | cd contains pointers to tables etc. |
2562 | save_hwm the hwm forward reference pointer at the start of the group |
2563 | |
2564 | Returns: nothing |
2565 | */ |
2566 | |
2567 | static void |
2568 | adjust_recurse(uschar *group, int adjust, BOOL utf8, compile_data *cd, |
2569 | uschar *save_hwm) |
2570 | { |
2571 | uschar *ptr = group; |
2572 | |
2573 | while ((ptr = (uschar *)find_recurse(ptr, utf8)) != NULL) |
2574 | { |
2575 | int offset; |
2576 | uschar *hc; |
2577 | |
2578 | /* See if this recursion is on the forward reference list. If so, adjust the |
2579 | reference. */ |
2580 | |
2581 | for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE) |
2582 | { |
2583 | offset = GET(hc, 0); |
2584 | if (cd->start_code + offset == ptr + 1) |
2585 | { |
2586 | PUT(hc, 0, offset + adjust); |
2587 | break; |
2588 | } |
2589 | } |
2590 | |
2591 | /* Otherwise, adjust the recursion offset if it's after the start of this |
2592 | group. */ |
2593 | |
2594 | if (hc >= cd->hwm) |
2595 | { |
2596 | offset = GET(ptr, 1); |
2597 | if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust); |
2598 | } |
2599 | |
2600 | ptr += 1 + LINK_SIZE; |
2601 | } |
2602 | } |
2603 | |
2604 | |
2605 | |
2606 | /************************************************* |
2607 | * Insert an automatic callout point * |
2608 | *************************************************/ |
2609 | |
2610 | /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert |
2611 | callout points before each pattern item. |
2612 | |
2613 | Arguments: |
2614 | code current code pointer |
2615 | ptr current pattern pointer |
2616 | cd pointers to tables etc |
2617 | |
2618 | Returns: new code pointer |
2619 | */ |
2620 | |
2621 | static uschar * |
2622 | auto_callout(uschar *code, const uschar *ptr, compile_data *cd) |
2623 | { |
2624 | *code++ = OP_CALLOUT; |
2625 | *code++ = 255; |
2626 | PUT(code, 0, (int)(ptr - cd->start_pattern)); /* Pattern offset */ |
2627 | PUT(code, LINK_SIZE, 0); /* Default length */ |
2628 | return code + 2*LINK_SIZE; |
2629 | } |
2630 | |
2631 | |
2632 | |
2633 | /************************************************* |
2634 | * Complete a callout item * |
2635 | *************************************************/ |
2636 | |
2637 | /* A callout item contains the length of the next item in the pattern, which |
2638 | we can't fill in till after we have reached the relevant point. This is used |
2639 | for both automatic and manual callouts. |
2640 | |
2641 | Arguments: |
2642 | previous_callout points to previous callout item |
2643 | ptr current pattern pointer |
2644 | cd pointers to tables etc |
2645 | |
2646 | Returns: nothing |
2647 | */ |
2648 | |
2649 | static void |
2650 | complete_callout(uschar *previous_callout, const uschar *ptr, compile_data *cd) |
2651 | { |
2652 | int length = (int)(ptr - cd->start_pattern - GET(previous_callout, 2)); |
2653 | PUT(previous_callout, 2 + LINK_SIZE, length); |
2654 | } |
2655 | |
2656 | |
2657 | |
2658 | #ifdef SUPPORT_UCP |
2659 | /************************************************* |
2660 | * Get othercase range * |
2661 | *************************************************/ |
2662 | |
2663 | /* This function is passed the start and end of a class range, in UTF-8 mode |
2664 | with UCP support. It searches up the characters, looking for internal ranges of |
2665 | characters in the "other" case. Each call returns the next one, updating the |
2666 | start address. |
2667 | |
2668 | Arguments: |
2669 | cptr points to starting character value; updated |
2670 | d end value |
2671 | ocptr where to put start of othercase range |
2672 | odptr where to put end of othercase range |
2673 | |
2674 | Yield: TRUE when range returned; FALSE when no more |
2675 | */ |
2676 | |
2677 | static BOOL |
2678 | get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr, |
2679 | unsigned int *odptr) |
2680 | { |
2681 | unsigned int c, othercase, next; |
2682 | |
2683 | for (c = *cptr; c <= d; c++) |
2684 | { if ((othercase = UCD_OTHERCASE(c)) != c) break; } |
2685 | |
2686 | if (c > d) return FALSE; |
2687 | |
2688 | *ocptr = othercase; |
2689 | next = othercase + 1; |
2690 | |
2691 | for (++c; c <= d; c++) |
2692 | { |
2693 | if (UCD_OTHERCASE(c) != next) break; |
2694 | next++; |
2695 | } |
2696 | |
2697 | *odptr = next - 1; |
2698 | *cptr = c; |
2699 | |
2700 | return TRUE; |
2701 | } |
2702 | |
2703 | |
2704 | |
2705 | /************************************************* |
2706 | * Check a character and a property * |
2707 | *************************************************/ |
2708 | |
2709 | /* This function is called by check_auto_possessive() when a property item |
2710 | is adjacent to a fixed character. |
2711 | |
2712 | Arguments: |
2713 | c the character |
2714 | ptype the property type |
2715 | pdata the data for the type |
2716 | negated TRUE if it's a negated property (\P or \p{^) |
2717 | |
2718 | Returns: TRUE if auto-possessifying is OK |
2719 | */ |
2720 | |
2721 | static BOOL |
2722 | check_char_prop(int c, int ptype, int pdata, BOOL negated) |
2723 | { |
2724 | const ucd_record *prop = GET_UCD(c); |
2725 | switch(ptype) |
2726 | { |
2727 | case PT_LAMP: |
2728 | return (prop->chartype == ucp_Lu || |
2729 | prop->chartype == ucp_Ll || |
2730 | prop->chartype == ucp_Lt) == negated; |
2731 | |
2732 | case PT_GC: |
2733 | return (pdata == _pcre_ucp_gentype[prop->chartype]) == negated; |
2734 | |
2735 | case PT_PC: |
2736 | return (pdata == prop->chartype) == negated; |
2737 | |
2738 | case PT_SC: |
2739 | return (pdata == prop->script) == negated; |
2740 | |
2741 | /* These are specials */ |
2742 | |
2743 | case PT_ALNUM: |
2744 | return (_pcre_ucp_gentype[prop->chartype] == ucp_L || |
2745 | _pcre_ucp_gentype[prop->chartype] == ucp_N) == negated; |
2746 | |
2747 | case PT_SPACE: /* Perl space */ |
2748 | return (_pcre_ucp_gentype[prop->chartype] == ucp_Z || |
2749 | c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR) |
2750 | == negated; |
2751 | |
2752 | case PT_PXSPACE: /* POSIX space */ |
2753 | return (_pcre_ucp_gentype[prop->chartype] == ucp_Z || |
2754 | c == CHAR_HT || c == CHAR_NL || c == CHAR_VT || |
2755 | c == CHAR_FF || c == CHAR_CR) |
2756 | == negated; |
2757 | |
2758 | case PT_WORD: |
2759 | return (_pcre_ucp_gentype[prop->chartype] == ucp_L || |
2760 | _pcre_ucp_gentype[prop->chartype] == ucp_N || |
2761 | c == CHAR_UNDERSCORE) == negated; |
2762 | } |
2763 | return FALSE; |
2764 | } |
2765 | #endif /* SUPPORT_UCP */ |
2766 | |
2767 | |
2768 | |
2769 | /************************************************* |
2770 | * Check if auto-possessifying is possible * |
2771 | *************************************************/ |
2772 | |
2773 | /* This function is called for unlimited repeats of certain items, to see |
2774 | whether the next thing could possibly match the repeated item. If not, it makes |
2775 | sense to automatically possessify the repeated item. |
2776 | |
2777 | Arguments: |
2778 | previous pointer to the repeated opcode |
2779 | utf8 TRUE in UTF-8 mode |
2780 | ptr next character in pattern |
2781 | options options bits |
2782 | cd contains pointers to tables etc. |
2783 | |
2784 | Returns: TRUE if possessifying is wanted |
2785 | */ |
2786 | |
2787 | static BOOL |
2788 | check_auto_possessive(const uschar *previous, BOOL utf8, const uschar *ptr, |
2789 | int options, compile_data *cd) |
2790 | { |
2791 | int c, next; |
2792 | int op_code = *previous++; |
2793 | |
2794 | /* Skip whitespace and comments in extended mode */ |
2795 | |
2796 | if ((options & PCRE_EXTENDED) != 0) |
2797 | { |
2798 | for (;;) |
2799 | { |
2800 | while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++; |
2801 | if (*ptr == CHAR_NUMBER_SIGN) |
2802 | { |
2803 | ptr++; |
2804 | while (*ptr != 0) |
2805 | { |
2806 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } |
2807 | ptr++; |
2808 | #ifdef SUPPORT_UTF8 |
2809 | if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++; |
2810 | #endif |
2811 | } |
2812 | } |
2813 | else break; |
2814 | } |
2815 | } |
2816 | |
2817 | /* If the next item is one that we can handle, get its value. A non-negative |
2818 | value is a character, a negative value is an escape value. */ |
2819 | |
2820 | if (*ptr == CHAR_BACKSLASH) |
2821 | { |
2822 | int temperrorcode = 0; |
2823 | next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE); |
2824 | if (temperrorcode != 0) return FALSE; |
2825 | ptr++; /* Point after the escape sequence */ |
2826 | } |
2827 | |
2828 | else if ((cd->ctypes[*ptr] & ctype_meta) == 0) |
2829 | { |
2830 | #ifdef SUPPORT_UTF8 |
2831 | if (utf8) { GETCHARINC(next, ptr); } else |
2832 | #endif |
2833 | next = *ptr++; |
2834 | } |
2835 | |
2836 | else return FALSE; |
2837 | |
2838 | /* Skip whitespace and comments in extended mode */ |
2839 | |
2840 | if ((options & PCRE_EXTENDED) != 0) |
2841 | { |
2842 | for (;;) |
2843 | { |
2844 | while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++; |
2845 | if (*ptr == CHAR_NUMBER_SIGN) |
2846 | { |
2847 | ptr++; |
2848 | while (*ptr != 0) |
2849 | { |
2850 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } |
2851 | ptr++; |
2852 | #ifdef SUPPORT_UTF8 |
2853 | if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++; |
2854 | #endif |
2855 | } |
2856 | } |
2857 | else break; |
2858 | } |
2859 | } |
2860 | |
2861 | /* If the next thing is itself optional, we have to give up. */ |
2862 | |
2863 | if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK || |
2864 | strncmp((char *)ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0) |
2865 | return FALSE; |
2866 | |
2867 | /* Now compare the next item with the previous opcode. First, handle cases when |
2868 | the next item is a character. */ |
2869 | |
2870 | if (next >= 0) switch(op_code) |
2871 | { |
2872 | case OP_CHAR: |
2873 | #ifdef SUPPORT_UTF8 |
2874 | GETCHARTEST(c, previous); |
2875 | #else |
2876 | c = *previous; |
2877 | #endif |
2878 | return c != next; |
2879 | |
2880 | /* For CHARI (caseless character) we must check the other case. If we have |
2881 | Unicode property support, we can use it to test the other case of |
2882 | high-valued characters. */ |
2883 | |
2884 | case OP_CHARI: |
2885 | #ifdef SUPPORT_UTF8 |
2886 | GETCHARTEST(c, previous); |
2887 | #else |
2888 | c = *previous; |
2889 | #endif |
2890 | if (c == next) return FALSE; |
2891 | #ifdef SUPPORT_UTF8 |
2892 | if (utf8) |
2893 | { |
2894 | unsigned int othercase; |
2895 | if (next < 128) othercase = cd->fcc[next]; else |
2896 | #ifdef SUPPORT_UCP |
2897 | othercase = UCD_OTHERCASE((unsigned int)next); |
2898 | #else |
2899 | othercase = NOTACHAR; |
2900 | #endif |
2901 | return (unsigned int)c != othercase; |
2902 | } |
2903 | else |
2904 | #endif /* SUPPORT_UTF8 */ |
2905 | return (c != cd->fcc[next]); /* Non-UTF-8 mode */ |
2906 | |
2907 | /* For OP_NOT and OP_NOTI, the data is always a single-byte character. These |
2908 | opcodes are not used for multi-byte characters, because they are coded using |
2909 | an XCLASS instead. */ |
2910 | |
2911 | case OP_NOT: |
2912 | return (c = *previous) == next; |
2913 | |
2914 | case OP_NOTI: |
2915 | if ((c = *previous) == next) return TRUE; |
2916 | #ifdef SUPPORT_UTF8 |
2917 | if (utf8) |
2918 | { |
2919 | unsigned int othercase; |
2920 | if (next < 128) othercase = cd->fcc[next]; else |
2921 | #ifdef SUPPORT_UCP |
2922 | othercase = UCD_OTHERCASE(next); |
2923 | #else |
2924 | othercase = NOTACHAR; |
2925 | #endif |
2926 | return (unsigned int)c == othercase; |
2927 | } |
2928 | else |
2929 | #endif /* SUPPORT_UTF8 */ |
2930 | return (c == cd->fcc[next]); /* Non-UTF-8 mode */ |
2931 | |
2932 | /* Note that OP_DIGIT etc. are generated only when PCRE_UCP is *not* set. |
2933 | When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */ |
2934 | |
2935 | case OP_DIGIT: |
2936 | return next > 127 || (cd->ctypes[next] & ctype_digit) == 0; |
2937 | |
2938 | case OP_NOT_DIGIT: |
2939 | return next <= 127 && (cd->ctypes[next] & ctype_digit) != 0; |
2940 | |
2941 | case OP_WHITESPACE: |
2942 | return next > 127 || (cd->ctypes[next] & ctype_space) == 0; |
2943 | |
2944 | case OP_NOT_WHITESPACE: |
2945 | return next <= 127 && (cd->ctypes[next] & ctype_space) != 0; |
2946 | |
2947 | case OP_WORDCHAR: |
2948 | return next > 127 || (cd->ctypes[next] & ctype_word) == 0; |
2949 | |
2950 | case OP_NOT_WORDCHAR: |
2951 | return next <= 127 && (cd->ctypes[next] & ctype_word) != 0; |
2952 | |
2953 | case OP_HSPACE: |
2954 | case OP_NOT_HSPACE: |
2955 | switch(next) |
2956 | { |
2957 | case 0x09: |
2958 | case 0x20: |
2959 | case 0xa0: |
2960 | case 0x1680: |
2961 | case 0x180e: |
2962 | case 0x2000: |
2963 | case 0x2001: |
2964 | case 0x2002: |
2965 | case 0x2003: |
2966 | case 0x2004: |
2967 | case 0x2005: |
2968 | case 0x2006: |
2969 | case 0x2007: |
2970 | case 0x2008: |
2971 | case 0x2009: |
2972 | case 0x200A: |
2973 | case 0x202f: |
2974 | case 0x205f: |
2975 | case 0x3000: |
2976 | return op_code == OP_NOT_HSPACE; |
2977 | default: |
2978 | return op_code != OP_NOT_HSPACE; |
2979 | } |
2980 | |
2981 | case OP_ANYNL: |
2982 | case OP_VSPACE: |
2983 | case OP_NOT_VSPACE: |
2984 | switch(next) |
2985 | { |
2986 | case 0x0a: |
2987 | case 0x0b: |
2988 | case 0x0c: |
2989 | case 0x0d: |
2990 | case 0x85: |
2991 | case 0x2028: |
2992 | case 0x2029: |
2993 | return op_code == OP_NOT_VSPACE; |
2994 | default: |
2995 | return op_code != OP_NOT_VSPACE; |
2996 | } |
2997 | |
2998 | #ifdef SUPPORT_UCP |
2999 | case OP_PROP: |
3000 | return check_char_prop(next, previous[0], previous[1], FALSE); |
3001 | |
3002 | case OP_NOTPROP: |
3003 | return check_char_prop(next, previous[0], previous[1], TRUE); |
3004 | #endif |
3005 | |
3006 | default: |
3007 | return FALSE; |
3008 | } |
3009 | |
3010 | |
3011 | /* Handle the case when the next item is \d, \s, etc. Note that when PCRE_UCP |
3012 | is set, \d turns into ESC_du rather than ESC_d, etc., so ESC_d etc. are |
3013 | generated only when PCRE_UCP is *not* set, that is, when only ASCII |
3014 | characteristics are recognized. Similarly, the opcodes OP_DIGIT etc. are |
3015 | replaced by OP_PROP codes when PCRE_UCP is set. */ |
3016 | |
3017 | switch(op_code) |
3018 | { |
3019 | case OP_CHAR: |
3020 | case OP_CHARI: |
3021 | #ifdef SUPPORT_UTF8 |
3022 | GETCHARTEST(c, previous); |
3023 | #else |
3024 | c = *previous; |
3025 | #endif |
3026 | switch(-next) |
3027 | { |
3028 | case ESC_d: |
3029 | return c > 127 || (cd->ctypes[c] & ctype_digit) == 0; |
3030 | |
3031 | case ESC_D: |
3032 | return c <= 127 && (cd->ctypes[c] & ctype_digit) != 0; |
3033 | |
3034 | case ESC_s: |
3035 | return c > 127 || (cd->ctypes[c] & ctype_space) == 0; |
3036 | |
3037 | case ESC_S: |
3038 | return c <= 127 && (cd->ctypes[c] & ctype_space) != 0; |
3039 | |
3040 | case ESC_w: |
3041 | return c > 127 || (cd->ctypes[c] & ctype_word) == 0; |
3042 | |
3043 | case ESC_W: |
3044 | return c <= 127 && (cd->ctypes[c] & ctype_word) != 0; |
3045 | |
3046 | case ESC_h: |
3047 | case ESC_H: |
3048 | switch(c) |
3049 | { |
3050 | case 0x09: |
3051 | case 0x20: |
3052 | case 0xa0: |
3053 | case 0x1680: |
3054 | case 0x180e: |
3055 | case 0x2000: |
3056 | case 0x2001: |
3057 | case 0x2002: |
3058 | case 0x2003: |
3059 | case 0x2004: |
3060 | case 0x2005: |
3061 | case 0x2006: |
3062 | case 0x2007: |
3063 | case 0x2008: |
3064 | case 0x2009: |
3065 | case 0x200A: |
3066 | case 0x202f: |
3067 | case 0x205f: |
3068 | case 0x3000: |
3069 | return -next != ESC_h; |
3070 | default: |
3071 | return -next == ESC_h; |
3072 | } |
3073 | |
3074 | case ESC_v: |
3075 | case ESC_V: |
3076 | switch(c) |
3077 | { |
3078 | case 0x0a: |
3079 | case 0x0b: |
3080 | case 0x0c: |
3081 | case 0x0d: |
3082 | case 0x85: |
3083 | case 0x2028: |
3084 | case 0x2029: |
3085 | return -next != ESC_v; |
3086 | default: |
3087 | return -next == ESC_v; |
3088 | } |
3089 | |
3090 | /* When PCRE_UCP is set, these values get generated for \d etc. Find |
3091 | their substitutions and process them. The result will always be either |
3092 | -ESC_p or -ESC_P. Then fall through to process those values. */ |
3093 | |
3094 | #ifdef SUPPORT_UCP |
3095 | case ESC_du: |
3096 | case ESC_DU: |
3097 | case ESC_wu: |
3098 | case ESC_WU: |
3099 | case ESC_su: |
3100 | case ESC_SU: |
3101 | { |
3102 | int temperrorcode = 0; |
3103 | ptr = substitutes[-next - ESC_DU]; |
3104 | next = check_escape(&ptr, &temperrorcode, 0, options, FALSE); |
3105 | if (temperrorcode != 0) return FALSE; |
3106 | ptr++; /* For compatibility */ |
3107 | } |
3108 | /* Fall through */ |
3109 | |
3110 | case ESC_p: |
3111 | case ESC_P: |
3112 | { |
3113 | int ptype, pdata, errorcodeptr; |
3114 | BOOL negated; |
3115 | |
3116 | ptr--; /* Make ptr point at the p or P */ |
3117 | ptype = get_ucp(&ptr, &negated, &pdata, &errorcodeptr); |
3118 | if (ptype < 0) return FALSE; |
3119 | ptr++; /* Point past the final curly ket */ |
3120 | |
3121 | /* If the property item is optional, we have to give up. (When generated |
3122 | from \d etc by PCRE_UCP, this test will have been applied much earlier, |
3123 | to the original \d etc. At this point, ptr will point to a zero byte. */ |
3124 | |
3125 | if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK || |
3126 | strncmp((char *)ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0) |
3127 | return FALSE; |
3128 | |
3129 | /* Do the property check. */ |
3130 | |
3131 | return check_char_prop(c, ptype, pdata, (next == -ESC_P) != negated); |
3132 | } |
3133 | #endif |
3134 | |
3135 | default: |
3136 | return FALSE; |
3137 | } |
3138 | |
3139 | /* In principle, support for Unicode properties should be integrated here as |
3140 | well. It means re-organizing the above code so as to get hold of the property |
3141 | values before switching on the op-code. However, I wonder how many patterns |
3142 | combine ASCII \d etc with Unicode properties? (Note that if PCRE_UCP is set, |
3143 | these op-codes are never generated.) */ |
3144 | |
3145 | case OP_DIGIT: |
3146 | return next == -ESC_D || next == -ESC_s || next == -ESC_W || |
3147 | next == -ESC_h || next == -ESC_v || next == -ESC_R; |
3148 | |
3149 | case OP_NOT_DIGIT: |
3150 | return next == -ESC_d; |
