Parent Directory
|
Revision Log
Add support for *MARK and names for *PRUNE, *SKIP, *THEN.
1 | /************************************************* |
2 | * Perl-Compatible Regular Expressions * |
3 | *************************************************/ |
4 | |
5 | /* PCRE is a library of functions to support regular expressions whose syntax |
6 | and semantics are as close as possible to those of the Perl 5 language. |
7 | |
8 | Written by Philip Hazel |
9 | Copyright (c) 1997-2010 University of Cambridge |
10 | |
11 | ----------------------------------------------------------------------------- |
12 | Redistribution and use in source and binary forms, with or without |
13 | modification, are permitted provided that the following conditions are met: |
14 | |
15 | * Redistributions of source code must retain the above copyright notice, |
16 | this list of conditions and the following disclaimer. |
17 | |
18 | * Redistributions in binary form must reproduce the above copyright |
19 | notice, this list of conditions and the following disclaimer in the |
20 | documentation and/or other materials provided with the distribution. |
21 | |
22 | * Neither the name of the University of Cambridge nor the names of its |
23 | contributors may be used to endorse or promote products derived from |
24 | this software without specific prior written permission. |
25 | |
26 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
27 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
28 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
29 | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
30 | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
31 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
32 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
33 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
34 | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
35 | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
36 | POSSIBILITY OF SUCH DAMAGE. |
37 | ----------------------------------------------------------------------------- |
38 | */ |
39 | |
40 | |
41 | /* This module contains the external function pcre_compile(), along with |
42 | supporting internal functions that are not used by other modules. */ |
43 | |
44 | |
45 | #ifdef HAVE_CONFIG_H |
46 | #include "config.h" |
47 | #endif |
48 | |
49 | #define NLBLOCK cd /* Block containing newline information */ |
50 | #define PSSTART start_pattern /* Field containing processed string start */ |
51 | #define PSEND end_pattern /* Field containing processed string end */ |
52 | |
53 | #include "pcre_internal.h" |
54 | |
55 | |
56 | /* When PCRE_DEBUG is defined, we need the pcre_printint() function, which is |
57 | also used by pcretest. PCRE_DEBUG is not defined when building a production |
58 | library. */ |
59 | |
60 | #ifdef PCRE_DEBUG |
61 | #include "pcre_printint.src" |
62 | #endif |
63 | |
64 | |
65 | /* Macro for setting individual bits in class bitmaps. */ |
66 | |
67 | #define SETBIT(a,b) a[b/8] |= (1 << (b%8)) |
68 | |
69 | /* Maximum length value to check against when making sure that the integer that |
70 | holds the compiled pattern length does not overflow. We make it a bit less than |
71 | INT_MAX to allow for adding in group terminating bytes, so that we don't have |
72 | to check them every time. */ |
73 | |
74 | #define OFLOW_MAX (INT_MAX - 20) |
75 | |
76 | |
77 | /************************************************* |
78 | * Code parameters and static tables * |
79 | *************************************************/ |
80 | |
81 | /* This value specifies the size of stack workspace that is used during the |
82 | first pre-compile phase that determines how much memory is required. The regex |
83 | is partly compiled into this space, but the compiled parts are discarded as |
84 | soon as they can be, so that hopefully there will never be an overrun. The code |
85 | does, however, check for an overrun. The largest amount I've seen used is 218, |
86 | so this number is very generous. |
87 | |
88 | The same workspace is used during the second, actual compile phase for |
89 | remembering forward references to groups so that they can be filled in at the |
90 | end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE |
91 | is 4 there is plenty of room. */ |
92 | |
93 | #define COMPILE_WORK_SIZE (4096) |
94 | |
95 | /* The overrun tests check for a slightly smaller size so that they detect the |
96 | overrun before it actually does run off the end of the data block. */ |
97 | |
98 | #define WORK_SIZE_CHECK (COMPILE_WORK_SIZE - 100) |
99 | |
100 | |
101 | /* Table for handling escaped characters in the range '0'-'z'. Positive returns |
102 | are simple data values; negative values are for special things like \d and so |
103 | on. Zero means further processing is needed (for things like \x), or the escape |
104 | is invalid. */ |
105 | |
106 | #ifndef EBCDIC |
107 | |
108 | /* This is the "normal" table for ASCII systems or for EBCDIC systems running |
109 | in UTF-8 mode. */ |
110 | |
111 | static const short int escapes[] = { |
112 | 0, 0, |
113 | 0, 0, |
114 | 0, 0, |
115 | 0, 0, |
116 | 0, 0, |
117 | CHAR_COLON, CHAR_SEMICOLON, |
118 | CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN, |
119 | CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK, |
120 | CHAR_COMMERCIAL_AT, -ESC_A, |
121 | -ESC_B, -ESC_C, |
122 | -ESC_D, -ESC_E, |
123 | 0, -ESC_G, |
124 | -ESC_H, 0, |
125 | 0, -ESC_K, |
126 | 0, 0, |
127 | 0, 0, |
128 | -ESC_P, -ESC_Q, |
129 | -ESC_R, -ESC_S, |
130 | 0, 0, |
131 | -ESC_V, -ESC_W, |
132 | -ESC_X, 0, |
133 | -ESC_Z, CHAR_LEFT_SQUARE_BRACKET, |
134 | CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET, |
135 | CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE, |
136 | CHAR_GRAVE_ACCENT, 7, |
137 | -ESC_b, 0, |
138 | -ESC_d, ESC_e, |
139 | ESC_f, 0, |
140 | -ESC_h, 0, |
141 | 0, -ESC_k, |
142 | 0, 0, |
143 | ESC_n, 0, |
144 | -ESC_p, 0, |
145 | ESC_r, -ESC_s, |
146 | ESC_tee, 0, |
147 | -ESC_v, -ESC_w, |
148 | 0, 0, |
149 | -ESC_z |
150 | }; |
151 | |
152 | #else |
153 | |
154 | /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */ |
155 | |
156 | static const short int escapes[] = { |
157 | /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|', |
158 | /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0, |
159 | /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~', |
160 | /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0, |
161 | /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?', |
162 | /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0, |
163 | /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"', |
164 | /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, |
165 | /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0, |
166 | /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p, |
167 | /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0, |
168 | /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0, |
169 | /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0, |
170 | /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
171 | /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-', |
172 | /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G, |
173 | /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0, |
174 | /* D0 */ '}', 0, -ESC_K, 0, 0, 0, 0, -ESC_P, |
175 | /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0, |
176 | /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X, |
177 | /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0, |
178 | /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
179 | /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0 |
180 | }; |
181 | #endif |
182 | |
183 | |
184 | /* Table of special "verbs" like (*PRUNE). This is a short table, so it is |
185 | searched linearly. Put all the names into a single string, in order to reduce |
186 | the number of relocations when a shared library is dynamically linked. The |
187 | string is built from string macros so that it works in UTF-8 mode on EBCDIC |
188 | platforms. */ |
189 | |
190 | typedef struct verbitem { |
191 | int len; /* Length of verb name */ |
192 | int op; /* Op when no arg, or -1 if arg mandatory */ |
193 | int op_arg; /* Op when arg present, or -1 if not allowed */ |
194 | } verbitem; |
195 | |
196 | static const char verbnames[] = |
197 | "\0" /* Empty name is a shorthand for MARK */ |
198 | STRING_MARK0 |
199 | STRING_ACCEPT0 |
200 | STRING_COMMIT0 |
201 | STRING_F0 |
202 | STRING_FAIL0 |
203 | STRING_PRUNE0 |
204 | STRING_SKIP0 |
205 | STRING_THEN; |
206 | |
207 | static const verbitem verbs[] = { |
208 | { 0, -1, OP_MARK }, |
209 | { 4, -1, OP_MARK }, |
210 | { 6, OP_ACCEPT, -1 }, |
211 | { 6, OP_COMMIT, -1 }, |
212 | { 1, OP_FAIL, -1 }, |
213 | { 4, OP_FAIL, -1 }, |
214 | { 5, OP_PRUNE, OP_PRUNE_ARG }, |
215 | { 4, OP_SKIP, OP_SKIP_ARG }, |
216 | { 4, OP_THEN, OP_THEN_ARG } |
217 | }; |
218 | |
219 | static const int verbcount = sizeof(verbs)/sizeof(verbitem); |
220 | |
221 | |
222 | /* Tables of names of POSIX character classes and their lengths. The names are |
223 | now all in a single string, to reduce the number of relocations when a shared |
224 | library is dynamically loaded. The list of lengths is terminated by a zero |
225 | length entry. The first three must be alpha, lower, upper, as this is assumed |
226 | for handling case independence. */ |
227 | |
228 | static const char posix_names[] = |
229 | STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0 |
230 | STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0 |
231 | STRING_graph0 STRING_print0 STRING_punct0 STRING_space0 |
232 | STRING_word0 STRING_xdigit; |
233 | |
234 | static const uschar posix_name_lengths[] = { |
235 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 }; |
236 | |
237 | /* Table of class bit maps for each POSIX class. Each class is formed from a |
238 | base map, with an optional addition or removal of another map. Then, for some |
239 | classes, there is some additional tweaking: for [:blank:] the vertical space |
240 | characters are removed, and for [:alpha:] and [:alnum:] the underscore |
241 | character is removed. The triples in the table consist of the base map offset, |
242 | second map offset or -1 if no second map, and a non-negative value for map |
243 | addition or a negative value for map subtraction (if there are two maps). The |
244 | absolute value of the third field has these meanings: 0 => no tweaking, 1 => |
245 | remove vertical space characters, 2 => remove underscore. */ |
246 | |
247 | static const int posix_class_maps[] = { |
248 | cbit_word, cbit_digit, -2, /* alpha */ |
249 | cbit_lower, -1, 0, /* lower */ |
250 | cbit_upper, -1, 0, /* upper */ |
251 | cbit_word, -1, 2, /* alnum - word without underscore */ |
252 | cbit_print, cbit_cntrl, 0, /* ascii */ |
253 | cbit_space, -1, 1, /* blank - a GNU extension */ |
254 | cbit_cntrl, -1, 0, /* cntrl */ |
255 | cbit_digit, -1, 0, /* digit */ |
256 | cbit_graph, -1, 0, /* graph */ |
257 | cbit_print, -1, 0, /* print */ |
258 | cbit_punct, -1, 0, /* punct */ |
259 | cbit_space, -1, 0, /* space */ |
260 | cbit_word, -1, 0, /* word - a Perl extension */ |
261 | cbit_xdigit,-1, 0 /* xdigit */ |
262 | }; |
263 | |
264 | |
265 | #define STRING(a) # a |
266 | #define XSTRING(s) STRING(s) |
267 | |
268 | /* The texts of compile-time error messages. These are "char *" because they |
269 | are passed to the outside world. Do not ever re-use any error number, because |
270 | they are documented. Always add a new error instead. Messages marked DEAD below |
271 | are no longer used. This used to be a table of strings, but in order to reduce |
272 | the number of relocations needed when a shared library is loaded dynamically, |
273 | it is now one long string. We cannot use a table of offsets, because the |
274 | lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we |
275 | simply count through to the one we want - this isn't a performance issue |
276 | because these strings are used only when there is a compilation error. |
277 | |
278 | Each substring ends with \0 to insert a null character. This includes the final |
279 | substring, so that the whole string ends with \0\0, which can be detected when |
280 | counting through. */ |
281 | |
282 | static const char error_texts[] = |
283 | "no error\0" |
284 | "\\ at end of pattern\0" |
285 | "\\c at end of pattern\0" |
286 | "unrecognized character follows \\\0" |
287 | "numbers out of order in {} quantifier\0" |
288 | /* 5 */ |
289 | "number too big in {} quantifier\0" |
290 | "missing terminating ] for character class\0" |
291 | "invalid escape sequence in character class\0" |
292 | "range out of order in character class\0" |
293 | "nothing to repeat\0" |
294 | /* 10 */ |
295 | "operand of unlimited repeat could match the empty string\0" /** DEAD **/ |
296 | "internal error: unexpected repeat\0" |
297 | "unrecognized character after (? or (?-\0" |
298 | "POSIX named classes are supported only within a class\0" |
299 | "missing )\0" |
300 | /* 15 */ |
301 | "reference to non-existent subpattern\0" |
302 | "erroffset passed as NULL\0" |
303 | "unknown option bit(s) set\0" |
304 | "missing ) after comment\0" |
305 | "parentheses nested too deeply\0" /** DEAD **/ |
306 | /* 20 */ |
307 | "regular expression is too large\0" |
308 | "failed to get memory\0" |
309 | "unmatched parentheses\0" |
310 | "internal error: code overflow\0" |
311 | "unrecognized character after (?<\0" |
312 | /* 25 */ |
313 | "lookbehind assertion is not fixed length\0" |
314 | "malformed number or name after (?(\0" |
315 | "conditional group contains more than two branches\0" |
316 | "assertion expected after (?(\0" |
317 | "(?R or (?[+-]digits must be followed by )\0" |
318 | /* 30 */ |
319 | "unknown POSIX class name\0" |
320 | "POSIX collating elements are not supported\0" |
321 | "this version of PCRE is not compiled with PCRE_UTF8 support\0" |
322 | "spare error\0" /** DEAD **/ |
323 | "character value in \\x{...} sequence is too large\0" |
324 | /* 35 */ |
325 | "invalid condition (?(0)\0" |
326 | "\\C not allowed in lookbehind assertion\0" |
327 | "PCRE does not support \\L, \\l, \\N, \\U, or \\u\0" |
328 | "number after (?C is > 255\0" |
329 | "closing ) for (?C expected\0" |
330 | /* 40 */ |
331 | "recursive call could loop indefinitely\0" |
332 | "unrecognized character after (?P\0" |
333 | "syntax error in subpattern name (missing terminator)\0" |
334 | "two named subpatterns have the same name\0" |
335 | "invalid UTF-8 string\0" |
336 | /* 45 */ |
337 | "support for \\P, \\p, and \\X has not been compiled\0" |
338 | "malformed \\P or \\p sequence\0" |
339 | "unknown property name after \\P or \\p\0" |
340 | "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0" |
341 | "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0" |
342 | /* 50 */ |
343 | "repeated subpattern is too long\0" /** DEAD **/ |
344 | "octal value is greater than \\377 (not in UTF-8 mode)\0" |
345 | "internal error: overran compiling workspace\0" |
346 | "internal error: previously-checked referenced subpattern not found\0" |
347 | "DEFINE group contains more than one branch\0" |
348 | /* 55 */ |
349 | "repeating a DEFINE group is not allowed\0" |
350 | "inconsistent NEWLINE options\0" |
351 | "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0" |
352 | "a numbered reference must not be zero\0" |
353 | "an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0" |
354 | /* 60 */ |
355 | "(*VERB) not recognized\0" |
356 | "number is too big\0" |
357 | "subpattern name expected\0" |
358 | "digit expected after (?+\0" |
359 | "] is an invalid data character in JavaScript compatibility mode\0" |
360 | /* 65 */ |
361 | "different names for subpatterns of the same number are not allowed\0" |
362 | "(*MARK) must have an argument\0" |
363 | ; |
364 | |
365 | /* Table to identify digits and hex digits. This is used when compiling |
366 | patterns. Note that the tables in chartables are dependent on the locale, and |
367 | may mark arbitrary characters as digits - but the PCRE compiling code expects |
368 | to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have |
369 | a private table here. It costs 256 bytes, but it is a lot faster than doing |
370 | character value tests (at least in some simple cases I timed), and in some |
371 | applications one wants PCRE to compile efficiently as well as match |
372 | efficiently. |
373 | |
374 | For convenience, we use the same bit definitions as in chartables: |
375 | |
376 | 0x04 decimal digit |
377 | 0x08 hexadecimal digit |
378 | |
379 | Then we can use ctype_digit and ctype_xdigit in the code. */ |
380 | |
381 | #ifndef EBCDIC |
382 | |
383 | /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in |
384 | UTF-8 mode. */ |
385 | |
386 | static const unsigned char digitab[] = |
387 | { |
388 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */ |
389 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
390 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */ |
391 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
392 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */ |
393 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */ |
394 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */ |
395 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */ |
396 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */ |
397 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */ |
398 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */ |
399 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */ |
400 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */ |
401 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */ |
402 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */ |
403 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */ |
404 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */ |
405 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */ |
406 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */ |
407 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */ |
408 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */ |
409 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */ |
410 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */ |
411 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
412 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */ |
413 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */ |
414 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */ |
415 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */ |
416 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */ |
417 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */ |
418 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */ |
419 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */ |
420 | |
421 | #else |
422 | |
423 | /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */ |
424 | |
425 | static const unsigned char digitab[] = |
426 | { |
427 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */ |
428 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
429 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */ |
430 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
431 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */ |
432 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
433 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */ |
434 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
435 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */ |
436 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */ |
437 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */ |
438 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */ |
439 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */ |
440 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */ |
441 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */ |
442 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
443 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */ |
444 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
445 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */ |
446 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
447 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */ |
448 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
449 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */ |
450 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
451 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */ |
452 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
453 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */ |
454 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
455 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */ |
456 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
457 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */ |
458 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
459 | |
460 | static const unsigned char ebcdic_chartab[] = { /* chartable partial dup */ |
461 | 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */ |
462 | 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */ |
463 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */ |
464 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
465 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */ |
466 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
467 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */ |
468 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
469 | 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */ |
470 | 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */ |
471 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */ |
472 | 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */ |
473 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */ |
474 | 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */ |
475 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */ |
476 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
477 | 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */ |
478 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
479 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */ |
480 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
481 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */ |
482 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
483 | 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */ |
484 | 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
485 | 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */ |
486 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
487 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */ |
488 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
489 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */ |
490 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
491 | 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */ |
492 | 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
493 | #endif |
494 | |
495 | |
496 | /* Definition to allow mutual recursion */ |
497 | |
498 | static BOOL |
499 | compile_regex(int, int, uschar **, const uschar **, int *, BOOL, BOOL, int, |
500 | int *, int *, branch_chain *, compile_data *, int *); |
501 | |
502 | |
503 | |
504 | /************************************************* |
505 | * Find an error text * |
506 | *************************************************/ |
507 | |
508 | /* The error texts are now all in one long string, to save on relocations. As |
509 | some of the text is of unknown length, we can't use a table of offsets. |
510 | Instead, just count through the strings. This is not a performance issue |
511 | because it happens only when there has been a compilation error. |
512 | |
513 | Argument: the error number |
514 | Returns: pointer to the error string |
515 | */ |
516 | |
517 | static const char * |
518 | find_error_text(int n) |
519 | { |
520 | const char *s = error_texts; |
521 | for (; n > 0; n--) |
522 | { |
523 | while (*s++ != 0) {}; |
524 | if (*s == 0) return "Error text not found (please report)"; |
525 | } |
526 | return s; |
527 | } |
528 | |
529 | |
530 | /************************************************* |
531 | * Handle escapes * |
532 | *************************************************/ |
533 | |
534 | /* This function is called when a \ has been encountered. It either returns a |
535 | positive value for a simple escape such as \n, or a negative value which |
536 | encodes one of the more complicated things such as \d. A backreference to group |
537 | n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When |
538 | UTF-8 is enabled, a positive value greater than 255 may be returned. On entry, |
539 | ptr is pointing at the \. On exit, it is on the final character of the escape |
540 | sequence. |
541 | |
542 | Arguments: |
543 | ptrptr points to the pattern position pointer |
544 | errorcodeptr points to the errorcode variable |
545 | bracount number of previous extracting brackets |
546 | options the options bits |
547 | isclass TRUE if inside a character class |
548 | |
549 | Returns: zero or positive => a data character |
550 | negative => a special escape sequence |
551 | on error, errorcodeptr is set |
552 | */ |
553 | |
554 | static int |
555 | check_escape(const uschar **ptrptr, int *errorcodeptr, int bracount, |
556 | int options, BOOL isclass) |
557 | { |
558 | BOOL utf8 = (options & PCRE_UTF8) != 0; |
559 | const uschar *ptr = *ptrptr + 1; |
560 | int c, i; |
561 | |
562 | GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */ |
563 | ptr--; /* Set pointer back to the last byte */ |
564 | |
565 | /* If backslash is at the end of the pattern, it's an error. */ |
566 | |
567 | if (c == 0) *errorcodeptr = ERR1; |
568 | |
569 | /* Non-alphanumerics are literals. For digits or letters, do an initial lookup |
570 | in a table. A non-zero result is something that can be returned immediately. |
571 | Otherwise further processing may be required. */ |
572 | |
573 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
574 | else if (c < CHAR_0 || c > CHAR_z) {} /* Not alphanumeric */ |
575 | else if ((i = escapes[c - CHAR_0]) != 0) c = i; |
576 | |
577 | #else /* EBCDIC coding */ |
578 | else if (c < 'a' || (ebcdic_chartab[c] & 0x0E) == 0) {} /* Not alphanumeric */ |
579 | else if ((i = escapes[c - 0x48]) != 0) c = i; |
580 | #endif |
581 | |
582 | /* Escapes that need further processing, or are illegal. */ |
583 | |
584 | else |
585 | { |
586 | const uschar *oldptr; |
587 | BOOL braced, negated; |
588 | |
589 | switch (c) |
590 | { |
591 | /* A number of Perl escapes are not handled by PCRE. We give an explicit |
592 | error. */ |
593 | |
594 | case CHAR_l: |
595 | case CHAR_L: |
596 | case CHAR_N: |
597 | case CHAR_u: |
598 | case CHAR_U: |
599 | *errorcodeptr = ERR37; |
600 | break; |
601 | |
602 | /* \g must be followed by one of a number of specific things: |
603 | |
604 | (1) A number, either plain or braced. If positive, it is an absolute |
605 | backreference. If negative, it is a relative backreference. This is a Perl |
606 | 5.10 feature. |
607 | |
608 | (2) Perl 5.10 also supports \g{name} as a reference to a named group. This |
609 | is part of Perl's movement towards a unified syntax for back references. As |
610 | this is synonymous with \k{name}, we fudge it up by pretending it really |
611 | was \k. |
612 | |
613 | (3) For Oniguruma compatibility we also support \g followed by a name or a |
614 | number either in angle brackets or in single quotes. However, these are |
615 | (possibly recursive) subroutine calls, _not_ backreferences. Just return |
616 | the -ESC_g code (cf \k). */ |
617 | |
618 | case CHAR_g: |
619 | if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE) |
620 | { |
621 | c = -ESC_g; |
622 | break; |
623 | } |
624 | |
625 | /* Handle the Perl-compatible cases */ |
626 | |
627 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
628 | { |
629 | const uschar *p; |
630 | for (p = ptr+2; *p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET; p++) |
631 | if (*p != CHAR_MINUS && (digitab[*p] & ctype_digit) == 0) break; |
632 | if (*p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET) |
633 | { |
634 | c = -ESC_k; |
635 | break; |
636 | } |
637 | braced = TRUE; |
638 | ptr++; |
639 | } |
640 | else braced = FALSE; |
641 | |
642 | if (ptr[1] == CHAR_MINUS) |
643 | { |
644 | negated = TRUE; |
645 | ptr++; |
646 | } |
647 | else negated = FALSE; |
648 | |
649 | c = 0; |
650 | while ((digitab[ptr[1]] & ctype_digit) != 0) |
651 | c = c * 10 + *(++ptr) - CHAR_0; |
652 | |
653 | if (c < 0) /* Integer overflow */ |
654 | { |
655 | *errorcodeptr = ERR61; |
656 | break; |
657 | } |
658 | |
659 | if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET) |
660 | { |
661 | *errorcodeptr = ERR57; |
662 | break; |
663 | } |
664 | |
665 | if (c == 0) |
666 | { |
667 | *errorcodeptr = ERR58; |
668 | break; |
669 | } |
670 | |
671 | if (negated) |
672 | { |
673 | if (c > bracount) |
674 | { |
675 | *errorcodeptr = ERR15; |
676 | break; |
677 | } |
678 | c = bracount - (c - 1); |
679 | } |
680 | |
681 | c = -(ESC_REF + c); |
682 | break; |
683 | |
684 | /* The handling of escape sequences consisting of a string of digits |
685 | starting with one that is not zero is not straightforward. By experiment, |
686 | the way Perl works seems to be as follows: |
687 | |
688 | Outside a character class, the digits are read as a decimal number. If the |
689 | number is less than 10, or if there are that many previous extracting |
690 | left brackets, then it is a back reference. Otherwise, up to three octal |
691 | digits are read to form an escaped byte. Thus \123 is likely to be octal |