3151 | |
3152 | case OP_WHITESPACE: |
3153 | return next == -ESC_S || next == -ESC_d || next == -ESC_w || next == -ESC_R; |
3154 | |
3155 | case OP_NOT_WHITESPACE: |
3156 | return next == -ESC_s || next == -ESC_h || next == -ESC_v; |
3157 | |
3158 | case OP_HSPACE: |
3159 | return next == -ESC_S || next == -ESC_H || next == -ESC_d || |
3160 | next == -ESC_w || next == -ESC_v || next == -ESC_R; |
3161 | |
3162 | case OP_NOT_HSPACE: |
3163 | return next == -ESC_h; |
3164 | |
3165 | /* Can't have \S in here because VT matches \S (Perl anomaly) */ |
3166 | case OP_ANYNL: |
3167 | case OP_VSPACE: |
3168 | return next == -ESC_V || next == -ESC_d || next == -ESC_w; |
3169 | |
3170 | case OP_NOT_VSPACE: |
3171 | return next == -ESC_v || next == -ESC_R; |
3172 | |
3173 | case OP_WORDCHAR: |
3174 | return next == -ESC_W || next == -ESC_s || next == -ESC_h || |
3175 | next == -ESC_v || next == -ESC_R; |
3176 | |
3177 | case OP_NOT_WORDCHAR: |
3178 | return next == -ESC_w || next == -ESC_d; |
3179 | |
3180 | default: |
3181 | return FALSE; |
3182 | } |
3183 | |
3184 | /* Control does not reach here */ |
3185 | } |
3186 | |
3187 | |
3188 | |
3189 | /************************************************* |
3190 | * Compile one branch * |
3191 | *************************************************/ |
3192 | |
3193 | /* Scan the pattern, compiling it into the a vector. If the options are |
3194 | changed during the branch, the pointer is used to change the external options |
3195 | bits. This function is used during the pre-compile phase when we are trying |
3196 | to find out the amount of memory needed, as well as during the real compile |
3197 | phase. The value of lengthptr distinguishes the two phases. |
3198 | |
3199 | Arguments: |
3200 | optionsptr pointer to the option bits |
3201 | codeptr points to the pointer to the current code point |
3202 | ptrptr points to the current pattern pointer |
3203 | errorcodeptr points to error code variable |
3204 | firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE) |
3205 | reqbyteptr set to the last literal character required, else < 0 |
3206 | bcptr points to current branch chain |
3207 | cond_depth conditional nesting depth |
3208 | cd contains pointers to tables etc. |
3209 | lengthptr NULL during the real compile phase |
3210 | points to length accumulator during pre-compile phase |
3211 | |
3212 | Returns: TRUE on success |
3213 | FALSE, with *errorcodeptr set non-zero on error |
3214 | */ |
3215 | |
3216 | static BOOL |
3217 | compile_branch(int *optionsptr, uschar **codeptr, const uschar **ptrptr, |
3218 | int *errorcodeptr, int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, |
3219 | int cond_depth, compile_data *cd, int *lengthptr) |
3220 | { |
3221 | int repeat_type, op_type; |
3222 | int repeat_min = 0, repeat_max = 0; /* To please picky compilers */ |
3223 | int bravalue = 0; |
3224 | int greedy_default, greedy_non_default; |
3225 | int firstbyte, reqbyte; |
3226 | int zeroreqbyte, zerofirstbyte; |
3227 | int req_caseopt, reqvary, tempreqvary; |
3228 | int options = *optionsptr; /* May change dynamically */ |
3229 | int after_manual_callout = 0; |
3230 | int length_prevgroup = 0; |
3231 | register int c; |
3232 | register uschar *code = *codeptr; |
3233 | uschar *last_code = code; |
3234 | uschar *orig_code = code; |
3235 | uschar *tempcode; |
3236 | BOOL inescq = FALSE; |
3237 | BOOL groupsetfirstbyte = FALSE; |
3238 | const uschar *ptr = *ptrptr; |
3239 | const uschar *tempptr; |
3240 | const uschar *nestptr = NULL; |
3241 | uschar *previous = NULL; |
3242 | uschar *previous_callout = NULL; |
3243 | uschar *save_hwm = NULL; |
3244 | uschar classbits[32]; |
3245 | |
3246 | /* We can fish out the UTF-8 setting once and for all into a BOOL, but we |
3247 | must not do this for other options (e.g. PCRE_EXTENDED) because they may change |
3248 | dynamically as we process the pattern. */ |
3249 | |
3250 | #ifdef SUPPORT_UTF8 |
3251 | BOOL class_utf8; |
3252 | BOOL utf8 = (options & PCRE_UTF8) != 0; |
3253 | uschar *class_utf8data; |
3254 | uschar *class_utf8data_base; |
3255 | uschar utf8_char[6]; |
3256 | #else |
3257 | BOOL utf8 = FALSE; |
3258 | #endif |
3259 | |
3260 | #ifdef PCRE_DEBUG |
3261 | if (lengthptr != NULL) DPRINTF((">> start branch\n")); |
3262 | #endif |
3263 | |
3264 | /* Set up the default and non-default settings for greediness */ |
3265 | |
3266 | greedy_default = ((options & PCRE_UNGREEDY) != 0); |
3267 | greedy_non_default = greedy_default ^ 1; |
3268 | |
3269 | /* Initialize no first byte, no required byte. REQ_UNSET means "no char |
3270 | matching encountered yet". It gets changed to REQ_NONE if we hit something that |
3271 | matches a non-fixed char first char; reqbyte just remains unset if we never |
3272 | find one. |
3273 | |
3274 | When we hit a repeat whose minimum is zero, we may have to adjust these values |
3275 | to take the zero repeat into account. This is implemented by setting them to |
3276 | zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual |
3277 | item types that can be repeated set these backoff variables appropriately. */ |
3278 | |
3279 | firstbyte = reqbyte = zerofirstbyte = zeroreqbyte = REQ_UNSET; |
3280 | |
3281 | /* The variable req_caseopt contains either the REQ_CASELESS value or zero, |
3282 | according to the current setting of the caseless flag. REQ_CASELESS is a bit |
3283 | value > 255. It is added into the firstbyte or reqbyte variables to record the |
3284 | case status of the value. This is used only for ASCII characters. */ |
3285 | |
3286 | req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0; |
3287 | |
3288 | /* Switch on next character until the end of the branch */ |
3289 | |
3290 | for (;; ptr++) |
3291 | { |
3292 | BOOL negate_class; |
3293 | BOOL should_flip_negation; |
3294 | BOOL possessive_quantifier; |
3295 | BOOL is_quantifier; |
3296 | BOOL is_recurse; |
3297 | BOOL reset_bracount; |
3298 | int class_charcount; |
3299 | int class_lastchar; |
3300 | int newoptions; |
3301 | int recno; |
3302 | int refsign; |
3303 | int skipbytes; |
3304 | int subreqbyte; |
3305 | int subfirstbyte; |
3306 | int terminator; |
3307 | int mclength; |
3308 | int tempbracount; |
3309 | uschar mcbuffer[8]; |
3310 | |
3311 | /* Get next byte in the pattern */ |
3312 | |
3313 | c = *ptr; |
3314 | |
3315 | /* If we are at the end of a nested substitution, revert to the outer level |
3316 | string. Nesting only happens one level deep. */ |
3317 | |
3318 | if (c == 0 && nestptr != NULL) |
3319 | { |
3320 | ptr = nestptr; |
3321 | nestptr = NULL; |
3322 | c = *ptr; |
3323 | } |
3324 | |
3325 | /* If we are in the pre-compile phase, accumulate the length used for the |
3326 | previous cycle of this loop. */ |
3327 | |
3328 | if (lengthptr != NULL) |
3329 | { |
3330 | #ifdef PCRE_DEBUG |
3331 | if (code > cd->hwm) cd->hwm = code; /* High water info */ |
3332 | #endif |
3333 | if (code > cd->start_workspace + WORK_SIZE_CHECK) /* Check for overrun */ |
3334 | { |
3335 | *errorcodeptr = ERR52; |
3336 | goto FAILED; |
3337 | } |
3338 | |
3339 | /* There is at least one situation where code goes backwards: this is the |
3340 | case of a zero quantifier after a class (e.g. [ab]{0}). At compile time, |
3341 | the class is simply eliminated. However, it is created first, so we have to |
3342 | allow memory for it. Therefore, don't ever reduce the length at this point. |
3343 | */ |
3344 | |
3345 | if (code < last_code) code = last_code; |
3346 | |
3347 | /* Paranoid check for integer overflow */ |
3348 | |
3349 | if (OFLOW_MAX - *lengthptr < code - last_code) |
3350 | { |
3351 | *errorcodeptr = ERR20; |
3352 | goto FAILED; |
3353 | } |
3354 | |
3355 | *lengthptr += (int)(code - last_code); |
3356 | DPRINTF(("length=%d added %d c=%c\n", *lengthptr, (int)(code - last_code), |
3357 | c)); |
3358 | |
3359 | /* If "previous" is set and it is not at the start of the work space, move |
3360 | it back to there, in order to avoid filling up the work space. Otherwise, |
3361 | if "previous" is NULL, reset the current code pointer to the start. */ |
3362 | |
3363 | if (previous != NULL) |
3364 | { |
3365 | if (previous > orig_code) |
3366 | { |
3367 | memmove(orig_code, previous, code - previous); |
3368 | code -= previous - orig_code; |
3369 | previous = orig_code; |
3370 | } |
3371 | } |
3372 | else code = orig_code; |
3373 | |
3374 | /* Remember where this code item starts so we can pick up the length |
3375 | next time round. */ |
3376 | |
3377 | last_code = code; |
3378 | } |
3379 | |
3380 | /* In the real compile phase, just check the workspace used by the forward |
3381 | reference list. */ |
3382 | |
3383 | else if (cd->hwm > cd->start_workspace + WORK_SIZE_CHECK) |
3384 | { |
3385 | *errorcodeptr = ERR52; |
3386 | goto FAILED; |
3387 | } |
3388 | |
3389 | /* If in \Q...\E, check for the end; if not, we have a literal */ |
3390 | |
3391 | if (inescq && c != 0) |
3392 | { |
3393 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
3394 | { |
3395 | inescq = FALSE; |
3396 | ptr++; |
3397 | continue; |
3398 | } |
3399 | else |
3400 | { |
3401 | if (previous_callout != NULL) |
3402 | { |
3403 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
3404 | complete_callout(previous_callout, ptr, cd); |
3405 | previous_callout = NULL; |
3406 | } |
3407 | if ((options & PCRE_AUTO_CALLOUT) != 0) |
3408 | { |
3409 | previous_callout = code; |
3410 | code = auto_callout(code, ptr, cd); |
3411 | } |
3412 | goto NORMAL_CHAR; |
3413 | } |
3414 | } |
3415 | |
3416 | /* Fill in length of a previous callout, except when the next thing is |
3417 | a quantifier. */ |
3418 | |
3419 | is_quantifier = |
3420 | c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK || |
3421 | (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1)); |
3422 | |
3423 | if (!is_quantifier && previous_callout != NULL && |
3424 | after_manual_callout-- <= 0) |
3425 | { |
3426 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
3427 | complete_callout(previous_callout, ptr, cd); |
3428 | previous_callout = NULL; |
3429 | } |
3430 | |
3431 | /* In extended mode, skip white space and comments. */ |
3432 | |
3433 | if ((options & PCRE_EXTENDED) != 0) |
3434 | { |
3435 | if ((cd->ctypes[c] & ctype_space) != 0) continue; |
3436 | if (c == CHAR_NUMBER_SIGN) |
3437 | { |
3438 | ptr++; |
3439 | while (*ptr != 0) |
3440 | { |
3441 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; } |
3442 | ptr++; |
3443 | #ifdef SUPPORT_UTF8 |
3444 | if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++; |
3445 | #endif |
3446 | } |
3447 | if (*ptr != 0) continue; |
3448 | |
3449 | /* Else fall through to handle end of string */ |
3450 | c = 0; |
3451 | } |
3452 | } |
3453 | |
3454 | /* No auto callout for quantifiers. */ |
3455 | |
3456 | if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier) |
3457 | { |
3458 | previous_callout = code; |
3459 | code = auto_callout(code, ptr, cd); |
3460 | } |
3461 | |
3462 | switch(c) |
3463 | { |
3464 | /* ===================================================================*/ |
3465 | case 0: /* The branch terminates at string end */ |
3466 | case CHAR_VERTICAL_LINE: /* or | or ) */ |
3467 | case CHAR_RIGHT_PARENTHESIS: |
3468 | *firstbyteptr = firstbyte; |
3469 | *reqbyteptr = reqbyte; |
3470 | *codeptr = code; |
3471 | *ptrptr = ptr; |
3472 | if (lengthptr != NULL) |
3473 | { |
3474 | if (OFLOW_MAX - *lengthptr < code - last_code) |
3475 | { |
3476 | *errorcodeptr = ERR20; |
3477 | goto FAILED; |
3478 | } |
3479 | *lengthptr += (int)(code - last_code); /* To include callout length */ |
3480 | DPRINTF((">> end branch\n")); |
3481 | } |
3482 | return TRUE; |
3483 | |
3484 | |
3485 | /* ===================================================================*/ |
3486 | /* Handle single-character metacharacters. In multiline mode, ^ disables |
3487 | the setting of any following char as a first character. */ |
3488 | |
3489 | case CHAR_CIRCUMFLEX_ACCENT: |
3490 | previous = NULL; |
3491 | if ((options & PCRE_MULTILINE) != 0) |
3492 | { |
3493 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
3494 | *code++ = OP_CIRCM; |
3495 | } |
3496 | else *code++ = OP_CIRC; |
3497 | break; |
3498 | |
3499 | case CHAR_DOLLAR_SIGN: |
3500 | previous = NULL; |
3501 | *code++ = ((options & PCRE_MULTILINE) != 0)? OP_DOLLM : OP_DOLL; |
3502 | break; |
3503 | |
3504 | /* There can never be a first char if '.' is first, whatever happens about |
3505 | repeats. The value of reqbyte doesn't change either. */ |
3506 | |
3507 | case CHAR_DOT: |
3508 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
3509 | zerofirstbyte = firstbyte; |
3510 | zeroreqbyte = reqbyte; |
3511 | previous = code; |
3512 | *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY; |
3513 | break; |
3514 | |
3515 | |
3516 | /* ===================================================================*/ |
3517 | /* Character classes. If the included characters are all < 256, we build a |
3518 | 32-byte bitmap of the permitted characters, except in the special case |
3519 | where there is only one such character. For negated classes, we build the |
3520 | map as usual, then invert it at the end. However, we use a different opcode |
3521 | so that data characters > 255 can be handled correctly. |
3522 | |
3523 | If the class contains characters outside the 0-255 range, a different |
3524 | opcode is compiled. It may optionally have a bit map for characters < 256, |
3525 | but those above are are explicitly listed afterwards. A flag byte tells |
3526 | whether the bitmap is present, and whether this is a negated class or not. |
3527 | |
3528 | In JavaScript compatibility mode, an isolated ']' causes an error. In |
3529 | default (Perl) mode, it is treated as a data character. */ |
3530 | |
3531 | case CHAR_RIGHT_SQUARE_BRACKET: |
3532 | if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
3533 | { |
3534 | *errorcodeptr = ERR64; |
3535 | goto FAILED; |
3536 | } |
3537 | goto NORMAL_CHAR; |
3538 | |
3539 | case CHAR_LEFT_SQUARE_BRACKET: |
3540 | previous = code; |
3541 | |
3542 | /* PCRE supports POSIX class stuff inside a class. Perl gives an error if |
3543 | they are encountered at the top level, so we'll do that too. */ |
3544 | |
3545 | if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
3546 | ptr[1] == CHAR_EQUALS_SIGN) && |
3547 | check_posix_syntax(ptr, &tempptr)) |
3548 | { |
3549 | *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31; |
3550 | goto FAILED; |
3551 | } |
3552 | |
3553 | /* If the first character is '^', set the negation flag and skip it. Also, |
3554 | if the first few characters (either before or after ^) are \Q\E or \E we |
3555 | skip them too. This makes for compatibility with Perl. */ |
3556 | |
3557 | negate_class = FALSE; |
3558 | for (;;) |
3559 | { |
3560 | c = *(++ptr); |
3561 | if (c == CHAR_BACKSLASH) |
3562 | { |
3563 | if (ptr[1] == CHAR_E) |
3564 | ptr++; |
3565 | else if (strncmp((const char *)ptr+1, |
3566 | STR_Q STR_BACKSLASH STR_E, 3) == 0) |
3567 | ptr += 3; |
3568 | else |
3569 | break; |
3570 | } |
3571 | else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT) |
3572 | negate_class = TRUE; |
3573 | else break; |
3574 | } |
3575 | |
3576 | /* Empty classes are allowed in JavaScript compatibility mode. Otherwise, |
3577 | an initial ']' is taken as a data character -- the code below handles |
3578 | that. In JS mode, [] must always fail, so generate OP_FAIL, whereas |
3579 | [^] must match any character, so generate OP_ALLANY. */ |
3580 | |
3581 | if (c == CHAR_RIGHT_SQUARE_BRACKET && |
3582 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
3583 | { |
3584 | *code++ = negate_class? OP_ALLANY : OP_FAIL; |
3585 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
3586 | zerofirstbyte = firstbyte; |
3587 | break; |
3588 | } |
3589 | |
3590 | /* If a class contains a negative special such as \S, we need to flip the |
3591 | negation flag at the end, so that support for characters > 255 works |
3592 | correctly (they are all included in the class). */ |
3593 | |
3594 | should_flip_negation = FALSE; |
3595 | |
3596 | /* Keep a count of chars with values < 256 so that we can optimize the case |
3597 | of just a single character (as long as it's < 256). However, For higher |
3598 | valued UTF-8 characters, we don't yet do any optimization. */ |
3599 | |
3600 | class_charcount = 0; |
3601 | class_lastchar = -1; |
3602 | |
3603 | /* Initialize the 32-char bit map to all zeros. We build the map in a |
3604 | temporary bit of memory, in case the class contains only 1 character (less |
3605 | than 256), because in that case the compiled code doesn't use the bit map. |
3606 | */ |
3607 | |
3608 | memset(classbits, 0, 32 * sizeof(uschar)); |
3609 | |
3610 | #ifdef SUPPORT_UTF8 |
3611 | class_utf8 = FALSE; /* No chars >= 256 */ |
3612 | class_utf8data = code + LINK_SIZE + 2; /* For UTF-8 items */ |
3613 | class_utf8data_base = class_utf8data; /* For resetting in pass 1 */ |
3614 | #endif |
3615 | |
3616 | /* Process characters until ] is reached. By writing this as a "do" it |
3617 | means that an initial ] is taken as a data character. At the start of the |
3618 | loop, c contains the first byte of the character. */ |
3619 | |
3620 | if (c != 0) do |
3621 | { |
3622 | const uschar *oldptr; |
3623 | |
3624 | #ifdef SUPPORT_UTF8 |
3625 | if (utf8 && c > 127) |
3626 | { /* Braces are required because the */ |
3627 | GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */ |
3628 | } |
3629 | |
3630 | /* In the pre-compile phase, accumulate the length of any UTF-8 extra |
3631 | data and reset the pointer. This is so that very large classes that |
3632 | contain a zillion UTF-8 characters no longer overwrite the work space |
3633 | (which is on the stack). */ |
3634 | |
3635 | if (lengthptr != NULL) |
3636 | { |
3637 | *lengthptr += class_utf8data - class_utf8data_base; |
3638 | class_utf8data = class_utf8data_base; |
3639 | } |
3640 | |
3641 | #endif |
3642 | |
3643 | /* Inside \Q...\E everything is literal except \E */ |
3644 | |
3645 | if (inescq) |
3646 | { |
3647 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */ |
3648 | { |
3649 | inescq = FALSE; /* Reset literal state */ |
3650 | ptr++; /* Skip the 'E' */ |
3651 | continue; /* Carry on with next */ |
3652 | } |
3653 | goto CHECK_RANGE; /* Could be range if \E follows */ |
3654 | } |
3655 | |
3656 | /* Handle POSIX class names. Perl allows a negation extension of the |
3657 | form [:^name:]. A square bracket that doesn't match the syntax is |
3658 | treated as a literal. We also recognize the POSIX constructions |
3659 | [.ch.] and [=ch=] ("collating elements") and fault them, as Perl |
3660 | 5.6 and 5.8 do. */ |
3661 | |
3662 | if (c == CHAR_LEFT_SQUARE_BRACKET && |
3663 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
3664 | ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr)) |
3665 | { |
3666 | BOOL local_negate = FALSE; |
3667 | int posix_class, taboffset, tabopt; |
3668 | register const uschar *cbits = cd->cbits; |
3669 | uschar pbits[32]; |
3670 | |
3671 | if (ptr[1] != CHAR_COLON) |
3672 | { |
3673 | *errorcodeptr = ERR31; |
3674 | goto FAILED; |
3675 | } |
3676 | |
3677 | ptr += 2; |
3678 | if (*ptr == CHAR_CIRCUMFLEX_ACCENT) |
3679 | { |
3680 | local_negate = TRUE; |
3681 | should_flip_negation = TRUE; /* Note negative special */ |
3682 | ptr++; |
3683 | } |
3684 | |
3685 | posix_class = check_posix_name(ptr, (int)(tempptr - ptr)); |
3686 | if (posix_class < 0) |
3687 | { |
3688 | *errorcodeptr = ERR30; |
3689 | goto FAILED; |
3690 | } |
3691 | |
3692 | /* If matching is caseless, upper and lower are converted to |
3693 | alpha. This relies on the fact that the class table starts with |
3694 | alpha, lower, upper as the first 3 entries. */ |
3695 | |
3696 | if ((options & PCRE_CASELESS) != 0 && posix_class <= 2) |
3697 | posix_class = 0; |
3698 | |
3699 | /* When PCRE_UCP is set, some of the POSIX classes are converted to |
3700 | different escape sequences that use Unicode properties. */ |
3701 | |
3702 | #ifdef SUPPORT_UCP |
3703 | if ((options & PCRE_UCP) != 0) |
3704 | { |
3705 | int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0); |
3706 | if (posix_substitutes[pc] != NULL) |
3707 | { |
3708 | nestptr = tempptr + 1; |
3709 | ptr = posix_substitutes[pc] - 1; |
3710 | continue; |
3711 | } |
3712 | } |
3713 | #endif |
3714 | /* In the non-UCP case, we build the bit map for the POSIX class in a |
3715 | chunk of local store because we may be adding and subtracting from it, |
3716 | and we don't want to subtract bits that may be in the main map already. |
3717 | At the end we or the result into the bit map that is being built. */ |
3718 | |
3719 | posix_class *= 3; |
3720 | |
3721 | /* Copy in the first table (always present) */ |
3722 | |
3723 | memcpy(pbits, cbits + posix_class_maps[posix_class], |
3724 | 32 * sizeof(uschar)); |
3725 | |
3726 | /* If there is a second table, add or remove it as required. */ |
3727 | |
3728 | taboffset = posix_class_maps[posix_class + 1]; |
3729 | tabopt = posix_class_maps[posix_class + 2]; |
3730 | |
3731 | if (taboffset >= 0) |
3732 | { |
3733 | if (tabopt >= 0) |
3734 | for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset]; |
3735 | else |
3736 | for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset]; |
3737 | } |
3738 | |
3739 | /* Not see if we need to remove any special characters. An option |
3740 | value of 1 removes vertical space and 2 removes underscore. */ |
3741 | |
3742 | if (tabopt < 0) tabopt = -tabopt; |
3743 | if (tabopt == 1) pbits[1] &= ~0x3c; |
3744 | else if (tabopt == 2) pbits[11] &= 0x7f; |
3745 | |
3746 | /* Add the POSIX table or its complement into the main table that is |
3747 | being built and we are done. */ |
3748 | |
3749 | if (local_negate) |
3750 | for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c]; |
3751 | else |
3752 | for (c = 0; c < 32; c++) classbits[c] |= pbits[c]; |
3753 | |
3754 | ptr = tempptr + 1; |
3755 | class_charcount = 10; /* Set > 1; assumes more than 1 per class */ |
3756 | continue; /* End of POSIX syntax handling */ |
3757 | } |
3758 | |
3759 | /* Backslash may introduce a single character, or it may introduce one |
3760 | of the specials, which just set a flag. The sequence \b is a special |
3761 | case. Inside a class (and only there) it is treated as backspace. We |
3762 | assume that other escapes have more than one character in them, so set |
3763 | class_charcount bigger than one. Unrecognized escapes fall through and |
3764 | are either treated as literal characters (by default), or are faulted if |
3765 | PCRE_EXTRA is set. */ |
3766 | |
3767 | if (c == CHAR_BACKSLASH) |
3768 | { |
3769 | c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE); |
3770 | if (*errorcodeptr != 0) goto FAILED; |
3771 | |
3772 | if (-c == ESC_b) c = CHAR_BS; /* \b is backspace in a class */ |
3773 | else if (-c == ESC_Q) /* Handle start of quoted string */ |
3774 | { |
3775 | if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
3776 | { |
3777 | ptr += 2; /* avoid empty string */ |
3778 | } |
3779 | else inescq = TRUE; |
3780 | continue; |
3781 | } |
3782 | else if (-c == ESC_E) continue; /* Ignore orphan \E */ |
3783 | |
3784 | if (c < 0) |
3785 | { |
3786 | register const uschar *cbits = cd->cbits; |
3787 | class_charcount += 2; /* Greater than 1 is what matters */ |
3788 | |
3789 | switch (-c) |
3790 | { |
3791 | #ifdef SUPPORT_UCP |
3792 | case ESC_du: /* These are the values given for \d etc */ |
3793 | case ESC_DU: /* when PCRE_UCP is set. We replace the */ |
3794 | case ESC_wu: /* escape sequence with an appropriate \p */ |
3795 | case ESC_WU: /* or \P to test Unicode properties instead */ |
3796 | case ESC_su: /* of the default ASCII testing. */ |
3797 | case ESC_SU: |
3798 | nestptr = ptr; |
3799 | ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */ |
3800 | class_charcount -= 2; /* Undo! */ |
3801 | continue; |
3802 | #endif |
3803 | case ESC_d: |
3804 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit]; |
3805 | continue; |
3806 | |
3807 | case ESC_D: |
3808 | should_flip_negation = TRUE; |
3809 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit]; |
3810 | continue; |
3811 | |
3812 | case ESC_w: |
3813 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word]; |
3814 | continue; |
3815 | |
3816 | case ESC_W: |
3817 | should_flip_negation = TRUE; |
3818 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word]; |
3819 | continue; |
3820 | |
3821 | /* Perl 5.004 onwards omits VT from \s, but we must preserve it |
3822 | if it was previously set by something earlier in the character |
3823 | class. */ |
3824 | |
3825 | case ESC_s: |
3826 | classbits[0] |= cbits[cbit_space]; |
3827 | classbits[1] |= cbits[cbit_space+1] & ~0x08; |
3828 | for (c = 2; c < 32; c++) classbits[c] |= cbits[c+cbit_space]; |
3829 | continue; |
3830 | |
3831 | case ESC_S: |
3832 | should_flip_negation = TRUE; |
3833 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space]; |
3834 | classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */ |
3835 | continue; |
3836 | |
3837 | case ESC_h: |
3838 | SETBIT(classbits, 0x09); /* VT */ |
3839 | SETBIT(classbits, 0x20); /* SPACE */ |
3840 | SETBIT(classbits, 0xa0); /* NSBP */ |
3841 | #ifdef SUPPORT_UTF8 |
3842 | if (utf8) |
3843 | { |
3844 | class_utf8 = TRUE; |
3845 | *class_utf8data++ = XCL_SINGLE; |
3846 | class_utf8data += _pcre_ord2utf8(0x1680, class_utf8data); |
3847 | *class_utf8data++ = XCL_SINGLE; |
3848 | class_utf8data += _pcre_ord2utf8(0x180e, class_utf8data); |
3849 | *class_utf8data++ = XCL_RANGE; |
3850 | class_utf8data += _pcre_ord2utf8(0x2000, class_utf8data); |
3851 | class_utf8data += _pcre_ord2utf8(0x200A, class_utf8data); |
3852 | *class_utf8data++ = XCL_SINGLE; |
3853 | class_utf8data += _pcre_ord2utf8(0x202f, class_utf8data); |
3854 | *class_utf8data++ = XCL_SINGLE; |
3855 | class_utf8data += _pcre_ord2utf8(0x205f, class_utf8data); |
3856 | *class_utf8data++ = XCL_SINGLE; |
3857 | class_utf8data += _pcre_ord2utf8(0x3000, class_utf8data); |
3858 | } |
3859 | #endif |
3860 | continue; |
3861 | |
3862 | case ESC_H: |
3863 | for (c = 0; c < 32; c++) |
3864 | { |
3865 | int x = 0xff; |
3866 | switch (c) |
3867 | { |
3868 | case 0x09/8: x ^= 1 << (0x09%8); break; |
3869 | case 0x20/8: x ^= 1 << (0x20%8); break; |
3870 | case 0xa0/8: x ^= 1 << (0xa0%8); break; |
3871 | default: break; |
3872 | } |
3873 | classbits[c] |= x; |
3874 | } |
3875 | |
3876 | #ifdef SUPPORT_UTF8 |
3877 | if (utf8) |
3878 | { |
3879 | class_utf8 = TRUE; |
3880 | *class_utf8data++ = XCL_RANGE; |
3881 | class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data); |
3882 | class_utf8data += _pcre_ord2utf8(0x167f, class_utf8data); |
3883 | *class_utf8data++ = XCL_RANGE; |
3884 | class_utf8data += _pcre_ord2utf8(0x1681, class_utf8data); |
3885 | class_utf8data += _pcre_ord2utf8(0x180d, class_utf8data); |
3886 | *class_utf8data++ = XCL_RANGE; |
3887 | class_utf8data += _pcre_ord2utf8(0x180f, class_utf8data); |
3888 | class_utf8data += _pcre_ord2utf8(0x1fff, class_utf8data); |
3889 | *class_utf8data++ = XCL_RANGE; |
3890 | class_utf8data += _pcre_ord2utf8(0x200B, class_utf8data); |
3891 | class_utf8data += _pcre_ord2utf8(0x202e, class_utf8data); |
3892 | *class_utf8data++ = XCL_RANGE; |
3893 | class_utf8data += _pcre_ord2utf8(0x2030, class_utf8data); |
3894 | class_utf8data += _pcre_ord2utf8(0x205e, class_utf8data); |
3895 | *class_utf8data++ = XCL_RANGE; |
3896 | class_utf8data += _pcre_ord2utf8(0x2060, class_utf8data); |
3897 | class_utf8data += _pcre_ord2utf8(0x2fff, class_utf8data); |
3898 | *class_utf8data++ = XCL_RANGE; |
3899 | class_utf8data += _pcre_ord2utf8(0x3001, class_utf8data); |
3900 | class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data); |
3901 | } |
3902 | #endif |
3903 | continue; |
3904 | |
3905 | case ESC_v: |
3906 | SETBIT(classbits, 0x0a); /* LF */ |
3907 | SETBIT(classbits, 0x0b); /* VT */ |
3908 | SETBIT(classbits, 0x0c); /* FF */ |
3909 | SETBIT(classbits, 0x0d); /* CR */ |
3910 | SETBIT(classbits, 0x85); /* NEL */ |
3911 | #ifdef SUPPORT_UTF8 |
3912 | if (utf8) |
3913 | { |
3914 | class_utf8 = TRUE; |
3915 | *class_utf8data++ = XCL_RANGE; |
3916 | class_utf8data += _pcre_ord2utf8(0x2028, class_utf8data); |
3917 | class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data); |
3918 | } |
3919 | #endif |
3920 | continue; |
3921 | |
3922 | case ESC_V: |
3923 | for (c = 0; c < 32; c++) |
3924 | { |
3925 | int x = 0xff; |
3926 | switch (c) |
3927 | { |
3928 | case 0x0a/8: x ^= 1 << (0x0a%8); |
3929 | x ^= 1 << (0x0b%8); |
3930 | x ^= 1 << (0x0c%8); |
3931 | x ^= 1 << (0x0d%8); |
3932 | break; |
3933 | case 0x85/8: x ^= 1 << (0x85%8); break; |
3934 | default: break; |
3935 | } |
3936 | classbits[c] |= x; |
3937 | } |
3938 | |
3939 | #ifdef SUPPORT_UTF8 |
3940 | if (utf8) |
3941 | { |
3942 | class_utf8 = TRUE; |
3943 | *class_utf8data++ = XCL_RANGE; |
3944 | class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data); |
3945 | class_utf8data += _pcre_ord2utf8(0x2027, class_utf8data); |
3946 | *class_utf8data++ = XCL_RANGE; |
3947 | class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data); |
3948 | class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data); |
3949 | } |
3950 | #endif |
3951 | continue; |
3952 | |
3953 | #ifdef SUPPORT_UCP |
3954 | case ESC_p: |
3955 | case ESC_P: |
3956 | { |
3957 | BOOL negated; |
3958 | int pdata; |
3959 | int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr); |
3960 | if (ptype < 0) goto FAILED; |
3961 | class_utf8 = TRUE; |
3962 | *class_utf8data++ = ((-c == ESC_p) != negated)? |
3963 | XCL_PROP : XCL_NOTPROP; |
3964 | *class_utf8data++ = ptype; |
3965 | *class_utf8data++ = pdata; |
3966 | class_charcount -= 2; /* Not a < 256 character */ |
3967 | continue; |
3968 | } |
3969 | #endif |
3970 | /* Unrecognized escapes are faulted if PCRE is running in its |
3971 | strict mode. By default, for compatibility with Perl, they are |
3972 | treated as literals. */ |
3973 | |
3974 | default: |
3975 | if ((options & PCRE_EXTRA) != 0) |
3976 | { |
3977 | *errorcodeptr = ERR7; |
3978 | goto FAILED; |
3979 | } |
3980 | class_charcount -= 2; /* Undo the default count from above */ |
3981 | c = *ptr; /* Get the final character and fall through */ |
3982 | break; |
3983 | } |
3984 | } |
3985 | |
3986 | /* Fall through if we have a single character (c >= 0). This may be |
3987 | greater than 256 in UTF-8 mode. */ |
3988 | |
3989 | } /* End of backslash handling */ |
3990 | |
3991 | /* A single character may be followed by '-' to form a range. However, |
3992 | Perl does not permit ']' to be the end of the range. A '-' character |
3993 | at the end is treated as a literal. Perl ignores orphaned \E sequences |
3994 | entirely. The code for handling \Q and \E is messy. */ |
3995 | |
3996 | CHECK_RANGE: |
3997 | while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
3998 | { |
3999 | inescq = FALSE; |
4000 | ptr += 2; |
4001 | } |
4002 | |
4003 | oldptr = ptr; |
4004 | |
4005 | /* Remember \r or \n */ |
4006 | |
4007 | if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
4008 | |
4009 | /* Check for range */ |
4010 | |
4011 | if (!inescq && ptr[1] == CHAR_MINUS) |
4012 | { |
4013 | int d; |
4014 | ptr += 2; |
4015 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2; |
4016 | |
4017 | /* If we hit \Q (not followed by \E) at this point, go into escaped |
4018 | mode. */ |
4019 | |
4020 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q) |
4021 | { |
4022 | ptr += 2; |
4023 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
4024 | { ptr += 2; continue; } |
4025 | inescq = TRUE; |
4026 | break; |
4027 | } |
4028 | |
4029 | if (*ptr == 0 || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET)) |
4030 | { |
4031 | ptr = oldptr; |
4032 | goto LONE_SINGLE_CHARACTER; |
4033 | } |
4034 | |
4035 | #ifdef SUPPORT_UTF8 |
4036 | if (utf8) |
4037 | { /* Braces are required because the */ |
4038 | GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */ |
4039 | } |
4040 | else |
4041 | #endif |
4042 | d = *ptr; /* Not UTF-8 mode */ |
4043 | |
4044 | /* The second part of a range can be a single-character escape, but |
4045 | not any of the other escapes. Perl 5.6 treats a hyphen as a literal |
4046 | in such circumstances. */ |
4047 | |
4048 | if (!inescq && d == CHAR_BACKSLASH) |
4049 | { |
4050 | d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE); |
4051 | if (*errorcodeptr != 0) goto FAILED; |
4052 | |
4053 | /* \b is backspace; any other special means the '-' was literal */ |
4054 | |
4055 | if (d < 0) |
4056 | { |
4057 | if (d == -ESC_b) d = CHAR_BS; else |
4058 | { |
4059 | ptr = oldptr; |
4060 | goto LONE_SINGLE_CHARACTER; /* A few lines below */ |
4061 | } |
4062 | } |
4063 | } |
4064 | |
4065 | /* Check that the two values are in the correct order. Optimize |
4066 | one-character ranges */ |
4067 | |
4068 | if (d < c) |
4069 | { |
4070 | *errorcodeptr = ERR8; |
4071 | goto FAILED; |
4072 | } |
4073 | |
4074 | if (d == c) goto LONE_SINGLE_CHARACTER; /* A few lines below */ |
4075 | |
4076 | /* Remember \r or \n */ |
4077 | |
4078 | if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
4079 | |
4080 | /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless |
4081 | matching, we have to use an XCLASS with extra data items. Caseless |
4082 | matching for characters > 127 is available only if UCP support is |
4083 | available. */ |
4084 | |
4085 | #ifdef SUPPORT_UTF8 |
4086 | if (utf8 && (d > 255 || ((options & PCRE_CASELESS) != 0 && d > 127))) |
4087 | { |
4088 | class_utf8 = TRUE; |
4089 | |
4090 | /* With UCP support, we can find the other case equivalents of |
4091 | the relevant characters. There may be several ranges. Optimize how |
4092 | they fit with the basic range. */ |
4093 | |
4094 | #ifdef SUPPORT_UCP |
4095 | if ((options & PCRE_CASELESS) != 0) |
4096 | { |
4097 | unsigned int occ, ocd; |
4098 | unsigned int cc = c; |
4099 | unsigned int origd = d; |
4100 | while (get_othercase_range(&cc, origd, &occ, &ocd)) |
4101 | { |
4102 | if (occ >= (unsigned int)c && |
4103 | ocd <= (unsigned int)d) |
4104 | continue; /* Skip embedded ranges */ |
4105 | |
4106 | if (occ < (unsigned int)c && |
4107 | ocd >= (unsigned int)c - 1) /* Extend the basic range */ |
4108 | { /* if there is overlap, */ |
4109 | c = occ; /* noting that if occ < c */ |
4110 | continue; /* we can't have ocd > d */ |
4111 | } /* because a subrange is */ |
4112 | if (ocd > (unsigned int)d && |
4113 | occ <= (unsigned int)d + 1) /* always shorter than */ |
4114 | { /* the basic range. */ |
4115 | d = ocd; |
4116 | continue; |
4117 | } |
4118 | |
4119 | if (occ == ocd) |
4120 | { |
4121 | *class_utf8data++ = XCL_SINGLE; |
4122 | } |
4123 | else |
4124 | { |
4125 | *class_utf8data++ = XCL_RANGE; |
4126 | class_utf8data += _pcre_ord2utf8(occ, class_utf8data); |
4127 | } |
4128 | class_utf8data += _pcre_ord2utf8(ocd, class_utf8data); |
4129 | } |
4130 | } |
4131 | #endif /* SUPPORT_UCP */ |
4132 | |
4133 | /* Now record the original range, possibly modified for UCP caseless |
4134 | overlapping ranges. */ |
4135 | |
4136 | *class_utf8data++ = XCL_RANGE; |
4137 | class_utf8data += _pcre_ord2utf8(c, class_utf8data); |
4138 | class_utf8data += _pcre_ord2utf8(d, class_utf8data); |
4139 | |
4140 | /* With UCP support, we are done. Without UCP support, there is no |
4141 | caseless matching for UTF-8 characters > 127; we can use the bit map |
4142 | for the smaller ones. */ |
4143 | |
4144 | #ifdef SUPPORT_UCP |
4145 | continue; /* With next character in the class */ |
4146 | #else |
4147 | if ((options & PCRE_CASELESS) == 0 || c > 127) continue; |
4148 | |
4149 | /* Adjust upper limit and fall through to set up the map */ |
4150 | |
4151 | d = 127; |
4152 | |
4153 | #endif /* SUPPORT_UCP */ |
4154 | } |
4155 | #endif /* SUPPORT_UTF8 */ |
4156 | |
4157 | /* We use the bit map for all cases when not in UTF-8 mode; else |
4158 | ranges that lie entirely within 0-127 when there is UCP support; else |
4159 | for partial ranges without UCP support. */ |
4160 | |
4161 | class_charcount += d - c + 1; |
4162 | class_lastchar = d; |
4163 | |
4164 | /* We can save a bit of time by skipping this in the pre-compile. */ |
4165 | |
4166 | if (lengthptr == NULL) for (; c <= d; c++) |