692 | 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal |
693 | value is greater than 377, the least significant 8 bits are taken. Inside a |
694 | character class, \ followed by a digit is always an octal number. */ |
695 | |
696 | case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5: |
697 | case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
698 | |
699 | if (!isclass) |
700 | { |
701 | oldptr = ptr; |
702 | c -= CHAR_0; |
703 | while ((digitab[ptr[1]] & ctype_digit) != 0) |
704 | c = c * 10 + *(++ptr) - CHAR_0; |
705 | if (c < 0) /* Integer overflow */ |
706 | { |
707 | *errorcodeptr = ERR61; |
708 | break; |
709 | } |
710 | if (c < 10 || c <= bracount) |
711 | { |
712 | c = -(ESC_REF + c); |
713 | break; |
714 | } |
715 | ptr = oldptr; /* Put the pointer back and fall through */ |
716 | } |
717 | |
718 | /* Handle an octal number following \. If the first digit is 8 or 9, Perl |
719 | generates a binary zero byte and treats the digit as a following literal. |
720 | Thus we have to pull back the pointer by one. */ |
721 | |
722 | if ((c = *ptr) >= CHAR_8) |
723 | { |
724 | ptr--; |
725 | c = 0; |
726 | break; |
727 | } |
728 | |
729 | /* \0 always starts an octal number, but we may drop through to here with a |
730 | larger first octal digit. The original code used just to take the least |
731 | significant 8 bits of octal numbers (I think this is what early Perls used |
732 | to do). Nowadays we allow for larger numbers in UTF-8 mode, but no more |
733 | than 3 octal digits. */ |
734 | |
735 | case CHAR_0: |
736 | c -= CHAR_0; |
737 | while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7) |
738 | c = c * 8 + *(++ptr) - CHAR_0; |
739 | if (!utf8 && c > 255) *errorcodeptr = ERR51; |
740 | break; |
741 | |
742 | /* \x is complicated. \x{ddd} is a character number which can be greater |
743 | than 0xff in utf8 mode, but only if the ddd are hex digits. If not, { is |
744 | treated as a data character. */ |
745 | |
746 | case CHAR_x: |
747 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
748 | { |
749 | const uschar *pt = ptr + 2; |
750 | int count = 0; |
751 | |
752 | c = 0; |
753 | while ((digitab[*pt] & ctype_xdigit) != 0) |
754 | { |
755 | register int cc = *pt++; |
756 | if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */ |
757 | count++; |
758 | |
759 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
760 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
761 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
762 | #else /* EBCDIC coding */ |
763 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
764 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
765 | #endif |
766 | } |
767 | |
768 | if (*pt == CHAR_RIGHT_CURLY_BRACKET) |
769 | { |
770 | if (c < 0 || count > (utf8? 8 : 2)) *errorcodeptr = ERR34; |
771 | ptr = pt; |
772 | break; |
773 | } |
774 | |
775 | /* If the sequence of hex digits does not end with '}', then we don't |
776 | recognize this construct; fall through to the normal \x handling. */ |
777 | } |
778 | |
779 | /* Read just a single-byte hex-defined char */ |
780 | |
781 | c = 0; |
782 | while (i++ < 2 && (digitab[ptr[1]] & ctype_xdigit) != 0) |
783 | { |
784 | int cc; /* Some compilers don't like */ |
785 | cc = *(++ptr); /* ++ in initializers */ |
786 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
787 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
788 | c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
789 | #else /* EBCDIC coding */ |
790 | if (cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
791 | c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
792 | #endif |
793 | } |
794 | break; |
795 | |
796 | /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped. |
797 | This coding is ASCII-specific, but then the whole concept of \cx is |
798 | ASCII-specific. (However, an EBCDIC equivalent has now been added.) */ |
799 | |
800 | case CHAR_c: |
801 | c = *(++ptr); |
802 | if (c == 0) |
803 | { |
804 | *errorcodeptr = ERR2; |
805 | break; |
806 | } |
807 | |
808 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
809 | if (c >= CHAR_a && c <= CHAR_z) c -= 32; |
810 | c ^= 0x40; |
811 | #else /* EBCDIC coding */ |
812 | if (c >= CHAR_a && c <= CHAR_z) c += 64; |
813 | c ^= 0xC0; |
814 | #endif |
815 | break; |
816 | |
817 | /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any |
818 | other alphanumeric following \ is an error if PCRE_EXTRA was set; |
819 | otherwise, for Perl compatibility, it is a literal. This code looks a bit |
820 | odd, but there used to be some cases other than the default, and there may |
821 | be again in future, so I haven't "optimized" it. */ |
822 | |
823 | default: |
824 | if ((options & PCRE_EXTRA) != 0) switch(c) |
825 | { |
826 | default: |
827 | *errorcodeptr = ERR3; |
828 | break; |
829 | } |
830 | break; |
831 | } |
832 | } |
833 | |
834 | *ptrptr = ptr; |
835 | return c; |
836 | } |
837 | |
838 | |
839 | |
840 | #ifdef SUPPORT_UCP |
841 | /************************************************* |
842 | * Handle \P and \p * |
843 | *************************************************/ |
844 | |
845 | /* This function is called after \P or \p has been encountered, provided that |
846 | PCRE is compiled with support for Unicode properties. On entry, ptrptr is |
847 | pointing at the P or p. On exit, it is pointing at the final character of the |
848 | escape sequence. |
849 | |
850 | Argument: |
851 | ptrptr points to the pattern position pointer |
852 | negptr points to a boolean that is set TRUE for negation else FALSE |
853 | dptr points to an int that is set to the detailed property value |
854 | errorcodeptr points to the error code variable |
855 | |
856 | Returns: type value from ucp_type_table, or -1 for an invalid type |
857 | */ |
858 | |
859 | static int |
860 | get_ucp(const uschar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr) |
861 | { |
862 | int c, i, bot, top; |
863 | const uschar *ptr = *ptrptr; |
864 | char name[32]; |
865 | |
866 | c = *(++ptr); |
867 | if (c == 0) goto ERROR_RETURN; |
868 | |
869 | *negptr = FALSE; |
870 | |
871 | /* \P or \p can be followed by a name in {}, optionally preceded by ^ for |
872 | negation. */ |
873 | |
874 | if (c == CHAR_LEFT_CURLY_BRACKET) |
875 | { |
876 | if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
877 | { |
878 | *negptr = TRUE; |
879 | ptr++; |
880 | } |
881 | for (i = 0; i < (int)sizeof(name) - 1; i++) |
882 | { |
883 | c = *(++ptr); |
884 | if (c == 0) goto ERROR_RETURN; |
885 | if (c == CHAR_RIGHT_CURLY_BRACKET) break; |
886 | name[i] = c; |
887 | } |
888 | if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN; |
889 | name[i] = 0; |
890 | } |
891 | |
892 | /* Otherwise there is just one following character */ |
893 | |
894 | else |
895 | { |
896 | name[0] = c; |
897 | name[1] = 0; |
898 | } |
899 | |
900 | *ptrptr = ptr; |
901 | |
902 | /* Search for a recognized property name using binary chop */ |
903 | |
904 | bot = 0; |
905 | top = _pcre_utt_size; |
906 | |
907 | while (bot < top) |
908 | { |
909 | i = (bot + top) >> 1; |
910 | c = strcmp(name, _pcre_utt_names + _pcre_utt[i].name_offset); |
911 | if (c == 0) |
912 | { |
913 | *dptr = _pcre_utt[i].value; |
914 | return _pcre_utt[i].type; |
915 | } |
916 | if (c > 0) bot = i + 1; else top = i; |
917 | } |
918 | |
919 | *errorcodeptr = ERR47; |
920 | *ptrptr = ptr; |
921 | return -1; |
922 | |
923 | ERROR_RETURN: |
924 | *errorcodeptr = ERR46; |
925 | *ptrptr = ptr; |
926 | return -1; |
927 | } |
928 | #endif |
929 | |
930 | |
931 | |
932 | |
933 | /************************************************* |
934 | * Check for counted repeat * |
935 | *************************************************/ |
936 | |
937 | /* This function is called when a '{' is encountered in a place where it might |
938 | start a quantifier. It looks ahead to see if it really is a quantifier or not. |
939 | It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd} |
940 | where the ddds are digits. |
941 | |
942 | Arguments: |
943 | p pointer to the first char after '{' |
944 | |
945 | Returns: TRUE or FALSE |
946 | */ |
947 | |
948 | static BOOL |
949 | is_counted_repeat(const uschar *p) |
950 | { |
951 | if ((digitab[*p++] & ctype_digit) == 0) return FALSE; |
952 | while ((digitab[*p] & ctype_digit) != 0) p++; |
953 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
954 | |
955 | if (*p++ != CHAR_COMMA) return FALSE; |
956 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
957 | |
958 | if ((digitab[*p++] & ctype_digit) == 0) return FALSE; |
959 | while ((digitab[*p] & ctype_digit) != 0) p++; |
960 | |
961 | return (*p == CHAR_RIGHT_CURLY_BRACKET); |
962 | } |
963 | |
964 | |
965 | |
966 | /************************************************* |
967 | * Read repeat counts * |
968 | *************************************************/ |
969 | |
970 | /* Read an item of the form {n,m} and return the values. This is called only |
971 | after is_counted_repeat() has confirmed that a repeat-count quantifier exists, |
972 | so the syntax is guaranteed to be correct, but we need to check the values. |
973 | |
974 | Arguments: |
975 | p pointer to first char after '{' |
976 | minp pointer to int for min |
977 | maxp pointer to int for max |
978 | returned as -1 if no max |
979 | errorcodeptr points to error code variable |
980 | |
981 | Returns: pointer to '}' on success; |
982 | current ptr on error, with errorcodeptr set non-zero |
983 | */ |
984 | |
985 | static const uschar * |
986 | read_repeat_counts(const uschar *p, int *minp, int *maxp, int *errorcodeptr) |
987 | { |
988 | int min = 0; |
989 | int max = -1; |
990 | |
991 | /* Read the minimum value and do a paranoid check: a negative value indicates |
992 | an integer overflow. */ |
993 | |
994 | while ((digitab[*p] & ctype_digit) != 0) min = min * 10 + *p++ - CHAR_0; |
995 | if (min < 0 || min > 65535) |
996 | { |
997 | *errorcodeptr = ERR5; |
998 | return p; |
999 | } |
1000 | |
1001 | /* Read the maximum value if there is one, and again do a paranoid on its size. |
1002 | Also, max must not be less than min. */ |
1003 | |
1004 | if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else |
1005 | { |
1006 | if (*(++p) != CHAR_RIGHT_CURLY_BRACKET) |
1007 | { |
1008 | max = 0; |
1009 | while((digitab[*p] & ctype_digit) != 0) max = max * 10 + *p++ - CHAR_0; |
1010 | if (max < 0 || max > 65535) |
1011 | { |
1012 | *errorcodeptr = ERR5; |
1013 | return p; |
1014 | } |
1015 | if (max < min) |
1016 | { |
1017 | *errorcodeptr = ERR4; |
1018 | return p; |
1019 | } |
1020 | } |
1021 | } |
1022 | |
1023 | /* Fill in the required variables, and pass back the pointer to the terminating |
1024 | '}'. */ |
1025 | |
1026 | *minp = min; |
1027 | *maxp = max; |
1028 | return p; |
1029 | } |
1030 | |
1031 | |
1032 | |
1033 | /************************************************* |
1034 | * Subroutine for finding forward reference * |
1035 | *************************************************/ |
1036 | |
1037 | /* This recursive function is called only from find_parens() below. The |
1038 | top-level call starts at the beginning of the pattern. All other calls must |
1039 | start at a parenthesis. It scans along a pattern's text looking for capturing |
1040 | subpatterns, and counting them. If it finds a named pattern that matches the |
1041 | name it is given, it returns its number. Alternatively, if the name is NULL, it |
1042 | returns when it reaches a given numbered subpattern. We know that if (?P< is |
1043 | encountered, the name will be terminated by '>' because that is checked in the |
1044 | first pass. Recursion is used to keep track of subpatterns that reset the |
1045 | capturing group numbers - the (?| feature. |
1046 | |
1047 | Arguments: |
1048 | ptrptr address of the current character pointer (updated) |
1049 | cd compile background data |
1050 | name name to seek, or NULL if seeking a numbered subpattern |
1051 | lorn name length, or subpattern number if name is NULL |
1052 | xmode TRUE if we are in /x mode |
1053 | count pointer to the current capturing subpattern number (updated) |
1054 | |
1055 | Returns: the number of the named subpattern, or -1 if not found |
1056 | */ |
1057 | |
1058 | static int |
1059 | find_parens_sub(uschar **ptrptr, compile_data *cd, const uschar *name, int lorn, |
1060 | BOOL xmode, int *count) |
1061 | { |
1062 | uschar *ptr = *ptrptr; |
1063 | int start_count = *count; |
1064 | int hwm_count = start_count; |
1065 | BOOL dup_parens = FALSE; |
1066 | |
1067 | /* If the first character is a parenthesis, check on the type of group we are |
1068 | dealing with. The very first call may not start with a parenthesis. */ |
1069 | |
1070 | if (ptr[0] == CHAR_LEFT_PARENTHESIS) |
1071 | { |
1072 | if (ptr[1] == CHAR_QUESTION_MARK && |
1073 | ptr[2] == CHAR_VERTICAL_LINE) |
1074 | { |
1075 | ptr += 3; |
1076 | dup_parens = TRUE; |
1077 | } |
1078 | |
1079 | /* Handle a normal, unnamed capturing parenthesis */ |
1080 | |
1081 | else if (ptr[1] != CHAR_QUESTION_MARK && ptr[1] != CHAR_ASTERISK) |
1082 | { |
1083 | *count += 1; |
1084 | if (name == NULL && *count == lorn) return *count; |
1085 | ptr++; |
1086 | } |
1087 | |
1088 | /* Handle a condition. If it is an assertion, just carry on so that it |
1089 | is processed as normal. If not, skip to the closing parenthesis of the |
1090 | condition (there can't be any nested parens. */ |
1091 | |
1092 | else if (ptr[2] == CHAR_LEFT_PARENTHESIS) |
1093 | { |
1094 | ptr += 2; |
1095 | if (ptr[1] != CHAR_QUESTION_MARK) |
1096 | { |
1097 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
1098 | if (*ptr != 0) ptr++; |
1099 | } |
1100 | } |
1101 | |
1102 | /* We have either (? or (* and not a condition */ |
1103 | |
1104 | else |
1105 | { |
1106 | ptr += 2; |
1107 | if (*ptr == CHAR_P) ptr++; /* Allow optional P */ |
1108 | |
1109 | /* We have to disambiguate (?<! and (?<= from (?<name> for named groups */ |
1110 | |
1111 | if ((*ptr == CHAR_LESS_THAN_SIGN && ptr[1] != CHAR_EXCLAMATION_MARK && |
1112 | ptr[1] != CHAR_EQUALS_SIGN) || *ptr == CHAR_APOSTROPHE) |
1113 | { |
1114 | int term; |
1115 | const uschar *thisname; |
1116 | *count += 1; |
1117 | if (name == NULL && *count == lorn) return *count; |
1118 | term = *ptr++; |
1119 | if (term == CHAR_LESS_THAN_SIGN) term = CHAR_GREATER_THAN_SIGN; |
1120 | thisname = ptr; |
1121 | while (*ptr != term) ptr++; |
1122 | if (name != NULL && lorn == ptr - thisname && |
1123 | strncmp((const char *)name, (const char *)thisname, lorn) == 0) |
1124 | return *count; |
1125 | term++; |
1126 | } |
1127 | } |
1128 | } |
1129 | |
1130 | /* Past any initial parenthesis handling, scan for parentheses or vertical |
1131 | bars. */ |
1132 | |
1133 | for (; *ptr != 0; ptr++) |
1134 | { |
1135 | /* Skip over backslashed characters and also entire \Q...\E */ |
1136 | |
1137 | if (*ptr == CHAR_BACKSLASH) |
1138 | { |
1139 | if (*(++ptr) == 0) goto FAIL_EXIT; |
1140 | if (*ptr == CHAR_Q) for (;;) |
1141 | { |
1142 | while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {}; |
1143 | if (*ptr == 0) goto FAIL_EXIT; |
1144 | if (*(++ptr) == CHAR_E) break; |
1145 | } |
1146 | continue; |
1147 | } |
1148 | |
1149 | /* Skip over character classes; this logic must be similar to the way they |
1150 | are handled for real. If the first character is '^', skip it. Also, if the |
1151 | first few characters (either before or after ^) are \Q\E or \E we skip them |
1152 | too. This makes for compatibility with Perl. Note the use of STR macros to |
1153 | encode "Q\\E" so that it works in UTF-8 on EBCDIC platforms. */ |
1154 | |
1155 | if (*ptr == CHAR_LEFT_SQUARE_BRACKET) |
1156 | { |
1157 | BOOL negate_class = FALSE; |
1158 | for (;;) |
1159 | { |
1160 | if (ptr[1] == CHAR_BACKSLASH) |
1161 | { |
1162 | if (ptr[2] == CHAR_E) |
1163 | ptr+= 2; |
1164 | else if (strncmp((const char *)ptr+2, |
1165 | STR_Q STR_BACKSLASH STR_E, 3) == 0) |
1166 | ptr += 4; |
1167 | else |
1168 | break; |
1169 | } |
1170 | else if (!negate_class && ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
1171 | { |
1172 | negate_class = TRUE; |
1173 | ptr++; |
1174 | } |
1175 | else break; |
1176 | } |
1177 | |
1178 | /* If the next character is ']', it is a data character that must be |
1179 | skipped, except in JavaScript compatibility mode. */ |
1180 | |
1181 | if (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET && |
1182 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) == 0) |
1183 | ptr++; |
1184 | |
1185 | while (*(++ptr) != CHAR_RIGHT_SQUARE_BRACKET) |
1186 | { |
1187 | if (*ptr == 0) return -1; |
1188 | if (*ptr == CHAR_BACKSLASH) |
1189 | { |
1190 | if (*(++ptr) == 0) goto FAIL_EXIT; |
1191 | if (*ptr == CHAR_Q) for (;;) |
1192 | { |
1193 | while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {}; |
1194 | if (*ptr == 0) goto FAIL_EXIT; |
1195 | if (*(++ptr) == CHAR_E) break; |
1196 | } |
1197 | continue; |
1198 | } |
1199 | } |
1200 | continue; |
1201 | } |
1202 | |
1203 | /* Skip comments in /x mode */ |
1204 | |
1205 | if (xmode && *ptr == CHAR_NUMBER_SIGN) |
1206 | { |
1207 | while (*(++ptr) != 0 && *ptr != CHAR_NL) {}; |
1208 | if (*ptr == 0) goto FAIL_EXIT; |
1209 | continue; |
1210 | } |
1211 | |
1212 | /* Check for the special metacharacters */ |
1213 | |
1214 | if (*ptr == CHAR_LEFT_PARENTHESIS) |
1215 | { |
1216 | int rc = find_parens_sub(&ptr, cd, name, lorn, xmode, count); |
1217 | if (rc > 0) return rc; |
1218 | if (*ptr == 0) goto FAIL_EXIT; |
1219 | } |
1220 | |
1221 | else if (*ptr == CHAR_RIGHT_PARENTHESIS) |
1222 | { |
1223 | if (dup_parens && *count < hwm_count) *count = hwm_count; |
1224 | *ptrptr = ptr; |
1225 | return -1; |
1226 | } |
1227 | |
1228 | else if (*ptr == CHAR_VERTICAL_LINE && dup_parens) |
1229 | { |
1230 | if (*count > hwm_count) hwm_count = *count; |
1231 | *count = start_count; |
1232 | } |
1233 | } |
1234 | |
1235 | FAIL_EXIT: |
1236 | *ptrptr = ptr; |
1237 | return -1; |
1238 | } |
1239 | |
1240 | |
1241 | |
1242 | |
1243 | /************************************************* |
1244 | * Find forward referenced subpattern * |
1245 | *************************************************/ |
1246 | |
1247 | /* This function scans along a pattern's text looking for capturing |
1248 | subpatterns, and counting them. If it finds a named pattern that matches the |
1249 | name it is given, it returns its number. Alternatively, if the name is NULL, it |
1250 | returns when it reaches a given numbered subpattern. This is used for forward |
1251 | references to subpatterns. We used to be able to start this scan from the |
1252 | current compiling point, using the current count value from cd->bracount, and |
1253 | do it all in a single loop, but the addition of the possibility of duplicate |
1254 | subpattern numbers means that we have to scan from the very start, in order to |
1255 | take account of such duplicates, and to use a recursive function to keep track |
1256 | of the different types of group. |
1257 | |
1258 | Arguments: |
1259 | cd compile background data |
1260 | name name to seek, or NULL if seeking a numbered subpattern |
1261 | lorn name length, or subpattern number if name is NULL |
1262 | xmode TRUE if we are in /x mode |
1263 | |
1264 | Returns: the number of the found subpattern, or -1 if not found |
1265 | */ |
1266 | |
1267 | static int |
1268 | find_parens(compile_data *cd, const uschar *name, int lorn, BOOL xmode) |
1269 | { |
1270 | uschar *ptr = (uschar *)cd->start_pattern; |
1271 | int count = 0; |
1272 | int rc; |
1273 | |
1274 | /* If the pattern does not start with an opening parenthesis, the first call |
1275 | to find_parens_sub() will scan right to the end (if necessary). However, if it |
1276 | does start with a parenthesis, find_parens_sub() will return when it hits the |
1277 | matching closing parens. That is why we have to have a loop. */ |
1278 | |
1279 | for (;;) |
1280 | { |
1281 | rc = find_parens_sub(&ptr, cd, name, lorn, xmode, &count); |
1282 | if (rc > 0 || *ptr++ == 0) break; |
1283 | } |
1284 | |
1285 | return rc; |
1286 | } |
1287 | |
1288 | |
1289 | |
1290 | |
1291 | /************************************************* |
1292 | * Find first significant op code * |
1293 | *************************************************/ |
1294 | |
1295 | /* This is called by several functions that scan a compiled expression looking |
1296 | for a fixed first character, or an anchoring op code etc. It skips over things |
1297 | that do not influence this. For some calls, a change of option is important. |
1298 | For some calls, it makes sense to skip negative forward and all backward |
1299 | assertions, and also the \b assertion; for others it does not. |
1300 | |
1301 | Arguments: |
1302 | code pointer to the start of the group |
1303 | options pointer to external options |
1304 | optbit the option bit whose changing is significant, or |
1305 | zero if none are |
1306 | skipassert TRUE if certain assertions are to be skipped |
1307 | |
1308 | Returns: pointer to the first significant opcode |
1309 | */ |
1310 | |
1311 | static const uschar* |
1312 | first_significant_code(const uschar *code, int *options, int optbit, |
1313 | BOOL skipassert) |
1314 | { |
1315 | for (;;) |
1316 | { |
1317 | switch ((int)*code) |
1318 | { |
1319 | case OP_OPT: |
1320 | if (optbit > 0 && ((int)code[1] & optbit) != (*options & optbit)) |
1321 | *options = (int)code[1]; |
1322 | code += 2; |
1323 | break; |
1324 | |
1325 | case OP_ASSERT_NOT: |
1326 | case OP_ASSERTBACK: |
1327 | case OP_ASSERTBACK_NOT: |
1328 | if (!skipassert) return code; |
1329 | do code += GET(code, 1); while (*code == OP_ALT); |
1330 | code += _pcre_OP_lengths[*code]; |
1331 | break; |
1332 | |
1333 | case OP_WORD_BOUNDARY: |
1334 | case OP_NOT_WORD_BOUNDARY: |
1335 | if (!skipassert) return code; |
1336 | /* Fall through */ |
1337 | |
1338 | case OP_CALLOUT: |
1339 | case OP_CREF: |
1340 | case OP_NCREF: |
1341 | case OP_RREF: |
1342 | case OP_NRREF: |
1343 | case OP_DEF: |
1344 | code += _pcre_OP_lengths[*code]; |
1345 | break; |
1346 | |
1347 | default: |
1348 | return code; |
1349 | } |
1350 | } |
1351 | /* Control never reaches here */ |
1352 | } |
1353 | |
1354 | |
1355 | |
1356 | |
1357 | /************************************************* |
1358 | * Find the fixed length of a branch * |
1359 | *************************************************/ |
1360 | |
1361 | /* Scan a branch and compute the fixed length of subject that will match it, |
1362 | if the length is fixed. This is needed for dealing with backward assertions. |
1363 | In UTF8 mode, the result is in characters rather than bytes. The branch is |
1364 | temporarily terminated with OP_END when this function is called. |
1365 | |
1366 | This function is called when a backward assertion is encountered, so that if it |
1367 | fails, the error message can point to the correct place in the pattern. |
1368 | However, we cannot do this when the assertion contains subroutine calls, |
1369 | because they can be forward references. We solve this by remembering this case |
1370 | and doing the check at the end; a flag specifies which mode we are running in. |
1371 | |
1372 | Arguments: |
1373 | code points to the start of the pattern (the bracket) |
1374 | options the compiling options |
1375 | atend TRUE if called when the pattern is complete |
1376 | cd the "compile data" structure |
1377 | |
1378 | Returns: the fixed length, |
1379 | or -1 if there is no fixed length, |
1380 | or -2 if \C was encountered |
1381 | or -3 if an OP_RECURSE item was encountered and atend is FALSE |
1382 | */ |
1383 | |
1384 | static int |
1385 | find_fixedlength(uschar *code, int options, BOOL atend, compile_data *cd) |
1386 | { |
1387 | int length = -1; |
1388 | |
1389 | register int branchlength = 0; |
1390 | register uschar *cc = code + 1 + LINK_SIZE; |
1391 | |
1392 | /* Scan along the opcodes for this branch. If we get to the end of the |
1393 | branch, check the length against that of the other branches. */ |
1394 | |
1395 | for (;;) |
1396 | { |
1397 | int d; |
1398 | uschar *ce, *cs; |
1399 | register int op = *cc; |
1400 | switch (op) |
1401 | { |
1402 | case OP_CBRA: |
1403 | case OP_BRA: |
1404 | case OP_ONCE: |
1405 | case OP_COND: |
1406 | d = find_fixedlength(cc + ((op == OP_CBRA)? 2:0), options, atend, cd); |
1407 | if (d < 0) return d; |
1408 | branchlength += d; |
1409 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1410 | cc += 1 + LINK_SIZE; |
1411 | break; |
1412 | |
1413 | /* Reached end of a branch; if it's a ket it is the end of a nested |
1414 | call. If it's ALT it is an alternation in a nested call. If it is |
1415 | END it's the end of the outer call. All can be handled by the same code. */ |
1416 | |
1417 | case OP_ALT: |
1418 | case OP_KET: |
1419 | case OP_KETRMAX: |
1420 | case OP_KETRMIN: |
1421 | case OP_END: |
1422 | if (length < 0) length = branchlength; |
1423 | else if (length != branchlength) return -1; |
1424 | if (*cc != OP_ALT) return length; |
1425 | cc += 1 + LINK_SIZE; |
1426 | branchlength = 0; |
1427 | break; |
1428 | |
1429 | /* A true recursion implies not fixed length, but a subroutine call may |
1430 | be OK. If the subroutine is a forward reference, we can't deal with |
1431 | it until the end of the pattern, so return -3. */ |
1432 | |
1433 | case OP_RECURSE: |
1434 | if (!atend) return -3; |
1435 | cs = ce = (uschar *)cd->start_code + GET(cc, 1); /* Start subpattern */ |
1436 | do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */ |
1437 | if (cc > cs && cc < ce) return -1; /* Recursion */ |
1438 | d = find_fixedlength(cs + 2, options, atend, cd); |
1439 | if (d < 0) return d; |
1440 | branchlength += d; |
1441 | cc += 1 + LINK_SIZE; |
1442 | break; |
1443 | |
1444 | /* Skip over assertive subpatterns */ |
1445 | |
1446 | case OP_ASSERT: |
1447 | case OP_ASSERT_NOT: |
1448 | case OP_ASSERTBACK: |
1449 | case OP_ASSERTBACK_NOT: |
1450 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1451 | /* Fall through */ |
1452 | |
1453 | /* Skip over things that don't match chars */ |
1454 | |
1455 | case OP_REVERSE: |
1456 | case OP_CREF: |
1457 | case OP_NCREF: |
1458 | case OP_RREF: |
1459 | case OP_NRREF: |
1460 | case OP_DEF: |
1461 | case OP_OPT: |
1462 | case OP_CALLOUT: |
1463 | case OP_SOD: |
1464 | case OP_SOM: |
1465 | case OP_SET_SOM: |
1466 | case OP_EOD: |
1467 | case OP_EODN: |
1468 | case OP_CIRC: |
1469 | case OP_DOLL: |
1470 | case OP_NOT_WORD_BOUNDARY: |
1471 | case OP_WORD_BOUNDARY: |
1472 | cc += _pcre_OP_lengths[*cc]; |
1473 | break; |
1474 | |
1475 | /* Handle literal characters */ |
1476 | |
1477 | case OP_CHAR: |
1478 | case OP_CHARNC: |
1479 | case OP_NOT: |
1480 | branchlength++; |
1481 | cc += 2; |
1482 | #ifdef SUPPORT_UTF8 |
1483 | if ((options & PCRE_UTF8) != 0 && cc[-1] >= 0xc0) |
1484 | cc += _pcre_utf8_table4[cc[-1] & 0x3f]; |
1485 | #endif |
1486 | break; |
1487 | |
1488 | /* Handle exact repetitions. The count is already in characters, but we |
1489 | need to skip over a multibyte character in UTF8 mode. */ |
1490 | |
1491 | case OP_EXACT: |
1492 | branchlength += GET2(cc,1); |
1493 | cc += 4; |
1494 | #ifdef SUPPORT_UTF8 |
1495 | if ((options & PCRE_UTF8) != 0 && cc[-1] >= 0xc0) |
1496 | cc += _pcre_utf8_table4[cc[-1] & 0x3f]; |
1497 | #endif |
1498 | break; |
1499 | |
1500 | case OP_TYPEEXACT: |
1501 | branchlength += GET2(cc,1); |
1502 | if (cc[3] == OP_PROP || cc[3] == OP_NOTPROP) cc += 2; |
1503 | cc += 4; |
1504 | break; |
1505 | |
1506 | /* Handle single-char matchers */ |
1507 | |
1508 | case OP_PROP: |
1509 | case OP_NOTPROP: |
1510 | cc += 2; |
1511 | /* Fall through */ |
1512 | |
1513 | case OP_NOT_DIGIT: |
1514 | case OP_DIGIT: |
1515 | case OP_NOT_WHITESPACE: |
1516 | case OP_WHITESPACE: |
1517 | case OP_NOT_WORDCHAR: |
1518 | case OP_WORDCHAR: |
1519 | case OP_ANY: |
1520 | case OP_ALLANY: |
1521 | branchlength++; |
1522 | cc++; |
1523 | break; |
1524 | |
1525 | /* The single-byte matcher isn't allowed */ |
1526 | |
1527 | case OP_ANYBYTE: |
1528 | return -2; |
1529 | |
1530 | /* Check a class for variable quantification */ |
1531 | |
1532 | #ifdef SUPPORT_UTF8 |
1533 | case OP_XCLASS: |
1534 | cc += GET(cc, 1) - 33; |
1535 | /* Fall through */ |
1536 | #endif |
1537 | |
1538 | case OP_CLASS: |
1539 | case OP_NCLASS: |
1540 | cc += 33; |
1541 | |
1542 | switch (*cc) |
1543 | { |
1544 | case OP_CRSTAR: |
1545 | case OP_CRMINSTAR: |
1546 | case OP_CRQUERY: |
1547 | case OP_CRMINQUERY: |
1548 | return -1; |
1549 | |
1550 | case OP_CRRANGE: |
1551 | case OP_CRMINRANGE: |
1552 | if (GET2(cc,1) != GET2(cc,3)) return -1; |
1553 | branchlength += GET2(cc,1); |
1554 | cc += 5; |
1555 | break; |
1556 | |
1557 | default: |
1558 | branchlength++; |
1559 | } |
1560 | break; |
1561 | |
1562 | /* Anything else is variable length */ |
1563 | |
1564 | default: |
1565 | return -1; |
1566 | } |
1567 | } |
1568 | /* Control never gets here */ |
1569 | } |
1570 | |
1571 | |
1572 | |
1573 | |
1574 | /************************************************* |
1575 | * Scan compiled regex for specific bracket * |
1576 | *************************************************/ |
1577 | |
1578 | /* This little function scans through a compiled pattern until it finds a |
1579 | capturing bracket with the given number, or, if the number is negative, an |
1580 | instance of OP_REVERSE for a lookbehind. The function is global in the C sense |
1581 | so that it can be called from pcre_study() when finding the minimum matching |
1582 | length. |
1583 | |
1584 | Arguments: |
1585 | code points to start of expression |
1586 | utf8 TRUE in UTF-8 mode |
1587 | number the required bracket number or negative to find a lookbehind |