4167 | { |
4168 | classbits[c/8] |= (1 << (c&7)); |
4169 | if ((options & PCRE_CASELESS) != 0) |
4170 | { |
4171 | int uc = cd->fcc[c]; /* flip case */ |
4172 | classbits[uc/8] |= (1 << (uc&7)); |
4173 | } |
4174 | } |
4175 | |
4176 | continue; /* Go get the next char in the class */ |
4177 | } |
4178 | |
4179 | /* Handle a lone single character - we can get here for a normal |
4180 | non-escape char, or after \ that introduces a single character or for an |
4181 | apparent range that isn't. */ |
4182 | |
4183 | LONE_SINGLE_CHARACTER: |
4184 | |
4185 | /* Handle a character that cannot go in the bit map */ |
4186 | |
4187 | #ifdef SUPPORT_UTF8 |
4188 | if (utf8 && (c > 255 || ((options & PCRE_CASELESS) != 0 && c > 127))) |
4189 | { |
4190 | class_utf8 = TRUE; |
4191 | *class_utf8data++ = XCL_SINGLE; |
4192 | class_utf8data += _pcre_ord2utf8(c, class_utf8data); |
4193 | |
4194 | #ifdef SUPPORT_UCP |
4195 | if ((options & PCRE_CASELESS) != 0) |
4196 | { |
4197 | unsigned int othercase; |
4198 | if ((othercase = UCD_OTHERCASE(c)) != c) |
4199 | { |
4200 | *class_utf8data++ = XCL_SINGLE; |
4201 | class_utf8data += _pcre_ord2utf8(othercase, class_utf8data); |
4202 | } |
4203 | } |
4204 | #endif /* SUPPORT_UCP */ |
4205 | |
4206 | } |
4207 | else |
4208 | #endif /* SUPPORT_UTF8 */ |
4209 | |
4210 | /* Handle a single-byte character */ |
4211 | { |
4212 | classbits[c/8] |= (1 << (c&7)); |
4213 | if ((options & PCRE_CASELESS) != 0) |
4214 | { |
4215 | c = cd->fcc[c]; /* flip case */ |
4216 | classbits[c/8] |= (1 << (c&7)); |
4217 | } |
4218 | class_charcount++; |
4219 | class_lastchar = c; |
4220 | } |
4221 | } |
4222 | |
4223 | /* Loop until ']' reached. This "while" is the end of the "do" far above. |
4224 | If we are at the end of an internal nested string, revert to the outer |
4225 | string. */ |
4226 | |
4227 | while (((c = *(++ptr)) != 0 || |
4228 | (nestptr != NULL && |
4229 | (ptr = nestptr, nestptr = NULL, c = *(++ptr)) != 0)) && |
4230 | (c != CHAR_RIGHT_SQUARE_BRACKET || inescq)); |
4231 | |
4232 | /* Check for missing terminating ']' */ |
4233 | |
4234 | if (c == 0) |
4235 | { |
4236 | *errorcodeptr = ERR6; |
4237 | goto FAILED; |
4238 | } |
4239 | |
4240 | /* If class_charcount is 1, we saw precisely one character whose value is |
4241 | less than 256. As long as there were no characters >= 128 and there was no |
4242 | use of \p or \P, in other words, no use of any XCLASS features, we can |
4243 | optimize. |
4244 | |
4245 | In UTF-8 mode, we can optimize the negative case only if there were no |
4246 | characters >= 128 because OP_NOT and the related opcodes like OP_NOTSTAR |
4247 | operate on single-bytes characters only. This is an historical hangover. |
4248 | Maybe one day we can tidy these opcodes to handle multi-byte characters. |
4249 | |
4250 | The optimization throws away the bit map. We turn the item into a |
4251 | 1-character OP_CHAR[I] if it's positive, or OP_NOT[I] if it's negative. |
4252 | Note that OP_NOT[I] does not support multibyte characters. In the positive |
4253 | case, it can cause firstbyte to be set. Otherwise, there can be no first |
4254 | char if this item is first, whatever repeat count may follow. In the case |
4255 | of reqbyte, save the previous value for reinstating. */ |
4256 | |
4257 | #ifdef SUPPORT_UTF8 |
4258 | if (class_charcount == 1 && !class_utf8 && |
4259 | (!utf8 || !negate_class || class_lastchar < 128)) |
4260 | #else |
4261 | if (class_charcount == 1) |
4262 | #endif |
4263 | { |
4264 | zeroreqbyte = reqbyte; |
4265 | |
4266 | /* The OP_NOT[I] opcodes work on one-byte characters only. */ |
4267 | |
4268 | if (negate_class) |
4269 | { |
4270 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
4271 | zerofirstbyte = firstbyte; |
4272 | *code++ = ((options & PCRE_CASELESS) != 0)? OP_NOTI: OP_NOT; |
4273 | *code++ = class_lastchar; |
4274 | break; |
4275 | } |
4276 | |
4277 | /* For a single, positive character, get the value into mcbuffer, and |
4278 | then we can handle this with the normal one-character code. */ |
4279 | |
4280 | #ifdef SUPPORT_UTF8 |
4281 | if (utf8 && class_lastchar > 127) |
4282 | mclength = _pcre_ord2utf8(class_lastchar, mcbuffer); |
4283 | else |
4284 | #endif |
4285 | { |
4286 | mcbuffer[0] = class_lastchar; |
4287 | mclength = 1; |
4288 | } |
4289 | goto ONE_CHAR; |
4290 | } /* End of 1-char optimization */ |
4291 | |
4292 | /* The general case - not the one-char optimization. If this is the first |
4293 | thing in the branch, there can be no first char setting, whatever the |
4294 | repeat count. Any reqbyte setting must remain unchanged after any kind of |
4295 | repeat. */ |
4296 | |
4297 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
4298 | zerofirstbyte = firstbyte; |
4299 | zeroreqbyte = reqbyte; |
4300 | |
4301 | /* If there are characters with values > 255, we have to compile an |
4302 | extended class, with its own opcode, unless there was a negated special |
4303 | such as \S in the class, and PCRE_UCP is not set, because in that case all |
4304 | characters > 255 are in the class, so any that were explicitly given as |
4305 | well can be ignored. If (when there are explicit characters > 255 that must |
4306 | be listed) there are no characters < 256, we can omit the bitmap in the |
4307 | actual compiled code. */ |
4308 | |
4309 | #ifdef SUPPORT_UTF8 |
4310 | if (class_utf8 && (!should_flip_negation || (options & PCRE_UCP) != 0)) |
4311 | { |
4312 | *class_utf8data++ = XCL_END; /* Marks the end of extra data */ |
4313 | *code++ = OP_XCLASS; |
4314 | code += LINK_SIZE; |
4315 | *code = negate_class? XCL_NOT : 0; |
4316 | |
4317 | /* If the map is required, move up the extra data to make room for it; |
4318 | otherwise just move the code pointer to the end of the extra data. */ |
4319 | |
4320 | if (class_charcount > 0) |
4321 | { |
4322 | *code++ |= XCL_MAP; |
4323 | memmove(code + 32, code, class_utf8data - code); |
4324 | memcpy(code, classbits, 32); |
4325 | code = class_utf8data + 32; |
4326 | } |
4327 | else code = class_utf8data; |
4328 | |
4329 | /* Now fill in the complete length of the item */ |
4330 | |
4331 | PUT(previous, 1, code - previous); |
4332 | break; /* End of class handling */ |
4333 | } |
4334 | #endif |
4335 | |
4336 | /* If there are no characters > 255, or they are all to be included or |
4337 | excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the |
4338 | whole class was negated and whether there were negative specials such as \S |
4339 | (non-UCP) in the class. Then copy the 32-byte map into the code vector, |
4340 | negating it if necessary. */ |
4341 | |
4342 | *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS; |
4343 | if (negate_class) |
4344 | { |
4345 | if (lengthptr == NULL) /* Save time in the pre-compile phase */ |
4346 | for (c = 0; c < 32; c++) code[c] = ~classbits[c]; |
4347 | } |
4348 | else |
4349 | { |
4350 | memcpy(code, classbits, 32); |
4351 | } |
4352 | code += 32; |
4353 | break; |
4354 | |
4355 | |
4356 | /* ===================================================================*/ |
4357 | /* Various kinds of repeat; '{' is not necessarily a quantifier, but this |
4358 | has been tested above. */ |
4359 | |
4360 | case CHAR_LEFT_CURLY_BRACKET: |
4361 | if (!is_quantifier) goto NORMAL_CHAR; |
4362 | ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr); |
4363 | if (*errorcodeptr != 0) goto FAILED; |
4364 | goto REPEAT; |
4365 | |
4366 | case CHAR_ASTERISK: |
4367 | repeat_min = 0; |
4368 | repeat_max = -1; |
4369 | goto REPEAT; |
4370 | |
4371 | case CHAR_PLUS: |
4372 | repeat_min = 1; |
4373 | repeat_max = -1; |
4374 | goto REPEAT; |
4375 | |
4376 | case CHAR_QUESTION_MARK: |
4377 | repeat_min = 0; |
4378 | repeat_max = 1; |
4379 | |
4380 | REPEAT: |
4381 | if (previous == NULL) |
4382 | { |
4383 | *errorcodeptr = ERR9; |
4384 | goto FAILED; |
4385 | } |
4386 | |
4387 | if (repeat_min == 0) |
4388 | { |
4389 | firstbyte = zerofirstbyte; /* Adjust for zero repeat */ |
4390 | reqbyte = zeroreqbyte; /* Ditto */ |
4391 | } |
4392 | |
4393 | /* Remember whether this is a variable length repeat */ |
4394 | |
4395 | reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY; |
4396 | |
4397 | op_type = 0; /* Default single-char op codes */ |
4398 | possessive_quantifier = FALSE; /* Default not possessive quantifier */ |
4399 | |
4400 | /* Save start of previous item, in case we have to move it up in order to |
4401 | insert something before it. */ |
4402 | |
4403 | tempcode = previous; |
4404 | |
4405 | /* If the next character is '+', we have a possessive quantifier. This |
4406 | implies greediness, whatever the setting of the PCRE_UNGREEDY option. |
4407 | If the next character is '?' this is a minimizing repeat, by default, |
4408 | but if PCRE_UNGREEDY is set, it works the other way round. We change the |
4409 | repeat type to the non-default. */ |
4410 | |
4411 | if (ptr[1] == CHAR_PLUS) |
4412 | { |
4413 | repeat_type = 0; /* Force greedy */ |
4414 | possessive_quantifier = TRUE; |
4415 | ptr++; |
4416 | } |
4417 | else if (ptr[1] == CHAR_QUESTION_MARK) |
4418 | { |
4419 | repeat_type = greedy_non_default; |
4420 | ptr++; |
4421 | } |
4422 | else repeat_type = greedy_default; |
4423 | |
4424 | /* If previous was a recursion call, wrap it in atomic brackets so that |
4425 | previous becomes the atomic group. All recursions were so wrapped in the |
4426 | past, but it no longer happens for non-repeated recursions. In fact, the |
4427 | repeated ones could be re-implemented independently so as not to need this, |
4428 | but for the moment we rely on the code for repeating groups. */ |
4429 | |
4430 | if (*previous == OP_RECURSE) |
4431 | { |
4432 | memmove(previous + 1 + LINK_SIZE, previous, 1 + LINK_SIZE); |
4433 | *previous = OP_ONCE; |
4434 | PUT(previous, 1, 2 + 2*LINK_SIZE); |
4435 | previous[2 + 2*LINK_SIZE] = OP_KET; |
4436 | PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE); |
4437 | code += 2 + 2 * LINK_SIZE; |
4438 | length_prevgroup = 3 + 3*LINK_SIZE; |
4439 | |
4440 | /* When actually compiling, we need to check whether this was a forward |
4441 | reference, and if so, adjust the offset. */ |
4442 | |
4443 | if (lengthptr == NULL && cd->hwm >= cd->start_workspace + LINK_SIZE) |
4444 | { |
4445 | int offset = GET(cd->hwm, -LINK_SIZE); |
4446 | if (offset == previous + 1 - cd->start_code) |
4447 | PUT(cd->hwm, -LINK_SIZE, offset + 1 + LINK_SIZE); |
4448 | } |
4449 | } |
4450 | |
4451 | /* Now handle repetition for the different types of item. */ |
4452 | |
4453 | /* If previous was a character match, abolish the item and generate a |
4454 | repeat item instead. If a char item has a minumum of more than one, ensure |
4455 | that it is set in reqbyte - it might not be if a sequence such as x{3} is |
4456 | the first thing in a branch because the x will have gone into firstbyte |
4457 | instead. */ |
4458 | |
4459 | if (*previous == OP_CHAR || *previous == OP_CHARI) |
4460 | { |
4461 | op_type = (*previous == OP_CHAR)? 0 : OP_STARI - OP_STAR; |
4462 | |
4463 | /* Deal with UTF-8 characters that take up more than one byte. It's |
4464 | easier to write this out separately than try to macrify it. Use c to |
4465 | hold the length of the character in bytes, plus 0x80 to flag that it's a |
4466 | length rather than a small character. */ |
4467 | |
4468 | #ifdef SUPPORT_UTF8 |
4469 | if (utf8 && (code[-1] & 0x80) != 0) |
4470 | { |
4471 | uschar *lastchar = code - 1; |
4472 | while((*lastchar & 0xc0) == 0x80) lastchar--; |
4473 | c = code - lastchar; /* Length of UTF-8 character */ |
4474 | memcpy(utf8_char, lastchar, c); /* Save the char */ |
4475 | c |= 0x80; /* Flag c as a length */ |
4476 | } |
4477 | else |
4478 | #endif |
4479 | |
4480 | /* Handle the case of a single byte - either with no UTF8 support, or |
4481 | with UTF-8 disabled, or for a UTF-8 character < 128. */ |
4482 | |
4483 | { |
4484 | c = code[-1]; |
4485 | if (repeat_min > 1) reqbyte = c | req_caseopt | cd->req_varyopt; |
4486 | } |
4487 | |
4488 | /* If the repetition is unlimited, it pays to see if the next thing on |
4489 | the line is something that cannot possibly match this character. If so, |
4490 | automatically possessifying this item gains some performance in the case |
4491 | where the match fails. */ |
4492 | |
4493 | if (!possessive_quantifier && |
4494 | repeat_max < 0 && |
4495 | check_auto_possessive(previous, utf8, ptr + 1, options, cd)) |
4496 | { |
4497 | repeat_type = 0; /* Force greedy */ |
4498 | possessive_quantifier = TRUE; |
4499 | } |
4500 | |
4501 | goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */ |
4502 | } |
4503 | |
4504 | /* If previous was a single negated character ([^a] or similar), we use |
4505 | one of the special opcodes, replacing it. The code is shared with single- |
4506 | character repeats by setting opt_type to add a suitable offset into |
4507 | repeat_type. We can also test for auto-possessification. OP_NOT and OP_NOTI |
4508 | are currently used only for single-byte chars. */ |
4509 | |
4510 | else if (*previous == OP_NOT || *previous == OP_NOTI) |
4511 | { |
4512 | op_type = ((*previous == OP_NOT)? OP_NOTSTAR : OP_NOTSTARI) - OP_STAR; |
4513 | c = previous[1]; |
4514 | if (!possessive_quantifier && |
4515 | repeat_max < 0 && |
4516 | check_auto_possessive(previous, utf8, ptr + 1, options, cd)) |
4517 | { |
4518 | repeat_type = 0; /* Force greedy */ |
4519 | possessive_quantifier = TRUE; |
4520 | } |
4521 | goto OUTPUT_SINGLE_REPEAT; |
4522 | } |
4523 | |
4524 | /* If previous was a character type match (\d or similar), abolish it and |
4525 | create a suitable repeat item. The code is shared with single-character |
4526 | repeats by setting op_type to add a suitable offset into repeat_type. Note |
4527 | the the Unicode property types will be present only when SUPPORT_UCP is |
4528 | defined, but we don't wrap the little bits of code here because it just |
4529 | makes it horribly messy. */ |
4530 | |
4531 | else if (*previous < OP_EODN) |
4532 | { |
4533 | uschar *oldcode; |
4534 | int prop_type, prop_value; |
4535 | op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ |
4536 | c = *previous; |
4537 | |
4538 | if (!possessive_quantifier && |
4539 | repeat_max < 0 && |
4540 | check_auto_possessive(previous, utf8, ptr + 1, options, cd)) |
4541 | { |
4542 | repeat_type = 0; /* Force greedy */ |
4543 | possessive_quantifier = TRUE; |
4544 | } |
4545 | |
4546 | OUTPUT_SINGLE_REPEAT: |
4547 | if (*previous == OP_PROP || *previous == OP_NOTPROP) |
4548 | { |
4549 | prop_type = previous[1]; |
4550 | prop_value = previous[2]; |
4551 | } |
4552 | else prop_type = prop_value = -1; |
4553 | |
4554 | oldcode = code; |
4555 | code = previous; /* Usually overwrite previous item */ |
4556 | |
4557 | /* If the maximum is zero then the minimum must also be zero; Perl allows |
4558 | this case, so we do too - by simply omitting the item altogether. */ |
4559 | |
4560 | if (repeat_max == 0) goto END_REPEAT; |
4561 | |
4562 | /*--------------------------------------------------------------------*/ |
4563 | /* This code is obsolete from release 8.00; the restriction was finally |
4564 | removed: */ |
4565 | |
4566 | /* All real repeats make it impossible to handle partial matching (maybe |
4567 | one day we will be able to remove this restriction). */ |
4568 | |
4569 | /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ |
4570 | /*--------------------------------------------------------------------*/ |
4571 | |
4572 | /* Combine the op_type with the repeat_type */ |
4573 | |
4574 | repeat_type += op_type; |
4575 | |
4576 | /* A minimum of zero is handled either as the special case * or ?, or as |
4577 | an UPTO, with the maximum given. */ |
4578 | |
4579 | if (repeat_min == 0) |
4580 | { |
4581 | if (repeat_max == -1) *code++ = OP_STAR + repeat_type; |
4582 | else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type; |
4583 | else |
4584 | { |
4585 | *code++ = OP_UPTO + repeat_type; |
4586 | PUT2INC(code, 0, repeat_max); |
4587 | } |
4588 | } |
4589 | |
4590 | /* A repeat minimum of 1 is optimized into some special cases. If the |
4591 | maximum is unlimited, we use OP_PLUS. Otherwise, the original item is |
4592 | left in place and, if the maximum is greater than 1, we use OP_UPTO with |
4593 | one less than the maximum. */ |
4594 | |
4595 | else if (repeat_min == 1) |
4596 | { |
4597 | if (repeat_max == -1) |
4598 | *code++ = OP_PLUS + repeat_type; |
4599 | else |
4600 | { |
4601 | code = oldcode; /* leave previous item in place */ |
4602 | if (repeat_max == 1) goto END_REPEAT; |
4603 | *code++ = OP_UPTO + repeat_type; |
4604 | PUT2INC(code, 0, repeat_max - 1); |
4605 | } |
4606 | } |
4607 | |
4608 | /* The case {n,n} is just an EXACT, while the general case {n,m} is |
4609 | handled as an EXACT followed by an UPTO. */ |
4610 | |
4611 | else |
4612 | { |
4613 | *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */ |
4614 | PUT2INC(code, 0, repeat_min); |
4615 | |
4616 | /* If the maximum is unlimited, insert an OP_STAR. Before doing so, |
4617 | we have to insert the character for the previous code. For a repeated |
4618 | Unicode property match, there are two extra bytes that define the |
4619 | required property. In UTF-8 mode, long characters have their length in |
4620 | c, with the 0x80 bit as a flag. */ |
4621 | |
4622 | if (repeat_max < 0) |
4623 | { |
4624 | #ifdef SUPPORT_UTF8 |
4625 | if (utf8 && c >= 128) |
4626 | { |
4627 | memcpy(code, utf8_char, c & 7); |
4628 | code += c & 7; |
4629 | } |
4630 | else |
4631 | #endif |
4632 | { |
4633 | *code++ = c; |
4634 | if (prop_type >= 0) |
4635 | { |
4636 | *code++ = prop_type; |
4637 | *code++ = prop_value; |
4638 | } |
4639 | } |
4640 | *code++ = OP_STAR + repeat_type; |
4641 | } |
4642 | |
4643 | /* Else insert an UPTO if the max is greater than the min, again |
4644 | preceded by the character, for the previously inserted code. If the |
4645 | UPTO is just for 1 instance, we can use QUERY instead. */ |
4646 | |
4647 | else if (repeat_max != repeat_min) |
4648 | { |
4649 | #ifdef SUPPORT_UTF8 |
4650 | if (utf8 && c >= 128) |
4651 | { |
4652 | memcpy(code, utf8_char, c & 7); |
4653 | code += c & 7; |
4654 | } |
4655 | else |
4656 | #endif |
4657 | *code++ = c; |
4658 | if (prop_type >= 0) |
4659 | { |
4660 | *code++ = prop_type; |
4661 | *code++ = prop_value; |
4662 | } |
4663 | repeat_max -= repeat_min; |
4664 | |
4665 | if (repeat_max == 1) |
4666 | { |
4667 | *code++ = OP_QUERY + repeat_type; |
4668 | } |
4669 | else |
4670 | { |
4671 | *code++ = OP_UPTO + repeat_type; |
4672 | PUT2INC(code, 0, repeat_max); |
4673 | } |
4674 | } |
4675 | } |
4676 | |
4677 | /* The character or character type itself comes last in all cases. */ |
4678 | |
4679 | #ifdef SUPPORT_UTF8 |
4680 | if (utf8 && c >= 128) |
4681 | { |
4682 | memcpy(code, utf8_char, c & 7); |
4683 | code += c & 7; |
4684 | } |
4685 | else |
4686 | #endif |
4687 | *code++ = c; |
4688 | |
4689 | /* For a repeated Unicode property match, there are two extra bytes that |
4690 | define the required property. */ |
4691 | |
4692 | #ifdef SUPPORT_UCP |
4693 | if (prop_type >= 0) |
4694 | { |
4695 | *code++ = prop_type; |
4696 | *code++ = prop_value; |
4697 | } |
4698 | #endif |
4699 | } |
4700 | |
4701 | /* If previous was a character class or a back reference, we put the repeat |
4702 | stuff after it, but just skip the item if the repeat was {0,0}. */ |
4703 | |
4704 | else if (*previous == OP_CLASS || |
4705 | *previous == OP_NCLASS || |
4706 | #ifdef SUPPORT_UTF8 |
4707 | *previous == OP_XCLASS || |
4708 | #endif |
4709 | *previous == OP_REF || |
4710 | *previous == OP_REFI) |
4711 | { |
4712 | if (repeat_max == 0) |
4713 | { |
4714 | code = previous; |
4715 | goto END_REPEAT; |
4716 | } |
4717 | |
4718 | /*--------------------------------------------------------------------*/ |
4719 | /* This code is obsolete from release 8.00; the restriction was finally |
4720 | removed: */ |
4721 | |
4722 | /* All real repeats make it impossible to handle partial matching (maybe |
4723 | one day we will be able to remove this restriction). */ |
4724 | |
4725 | /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ |
4726 | /*--------------------------------------------------------------------*/ |
4727 | |
4728 | if (repeat_min == 0 && repeat_max == -1) |
4729 | *code++ = OP_CRSTAR + repeat_type; |
4730 | else if (repeat_min == 1 && repeat_max == -1) |
4731 | *code++ = OP_CRPLUS + repeat_type; |
4732 | else if (repeat_min == 0 && repeat_max == 1) |
4733 | *code++ = OP_CRQUERY + repeat_type; |
4734 | else |
4735 | { |
4736 | *code++ = OP_CRRANGE + repeat_type; |
4737 | PUT2INC(code, 0, repeat_min); |
4738 | if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */ |
4739 | PUT2INC(code, 0, repeat_max); |
4740 | } |
4741 | } |
4742 | |
4743 | /* If previous was a bracket group, we may have to replicate it in certain |
4744 | cases. Note that at this point we can encounter only the "basic" bracket |
4745 | opcodes such as BRA and CBRA, as this is the place where they get converted |
4746 | into the more special varieties such as BRAPOS and SBRA. A test for >= |
4747 | OP_ASSERT and <= OP_COND includes ASSERT, ASSERT_NOT, ASSERTBACK, |
4748 | ASSERTBACK_NOT, ONCE, BRA, CBRA, and COND. Originally, PCRE did not allow |
4749 | repetition of assertions, but now it does, for Perl compatibility. */ |
4750 | |
4751 | else if (*previous >= OP_ASSERT && *previous <= OP_COND) |
4752 | { |
4753 | register int i; |
4754 | int len = (int)(code - previous); |
4755 | uschar *bralink = NULL; |
4756 | uschar *brazeroptr = NULL; |
4757 | |
4758 | /* Repeating a DEFINE group is pointless, but Perl allows the syntax, so |
4759 | we just ignore the repeat. */ |
4760 | |
4761 | if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF) |
4762 | goto END_REPEAT; |
4763 | |
4764 | /* There is no sense in actually repeating assertions. The only potential |
4765 | use of repetition is in cases when the assertion is optional. Therefore, |
4766 | if the minimum is greater than zero, just ignore the repeat. If the |
4767 | maximum is not not zero or one, set it to 1. */ |
4768 | |
4769 | if (*previous < OP_ONCE) /* Assertion */ |
4770 | { |
4771 | if (repeat_min > 0) goto END_REPEAT; |
4772 | if (repeat_max < 0 || repeat_max > 1) repeat_max = 1; |
4773 | } |
4774 | |
4775 | /* The case of a zero minimum is special because of the need to stick |
4776 | OP_BRAZERO in front of it, and because the group appears once in the |
4777 | data, whereas in other cases it appears the minimum number of times. For |
4778 | this reason, it is simplest to treat this case separately, as otherwise |
4779 | the code gets far too messy. There are several special subcases when the |
4780 | minimum is zero. */ |
4781 | |
4782 | if (repeat_min == 0) |
4783 | { |
4784 | /* If the maximum is also zero, we used to just omit the group from the |
4785 | output altogether, like this: |
4786 | |
4787 | ** if (repeat_max == 0) |
4788 | ** { |
4789 | ** code = previous; |
4790 | ** goto END_REPEAT; |
4791 | ** } |
4792 | |
4793 | However, that fails when a group or a subgroup within it is referenced |
4794 | as a subroutine from elsewhere in the pattern, so now we stick in |
4795 | OP_SKIPZERO in front of it so that it is skipped on execution. As we |
4796 | don't have a list of which groups are referenced, we cannot do this |
4797 | selectively. |
4798 | |
4799 | If the maximum is 1 or unlimited, we just have to stick in the BRAZERO |
4800 | and do no more at this point. However, we do need to adjust any |
4801 | OP_RECURSE calls inside the group that refer to the group itself or any |
4802 | internal or forward referenced group, because the offset is from the |
4803 | start of the whole regex. Temporarily terminate the pattern while doing |
4804 | this. */ |
4805 | |
4806 | if (repeat_max <= 1) /* Covers 0, 1, and unlimited */ |
4807 | { |
4808 | *code = OP_END; |
4809 | adjust_recurse(previous, 1, utf8, cd, save_hwm); |
4810 | memmove(previous+1, previous, len); |
4811 | code++; |
4812 | if (repeat_max == 0) |
4813 | { |
4814 | *previous++ = OP_SKIPZERO; |
4815 | goto END_REPEAT; |
4816 | } |
4817 | brazeroptr = previous; /* Save for possessive optimizing */ |
4818 | *previous++ = OP_BRAZERO + repeat_type; |
4819 | } |
4820 | |
4821 | /* If the maximum is greater than 1 and limited, we have to replicate |
4822 | in a nested fashion, sticking OP_BRAZERO before each set of brackets. |
4823 | The first one has to be handled carefully because it's the original |
4824 | copy, which has to be moved up. The remainder can be handled by code |
4825 | that is common with the non-zero minimum case below. We have to |
4826 | adjust the value or repeat_max, since one less copy is required. Once |
4827 | again, we may have to adjust any OP_RECURSE calls inside the group. */ |
4828 | |
4829 | else |
4830 | { |
4831 | int offset; |
4832 | *code = OP_END; |
4833 | adjust_recurse(previous, 2 + LINK_SIZE, utf8, cd, save_hwm); |
4834 | memmove(previous + 2 + LINK_SIZE, previous, len); |
4835 | code += 2 + LINK_SIZE; |
4836 | *previous++ = OP_BRAZERO + repeat_type; |
4837 | *previous++ = OP_BRA; |
4838 | |
4839 | /* We chain together the bracket offset fields that have to be |
4840 | filled in later when the ends of the brackets are reached. */ |
4841 | |
4842 | offset = (bralink == NULL)? 0 : (int)(previous - bralink); |
4843 | bralink = previous; |
4844 | PUTINC(previous, 0, offset); |
4845 | } |
4846 | |
4847 | repeat_max--; |
4848 | } |
4849 | |
4850 | /* If the minimum is greater than zero, replicate the group as many |
4851 | times as necessary, and adjust the maximum to the number of subsequent |
4852 | copies that we need. If we set a first char from the group, and didn't |
4853 | set a required char, copy the latter from the former. If there are any |
4854 | forward reference subroutine calls in the group, there will be entries on |
4855 | the workspace list; replicate these with an appropriate increment. */ |
4856 | |
4857 | else |
4858 | { |
4859 | if (repeat_min > 1) |
4860 | { |
4861 | /* In the pre-compile phase, we don't actually do the replication. We |
4862 | just adjust the length as if we had. Do some paranoid checks for |
4863 | potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit |
4864 | integer type when available, otherwise double. */ |
4865 | |
4866 | if (lengthptr != NULL) |
4867 | { |
4868 | int delta = (repeat_min - 1)*length_prevgroup; |
4869 | if ((INT64_OR_DOUBLE)(repeat_min - 1)* |
4870 | (INT64_OR_DOUBLE)length_prevgroup > |
4871 | (INT64_OR_DOUBLE)INT_MAX || |
4872 | OFLOW_MAX - *lengthptr < delta) |
4873 | { |
4874 | *errorcodeptr = ERR20; |
4875 | goto FAILED; |
4876 | } |
4877 | *lengthptr += delta; |
4878 | } |
4879 | |
4880 | /* This is compiling for real */ |
4881 | |
4882 | else |
4883 | { |
4884 | if (groupsetfirstbyte && reqbyte < 0) reqbyte = firstbyte; |
4885 | for (i = 1; i < repeat_min; i++) |
4886 | { |
4887 | uschar *hc; |
4888 | uschar *this_hwm = cd->hwm; |
4889 | memcpy(code, previous, len); |
4890 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
4891 | { |
4892 | PUT(cd->hwm, 0, GET(hc, 0) + len); |
4893 | cd->hwm += LINK_SIZE; |
4894 | } |
4895 | save_hwm = this_hwm; |
4896 | code += len; |
4897 | } |
4898 | } |
4899 | } |
4900 | |
4901 | if (repeat_max > 0) repeat_max -= repeat_min; |
4902 | } |
4903 | |
4904 | /* This code is common to both the zero and non-zero minimum cases. If |
4905 | the maximum is limited, it replicates the group in a nested fashion, |
4906 | remembering the bracket starts on a stack. In the case of a zero minimum, |
4907 | the first one was set up above. In all cases the repeat_max now specifies |
4908 | the number of additional copies needed. Again, we must remember to |
4909 | replicate entries on the forward reference list. */ |
4910 | |
4911 | if (repeat_max >= 0) |
4912 | { |
4913 | /* In the pre-compile phase, we don't actually do the replication. We |
4914 | just adjust the length as if we had. For each repetition we must add 1 |
4915 | to the length for BRAZERO and for all but the last repetition we must |
4916 | add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some |
4917 | paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is |
4918 | a 64-bit integer type when available, otherwise double. */ |
4919 | |
4920 | if (lengthptr != NULL && repeat_max > 0) |
4921 | { |
4922 | int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) - |
4923 | 2 - 2*LINK_SIZE; /* Last one doesn't nest */ |
4924 | if ((INT64_OR_DOUBLE)repeat_max * |
4925 | (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE) |
4926 | > (INT64_OR_DOUBLE)INT_MAX || |
4927 | OFLOW_MAX - *lengthptr < delta) |
4928 | { |
4929 | *errorcodeptr = ERR20; |
4930 | goto FAILED; |
4931 | } |
4932 | *lengthptr += delta; |
4933 | } |
4934 | |
4935 | /* This is compiling for real */ |
4936 | |
4937 | else for (i = repeat_max - 1; i >= 0; i--) |
4938 | { |
4939 | uschar *hc; |
4940 | uschar *this_hwm = cd->hwm; |
4941 | |
4942 | *code++ = OP_BRAZERO + repeat_type; |
4943 | |
4944 | /* All but the final copy start a new nesting, maintaining the |
4945 | chain of brackets outstanding. */ |
4946 | |
4947 | if (i != 0) |
4948 | { |
4949 | int offset; |
4950 | *code++ = OP_BRA; |
4951 | offset = (bralink == NULL)? 0 : (int)(code - bralink); |
4952 | bralink = code; |
4953 | PUTINC(code, 0, offset); |
4954 | } |
4955 | |
4956 | memcpy(code, previous, len); |
4957 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
4958 | { |
4959 | PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1)); |
4960 | cd->hwm += LINK_SIZE; |
4961 | } |
4962 | save_hwm = this_hwm; |
4963 | code += len; |
4964 | } |
4965 | |
4966 | /* Now chain through the pending brackets, and fill in their length |
4967 | fields (which are holding the chain links pro tem). */ |
4968 | |
4969 | while (bralink != NULL) |
4970 | { |
4971 | int oldlinkoffset; |
4972 | int offset = (int)(code - bralink + 1); |
4973 | uschar *bra = code - offset; |
4974 | oldlinkoffset = GET(bra, 1); |
4975 | bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset; |
4976 | *code++ = OP_KET; |
4977 | PUTINC(code, 0, offset); |
4978 | PUT(bra, 1, offset); |
4979 | } |
4980 | } |
4981 | |
4982 | /* If the maximum is unlimited, set a repeater in the final copy. For |
4983 | ONCE brackets, that's all we need to do. However, possessively repeated |
4984 | ONCE brackets can be converted into non-capturing brackets, as the |
4985 | behaviour of (?:xx)++ is the same as (?>xx)++ and this saves having to |
4986 | deal with possessive ONCEs specially. |
4987 | |
4988 | Otherwise, when we are doing the actual compile phase, check to see |
4989 | whether this group is one that could match an empty string. If so, |
4990 | convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so |
4991 | that runtime checking can be done. [This check is also applied to ONCE |
4992 | groups at runtime, but in a different way.] |
4993 | |
4994 | Then, if the quantifier was possessive and the bracket is not a |
4995 | conditional, we convert the BRA code to the POS form, and the KET code to |
4996 | KETRPOS. (It turns out to be convenient at runtime to detect this kind of |
4997 | subpattern at both the start and at the end.) The use of special opcodes |
4998 | makes it possible to reduce greatly the stack usage in pcre_exec(). If |
4999 | the group is preceded by OP_BRAZERO, convert this to OP_BRAPOSZERO. |
5000 | |
5001 | Then, if the minimum number of matches is 1 or 0, cancel the possessive |
5002 | flag so that the default action below, of wrapping everything inside |
5003 | atomic brackets, does not happen. When the minimum is greater than 1, |
5004 | there will be earlier copies of the group, and so we still have to wrap |
5005 | the whole thing. */ |
5006 | |
5007 | else |
5008 | { |
5009 | uschar *ketcode = code - 1 - LINK_SIZE; |
5010 | uschar *bracode = ketcode - GET(ketcode, 1); |
5011 | |
5012 | /* Convert possessive ONCE brackets to non-capturing */ |
5013 | |
5014 | if ((*bracode == OP_ONCE || *bracode == OP_ONCE_NC) && |
5015 | possessive_quantifier) *bracode = OP_BRA; |
5016 | |
5017 | /* For non-possessive ONCE brackets, all we need to do is to |
5018 | set the KET. */ |
5019 | |
5020 | if (*bracode == OP_ONCE || *bracode == OP_ONCE_NC) |
5021 | *ketcode = OP_KETRMAX + repeat_type; |
5022 | |
5023 | /* Handle non-ONCE brackets and possessive ONCEs (which have been |
5024 | converted to non-capturing above). */ |
5025 | |
5026 | else |
5027 | { |
5028 | /* In the compile phase, check for empty string matching. */ |
5029 | |
5030 | if (lengthptr == NULL) |
5031 | { |
5032 | uschar *scode = bracode; |
5033 | do |
5034 | { |
5035 | if (could_be_empty_branch(scode, ketcode, utf8, cd)) |
5036 | { |
5037 | *bracode += OP_SBRA - OP_BRA; |
5038 | break; |
5039 | } |
5040 | scode += GET(scode, 1); |
5041 | } |
5042 | while (*scode == OP_ALT); |
5043 | } |
5044 | |
5045 | /* Handle possessive quantifiers. */ |
5046 | |
5047 | if (possessive_quantifier) |
5048 | { |
5049 | /* For COND brackets, we wrap the whole thing in a possessively |
5050 | repeated non-capturing bracket, because we have not invented POS |
5051 | versions of the COND opcodes. Because we are moving code along, we |
5052 | must ensure that any pending recursive references are updated. */ |
5053 | |
5054 | if (*bracode == OP_COND || *bracode == OP_SCOND) |
5055 | { |
5056 | int nlen = (int)(code - bracode); |
5057 | *code = OP_END; |
5058 | adjust_recurse(bracode, 1 + LINK_SIZE, utf8, cd, save_hwm); |
5059 | memmove(bracode + 1+LINK_SIZE, bracode, nlen); |
5060 | code += 1 + LINK_SIZE; |
5061 | nlen += 1 + LINK_SIZE; |
5062 | *bracode = OP_BRAPOS; |
5063 | *code++ = OP_KETRPOS; |
5064 | PUTINC(code, 0, nlen); |
5065 | PUT(bracode, 1, nlen); |
5066 | } |
5067 | |
5068 | /* For non-COND brackets, we modify the BRA code and use KETRPOS. */ |
5069 | |
5070 | else |
5071 | { |
5072 | *bracode += 1; /* Switch to xxxPOS opcodes */ |
5073 | *ketcode = OP_KETRPOS; |
5074 | } |
5075 | |
5076 | /* If the minimum is zero, mark it as possessive, then unset the |
5077 | possessive flag when the minimum is 0 or 1. */ |
5078 | |
5079 | if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO; |
5080 | if (repeat_min < 2) possessive_quantifier = FALSE; |
5081 | } |
5082 | |
5083 | /* Non-possessive quantifier */ |
5084 | |
5085 | else *ketcode = OP_KETRMAX + repeat_type; |
5086 | } |
5087 | } |
5088 | } |
5089 | |
5090 | /* If previous is OP_FAIL, it was generated by an empty class [] in |
5091 | JavaScript mode. The other ways in which OP_FAIL can be generated, that is |
5092 | by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat" |
5093 | error above. We can just ignore the repeat in JS case. */ |
5094 | |
5095 | else if (*previous == OP_FAIL) goto END_REPEAT; |
5096 | |
5097 | /* Else there's some kind of shambles */ |
5098 | |
5099 | else |
5100 | { |
5101 | *errorcodeptr = ERR11; |
5102 | goto FAILED; |
5103 | } |
5104 | |
5105 | /* If the character following a repeat is '+', or if certain optimization |
5106 | tests above succeeded, possessive_quantifier is TRUE. For some opcodes, |
5107 | there are special alternative opcodes for this case. For anything else, we |
5108 | wrap the entire repeated item inside OP_ONCE brackets. Logically, the '+' |
5109 | notation is just syntactic sugar, taken from Sun's Java package, but the |
5110 | special opcodes can optimize it. |
5111 | |
5112 | Some (but not all) possessively repeated subpatterns have already been |
5113 | completely handled in the code just above. For them, possessive_quantifier |
5114 | is always FALSE at this stage. |
5115 | |
5116 | Note that the repeated item starts at tempcode, not at previous, which |
5117 | might be the first part of a string whose (former) last char we repeated. |
5118 | |
5119 | Possessifying an 'exact' quantifier has no effect, so we can ignore it. But |
5120 | an 'upto' may follow. We skip over an 'exact' item, and then test the |
5121 | length of what remains before proceeding. */ |
5122 | |
5123 | if (possessive_quantifier) |
5124 | { |
5125 | int len; |
5126 | |
5127 | if (*tempcode == OP_TYPEEXACT) |
5128 | tempcode += _pcre_OP_lengths[*tempcode] + |