1588 | |
1589 | Returns: pointer to the opcode for the bracket, or NULL if not found |
1590 | */ |
1591 | |
1592 | const uschar * |
1593 | _pcre_find_bracket(const uschar *code, BOOL utf8, int number) |
1594 | { |
1595 | for (;;) |
1596 | { |
1597 | register int c = *code; |
1598 | if (c == OP_END) return NULL; |
1599 | |
1600 | /* XCLASS is used for classes that cannot be represented just by a bit |
1601 | map. This includes negated single high-valued characters. The length in |
1602 | the table is zero; the actual length is stored in the compiled code. */ |
1603 | |
1604 | if (c == OP_XCLASS) code += GET(code, 1); |
1605 | |
1606 | /* Handle recursion */ |
1607 | |
1608 | else if (c == OP_REVERSE) |
1609 | { |
1610 | if (number < 0) return (uschar *)code; |
1611 | code += _pcre_OP_lengths[c]; |
1612 | } |
1613 | |
1614 | /* Handle capturing bracket */ |
1615 | |
1616 | else if (c == OP_CBRA) |
1617 | { |
1618 | int n = GET2(code, 1+LINK_SIZE); |
1619 | if (n == number) return (uschar *)code; |
1620 | code += _pcre_OP_lengths[c]; |
1621 | } |
1622 | |
1623 | /* Otherwise, we can get the item's length from the table, except that for |
1624 | repeated character types, we have to test for \p and \P, which have an extra |
1625 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
1626 | must add in its length. */ |
1627 | |
1628 | else |
1629 | { |
1630 | switch(c) |
1631 | { |
1632 | case OP_TYPESTAR: |
1633 | case OP_TYPEMINSTAR: |
1634 | case OP_TYPEPLUS: |
1635 | case OP_TYPEMINPLUS: |
1636 | case OP_TYPEQUERY: |
1637 | case OP_TYPEMINQUERY: |
1638 | case OP_TYPEPOSSTAR: |
1639 | case OP_TYPEPOSPLUS: |
1640 | case OP_TYPEPOSQUERY: |
1641 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
1642 | break; |
1643 | |
1644 | case OP_TYPEUPTO: |
1645 | case OP_TYPEMINUPTO: |
1646 | case OP_TYPEEXACT: |
1647 | case OP_TYPEPOSUPTO: |
1648 | if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; |
1649 | break; |
1650 | |
1651 | case OP_MARK: |
1652 | case OP_PRUNE_ARG: |
1653 | case OP_SKIP_ARG: |
1654 | case OP_THEN_ARG: |
1655 | code += code[1]; |
1656 | break; |
1657 | } |
1658 | |
1659 | /* Add in the fixed length from the table */ |
1660 | |
1661 | code += _pcre_OP_lengths[c]; |
1662 | |
1663 | /* In UTF-8 mode, opcodes that are followed by a character may be followed by |
1664 | a multi-byte character. The length in the table is a minimum, so we have to |
1665 | arrange to skip the extra bytes. */ |
1666 | |
1667 | #ifdef SUPPORT_UTF8 |
1668 | if (utf8) switch(c) |
1669 | { |
1670 | case OP_CHAR: |
1671 | case OP_CHARNC: |
1672 | case OP_EXACT: |
1673 | case OP_UPTO: |
1674 | case OP_MINUPTO: |
1675 | case OP_POSUPTO: |
1676 | case OP_STAR: |
1677 | case OP_MINSTAR: |
1678 | case OP_POSSTAR: |
1679 | case OP_PLUS: |
1680 | case OP_MINPLUS: |
1681 | case OP_POSPLUS: |
1682 | case OP_QUERY: |
1683 | case OP_MINQUERY: |
1684 | case OP_POSQUERY: |
1685 | if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f]; |
1686 | break; |
1687 | } |
1688 | #else |
1689 | (void)(utf8); /* Keep compiler happy by referencing function argument */ |
1690 | #endif |
1691 | } |
1692 | } |
1693 | } |
1694 | |
1695 | |
1696 | |
1697 | /************************************************* |
1698 | * Scan compiled regex for recursion reference * |
1699 | *************************************************/ |
1700 | |
1701 | /* This little function scans through a compiled pattern until it finds an |
1702 | instance of OP_RECURSE. |
1703 | |
1704 | Arguments: |
1705 | code points to start of expression |
1706 | utf8 TRUE in UTF-8 mode |
1707 | |
1708 | Returns: pointer to the opcode for OP_RECURSE, or NULL if not found |
1709 | */ |
1710 | |
1711 | static const uschar * |
1712 | find_recurse(const uschar *code, BOOL utf8) |
1713 | { |
1714 | for (;;) |
1715 | { |
1716 | register int c = *code; |
1717 | if (c == OP_END) return NULL; |
1718 | if (c == OP_RECURSE) return code; |
1719 | |
1720 | /* XCLASS is used for classes that cannot be represented just by a bit |
1721 | map. This includes negated single high-valued characters. The length in |
1722 | the table is zero; the actual length is stored in the compiled code. */ |
1723 | |
1724 | if (c == OP_XCLASS) code += GET(code, 1); |
1725 | |
1726 | /* Otherwise, we can get the item's length from the table, except that for |
1727 | repeated character types, we have to test for \p and \P, which have an extra |
1728 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
1729 | must add in its length. */ |
1730 | |
1731 | else |
1732 | { |
1733 | switch(c) |
1734 | { |
1735 | case OP_TYPESTAR: |
1736 | case OP_TYPEMINSTAR: |
1737 | case OP_TYPEPLUS: |
1738 | case OP_TYPEMINPLUS: |
1739 | case OP_TYPEQUERY: |
1740 | case OP_TYPEMINQUERY: |
1741 | case OP_TYPEPOSSTAR: |
1742 | case OP_TYPEPOSPLUS: |
1743 | case OP_TYPEPOSQUERY: |
1744 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
1745 | break; |
1746 | |
1747 | case OP_TYPEPOSUPTO: |
1748 | case OP_TYPEUPTO: |
1749 | case OP_TYPEMINUPTO: |
1750 | case OP_TYPEEXACT: |
1751 | if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; |
1752 | break; |
1753 | |
1754 | case OP_MARK: |
1755 | case OP_PRUNE_ARG: |
1756 | case OP_SKIP_ARG: |
1757 | case OP_THEN_ARG: |
1758 | code += code[1]; |
1759 | break; |
1760 | } |
1761 | |
1762 | /* Add in the fixed length from the table */ |
1763 | |
1764 | code += _pcre_OP_lengths[c]; |
1765 | |
1766 | /* In UTF-8 mode, opcodes that are followed by a character may be followed |
1767 | by a multi-byte character. The length in the table is a minimum, so we have |
1768 | to arrange to skip the extra bytes. */ |
1769 | |
1770 | #ifdef SUPPORT_UTF8 |
1771 | if (utf8) switch(c) |
1772 | { |
1773 | case OP_CHAR: |
1774 | case OP_CHARNC: |
1775 | case OP_EXACT: |
1776 | case OP_UPTO: |
1777 | case OP_MINUPTO: |
1778 | case OP_POSUPTO: |
1779 | case OP_STAR: |
1780 | case OP_MINSTAR: |
1781 | case OP_POSSTAR: |
1782 | case OP_PLUS: |
1783 | case OP_MINPLUS: |
1784 | case OP_POSPLUS: |
1785 | case OP_QUERY: |
1786 | case OP_MINQUERY: |
1787 | case OP_POSQUERY: |
1788 | if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f]; |
1789 | break; |
1790 | } |
1791 | #else |
1792 | (void)(utf8); /* Keep compiler happy by referencing function argument */ |
1793 | #endif |
1794 | } |
1795 | } |
1796 | } |
1797 | |
1798 | |
1799 | |
1800 | /************************************************* |
1801 | * Scan compiled branch for non-emptiness * |
1802 | *************************************************/ |
1803 | |
1804 | /* This function scans through a branch of a compiled pattern to see whether it |
1805 | can match the empty string or not. It is called from could_be_empty() |
1806 | below and from compile_branch() when checking for an unlimited repeat of a |
1807 | group that can match nothing. Note that first_significant_code() skips over |
1808 | backward and negative forward assertions when its final argument is TRUE. If we |
1809 | hit an unclosed bracket, we return "empty" - this means we've struck an inner |
1810 | bracket whose current branch will already have been scanned. |
1811 | |
1812 | Arguments: |
1813 | code points to start of search |
1814 | endcode points to where to stop |
1815 | utf8 TRUE if in UTF8 mode |
1816 | cd contains pointers to tables etc. |
1817 | |
1818 | Returns: TRUE if what is matched could be empty |
1819 | */ |
1820 | |
1821 | static BOOL |
1822 | could_be_empty_branch(const uschar *code, const uschar *endcode, BOOL utf8, |
1823 | compile_data *cd) |
1824 | { |
1825 | register int c; |
1826 | for (code = first_significant_code(code + _pcre_OP_lengths[*code], NULL, 0, TRUE); |
1827 | code < endcode; |
1828 | code = first_significant_code(code + _pcre_OP_lengths[c], NULL, 0, TRUE)) |
1829 | { |
1830 | const uschar *ccode; |
1831 | |
1832 | c = *code; |
1833 | |
1834 | /* Skip over forward assertions; the other assertions are skipped by |
1835 | first_significant_code() with a TRUE final argument. */ |
1836 | |
1837 | if (c == OP_ASSERT) |
1838 | { |
1839 | do code += GET(code, 1); while (*code == OP_ALT); |
1840 | c = *code; |
1841 | continue; |
1842 | } |
1843 | |
1844 | /* Groups with zero repeats can of course be empty; skip them. */ |
1845 | |
1846 | if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO) |
1847 | { |
1848 | code += _pcre_OP_lengths[c]; |
1849 | do code += GET(code, 1); while (*code == OP_ALT); |
1850 | c = *code; |
1851 | continue; |
1852 | } |
1853 | |
1854 | /* For a recursion/subroutine call, if its end has been reached, which |
1855 | implies a subroutine call, we can scan it. */ |
1856 | |
1857 | if (c == OP_RECURSE) |
1858 | { |
1859 | BOOL empty_branch = FALSE; |
1860 | const uschar *scode = cd->start_code + GET(code, 1); |
1861 | if (GET(scode, 1) == 0) return TRUE; /* Unclosed */ |
1862 | do |
1863 | { |
1864 | if (could_be_empty_branch(scode, endcode, utf8, cd)) |
1865 | { |
1866 | empty_branch = TRUE; |
1867 | break; |
1868 | } |
1869 | scode += GET(scode, 1); |
1870 | } |
1871 | while (*scode == OP_ALT); |
1872 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
1873 | continue; |
1874 | } |
1875 | |
1876 | /* For other groups, scan the branches. */ |
1877 | |
1878 | if (c == OP_BRA || c == OP_CBRA || c == OP_ONCE || c == OP_COND) |
1879 | { |
1880 | BOOL empty_branch; |
1881 | if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */ |
1882 | |
1883 | /* If a conditional group has only one branch, there is a second, implied, |
1884 | empty branch, so just skip over the conditional, because it could be empty. |
1885 | Otherwise, scan the individual branches of the group. */ |
1886 | |
1887 | if (c == OP_COND && code[GET(code, 1)] != OP_ALT) |
1888 | code += GET(code, 1); |
1889 | else |
1890 | { |
1891 | empty_branch = FALSE; |
1892 | do |
1893 | { |
1894 | if (!empty_branch && could_be_empty_branch(code, endcode, utf8, cd)) |
1895 | empty_branch = TRUE; |
1896 | code += GET(code, 1); |
1897 | } |
1898 | while (*code == OP_ALT); |
1899 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
1900 | } |
1901 | |
1902 | c = *code; |
1903 | continue; |
1904 | } |
1905 | |
1906 | /* Handle the other opcodes */ |
1907 | |
1908 | switch (c) |
1909 | { |
1910 | /* Check for quantifiers after a class. XCLASS is used for classes that |
1911 | cannot be represented just by a bit map. This includes negated single |
1912 | high-valued characters. The length in _pcre_OP_lengths[] is zero; the |
1913 | actual length is stored in the compiled code, so we must update "code" |
1914 | here. */ |
1915 | |
1916 | #ifdef SUPPORT_UTF8 |
1917 | case OP_XCLASS: |
1918 | ccode = code += GET(code, 1); |
1919 | goto CHECK_CLASS_REPEAT; |
1920 | #endif |
1921 | |
1922 | case OP_CLASS: |
1923 | case OP_NCLASS: |
1924 | ccode = code + 33; |
1925 | |
1926 | #ifdef SUPPORT_UTF8 |
1927 | CHECK_CLASS_REPEAT: |
1928 | #endif |
1929 | |
1930 | switch (*ccode) |
1931 | { |
1932 | case OP_CRSTAR: /* These could be empty; continue */ |
1933 | case OP_CRMINSTAR: |
1934 | case OP_CRQUERY: |
1935 | case OP_CRMINQUERY: |
1936 | break; |
1937 | |
1938 | default: /* Non-repeat => class must match */ |
1939 | case OP_CRPLUS: /* These repeats aren't empty */ |
1940 | case OP_CRMINPLUS: |
1941 | return FALSE; |
1942 | |
1943 | case OP_CRRANGE: |
1944 | case OP_CRMINRANGE: |
1945 | if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */ |
1946 | break; |
1947 | } |
1948 | break; |
1949 | |
1950 | /* Opcodes that must match a character */ |
1951 | |
1952 | case OP_PROP: |
1953 | case OP_NOTPROP: |
1954 | case OP_EXTUNI: |
1955 | case OP_NOT_DIGIT: |
1956 | case OP_DIGIT: |
1957 | case OP_NOT_WHITESPACE: |
1958 | case OP_WHITESPACE: |
1959 | case OP_NOT_WORDCHAR: |
1960 | case OP_WORDCHAR: |
1961 | case OP_ANY: |
1962 | case OP_ALLANY: |
1963 | case OP_ANYBYTE: |
1964 | case OP_CHAR: |
1965 | case OP_CHARNC: |
1966 | case OP_NOT: |
1967 | case OP_PLUS: |
1968 | case OP_MINPLUS: |
1969 | case OP_POSPLUS: |
1970 | case OP_EXACT: |
1971 | case OP_NOTPLUS: |
1972 | case OP_NOTMINPLUS: |
1973 | case OP_NOTPOSPLUS: |
1974 | case OP_NOTEXACT: |
1975 | case OP_TYPEPLUS: |
1976 | case OP_TYPEMINPLUS: |
1977 | case OP_TYPEPOSPLUS: |
1978 | case OP_TYPEEXACT: |
1979 | return FALSE; |
1980 | |
1981 | /* These are going to continue, as they may be empty, but we have to |
1982 | fudge the length for the \p and \P cases. */ |
1983 | |
1984 | case OP_TYPESTAR: |
1985 | case OP_TYPEMINSTAR: |
1986 | case OP_TYPEPOSSTAR: |
1987 | case OP_TYPEQUERY: |
1988 | case OP_TYPEMINQUERY: |
1989 | case OP_TYPEPOSQUERY: |
1990 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
1991 | break; |
1992 | |
1993 | /* Same for these */ |
1994 | |
1995 | case OP_TYPEUPTO: |
1996 | case OP_TYPEMINUPTO: |
1997 | case OP_TYPEPOSUPTO: |
1998 | if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; |
1999 | break; |
2000 | |
2001 | /* End of branch */ |
2002 | |
2003 | case OP_KET: |
2004 | case OP_KETRMAX: |
2005 | case OP_KETRMIN: |
2006 | case OP_ALT: |
2007 | return TRUE; |
2008 | |
2009 | /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO, |
2010 | MINUPTO, and POSUPTO may be followed by a multibyte character */ |
2011 | |
2012 | #ifdef SUPPORT_UTF8 |
2013 | case OP_STAR: |
2014 | case OP_MINSTAR: |
2015 | case OP_POSSTAR: |
2016 | case OP_QUERY: |
2017 | case OP_MINQUERY: |
2018 | case OP_POSQUERY: |
2019 | if (utf8 && code[1] >= 0xc0) code += _pcre_utf8_table4[code[1] & 0x3f]; |
2020 | break; |
2021 | |
2022 | case OP_UPTO: |
2023 | case OP_MINUPTO: |
2024 | case OP_POSUPTO: |
2025 | if (utf8 && code[3] >= 0xc0) code += _pcre_utf8_table4[code[3] & 0x3f]; |
2026 | break; |
2027 | #endif |
2028 | |
2029 | /* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument |
2030 | string. */ |
2031 | |
2032 | case OP_MARK: |
2033 | case OP_PRUNE_ARG: |
2034 | case OP_SKIP_ARG: |
2035 | case OP_THEN_ARG: |
2036 | code += code[1]; |
2037 | break; |
2038 | |
2039 | /* None of the remaining opcodes are required to match a character. */ |
2040 | |
2041 | default: |
2042 | break; |
2043 | } |
2044 | } |
2045 | |
2046 | return TRUE; |
2047 | } |
2048 | |
2049 | |
2050 | |
2051 | /************************************************* |
2052 | * Scan compiled regex for non-emptiness * |
2053 | *************************************************/ |
2054 | |
2055 | /* This function is called to check for left recursive calls. We want to check |
2056 | the current branch of the current pattern to see if it could match the empty |
2057 | string. If it could, we must look outwards for branches at other levels, |
2058 | stopping when we pass beyond the bracket which is the subject of the recursion. |
2059 | |
2060 | Arguments: |
2061 | code points to start of the recursion |
2062 | endcode points to where to stop (current RECURSE item) |
2063 | bcptr points to the chain of current (unclosed) branch starts |
2064 | utf8 TRUE if in UTF-8 mode |
2065 | cd pointers to tables etc |
2066 | |
2067 | Returns: TRUE if what is matched could be empty |
2068 | */ |
2069 | |
2070 | static BOOL |
2071 | could_be_empty(const uschar *code, const uschar *endcode, branch_chain *bcptr, |
2072 | BOOL utf8, compile_data *cd) |
2073 | { |
2074 | while (bcptr != NULL && bcptr->current_branch >= code) |
2075 | { |
2076 | if (!could_be_empty_branch(bcptr->current_branch, endcode, utf8, cd)) |
2077 | return FALSE; |
2078 | bcptr = bcptr->outer; |
2079 | } |
2080 | return TRUE; |
2081 | } |
2082 | |
2083 | |
2084 | |
2085 | /************************************************* |
2086 | * Check for POSIX class syntax * |
2087 | *************************************************/ |
2088 | |
2089 | /* This function is called when the sequence "[:" or "[." or "[=" is |
2090 | encountered in a character class. It checks whether this is followed by a |
2091 | sequence of characters terminated by a matching ":]" or ".]" or "=]". If we |
2092 | reach an unescaped ']' without the special preceding character, return FALSE. |
2093 | |
2094 | Originally, this function only recognized a sequence of letters between the |
2095 | terminators, but it seems that Perl recognizes any sequence of characters, |
2096 | though of course unknown POSIX names are subsequently rejected. Perl gives an |
2097 | "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE |
2098 | didn't consider this to be a POSIX class. Likewise for [:1234:]. |
2099 | |
2100 | The problem in trying to be exactly like Perl is in the handling of escapes. We |
2101 | have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX |
2102 | class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code |
2103 | below handles the special case of \], but does not try to do any other escape |
2104 | processing. This makes it different from Perl for cases such as [:l\ower:] |
2105 | where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize |
2106 | "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does, |
2107 | I think. |
2108 | |
2109 | Arguments: |
2110 | ptr pointer to the initial [ |
2111 | endptr where to return the end pointer |
2112 | |
2113 | Returns: TRUE or FALSE |
2114 | */ |
2115 | |
2116 | static BOOL |
2117 | check_posix_syntax(const uschar *ptr, const uschar **endptr) |
2118 | { |
2119 | int terminator; /* Don't combine these lines; the Solaris cc */ |
2120 | terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */ |
2121 | for (++ptr; *ptr != 0; ptr++) |
2122 | { |
2123 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) ptr++; else |
2124 | { |
2125 | if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE; |
2126 | if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
2127 | { |
2128 | *endptr = ptr; |
2129 | return TRUE; |
2130 | } |
2131 | } |
2132 | } |
2133 | return FALSE; |
2134 | } |
2135 | |
2136 | |
2137 | |
2138 | |
2139 | /************************************************* |
2140 | * Check POSIX class name * |
2141 | *************************************************/ |
2142 | |
2143 | /* This function is called to check the name given in a POSIX-style class entry |
2144 | such as [:alnum:]. |
2145 | |
2146 | Arguments: |
2147 | ptr points to the first letter |
2148 | len the length of the name |
2149 | |
2150 | Returns: a value representing the name, or -1 if unknown |
2151 | */ |
2152 | |
2153 | static int |
2154 | check_posix_name(const uschar *ptr, int len) |
2155 | { |
2156 | const char *pn = posix_names; |
2157 | register int yield = 0; |
2158 | while (posix_name_lengths[yield] != 0) |
2159 | { |
2160 | if (len == posix_name_lengths[yield] && |
2161 | strncmp((const char *)ptr, pn, len) == 0) return yield; |
2162 | pn += posix_name_lengths[yield] + 1; |
2163 | yield++; |
2164 | } |
2165 | return -1; |
2166 | } |
2167 | |
2168 | |
2169 | /************************************************* |
2170 | * Adjust OP_RECURSE items in repeated group * |
2171 | *************************************************/ |
2172 | |
2173 | /* OP_RECURSE items contain an offset from the start of the regex to the group |
2174 | that is referenced. This means that groups can be replicated for fixed |
2175 | repetition simply by copying (because the recursion is allowed to refer to |
2176 | earlier groups that are outside the current group). However, when a group is |
2177 | optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is |
2178 | inserted before it, after it has been compiled. This means that any OP_RECURSE |
2179 | items within it that refer to the group itself or any contained groups have to |
2180 | have their offsets adjusted. That one of the jobs of this function. Before it |
2181 | is called, the partially compiled regex must be temporarily terminated with |
2182 | OP_END. |
2183 | |
2184 | This function has been extended with the possibility of forward references for |
2185 | recursions and subroutine calls. It must also check the list of such references |
2186 | for the group we are dealing with. If it finds that one of the recursions in |
2187 | the current group is on this list, it adjusts the offset in the list, not the |
2188 | value in the reference (which is a group number). |
2189 | |
2190 | Arguments: |
2191 | group points to the start of the group |
2192 | adjust the amount by which the group is to be moved |
2193 | utf8 TRUE in UTF-8 mode |
2194 | cd contains pointers to tables etc. |
2195 | save_hwm the hwm forward reference pointer at the start of the group |
2196 | |
2197 | Returns: nothing |
2198 | */ |
2199 | |
2200 | static void |
2201 | adjust_recurse(uschar *group, int adjust, BOOL utf8, compile_data *cd, |
2202 | uschar *save_hwm) |
2203 | { |
2204 | uschar *ptr = group; |
2205 | |
2206 | while ((ptr = (uschar *)find_recurse(ptr, utf8)) != NULL) |
2207 | { |
2208 | int offset; |
2209 | uschar *hc; |
2210 | |
2211 | /* See if this recursion is on the forward reference list. If so, adjust the |
2212 | reference. */ |
2213 | |
2214 | for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE) |
2215 | { |
2216 | offset = GET(hc, 0); |
2217 | if (cd->start_code + offset == ptr + 1) |
2218 | { |
2219 | PUT(hc, 0, offset + adjust); |
2220 | break; |
2221 | } |
2222 | } |
2223 | |
2224 | /* Otherwise, adjust the recursion offset if it's after the start of this |
2225 | group. */ |
2226 | |
2227 | if (hc >= cd->hwm) |
2228 | { |
2229 | offset = GET(ptr, 1); |
2230 | if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust); |
2231 | } |
2232 | |
2233 | ptr += 1 + LINK_SIZE; |
2234 | } |
2235 | } |
2236 | |
2237 | |
2238 | |
2239 | /************************************************* |
2240 | * Insert an automatic callout point * |
2241 | *************************************************/ |
2242 | |
2243 | /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert |
2244 | callout points before each pattern item. |
2245 | |
2246 | Arguments: |
2247 | code current code pointer |
2248 | ptr current pattern pointer |
2249 | cd pointers to tables etc |
2250 | |
2251 | Returns: new code pointer |
2252 | */ |
2253 | |
2254 | static uschar * |
2255 | auto_callout(uschar *code, const uschar *ptr, compile_data *cd) |
2256 | { |
2257 | *code++ = OP_CALLOUT; |
2258 | *code++ = 255; |
2259 | PUT(code, 0, ptr - cd->start_pattern); /* Pattern offset */ |
2260 | PUT(code, LINK_SIZE, 0); /* Default length */ |
2261 | return code + 2*LINK_SIZE; |
2262 | } |
2263 | |
2264 | |
2265 | |
2266 | /************************************************* |
2267 | * Complete a callout item * |
2268 | *************************************************/ |
2269 | |
2270 | /* A callout item contains the length of the next item in the pattern, which |
2271 | we can't fill in till after we have reached the relevant point. This is used |
2272 | for both automatic and manual callouts. |
2273 | |
2274 | Arguments: |
2275 | previous_callout points to previous callout item |
2276 | ptr current pattern pointer |
2277 | cd pointers to tables etc |
2278 | |
2279 | Returns: nothing |
2280 | */ |
2281 | |
2282 | static void |
2283 | complete_callout(uschar *previous_callout, const uschar *ptr, compile_data *cd) |
2284 | { |
2285 | int length = ptr - cd->start_pattern - GET(previous_callout, 2); |
2286 | PUT(previous_callout, 2 + LINK_SIZE, length); |
2287 | } |
2288 | |
2289 | |
2290 | |
2291 | #ifdef SUPPORT_UCP |
2292 | /************************************************* |
2293 | * Get othercase range * |
2294 | *************************************************/ |
2295 | |
2296 | /* This function is passed the start and end of a class range, in UTF-8 mode |
2297 | with UCP support. It searches up the characters, looking for internal ranges of |
2298 | characters in the "other" case. Each call returns the next one, updating the |
2299 | start address. |
2300 | |
2301 | Arguments: |
2302 | cptr points to starting character value; updated |
2303 | d end value |
2304 | ocptr where to put start of othercase range |
2305 | odptr where to put end of othercase range |
2306 | |
2307 | Yield: TRUE when range returned; FALSE when no more |
2308 | */ |
2309 | |
2310 | static BOOL |
2311 | get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr, |
2312 | unsigned int *odptr) |
2313 | { |
2314 | unsigned int c, othercase, next; |
2315 | |
2316 | for (c = *cptr; c <= d; c++) |
2317 | { if ((othercase = UCD_OTHERCASE(c)) != c) break; } |
2318 | |
2319 | if (c > d) return FALSE; |
2320 | |
2321 | *ocptr = othercase; |
2322 | next = othercase + 1; |
2323 | |
2324 | for (++c; c <= d; c++) |
2325 | { |
2326 | if (UCD_OTHERCASE(c) != next) break; |
2327 | next++; |
2328 | } |
2329 | |
2330 | *odptr = next - 1; |
2331 | *cptr = c; |
2332 | |
2333 | return TRUE; |
2334 | } |
2335 | #endif /* SUPPORT_UCP */ |
2336 | |
2337 | |
2338 | |
2339 | /************************************************* |
2340 | * Check if auto-possessifying is possible * |
2341 | *************************************************/ |
2342 | |
2343 | /* This function is called for unlimited repeats of certain items, to see |
2344 | whether the next thing could possibly match the repeated item. If not, it makes |
2345 | sense to automatically possessify the repeated item. |
2346 | |
2347 | Arguments: |
2348 | op_code the repeated op code |
2349 | this data for this item, depends on the opcode |
2350 | utf8 TRUE in UTF-8 mode |
2351 | utf8_char used for utf8 character bytes, NULL if not relevant |
2352 | ptr next character in pattern |
2353 | options options bits |
2354 | cd contains pointers to tables etc. |
2355 | |
2356 | Returns: TRUE if possessifying is wanted |
2357 | */ |
2358 | |
2359 | static BOOL |
2360 | check_auto_possessive(int op_code, int item, BOOL utf8, uschar *utf8_char, |
2361 | const uschar *ptr, int options, compile_data *cd) |
2362 | { |
2363 | int next; |
2364 | |
2365 | /* Skip whitespace and comments in extended mode */ |
2366 | |
2367 | if ((options & PCRE_EXTENDED) != 0) |
2368 | { |
2369 | for (;;) |
2370 | { |
2371 | while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++; |
2372 | if (*ptr == CHAR_NUMBER_SIGN) |
2373 | { |
2374 | while (*(++ptr) != 0) |
2375 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } |
2376 | } |
2377 | else break; |
2378 | } |
2379 | } |
2380 | |
2381 | /* If the next item is one that we can handle, get its value. A non-negative |
2382 | value is a character, a negative value is an escape value. */ |
2383 | |
2384 | if (*ptr == CHAR_BACKSLASH) |
2385 | { |
2386 | int temperrorcode = 0; |
2387 | next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE); |
2388 | if (temperrorcode != 0) return FALSE; |
2389 | ptr++; /* Point after the escape sequence */ |
2390 | } |
2391 | |
2392 | else if ((cd->ctypes[*ptr] & ctype_meta) == 0) |
2393 | { |
2394 | #ifdef SUPPORT_UTF8 |
2395 | if (utf8) { GETCHARINC(next, ptr); } else |
2396 | #endif |
2397 | next = *ptr++; |
2398 | } |
2399 | |
2400 | else return FALSE; |
2401 | |
2402 | /* Skip whitespace and comments in extended mode */ |
2403 | |
2404 | if ((options & PCRE_EXTENDED) != 0) |
2405 | { |
2406 | for (;;) |
2407 | { |
2408 | while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++; |
2409 | if (*ptr == CHAR_NUMBER_SIGN) |
2410 | { |
2411 | while (*(++ptr) != 0) |
2412 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } |
2413 | } |
2414 | else break; |
2415 | } |
2416 | } |
2417 | |
2418 | /* If the next thing is itself optional, we have to give up. */ |
2419 | |
2420 | if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK || |
2421 | strncmp((char *)ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0) |
2422 | return FALSE; |
2423 | |
2424 | /* Now compare the next item with the previous opcode. If the previous is a |
2425 | positive single character match, "item" either contains the character or, if |
2426 | "item" is greater than 127 in utf8 mode, the character's bytes are in |
2427 | utf8_char. */ |
2428 | |
2429 | |
2430 | /* Handle cases when the next item is a character. */ |
2431 | |
2432 | if (next >= 0) switch(op_code) |
2433 | { |
2434 | case OP_CHAR: |
2435 | #ifdef SUPPORT_UTF8 |
2436 | if (utf8 && item > 127) { GETCHAR(item, utf8_char); } |
2437 | #else |
2438 | (void)(utf8_char); /* Keep compiler happy by referencing function argument */ |
2439 | #endif |
2440 | return item != next; |
2441 | |
2442 | /* For CHARNC (caseless character) we must check the other case. If we have |
2443 | Unicode property support, we can use it to test the other case of |
2444 | high-valued characters. */ |
2445 | |
2446 | case OP_CHARNC: |
2447 | #ifdef SUPPORT_UTF8 |
2448 | if (utf8 && item > 127) { GETCHAR(item, utf8_char); } |
2449 | #endif |
2450 | if (item == next) return FALSE; |
2451 | #ifdef SUPPORT_UTF8 |
2452 | if (utf8) |
2453 | { |
2454 | unsigned int othercase; |
2455 | if (next < 128) othercase = cd->fcc[next]; else |
2456 | #ifdef SUPPORT_UCP |
2457 | othercase = UCD_OTHERCASE((unsigned int)next); |
2458 | #else |
2459 | othercase = NOTACHAR; |
2460 | #endif |
2461 | return (unsigned int)item != othercase; |
2462 | } |
2463 | else |
2464 | #endif /* SUPPORT_UTF8 */ |
2465 | return (item != cd->fcc[next]); /* Non-UTF-8 mode */ |
2466 | |
2467 | /* For OP_NOT, "item" must be a single-byte character. */ |
2468 | |
2469 | case OP_NOT: |
2470 | if (item == next) return TRUE; |
2471 | if ((options & PCRE_CASELESS) == 0) return FALSE; |
2472 | #ifdef SUPPORT_UTF8 |
2473 | if (utf8) |
2474 | { |
2475 | unsigned int othercase; |
2476 | if (next < 128) othercase = cd->fcc[next]; else |
2477 | #ifdef SUPPORT_UCP |
2478 | othercase = UCD_OTHERCASE(next); |
2479 | #else |
2480 | othercase = NOTACHAR; |
2481 | #endif |
2482 | return (unsigned int)item == othercase; |
2483 | } |
2484 | else |
2485 | #endif /* SUPPORT_UTF8 */ |
2486 | return (item == cd->fcc[next]); /* Non-UTF-8 mode */ |