5129 | ((tempcode[3] == OP_PROP || tempcode[3] == OP_NOTPROP)? 2 : 0); |
5130 | |
5131 | else if (*tempcode == OP_EXACT || *tempcode == OP_NOTEXACT) |
5132 | { |
5133 | tempcode += _pcre_OP_lengths[*tempcode]; |
5134 | #ifdef SUPPORT_UTF8 |
5135 | if (utf8 && tempcode[-1] >= 0xc0) |
5136 | tempcode += _pcre_utf8_table4[tempcode[-1] & 0x3f]; |
5137 | #endif |
5138 | } |
5139 | |
5140 | len = (int)(code - tempcode); |
5141 | if (len > 0) switch (*tempcode) |
5142 | { |
5143 | case OP_STAR: *tempcode = OP_POSSTAR; break; |
5144 | case OP_PLUS: *tempcode = OP_POSPLUS; break; |
5145 | case OP_QUERY: *tempcode = OP_POSQUERY; break; |
5146 | case OP_UPTO: *tempcode = OP_POSUPTO; break; |
5147 | |
5148 | case OP_STARI: *tempcode = OP_POSSTARI; break; |
5149 | case OP_PLUSI: *tempcode = OP_POSPLUSI; break; |
5150 | case OP_QUERYI: *tempcode = OP_POSQUERYI; break; |
5151 | case OP_UPTOI: *tempcode = OP_POSUPTOI; break; |
5152 | |
5153 | case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break; |
5154 | case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break; |
5155 | case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break; |
5156 | case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break; |
5157 | |
5158 | case OP_NOTSTARI: *tempcode = OP_NOTPOSSTARI; break; |
5159 | case OP_NOTPLUSI: *tempcode = OP_NOTPOSPLUSI; break; |
5160 | case OP_NOTQUERYI: *tempcode = OP_NOTPOSQUERYI; break; |
5161 | case OP_NOTUPTOI: *tempcode = OP_NOTPOSUPTOI; break; |
5162 | |
5163 | case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break; |
5164 | case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break; |
5165 | case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break; |
5166 | case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break; |
5167 | |
5168 | /* Because we are moving code along, we must ensure that any |
5169 | pending recursive references are updated. */ |
5170 | |
5171 | default: |
5172 | *code = OP_END; |
5173 | adjust_recurse(tempcode, 1 + LINK_SIZE, utf8, cd, save_hwm); |
5174 | memmove(tempcode + 1+LINK_SIZE, tempcode, len); |
5175 | code += 1 + LINK_SIZE; |
5176 | len += 1 + LINK_SIZE; |
5177 | tempcode[0] = OP_ONCE; |
5178 | *code++ = OP_KET; |
5179 | PUTINC(code, 0, len); |
5180 | PUT(tempcode, 1, len); |
5181 | break; |
5182 | } |
5183 | } |
5184 | |
5185 | /* In all case we no longer have a previous item. We also set the |
5186 | "follows varying string" flag for subsequently encountered reqbytes if |
5187 | it isn't already set and we have just passed a varying length item. */ |
5188 | |
5189 | END_REPEAT: |
5190 | previous = NULL; |
5191 | cd->req_varyopt |= reqvary; |
5192 | break; |
5193 | |
5194 | |
5195 | /* ===================================================================*/ |
5196 | /* Start of nested parenthesized sub-expression, or comment or lookahead or |
5197 | lookbehind or option setting or condition or all the other extended |
5198 | parenthesis forms. */ |
5199 | |
5200 | case CHAR_LEFT_PARENTHESIS: |
5201 | newoptions = options; |
5202 | skipbytes = 0; |
5203 | bravalue = OP_CBRA; |
5204 | save_hwm = cd->hwm; |
5205 | reset_bracount = FALSE; |
5206 | |
5207 | /* First deal with various "verbs" that can be introduced by '*'. */ |
5208 | |
5209 | if (*(++ptr) == CHAR_ASTERISK && |
5210 | ((cd->ctypes[ptr[1]] & ctype_letter) != 0 || ptr[1] == ':')) |
5211 | { |
5212 | int i, namelen; |
5213 | int arglen = 0; |
5214 | const char *vn = verbnames; |
5215 | const uschar *name = ptr + 1; |
5216 | const uschar *arg = NULL; |
5217 | previous = NULL; |
5218 | while ((cd->ctypes[*++ptr] & ctype_letter) != 0) {}; |
5219 | namelen = (int)(ptr - name); |
5220 | |
5221 | /* It appears that Perl allows any characters whatsoever, other than |
5222 | a closing parenthesis, to appear in arguments, so we no longer insist on |
5223 | letters, digits, and underscores. */ |
5224 | |
5225 | if (*ptr == CHAR_COLON) |
5226 | { |
5227 | arg = ++ptr; |
5228 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
5229 | arglen = (int)(ptr - arg); |
5230 | } |
5231 | |
5232 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
5233 | { |
5234 | *errorcodeptr = ERR60; |
5235 | goto FAILED; |
5236 | } |
5237 | |
5238 | /* Scan the table of verb names */ |
5239 | |
5240 | for (i = 0; i < verbcount; i++) |
5241 | { |
5242 | if (namelen == verbs[i].len && |
5243 | strncmp((char *)name, vn, namelen) == 0) |
5244 | { |
5245 | /* Check for open captures before ACCEPT and convert it to |
5246 | ASSERT_ACCEPT if in an assertion. */ |
5247 | |
5248 | if (verbs[i].op == OP_ACCEPT) |
5249 | { |
5250 | open_capitem *oc; |
5251 | if (arglen != 0) |
5252 | { |
5253 | *errorcodeptr = ERR59; |
5254 | goto FAILED; |
5255 | } |
5256 | cd->had_accept = TRUE; |
5257 | for (oc = cd->open_caps; oc != NULL; oc = oc->next) |
5258 | { |
5259 | *code++ = OP_CLOSE; |
5260 | PUT2INC(code, 0, oc->number); |
5261 | } |
5262 | *code++ = (cd->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT; |
5263 | |
5264 | /* Do not set firstbyte after *ACCEPT */ |
5265 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
5266 | } |
5267 | |
5268 | /* Handle other cases with/without an argument */ |
5269 | |
5270 | else if (arglen == 0) |
5271 | { |
5272 | if (verbs[i].op < 0) /* Argument is mandatory */ |
5273 | { |
5274 | *errorcodeptr = ERR66; |
5275 | goto FAILED; |
5276 | } |
5277 | *code = verbs[i].op; |
5278 | if (*code++ == OP_THEN) cd->external_flags |= PCRE_HASTHEN; |
5279 | } |
5280 | |
5281 | else |
5282 | { |
5283 | if (verbs[i].op_arg < 0) /* Argument is forbidden */ |
5284 | { |
5285 | *errorcodeptr = ERR59; |
5286 | goto FAILED; |
5287 | } |
5288 | *code = verbs[i].op_arg; |
5289 | if (*code++ == OP_THEN_ARG) cd->external_flags |= PCRE_HASTHEN; |
5290 | *code++ = arglen; |
5291 | memcpy(code, arg, arglen); |
5292 | code += arglen; |
5293 | *code++ = 0; |
5294 | } |
5295 | |
5296 | break; /* Found verb, exit loop */ |
5297 | } |
5298 | |
5299 | vn += verbs[i].len + 1; |
5300 | } |
5301 | |
5302 | if (i < verbcount) continue; /* Successfully handled a verb */ |
5303 | *errorcodeptr = ERR60; /* Verb not recognized */ |
5304 | goto FAILED; |
5305 | } |
5306 | |
5307 | /* Deal with the extended parentheses; all are introduced by '?', and the |
5308 | appearance of any of them means that this is not a capturing group. */ |
5309 | |
5310 | else if (*ptr == CHAR_QUESTION_MARK) |
5311 | { |
5312 | int i, set, unset, namelen; |
5313 | int *optset; |
5314 | const uschar *name; |
5315 | uschar *slot; |
5316 | |
5317 | switch (*(++ptr)) |
5318 | { |
5319 | case CHAR_NUMBER_SIGN: /* Comment; skip to ket */ |
5320 | ptr++; |
5321 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
5322 | if (*ptr == 0) |
5323 | { |
5324 | *errorcodeptr = ERR18; |
5325 | goto FAILED; |
5326 | } |
5327 | continue; |
5328 | |
5329 | |
5330 | /* ------------------------------------------------------------ */ |
5331 | case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */ |
5332 | reset_bracount = TRUE; |
5333 | /* Fall through */ |
5334 | |
5335 | /* ------------------------------------------------------------ */ |
5336 | case CHAR_COLON: /* Non-capturing bracket */ |
5337 | bravalue = OP_BRA; |
5338 | ptr++; |
5339 | break; |
5340 | |
5341 | |
5342 | /* ------------------------------------------------------------ */ |
5343 | case CHAR_LEFT_PARENTHESIS: |
5344 | bravalue = OP_COND; /* Conditional group */ |
5345 | |
5346 | /* A condition can be an assertion, a number (referring to a numbered |
5347 | group), a name (referring to a named group), or 'R', referring to |
5348 | recursion. R<digits> and R&name are also permitted for recursion tests. |
5349 | |
5350 | There are several syntaxes for testing a named group: (?(name)) is used |
5351 | by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')). |
5352 | |
5353 | There are two unfortunate ambiguities, caused by history. (a) 'R' can |
5354 | be the recursive thing or the name 'R' (and similarly for 'R' followed |
5355 | by digits), and (b) a number could be a name that consists of digits. |
5356 | In both cases, we look for a name first; if not found, we try the other |
5357 | cases. */ |
5358 | |
5359 | /* For conditions that are assertions, check the syntax, and then exit |
5360 | the switch. This will take control down to where bracketed groups, |
5361 | including assertions, are processed. */ |
5362 | |
5363 | if (ptr[1] == CHAR_QUESTION_MARK && (ptr[2] == CHAR_EQUALS_SIGN || |
5364 | ptr[2] == CHAR_EXCLAMATION_MARK || ptr[2] == CHAR_LESS_THAN_SIGN)) |
5365 | break; |
5366 | |
5367 | /* Most other conditions use OP_CREF (a couple change to OP_RREF |
5368 | below), and all need to skip 3 bytes at the start of the group. */ |
5369 | |
5370 | code[1+LINK_SIZE] = OP_CREF; |
5371 | skipbytes = 3; |
5372 | refsign = -1; |
5373 | |
5374 | /* Check for a test for recursion in a named group. */ |
5375 | |
5376 | if (ptr[1] == CHAR_R && ptr[2] == CHAR_AMPERSAND) |
5377 | { |
5378 | terminator = -1; |
5379 | ptr += 2; |
5380 | code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */ |
5381 | } |
5382 | |
5383 | /* Check for a test for a named group's having been set, using the Perl |
5384 | syntax (?(<name>) or (?('name') */ |
5385 | |
5386 | else if (ptr[1] == CHAR_LESS_THAN_SIGN) |
5387 | { |
5388 | terminator = CHAR_GREATER_THAN_SIGN; |
5389 | ptr++; |
5390 | } |
5391 | else if (ptr[1] == CHAR_APOSTROPHE) |
5392 | { |
5393 | terminator = CHAR_APOSTROPHE; |
5394 | ptr++; |
5395 | } |
5396 | else |
5397 | { |
5398 | terminator = 0; |
5399 | if (ptr[1] == CHAR_MINUS || ptr[1] == CHAR_PLUS) refsign = *(++ptr); |
5400 | } |
5401 | |
5402 | /* We now expect to read a name; any thing else is an error */ |
5403 | |
5404 | if ((cd->ctypes[ptr[1]] & ctype_word) == 0) |
5405 | { |
5406 | ptr += 1; /* To get the right offset */ |
5407 | *errorcodeptr = ERR28; |
5408 | goto FAILED; |
5409 | } |
5410 | |
5411 | /* Read the name, but also get it as a number if it's all digits */ |
5412 | |
5413 | recno = 0; |
5414 | name = ++ptr; |
5415 | while ((cd->ctypes[*ptr] & ctype_word) != 0) |
5416 | { |
5417 | if (recno >= 0) |
5418 | recno = ((digitab[*ptr] & ctype_digit) != 0)? |
5419 | recno * 10 + *ptr - CHAR_0 : -1; |
5420 | ptr++; |
5421 | } |
5422 | namelen = (int)(ptr - name); |
5423 | |
5424 | if ((terminator > 0 && *ptr++ != terminator) || |
5425 | *ptr++ != CHAR_RIGHT_PARENTHESIS) |
5426 | { |
5427 | ptr--; /* Error offset */ |
5428 | *errorcodeptr = ERR26; |
5429 | goto FAILED; |
5430 | } |
5431 | |
5432 | /* Do no further checking in the pre-compile phase. */ |
5433 | |
5434 | if (lengthptr != NULL) break; |
5435 | |
5436 | /* In the real compile we do the work of looking for the actual |
5437 | reference. If the string started with "+" or "-" we require the rest to |
5438 | be digits, in which case recno will be set. */ |
5439 | |
5440 | if (refsign > 0) |
5441 | { |
5442 | if (recno <= 0) |
5443 | { |
5444 | *errorcodeptr = ERR58; |
5445 | goto FAILED; |
5446 | } |
5447 | recno = (refsign == CHAR_MINUS)? |
5448 | cd->bracount - recno + 1 : recno +cd->bracount; |
5449 | if (recno <= 0 || recno > cd->final_bracount) |
5450 | { |
5451 | *errorcodeptr = ERR15; |
5452 | goto FAILED; |
5453 | } |
5454 | PUT2(code, 2+LINK_SIZE, recno); |
5455 | break; |
5456 | } |
5457 | |
5458 | /* Otherwise (did not start with "+" or "-"), start by looking for the |
5459 | name. If we find a name, add one to the opcode to change OP_CREF or |
5460 | OP_RREF into OP_NCREF or OP_NRREF. These behave exactly the same, |
5461 | except they record that the reference was originally to a name. The |
5462 | information is used to check duplicate names. */ |
5463 | |
5464 | slot = cd->name_table; |
5465 | for (i = 0; i < cd->names_found; i++) |
5466 | { |
5467 | if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break; |
5468 | slot += cd->name_entry_size; |
5469 | } |
5470 | |
5471 | /* Found a previous named subpattern */ |
5472 | |
5473 | if (i < cd->names_found) |
5474 | { |
5475 | recno = GET2(slot, 0); |
5476 | PUT2(code, 2+LINK_SIZE, recno); |
5477 | code[1+LINK_SIZE]++; |
5478 | } |
5479 | |
5480 | /* Search the pattern for a forward reference */ |
5481 | |
5482 | else if ((i = find_parens(cd, name, namelen, |
5483 | (options & PCRE_EXTENDED) != 0, utf8)) > 0) |
5484 | { |
5485 | PUT2(code, 2+LINK_SIZE, i); |
5486 | code[1+LINK_SIZE]++; |
5487 | } |
5488 | |
5489 | /* If terminator == 0 it means that the name followed directly after |
5490 | the opening parenthesis [e.g. (?(abc)...] and in this case there are |
5491 | some further alternatives to try. For the cases where terminator != 0 |
5492 | [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have |
5493 | now checked all the possibilities, so give an error. */ |
5494 | |
5495 | else if (terminator != 0) |
5496 | { |
5497 | *errorcodeptr = ERR15; |
5498 | goto FAILED; |
5499 | } |
5500 | |
5501 | /* Check for (?(R) for recursion. Allow digits after R to specify a |
5502 | specific group number. */ |
5503 | |
5504 | else if (*name == CHAR_R) |
5505 | { |
5506 | recno = 0; |
5507 | for (i = 1; i < namelen; i++) |
5508 | { |
5509 | if ((digitab[name[i]] & ctype_digit) == 0) |
5510 | { |
5511 | *errorcodeptr = ERR15; |
5512 | goto FAILED; |
5513 | } |
5514 | recno = recno * 10 + name[i] - CHAR_0; |
5515 | } |
5516 | if (recno == 0) recno = RREF_ANY; |
5517 | code[1+LINK_SIZE] = OP_RREF; /* Change test type */ |
5518 | PUT2(code, 2+LINK_SIZE, recno); |
5519 | } |
5520 | |
5521 | /* Similarly, check for the (?(DEFINE) "condition", which is always |
5522 | false. */ |
5523 | |
5524 | else if (namelen == 6 && strncmp((char *)name, STRING_DEFINE, 6) == 0) |
5525 | { |
5526 | code[1+LINK_SIZE] = OP_DEF; |
5527 | skipbytes = 1; |
5528 | } |
5529 | |
5530 | /* Check for the "name" actually being a subpattern number. We are |
5531 | in the second pass here, so final_bracount is set. */ |
5532 | |
5533 | else if (recno > 0 && recno <= cd->final_bracount) |
5534 | { |
5535 | PUT2(code, 2+LINK_SIZE, recno); |
5536 | } |
5537 | |
5538 | /* Either an unidentified subpattern, or a reference to (?(0) */ |
5539 | |
5540 | else |
5541 | { |
5542 | *errorcodeptr = (recno == 0)? ERR35: ERR15; |
5543 | goto FAILED; |
5544 | } |
5545 | break; |
5546 | |
5547 | |
5548 | /* ------------------------------------------------------------ */ |
5549 | case CHAR_EQUALS_SIGN: /* Positive lookahead */ |
5550 | bravalue = OP_ASSERT; |
5551 | cd->assert_depth += 1; |
5552 | ptr++; |
5553 | break; |
5554 | |
5555 | |
5556 | /* ------------------------------------------------------------ */ |
5557 | case CHAR_EXCLAMATION_MARK: /* Negative lookahead */ |
5558 | ptr++; |
5559 | if (*ptr == CHAR_RIGHT_PARENTHESIS) /* Optimize (?!) */ |
5560 | { |
5561 | *code++ = OP_FAIL; |
5562 | previous = NULL; |
5563 | continue; |
5564 | } |
5565 | bravalue = OP_ASSERT_NOT; |
5566 | cd->assert_depth += 1; |
5567 | break; |
5568 | |
5569 | |
5570 | /* ------------------------------------------------------------ */ |
5571 | case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */ |
5572 | switch (ptr[1]) |
5573 | { |
5574 | case CHAR_EQUALS_SIGN: /* Positive lookbehind */ |
5575 | bravalue = OP_ASSERTBACK; |
5576 | cd->assert_depth += 1; |
5577 | ptr += 2; |
5578 | break; |
5579 | |
5580 | case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */ |
5581 | bravalue = OP_ASSERTBACK_NOT; |
5582 | cd->assert_depth += 1; |
5583 | ptr += 2; |
5584 | break; |
5585 | |
5586 | default: /* Could be name define, else bad */ |
5587 | if ((cd->ctypes[ptr[1]] & ctype_word) != 0) goto DEFINE_NAME; |
5588 | ptr++; /* Correct offset for error */ |
5589 | *errorcodeptr = ERR24; |
5590 | goto FAILED; |
5591 | } |
5592 | break; |
5593 | |
5594 | |
5595 | /* ------------------------------------------------------------ */ |
5596 | case CHAR_GREATER_THAN_SIGN: /* One-time brackets */ |
5597 | bravalue = OP_ONCE; |
5598 | ptr++; |
5599 | break; |
5600 | |
5601 | |
5602 | /* ------------------------------------------------------------ */ |
5603 | case CHAR_C: /* Callout - may be followed by digits; */ |
5604 | previous_callout = code; /* Save for later completion */ |
5605 | after_manual_callout = 1; /* Skip one item before completing */ |
5606 | *code++ = OP_CALLOUT; |
5607 | { |
5608 | int n = 0; |
5609 | while ((digitab[*(++ptr)] & ctype_digit) != 0) |
5610 | n = n * 10 + *ptr - CHAR_0; |
5611 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
5612 | { |
5613 | *errorcodeptr = ERR39; |
5614 | goto FAILED; |
5615 | } |
5616 | if (n > 255) |
5617 | { |
5618 | *errorcodeptr = ERR38; |
5619 | goto FAILED; |
5620 | } |
5621 | *code++ = n; |
5622 | PUT(code, 0, (int)(ptr - cd->start_pattern + 1)); /* Pattern offset */ |
5623 | PUT(code, LINK_SIZE, 0); /* Default length */ |
5624 | code += 2 * LINK_SIZE; |
5625 | } |
5626 | previous = NULL; |
5627 | continue; |
5628 | |
5629 | |
5630 | /* ------------------------------------------------------------ */ |
5631 | case CHAR_P: /* Python-style named subpattern handling */ |
5632 | if (*(++ptr) == CHAR_EQUALS_SIGN || |
5633 | *ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */ |
5634 | { |
5635 | is_recurse = *ptr == CHAR_GREATER_THAN_SIGN; |
5636 | terminator = CHAR_RIGHT_PARENTHESIS; |
5637 | goto NAMED_REF_OR_RECURSE; |
5638 | } |
5639 | else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */ |
5640 | { |
5641 | *errorcodeptr = ERR41; |
5642 | goto FAILED; |
5643 | } |
5644 | /* Fall through to handle (?P< as (?< is handled */ |
5645 | |
5646 | |
5647 | /* ------------------------------------------------------------ */ |
5648 | DEFINE_NAME: /* Come here from (?< handling */ |
5649 | case CHAR_APOSTROPHE: |
5650 | { |
5651 | terminator = (*ptr == CHAR_LESS_THAN_SIGN)? |
5652 | CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE; |
5653 | name = ++ptr; |
5654 | |
5655 | while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++; |
5656 | namelen = (int)(ptr - name); |
5657 | |
5658 | /* In the pre-compile phase, just do a syntax check. */ |
5659 | |
5660 | if (lengthptr != NULL) |
5661 | { |
5662 | if (*ptr != terminator) |
5663 | { |
5664 | *errorcodeptr = ERR42; |
5665 | goto FAILED; |
5666 | } |
5667 | if (cd->names_found >= MAX_NAME_COUNT) |
5668 | { |
5669 | *errorcodeptr = ERR49; |
5670 | goto FAILED; |
5671 | } |
5672 | if (namelen + 3 > cd->name_entry_size) |
5673 | { |
5674 | cd->name_entry_size = namelen + 3; |
5675 | if (namelen > MAX_NAME_SIZE) |
5676 | { |
5677 | *errorcodeptr = ERR48; |
5678 | goto FAILED; |
5679 | } |
5680 | } |
5681 | } |
5682 | |
5683 | /* In the real compile, create the entry in the table, maintaining |
5684 | alphabetical order. Duplicate names for different numbers are |
5685 | permitted only if PCRE_DUPNAMES is set. Duplicate names for the same |
5686 | number are always OK. (An existing number can be re-used if (?| |
5687 | appears in the pattern.) In either event, a duplicate name results in |
5688 | a duplicate entry in the table, even if the number is the same. This |
5689 | is because the number of names, and hence the table size, is computed |
5690 | in the pre-compile, and it affects various numbers and pointers which |
5691 | would all have to be modified, and the compiled code moved down, if |
5692 | duplicates with the same number were omitted from the table. This |
5693 | doesn't seem worth the hassle. However, *different* names for the |
5694 | same number are not permitted. */ |
5695 | |
5696 | else |
5697 | { |
5698 | BOOL dupname = FALSE; |
5699 | slot = cd->name_table; |
5700 | |
5701 | for (i = 0; i < cd->names_found; i++) |
5702 | { |
5703 | int crc = memcmp(name, slot+2, namelen); |
5704 | if (crc == 0) |
5705 | { |
5706 | if (slot[2+namelen] == 0) |
5707 | { |
5708 | if (GET2(slot, 0) != cd->bracount + 1 && |
5709 | (options & PCRE_DUPNAMES) == 0) |
5710 | { |
5711 | *errorcodeptr = ERR43; |
5712 | goto FAILED; |
5713 | } |
5714 | else dupname = TRUE; |
5715 | } |
5716 | else crc = -1; /* Current name is a substring */ |
5717 | } |
5718 | |
5719 | /* Make space in the table and break the loop for an earlier |
5720 | name. For a duplicate or later name, carry on. We do this for |
5721 | duplicates so that in the simple case (when ?(| is not used) they |
5722 | are in order of their numbers. */ |
5723 | |
5724 | if (crc < 0) |
5725 | { |
5726 | memmove(slot + cd->name_entry_size, slot, |
5727 | (cd->names_found - i) * cd->name_entry_size); |
5728 | break; |
5729 | } |
5730 | |
5731 | /* Continue the loop for a later or duplicate name */ |
5732 | |
5733 | slot += cd->name_entry_size; |
5734 | } |
5735 | |
5736 | /* For non-duplicate names, check for a duplicate number before |
5737 | adding the new name. */ |
5738 | |
5739 | if (!dupname) |
5740 | { |
5741 | uschar *cslot = cd->name_table; |
5742 | for (i = 0; i < cd->names_found; i++) |
5743 | { |
5744 | if (cslot != slot) |
5745 | { |
5746 | if (GET2(cslot, 0) == cd->bracount + 1) |
5747 | { |
5748 | *errorcodeptr = ERR65; |
5749 | goto FAILED; |
5750 | } |
5751 | } |
5752 | else i--; |
5753 | cslot += cd->name_entry_size; |
5754 | } |
5755 | } |
5756 | |
5757 | PUT2(slot, 0, cd->bracount + 1); |
5758 | memcpy(slot + 2, name, namelen); |
5759 | slot[2+namelen] = 0; |
5760 | } |
5761 | } |
5762 | |
5763 | /* In both pre-compile and compile, count the number of names we've |
5764 | encountered. */ |
5765 | |
5766 | cd->names_found++; |
5767 | ptr++; /* Move past > or ' */ |
5768 | goto NUMBERED_GROUP; |
5769 | |
5770 | |
5771 | /* ------------------------------------------------------------ */ |
5772 | case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */ |
5773 | terminator = CHAR_RIGHT_PARENTHESIS; |
5774 | is_recurse = TRUE; |
5775 | /* Fall through */ |
5776 | |
5777 | /* We come here from the Python syntax above that handles both |
5778 | references (?P=name) and recursion (?P>name), as well as falling |
5779 | through from the Perl recursion syntax (?&name). We also come here from |
5780 | the Perl \k<name> or \k'name' back reference syntax and the \k{name} |
5781 | .NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */ |
5782 | |
5783 | NAMED_REF_OR_RECURSE: |
5784 | name = ++ptr; |
5785 | while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++; |
5786 | namelen = (int)(ptr - name); |
5787 | |
5788 | /* In the pre-compile phase, do a syntax check. We used to just set |
5789 | a dummy reference number, because it was not used in the first pass. |
5790 | However, with the change of recursive back references to be atomic, |
5791 | we have to look for the number so that this state can be identified, as |
5792 | otherwise the incorrect length is computed. If it's not a backwards |
5793 | reference, the dummy number will do. */ |
5794 | |
5795 | if (lengthptr != NULL) |
5796 | { |
5797 | const uschar *temp; |
5798 | |
5799 | if (namelen == 0) |
5800 | { |
5801 | *errorcodeptr = ERR62; |
5802 | goto FAILED; |
5803 | } |
5804 | if (*ptr != terminator) |
5805 | { |
5806 | *errorcodeptr = ERR42; |
5807 | goto FAILED; |
5808 | } |
5809 | if (namelen > MAX_NAME_SIZE) |
5810 | { |
5811 | *errorcodeptr = ERR48; |
5812 | goto FAILED; |
5813 | } |
5814 | |
5815 | /* The name table does not exist in the first pass, so we cannot |
5816 | do a simple search as in the code below. Instead, we have to scan the |
5817 | pattern to find the number. It is important that we scan it only as |
5818 | far as we have got because the syntax of named subpatterns has not |
5819 | been checked for the rest of the pattern, and find_parens() assumes |
5820 | correct syntax. In any case, it's a waste of resources to scan |
5821 | further. We stop the scan at the current point by temporarily |
5822 | adjusting the value of cd->endpattern. */ |
5823 | |
5824 | temp = cd->end_pattern; |
5825 | cd->end_pattern = ptr; |
5826 | recno = find_parens(cd, name, namelen, |
5827 | (options & PCRE_EXTENDED) != 0, utf8); |
5828 | cd->end_pattern = temp; |
5829 | if (recno < 0) recno = 0; /* Forward ref; set dummy number */ |
5830 | } |
5831 | |
5832 | /* In the real compile, seek the name in the table. We check the name |
5833 | first, and then check that we have reached the end of the name in the |
5834 | table. That way, if the name that is longer than any in the table, |
5835 | the comparison will fail without reading beyond the table entry. */ |
5836 | |
5837 | else |
5838 | { |
5839 | slot = cd->name_table; |
5840 | for (i = 0; i < cd->names_found; i++) |
5841 | { |
5842 | if (strncmp((char *)name, (char *)slot+2, namelen) == 0 && |
5843 | slot[2+namelen] == 0) |
5844 | break; |
5845 | slot += cd->name_entry_size; |
5846 | } |
5847 | |
5848 | if (i < cd->names_found) /* Back reference */ |
5849 | { |
5850 | recno = GET2(slot, 0); |
5851 | } |
5852 | else if ((recno = /* Forward back reference */ |
5853 | find_parens(cd, name, namelen, |
5854 | (options & PCRE_EXTENDED) != 0, utf8)) <= 0) |
5855 | { |
5856 | *errorcodeptr = ERR15; |
5857 | goto FAILED; |
5858 | } |
5859 | } |
5860 | |
5861 | /* In both phases, we can now go to the code than handles numerical |
5862 | recursion or backreferences. */ |
5863 | |
5864 | if (is_recurse) goto HANDLE_RECURSION; |
5865 | else goto HANDLE_REFERENCE; |
5866 | |
5867 | |
5868 | /* ------------------------------------------------------------ */ |
5869 | case CHAR_R: /* Recursion */ |
5870 | ptr++; /* Same as (?0) */ |
5871 | /* Fall through */ |
5872 | |
5873 | |
5874 | /* ------------------------------------------------------------ */ |
5875 | case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */ |
5876 | case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: |
5877 | case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
5878 | { |
5879 | const uschar *called; |
5880 | terminator = CHAR_RIGHT_PARENTHESIS; |
5881 | |
5882 | /* Come here from the \g<...> and \g'...' code (Oniguruma |
5883 | compatibility). However, the syntax has been checked to ensure that |
5884 | the ... are a (signed) number, so that neither ERR63 nor ERR29 will |
5885 | be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY |
5886 | ever be taken. */ |
5887 | |
5888 | HANDLE_NUMERICAL_RECURSION: |
5889 | |
5890 | if ((refsign = *ptr) == CHAR_PLUS) |
5891 | { |
5892 | ptr++; |
5893 | if ((digitab[*ptr] & ctype_digit) == 0) |
5894 | { |
5895 | *errorcodeptr = ERR63; |
5896 | goto FAILED; |
5897 | } |
5898 | } |
5899 | else if (refsign == CHAR_MINUS) |
5900 | { |
5901 | if ((digitab[ptr[1]] & ctype_digit) == 0) |
5902 | goto OTHER_CHAR_AFTER_QUERY; |
5903 | ptr++; |
5904 | } |
5905 | |
5906 | recno = 0; |
5907 | while((digitab[*ptr] & ctype_digit) != 0) |
5908 | recno = recno * 10 + *ptr++ - CHAR_0; |
5909 | |
5910 | if (*ptr != terminator) |
5911 | { |
5912 | *errorcodeptr = ERR29; |
5913 | goto FAILED; |
5914 | } |
5915 | |
5916 | if (refsign == CHAR_MINUS) |
5917 | { |
5918 | if (recno == 0) |
5919 | { |
5920 | *errorcodeptr = ERR58; |
5921 | goto FAILED; |
5922 | } |
5923 | recno = cd->bracount - recno + 1; |
5924 | if (recno <= 0) |
5925 | { |
5926 | *errorcodeptr = ERR15; |
5927 | goto FAILED; |
5928 | } |
5929 | } |
5930 | else if (refsign == CHAR_PLUS) |
5931 | { |
5932 | if (recno == 0) |
5933 | { |
5934 | *errorcodeptr = ERR58; |
5935 | goto FAILED; |
5936 | } |
5937 | recno += cd->bracount; |
5938 | } |
5939 | |
5940 | /* Come here from code above that handles a named recursion */ |
5941 | |
5942 | HANDLE_RECURSION: |
5943 | |
5944 | previous = code; |
5945 | called = cd->start_code; |
5946 | |
5947 | /* When we are actually compiling, find the bracket that is being |
5948 | referenced. Temporarily end the regex in case it doesn't exist before |
5949 | this point. If we end up with a forward reference, first check that |
5950 | the bracket does occur later so we can give the error (and position) |
5951 | now. Then remember this forward reference in the workspace so it can |
5952 | be filled in at the end. */ |
5953 | |
5954 | if (lengthptr == NULL) |
5955 | { |
5956 | *code = OP_END; |
5957 | if (recno != 0) |
5958 | called = _pcre_find_bracket(cd->start_code, utf8, recno); |
5959 | |
5960 | /* Forward reference */ |
5961 | |
5962 | if (called == NULL) |
5963 | { |
5964 | if (find_parens(cd, NULL, recno, |
5965 | (options & PCRE_EXTENDED) != 0, utf8) < 0) |
5966 | { |
5967 | *errorcodeptr = ERR15; |
5968 | goto FAILED; |
5969 | } |
5970 | |
5971 | /* Fudge the value of "called" so that when it is inserted as an |
5972 | offset below, what it actually inserted is the reference number |
5973 | of the group. Then remember the forward reference. */ |
5974 | |
5975 | called = cd->start_code + recno; |
5976 | PUTINC(cd->hwm, 0, (int)(code + 1 - cd->start_code)); |
5977 | } |
5978 | |
5979 | /* If not a forward reference, and the subpattern is still open, |
5980 | this is a recursive call. We check to see if this is a left |
5981 | recursion that could loop for ever, and diagnose that case. We |
5982 | must not, however, do this check if we are in a conditional |
5983 | subpattern because the condition might be testing for recursion in |
5984 | a pattern such as /(?(R)a+|(?R)b)/, which is perfectly valid. |
5985 | Forever loops are also detected at runtime, so those that occur in |
5986 | conditional subpatterns will be picked up then. */ |
5987 | |
5988 | else if (GET(called, 1) == 0 && cond_depth <= 0 && |
5989 | could_be_empty(called, code, bcptr, utf8, cd)) |
5990 | { |
5991 | *errorcodeptr = ERR40; |
5992 | goto FAILED; |
5993 | } |
5994 | } |
5995 | |
5996 | /* Insert the recursion/subroutine item. */ |
5997 | |
5998 | *code = OP_RECURSE; |
5999 | PUT(code, 1, (int)(called - cd->start_code)); |
6000 | code += 1 + LINK_SIZE; |
6001 | } |
6002 | |
6003 | /* Can't determine a first byte now */ |
6004 | |
6005 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
6006 | continue; |
6007 | |
6008 | |
6009 | /* ------------------------------------------------------------ */ |
6010 | default: /* Other characters: check option setting */ |
6011 | OTHER_CHAR_AFTER_QUERY: |
6012 | set = unset = 0; |
6013 | optset = &set; |
6014 | |
6015 | while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON) |
6016 | { |
6017 | switch (*ptr++) |
6018 | { |
6019 | case CHAR_MINUS: optset = &unset; break; |
6020 | |
6021 | case CHAR_J: /* Record that it changed in the external options */ |
6022 | *optset |= PCRE_DUPNAMES; |
6023 | cd->external_flags |= PCRE_JCHANGED; |
6024 | break; |
6025 | |
6026 | case CHAR_i: *optset |= PCRE_CASELESS; break; |
6027 | case CHAR_m: *optset |= PCRE_MULTILINE; break; |
6028 | case CHAR_s: *optset |= PCRE_DOTALL; break; |
6029 | case CHAR_x: *optset |= PCRE_EXTENDED; break; |
6030 | case CHAR_U: *optset |= PCRE_UNGREEDY; break; |
6031 | case CHAR_X: *optset |= PCRE_EXTRA; break; |
6032 | |
6033 | default: *errorcodeptr = ERR12; |
6034 | ptr--; /* Correct the offset */ |
6035 | goto FAILED; |
6036 | } |
6037 | } |
6038 | |
6039 | /* Set up the changed option bits, but don't change anything yet. */ |
6040 | |
6041 | newoptions = (options | set) & (~unset); |
6042 | |
6043 | /* If the options ended with ')' this is not the start of a nested |
6044 | group with option changes, so the options change at this level. If this |
6045 | item is right at the start of the pattern, the options can be |
6046 | abstracted and made external in the pre-compile phase, and ignored in |
6047 | the compile phase. This can be helpful when matching -- for instance in |
6048 | caseless checking of required bytes. |
6049 | |
6050 | If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are |
6051 | definitely *not* at the start of the pattern because something has been |
6052 | compiled. In the pre-compile phase, however, the code pointer can have |
6053 | that value after the start, because it gets reset as code is discarded |
6054 | during the pre-compile. However, this can happen only at top level - if |
6055 | we are within parentheses, the starting BRA will still be present. At |
6056 | any parenthesis level, the length value can be used to test if anything |
6057 | has been compiled at that level. Thus, a test for both these conditions |
6058 | is necessary to ensure we correctly detect the start of the pattern in |
6059 | both phases. |
6060 | |
6061 | If we are not at the pattern start, reset the greedy defaults and the |
6062 | case value for firstbyte and reqbyte. */ |
6063 | |
6064 | if (*ptr == CHAR_RIGHT_PARENTHESIS) |
6065 | { |
6066 | if (code == cd->start_code + 1 + LINK_SIZE && |
6067 | (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE)) |
6068 | { |
6069 | cd->external_options = newoptions; |
6070 | } |
6071 | else |
6072 | { |
6073 | greedy_default = ((newoptions & PCRE_UNGREEDY) != 0); |
6074 | greedy_non_default = greedy_default ^ 1; |
6075 | req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS : 0; |
6076 | } |
6077 | |
6078 | /* Change options at this level, and pass them back for use |
6079 | in subsequent branches. */ |
6080 | |
6081 | *optionsptr = options = newoptions; |
6082 | previous = NULL; /* This item can't be repeated */ |
6083 | continue; /* It is complete */ |
6084 | } |
6085 | |
6086 | /* If the options ended with ':' we are heading into a nested group |
6087 | with possible change of options. Such groups are non-capturing and are |
6088 | not assertions of any kind. All we need to do is skip over the ':'; |
6089 | the newoptions value is handled below. */ |
6090 | |
6091 | bravalue = OP_BRA; |
6092 | ptr++; |
6093 | } /* End of switch for character following (? */ |
6094 | } /* End of (? handling */ |
6095 | |
6096 | /* Opening parenthesis not followed by '*' or '?'. If PCRE_NO_AUTO_CAPTURE |
6097 | is set, all unadorned brackets become non-capturing and behave like (?:...) |
6098 | brackets. */ |
6099 | |
6100 | else if ((options & PCRE_NO_AUTO_CAPTURE) != 0) |
6101 | { |
6102 | bravalue = OP_BRA; |
6103 | } |
6104 | |
6105 | /* Else we have a capturing group. */ |
6106 | |
6107 | else |
6108 | { |
6109 | NUMBERED_GROUP: |
6110 | cd->bracount += 1; |
6111 | PUT2(code, 1+LINK_SIZE, cd->bracount); |
6112 | skipbytes = 2; |
6113 | } |
6114 | |
6115 | /* Process nested bracketed regex. Assertions used not to be repeatable, |
6116 | but this was changed for Perl compatibility, so all kinds can now be |
6117 | repeated. We copy code into a non-register variable (tempcode) in order to |
6118 | be able to pass its address because some compilers complain otherwise. */ |
6119 | |
6120 | previous = code; /* For handling repetition */ |
6121 | *code = bravalue; |
6122 | tempcode = code; |
6123 | tempreqvary = cd->req_varyopt; /* Save value before bracket */ |
6124 | tempbracount = cd->bracount; /* Save value before bracket */ |
6125 | length_prevgroup = 0; /* Initialize for pre-compile phase */ |
6126 | |
6127 | if (!compile_regex( |
6128 | newoptions, /* The complete new option state */ |
6129 | &tempcode, /* Where to put code (updated) */ |
6130 | &ptr, /* Input pointer (updated) */ |
6131 | errorcodeptr, /* Where to put an error message */ |
6132 | (bravalue == OP_ASSERTBACK || |
6133 | bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */ |
6134 | reset_bracount, /* True if (?| group */ |
6135 | skipbytes, /* Skip over bracket number */ |
6136 | cond_depth + |
6137 | ((bravalue == OP_COND)?1:0), /* Depth of condition subpatterns */ |
6138 | &subfirstbyte, /* For possible first char */ |
6139 | &subreqbyte, /* For possible last char */ |
6140 | bcptr, /* Current branch chain */ |
6141 | cd, /* Tables block */ |
6142 | (lengthptr == NULL)? NULL : /* Actual compile phase */ |
6143 | &length_prevgroup /* Pre-compile phase */ |
6144 | )) |
6145 | goto FAILED; |
6146 | |
6147 | /* If this was an atomic group and there are no capturing groups within it, |
6148 | generate OP_ONCE_NC instead of OP_ONCE. */ |
6149 | |
6150 | if (bravalue == OP_ONCE && cd->bracount <= tempbracount) |
6151 | *code = OP_ONCE_NC; |
6152 | |
6153 | if (bravalue >= OP_ASSERT && bravalue <= OP_ASSERTBACK_NOT) |
6154 | cd->assert_depth -= 1; |
6155 | |
6156 | /* At the end of compiling, code is still pointing to the start of the |
6157 | group, while tempcode has been updated to point past the end of the group. |
6158 | The pattern pointer (ptr) is on the bracket. |
6159 | |
6160 | If this is a conditional bracket, check that there are no more than |