2487 | |
2488 | case OP_DIGIT: |
2489 | return next > 127 || (cd->ctypes[next] & ctype_digit) == 0; |
2490 | |
2491 | case OP_NOT_DIGIT: |
2492 | return next <= 127 && (cd->ctypes[next] & ctype_digit) != 0; |
2493 | |
2494 | case OP_WHITESPACE: |
2495 | return next > 127 || (cd->ctypes[next] & ctype_space) == 0; |
2496 | |
2497 | case OP_NOT_WHITESPACE: |
2498 | return next <= 127 && (cd->ctypes[next] & ctype_space) != 0; |
2499 | |
2500 | case OP_WORDCHAR: |
2501 | return next > 127 || (cd->ctypes[next] & ctype_word) == 0; |
2502 | |
2503 | case OP_NOT_WORDCHAR: |
2504 | return next <= 127 && (cd->ctypes[next] & ctype_word) != 0; |
2505 | |
2506 | case OP_HSPACE: |
2507 | case OP_NOT_HSPACE: |
2508 | switch(next) |
2509 | { |
2510 | case 0x09: |
2511 | case 0x20: |
2512 | case 0xa0: |
2513 | case 0x1680: |
2514 | case 0x180e: |
2515 | case 0x2000: |
2516 | case 0x2001: |
2517 | case 0x2002: |
2518 | case 0x2003: |
2519 | case 0x2004: |
2520 | case 0x2005: |
2521 | case 0x2006: |
2522 | case 0x2007: |
2523 | case 0x2008: |
2524 | case 0x2009: |
2525 | case 0x200A: |
2526 | case 0x202f: |
2527 | case 0x205f: |
2528 | case 0x3000: |
2529 | return op_code != OP_HSPACE; |
2530 | default: |
2531 | return op_code == OP_HSPACE; |
2532 | } |
2533 | |
2534 | case OP_VSPACE: |
2535 | case OP_NOT_VSPACE: |
2536 | switch(next) |
2537 | { |
2538 | case 0x0a: |
2539 | case 0x0b: |
2540 | case 0x0c: |
2541 | case 0x0d: |
2542 | case 0x85: |
2543 | case 0x2028: |
2544 | case 0x2029: |
2545 | return op_code != OP_VSPACE; |
2546 | default: |
2547 | return op_code == OP_VSPACE; |
2548 | } |
2549 | |
2550 | default: |
2551 | return FALSE; |
2552 | } |
2553 | |
2554 | |
2555 | /* Handle the case when the next item is \d, \s, etc. */ |
2556 | |
2557 | switch(op_code) |
2558 | { |
2559 | case OP_CHAR: |
2560 | case OP_CHARNC: |
2561 | #ifdef SUPPORT_UTF8 |
2562 | if (utf8 && item > 127) { GETCHAR(item, utf8_char); } |
2563 | #endif |
2564 | switch(-next) |
2565 | { |
2566 | case ESC_d: |
2567 | return item > 127 || (cd->ctypes[item] & ctype_digit) == 0; |
2568 | |
2569 | case ESC_D: |
2570 | return item <= 127 && (cd->ctypes[item] & ctype_digit) != 0; |
2571 | |
2572 | case ESC_s: |
2573 | return item > 127 || (cd->ctypes[item] & ctype_space) == 0; |
2574 | |
2575 | case ESC_S: |
2576 | return item <= 127 && (cd->ctypes[item] & ctype_space) != 0; |
2577 | |
2578 | case ESC_w: |
2579 | return item > 127 || (cd->ctypes[item] & ctype_word) == 0; |
2580 | |
2581 | case ESC_W: |
2582 | return item <= 127 && (cd->ctypes[item] & ctype_word) != 0; |
2583 | |
2584 | case ESC_h: |
2585 | case ESC_H: |
2586 | switch(item) |
2587 | { |
2588 | case 0x09: |
2589 | case 0x20: |
2590 | case 0xa0: |
2591 | case 0x1680: |
2592 | case 0x180e: |
2593 | case 0x2000: |
2594 | case 0x2001: |
2595 | case 0x2002: |
2596 | case 0x2003: |
2597 | case 0x2004: |
2598 | case 0x2005: |
2599 | case 0x2006: |
2600 | case 0x2007: |
2601 | case 0x2008: |
2602 | case 0x2009: |
2603 | case 0x200A: |
2604 | case 0x202f: |
2605 | case 0x205f: |
2606 | case 0x3000: |
2607 | return -next != ESC_h; |
2608 | default: |
2609 | return -next == ESC_h; |
2610 | } |
2611 | |
2612 | case ESC_v: |
2613 | case ESC_V: |
2614 | switch(item) |
2615 | { |
2616 | case 0x0a: |
2617 | case 0x0b: |
2618 | case 0x0c: |
2619 | case 0x0d: |
2620 | case 0x85: |
2621 | case 0x2028: |
2622 | case 0x2029: |
2623 | return -next != ESC_v; |
2624 | default: |
2625 | return -next == ESC_v; |
2626 | } |
2627 | |
2628 | default: |
2629 | return FALSE; |
2630 | } |
2631 | |
2632 | case OP_DIGIT: |
2633 | return next == -ESC_D || next == -ESC_s || next == -ESC_W || |
2634 | next == -ESC_h || next == -ESC_v; |
2635 | |
2636 | case OP_NOT_DIGIT: |
2637 | return next == -ESC_d; |
2638 | |
2639 | case OP_WHITESPACE: |
2640 | return next == -ESC_S || next == -ESC_d || next == -ESC_w; |
2641 | |
2642 | case OP_NOT_WHITESPACE: |
2643 | return next == -ESC_s || next == -ESC_h || next == -ESC_v; |
2644 | |
2645 | case OP_HSPACE: |
2646 | return next == -ESC_S || next == -ESC_H || next == -ESC_d || next == -ESC_w; |
2647 | |
2648 | case OP_NOT_HSPACE: |
2649 | return next == -ESC_h; |
2650 | |
2651 | /* Can't have \S in here because VT matches \S (Perl anomaly) */ |
2652 | case OP_VSPACE: |
2653 | return next == -ESC_V || next == -ESC_d || next == -ESC_w; |
2654 | |
2655 | case OP_NOT_VSPACE: |
2656 | return next == -ESC_v; |
2657 | |
2658 | case OP_WORDCHAR: |
2659 | return next == -ESC_W || next == -ESC_s || next == -ESC_h || next == -ESC_v; |
2660 | |
2661 | case OP_NOT_WORDCHAR: |
2662 | return next == -ESC_w || next == -ESC_d; |
2663 | |
2664 | default: |
2665 | return FALSE; |
2666 | } |
2667 | |
2668 | /* Control does not reach here */ |
2669 | } |
2670 | |
2671 | |
2672 | |
2673 | /************************************************* |
2674 | * Compile one branch * |
2675 | *************************************************/ |
2676 | |
2677 | /* Scan the pattern, compiling it into the a vector. If the options are |
2678 | changed during the branch, the pointer is used to change the external options |
2679 | bits. This function is used during the pre-compile phase when we are trying |
2680 | to find out the amount of memory needed, as well as during the real compile |
2681 | phase. The value of lengthptr distinguishes the two phases. |
2682 | |
2683 | Arguments: |
2684 | optionsptr pointer to the option bits |
2685 | codeptr points to the pointer to the current code point |
2686 | ptrptr points to the current pattern pointer |
2687 | errorcodeptr points to error code variable |
2688 | firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE) |
2689 | reqbyteptr set to the last literal character required, else < 0 |
2690 | bcptr points to current branch chain |
2691 | cd contains pointers to tables etc. |
2692 | lengthptr NULL during the real compile phase |
2693 | points to length accumulator during pre-compile phase |
2694 | |
2695 | Returns: TRUE on success |
2696 | FALSE, with *errorcodeptr set non-zero on error |
2697 | */ |
2698 | |
2699 | static BOOL |
2700 | compile_branch(int *optionsptr, uschar **codeptr, const uschar **ptrptr, |
2701 | int *errorcodeptr, int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, |
2702 | compile_data *cd, int *lengthptr) |
2703 | { |
2704 | int repeat_type, op_type; |
2705 | int repeat_min = 0, repeat_max = 0; /* To please picky compilers */ |
2706 | int bravalue = 0; |
2707 | int greedy_default, greedy_non_default; |
2708 | int firstbyte, reqbyte; |
2709 | int zeroreqbyte, zerofirstbyte; |
2710 | int req_caseopt, reqvary, tempreqvary; |
2711 | int options = *optionsptr; |
2712 | int after_manual_callout = 0; |
2713 | int length_prevgroup = 0; |
2714 | register int c; |
2715 | register uschar *code = *codeptr; |
2716 | uschar *last_code = code; |
2717 | uschar *orig_code = code; |
2718 | uschar *tempcode; |
2719 | BOOL inescq = FALSE; |
2720 | BOOL groupsetfirstbyte = FALSE; |
2721 | const uschar *ptr = *ptrptr; |
2722 | const uschar *tempptr; |
2723 | uschar *previous = NULL; |
2724 | uschar *previous_callout = NULL; |
2725 | uschar *save_hwm = NULL; |
2726 | uschar classbits[32]; |
2727 | |
2728 | #ifdef SUPPORT_UTF8 |
2729 | BOOL class_utf8; |
2730 | BOOL utf8 = (options & PCRE_UTF8) != 0; |
2731 | uschar *class_utf8data; |
2732 | uschar *class_utf8data_base; |
2733 | uschar utf8_char[6]; |
2734 | #else |
2735 | BOOL utf8 = FALSE; |
2736 | uschar *utf8_char = NULL; |
2737 | #endif |
2738 | |
2739 | #ifdef PCRE_DEBUG |
2740 | if (lengthptr != NULL) DPRINTF((">> start branch\n")); |
2741 | #endif |
2742 | |
2743 | /* Set up the default and non-default settings for greediness */ |
2744 | |
2745 | greedy_default = ((options & PCRE_UNGREEDY) != 0); |
2746 | greedy_non_default = greedy_default ^ 1; |
2747 | |
2748 | /* Initialize no first byte, no required byte. REQ_UNSET means "no char |
2749 | matching encountered yet". It gets changed to REQ_NONE if we hit something that |
2750 | matches a non-fixed char first char; reqbyte just remains unset if we never |
2751 | find one. |
2752 | |
2753 | When we hit a repeat whose minimum is zero, we may have to adjust these values |
2754 | to take the zero repeat into account. This is implemented by setting them to |
2755 | zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual |
2756 | item types that can be repeated set these backoff variables appropriately. */ |
2757 | |
2758 | firstbyte = reqbyte = zerofirstbyte = zeroreqbyte = REQ_UNSET; |
2759 | |
2760 | /* The variable req_caseopt contains either the REQ_CASELESS value or zero, |
2761 | according to the current setting of the caseless flag. REQ_CASELESS is a bit |
2762 | value > 255. It is added into the firstbyte or reqbyte variables to record the |
2763 | case status of the value. This is used only for ASCII characters. */ |
2764 | |
2765 | req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0; |
2766 | |
2767 | /* Switch on next character until the end of the branch */ |
2768 | |
2769 | for (;; ptr++) |
2770 | { |
2771 | BOOL negate_class; |
2772 | BOOL should_flip_negation; |
2773 | BOOL possessive_quantifier; |
2774 | BOOL is_quantifier; |
2775 | BOOL is_recurse; |
2776 | BOOL reset_bracount; |
2777 | int class_charcount; |
2778 | int class_lastchar; |
2779 | int newoptions; |
2780 | int recno; |
2781 | int refsign; |
2782 | int skipbytes; |
2783 | int subreqbyte; |
2784 | int subfirstbyte; |
2785 | int terminator; |
2786 | int mclength; |
2787 | uschar mcbuffer[8]; |
2788 | |
2789 | /* Get next byte in the pattern */ |
2790 | |
2791 | c = *ptr; |
2792 | |
2793 | /* If we are in the pre-compile phase, accumulate the length used for the |
2794 | previous cycle of this loop. */ |
2795 | |
2796 | if (lengthptr != NULL) |
2797 | { |
2798 | #ifdef PCRE_DEBUG |
2799 | if (code > cd->hwm) cd->hwm = code; /* High water info */ |
2800 | #endif |
2801 | if (code > cd->start_workspace + WORK_SIZE_CHECK) /* Check for overrun */ |
2802 | { |
2803 | *errorcodeptr = ERR52; |
2804 | goto FAILED; |
2805 | } |
2806 | |
2807 | /* There is at least one situation where code goes backwards: this is the |
2808 | case of a zero quantifier after a class (e.g. [ab]{0}). At compile time, |
2809 | the class is simply eliminated. However, it is created first, so we have to |
2810 | allow memory for it. Therefore, don't ever reduce the length at this point. |
2811 | */ |
2812 | |
2813 | if (code < last_code) code = last_code; |
2814 | |
2815 | /* Paranoid check for integer overflow */ |
2816 | |
2817 | if (OFLOW_MAX - *lengthptr < code - last_code) |
2818 | { |
2819 | *errorcodeptr = ERR20; |
2820 | goto FAILED; |
2821 | } |
2822 | |
2823 | *lengthptr += code - last_code; |
2824 | DPRINTF(("length=%d added %d c=%c\n", *lengthptr, code - last_code, c)); |
2825 | |
2826 | /* If "previous" is set and it is not at the start of the work space, move |
2827 | it back to there, in order to avoid filling up the work space. Otherwise, |
2828 | if "previous" is NULL, reset the current code pointer to the start. */ |
2829 | |
2830 | if (previous != NULL) |
2831 | { |
2832 | if (previous > orig_code) |
2833 | { |
2834 | memmove(orig_code, previous, code - previous); |
2835 | code -= previous - orig_code; |
2836 | previous = orig_code; |
2837 | } |
2838 | } |
2839 | else code = orig_code; |
2840 | |
2841 | /* Remember where this code item starts so we can pick up the length |
2842 | next time round. */ |
2843 | |
2844 | last_code = code; |
2845 | } |
2846 | |
2847 | /* In the real compile phase, just check the workspace used by the forward |
2848 | reference list. */ |
2849 | |
2850 | else if (cd->hwm > cd->start_workspace + WORK_SIZE_CHECK) |
2851 | { |
2852 | *errorcodeptr = ERR52; |
2853 | goto FAILED; |
2854 | } |
2855 | |
2856 | /* If in \Q...\E, check for the end; if not, we have a literal */ |
2857 | |
2858 | if (inescq && c != 0) |
2859 | { |
2860 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
2861 | { |
2862 | inescq = FALSE; |
2863 | ptr++; |
2864 | continue; |
2865 | } |
2866 | else |
2867 | { |
2868 | if (previous_callout != NULL) |
2869 | { |
2870 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
2871 | complete_callout(previous_callout, ptr, cd); |
2872 | previous_callout = NULL; |
2873 | } |
2874 | if ((options & PCRE_AUTO_CALLOUT) != 0) |
2875 | { |
2876 | previous_callout = code; |
2877 | code = auto_callout(code, ptr, cd); |
2878 | } |
2879 | goto NORMAL_CHAR; |
2880 | } |
2881 | } |
2882 | |
2883 | /* Fill in length of a previous callout, except when the next thing is |
2884 | a quantifier. */ |
2885 | |
2886 | is_quantifier = |
2887 | c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK || |
2888 | (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1)); |
2889 | |
2890 | if (!is_quantifier && previous_callout != NULL && |
2891 | after_manual_callout-- <= 0) |
2892 | { |
2893 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
2894 | complete_callout(previous_callout, ptr, cd); |
2895 | previous_callout = NULL; |
2896 | } |
2897 | |
2898 | /* In extended mode, skip white space and comments */ |
2899 | |
2900 | if ((options & PCRE_EXTENDED) != 0) |
2901 | { |
2902 | if ((cd->ctypes[c] & ctype_space) != 0) continue; |
2903 | if (c == CHAR_NUMBER_SIGN) |
2904 | { |
2905 | while (*(++ptr) != 0) |
2906 | { |
2907 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; } |
2908 | } |
2909 | if (*ptr != 0) continue; |
2910 | |
2911 | /* Else fall through to handle end of string */ |
2912 | c = 0; |
2913 | } |
2914 | } |
2915 | |
2916 | /* No auto callout for quantifiers. */ |
2917 | |
2918 | if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier) |
2919 | { |
2920 | previous_callout = code; |
2921 | code = auto_callout(code, ptr, cd); |
2922 | } |
2923 | |
2924 | switch(c) |
2925 | { |
2926 | /* ===================================================================*/ |
2927 | case 0: /* The branch terminates at string end */ |
2928 | case CHAR_VERTICAL_LINE: /* or | or ) */ |
2929 | case CHAR_RIGHT_PARENTHESIS: |
2930 | *firstbyteptr = firstbyte; |
2931 | *reqbyteptr = reqbyte; |
2932 | *codeptr = code; |
2933 | *ptrptr = ptr; |
2934 | if (lengthptr != NULL) |
2935 | { |
2936 | if (OFLOW_MAX - *lengthptr < code - last_code) |
2937 | { |
2938 | *errorcodeptr = ERR20; |
2939 | goto FAILED; |
2940 | } |
2941 | *lengthptr += code - last_code; /* To include callout length */ |
2942 | DPRINTF((">> end branch\n")); |
2943 | } |
2944 | return TRUE; |
2945 | |
2946 | |
2947 | /* ===================================================================*/ |
2948 | /* Handle single-character metacharacters. In multiline mode, ^ disables |
2949 | the setting of any following char as a first character. */ |
2950 | |
2951 | case CHAR_CIRCUMFLEX_ACCENT: |
2952 | if ((options & PCRE_MULTILINE) != 0) |
2953 | { |
2954 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
2955 | } |
2956 | previous = NULL; |
2957 | *code++ = OP_CIRC; |
2958 | break; |
2959 | |
2960 | case CHAR_DOLLAR_SIGN: |
2961 | previous = NULL; |
2962 | *code++ = OP_DOLL; |
2963 | break; |
2964 | |
2965 | /* There can never be a first char if '.' is first, whatever happens about |
2966 | repeats. The value of reqbyte doesn't change either. */ |
2967 | |
2968 | case CHAR_DOT: |
2969 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
2970 | zerofirstbyte = firstbyte; |
2971 | zeroreqbyte = reqbyte; |
2972 | previous = code; |
2973 | *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY; |
2974 | break; |
2975 | |
2976 | |
2977 | /* ===================================================================*/ |
2978 | /* Character classes. If the included characters are all < 256, we build a |
2979 | 32-byte bitmap of the permitted characters, except in the special case |
2980 | where there is only one such character. For negated classes, we build the |
2981 | map as usual, then invert it at the end. However, we use a different opcode |
2982 | so that data characters > 255 can be handled correctly. |
2983 | |
2984 | If the class contains characters outside the 0-255 range, a different |
2985 | opcode is compiled. It may optionally have a bit map for characters < 256, |
2986 | but those above are are explicitly listed afterwards. A flag byte tells |
2987 | whether the bitmap is present, and whether this is a negated class or not. |
2988 | |
2989 | In JavaScript compatibility mode, an isolated ']' causes an error. In |
2990 | default (Perl) mode, it is treated as a data character. */ |
2991 | |
2992 | case CHAR_RIGHT_SQUARE_BRACKET: |
2993 | if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
2994 | { |
2995 | *errorcodeptr = ERR64; |
2996 | goto FAILED; |
2997 | } |
2998 | goto NORMAL_CHAR; |
2999 | |
3000 | case CHAR_LEFT_SQUARE_BRACKET: |
3001 | previous = code; |
3002 | |
3003 | /* PCRE supports POSIX class stuff inside a class. Perl gives an error if |
3004 | they are encountered at the top level, so we'll do that too. */ |
3005 | |
3006 | if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
3007 | ptr[1] == CHAR_EQUALS_SIGN) && |
3008 | check_posix_syntax(ptr, &tempptr)) |
3009 | { |
3010 | *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31; |
3011 | goto FAILED; |
3012 | } |
3013 | |
3014 | /* If the first character is '^', set the negation flag and skip it. Also, |
3015 | if the first few characters (either before or after ^) are \Q\E or \E we |
3016 | skip them too. This makes for compatibility with Perl. */ |
3017 | |
3018 | negate_class = FALSE; |
3019 | for (;;) |
3020 | { |
3021 | c = *(++ptr); |
3022 | if (c == CHAR_BACKSLASH) |
3023 | { |
3024 | if (ptr[1] == CHAR_E) |
3025 | ptr++; |
3026 | else if (strncmp((const char *)ptr+1, |
3027 | STR_Q STR_BACKSLASH STR_E, 3) == 0) |
3028 | ptr += 3; |
3029 | else |
3030 | break; |
3031 | } |
3032 | else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT) |
3033 | negate_class = TRUE; |
3034 | else break; |
3035 | } |
3036 | |
3037 | /* Empty classes are allowed in JavaScript compatibility mode. Otherwise, |
3038 | an initial ']' is taken as a data character -- the code below handles |
3039 | that. In JS mode, [] must always fail, so generate OP_FAIL, whereas |
3040 | [^] must match any character, so generate OP_ALLANY. */ |
3041 | |
3042 | if (c == CHAR_RIGHT_SQUARE_BRACKET && |
3043 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
3044 | { |
3045 | *code++ = negate_class? OP_ALLANY : OP_FAIL; |
3046 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
3047 | zerofirstbyte = firstbyte; |
3048 | break; |
3049 | } |
3050 | |
3051 | /* If a class contains a negative special such as \S, we need to flip the |
3052 | negation flag at the end, so that support for characters > 255 works |
3053 | correctly (they are all included in the class). */ |
3054 | |
3055 | should_flip_negation = FALSE; |
3056 | |
3057 | /* Keep a count of chars with values < 256 so that we can optimize the case |
3058 | of just a single character (as long as it's < 256). However, For higher |
3059 | valued UTF-8 characters, we don't yet do any optimization. */ |
3060 | |
3061 | class_charcount = 0; |
3062 | class_lastchar = -1; |
3063 | |
3064 | /* Initialize the 32-char bit map to all zeros. We build the map in a |
3065 | temporary bit of memory, in case the class contains only 1 character (less |
3066 | than 256), because in that case the compiled code doesn't use the bit map. |
3067 | */ |
3068 | |
3069 | memset(classbits, 0, 32 * sizeof(uschar)); |
3070 | |
3071 | #ifdef SUPPORT_UTF8 |
3072 | class_utf8 = FALSE; /* No chars >= 256 */ |
3073 | class_utf8data = code + LINK_SIZE + 2; /* For UTF-8 items */ |
3074 | class_utf8data_base = class_utf8data; /* For resetting in pass 1 */ |
3075 | #endif |
3076 | |
3077 | /* Process characters until ] is reached. By writing this as a "do" it |
3078 | means that an initial ] is taken as a data character. At the start of the |
3079 | loop, c contains the first byte of the character. */ |
3080 | |
3081 | if (c != 0) do |
3082 | { |
3083 | const uschar *oldptr; |
3084 | |
3085 | #ifdef SUPPORT_UTF8 |
3086 | if (utf8 && c > 127) |
3087 | { /* Braces are required because the */ |
3088 | GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */ |
3089 | } |
3090 | |
3091 | /* In the pre-compile phase, accumulate the length of any UTF-8 extra |
3092 | data and reset the pointer. This is so that very large classes that |
3093 | contain a zillion UTF-8 characters no longer overwrite the work space |
3094 | (which is on the stack). */ |
3095 | |
3096 | if (lengthptr != NULL) |
3097 | { |
3098 | *lengthptr += class_utf8data - class_utf8data_base; |
3099 | class_utf8data = class_utf8data_base; |
3100 | } |
3101 | |
3102 | #endif |
3103 | |
3104 | /* Inside \Q...\E everything is literal except \E */ |
3105 | |
3106 | if (inescq) |
3107 | { |
3108 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */ |
3109 | { |
3110 | inescq = FALSE; /* Reset literal state */ |
3111 | ptr++; /* Skip the 'E' */ |
3112 | continue; /* Carry on with next */ |
3113 | } |
3114 | goto CHECK_RANGE; /* Could be range if \E follows */ |
3115 | } |
3116 | |
3117 | /* Handle POSIX class names. Perl allows a negation extension of the |
3118 | form [:^name:]. A square bracket that doesn't match the syntax is |
3119 | treated as a literal. We also recognize the POSIX constructions |
3120 | [.ch.] and [=ch=] ("collating elements") and fault them, as Perl |
3121 | 5.6 and 5.8 do. */ |
3122 | |
3123 | if (c == CHAR_LEFT_SQUARE_BRACKET && |
3124 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
3125 | ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr)) |
3126 | { |
3127 | BOOL local_negate = FALSE; |
3128 | int posix_class, taboffset, tabopt; |
3129 | register const uschar *cbits = cd->cbits; |
3130 | uschar pbits[32]; |
3131 | |
3132 | if (ptr[1] != CHAR_COLON) |
3133 | { |
3134 | *errorcodeptr = ERR31; |
3135 | goto FAILED; |
3136 | } |
3137 | |
3138 | ptr += 2; |
3139 | if (*ptr == CHAR_CIRCUMFLEX_ACCENT) |
3140 | { |
3141 | local_negate = TRUE; |
3142 | should_flip_negation = TRUE; /* Note negative special */ |
3143 | ptr++; |
3144 | } |
3145 | |
3146 | posix_class = check_posix_name(ptr, tempptr - ptr); |
3147 | if (posix_class < 0) |
3148 | { |
3149 | *errorcodeptr = ERR30; |
3150 | goto FAILED; |
3151 | } |
3152 | |
3153 | /* If matching is caseless, upper and lower are converted to |
3154 | alpha. This relies on the fact that the class table starts with |
3155 | alpha, lower, upper as the first 3 entries. */ |
3156 | |
3157 | if ((options & PCRE_CASELESS) != 0 && posix_class <= 2) |
3158 | posix_class = 0; |
3159 | |
3160 | /* We build the bit map for the POSIX class in a chunk of local store |
3161 | because we may be adding and subtracting from it, and we don't want to |
3162 | subtract bits that may be in the main map already. At the end we or the |
3163 | result into the bit map that is being built. */ |
3164 | |
3165 | posix_class *= 3; |
3166 | |
3167 | /* Copy in the first table (always present) */ |
3168 | |
3169 | memcpy(pbits, cbits + posix_class_maps[posix_class], |
3170 | 32 * sizeof(uschar)); |
3171 | |
3172 | /* If there is a second table, add or remove it as required. */ |
3173 | |
3174 | taboffset = posix_class_maps[posix_class + 1]; |
3175 | tabopt = posix_class_maps[posix_class + 2]; |
3176 | |
3177 | if (taboffset >= 0) |
3178 | { |
3179 | if (tabopt >= 0) |
3180 | for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset]; |
3181 | else |
3182 | for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset]; |
3183 | } |
3184 | |
3185 | /* Not see if we need to remove any special characters. An option |
3186 | value of 1 removes vertical space and 2 removes underscore. */ |
3187 | |
3188 | if (tabopt < 0) tabopt = -tabopt; |
3189 | if (tabopt == 1) pbits[1] &= ~0x3c; |
3190 | else if (tabopt == 2) pbits[11] &= 0x7f; |
3191 | |
3192 | /* Add the POSIX table or its complement into the main table that is |
3193 | being built and we are done. */ |
3194 | |
3195 | if (local_negate) |
3196 | for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c]; |
3197 | else |
3198 | for (c = 0; c < 32; c++) classbits[c] |= pbits[c]; |
3199 | |
3200 | ptr = tempptr + 1; |
3201 | class_charcount = 10; /* Set > 1; assumes more than 1 per class */ |
3202 | continue; /* End of POSIX syntax handling */ |
3203 | } |
3204 | |
3205 | /* Backslash may introduce a single character, or it may introduce one |
3206 | of the specials, which just set a flag. The sequence \b is a special |
3207 | case. Inside a class (and only there) it is treated as backspace. |
3208 | Elsewhere it marks a word boundary. Other escapes have preset maps ready |
3209 | to 'or' into the one we are building. We assume they have more than one |
3210 | character in them, so set class_charcount bigger than one. */ |
3211 | |
3212 | if (c == CHAR_BACKSLASH) |
3213 | { |
3214 | c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE); |
3215 | if (*errorcodeptr != 0) goto FAILED; |
3216 | |
3217 | if (-c == ESC_b) c = CHAR_BS; /* \b is backspace in a class */ |
3218 | else if (-c == ESC_X) c = CHAR_X; /* \X is literal X in a class */ |
3219 | else if (-c == ESC_R) c = CHAR_R; /* \R is literal R in a class */ |
3220 | else if (-c == ESC_Q) /* Handle start of quoted string */ |
3221 | { |
3222 | if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
3223 | { |
3224 | ptr += 2; /* avoid empty string */ |
3225 | } |
3226 | else inescq = TRUE; |
3227 | continue; |
3228 | } |
3229 | else if (-c == ESC_E) continue; /* Ignore orphan \E */ |
3230 | |
3231 | if (c < 0) |
3232 | { |
3233 | register const uschar *cbits = cd->cbits; |
3234 | class_charcount += 2; /* Greater than 1 is what matters */ |
3235 | |
3236 | /* Save time by not doing this in the pre-compile phase. */ |
3237 | |
3238 | if (lengthptr == NULL) switch (-c) |
3239 | { |
3240 | case ESC_d: |
3241 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit]; |
3242 | continue; |
3243 | |
3244 | case ESC_D: |
3245 | should_flip_negation = TRUE; |
3246 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit]; |
3247 | continue; |
3248 | |
3249 | case ESC_w: |
3250 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word]; |
3251 | continue; |
3252 | |
3253 | case ESC_W: |
3254 | should_flip_negation = TRUE; |
3255 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word]; |
3256 | continue; |
3257 | |
3258 | case ESC_s: |
3259 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_space]; |
3260 | classbits[1] &= ~0x08; /* Perl 5.004 onwards omits VT from \s */ |
3261 | continue; |
3262 | |
3263 | case ESC_S: |
3264 | should_flip_negation = TRUE; |
3265 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space]; |
3266 | classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */ |
3267 | continue; |
3268 | |
3269 | default: /* Not recognized; fall through */ |
3270 | break; /* Need "default" setting to stop compiler warning. */ |
3271 | } |
3272 | |
3273 | /* In the pre-compile phase, just do the recognition. */ |
3274 | |
3275 | else if (c == -ESC_d || c == -ESC_D || c == -ESC_w || |
3276 | c == -ESC_W || c == -ESC_s || c == -ESC_S) continue; |
3277 | |
3278 | /* We need to deal with \H, \h, \V, and \v in both phases because |
3279 | they use extra memory. */ |
3280 | |
3281 | if (-c == ESC_h) |
3282 | { |
3283 | SETBIT(classbits, 0x09); /* VT */ |
3284 | SETBIT(classbits, 0x20); /* SPACE */ |
3285 | SETBIT(classbits, 0xa0); /* NSBP */ |
3286 | #ifdef SUPPORT_UTF8 |
3287 | if (utf8) |
3288 | { |
3289 | class_utf8 = TRUE; |
3290 | *class_utf8data++ = XCL_SINGLE; |
3291 | class_utf8data += _pcre_ord2utf8(0x1680, class_utf8data); |
3292 | *class_utf8data++ = XCL_SINGLE; |
3293 | class_utf8data += _pcre_ord2utf8(0x180e, class_utf8data); |
3294 | *class_utf8data++ = XCL_RANGE; |
3295 | class_utf8data += _pcre_ord2utf8(0x2000, class_utf8data); |
3296 | class_utf8data += _pcre_ord2utf8(0x200A, class_utf8data); |
3297 | *class_utf8data++ = XCL_SINGLE; |
3298 | class_utf8data += _pcre_ord2utf8(0x202f, class_utf8data); |
3299 | *class_utf8data++ = XCL_SINGLE; |
3300 | class_utf8data += _pcre_ord2utf8(0x205f, class_utf8data); |
3301 | *class_utf8data++ = XCL_SINGLE; |
3302 | class_utf8data += _pcre_ord2utf8(0x3000, class_utf8data); |
3303 | } |
3304 | #endif |
3305 | continue; |
3306 | } |
3307 | |
3308 | if (-c == ESC_H) |
3309 | { |
3310 | for (c = 0; c < 32; c++) |
3311 | { |
3312 | int x = 0xff; |
3313 | switch (c) |
3314 | { |
3315 | case 0x09/8: x ^= 1 << (0x09%8); break; |
3316 | case 0x20/8: x ^= 1 << (0x20%8); break; |
3317 | case 0xa0/8: x ^= 1 << (0xa0%8); break; |
3318 | default: break; |
3319 | } |
3320 | classbits[c] |= x; |
3321 | } |
3322 | |
3323 | #ifdef SUPPORT_UTF8 |
3324 | if (utf8) |
3325 | { |
3326 | class_utf8 = TRUE; |
3327 | *class_utf8data++ = XCL_RANGE; |
3328 | class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data); |
3329 | class_utf8data += _pcre_ord2utf8(0x167f, class_utf8data); |
3330 | *class_utf8data++ = XCL_RANGE; |
3331 | class_utf8data += _pcre_ord2utf8(0x1681, class_utf8data); |
3332 | class_utf8data += _pcre_ord2utf8(0x180d, class_utf8data); |
3333 | *class_utf8data++ = XCL_RANGE; |
3334 | class_utf8data += _pcre_ord2utf8(0x180f, class_utf8data); |
3335 | class_utf8data += _pcre_ord2utf8(0x1fff, class_utf8data); |
3336 | *class_utf8data++ = XCL_RANGE; |
3337 | class_utf8data += _pcre_ord2utf8(0x200B, class_utf8data); |
3338 | class_utf8data += _pcre_ord2utf8(0x202e, class_utf8data); |
3339 | *class_utf8data++ = XCL_RANGE; |
3340 | class_utf8data += _pcre_ord2utf8(0x2030, class_utf8data); |
3341 | class_utf8data += _pcre_ord2utf8(0x205e, class_utf8data); |
3342 | *class_utf8data++ = XCL_RANGE; |