6161 | two branches in the group, or just one if it's a DEFINE group. We do this |
6162 | in the real compile phase, not in the pre-pass, where the whole group may |
6163 | not be available. */ |
6164 | |
6165 | if (bravalue == OP_COND && lengthptr == NULL) |
6166 | { |
6167 | uschar *tc = code; |
6168 | int condcount = 0; |
6169 | |
6170 | do { |
6171 | condcount++; |
6172 | tc += GET(tc,1); |
6173 | } |
6174 | while (*tc != OP_KET); |
6175 | |
6176 | /* A DEFINE group is never obeyed inline (the "condition" is always |
6177 | false). It must have only one branch. */ |
6178 | |
6179 | if (code[LINK_SIZE+1] == OP_DEF) |
6180 | { |
6181 | if (condcount > 1) |
6182 | { |
6183 | *errorcodeptr = ERR54; |
6184 | goto FAILED; |
6185 | } |
6186 | bravalue = OP_DEF; /* Just a flag to suppress char handling below */ |
6187 | } |
6188 | |
6189 | /* A "normal" conditional group. If there is just one branch, we must not |
6190 | make use of its firstbyte or reqbyte, because this is equivalent to an |
6191 | empty second branch. */ |
6192 | |
6193 | else |
6194 | { |
6195 | if (condcount > 2) |
6196 | { |
6197 | *errorcodeptr = ERR27; |
6198 | goto FAILED; |
6199 | } |
6200 | if (condcount == 1) subfirstbyte = subreqbyte = REQ_NONE; |
6201 | } |
6202 | } |
6203 | |
6204 | /* Error if hit end of pattern */ |
6205 | |
6206 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
6207 | { |
6208 | *errorcodeptr = ERR14; |
6209 | goto FAILED; |
6210 | } |
6211 | |
6212 | /* In the pre-compile phase, update the length by the length of the group, |
6213 | less the brackets at either end. Then reduce the compiled code to just a |
6214 | set of non-capturing brackets so that it doesn't use much memory if it is |
6215 | duplicated by a quantifier.*/ |
6216 | |
6217 | if (lengthptr != NULL) |
6218 | { |
6219 | if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE) |
6220 | { |
6221 | *errorcodeptr = ERR20; |
6222 | goto FAILED; |
6223 | } |
6224 | *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE; |
6225 | code++; /* This already contains bravalue */ |
6226 | PUTINC(code, 0, 1 + LINK_SIZE); |
6227 | *code++ = OP_KET; |
6228 | PUTINC(code, 0, 1 + LINK_SIZE); |
6229 | break; /* No need to waste time with special character handling */ |
6230 | } |
6231 | |
6232 | /* Otherwise update the main code pointer to the end of the group. */ |
6233 | |
6234 | code = tempcode; |
6235 | |
6236 | /* For a DEFINE group, required and first character settings are not |
6237 | relevant. */ |
6238 | |
6239 | if (bravalue == OP_DEF) break; |
6240 | |
6241 | /* Handle updating of the required and first characters for other types of |
6242 | group. Update for normal brackets of all kinds, and conditions with two |
6243 | branches (see code above). If the bracket is followed by a quantifier with |
6244 | zero repeat, we have to back off. Hence the definition of zeroreqbyte and |
6245 | zerofirstbyte outside the main loop so that they can be accessed for the |
6246 | back off. */ |
6247 | |
6248 | zeroreqbyte = reqbyte; |
6249 | zerofirstbyte = firstbyte; |
6250 | groupsetfirstbyte = FALSE; |
6251 | |
6252 | if (bravalue >= OP_ONCE) |
6253 | { |
6254 | /* If we have not yet set a firstbyte in this branch, take it from the |
6255 | subpattern, remembering that it was set here so that a repeat of more |
6256 | than one can replicate it as reqbyte if necessary. If the subpattern has |
6257 | no firstbyte, set "none" for the whole branch. In both cases, a zero |
6258 | repeat forces firstbyte to "none". */ |
6259 | |
6260 | if (firstbyte == REQ_UNSET) |
6261 | { |
6262 | if (subfirstbyte >= 0) |
6263 | { |
6264 | firstbyte = subfirstbyte; |
6265 | groupsetfirstbyte = TRUE; |
6266 | } |
6267 | else firstbyte = REQ_NONE; |
6268 | zerofirstbyte = REQ_NONE; |
6269 | } |
6270 | |
6271 | /* If firstbyte was previously set, convert the subpattern's firstbyte |
6272 | into reqbyte if there wasn't one, using the vary flag that was in |
6273 | existence beforehand. */ |
6274 | |
6275 | else if (subfirstbyte >= 0 && subreqbyte < 0) |
6276 | subreqbyte = subfirstbyte | tempreqvary; |
6277 | |
6278 | /* If the subpattern set a required byte (or set a first byte that isn't |
6279 | really the first byte - see above), set it. */ |
6280 | |
6281 | if (subreqbyte >= 0) reqbyte = subreqbyte; |
6282 | } |
6283 | |
6284 | /* For a forward assertion, we take the reqbyte, if set. This can be |
6285 | helpful if the pattern that follows the assertion doesn't set a different |
6286 | char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte |
6287 | for an assertion, however because it leads to incorrect effect for patterns |
6288 | such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead |
6289 | of a firstbyte. This is overcome by a scan at the end if there's no |
6290 | firstbyte, looking for an asserted first char. */ |
6291 | |
6292 | else if (bravalue == OP_ASSERT && subreqbyte >= 0) reqbyte = subreqbyte; |
6293 | break; /* End of processing '(' */ |
6294 | |
6295 | |
6296 | /* ===================================================================*/ |
6297 | /* Handle metasequences introduced by \. For ones like \d, the ESC_ values |
6298 | are arranged to be the negation of the corresponding OP_values in the |
6299 | default case when PCRE_UCP is not set. For the back references, the values |
6300 | are ESC_REF plus the reference number. Only back references and those types |
6301 | that consume a character may be repeated. We can test for values between |
6302 | ESC_b and ESC_Z for the latter; this may have to change if any new ones are |
6303 | ever created. */ |
6304 | |
6305 | case CHAR_BACKSLASH: |
6306 | tempptr = ptr; |
6307 | c = check_escape(&ptr, errorcodeptr, cd->bracount, options, FALSE); |
6308 | if (*errorcodeptr != 0) goto FAILED; |
6309 | |
6310 | if (c < 0) |
6311 | { |
6312 | if (-c == ESC_Q) /* Handle start of quoted string */ |
6313 | { |
6314 | if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
6315 | ptr += 2; /* avoid empty string */ |
6316 | else inescq = TRUE; |
6317 | continue; |
6318 | } |
6319 | |
6320 | if (-c == ESC_E) continue; /* Perl ignores an orphan \E */ |
6321 | |
6322 | /* For metasequences that actually match a character, we disable the |
6323 | setting of a first character if it hasn't already been set. */ |
6324 | |
6325 | if (firstbyte == REQ_UNSET && -c > ESC_b && -c < ESC_Z) |
6326 | firstbyte = REQ_NONE; |
6327 | |
6328 | /* Set values to reset to if this is followed by a zero repeat. */ |
6329 | |
6330 | zerofirstbyte = firstbyte; |
6331 | zeroreqbyte = reqbyte; |
6332 | |
6333 | /* \g<name> or \g'name' is a subroutine call by name and \g<n> or \g'n' |
6334 | is a subroutine call by number (Oniguruma syntax). In fact, the value |
6335 | -ESC_g is returned only for these cases. So we don't need to check for < |
6336 | or ' if the value is -ESC_g. For the Perl syntax \g{n} the value is |
6337 | -ESC_REF+n, and for the Perl syntax \g{name} the result is -ESC_k (as |
6338 | that is a synonym for a named back reference). */ |
6339 | |
6340 | if (-c == ESC_g) |
6341 | { |
6342 | const uschar *p; |
6343 | save_hwm = cd->hwm; /* Normally this is set when '(' is read */ |
6344 | terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)? |
6345 | CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE; |
6346 | |
6347 | /* These two statements stop the compiler for warning about possibly |
6348 | unset variables caused by the jump to HANDLE_NUMERICAL_RECURSION. In |
6349 | fact, because we actually check for a number below, the paths that |
6350 | would actually be in error are never taken. */ |
6351 | |
6352 | skipbytes = 0; |
6353 | reset_bracount = FALSE; |
6354 | |
6355 | /* Test for a name */ |
6356 | |
6357 | if (ptr[1] != CHAR_PLUS && ptr[1] != CHAR_MINUS) |
6358 | { |
6359 | BOOL isnumber = TRUE; |
6360 | for (p = ptr + 1; *p != 0 && *p != terminator; p++) |
6361 | { |
6362 | if ((cd->ctypes[*p] & ctype_digit) == 0) isnumber = FALSE; |
6363 | if ((cd->ctypes[*p] & ctype_word) == 0) break; |
6364 | } |
6365 | if (*p != terminator) |
6366 | { |
6367 | *errorcodeptr = ERR57; |
6368 | break; |
6369 | } |
6370 | if (isnumber) |
6371 | { |
6372 | ptr++; |
6373 | goto HANDLE_NUMERICAL_RECURSION; |
6374 | } |
6375 | is_recurse = TRUE; |
6376 | goto NAMED_REF_OR_RECURSE; |
6377 | } |
6378 | |
6379 | /* Test a signed number in angle brackets or quotes. */ |
6380 | |
6381 | p = ptr + 2; |
6382 | while ((digitab[*p] & ctype_digit) != 0) p++; |
6383 | if (*p != terminator) |
6384 | { |
6385 | *errorcodeptr = ERR57; |
6386 | break; |
6387 | } |
6388 | ptr++; |
6389 | goto HANDLE_NUMERICAL_RECURSION; |
6390 | } |
6391 | |
6392 | /* \k<name> or \k'name' is a back reference by name (Perl syntax). |
6393 | We also support \k{name} (.NET syntax). */ |
6394 | |
6395 | if (-c == ESC_k) |
6396 | { |
6397 | if ((ptr[1] != CHAR_LESS_THAN_SIGN && |
6398 | ptr[1] != CHAR_APOSTROPHE && ptr[1] != CHAR_LEFT_CURLY_BRACKET)) |
6399 | { |
6400 | *errorcodeptr = ERR69; |
6401 | break; |
6402 | } |
6403 | is_recurse = FALSE; |
6404 | terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)? |
6405 | CHAR_GREATER_THAN_SIGN : (*ptr == CHAR_APOSTROPHE)? |
6406 | CHAR_APOSTROPHE : CHAR_RIGHT_CURLY_BRACKET; |
6407 | goto NAMED_REF_OR_RECURSE; |
6408 | } |
6409 | |
6410 | /* Back references are handled specially; must disable firstbyte if |
6411 | not set to cope with cases like (?=(\w+))\1: which would otherwise set |
6412 | ':' later. */ |
6413 | |
6414 | if (-c >= ESC_REF) |
6415 | { |
6416 | open_capitem *oc; |
6417 | recno = -c - ESC_REF; |
6418 | |
6419 | HANDLE_REFERENCE: /* Come here from named backref handling */ |
6420 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
6421 | previous = code; |
6422 | *code++ = ((options & PCRE_CASELESS) != 0)? OP_REFI : OP_REF; |
6423 | PUT2INC(code, 0, recno); |
6424 | cd->backref_map |= (recno < 32)? (1 << recno) : 1; |
6425 | if (recno > cd->top_backref) cd->top_backref = recno; |
6426 | |
6427 | /* Check to see if this back reference is recursive, that it, it |
6428 | is inside the group that it references. A flag is set so that the |
6429 | group can be made atomic. */ |
6430 | |
6431 | for (oc = cd->open_caps; oc != NULL; oc = oc->next) |
6432 | { |
6433 | if (oc->number == recno) |
6434 | { |
6435 | oc->flag = TRUE; |
6436 | break; |
6437 | } |
6438 | } |
6439 | } |
6440 | |
6441 | /* So are Unicode property matches, if supported. */ |
6442 | |
6443 | #ifdef SUPPORT_UCP |
6444 | else if (-c == ESC_P || -c == ESC_p) |
6445 | { |
6446 | BOOL negated; |
6447 | int pdata; |
6448 | int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr); |
6449 | if (ptype < 0) goto FAILED; |
6450 | previous = code; |
6451 | *code++ = ((-c == ESC_p) != negated)? OP_PROP : OP_NOTPROP; |
6452 | *code++ = ptype; |
6453 | *code++ = pdata; |
6454 | } |
6455 | #else |
6456 | |
6457 | /* If Unicode properties are not supported, \X, \P, and \p are not |
6458 | allowed. */ |
6459 | |
6460 | else if (-c == ESC_X || -c == ESC_P || -c == ESC_p) |
6461 | { |
6462 | *errorcodeptr = ERR45; |
6463 | goto FAILED; |
6464 | } |
6465 | #endif |
6466 | |
6467 | /* For the rest (including \X when Unicode properties are supported), we |
6468 | can obtain the OP value by negating the escape value in the default |
6469 | situation when PCRE_UCP is not set. When it *is* set, we substitute |
6470 | Unicode property tests. */ |
6471 | |
6472 | else |
6473 | { |
6474 | #ifdef SUPPORT_UCP |
6475 | if (-c >= ESC_DU && -c <= ESC_wu) |
6476 | { |
6477 | nestptr = ptr + 1; /* Where to resume */ |
6478 | ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */ |
6479 | } |
6480 | else |
6481 | #endif |
6482 | /* In non-UTF-8 mode, we turn \C into OP_ALLANY instead of OP_ANYBYTE |
6483 | so that it works in DFA mode and in lookbehinds. */ |
6484 | |
6485 | { |
6486 | previous = (-c > ESC_b && -c < ESC_Z)? code : NULL; |
6487 | *code++ = (!utf8 && c == -ESC_C)? OP_ALLANY : -c; |
6488 | } |
6489 | } |
6490 | continue; |
6491 | } |
6492 | |
6493 | /* We have a data character whose value is in c. In UTF-8 mode it may have |
6494 | a value > 127. We set its representation in the length/buffer, and then |
6495 | handle it as a data character. */ |
6496 | |
6497 | #ifdef SUPPORT_UTF8 |
6498 | if (utf8 && c > 127) |
6499 | mclength = _pcre_ord2utf8(c, mcbuffer); |
6500 | else |
6501 | #endif |
6502 | |
6503 | { |
6504 | mcbuffer[0] = c; |
6505 | mclength = 1; |
6506 | } |
6507 | goto ONE_CHAR; |
6508 | |
6509 | |
6510 | /* ===================================================================*/ |
6511 | /* Handle a literal character. It is guaranteed not to be whitespace or # |
6512 | when the extended flag is set. If we are in UTF-8 mode, it may be a |
6513 | multi-byte literal character. */ |
6514 | |
6515 | default: |
6516 | NORMAL_CHAR: |
6517 | mclength = 1; |
6518 | mcbuffer[0] = c; |
6519 | |
6520 | #ifdef SUPPORT_UTF8 |
6521 | if (utf8 && c >= 0xc0) |
6522 | { |
6523 | while ((ptr[1] & 0xc0) == 0x80) |
6524 | mcbuffer[mclength++] = *(++ptr); |
6525 | } |
6526 | #endif |
6527 | |
6528 | /* At this point we have the character's bytes in mcbuffer, and the length |
6529 | in mclength. When not in UTF-8 mode, the length is always 1. */ |
6530 | |
6531 | ONE_CHAR: |
6532 | previous = code; |
6533 | *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARI : OP_CHAR; |
6534 | for (c = 0; c < mclength; c++) *code++ = mcbuffer[c]; |
6535 | |
6536 | /* Remember if \r or \n were seen */ |
6537 | |
6538 | if (mcbuffer[0] == CHAR_CR || mcbuffer[0] == CHAR_NL) |
6539 | cd->external_flags |= PCRE_HASCRORLF; |
6540 | |
6541 | /* Set the first and required bytes appropriately. If no previous first |
6542 | byte, set it from this character, but revert to none on a zero repeat. |
6543 | Otherwise, leave the firstbyte value alone, and don't change it on a zero |
6544 | repeat. */ |
6545 | |
6546 | if (firstbyte == REQ_UNSET) |
6547 | { |
6548 | zerofirstbyte = REQ_NONE; |
6549 | zeroreqbyte = reqbyte; |
6550 | |
6551 | /* If the character is more than one byte long, we can set firstbyte |
6552 | only if it is not to be matched caselessly. */ |
6553 | |
6554 | if (mclength == 1 || req_caseopt == 0) |
6555 | { |
6556 | firstbyte = mcbuffer[0] | req_caseopt; |
6557 | if (mclength != 1) reqbyte = code[-1] | cd->req_varyopt; |
6558 | } |
6559 | else firstbyte = reqbyte = REQ_NONE; |
6560 | } |
6561 | |
6562 | /* firstbyte was previously set; we can set reqbyte only if the length is |
6563 | 1 or the matching is caseful. */ |
6564 | |
6565 | else |
6566 | { |
6567 | zerofirstbyte = firstbyte; |
6568 | zeroreqbyte = reqbyte; |
6569 | if (mclength == 1 || req_caseopt == 0) |
6570 | reqbyte = code[-1] | req_caseopt | cd->req_varyopt; |
6571 | } |
6572 | |
6573 | break; /* End of literal character handling */ |
6574 | } |
6575 | } /* end of big loop */ |
6576 | |
6577 | |
6578 | /* Control never reaches here by falling through, only by a goto for all the |
6579 | error states. Pass back the position in the pattern so that it can be displayed |
6580 | to the user for diagnosing the error. */ |
6581 | |
6582 | FAILED: |
6583 | *ptrptr = ptr; |
6584 | return FALSE; |
6585 | } |
6586 | |
6587 | |
6588 | |
6589 | |
6590 | /************************************************* |
6591 | * Compile sequence of alternatives * |
6592 | *************************************************/ |
6593 | |
6594 | /* On entry, ptr is pointing past the bracket character, but on return it |
6595 | points to the closing bracket, or vertical bar, or end of string. The code |
6596 | variable is pointing at the byte into which the BRA operator has been stored. |
6597 | This function is used during the pre-compile phase when we are trying to find |
6598 | out the amount of memory needed, as well as during the real compile phase. The |
6599 | value of lengthptr distinguishes the two phases. |
6600 | |
6601 | Arguments: |
6602 | options option bits, including any changes for this subpattern |
6603 | codeptr -> the address of the current code pointer |
6604 | ptrptr -> the address of the current pattern pointer |
6605 | errorcodeptr -> pointer to error code variable |
6606 | lookbehind TRUE if this is a lookbehind assertion |
6607 | reset_bracount TRUE to reset the count for each branch |
6608 | skipbytes skip this many bytes at start (for brackets and OP_COND) |
6609 | cond_depth depth of nesting for conditional subpatterns |
6610 | firstbyteptr place to put the first required character, or a negative number |
6611 | reqbyteptr place to put the last required character, or a negative number |
6612 | bcptr pointer to the chain of currently open branches |
6613 | cd points to the data block with tables pointers etc. |
6614 | lengthptr NULL during the real compile phase |
6615 | points to length accumulator during pre-compile phase |
6616 | |
6617 | Returns: TRUE on success |
6618 | */ |
6619 | |
6620 | static BOOL |
6621 | compile_regex(int options, uschar **codeptr, const uschar **ptrptr, |
6622 | int *errorcodeptr, BOOL lookbehind, BOOL reset_bracount, int skipbytes, |
6623 | int cond_depth, int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, |
6624 | compile_data *cd, int *lengthptr) |
6625 | { |
6626 | const uschar *ptr = *ptrptr; |
6627 | uschar *code = *codeptr; |
6628 | uschar *last_branch = code; |
6629 | uschar *start_bracket = code; |
6630 | uschar *reverse_count = NULL; |
6631 | open_capitem capitem; |
6632 | int capnumber = 0; |
6633 | int firstbyte, reqbyte; |
6634 | int branchfirstbyte, branchreqbyte; |
6635 | int length; |
6636 | int orig_bracount; |
6637 | int max_bracount; |
6638 | branch_chain bc; |
6639 | |
6640 | bc.outer = bcptr; |
6641 | bc.current_branch = code; |
6642 | |
6643 | firstbyte = reqbyte = REQ_UNSET; |
6644 | |
6645 | /* Accumulate the length for use in the pre-compile phase. Start with the |
6646 | length of the BRA and KET and any extra bytes that are required at the |
6647 | beginning. We accumulate in a local variable to save frequent testing of |
6648 | lenthptr for NULL. We cannot do this by looking at the value of code at the |
6649 | start and end of each alternative, because c |