3343 | class_utf8data += _pcre_ord2utf8(0x2060, class_utf8data); |
3344 | class_utf8data += _pcre_ord2utf8(0x2fff, class_utf8data); |
3345 | *class_utf8data++ = XCL_RANGE; |
3346 | class_utf8data += _pcre_ord2utf8(0x3001, class_utf8data); |
3347 | class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data); |
3348 | } |
3349 | #endif |
3350 | continue; |
3351 | } |
3352 | |
3353 | if (-c == ESC_v) |
3354 | { |
3355 | SETBIT(classbits, 0x0a); /* LF */ |
3356 | SETBIT(classbits, 0x0b); /* VT */ |
3357 | SETBIT(classbits, 0x0c); /* FF */ |
3358 | SETBIT(classbits, 0x0d); /* CR */ |
3359 | SETBIT(classbits, 0x85); /* NEL */ |
3360 | #ifdef SUPPORT_UTF8 |
3361 | if (utf8) |
3362 | { |
3363 | class_utf8 = TRUE; |
3364 | *class_utf8data++ = XCL_RANGE; |
3365 | class_utf8data += _pcre_ord2utf8(0x2028, class_utf8data); |
3366 | class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data); |
3367 | } |
3368 | #endif |
3369 | continue; |
3370 | } |
3371 | |
3372 | if (-c == ESC_V) |
3373 | { |
3374 | for (c = 0; c < 32; c++) |
3375 | { |
3376 | int x = 0xff; |
3377 | switch (c) |
3378 | { |
3379 | case 0x0a/8: x ^= 1 << (0x0a%8); |
3380 | x ^= 1 << (0x0b%8); |
3381 | x ^= 1 << (0x0c%8); |
3382 | x ^= 1 << (0x0d%8); |
3383 | break; |
3384 | case 0x85/8: x ^= 1 << (0x85%8); break; |
3385 | default: break; |
3386 | } |
3387 | classbits[c] |= x; |
3388 | } |
3389 | |
3390 | #ifdef SUPPORT_UTF8 |
3391 | if (utf8) |
3392 | { |
3393 | class_utf8 = TRUE; |
3394 | *class_utf8data++ = XCL_RANGE; |
3395 | class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data); |
3396 | class_utf8data += _pcre_ord2utf8(0x2027, class_utf8data); |
3397 | *class_utf8data++ = XCL_RANGE; |
3398 | class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data); |
3399 | class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data); |
3400 | } |
3401 | #endif |
3402 | continue; |
3403 | } |
3404 | |
3405 | /* We need to deal with \P and \p in both phases. */ |
3406 | |
3407 | #ifdef SUPPORT_UCP |
3408 | if (-c == ESC_p || -c == ESC_P) |
3409 | { |
3410 | BOOL negated; |
3411 | int pdata; |
3412 | int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr); |
3413 | if (ptype < 0) goto FAILED; |
3414 | class_utf8 = TRUE; |
3415 | *class_utf8data++ = ((-c == ESC_p) != negated)? |
3416 | XCL_PROP : XCL_NOTPROP; |
3417 | *class_utf8data++ = ptype; |
3418 | *class_utf8data++ = pdata; |
3419 | class_charcount -= 2; /* Not a < 256 character */ |
3420 | continue; |
3421 | } |
3422 | #endif |
3423 | /* Unrecognized escapes are faulted if PCRE is running in its |
3424 | strict mode. By default, for compatibility with Perl, they are |
3425 | treated as literals. */ |
3426 | |
3427 | if ((options & PCRE_EXTRA) != 0) |
3428 | { |
3429 | *errorcodeptr = ERR7; |
3430 | goto FAILED; |
3431 | } |
3432 | |
3433 | class_charcount -= 2; /* Undo the default count from above */ |
3434 | c = *ptr; /* Get the final character and fall through */ |
3435 | } |
3436 | |
3437 | /* Fall through if we have a single character (c >= 0). This may be |
3438 | greater than 256 in UTF-8 mode. */ |
3439 | |
3440 | } /* End of backslash handling */ |
3441 | |
3442 | /* A single character may be followed by '-' to form a range. However, |
3443 | Perl does not permit ']' to be the end of the range. A '-' character |
3444 | at the end is treated as a literal. Perl ignores orphaned \E sequences |
3445 | entirely. The code for handling \Q and \E is messy. */ |
3446 | |
3447 | CHECK_RANGE: |
3448 | while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
3449 | { |
3450 | inescq = FALSE; |
3451 | ptr += 2; |
3452 | } |
3453 | |
3454 | oldptr = ptr; |
3455 | |
3456 | /* Remember \r or \n */ |
3457 | |
3458 | if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
3459 | |
3460 | /* Check for range */ |
3461 | |
3462 | if (!inescq && ptr[1] == CHAR_MINUS) |
3463 | { |
3464 | int d; |
3465 | ptr += 2; |
3466 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2; |
3467 | |
3468 | /* If we hit \Q (not followed by \E) at this point, go into escaped |
3469 | mode. */ |
3470 | |
3471 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q) |
3472 | { |
3473 | ptr += 2; |
3474 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
3475 | { ptr += 2; continue; } |
3476 | inescq = TRUE; |
3477 | break; |
3478 | } |
3479 | |
3480 | if (*ptr == 0 || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET)) |
3481 | { |
3482 | ptr = oldptr; |
3483 | goto LONE_SINGLE_CHARACTER; |
3484 | } |
3485 | |
3486 | #ifdef SUPPORT_UTF8 |
3487 | if (utf8) |
3488 | { /* Braces are required because the */ |
3489 | GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */ |
3490 | } |
3491 | else |
3492 | #endif |
3493 | d = *ptr; /* Not UTF-8 mode */ |
3494 | |
3495 | /* The second part of a range can be a single-character escape, but |
3496 | not any of the other escapes. Perl 5.6 treats a hyphen as a literal |
3497 | in such circumstances. */ |
3498 | |
3499 | if (!inescq && d == CHAR_BACKSLASH) |
3500 | { |
3501 | d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE); |
3502 | if (*errorcodeptr != 0) goto FAILED; |
3503 | |
3504 | /* \b is backspace; \X is literal X; \R is literal R; any other |
3505 | special means the '-' was literal */ |
3506 | |
3507 | if (d < 0) |
3508 | { |
3509 | if (d == -ESC_b) d = CHAR_BS; |
3510 | else if (d == -ESC_X) d = CHAR_X; |
3511 | else if (d == -ESC_R) d = CHAR_R; else |
3512 | { |
3513 | ptr = oldptr; |
3514 | goto LONE_SINGLE_CHARACTER; /* A few lines below */ |
3515 | } |
3516 | } |
3517 | } |
3518 | |
3519 | /* Check that the two values are in the correct order. Optimize |
3520 | one-character ranges */ |
3521 | |
3522 | if (d < c) |
3523 | { |
3524 | *errorcodeptr = ERR8; |
3525 | goto FAILED; |
3526 | } |
3527 | |
3528 | if (d == c) goto LONE_SINGLE_CHARACTER; /* A few lines below */ |
3529 | |
3530 | /* Remember \r or \n */ |
3531 | |
3532 | if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
3533 | |
3534 | /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless |
3535 | matching, we have to use an XCLASS with extra data items. Caseless |
3536 | matching for characters > 127 is available only if UCP support is |
3537 | available. */ |
3538 | |
3539 | #ifdef SUPPORT_UTF8 |
3540 | if (utf8 && (d > 255 || ((options & PCRE_CASELESS) != 0 && d > 127))) |
3541 | { |
3542 | class_utf8 = TRUE; |
3543 | |
3544 | /* With UCP support, we can find the other case equivalents of |
3545 | the relevant characters. There may be several ranges. Optimize how |
3546 | they fit with the basic range. */ |
3547 | |
3548 | #ifdef SUPPORT_UCP |
3549 | if ((options & PCRE_CASELESS) != 0) |
3550 | { |
3551 | unsigned int occ, ocd; |
3552 | unsigned int cc = c; |
3553 | unsigned int origd = d; |
3554 | while (get_othercase_range(&cc, origd, &occ, &ocd)) |
3555 | { |
3556 | if (occ >= (unsigned int)c && |
3557 | ocd <= (unsigned int)d) |
3558 | continue; /* Skip embedded ranges */ |
3559 | |
3560 | if (occ < (unsigned int)c && |
3561 | ocd >= (unsigned int)c - 1) /* Extend the basic range */ |
3562 | { /* if there is overlap, */ |
3563 | c = occ; /* noting that if occ < c */ |
3564 | continue; /* we can't have ocd > d */ |
3565 | } /* because a subrange is */ |
3566 | if (ocd > (unsigned int)d && |
3567 | occ <= (unsigned int)d + 1) /* always shorter than */ |
3568 | { /* the basic range. */ |
3569 | d = ocd; |
3570 | continue; |
3571 | } |
3572 | |
3573 | if (occ == ocd) |
3574 | { |
3575 | *class_utf8data++ = XCL_SINGLE; |
3576 | } |
3577 | else |
3578 | { |
3579 | *class_utf8data++ = XCL_RANGE; |
3580 | class_utf8data += _pcre_ord2utf8(occ, class_utf8data); |
3581 | } |
3582 | class_utf8data += _pcre_ord2utf8(ocd, class_utf8data); |
3583 | } |
3584 | } |
3585 | #endif /* SUPPORT_UCP */ |
3586 | |
3587 | /* Now record the original range, possibly modified for UCP caseless |
3588 | overlapping ranges. */ |
3589 | |
3590 | *class_utf8data++ = XCL_RANGE; |
3591 | class_utf8data += _pcre_ord2utf8(c, class_utf8data); |
3592 | class_utf8data += _pcre_ord2utf8(d, class_utf8data); |
3593 | |
3594 | /* With UCP support, we are done. Without UCP support, there is no |
3595 | caseless matching for UTF-8 characters > 127; we can use the bit map |
3596 | for the smaller ones. */ |
3597 | |
3598 | #ifdef SUPPORT_UCP |
3599 | continue; /* With next character in the class */ |
3600 | #else |
3601 | if ((options & PCRE_CASELESS) == 0 || c > 127) continue; |
3602 | |
3603 | /* Adjust upper limit and fall through to set up the map */ |
3604 | |
3605 | d = 127; |
3606 | |
3607 | #endif /* SUPPORT_UCP */ |
3608 | } |
3609 | #endif /* SUPPORT_UTF8 */ |
3610 | |
3611 | /* We use the bit map for all cases when not in UTF-8 mode; else |
3612 | ranges that lie entirely within 0-127 when there is UCP support; else |
3613 | for partial ranges without UCP support. */ |
3614 | |
3615 | class_charcount += d - c + 1; |
3616 | class_lastchar = d; |
3617 | |
3618 | /* We can save a bit of time by skipping this in the pre-compile. */ |
3619 | |
3620 | if (lengthptr == NULL) for (; c <= d; c++) |
3621 | { |
3622 | classbits[c/8] |= (1 << (c&7)); |
3623 | if ((options & PCRE_CASELESS) != 0) |
3624 | { |
3625 | int uc = cd->fcc[c]; /* flip case */ |
3626 | classbits[uc/8] |= (1 << (uc&7)); |
3627 | } |
3628 | } |
3629 | |
3630 | continue; /* Go get the next char in the class */ |
3631 | } |
3632 | |
3633 | /* Handle a lone single character - we can get here for a normal |
3634 | non-escape char, or after \ that introduces a single character or for an |
3635 | apparent range that isn't. */ |
3636 | |
3637 | LONE_SINGLE_CHARACTER: |
3638 | |
3639 | /* Handle a character that cannot go in the bit map */ |
3640 | |
3641 | #ifdef SUPPORT_UTF8 |
3642 | if (utf8 && (c > 255 || ((options & PCRE_CASELESS) != 0 && c > 127))) |
3643 | { |
3644 | class_utf8 = TRUE; |
3645 | *class_utf8data++ = XCL_SINGLE; |
3646 | class_utf8data += _pcre_ord2utf8(c, class_utf8data); |
3647 | |
3648 | #ifdef SUPPORT_UCP |
3649 | if ((options & PCRE_CASELESS) != 0) |
3650 | { |
3651 | unsigned int othercase; |
3652 | if ((othercase = UCD_OTHERCASE(c)) != c) |
3653 | { |
3654 | *class_utf8data++ = XCL_SINGLE; |
3655 | class_utf8data += _pcre_ord2utf8(othercase, class_utf8data); |
3656 | } |
3657 | } |
3658 | #endif /* SUPPORT_UCP */ |
3659 | |
3660 | } |
3661 | else |
3662 | #endif /* SUPPORT_UTF8 */ |
3663 | |
3664 | /* Handle a single-byte character */ |
3665 | { |
3666 | classbits[c/8] |= (1 << (c&7)); |
3667 | if ((options & PCRE_CASELESS) != 0) |
3668 | { |
3669 | c = cd->fcc[c]; /* flip case */ |
3670 | classbits[c/8] |= (1 << (c&7)); |
3671 | } |
3672 | class_charcount++; |
3673 | class_lastchar = c; |
3674 | } |
3675 | } |
3676 | |
3677 | /* Loop until ']' reached. This "while" is the end of the "do" above. */ |
3678 | |
3679 | while ((c = *(++ptr)) != 0 && (c != CHAR_RIGHT_SQUARE_BRACKET || inescq)); |
3680 | |
3681 | if (c == 0) /* Missing terminating ']' */ |
3682 | { |
3683 | *errorcodeptr = ERR6; |
3684 | goto FAILED; |
3685 | } |
3686 | |
3687 | |
3688 | /* This code has been disabled because it would mean that \s counts as |
3689 | an explicit \r or \n reference, and that's not really what is wanted. Now |
3690 | we set the flag only if there is a literal "\r" or "\n" in the class. */ |
3691 | |
3692 | #if 0 |
3693 | /* Remember whether \r or \n are in this class */ |
3694 | |
3695 | if (negate_class) |
3696 | { |
3697 | if ((classbits[1] & 0x24) != 0x24) cd->external_flags |= PCRE_HASCRORLF; |
3698 | } |
3699 | else |
3700 | { |
3701 | if ((classbits[1] & 0x24) != 0) cd->external_flags |= PCRE_HASCRORLF; |
3702 | } |
3703 | #endif |
3704 | |
3705 | |
3706 | /* If class_charcount is 1, we saw precisely one character whose value is |
3707 | less than 256. As long as there were no characters >= 128 and there was no |
3708 | use of \p or \P, in other words, no use of any XCLASS features, we can |
3709 | optimize. |
3710 | |
3711 | In UTF-8 mode, we can optimize the negative case only if there were no |
3712 | characters >= 128 because OP_NOT and the related opcodes like OP_NOTSTAR |
3713 | operate on single-bytes only. This is an historical hangover. Maybe one day |
3714 | we can tidy these opcodes to handle multi-byte characters. |
3715 | |
3716 | The optimization throws away the bit map. We turn the item into a |
3717 | 1-character OP_CHAR[NC] if it's positive, or OP_NOT if it's negative. Note |
3718 | that OP_NOT does not support multibyte characters. In the positive case, it |
3719 | can cause firstbyte to be set. Otherwise, there can be no first char if |
3720 | this item is first, whatever repeat count may follow. In the case of |
3721 | reqbyte, save the previous value for reinstating. */ |
3722 | |
3723 | #ifdef SUPPORT_UTF8 |
3724 | if (class_charcount == 1 && !class_utf8 && |
3725 | (!utf8 || !negate_class || class_lastchar < 128)) |
3726 | #else |
3727 | if (class_charcount == 1) |
3728 | #endif |
3729 | { |
3730 | zeroreqbyte = reqbyte; |
3731 | |
3732 | /* The OP_NOT opcode works on one-byte characters only. */ |
3733 | |
3734 | if (negate_class) |
3735 | { |
3736 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
3737 | zerofirstbyte = firstbyte; |
3738 | *code++ = OP_NOT; |
3739 | *code++ = class_lastchar; |
3740 | break; |
3741 | } |
3742 | |
3743 | /* For a single, positive character, get the value into mcbuffer, and |
3744 | then we can handle this with the normal one-character code. */ |
3745 | |
3746 | #ifdef SUPPORT_UTF8 |
3747 | if (utf8 && class_lastchar > 127) |
3748 | mclength = _pcre_ord2utf8(class_lastchar, mcbuffer); |
3749 | else |
3750 | #endif |
3751 | { |
3752 | mcbuffer[0] = class_lastchar; |
3753 | mclength = 1; |
3754 | } |
3755 | goto ONE_CHAR; |
3756 | } /* End of 1-char optimization */ |
3757 | |
3758 | /* The general case - not the one-char optimization. If this is the first |
3759 | thing in the branch, there can be no first char setting, whatever the |
3760 | repeat count. Any reqbyte setting must remain unchanged after any kind of |
3761 | repeat. */ |
3762 | |
3763 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
3764 | zerofirstbyte = firstbyte; |
3765 | zeroreqbyte = reqbyte; |
3766 | |
3767 | /* If there are characters with values > 255, we have to compile an |
3768 | extended class, with its own opcode, unless there was a negated special |
3769 | such as \S in the class, because in that case all characters > 255 are in |
3770 | the class, so any that were explicitly given as well can be ignored. If |
3771 | (when there are explicit characters > 255 that must be listed) there are no |
3772 | characters < 256, we can omit the bitmap in the actual compiled code. */ |
3773 | |
3774 | #ifdef SUPPORT_UTF8 |
3775 | if (class_utf8 && !should_flip_negation) |
3776 | { |
3777 | *class_utf8data++ = XCL_END; /* Marks the end of extra data */ |
3778 | *code++ = OP_XCLASS; |
3779 | code += LINK_SIZE; |
3780 | *code = negate_class? XCL_NOT : 0; |
3781 | |
3782 | /* If the map is required, move up the extra data to make room for it; |
3783 | otherwise just move the code pointer to the end of the extra data. */ |
3784 | |
3785 | if (class_charcount > 0) |
3786 | { |
3787 | *code++ |= XCL_MAP; |
3788 | memmove(code + 32, code, class_utf8data - code); |
3789 | memcpy(code, classbits, 32); |
3790 | code = class_utf8data + 32; |
3791 | } |
3792 | else code = class_utf8data; |
3793 | |
3794 | /* Now fill in the complete length of the item */ |
3795 | |
3796 | PUT(previous, 1, code - previous); |
3797 | break; /* End of class handling */ |
3798 | } |
3799 | #endif |
3800 | |
3801 | /* If there are no characters > 255, set the opcode to OP_CLASS or |
3802 | OP_NCLASS, depending on whether the whole class was negated and whether |
3803 | there were negative specials such as \S in the class. Then copy the 32-byte |
3804 | map into the code vector, negating it if necessary. */ |
3805 | |
3806 | *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS; |
3807 | if (negate_class) |
3808 | { |
3809 | if (lengthptr == NULL) /* Save time in the pre-compile phase */ |
3810 | for (c = 0; c < 32; c++) code[c] = ~classbits[c]; |
3811 | } |
3812 | else |
3813 | { |
3814 | memcpy(code, classbits, 32); |
3815 | } |
3816 | code += 32; |
3817 | break; |
3818 | |
3819 | |
3820 | /* ===================================================================*/ |
3821 | /* Various kinds of repeat; '{' is not necessarily a quantifier, but this |
3822 | has been tested above. */ |
3823 | |
3824 | case CHAR_LEFT_CURLY_BRACKET: |
3825 | if (!is_quantifier) goto NORMAL_CHAR; |
3826 | ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr); |
3827 | if (*errorcodeptr != 0) goto FAILED; |
3828 | goto REPEAT; |
3829 | |
3830 | case CHAR_ASTERISK: |
3831 | repeat_min = 0; |
3832 | repeat_max = -1; |
3833 | goto REPEAT; |
3834 | |
3835 | case CHAR_PLUS: |
3836 | repeat_min = 1; |
3837 | repeat_max = -1; |
3838 | goto REPEAT; |
3839 | |
3840 | case CHAR_QUESTION_MARK: |
3841 | repeat_min = 0; |
3842 | repeat_max = 1; |
3843 | |
3844 | REPEAT: |
3845 | if (previous == NULL) |
3846 | { |
3847 | *errorcodeptr = ERR9; |
3848 | goto FAILED; |
3849 | } |
3850 | |
3851 | if (repeat_min == 0) |
3852 | { |
3853 | firstbyte = zerofirstbyte; /* Adjust for zero repeat */ |
3854 | reqbyte = zeroreqbyte; /* Ditto */ |
3855 | } |
3856 | |
3857 | /* Remember whether this is a variable length repeat */ |
3858 | |
3859 | reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY; |
3860 | |
3861 | op_type = 0; /* Default single-char op codes */ |
3862 | possessive_quantifier = FALSE; /* Default not possessive quantifier */ |
3863 | |
3864 | /* Save start of previous item, in case we have to move it up to make space |
3865 | for an inserted OP_ONCE for the additional '+' extension. */ |
3866 | |
3867 | tempcode = previous; |
3868 | |
3869 | /* If the next character is '+', we have a possessive quantifier. This |
3870 | implies greediness, whatever the setting of the PCRE_UNGREEDY option. |
3871 | If the next character is '?' this is a minimizing repeat, by default, |
3872 | but if PCRE_UNGREEDY is set, it works the other way round. We change the |
3873 | repeat type to the non-default. */ |
3874 | |
3875 | if (ptr[1] == CHAR_PLUS) |
3876 | { |
3877 | repeat_type = 0; /* Force greedy */ |
3878 | possessive_quantifier = TRUE; |
3879 | ptr++; |
3880 | } |
3881 | else if (ptr[1] == CHAR_QUESTION_MARK) |
3882 | { |
3883 | repeat_type = greedy_non_default; |
3884 | ptr++; |
3885 | } |
3886 | else repeat_type = greedy_default; |
3887 | |
3888 | /* If previous was a character match, abolish the item and generate a |
3889 | repeat item instead. If a char item has a minumum of more than one, ensure |
3890 | that it is set in reqbyte - it might not be if a sequence such as x{3} is |
3891 | the first thing in a branch because the x will have gone into firstbyte |
3892 | instead. */ |
3893 | |
3894 | if (*previous == OP_CHAR || *previous == OP_CHARNC) |
3895 | { |
3896 | /* Deal with UTF-8 characters that take up more than one byte. It's |
3897 | easier to write this out separately than try to macrify it. Use c to |
3898 | hold the length of the character in bytes, plus 0x80 to flag that it's a |
3899 | length rather than a small character. */ |
3900 | |
3901 | #ifdef SUPPORT_UTF8 |
3902 | if (utf8 && (code[-1] & 0x80) != 0) |
3903 | { |
3904 | uschar *lastchar = code - 1; |
3905 | while((*lastchar & 0xc0) == 0x80) lastchar--; |
3906 | c = code - lastchar; /* Length of UTF-8 character */ |
3907 | memcpy(utf8_char, lastchar, c); /* Save the char */ |
3908 | c |= 0x80; /* Flag c as a length */ |
3909 | } |
3910 | else |
3911 | #endif |
3912 | |
3913 | /* Handle the case of a single byte - either with no UTF8 support, or |
3914 | with UTF-8 disabled, or for a UTF-8 character < 128. */ |
3915 | |
3916 | { |
3917 | c = code[-1]; |
3918 | if (repeat_min > 1) reqbyte = c | req_caseopt | cd->req_varyopt; |
3919 | } |
3920 | |
3921 | /* If the repetition is unlimited, it pays to see if the next thing on |
3922 | the line is something that cannot possibly match this character. If so, |
3923 | automatically possessifying this item gains some performance in the case |
3924 | where the match fails. */ |
3925 | |
3926 | if (!possessive_quantifier && |
3927 | repeat_max < 0 && |
3928 | check_auto_possessive(*previous, c, utf8, utf8_char, ptr + 1, |
3929 | options, cd)) |
3930 | { |
3931 | repeat_type = 0; /* Force greedy */ |
3932 | possessive_quantifier = TRUE; |
3933 | } |
3934 | |
3935 | goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */ |
3936 | } |
3937 | |
3938 | /* If previous was a single negated character ([^a] or similar), we use |
3939 | one of the special opcodes, replacing it. The code is shared with single- |
3940 | character repeats by setting opt_type to add a suitable offset into |
3941 | repeat_type. We can also test for auto-possessification. OP_NOT is |
3942 | currently used only for single-byte chars. */ |
3943 | |
3944 | else if (*previous == OP_NOT) |
3945 | { |
3946 | op_type = OP_NOTSTAR - OP_STAR; /* Use "not" opcodes */ |
3947 | c = previous[1]; |
3948 | if (!possessive_quantifier && |
3949 | repeat_max < 0 && |
3950 | check_auto_possessive(OP_NOT, c, utf8, NULL, ptr + 1, options, cd)) |
3951 | { |
3952 | repeat_type = 0; /* Force greedy */ |
3953 | possessive_quantifier = TRUE; |
3954 | } |
3955 | goto OUTPUT_SINGLE_REPEAT; |
3956 | } |
3957 | |
3958 | /* If previous was a character type match (\d or similar), abolish it and |
3959 | create a suitable repeat item. The code is shared with single-character |
3960 | repeats by setting op_type to add a suitable offset into repeat_type. Note |
3961 | the the Unicode property types will be present only when SUPPORT_UCP is |
3962 | defined, but we don't wrap the little bits of code here because it just |
3963 | makes it horribly messy. */ |
3964 | |
3965 | else if (*previous < OP_EODN) |
3966 | { |
3967 | uschar *oldcode; |
3968 | int prop_type, prop_value; |
3969 | op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ |
3970 | c = *previous; |
3971 | |
3972 | if (!possessive_quantifier && |
3973 | repeat_max < 0 && |
3974 | check_auto_possessive(c, 0, utf8, NULL, ptr + 1, options, cd)) |
3975 | { |
3976 | repeat_type = 0; /* Force greedy */ |
3977 | possessive_quantifier = TRUE; |
3978 | } |
3979 | |
3980 | OUTPUT_SINGLE_REPEAT: |
3981 | if (*previous == OP_PROP || *previous == OP_NOTPROP) |
3982 | { |
3983 | prop_type = previous[1]; |
3984 | prop_value = previous[2]; |
3985 | } |
3986 | else prop_type = prop_value = -1; |
3987 | |
3988 | oldcode = code; |
3989 | code = previous; /* Usually overwrite previous item */ |
3990 | |
3991 | /* If the maximum is zero then the minimum must also be zero; Perl allows |
3992 | this case, so we do too - by simply omitting the item altogether. */ |
3993 | |
3994 | if (repeat_max == 0) goto END_REPEAT; |
3995 | |
3996 | /*--------------------------------------------------------------------*/ |
3997 | /* This code is obsolete from release 8.00; the restriction was finally |
3998 | removed: */ |
3999 | |
4000 | /* All real repeats make it impossible to handle partial matching (maybe |
4001 | one day we will be able to remove this restriction). */ |
4002 | |
4003 | /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ |
4004 | /*--------------------------------------------------------------------*/ |
4005 | |
4006 | /* Combine the op_type with the repeat_type */ |
4007 | |
4008 | repeat_type += op_type; |
4009 | |
4010 | /* A minimum of zero is handled either as the special case * or ?, or as |
4011 | an UPTO, with the maximum given. */ |
4012 | |
4013 | if (repeat_min == 0) |
4014 | { |
4015 | if (repeat_max == -1) *code++ = OP_STAR + repeat_type; |
4016 | else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type; |
4017 | else |
4018 | { |
4019 | *code++ = OP_UPTO + repeat_type; |
4020 | PUT2INC(code, 0, repeat_max); |
4021 | } |
4022 | } |
4023 | |
4024 | /* A repeat minimum of 1 is optimized into some special cases. If the |
4025 | maximum is unlimited, we use OP_PLUS. Otherwise, the original item is |
4026 | left in place and, if the maximum is greater than 1, we use OP_UPTO with |
4027 | one less than the maximum. */ |
4028 | |
4029 | else if (repeat_min == 1) |
4030 | { |
4031 | if (repeat_max == -1) |
4032 | *code++ = OP_PLUS + repeat_type; |
4033 | else |
4034 | { |
4035 | code = oldcode; /* leave previous item in place */ |
4036 | if (repeat_max == 1) goto END_REPEAT; |
4037 | *code++ = OP_UPTO + repeat_type; |
4038 | PUT2INC(code, 0, repeat_max - 1); |
4039 | } |
4040 | } |
4041 | |
4042 | /* The case {n,n} is just an EXACT, while the general case {n,m} is |
4043 | handled as an EXACT followed by an UPTO. */ |
4044 | |
4045 | else |
4046 | { |
4047 | *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */ |
4048 | PUT2INC(code, 0, repeat_min); |
4049 | |
4050 | /* If the maximum is unlimited, insert an OP_STAR. Before doing so, |
4051 | we have to insert the character for the previous code. For a repeated |
4052 | Unicode property match, there are two extra bytes that define the |
4053 | required property. In UTF-8 mode, long characters have their length in |
4054 | c, with the 0x80 bit as a flag. */ |
4055 | |
4056 | if (repeat_max < 0) |
4057 | { |
4058 | #ifdef SUPPORT_UTF8 |
4059 | if (utf8 && c >= 128) |
4060 | { |
4061 | memcpy(code, utf8_char, c & 7); |
4062 | code += c & 7; |
4063 | } |
4064 | else |
4065 | #endif |
4066 | { |
4067 | *code++ = c; |
4068 | if (prop_type >= 0) |
4069 | { |
4070 | *code++ = prop_type; |
4071 | *code++ = prop_value; |
4072 | } |
4073 | } |
4074 | *code++ = OP_STAR + repeat_type; |
4075 | } |
4076 | |
4077 | /* Else insert an UPTO if the max is greater than the min, again |
4078 | preceded by the character, for the previously inserted code. If the |
4079 | UPTO is just for 1 instance, we can use QUERY instead. */ |
4080 | |
4081 | else if (repeat_max != repeat_min) |
4082 | { |
4083 | #ifdef SUPPORT_UTF8 |
4084 | if (utf8 && c >= 128) |
4085 | { |
4086 | memcpy(code, utf8_char, c & 7); |
4087 | code += c & 7; |
4088 | } |
4089 | else |
4090 | #endif |
4091 | *code++ = c; |
4092 | if (prop_type >= 0) |
4093 | { |
4094 | *code++ = prop_type; |
4095 | *code++ = prop_value; |
4096 | } |
4097 | repeat_max -= repeat_min; |
4098 | |
4099 | if (repeat_max == 1) |
4100 | { |
4101 | *code++ = OP_QUERY + repeat_type; |
4102 | } |
4103 | else |
4104 | { |
4105 | *code++ = OP_UPTO + repeat_type; |
4106 | PUT2INC(code, 0, repeat_max); |
4107 | } |
4108 | } |
4109 | } |
4110 | |
4111 | /* The character or character type itself comes last in all cases. */ |
4112 | |
4113 | #ifdef SUPPORT_UTF8 |
4114 | if (utf8 && c >= 128) |
4115 | { |
4116 | memcpy(code, utf8_char, c & 7); |
4117 | code += c & 7; |
4118 | } |
4119 | else |
4120 | #endif |
4121 | *code++ = c; |
4122 | |
4123 | /* For a repeated Unicode property match, there are two extra bytes that |
4124 | define the required property. */ |
4125 | |
4126 | #ifdef SUPPORT_UCP |
4127 | if (prop_type >= 0) |
4128 | { |
4129 | *code++ = prop_type; |
4130 | *code++ = prop_value; |
4131 | } |
4132 | #endif |
4133 | } |
4134 | |
4135 | /* If previous was a character class or a back reference, we put the repeat |
4136 | stuff after it, but just skip the item if the repeat was {0,0}. */ |
4137 | |
4138 | else if (*previous == OP_CLASS || |
4139 | *previous == OP_NCLASS || |
4140 | #ifdef SUPPORT_UTF8 |
4141 | *previous == OP_XCLASS || |
4142 | #endif |
4143 | *previous == OP_REF) |
4144 | { |
4145 | if (repeat_max == 0) |
4146 | { |
4147 | code = previous; |
4148 | goto END_REPEAT; |
4149 | } |
4150 | |
4151 | /*--------------------------------------------------------------------*/ |
4152 | /* This code is obsolete from release 8.00; the restriction was finally |
4153 | removed: */ |
4154 | |
4155 | /* All real repeats make it impossible to handle partial matching (maybe |
4156 | one day we will be able to remove this restriction). */ |
4157 | |
4158 | /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ |
4159 | /*--------------------------------------------------------------------*/ |
4160 | |
4161 | if (repeat_min == 0 && repeat_max == -1) |
4162 | *code++ = OP_CRSTAR + repeat_type; |
4163 | else if (repeat_min == 1 && repeat_max == -1) |
4164 | *code++ = OP_CRPLUS + repeat_type; |
4165 | else if (repeat_min == 0 && repeat_max == 1) |
4166 | *code++ = OP_CRQUERY + repeat_type; |
4167 | else |
4168 | { |
4169 | *code++ = OP_CRRANGE + repeat_type; |
4170 | PUT2INC(code, 0, repeat_min); |
4171 | if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */ |
4172 | PUT2INC(code, 0, repeat_max); |
4173 | } |
4174 | } |
4175 | |
4176 | /* If previous was a bracket group, we may have to replicate it in certain |
4177 | cases. */ |
4178 | |
4179 | else if (*previous == OP_BRA || *previous == OP_CBRA || |
4180 | *previous == OP_ONCE || *previous == OP_COND) |
4181 | { |
4182 | register int i; |
4183 | int ketoffset = 0; |
4184 | int len = code - previous; |
4185 | uschar *bralink = NULL; |
4186 | |
4187 | /* Repeating a DEFINE group is pointless */ |
4188 | |
4189 | if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF) |
4190 | { |
4191 | *errorcodeptr = ERR55; |
4192 | goto FAILED; |
4193 | } |
4194 | |
4195 | /* If the maximum repeat count is unlimited, find the end of the bracket |
4196 | by scanning through from the start, and compute the offset back to it |
4197 | from the current code pointer. There may be an OP_OPT setting following |
4198 | the final KET, so we can't find the end just by going back from the code |
4199 | pointer. */ |
4200 | |
4201 | if (repeat_max == -1) |
4202 | { |
4203 | register uschar *ket = previous; |
4204 | do ket += GET(ket, 1); while (*ket != OP_KET); |
4205 | ketoffset = code - ket; |
4206 | } |
4207 | |
4208 | /* The case of a zero minimum is special because of the need to stick |
4209 | OP_BRAZERO in front of it, and because the group appears once in the |
4210 | data, whereas in other cases it appears the minimum number of times. For |
4211 | this reason, it is simplest to treat this case separately, as otherwise |
4212 | the code gets far too messy. There are several special subcases when the |
4213 | minimum is zero. */ |
4214 | |
4215 | if (repeat_min == 0) |
4216 | { |
4217 | /* If the maximum is also zero, we used to just omit the group from the |
4218 | output altogether, like this: |
4219 | |
4220 | ** if (repeat_max == 0) |
4221 | ** { |
4222 | ** code = previous; |
4223 | ** goto END_REPEAT; |
4224 | ** } |
4225 | |
4226 | However, that fails when a group is referenced as a subroutine from |
4227 | elsewhere in the pattern, so now we stick in OP_SKIPZERO in front of it |
4228 | so that it is skipped on execution. As we don't have a list of which |
4229 | groups are referenced, we cannot do this selectively. |
4230 | |
4231 | If the maximum is 1 or unlimited, we just have to stick in the BRAZERO |
4232 | and do no more at this point. However, we do need to adjust any |
4233 | OP_RECURSE calls inside the group that refer to the group itself or any |
4234 | internal or forward referenced group, because the offset is from the |
4235 | start of the whole regex. Temporarily terminate the pattern while doing |
4236 | this. */ |
4237 | |
4238 | if (repeat_max <= 1) /* Covers 0, 1, and unlimited */ |
4239 | { |
4240 | *code = OP_END; |
4241 | adjust_recurse(previous, 1, utf8, cd, save_hwm); |
4242 | memmove(previous+1, previous, len); |
4243 | code++; |
4244 | if (repeat_max == 0) |
4245 | { |
4246 | *previous++ = OP_SKIPZERO; |
4247 | goto END_REPEAT; |
4248 | } |
4249 | *previous++ = OP_BRAZERO + repeat_type; |
4250 | } |
4251 | |
4252 | /* If the maximum is greater than 1 and limited, we have to replicate |
4253 | in a nested fashion, sticking OP_BRAZERO before each set of brackets. |
4254 | The first one has to be handled carefully because it's the original |
4255 | copy, which has to be moved up. The remainder can be handled by code |
4256 | that is common with the non-zero minimum case below. We have to |
4257 | adjust the value or repeat_max, since one less copy is required. Once |
4258 | again, we may have to adjust any OP_RECURSE calls inside the group. */ |
4259 | |
4260 | else |
4261 | { |
4262 | int offset; |
4263 | *code = OP_END; |
4264 | adjust_recurse(previous, 2 + LINK_SIZE, utf8, cd, save_hwm); |
4265 | memmove(previous + 2 + LINK_SIZE, previous, len); |
4266 | code += 2 + LINK_SIZE; |
4267 | *previous++ = OP_BRAZERO + repeat_type; |
4268 | *previous++ = OP_BRA; |
4269 | |
4270 | /* We chain together the bracket offset fields that have to be |
4271 | filled in later when the ends of the brackets are reached. */ |
4272 | |
4273 | offset = (bralink == NULL)? 0 : previous - bralink; |
4274 | bralink = previous; |
4275 | PUTINC(previous, 0, offset); |
4276 | } |
4277 | |
4278 | repeat_max--; |
4279 | } |
4280 | |
4281 | /* If the minimum is greater than zero, replicate the group as many |
4282 | times as necessary, and adjust the maximum to the number of subsequent |
4283 | copies that we need. If we set a first char from the group, and didn't |
4284 | set a required char, copy the latter from the former. If there are any |
4285 | forward reference subroutine calls in the group, there will be entries on |
4286 | the workspace list; replicate these with an appropriate increment. */ |
4287 | |
4288 | else |
4289 | { |
4290 | if (repeat_min > 1) |
4291 | { |
4292 | /* In the pre-compile phase, we don't actually do the replication. We |
4293 | just adjust the length as if we had. Do some paranoid checks for |
4294 | potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit |
4295 | integer type when available, otherwise double. */ |
4296 | |
4297 | if (lengthptr != NULL) |
4298 | { |
4299 | int delta = (repeat_min - 1)*length_prevgroup; |
4300 | if ((INT64_OR_DOUBLE)(repeat_min - 1)* |
4301 | (INT64_OR_DOUBLE)length_prevgroup > |
4302 | (INT64_OR_DOUBLE)INT_MAX || |
4303 | OFLOW_MAX - *lengthptr < delta) |
4304 | { |
4305 | *errorcodeptr = ERR20; |
4306 | goto FAILED; |
4307 | } |
4308 | *lengthptr += delta; |
4309 | } |
4310 | |
4311 | /* This is compiling for real */ |
4312 | |
4313 | else |
4314 | { |
4315 | if (groupsetfirstbyte && reqbyte < 0) reqbyte = firstbyte; |
4316 | for (i = 1; i < repeat_min; i++) |
4317 | { |
4318 | uschar *hc; |
4319 | uschar *this_hwm = cd->hwm; |
4320 | memcpy(code, previous, len); |
4321 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
4322 | { |
4323 | PUT(cd->hwm, 0, GET(hc, 0) + len); |
4324 | cd->hwm += LINK_SIZE; |
4325 | } |
4326 | save_hwm = this_hwm; |
4327 | code += len; |
4328 | } |
4329 | } |
4330 | } |
4331 | |
4332 | if (repeat_max > 0) repeat_max -= repeat_min; |
4333 | } |
4334 | |
4335 | /* This code is common to both the zero and non-zero minimum cases. If |
4336 | the maximum is limited, it replicates the group in a nested fashion, |
4337 | remembering the bracket starts on a stack. In the case of a zero minimum, |
4338 | the first one was set up above. In all cases the repeat_max now specifies |
4339 | the number of additional copies needed. Again, we must remember to |
4340 | replicate entries on the forward reference list. */ |
4341 | |
4342 | if (repeat_max >= 0) |
4343 | { |
4344 | /* In the pre-compile phase, we don't actually do the replication. We |
4345 | just adjust the length as if we had. For each repetition we must add 1 |
4346 | to the length for BRAZERO and for all but the last repetition we must |
4347 | add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some |
4348 | paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is |
4349 | a 64-bit integer type when available, otherwise double. */ |
4350 | |
4351 | if (lengthptr != NULL && repeat_max > 0) |
4352 | { |
4353 | int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) - |
4354 | 2 - 2*LINK_SIZE; /* Last one doesn't nest */ |
4355 | if ((INT64_OR_DOUBLE)repeat_max * |
4356 | (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE) |
4357 | > (INT64_OR_DOUBLE)INT_MAX || |
4358 | OFLOW_MAX - *lengthptr < delta) |
4359 | { |
4360 | *errorcodeptr = ERR20; |
4361 | goto FAILED; |
4362 | } |
4363 | *lengthptr += delta; |
4364 | } |
4365 | |
4366 | /* This is compiling for real */ |
4367 | |
4368 | else for (i = repeat_max - 1; i >= 0; i--) |
4369 | { |
4370 | uschar *hc; |
4371 | uschar *this_hwm = cd->hwm; |
4372 | |
4373 | *code++ = OP_BRAZERO + repeat_type; |
4374 | |
4375 | /* All but the final copy start a new nesting, maintaining the |
4376 | chain of brackets outstanding. */ |
4377 | |
4378 | if (i != 0) |
4379 | { |
4380 | int offset; |
4381 | *code++ = OP_BRA; |
4382 | offset = (bralink == NULL)? 0 : code - bralink; |
4383 | bralink = code; |
4384 | PUTINC(code, 0, offset); |
4385 | } |
4386 | |
4387 | memcpy(code, previous, len); |
4388 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
4389 | { |
4390 | PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1)); |
4391 | cd->hwm += LINK_SIZE; |
4392 | } |
4393 | save_hwm = this_hwm; |
4394 | code += len; |
4395 | } |
4396 | |
4397 | /* Now chain through the pending brackets, and fill in their length |
4398 | fields (which are holding the chain links pro tem). */ |
4399 | |
4400 | while (bralink != NULL) |
4401 | { |
4402 | int oldlinkoffset; |
4403 | int offset = code - bralink + 1; |
4404 | uschar *bra = code - offset; |
4405 | oldlinkoffset = GET(bra, 1); |
4406 | bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset; |
4407 | *code++ = OP_KET; |
4408 | PUTINC(code, 0, offset); |
4409 | PUT(bra, 1, offset); |
4410 | } |
4411 | } |
4412 | |
4413 | /* If the maximum is unlimited, set a repeater in the final copy. We |
4414 | can't just offset backwards from the current code point, because we |
4415 | don't know if there's been an options resetting after the ket. The |
4416 | correct offset was computed above. |
4417 | |
4418 | Then, when we are doing the actual compile phase, check to see whether |
4419 | this group is a non-atomic one that could match an empty string. If so, |
4420 | convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so |
4421 | that runtime checking can be done. [This check is also applied to |
4422 | atomic groups at runtime, but in a different way.] */ |
4423 | |
4424 | else |
4425 | { |
4426 | uschar *ketcode = code - ketoffset; |
4427 | uschar *bracode = ketcode - GET(ketcode, 1); |
4428 | *ketcode = OP_KETRMAX + repeat_type; |
4429 | if (lengthptr == NULL && *bracode != OP_ONCE) |
4430 | { |
4431 | uschar *scode = bracode; |
4432 | do |
4433 | { |
4434 | if (could_be_empty_branch(scode, ketcode, utf8, cd)) |
4435 | { |
4436 | *bracode += OP_SBRA - OP_BRA; |
4437 | break; |
4438 | } |
4439 | scode += GET(scode, 1); |
4440 | } |
4441 | while (*scode == OP_ALT); |
4442 | } |
4443 | } |
4444 | } |
4445 | |
4446 | /* If previous is OP_FAIL, it was generated by an empty class [] in |
4447 | JavaScript mode. The other ways in which OP_FAIL can be generated, that is |
4448 | by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat" |
4449 | error above. We can just ignore the repeat in JS case. */ |
4450 | |
4451 | else if (*previous == OP_FAIL) goto END_REPEAT; |
4452 | |
4453 | /* Else there's some kind of shambles */ |
4454 | |
4455 | else |
4456 | { |
4457 | *errorcodeptr = ERR11; |
4458 | goto FAILED; |
4459 | } |
4460 | |
4461 | /* If the character following a repeat is '+', or if certain optimization |
4462 | tests above succeeded, possessive_quantifier is TRUE. For some of the |
4463 | simpler opcodes, there is an special alternative opcode for this. For |
4464 | anything else, we wrap the entire repeated item inside OP_ONCE brackets. |
4465 | The '+' notation is just syntactic sugar, taken from Sun's Java package, |
4466 | but the special opcodes can optimize it a bit. The repeated item starts at |
4467 | tempcode, not at previous, which might be the first part of a string whose |
4468 | (former) last char we repeated. |
4469 | |
4470 | Possessifying an 'exact' quantifier has no effect, so we can ignore it. But |
4471 | an 'upto' may follow. We skip over an 'exact' item, and then test the |
4472 | length of what remains before proceeding. */ |
4473 | |
4474 | if (possessive_quantifier) |
4475 | { |
4476 | int len; |
4477 | |
4478 | if (*tempcode == OP_TYPEEXACT) |
4479 | tempcode += _pcre_OP_lengths[*tempcode] + |
4480 | ((tempcode[3] == OP_PROP || tempcode[3] == OP_NOTPROP)? 2 : 0); |
4481 | |
4482 | else if (*tempcode == OP_EXACT || *tempcode == OP_NOTEXACT) |
4483 | { |
4484 | tempcode += _pcre_OP_lengths[*tempcode]; |
4485 | #ifdef SUPPORT_UTF8 |
4486 | if (utf8 && tempcode[-1] >= 0xc0) |
4487 | tempcode += _pcre_utf8_table4[tempcode[-1] & 0x3f]; |
4488 | #endif |
4489 | } |
4490 | |
4491 | len = code - tempcode; |
4492 | if (len > 0) switch (*tempcode) |
4493 | { |
4494 | case OP_STAR: *tempcode = OP_POSSTAR; break; |
4495 | case OP_PLUS: *tempcode = OP_POSPLUS; break; |
4496 | case OP_QUERY: *tempcode = OP_POSQUERY; break; |
4497 | case OP_UPTO: *tempcode = OP_POSUPTO; break; |
4498 | |
4499 | case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break; |
4500 | case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break; |
4501 | case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break; |
4502 | case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break; |
4503 | |
4504 | case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break; |
4505 | case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break; |
4506 | case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break; |
4507 | case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break; |
4508 | |
4509 | /* Because we are moving code along, we must ensure that any |
4510 | pending recursive references are updated. */ |
4511 | |
4512 | default: |
4513 | *code = OP_END; |
4514 | adjust_recurse(tempcode, 1 + LINK_SIZE, utf8, cd, save_hwm); |
4515 | memmove(tempcode + 1+LINK_SIZE, tempcode, len); |
4516 | code += 1 + LINK_SIZE; |
4517 | len += 1 + LINK_SIZE; |
4518 | tempcode[0] = OP_ONCE; |
4519 | *code++ = OP_KET; |
4520 | PUTINC(code, 0, len); |
4521 | PUT(tempcode, 1, len); |
4522 | break; |
4523 | } |
4524 | } |
4525 | |
4526 | /* In all case we no longer have a previous item. We also set the |
4527 | "follows varying string" flag for subsequently encountered reqbytes if |
4528 | it isn't already set and we have just passed a varying length item. */ |
4529 | |
4530 | END_REPEAT: |
4531 | previous = NULL; |
4532 | cd->req_varyopt |= reqvary; |
4533 | break; |
4534 | |
4535 | |
4536 | /* ===================================================================*/ |
4537 | /* Start of nested parenthesized sub-expression, or comment or lookahead or |
4538 | lookbehind or option setting or condition or all the other extended |
4539 | parenthesis forms. */ |
4540 | |
4541 | case CHAR_LEFT_PARENTHESIS: |
4542 | newoptions = options; |
4543 | skipbytes = 0; |
4544 | bravalue = OP_CBRA; |
4545 | save_hwm = cd->hwm; |
4546 | reset_bracount = FALSE; |
4547 | |
4548 | /* First deal with various "verbs" that can be introduced by '*'. */ |
4549 | |
4550 | if (*(++ptr) == CHAR_ASTERISK && |
4551 | ((cd->ctypes[ptr[1]] & ctype_letter) != 0 || ptr[1] == ':')) |
4552 | { |
4553 | int i, namelen; |
4554 | int arglen = 0; |
4555 | const char *vn = verbnames; |
4556 | const uschar *name = ptr + 1; |
4557 | const uschar *arg = NULL; |
4558 | previous = NULL; |
4559 | while ((cd->ctypes[*++ptr] & ctype_letter) != 0) {}; |
4560 | namelen = ptr - name; |
4561 | |
4562 | if (*ptr == CHAR_COLON) |
4563 | { |
4564 | arg = ++ptr; |
4565 | while ((cd->ctypes[*ptr] & (ctype_letter|ctype_digit)) != 0 |
4566 | || *ptr == '_') ptr++; |
4567 | arglen = ptr - arg; |
4568 | } |
4569 | |
4570 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
4571 | { |
4572 | *errorcodeptr = ERR60; |
4573 | goto FAILED; |
4574 | } |
4575 | |
4576 | /* Scan the table of verb names */ |
4577 | |
4578 | for (i = 0; i < verbcount; i++) |
4579 | { |
4580 | if (namelen == verbs[i].len && |
4581 | strncmp((char *)name, vn, namelen) == 0) |
4582 | { |
4583 | /* Check for open captures before ACCEPT */ |
4584 | |
4585 | if (verbs[i].op == OP_ACCEPT) |
4586 | { |
4587 | open_capitem *oc; |
4588 | cd->had_accept = TRUE; |
4589 | for (oc = cd->open_caps; oc != NULL; oc = oc->next) |
4590 | { |
4591 | *code++ = OP_CLOSE; |
4592 | PUT2INC(code, 0, oc->number); |
4593 | } |
4594 | } |
4595 | |
4596 | /* Handle the cases with/without an argument */ |
4597 | |
4598 | if (arglen == 0) |
4599 | { |
4600 | if (verbs[i].op < 0) /* Argument is mandatory */ |
4601 | { |
4602 | *errorcodeptr = ERR66; |
4603 | goto FAILED; |
4604 | } |
4605 | *code++ = verbs[i].op; |
4606 | } |
4607 | |
4608 | else |
4609 | { |
4610 | if (verbs[i].op_arg < 0) /* Argument is forbidden */ |
4611 | { |
4612 | *errorcodeptr = ERR59; |
4613 | goto FAILED; |
4614 | } |
4615 | *code++ = verbs[i].op_arg; |
4616 | *code++ = arglen; |
4617 | memcpy(code, arg, arglen); |
4618 | code += arglen; |
4619 | *code++ = 0; |
4620 | } |
4621 | |
4622 | break; /* Found verb, exit loop */ |
4623 | } |
4624 | |
4625 | vn += verbs[i].len + 1; |
4626 | } |
4627 | |
4628 | if (i < verbcount) continue; /* Successfully handled a verb */ |
4629 | *errorcodeptr = ERR60; /* Verb not recognized */ |
4630 | goto FAILED; |
4631 | } |
4632 | |
4633 | /* Deal with the extended parentheses; all are introduced by '?', and the |
4634 | appearance of any of them means that this is not a capturing group. */ |
4635 | |
4636 | else if (*ptr == CHAR_QUESTION_MARK) |
4637 | { |
4638 | int i, set, unset, namelen; |
4639 | int *optset; |
4640 | const uschar *name; |
4641 | uschar *slot; |
4642 | |
4643 | switch (*(++ptr)) |
4644 | { |
4645 | case CHAR_NUMBER_SIGN: /* Comment; skip to ket */ |
4646 | ptr++; |
4647 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
4648 | if (*ptr == 0) |
4649 | { |
4650 | *errorcodeptr = ERR18; |
4651 | goto FAILED; |
4652 | } |
4653 | continue; |
4654 | |
4655 | |
4656 | /* ------------------------------------------------------------ */ |
4657 | case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */ |
4658 | reset_bracount = TRUE; |
4659 | /* Fall through */ |
4660 | |
4661 | /* ------------------------------------------------------------ */ |
4662 | case CHAR_COLON: /* Non-capturing bracket */ |
4663 | bravalue = OP_BRA; |
4664 | ptr++; |
4665 | break; |
4666 | |
4667 | |
4668 | /* ------------------------------------------------------------ */ |
4669 | case CHAR_LEFT_PARENTHESIS: |
4670 | bravalue = OP_COND; /* Conditional group */ |
4671 | |
4672 | /* A condition can be an assertion, a number (referring to a numbered |
4673 | group), a name (referring to a named group), or 'R', referring to |
4674 | recursion. R<digits> and R&name are also permitted for recursion tests. |
4675 | |
4676 | There are several syntaxes for testing a named group: (?(name)) is used |
4677 | by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')). |
4678 | |
4679 | There are two unfortunate ambiguities, caused by history. (a) 'R' can |
4680 | be the recursive thing or the name 'R' (and similarly for 'R' followed |
4681 | by digits), and (b) a number could be a name that consists of digits. |
4682 | In both cases, we look for a name first; if not found, we try the other |
4683 | cases. */ |
4684 | |
4685 | /* For conditions that are assertions, check the syntax, and then exit |
4686 | the switch. This will take control down to where bracketed groups, |
4687 | including assertions, are processed. */ |
4688 | |
4689 | if (ptr[1] == CHAR_QUESTION_MARK && (ptr[2] == CHAR_EQUALS_SIGN || |
4690 | ptr[2] == CHAR_EXCLAMATION_MARK || ptr[2] == CHAR_LESS_THAN_SIGN)) |
4691 | break; |
4692 | |
4693 | /* Most other conditions use OP_CREF (a couple change to OP_RREF |
4694 | below), and all need to skip 3 bytes at the start of the group. */ |
4695 | |
4696 | code[1+LINK_SIZE] = OP_CREF; |
4697 | skipbytes = 3; |
4698 | refsign = -1; |
4699 | |
4700 | /* Check for a test for recursion in a named group. */ |
4701 | |
4702 | if (ptr[1] == CHAR_R && ptr[2] == CHAR_AMPERSAND) |
4703 | { |
4704 | terminator = -1; |
4705 | ptr += 2; |
4706 | code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */ |
4707 | } |
4708 | |
4709 | /* Check for a test for a named group's having been set, using the Perl |
4710 | syntax (?(<name>) or (?('name') */ |
4711 | |
4712 | else if (ptr[1] == CHAR_LESS_THAN_SIGN) |
4713 | { |
4714 | terminator = CHAR_GREATER_THAN_SIGN; |
4715 | ptr++; |
4716 | } |
4717 | else if (ptr[1] == CHAR_APOSTROPHE) |
4718 | { |
4719 | terminator = CHAR_APOSTROPHE; |
4720 | ptr++; |
4721 | } |
4722 | else |
4723 | { |
4724 | terminator = 0; |
4725 | if (ptr[1] == CHAR_MINUS || ptr[1] == CHAR_PLUS) refsign = *(++ptr); |
4726 | } |
4727 | |
4728 | /* We now expect to read a name; any thing else is an error */ |
4729 | |
4730 | if ((cd->ctypes[ptr[1]] & ctype_word) == 0) |
4731 | { |
4732 | ptr += 1; /* To get the right offset */ |
4733 | *errorcodeptr = ERR28; |
4734 | goto FAILED; |
4735 | } |
4736 | |
4737 | /* Read the name, but also get it as a number if it's all digits */ |
4738 | |
4739 | recno = 0; |
4740 | name = ++ptr; |
4741 | while ((cd->ctypes[*ptr] & ctype_word) != 0) |
4742 | { |
4743 | if (recno >= 0) |
4744 | recno = ((digitab[*ptr] & ctype_digit) != 0)? |
4745 | recno * 10 + *ptr - CHAR_0 : -1; |
4746 | ptr++; |
4747 | } |
4748 | namelen = ptr - name; |
4749 | |
4750 | if ((terminator > 0 && *ptr++ != terminator) || |
4751 | *ptr++ != CHAR_RIGHT_PARENTHESIS) |
4752 | { |
4753 | ptr--; /* Error offset */ |
4754 | *errorcodeptr = ERR26; |
4755 | goto FAILED; |
4756 | } |
4757 | |
4758 | /* Do no further checking in the pre-compile phase. */ |
4759 | |
4760 | if (lengthptr != NULL) break; |
4761 | |
4762 | /* In the real compile we do the work of looking for the actual |
4763 | reference. If the string started with "+" or "-" we require the rest to |
4764 | be digits, in which case recno will be set. */ |
4765 | |
4766 | if (refsign > 0) |
4767 | { |
4768 | if (recno <= 0) |
4769 | { |
4770 | *errorcodeptr = ERR58; |
4771 | goto FAILED; |
4772 | } |
4773 | recno = (refsign == CHAR_MINUS)? |
4774 | cd->bracount - recno + 1 : recno +cd->bracount; |
4775 | if (recno <= 0 || recno > cd->final_bracount) |
4776 | { |
4777 | *errorcodeptr = ERR15; |
4778 | goto FAILED; |
4779 | } |
4780 | PUT2(code, 2+LINK_SIZE, recno); |
4781 | break; |
4782 | } |
4783 | |
4784 | /* Otherwise (did not start with "+" or "-"), start by looking for the |
4785 | name. If we find a name, add one to the opcode to change OP_CREF or |
4786 | OP_RREF into OP_NCREF or OP_NRREF. These behave exactly the same, |
4787 | except they record that the reference was originally to a name. The |
4788 | information is used to check duplicate names. */ |
4789 | |
4790 | slot = cd->name_table; |
4791 | for (i = 0; i < cd->names_found; i++) |
4792 | { |
4793 | if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break; |
4794 | slot += cd->name_entry_size; |
4795 | } |
4796 | |
4797 | /* Found a previous named subpattern */ |
4798 | |
4799 | if (i < cd->names_found) |
4800 | { |
4801 | recno = GET2(slot, 0); |
4802 | PUT2(code, 2+LINK_SIZE, recno); |
4803 | code[1+LINK_SIZE]++; |
4804 | } |
4805 | |
4806 | /* Search the pattern for a forward reference */ |
4807 | |
4808 | else if ((i = find_parens(cd, name, namelen, |
4809 | (options & PCRE_EXTENDED) != 0)) > 0) |
4810 | { |
4811 | PUT2(code, 2+LINK_SIZE, i); |
4812 | code[1+LINK_SIZE]++; |
4813 | } |
4814 | |
4815 | /* If terminator == 0 it means that the name followed directly after |
4816 | the opening parenthesis [e.g. (?(abc)...] and in this case there are |
4817 | some further alternatives to try. For the cases where terminator != 0 |
4818 | [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have |
4819 | now checked all the possibilities, so give an error. */ |
4820 | |
4821 | else if (terminator != 0) |
4822 | { |
4823 | *errorcodeptr = ERR15; |
4824 | goto FAILED; |
4825 | } |
4826 | |
4827 | /* Check for (?(R) for recursion. Allow digits after R to specify a |
4828 | specific group number. */ |
4829 | |
4830 | else if (*name == CHAR_R) |
4831 | { |
4832 | recno = 0; |
4833 | for (i = 1; i < namelen; i++) |
4834 | { |
4835 | if ((digitab[name[i]] & ctype_digit) == 0) |
4836 | { |
4837 | *errorcodeptr = ERR15; |
4838 | goto FAILED; |
4839 | } |
4840 | recno = recno * 10 + name[i] - CHAR_0; |
4841 | } |
4842 | if (recno == 0) recno = RREF_ANY; |
4843 | code[1+LINK_SIZE] = OP_RREF; /* Change test type */ |
4844 | PUT2(code, 2+LINK_SIZE, recno); |
4845 | } |
4846 | |
4847 | /* Similarly, check for the (?(DEFINE) "condition", which is always |
4848 | false. */ |
4849 | |
4850 | else if (namelen == 6 && strncmp((char *)name, STRING_DEFINE, 6) == 0) |
4851 | { |
4852 | code[1+LINK_SIZE] = OP_DEF; |
4853 | skipbytes = 1; |
4854 | } |
4855 | |
4856 | /* Check for the "name" actually being a subpattern number. We are |
4857 | in the second pass here, so final_bracount is set. */ |
4858 | |
4859 | else if (recno > 0 && recno <= cd->final_bracount) |
4860 | { |
4861 | PUT2(code, 2+LINK_SIZE, recno); |
4862 | } |
4863 | |
4864 | /* Either an unidentified subpattern, or a reference to (?(0) */ |
4865 | |
4866 | else |
4867 | { |
4868 | *errorcodeptr = (recno == 0)? ERR35: ERR15; |
4869 | goto FAILED; |
4870 | } |
4871 | break; |
4872 | |
4873 | |
4874 | /* ------------------------------------------------------------ */ |
4875 | case CHAR_EQUALS_SIGN: /* Positive lookahead */ |
4876 | bravalue = OP_ASSERT; |
4877 | ptr++; |
4878 | break; |
4879 | |
4880 | |
4881 | /* ------------------------------------------------------------ */ |
4882 | case CHAR_EXCLAMATION_MARK: /* Negative lookahead */ |
4883 | ptr++; |
4884 | if (*ptr == CHAR_RIGHT_PARENTHESIS) /* Optimize (?!) */ |
4885 | { |
4886 | *code++ = OP_FAIL; |
4887 | previous = NULL; |
4888 | continue; |
4889 | } |
4890 | bravalue = OP_ASSERT_NOT; |
4891 | break; |
4892 | |
4893 | |
4894 | /* ------------------------------------------------------------ */ |
4895 | case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */ |
4896 | switch (ptr[1]) |
4897 | { |
4898 | case CHAR_EQUALS_SIGN: /* Positive lookbehind */ |
4899 | bravalue = OP_ASSERTBACK; |
4900 | ptr += 2; |
4901 | break; |
4902 | |
4903 | case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */ |
4904 | bravalue = OP_ASSERTBACK_NOT; |
4905 | ptr += 2; |
4906 | break; |
4907 | |
4908 | default: /* Could be name define, else bad */ |
4909 | if ((cd->ctypes[ptr[1]] & ctype_word) != 0) goto DEFINE_NAME; |
4910 | ptr++; /* Correct offset for error */ |
4911 | *errorcodeptr = ERR24; |
4912 | goto FAILED; |
4913 | } |
4914 | break; |
4915 | |
4916 | |
4917 | /* ------------------------------------------------------------ */ |
4918 | case CHAR_GREATER_THAN_SIGN: /* One-time brackets */ |
4919 | bravalue = OP_ONCE; |
4920 | ptr++; |
4921 | break; |
4922 | |
4923 | |
4924 | /* ------------------------------------------------------------ */ |
4925 | case CHAR_C: /* Callout - may be followed by digits; */ |
4926 | previous_callout = code; /* Save for later completion */ |
4927 | after_manual_callout = 1; /* Skip one item before completing */ |
4928 | *code++ = OP_CALLOUT; |
4929 | { |
4930 | int n = 0; |
4931 | while ((digitab[*(++ptr)] & ctype_digit) != 0) |
4932 | n = n * 10 + *ptr - CHAR_0; |
4933 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
4934 | { |
4935 | *errorcodeptr = ERR39; |
4936 | goto FAILED; |
4937 | } |
4938 | if (n > 255) |
4939 | { |
4940 | *errorcodeptr = ERR38; |
4941 | goto FAILED; |
4942 | } |
4943 | *code++ = n; |
4944 | PUT(code, 0, ptr - cd->start_pattern + 1); /* Pattern offset */ |
4945 | PUT(code, LINK_SIZE, 0); /* Default length */ |
4946 | code += 2 * LINK_SIZE; |
4947 | } |
4948 | previous = NULL; |
4949 | continue; |
4950 | |
4951 | |
4952 | /* ------------------------------------------------------------ */ |
4953 | case CHAR_P: /* Python-style named subpattern handling */ |
4954 | if (*(++ptr) == CHAR_EQUALS_SIGN || |
4955 | *ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */ |
4956 | { |
4957 | is_recurse = *ptr == CHAR_GREATER_THAN_SIGN; |
4958 | terminator = CHAR_RIGHT_PARENTHESIS; |
4959 | goto NAMED_REF_OR_RECURSE; |
4960 | } |
4961 | else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */ |
4962 | { |
4963 | *errorcodeptr = ERR41; |
4964 | goto FAILED; |
4965 | } |
4966 | /* Fall through to handle (?P< as (?< is handled */ |
4967 | |
4968 | |
4969 | /* ------------------------------------------------------------ */ |
4970 | DEFINE_NAME: /* Come here from (?< handling */ |
4971 | case CHAR_APOSTROPHE: |
4972 | { |
4973 | terminator = (*ptr == CHAR_LESS_THAN_SIGN)? |
4974 | CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE; |
4975 | name = ++ptr; |
4976 | |
4977 | while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++; |
4978 | namelen = ptr - name; |
4979 | |
4980 | /* In the pre-compile phase, just do a syntax check. */ |
4981 | |
4982 | if (lengthptr != NULL) |
4983 | { |
4984 | if (*ptr != terminator) |
4985 | { |
4986 | *errorcodeptr = ERR42; |
4987 | goto FAILED; |
4988 | } |
4989 | if (cd->names_found >= MAX_NAME_COUNT) |
4990 | { |
4991 | *errorcodeptr = ERR49; |
4992 | goto FAILED; |
4993 | } |
4994 | if (namelen + 3 > cd->name_entry_size) |
4995 | { |
4996 | cd->name_entry_size = namelen + 3; |
4997 | if (namelen > MAX_NAME_SIZE) |
4998 | { |
4999 | *errorcodeptr = ERR48; |
5000 | goto FAILED; |
5001 | } |
5002 | } |
5003 | } |
5004 | |
5005 | /* In the real compile, create the entry in the table, maintaining |
5006 | alphabetical order. Duplicate names for different numbers are |
5007 | permitted only if PCRE_DUPNAMES is set. Duplicate names for the same |
5008 | number are always OK. (An existing number can be re-used if (?| |
5009 | appears in the pattern.) In either event, a duplicate name results in |
5010 | a duplicate entry in the table, even if the number is the same. This |
5011 | is because the number of names, and hence the table size, is computed |
5012 | in the pre-compile, and it affects various numbers and pointers which |
5013 | would all have to be modified, and the compiled code moved down, if |
5014 | duplicates with the same number were omitted from the table. This |
5015 | doesn't seem worth the hassle. However, *different* names for the |
5016 | same number are not permitted. */ |
5017 | |
5018 | else |
5019 | { |
5020 | BOOL dupname = FALSE; |
5021 | slot = cd->name_table; |
5022 | |
5023 | for (i = 0; i < cd->names_found; i++) |
5024 | { |
5025 | int crc = memcmp(name, slot+2, namelen); |
5026 | if (crc == 0) |
5027 | { |
5028 | if (slot[2+namelen] == 0) |
5029 | { |
5030 | if (GET2(slot, 0) != cd->bracount + 1 && |
5031 | (options & PCRE_DUPNAMES) == 0) |
5032 | { |
5033 | *errorcodeptr = ERR43; |
5034 | goto FAILED; |
5035 | } |
5036 | else dupname = TRUE; |
5037 | } |
5038 | else crc = -1; /* Current name is a substring */ |
5039 | } |
5040 | |
5041 | /* Make space in the table and break the loop for an earlier |
5042 | name. For a duplicate or later name, carry on. We do this for |
5043 | duplicates so that in the simple case (when ?(| is not used) they |
5044 | are in order of their numbers. */ |
5045 | |
5046 | if (crc < 0) |
5047 | { |
5048 | memmove(slot + cd->name_entry_size, slot, |
5049 | (cd->names_found - i) * cd->name_entry_size); |
5050 | break; |
5051 | } |
5052 | |
5053 | /* Continue the loop for a later or duplicate name */ |
5054 | |
5055 | slot += cd->name_entry_size; |
5056 | } |
5057 | |
5058 | /* For non-duplicate names, check for a duplicate number before |
5059 | adding the new name. */ |
5060 | |
5061 | if (!dupname) |
5062 | { |
5063 | uschar *cslot = cd->name_table; |
5064 | for (i = 0; i < cd->names_found; i++) |
5065 | { |
5066 | if (cslot != slot) |
5067 | { |
5068 | if (GET2(cslot, 0) == cd->bracount + 1) |
5069 | { |
5070 | *errorcodeptr = ERR65; |
5071 | goto FAILED; |
5072 | } |
5073 | } |
5074 | else i--; |
5075 | cslot += cd->name_entry_size; |
5076 | } |
5077 | } |
5078 | |
5079 | PUT2(slot, 0, cd->bracount + 1); |
5080 | memcpy(slot + 2, name, namelen); |
5081 | slot[2+namelen] = 0; |
5082 | } |
5083 | } |
5084 | |
5085 | /* In both pre-compile and compile, count the number of names we've |
5086 | encountered. */ |
5087 | |
5088 | cd->names_found++; |
5089 | ptr++; /* Move past > or ' */ |
5090 | goto NUMBERED_GROUP; |
5091 | |
5092 | |
5093 | /* ------------------------------------------------------------ */ |
5094 | case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */ |
5095 | terminator = CHAR_RIGHT_PARENTHESIS; |
5096 | is_recurse = TRUE; |
5097 | /* Fall through */ |
5098 | |
5099 | /* We come here from the Python syntax above that handles both |
5100 | references (?P=name) and recursion (?P>name), as well as falling |
5101 | through from the Perl recursion syntax (?&name). We also come here from |
5102 | the Perl \k<name> or \k'name' back reference syntax and the \k{name} |
5103 | .NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */ |
5104 | |
5105 | NAMED_REF_OR_RECURSE: |
5106 | name = ++ptr; |
5107 | while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++; |
5108 | namelen = ptr - name; |
5109 | |
5110 | /* In the pre-compile phase, do a syntax check and set a dummy |
5111 | reference number. */ |
5112 | |
5113 | if (lengthptr != NULL) |
5114 | { |
5115 | if (namelen == 0) |
5116 | { |
5117 | *errorcodeptr = ERR62; |
5118 | goto FAILED; |
5119 | } |
5120 | if (*ptr != terminator) |
5121 | { |
5122 | *errorcodeptr = ERR42; |
5123 | goto FAILED; |
5124 | } |
5125 | if (namelen > MAX_NAME_SIZE) |
5126 | { |
5127 | *errorcodeptr = ERR48; |
5128 | goto FAILED; |
5129 | } |
5130 | recno = 0; |
5131 | } |
5132 | |
5133 | /* In the real compile, seek the name in the table. We check the name |
5134 | first, and then check that we have reached the end of the name in the |
5135 | table. That way, if the name that is longer than any in the table, |
5136 | the comparison will fail without reading beyond the table entry. */ |
5137 | |
5138 | else |
5139 | { |
5140 | slot = cd->name_table; |
5141 | for (i = 0; i < cd->names_found; i++) |
5142 | { |
5143 | if (strncmp((char *)name, (char *)slot+2, namelen) == 0 && |
5144 | slot[2+namelen] == 0) |
5145 | break; |
5146 | slot += cd->name_entry_size; |
5147 | } |
5148 | |
5149 | if (i < cd->names_found) /* Back reference */ |
5150 | { |
5151 | recno = GET2(slot, 0); |
5152 | } |
5153 | else if ((recno = /* Forward back reference */ |
5154 | find_parens(cd, name, namelen, |
5155 | (options & PCRE_EXTENDED) != 0)) <= 0) |
5156 | { |
5157 | *errorcodeptr = ERR15; |
5158 | goto FAILED; |
5159 | } |
5160 | } |
5161 | |
5162 | /* In both phases, we can now go to the code than handles numerical |
5163 | recursion or backreferences. */ |
5164 | |
5165 | if (is_recurse) goto HANDLE_RECURSION; |
5166 | else goto HANDLE_REFERENCE; |
5167 | |
5168 | |
5169 | /* ------------------------------------------------------------ */ |
5170 | case CHAR_R: /* Recursion */ |
5171 | ptr++; /* Same as (?0) */ |
5172 | /* Fall through */ |
5173 | |
5174 | |
5175 | /* ------------------------------------------------------------ */ |
5176 | case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */ |
5177 | case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: |
5178 | case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
5179 | { |
5180 | const uschar *called; |
5181 | terminator = CHAR_RIGHT_PARENTHESIS; |
5182 | |
5183 | /* Come here from the \g<...> and \g'...' code (Oniguruma |
5184 | compatibility). However, the syntax has been checked to ensure that |
5185 | the ... are a (signed) number, so that neither ERR63 nor ERR29 will |
5186 | be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY |
5187 | ever be taken. */ |
5188 | |
5189 | HANDLE_NUMERICAL_RECURSION: |
5190 | |
5191 | if ((refsign = *ptr) == CHAR_PLUS) |
5192 | { |
5193 | ptr++; |
5194 | if ((digitab[*ptr] & ctype_digit) == 0) |
5195 | { |
5196 | *errorcodeptr = ERR63; |
5197 | goto FAILED; |
5198 | } |
5199 | } |
5200 | else if (refsign == CHAR_MINUS) |
5201 | { |
5202 | if ((digitab[ptr[1]] & ctype_digit) == 0) |
5203 | goto OTHER_CHAR_AFTER_QUERY; |
5204 | ptr++; |
5205 | } |
5206 | |
5207 | recno = 0; |
5208 | while((digitab[*ptr] & ctype_digit) != 0) |
5209 | recno = recno * 10 + *ptr++ - CHAR_0; |
5210 | |
5211 | if (*ptr != terminator) |
5212 | { |
5213 | *errorcodeptr = ERR29; |
5214 | goto FAILED; |
5215 | } |
5216 | |
5217 | if (refsign == CHAR_MINUS) |
5218 | { |
5219 | if (recno == 0) |
5220 | { |
5221 | *errorcodeptr = ERR58; |
5222 | goto FAILED; |
5223 | } |
5224 | recno = cd->bracount - recno + 1; |
5225 | if (recno <= 0) |
5226 | { |
5227 | *errorcodeptr = ERR15; |
5228 | goto FAILED; |
5229 | } |
5230 | } |
5231 | else if (refsign == CHAR_PLUS) |
5232 | { |
5233 | if (recno == 0) |
5234 | { |
5235 | *errorcodeptr = ERR58; |
5236 | goto FAILED; |
5237 | } |
5238 | recno += cd->bracount; |
5239 | } |
5240 | |
5241 | /* Come here from code above that handles a named recursion */ |
5242 | |
5243 | HANDLE_RECURSION: |
5244 | |
5245 | previous = code; |
5246 | called = cd->start_code; |
5247 | |
5248 | /* When we are actually compiling, find the bracket that is being |
5249 | referenced. Temporarily end the regex in case it doesn't exist before |
5250 | this point. If we end up with a forward reference, first check that |
5251 | the bracket does occur later so we can give the error (and position) |
5252 | now. Then remember this forward reference in the workspace so it can |
5253 | be filled in at the end. */ |
5254 | |
5255 | if (lengthptr == NULL) |
5256 | { |
5257 | *code = OP_END; |
5258 | if (recno != 0) |
5259 | called = _pcre_find_bracket(cd->start_code, utf8, recno); |
5260 | |
5261 | /* Forward reference */ |
5262 | |
5263 | if (called == NULL) |
5264 | { |
5265 | if (find_parens(cd, NULL, recno, |
5266 | (options & PCRE_EXTENDED) != 0) < 0) |
5267 | { |
5268 | *errorcodeptr = ERR15; |
5269 | goto FAILED; |
5270 | } |
5271 | |
5272 | /* Fudge the value of "called" so that when it is inserted as an |
5273 | offset below, what it actually inserted is the reference number |
5274 | of the group. */ |
5275 | |
5276 | called = cd->start_code + recno; |
5277 | PUTINC(cd->hwm, 0, code + 2 + LINK_SIZE - cd->start_code); |
5278 | } |
5279 | |
5280 | /* If not a forward reference, and the subpattern is still open, |
5281 | this is a recursive call. We check to see if this is a left |
5282 | recursion that could loop for ever, and diagnose that case. */ |
5283 | |
5284 | else if (GET(called, 1) == 0 && |
5285 | could_be_empty(called, code, bcptr, utf8, cd)) |
5286 | { |
5287 | *errorcodeptr = ERR40; |
5288 | goto FAILED; |
5289 | } |
5290 | } |
5291 | |
5292 | /* Insert the recursion/subroutine item, automatically wrapped inside |
5293 | "once" brackets. Set up a "previous group" length so that a |
5294 | subsequent quantifier will work. */ |
5295 | |
5296 | *code = OP_ONCE; |
5297 | PUT(code, 1, 2 + 2*LINK_SIZE); |
5298 | code += 1 + LINK_SIZE; |
5299 | |
5300 | *code = OP_RECURSE; |
5301 | PUT(code, 1, called - cd->start_code); |
5302 | code += 1 + LINK_SIZE; |
5303 | |
5304 | *code = OP_KET; |
5305 | PUT(code, 1, 2 + 2*LINK_SIZE); |
5306 | code += 1 + LINK_SIZE; |
5307 | |
5308 | length_prevgroup = 3 + 3*LINK_SIZE; |
5309 | } |
5310 | |
5311 | /* Can't determine a first byte now */ |
5312 | |
5313 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
5314 | continue; |
5315 | |
5316 | |
5317 | /* ------------------------------------------------------------ */ |
5318 | default: /* Other characters: check option setting */ |
5319 | OTHER_CHAR_AFTER_QUERY: |
5320 | set = unset = 0; |
5321 | optset = &set; |
5322 | |
5323 | while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON) |
5324 | { |
5325 | switch (*ptr++) |
5326 | { |
5327 | case CHAR_MINUS: optset = &unset; break; |
5328 | |
5329 | case CHAR_J: /* Record that it changed in the external options */ |
5330 | *optset |= PCRE_DUPNAMES; |
5331 | cd->external_flags |= PCRE_JCHANGED; |
5332 | break; |
5333 | |
5334 | case CHAR_i: *optset |= PCRE_CASELESS; break; |
5335 | case CHAR_m: *optset |= PCRE_MULTILINE; break; |
5336 | case CHAR_s: *optset |= PCRE_DOTALL; break; |
5337 | case CHAR_x: *optset |= PCRE_EXTENDED; break; |
5338 | case CHAR_U: *optset |= PCRE_UNGREEDY; break; |
5339 | case CHAR_X: *optset |= PCRE_EXTRA; break; |
5340 | |
5341 | default: *errorcodeptr = ERR12; |
5342 | ptr--; /* Correct the offset */ |
5343 | goto FAILED; |
5344 | } |
5345 | } |
5346 | |
5347 | /* Set up the changed option bits, but don't change anything yet. */ |
5348 | |
5349 | newoptions = (options | set) & (~unset); |
5350 | |
5351 | /* If the options ended with ')' this is not the start of a nested |
5352 | group with option changes, so the options change at this level. If this |
5353 | item is right at the start of the pattern, the options can be |
5354 | abstracted and made external in the pre-compile phase, and ignored in |
5355 | the compile phase. This can be helpful when matching -- for instance in |
5356 | caseless checking of required bytes. |
5357 | |
5358 | If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are |
5359 | definitely *not* at the start of the pattern because something has been |
5360 | compiled. In the pre-compile phase, however, the code pointer can have |
5361 | that value after the start, because it gets reset as code is discarded |
5362 | during the pre-compile. However, this can happen only at top level - if |
5363 | we are within parentheses, the starting BRA will still be present. At |
5364 | any parenthesis level, the length value can be used to test if anything |
5365 | has been compiled at that level. Thus, a test for both these conditions |
5366 | is necessary to ensure we correctly detect the start of the pattern in |
5367 | both phases. |
5368 | |
5369 | If we are not at the pattern start, compile code to change the ims |
5370 | options if this setting actually changes any of them, and reset the |
5371 | greedy defaults and the case value for firstbyte and reqbyte. */ |
5372 | |
5373 | if (*ptr == CHAR_RIGHT_PARENTHESIS) |
5374 | { |
5375 | if (code == cd->start_code + 1 + LINK_SIZE && |
5376 | (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE)) |
5377 | { |
5378 | cd->external_options = newoptions; |
5379 | } |
5380 | else |
5381 | { |
5382 | if ((options & PCRE_IMS) != (newoptions & PCRE_IMS)) |
5383 | { |
5384 | *code++ = OP_OPT; |
5385 | *code++ = newoptions & PCRE_IMS; |
5386 | } |
5387 | greedy_default = ((newoptions & PCRE_UNGREEDY) != 0); |
5388 | greedy_non_default = greedy_default ^ 1; |
5389 | req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS : 0; |
5390 | } |
5391 | |
5392 | /* Change options at this level, and pass them back for use |
5393 | in subsequent branches. When not at the start of the pattern, this |
5394 | information is also necessary so that a resetting item can be |
5395 | compiled at the end of a group (if we are in a group). */ |
5396 | |
5397 | *optionsptr = options = newoptions; |
5398 | previous = NULL; /* This item can't be repeated */ |
5399 | continue; /* It is complete */ |
5400 | } |
5401 | |
5402 | /* If the options ended with ':' we are heading into a nested group |
5403 | with possible change of options. Such groups are non-capturing and are |
5404 | not assertions of any kind. All we need to do is skip over the ':'; |
5405 | the newoptions value is handled below. */ |
5406 | |
5407 | bravalue = OP_BRA; |
5408 | ptr++; |
5409 | } /* End of switch for character following (? */ |
5410 | } /* End of (? handling */ |
5411 | |
5412 | /* Opening parenthesis not followed by '*' or '?'. If PCRE_NO_AUTO_CAPTURE |
5413 | is set, all unadorned brackets become non-capturing and behave like (?:...) |
5414 | brackets. */ |
5415 | |
5416 | else if ((options & PCRE_NO_AUTO_CAPTURE) != 0) |
5417 | { |
5418 | bravalue = OP_BRA; |
5419 | } |
5420 | |
5421 | /* Else we have a capturing group. */ |
5422 | |
5423 | else |
5424 | { |
5425 | NUMBERED_GROUP: |
5426 | cd->bracount += 1; |
5427 | PUT2(code, 1+LINK_SIZE, cd->bracount); |
5428 | skipbytes = 2; |
5429 | } |
5430 | |
5431 | /* Process nested bracketed regex. Assertions may not be repeated, but |
5432 | other kinds can be. All their opcodes are >= OP_ONCE. We copy code into a |
5433 | non-register variable in order to be able to pass its address because some |
5434 | compilers complain otherwise. Pass in a new setting for the ims options if |
5435 | they have changed. */ |
5436 | |
5437 | previous = (bravalue >= OP_ONCE)? code : NULL; |
5438 | *code = bravalue; |
5439 | tempcode = code; |
5440 | tempreqvary = cd->req_varyopt; /* Save value before bracket */ |
5441 | length_prevgroup = 0; /* Initialize for pre-compile phase */ |
5442 | |
5443 | if (!compile_regex( |
5444 | newoptions, /* The complete new option state */ |
5445 | options & PCRE_IMS, /* The previous ims option state */ |
5446 | &tempcode, /* Where to put code (updated) */ |
5447 | &ptr, /* Input pointer (updated) */ |
5448 | errorcodeptr, /* Where to put an error message */ |
5449 | (bravalue == OP_ASSERTBACK || |
5450 | bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */ |
5451 | reset_bracount, /* True if (?| group */ |
5452 | skipbytes, /* Skip over bracket number */ |
5453 | &subfirstbyte, /* For possible first char */ |
5454 | &subreqbyte, /* For possible last char */ |
5455 | bcptr, /* Current branch chain */ |
5456 | cd, /* Tables block */ |
5457 | (lengthptr == NULL)? NULL : /* Actual compile phase */ |
5458 | &length_prevgroup /* Pre-compile phase */ |
5459 | )) |
5460 | goto FAILED; |
5461 | |
5462 | /* At the end of compiling, code is still pointing to the start of the |
5463 | group, while tempcode has been updated to point past the end of the group |
5464 | and any option resetting that may follow it. The pattern pointer (ptr) |
5465 | is on the bracket. */ |
5466 | |
5467 | /* If this is a conditional bracket, check that there are no more than |
5468 | two branches in the group, or just one if it's a DEFINE group. We do this |
5469 | in the real compile phase, not in the pre-pass, where the whole group may |
5470 | not be available. */ |
5471 | |
5472 | if (bravalue == OP_COND && lengthptr == NULL) |
5473 | { |
5474 | uschar *tc = code; |
5475 | int condcount = 0; |
5476 | |
5477 | do { |
5478 | condcount++; |
5479 | tc += GET(tc,1); |
5480 | } |
5481 | while (*tc != OP_KET); |
5482 | |
5483 | /* A DEFINE group is never obeyed inline (the "condition" is always |
5484 | false). It must have only one branch. */ |
5485 | |
5486 | if (code[LINK_SIZE+1] == OP_DEF) |
5487 | { |
5488 | if (condcount > 1) |
5489 | { |
5490 | *errorcodeptr = ERR54; |
5491 | goto FAILED; |
5492 | } |
5493 | bravalue = OP_DEF; /* Just a flag to suppress char handling below */ |
5494 | } |
5495 | |
5496 | /* A "normal" conditional group. If there is just one branch, we must not |
5497 | make use of its firstbyte or reqbyte, because this is equivalent to an |
5498 | empty second branch. */ |
5499 | |
5500 | else |
5501 | { |
5502 | if (condcount > 2) |
5503 | { |
5504 | *errorcodeptr = ERR27; |
5505 | goto FAILED; |
5506 | } |
5507 | if (condcount == 1) subfirstbyte = subreqbyte = REQ_NONE; |
5508 | } |
5509 | } |
5510 | |
5511 | /* Error if hit end of pattern */ |
5512 | |
5513 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
5514 | { |
5515 | *errorcodeptr = ERR14; |
5516 | goto FAILED; |
5517 | } |
5518 | |
5519 | /* In the pre-compile phase, update the length by the length of the group, |
5520 | less the brackets at either end. Then reduce the compiled code to just a |
5521 | set of non-capturing brackets so that it doesn't use much memory if it is |
5522 | duplicated by a quantifier.*/ |
5523 | |
5524 | if (lengthptr != NULL) |
5525 | { |
5526 | if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE) |
5527 | { |
5528 | *errorcodeptr = ERR20; |
5529 | goto FAILED; |
5530 | } |
5531 | *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE; |
5532 | *code++ = OP_BRA; |
5533 | PUTINC(code, 0, 1 + LINK_SIZE); |
5534 | *code++ = OP_KET; |
5535 | PUTINC(code, 0, 1 + LINK_SIZE); |
5536 | break; /* No need to waste time with special character handling */ |
5537 | } |
5538 | |
5539 | /* Otherwise update the main code pointer to the end of the group. */ |
5540 | |
5541 | code = tempcode; |
5542 | |
5543 | /* For a DEFINE group, required and first character settings are not |
5544 | relevant. */ |
5545 | |
5546 | if (bravalue == OP_DEF) break; |
5547 | |
5548 | /* Handle updating of the required and first characters for other types of |
5549 | group. Update for normal brackets of all kinds, and conditions with two |
5550 | branches (see code above). If the bracket is followed by a quantifier with |
5551 | zero repeat, we have to back off. Hence the definition of zeroreqbyte and |
5552 | zerofirstbyte outside the main loop so that they can be accessed for the |
5553 | back off. */ |
5554 | |
5555 | zeroreqbyte = reqbyte; |
5556 | zerofirstbyte = firstbyte; |
5557 | groupsetfirstbyte = FALSE; |
5558 | |
5559 | if (bravalue >= OP_ONCE) |
5560 | { |
5561 | /* If we have not yet set a firstbyte in this branch, take it from the |
5562 | subpattern, remembering that it was set here so that a repeat of more |
5563 | than one can replicate it as reqbyte if necessary. If the subpattern has |
5564 | no firstbyte, set "none" for the whole branch. In both cases, a zero |
5565 | repeat forces firstbyte to "none". */ |
5566 | |
5567 | if (firstbyte == REQ_UNSET) |
5568 | { |
5569 | if (subfirstbyte >= 0) |
5570 | { |
5571 | firstbyte = subfirstbyte; |
5572 | groupsetfirstbyte = TRUE; |
5573 | } |
5574 | else firstbyte = REQ_NONE; |
5575 | zerofirstbyte = REQ_NONE; |
5576 | } |
5577 | |
5578 | /* If firstbyte was previously set, convert the subpattern's firstbyte |
5579 | into reqbyte if there wasn't one, using the vary flag that was in |
5580 | existence beforehand. */ |
5581 | |
5582 | else if (subfirstbyte >= 0 && subreqbyte < 0) |
5583 | subreqbyte = subfirstbyte | tempreqvary; |
5584 | |
5585 | /* If the subpattern set a required byte (or set a first byte that isn't |
5586 | really the first byte - see above), set it. */ |
5587 | |
5588 | if (subreqbyte >= 0) reqbyte = subreqbyte; |
5589 | } |
5590 | |
5591 | /* For a forward assertion, we take the reqbyte, if set. This can be |
5592 | helpful if the pattern that follows the assertion doesn't set a different |
5593 | char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte |
5594 | for an assertion, however because it leads to incorrect effect for patterns |
5595 | such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead |
5596 | of a firstbyte. This is overcome by a scan at the end if there's no |
5597 | firstbyte, looking for an asserted first char. */ |
5598 | |
5599 | else if (bravalue == OP_ASSERT && subreqbyte >= 0) reqbyte = subreqbyte; |
5600 | break; /* End of processing '(' */ |
5601 | |
5602 | |
5603 | /* ===================================================================*/ |
5604 | /* Handle metasequences introduced by \. For ones like \d, the ESC_ values |
5605 | are arranged to be the negation of the corresponding OP_values. For the |
5606 | back references, the values are ESC_REF plus the reference number. Only |
5607 | back references and those types that consume a character may be repeated. |
5608 | We can test for values between ESC_b and ESC_Z for the latter; this may |
5609 | have to change if any new ones are ever created. */ |
5610 | |
5611 | case CHAR_BACKSLASH: |
5612 | tempptr = ptr; |
5613 | c = check_escape(&ptr, errorcodeptr, cd->bracount, options, FALSE); |
5614 | if (*errorcodeptr != 0) goto FAILED; |
5615 | |
5616 | if (c < 0) |
5617 | { |
5618 | if (-c == ESC_Q) /* Handle start of quoted string */ |
5619 | { |
5620 | if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
5621 | ptr += 2; /* avoid empty string */ |
5622 | else inescq = TRUE; |
5623 | continue; |
5624 | } |
5625 | |
5626 | if (-c == ESC_E) continue; /* Perl ignores an orphan \E */ |
5627 | |
5628 | /* For metasequences that actually match a character, we disable the |
5629 | setting of a first character if it hasn't already been set. */ |
5630 | |
5631 | if (firstbyte == REQ_UNSET && -c > ESC_b && -c < ESC_Z) |
5632 | firstbyte = REQ_NONE; |
5633 | |
5634 | /* Set values to reset to if this is followed by a zero repeat. */ |
5635 | |
5636 | zerofirstbyte = firstbyte; |
5637 | zeroreqbyte = reqbyte; |
5638 | |
5639 | /* \g<name> or \g'name' is a subroutine call by name and \g<n> or \g'n' |
5640 | is a subroutine call by number (Oniguruma syntax). In fact, the value |
5641 | -ESC_g is returned only for these cases. So we don't need to check for < |
5642 | or ' if the value is -ESC_g. For the Perl syntax \g{n} the value is |
5643 | -ESC_REF+n, and for the Perl syntax \g{name} the result is -ESC_k (as |
5644 | that is a synonym for a named back reference). */ |
5645 | |
5646 | if (-c == ESC_g) |
5647 | { |
5648 | const uschar *p; |
5649 | save_hwm = cd->hwm; /* Normally this is set when '(' is read */ |
5650 | terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)? |
5651 | CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE; |
5652 | |
5653 | /* These two statements stop the compiler for warning about possibly |
5654 | unset variables caused by the jump to HANDLE_NUMERICAL_RECURSION. In |
5655 | fact, because we actually check for a number below, the paths that |
5656 | would actually be in error are never taken. */ |
5657 | |
5658 | skipbytes = 0; |
5659 | reset_bracount = FALSE; |
5660 | |
5661 | /* Test for a name */ |
5662 | |
5663 | if (ptr[1] != CHAR_PLUS && ptr[1] != CHAR_MINUS) |
5664 | { |
5665 | BOOL isnumber = TRUE; |
5666 | for (p = ptr + 1; *p != 0 && *p != terminator; p++) |
5667 | { |
5668 | if ((cd->ctypes[*p] & ctype_digit) == 0) isnumber = FALSE; |
5669 | if ((cd->ctypes[*p] & ctype_word) == 0) break; |
5670 | } |
5671 | if (*p != terminator) |
5672 | { |
5673 | *errorcodeptr = ERR57; |
5674 | break; |
5675 | } |
5676 | if (isnumber) |
5677 | { |
5678 | ptr++; |
5679 | goto HANDLE_NUMERICAL_RECURSION; |
5680 | } |
5681 | is_recurse = TRUE; |
5682 | goto NAMED_REF_OR_RECURSE; |
5683 | } |
5684 | |
5685 | /* Test a signed number in angle brackets or quotes. */ |
5686 | |
5687 | p = ptr + 2; |
5688 | while ((digitab[*p] & ctype_digit) != 0) p++; |
5689 | if (*p != terminator) |
5690 | { |
5691 | *errorcodeptr = ERR57; |
5692 | break; |
5693 | } |
5694 | ptr++; |
5695 | goto HANDLE_NUMERICAL_RECURSION; |
5696 | } |
5697 | |
5698 | /* \k<name> or \k'name' is a back reference by name (Perl syntax). |
5699 | We also support \k{name} (.NET syntax) */ |
5700 | |
5701 | if (-c == ESC_k && (ptr[1] == CHAR_LESS_THAN_SIGN || |
5702 | ptr[1] == CHAR_APOSTROPHE || ptr[1] == CHAR_LEFT_CURLY_BRACKET)) |
5703 | { |
5704 | is_recurse = FALSE; |
5705 | terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)? |
5706 | CHAR_GREATER_THAN_SIGN : (*ptr == CHAR_APOSTROPHE)? |
5707 | CHAR_APOSTROPHE : CHAR_RIGHT_CURLY_BRACKET; |
5708 | goto NAMED_REF_OR_RECURSE; |
5709 | } |
5710 | |
5711 | /* Back references are handled specially; must disable firstbyte if |
5712 | not set to cope with cases like (?=(\w+))\1: which would otherwise set |
5713 | ':' later. */ |
5714 | |
5715 | if (-c >= ESC_REF) |
5716 | { |
5717 | open_capitem *oc; |
5718 | recno = -c - ESC_REF; |
5719 | |
5720 | HANDLE_REFERENCE: /* Come here from named backref handling */ |
5721 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
5722 | previous = code; |
5723 | *code++ = OP_REF; |
5724 | PUT2INC(code, 0, recno); |
5725 | cd->backref_map |= (recno < 32)? (1 << recno) : 1; |
5726 | if (recno > cd->top_backref) cd->top_backref = recno; |
5727 | |
5728 | /* Check to see if this back reference is recursive, that it, it |
5729 | is inside the group that it references. A flag is set so that the |
5730 | group can be made atomic. */ |
5731 | |
5732 | for (oc = cd->open_caps; oc != NULL; oc = oc->next) |
5733 | { |
5734 | if (oc->number == recno) |
5735 | { |
5736 | oc->flag = TRUE; |
5737 | break; |
5738 | } |
5739 | } |
5740 | } |
5741 | |
5742 | /* So are Unicode property matches, if supported. */ |
5743 | |
5744 | #ifdef SUPPORT_UCP |
5745 | else if (-c == ESC_P || -c == ESC_p) |
5746 | { |
5747 | BOOL negated; |
5748 | int pdata; |
5749 | int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr); |
5750 | if (ptype < 0) goto FAILED; |
5751 | previous = code; |
5752 | *code++ = ((-c == ESC_p) != negated)? OP_PROP : OP_NOTPROP; |
5753 | *code++ = ptype; |
5754 | *code++ = pdata; |
5755 | } |
5756 | #else |
5757 | |
5758 | /* If Unicode properties are not supported, \X, \P, and \p are not |
5759 | allowed. */ |
5760 | |
5761 | else if (-c == ESC_X || -c == ESC_P || -c == ESC_p) |
5762 | { |
5763 | *errorcodeptr = ERR45; |
5764 | goto FAILED; |
5765 | } |
5766 | #endif |
5767 | |
5768 | /* For the rest (including \X when Unicode properties are supported), we |
5769 | can obtain the OP value by negating the escape value. */ |
5770 | |
5771 | else |
5772 | { |
5773 | previous = (-c > ESC_b && -c < ESC_Z)? code : NULL; |
5774 | *code++ = -c; |
5775 | } |
5776 | continue; |
5777 | } |
5778 | |
5779 | /* We have a data character whose value is in c. In UTF-8 mode it may have |
5780 | a value > 127. We set its representation in the length/buffer, and then |
5781 | handle it as a data character. */ |
5782 | |
5783 | #ifdef SUPPORT_UTF8 |
5784 | if (utf8 && c > 127) |
5785 | mclength = _pcre_ord2utf8(c, mcbuffer); |
5786 | else |
5787 | #endif |
5788 | |
5789 | { |
5790 | mcbuffer[0] = c; |
5791 | mclength = 1; |
5792 | } |
5793 | goto ONE_CHAR; |
5794 | |
5795 | |
5796 | /* ===================================================================*/ |
5797 | /* Handle a literal character. It is guaranteed not to be whitespace or # |
5798 | when the extended flag is set. If we are in UTF-8 mode, it may be a |
5799 | multi-byte literal character. */ |
5800 | |
5801 | default: |
5802 | NORMAL_CHAR: |
5803 | mclength = 1; |
5804 | mcbuffer[0] = c; |
5805 | |
5806 | #ifdef SUPPORT_UTF8 |
5807 | if (utf8 && c >= 0xc0) |
5808 | { |
5809 | while ((ptr[1] & 0xc0) == 0x80) |
5810 | mcbuffer[mclength++] = *(++ptr); |
5811 | } |
5812 | #endif |
5813 | |
5814 | /* At this point we have the character's bytes in mcbuffer, and the length |
5815 | in mclength. When not in UTF-8 mode, the length is always 1. */ |
5816 | |
5817 | ONE_CHAR: |
5818 | previous = code; |
5819 | *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARNC : OP_CHAR; |
5820 | for (c = 0; c < mclength; c++) *code++ = mcbuffer[c]; |
5821 | |
5822 | /* Remember if \r or \n were seen */ |
5823 | |
5824 | if (mcbuffer[0] == CHAR_CR || mcbuffer[0] == CHAR_NL) |
5825 | cd->external_flags |= PCRE_HASCRORLF; |
5826 | |
5827 | /* Set the first and required bytes appropriately. If no previous first |
5828 | byte, set it from this character, but revert to none on a zero repeat. |
5829 | Otherwise, leave the firstbyte value alone, and don't change it on a zero |
5830 | repeat. */ |
5831 | |
5832 | if (firstbyte == REQ_UNSET) |
5833 | { |
5834 | zerofirstbyte = REQ_NONE; |
5835 | zeroreqbyte = reqbyte; |
5836 | |
5837 | /* If the character is more than one byte long, we can set firstbyte |
5838 | only if it is not to be matched caselessly. */ |
5839 | |
5840 | if (mclength == 1 || req_caseopt == 0) |
5841 | { |
5842 | firstbyte = mcbuffer[0] | req_caseopt; |
5843 | if (mclength != 1) reqbyte = code[-1] | cd->req_varyopt; |
5844 | } |
5845 | else firstbyte = reqbyte = REQ_NONE; |
5846 | } |
5847 | |
5848 | /* firstbyte was previously set; we can set reqbyte only the length is |
5849 | 1 or the matching is caseful. */ |
5850 | |
5851 | else |
5852 | { |
5853 | zerofirstbyte = firstbyte; |
5854 | zeroreqbyte = reqbyte; |
5855 | if (mclength == 1 || req_caseopt == 0) |
5856 | reqbyte = code[-1] | req_caseopt | cd->req_varyopt; |
5857 | } |
5858 | |
5859 | break; /* End of literal character handling */ |
5860 | } |
5861 | } /* end of big loop */ |
5862 | |
5863 | |
5864 | /* Control never reaches here by falling through, only by a goto for all the |
5865 | error states. Pass back the position in the pattern so that it can be displayed |
5866 | to the user for diagnosing the error. */ |
5867 | |
5868 | FAILED: |
5869 | *ptrptr = ptr; |
5870 | return FALSE; |
5871 | } |
5872 | |
5873 | |
5874 | |
5875 | |
5876 | /************************************************* |
5877 | * Compile sequence of alternatives * |
5878 | *************************************************/ |
5879 | |
5880 | /* On entry, ptr is pointing past the bracket character, but on return it |
5881 | points to the closing bracket, or vertical bar, or end of string. The code |
5882 | variable is pointing at the byte into which the BRA operator has been stored. |
5883 | If the ims options are changed at the start (for a (?ims: group) or during any |
5884 | branch, we need to insert an OP_OPT item at the start of every following branch |
5885 | to ensure they get set correctly at run time, and also pass the new options |
5886 | into every subsequent branch compile. |
5887 | |
5888 | This function is used during the pre-compile phase when we are trying to find |
5889 | out the amount of memory needed, as well as during the real compile phase. The |
5890 | value of lengthptr distinguishes the two phases. |
5891 | |
5892 | Arguments: |
5893 | options option bits, including any changes for this subpattern |
5894 | oldims previous settings of ims option bits |
5895 | codeptr -> the address of the current code pointer |
5896 | ptrptr -> the address of the current pattern pointer |
5897 | errorcodeptr -> pointer to error code variable |
5898 | lookbehind TRUE if this is a lookbehind assertion |
5899 | reset_bracount TRUE to reset the count for each branch |
5900 | skipbytes skip this many bytes at start (for brackets and OP_COND) |
5901 | firstbyteptr place to put the first required character, or a negative number |
5902 | reqbyteptr place to put the last required character, or a negative number |
5903 | bcptr pointer to the chain of currently open branches |
5904 | cd points to the data block with tables pointers etc. |
5905 | lengthptr NULL during the real compile phase |
5906 | points to length accumulator during pre-compile phase |
5907 | |
5908 | Returns: TRUE on success |
5909 | */ |
5910 | |
5911 | static BOOL |
5912 | compile_regex(int options, int oldims, uschar **codeptr, const uschar **ptrptr, |
5913 | int *errorcodeptr, BOOL lookbehind, BOOL reset_bracount, int skipbytes, |
5914 | int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, compile_data *cd, |
5915 | int *lengthptr) |
5916 | { |
5917 | const uschar *ptr = *ptrptr; |
5918 | uschar *code = *codeptr; |
5919 | uschar *last_branch = code; |
5920 | uschar *start_bracket = code; |
5921 | uschar *reverse_count = NULL; |
5922 | open_capitem capitem; |
5923 | int capnumber = 0; |
5924 | int firstbyte, reqbyte; |
5925 | int branchfirstbyte, branchreqbyte; |
5926 | int length; |
5927 | int orig_bracount; |
5928 | int max_bracount; |
5929 | int old_external_options = cd->external_options; |
5930 | branch_chain bc; |
5931 | |
5932 | bc.outer = bcptr; |
5933 | bc.current_branch = code; |
5934 | |
5935 | firstbyte = reqbyte = REQ_UNSET; |
5936 | |
5937 | /* Accumulate the length for use in the pre-compile phase. Start with the |
5938 | length of the BRA and KET and any extra bytes that are required at the |
5939 | beginning. We accumulate in a local variable to save frequent testing of |
5940 | lenthptr for NULL. We cannot do this by looking at the value of code at the |
5941 | start and end of each alternative, because compiled items are discarded during |
5942 | the pre-compile phase so that the work space is not exceeded. */ |
5943 | |
5944 | length = 2 + 2*LINK_SIZE + skipbytes; |
5945 | |
5946 | /* WARNING: If the above line is changed for any reason, you must also change |
5947 | the code that abstracts option settings at the start of the pattern and makes |
5948 | them global. It tests the value of length for (2 + 2*LINK_SIZE) in the |
5949 | pre-compile phase to find out whether anything has yet been compiled or not. */ |
5950 | |
5951 | /* If this is a capturing subpattern, add to the chain of open capturing items |
5952 | so that we can detect them if (*ACCEPT) is encountered. This is also used to |
5953 | detect groups that contain recursive back references to themselves. */ |
5954 | |
5955 | if (*code == OP_CBRA) |
5956 | { |
5957 | capnumber = GET2(code, 1 + LINK_SIZE); |
5958 | capitem.number = capnumber; |
5959 | capitem.next = cd->open_caps; |
5960 | capitem.flag = FALSE; |
5961 | cd->open_caps = &capitem; |
5962 | } |
5963 | |
5964 | /* Offset is set zero to mark that this bracket is still open */ |
5965 | |
5966 | PUT(code, 1, 0); |
5967 | code += 1 + LINK_SIZE + skipbytes; |
5968 | |
5969 | /* Loop for each alternative branch */ |
5970 | |
5971 | orig_bracount = max_bracount = cd->bracount; |
5972 | for (;;) |
5973 | { |
5974 | /* For a (?| group, reset the capturing bracket count so that each branch |
5975 | uses the same numbers. */ |
5976 | |
5977 | if (reset_bracount) cd->bracount = orig_bracount; |
5978 | |
5979 | /* Handle a change of ims options at the start of the branch */ |
5980 | |
5981 | if ((options & PCRE_IMS) != oldims) |
5982 | { |
5983 | *code++ = OP_OPT; |
5984 | *code++ = options & PCRE_IMS; |
5985 | length += 2; |
5986 | } |
5987 | |
5988 | /* Set up dummy OP_REVERSE if lookbehind assertion */ |
5989 | |
5990 | if (lookbehind) |
5991 | { |
5992 | *code++ = OP_REVERSE; |
5993 | reverse_count = code; |
5994 | PUTINC(code, 0, 0); |
5995 | length += 1 + LINK_SIZE; |
5996 | } |
5997 | |
5998 | /* Now compile the branch; in the pre-compile phase its length gets added |
5999 | into the length. */ |
6000 | |
6001 | if (!compile_branch(&options, &code, &ptr, errorcodeptr, &branchfirstbyte, |
6002 | &branchreqbyte, &bc, cd, (lengthptr == NULL)? NULL : &length)) |
6003 | { |
6004 | *ptrptr = ptr; |
6005 | return FALSE; |
6006 | } |
6007 | |
6008 | /* If the external options have changed during this branch, it means that we |
6009 | are at the top level, and a leading option setting has been encountered. We |
6010 | need to re-set the original option values to take account of this so that, |
6011 | during the pre-compile phase, we know to allow for a re-set at the start of |
6012 | subsequent branches. */ |
6013 | |
6014 | if (old_external_options != cd->external_options) |
6015 | oldims = cd->external_options & PCRE_IMS; |
6016 | |
6017 | /* Keep the highest bracket count in case (?| was used and some branch |
6018 | has fewer than the rest. */ |
6019 | |
6020 | if (cd->bracount > max_bracount) max_bracount = cd->bracount; |
6021 | |
6022 | /* In the real compile phase, there is some post-processing to be done. */ |
6023 | |
6024 | if (lengthptr == NULL) |
6025 | { |
6026 | /* If this is the first branch, the firstbyte and reqbyte values for the |
6027 | branch become the values for the regex. */ |
6028 | |
6029 | if (*last_branch != OP_ALT) |
6030 | { |
6031 | firstbyte = branchfirstbyte; |
6032 | reqbyte = branchreqbyte; |
6033 | } |
6034 | |
6035 | /* If this is not the first branch, the first char and reqbyte have to |
6036 | match the values from all the previous branches, except that if the |
6037 | previous value for reqbyte didn't have REQ_VARY set, it can still match, |
6038 | and we set REQ_VARY for the regex. */ |
6039 | |
6040 | else |
6041 | { |
6042 | /* If we previously had a firstbyte, but it doesn't match the new branch, |
6043 | we have to abandon the firstbyte for the regex, but if there was |
6044 | previously no reqbyte, it takes on the value of the old firstbyte. */ |
6045 | |
6046 | if (firstbyte >= 0 && firstbyte != branchfirstbyte) |
6047 | { |
6048 | if (reqbyte < 0) reqbyte = firstbyte; |
6049 | firstbyte = REQ_NONE; |
6050 | } |
6051 | |
6052 | /* If we (now or from before) have no firstbyte, a firstbyte from the |
6053 | branch becomes a reqbyte if there isn't a branch reqbyte. */ |
6054 | |
6055 | if (firstbyte < 0 && branchfirstbyte >= 0 && branchreqbyte < 0) |
6056 | branchreqbyte = branchfirstbyte; |
6057 | |
6058 | /* Now ensure that the reqbytes match */ |
6059 | |
6060 | if ((reqbyte & ~REQ_VARY) != (branchreqbyte & ~REQ_VARY)) |
6061 | reqbyte = REQ_NONE; |
6062 | else reqbyte |= branchreqbyte; /* To "or" REQ_VARY */ |
6063 | } |
6064 | |
6065 | /* If lookbehind, check that this branch matches a fixed-length string, and |
6066 | put the length into the OP_REVERSE item. Temporarily mark the end of the |
6067 | branch with OP_END. If the branch contains OP_RECURSE, the result is -3 |
6068 | because there may be forward references that we can't check here. Set a |
6069 | flag to cause another lookbehind check at the end. Why not do it all at the |
6070 | end? Because common, erroneous checks are picked up here and the offset of |
6071 | the problem can be shown. */ |
6072 | |
6073 | if (lookbehind) |
6074 | { |
6075 | int fixed_length; |
6076 | *code = OP_END; |
6077 | fixed_length = find_fixedlength(last_branch, options, FALSE, cd); |
6078 | DPRINTF(("fixed length = %d\n", fixed_length)); |
6079 | if (fixed_length == -3) |
6080 | { |
6081 | cd->check_lookbehind = TRUE; |
6082 | } |
6083 | else if (fixed_length < 0) |
6084 | { |
6085 | *errorcodeptr = (fixed_length == -2)? ERR36 : ERR25; |
6086 | *ptrptr = ptr; |
6087 | return FALSE; |
6088 | } |
6089 | else { PUT(reverse_count, 0, fixed_length); } |
6090 | } |
6091 | } |
6092 | |
6093 | /* Reached end of expression, either ')' or end of pattern. In the real |
6094 | compile phase, go back through the alternative branches and reverse the chain |
6095 | of offsets, with the field in the BRA item now becoming an offset to the |
6096 | first alternative. If there are no alternatives, it points to the end of the |
6097 | group. The length in the terminating ket is always the length of the whole |
6098 | bracketed item. If any of the ims options were changed inside the group, |
6099 | compile a resetting op-code following, except at the very end of the pattern. |
6100 | Return leaving the pointer at the terminating char. */ |
6101 | |
6102 | if (*ptr != CHAR_VERTICAL_LINE) |
6103 | { |
6104 | if (lengthptr == NULL) |
6105 | { |
6106 | int branch_length = code - last_branch; |
6107 | do |
6108 | { |
6109 | int prev_length = GET(last_branch, 1); |
6110 | PUT(last_branch, 1, branch_length); |
6111 | branch_length = prev_length; |
6112 | last_branch -= branch_length; |
6113 | } |
6114 | while (branch_length > 0); |
6115 | } |
6116 | |
6117 | /* Fill in the ket */ |
6118 | |
6119 | *code = OP_KET; |
6120 | PUT(code, 1, code - start_bracket); |
6121 | code += 1 + LINK_SIZE; |
6122 | |
6123 | /* If it was a capturing subpattern, check to see if it contained any |
6124 | recursive back references. If so, we must wrap it in atomic brackets. |
6125 | In any event, remove the block from the chain. */ |
6126 | |
6127 | if (capnumber > 0) |
6128 | { |
6129 | if (cd->open_caps->flag) |
6130 | { |
6131 | memmove(start_bracket + 1 + LINK_SIZE, start_bracket, |
6132 | code - start_bracket); |
6133 | *start_bracket = OP_ONCE; |
6134 | code += 1 + LINK_SIZE; |
6135 | PUT(start_bracket, 1, code - start_bracket); |
6136 | *code = OP_KET; |
6137 | PUT(code, 1, code - start_bracket); |
6138 | code += 1 + LINK_SIZE; |
6139 | length += 2 + 2*LINK_SIZE; |
6140 | } |
6141 | cd->open_caps = cd->open_caps->next; |
6142 | } |
6143 | |
6144 | /* Reset options if needed. */ |
6145 | |
6146 | if ((options & PCRE_IMS) != oldims && *ptr == CHAR_RIGHT_PARENTHESIS) |
6147 | { |
6148 | *code++ = OP_OPT; |
6149 | *code++ = oldims; |
6150 | length += 2; |
6151 | } |
6152 | |
6153 | /* Retain the highest bracket number, in case resetting was used. */ |
6154 | |
6155 | cd->bracount = max_bracount; |
6156 | |
6157 | /* Set values to pass back */ |
6158 | |
6159 | *codeptr = code; |
6160 | *ptrptr = ptr; |
6161 | *firstbyteptr = firstbyte; |
6162 | *reqbyteptr = reqbyte; |
6163 | if (lengthptr != NULL) |
6164 | { |
6165 | if (OFLOW_MAX - *lengthptr < length) |
6166 | { |
6167 | *errorcodeptr = ERR20; |
6168 | return FALSE; |
6169 | } |
6170 | *lengthptr += length; |
6171 | } |
6172 | return TRUE; |
6173 | } |
6174 | |
6175 | /* Another branch follows. In the pre-compile phase, we can move the code |
6176 | pointer back to where it was for the start of the first branch. (That is, |
6177 | pretend that each branch is the only one.) |
6178 | |
6179 | In the real compile phase, insert an ALT node. Its length field points back |
6180 | to the previous branch while the bracket remains open. At the end the chain |
6181 | is reversed. It's done like this so that the start of the bracket has a |
6182 | zero offset until it is closed, making it possible to detect recursion. */ |
6183 | |
6184 | if (lengthptr != NULL) |
6185 | { |
6186 | code = *codeptr + 1 + LINK_SIZE + skipbytes; |
6187 | length += 1 + LINK_SIZE; |
6188 | } |
6189 | else |
6190 | { |
6191 | *code = OP_ALT; |
6192 | PUT(code, 1, code - last_branch); |
6193 | bc.current_branch = last_branch = code; |
6194 | code += 1 + LINK_SIZE; |
6195 | } |
6196 | |
6197 | ptr++; |
6198 | } |
6199 | /* Control never reaches here */ |
6200 | } |
6201 | |
6202 | |
6203 | |
6204 | |
6205 | /************************************************* |
6206 | * Check for anchored expression * |
6207 | *************************************************/ |
6208 | |
6209 | /* Try to find out if this is an anchored regular expression. Consider each |
6210 | alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket |
6211 | all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then |
6212 | it's anchored. However, if this is a multiline pattern, then only OP_SOD |
6213 | counts, since OP_CIRC can match in the middle. |
6214 | |
6215 | We can also consider a regex to be anchored if OP_SOM starts all its branches. |
6216 | This is the code for \G, which means "match at start of match position, taking |
6217 | into account the match offset". |
6218 | |
6219 | A branch is also implicitly anchored if it starts with .* and DOTALL is set, |
6220 | because that will try the rest of the pattern at all possible matching points, |
6221 | so there is no point trying again.... er .... |
6222 | |
6223 | .... except when the .* appears inside capturing parentheses, and there is a |
6224 | subsequent back reference to those parentheses. We haven't enough information |
6225 | to catch that case precisely. |
6226 | |
6227 | At first, the best we could do was to detect when .* was in capturing brackets |
6228 | and the highest back reference was greater than or equal to that level. |
6229 | However, by keeping a bitmap of the first 31 back references, we can catch some |
6230 | of the more common cases more precisely. |
6231 | |
6232 | Arguments: |
6233 | code points to start of expression (the bracket) |
6234 | options points to the options setting |
6235 | bracket_map a bitmap of which brackets we are inside while testing; this |
6236 | handles up to substring 31; after that we just have to take |
6237 | the less precise approach |
6238 | backref_map the back reference bitmap |
6239 | |
6240 | Returns: TRUE or FALSE |
6241 | */ |
6242 | |
6243 | static BOOL |
6244 | is_anchored(register const uschar *code, int *options, unsigned int bracket_map, |
6245 | unsigned int backref_map) |
6246 | { |
6247 | do { |
6248 | const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code], |
6249 | options, PCRE_MULTILINE, FALSE); |
6250 | register int op = *scode; |
6251 | |
6252 | /* Non-capturing brackets */ |
6253 | |
6254 | if (op == OP_BRA) |
6255 | { |
6256 | if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE; |
6257 | } |
6258 | |
6259 | /* Capturing brackets */ |
6260 | |
6261 | else if (op == OP_CBRA) |
6262 | { |
6263 | int n = GET2(scode, 1+LINK_SIZE); |
6264 | int new_map = bracket_map | ((n < 32)? (1 << n) : 1); |
6265 | if (!is_anchored(scode, options, new_map, backref_map)) return FALSE; |
6266 | } |
6267 | |
6268 | /* Other brackets */ |
6269 | |
6270 | else if (op == OP_ASSERT || op == OP_ONCE || op == OP_COND) |
6271 | { |
6272 | if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE; |
6273 | } |
6274 | |
6275 | /* .* is not anchored unless DOTALL is set (which generates OP_ALLANY) and |
6276 | it isn't in brackets that are or may be referenced. */ |
6277 | |
6278 | else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR || |
6279 | op == OP_TYPEPOSSTAR)) |
6280 | { |
6281 | if (scode[1] != OP_ALLANY || (bracket_map & backref_map) != 0) |
6282 | return FALSE; |
6283 | } |
6284 | |
6285 | /* Check for explicit anchoring */ |
6286 | |
6287 | else if (op != OP_SOD && op != OP_SOM && |
6288 | ((*options & PCRE_MULTILINE) != 0 || op != OP_CIRC)) |
6289 | return FALSE; |
6290 | code += GET(code, 1); |
6291 | } |
6292 | while (*code == OP_ALT); /* Loop for each alternative */ |
6293 | return TRUE; |
6294 | } |
6295 | |
6296 | |
6297 | |
6298 | /************************************************* |
6299 | * Check for starting with ^ or .* * |
6300 | *************************************************/ |
6301 | |
6302 | /* This is called to find out if every branch starts with ^ or .* so that |
6303 | "first char" processing can be done to speed things up in multiline |
6304 | matching and for non-DOTALL patterns that start with .* (which must start at |
6305 | the beginning or after \n). As in the case of is_anchored() (see above), we |
6306 | have to take account of back references to capturing brackets that contain .* |
6307 | because in that case we can't make the assumption. |
6308 | |
6309 | Arguments: |
6310 | code points to start of expression (the bracket) |
6311 | bracket_map a bitmap of which brackets we are inside while testing; this |
6312 | handles up to substring 31; after that we just have to take |
6313 | the less precise approach |
6314 | backref_map the back reference bitmap |
6315 | |
6316 | Returns: TRUE or FALSE |
6317 | */ |
6318 | |
6319 | static BOOL |
6320 | is_startline(const uschar *code, unsigned int bracket_map, |
6321 | unsigned int backref_map) |
6322 | { |
6323 | do { |
6324 | const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code], |
6325 | NULL, 0, FALSE); |
6326 | register int op = *scode; |
6327 | |
6328 | /* If we are at the start of a conditional assertion group, *both* the |
6329 | conditional assertion *and* what follows the condition must satisfy the test |
6330 | for start of line. Other kinds of condition fail. Note that there may be an |
6331 | auto-callout at the start of a condition. */ |
6332 | |
6333 | if (op == OP_COND) |
6334 | { |
6335 | scode += 1 + LINK_SIZE; |
6336 | if (*scode == OP_CALLOUT) scode += _pcre_OP_lengths[OP_CALLOUT]; |
6337 | switch (*scode) |
6338 | { |
6339 | case OP_CREF: |
6340 | case OP_NCREF: |
6341 | case OP_RREF: |
6342 | case OP_NRREF: |
6343 | case OP_DEF: |
6344 | return FALSE; |
6345 | |
6346 | default: /* Assertion */ |
6347 | if (!is_startline(scode, bracket_map, backref_map)) return FALSE; |
6348 | do scode += GET(scode, 1); while (*scode == OP_ALT); |
6349 | scode += 1 + LINK_SIZE; |
6350 | break; |
6351 | } |
6352 | scode = first_significant_code(scode, NULL, 0, FALSE); |
6353 | op = *scode; |
6354 | } |
6355 | |
6356 | /* Non-capturing brackets */ |
6357 | |
6358 | if (op == OP_BRA) |
6359 | { |
6360 | if (!is_startline(scode, bracket_map, backref_map)) return FALSE; |
6361 | } |
6362 | |
6363 | /* Capturing brackets */ |
6364 | |
6365 | else if (op == OP_CBRA) |
6366 | { |
6367 | int n = GET2(scode, 1+LINK_SIZE); |
6368 | int new_map = bracket_map | ((n < 32)? (1 << n) : 1); |
6369 | if (!is_startline(scode, new_map, backref_map)) return FALSE; |
6370 | } |
6371 | |
6372 | /* Other brackets */ |
6373 | |
6374 | else if (op == OP_ASSERT || op == OP_ONCE) |
6375 | { |
6376 | if (!is_startline(scode, bracket_map, backref_map)) return FALSE; |
6377 | } |
6378 | |
6379 | /* .* means "start at start or after \n" if it isn't in brackets that |
6380 | may be referenced. */ |
6381 | |
6382 | else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR || op == OP_TYPEPOSSTAR) |
6383 | { |
6384 | if (scode[1] != OP_ANY || (bracket_map & backref_map) != 0) return FALSE; |
6385 | } |
6386 | |
6387 | /* Check for explicit circumflex */ |
6388 | |
6389 | else if (op != OP_CIRC) return FALSE; |
6390 | |
6391 | /* Move on to the next alternative */ |
6392 | |
6393 | code += GET(code, 1); |
6394 | } |
6395 | while (*code == OP_ALT); /* Loop for each alternative */ |
6396 | return TRUE; |
6397 | } |
6398 | |
6399 | |
6400 | |
6401 | /************************************************* |
6402 | * Check for asserted fixed first char * |
6403 | *************************************************/ |
6404 | |
6405 | /* During compilation, the "first char" settings from forward assertions are |
6406 | discarded, because they can cause conflicts with actual literals that follow. |
6407 | However, if we end up without a first char setting for an unanchored pattern, |
6408 | it is worth scanning the regex to see if there is an initial asserted first |
6409 | char. If all branches start with the same asserted char, or with a bracket all |
6410 | of whose alternatives start with the same asserted char (recurse ad lib), then |
6411 | we return that char, otherwise -1. |
6412 | |
6413 | Arguments: |
6414 | code points to start of expression (the bracket) |
6415 | options pointer to the options (used to check casing changes) |
6416 | inassert TRUE if in an assertion |
6417 | |
6418 | Returns: -1 or the fixed first char |
6419 | */ |
6420 | |
6421 | static int |
6422 | find_firstassertedchar(const uschar *code, int *options, BOOL inassert) |
6423 | { |
6424 | register int c = -1; |
6425 | do { |
6426 | int d; |
6427 | const uschar *scode = |
6428 | first_significant_code(code + 1+LINK_SIZE, options, PCRE_CASELESS, TRUE); |
6429 | register int op = *scode; |
6430 | |
6431 | switch(op) |
6432 | { |
6433 | default: |
6434 | return -1; |
6435 | |
6436 | case OP_BRA: |
6437 | case OP_CBRA: |
6438 | case OP_ASSERT: |
6439 | case OP_ONCE: |
6440 | case OP_COND: |
6441 | if ((d = find_firstassertedchar(scode, options, op == OP_ASSERT)) < 0) |
6442 | return -1; |
6443 | if (c < 0) c = d; else if (c != d) return -1; |
6444 | break; |
6445 | |
6446 | case OP_EXACT: /* Fall through */ |
6447 | scode += 2; |
6448 | |
6449 | case OP_CHAR: |
6450 | case OP_CHARNC: |
6451 | case OP_PLUS: |
6452 | case OP_MINPLUS: |
6453 | case OP_POSPLUS: |
6454 | if (!inassert) return -1; |
6455 | if (c < 0) |
6456 | { |
6457 | c = scode[1]; |
6458 | if ((*options & PCRE_CASELESS) != 0) c |= REQ_CASELESS; |
6459 | } |
6460 | else if (c != scode[1]) return -1; |
6461 | break; |
6462 | } |
6463 | |
6464 | code += GET(code, 1); |
6465 | } |
6466 | while (*code == OP_ALT); |
6467 | return c; |
6468 | } |
6469 | |
6470 | |
6471 | |
6472 | /************************************************* |
6473 | * Compile a Regular Expression * |
6474 | *************************************************/ |
6475 | |
6476 | /* This function takes a string and returns a pointer to a block of store |
6477 | holding a compiled version of the expression. The original API for this |
6478 | function had no error code return variable; it is retained for backwards |
6479 | compatibility. The new function is given a new name. |
6480 | |
6481 | Arguments: |
6482 | pattern the regular expression |
6483 | options various option bits |
6484 | errorcodeptr pointer to error code variable (pcre_compile2() only) |
6485 | can be NULL if you don't want a code value |
6486 | errorptr pointer to pointer to error text |
6487 | erroroffset ptr offset in pattern where error was detected |
6488 | tables pointer to character tables or NULL |
6489 | |
6490 | Returns: pointer to compiled data block, or NULL on error, |
6491 | with errorptr and erroroffset set |
6492 | */ |
6493 | |
6494 | PCRE_EXP_DEFN pcre * PCRE_CALL_CONVENTION |
6495 | pcre_compile(const char *pattern, int options, const char **errorptr, |
6496 | int *erroroffset, const unsigned char *tables) |
6497 | { |
6498 | return pcre_compile2(pattern, options, NULL, errorptr, erroroffset, tables); |
6499 | } |
6500 | |
6501 | |
6502 | PCRE_EXP_DEFN pcre * PCRE_CALL_CONVENTION |
6503 | pcre_compile2(const char *pattern, int options, int *errorcodeptr, |
6504 | const char **errorptr, int *erroroffset, const unsigned char *tables) |
6505 | { |
6506 | real_pcre *re; |
6507 | int length = 1; /* For final END opcode */ |
6508 | int firstbyte, reqbyte, newline; |
6509 | int errorcode = 0; |
6510 | int skipatstart = 0; |
6511 | BOOL utf8 = (options & PCRE_UTF8) != 0; |
6512 | size_t size; |
6513 | uschar *code; |
6514 | const uschar *codestart; |
6515 | const uschar *ptr; |
6516 | compile_data compile_block; |
6517 | compile_data *cd = &compile_block; |
6518 | |
6519 | /* This space is used for "compiling" into during the first phase, when we are |
6520 | computing the amount of memory that is needed. Compiled items are thrown away |
6521 | as soon as possible, so that a fairly large buffer should be sufficient for |
6522 | this purpose. The same space is used in the second phase for remembering where |
6523 | to fill in forward references to subpatterns. */ |
6524 | |
6525 | uschar cworkspace[COMPILE_WORK_SIZE]; |
6526 | |
6527 | /* Set this early so that early errors get offset 0. */ |
6528 | |
6529 | ptr = (const uschar *)pattern; |
6530 | |
6531 | /* We can't pass back an error message if errorptr is NULL; I guess the best we |
6532 | can do is just return NULL, but we can set a code value if there is a code |
6533 | pointer. */ |
6534 | |
6535 | if (errorptr == NULL) |
6536 | { |
6537 | if (errorcodeptr != NULL) *errorcodeptr = 99; |
6538 | return NULL; |
6539 | } |
6540 | |
6541 | *errorptr = NULL; |
6542 | if (errorcodeptr != NULL) *errorcodeptr = ERR0; |
6543 | |
6544 | /* However, we can give a message for this error */ |
6545 | |
6546 | if (erroroffset == NULL) |
6547 | { |
6548 | errorcode = ERR16; |
6549 | goto PCRE_EARLY_ERROR_RETURN2; |
6550 | } |
6551 | |
6552 | *erroroffset = 0; |
6553 | |
6554 | /* Set up pointers to the individual character tables */ |
6555 | |
6556 | if (tables == NULL) tables = _pcre_default_tables; |
6557 | cd->lcc = tables + lcc_offset; |
6558 | cd->fcc = tables + fcc_offset; |
6559 | cd->cbits = tables + cbits_offset; |
6560 | cd->ctypes = tables + ctypes_offset; |
6561 | |
6562 | /* Check that all undefined public option bits are zero */ |
6563 | |
6564 | if ((options & ~PUBLIC_COMPILE_OPTIONS) != 0) |
6565 | { |
6566 | errorcode = ERR17; |
6567 | goto PCRE_EARLY_ERROR_RETURN; |
6568 | } |
6569 | |
6570 | /* Check for global one-time settings at the start of the pattern, and remember |
6571 | the offset for later. */ |
6572 | |
6573 | while (ptr[skipatstart] == CHAR_LEFT_PARENTHESIS && |
6574 | ptr[skipatstart+1] == CHAR_ASTERISK) |
6575 | { |
6576 | int newnl = 0; |
6577 | int newbsr = 0; |
6578 | |
6579 | if (strncmp((char *)(ptr+skipatstart+2), STRING_UTF8_RIGHTPAR, 5) == 0) |
6580 | { skipatstart += 7; options |= PCRE_UTF8; continue; } |
6581 | |
6582 | if (strncmp((char *)(ptr+skipatstart+2), STRING_CR_RIGHTPAR, 3) == 0) |
6583 | { skipatstart += 5; newnl = PCRE_NEWLINE_CR; } |
6584 | else if (strncmp((char *)(ptr+skipatstart+2), STRING_LF_RIGHTPAR, 3) == 0) |
6585 | { skipatstart += 5; newnl = PCRE_NEWLINE_LF; } |
6586 | else if (strncmp((char *)(ptr+skipatstart+2), STRING_CRLF_RIGHTPAR, 5) == 0) |
6587 | { skipatstart += 7; newnl = PCRE_NEWLINE_CR + PCRE_NEWLINE_LF; } |
6588 | else if (strncmp((char *)(ptr+skipatstart+2), STRING_ANY_RIGHTPAR, 4) == 0) |
6589 | { skipatstart += 6; newnl = PCRE_NEWLINE_ANY; } |
6590 | else if (strncmp((char *)(ptr+skipatstart+2), STRING_ANYCRLF_RIGHTPAR, 8) == 0) |
6591 | { skipatstart += 10; newnl = PCRE_NEWLINE_ANYCRLF; } |
6592 | |
6593 | else if (strncmp((char *)(ptr+skipatstart+2), STRING_BSR_ANYCRLF_RIGHTPAR, 12) == 0) |
6594 | { skipatstart += 14; newbsr = PCRE_BSR_ANYCRLF; } |
6595 | else if (strncmp((char *)(ptr+skipatstart+2), STRING_BSR_UNICODE_RIGHTPAR, 12) == 0) |
6596 | { skipatstart += 14; newbsr = PCRE_BSR_UNICODE; } |
6597 | |
6598 | if (newnl != 0) |
6599 | options = (options & ~PCRE_NEWLINE_BITS) | newnl; |
6600 | else if (newbsr != 0) |
6601 | options = (options & ~(PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) | newbsr; |
6602 | else break; |
6603 | } |
6604 | |
6605 | /* Can't support UTF8 unless PCRE has been compiled to include the code. */ |
6606 | |
6607 | #ifdef SUPPORT_UTF8 |
6608 | if (utf8 && (options & PCRE_NO_UTF8_CHECK) == 0 && |
6609 | (*erroroffset = _pcre_valid_utf8((USPTR)pattern, -1)) >= 0) |
6610 | { |
6611 | errorcode = ERR44; |
6612 | goto PCRE_EARLY_ERROR_RETURN2; |
6613 | } |
6614 | #else |
6615 | if (utf8) |
6616 | { |
6617 | errorcode = ERR32; |
6618 | goto PCRE_EARLY_ERROR_RETURN; |
6619 | } |
6620 | #endif |
6621 | |
6622 | /* Check validity of \R options. */ |
6623 | |
6624 | switch (options & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) |
6625 | { |
6626 | case 0: |
6627 | case PCRE_BSR_ANYCRLF: |
6628 | case PCRE_BSR_UNICODE: |
6629 | break; |
6630 | default: errorcode = ERR56; goto PCRE_EARLY_ERROR_RETURN; |
6631 | } |
6632 | |
6633 | /* Handle different types of newline. The three bits give seven cases. The |
6634 | current code allows for fixed one- or two-byte sequences, plus "any" and |
6635 | "anycrlf". */ |
6636 | |
6637 | switch (options & PCRE_NEWLINE_BITS) |
6638 | { |
6639 | case 0: newline = NEWLINE; break; /* Build-time default */ |
6640 | case PCRE_NEWLINE_CR: newline = CHAR_CR; break; |
6641 | case PCRE_NEWLINE_LF: newline = CHAR_NL; break; |
6642 | case PCRE_NEWLINE_CR+ |
6643 | PCRE_NEWLINE_LF: newline = (CHAR_CR << 8) | CHAR_NL; break; |
6644 | case PCRE_NEWLINE_ANY: newline = -1; break; |
6645 | case PCRE_NEWLINE_ANYCRLF: newline = -2; break; |
6646 | default: errorcode = ERR56; goto PCRE_EARLY_ERROR_RETURN; |
6647 | } |
6648 | |
6649 | if (newline == -2) |
6650 | { |
6651 | cd->nltype = NLTYPE_ANYCRLF; |
6652 | } |
6653 | else if (newline < 0) |
6654 | { |
6655 | cd->nltype = NLTYPE_ANY; |
6656 | } |
6657 | else |
6658 | { |
6659 | cd->nltype = NLTYPE_FIXED; |
6660 | if (newline > 255) |
6661 | { |
6662 | cd->nllen = 2; |
6663 | cd->nl[0] = (newline >> 8) & 255; |
6664 | cd->nl[1] = newline & 255; |
6665 | } |
6666 | else |
6667 | { |
6668 | cd->nllen = 1; |
6669 | cd->nl[0] = newline; |
6670 | } |
6671 | } |
6672 | |