Parent Directory
|
Revision Log
Permit quantifiers on parenthesized assertions.
1 | /************************************************* |
2 | * Perl-Compatible Regular Expressions * |
3 | *************************************************/ |
4 | |
5 | /* PCRE is a library of functions to support regular expressions whose syntax |
6 | and semantics are as close as possible to those of the Perl 5 language. |
7 | |
8 | Written by Philip Hazel |
9 | Copyright (c) 1997-2011 University of Cambridge |
10 | |
11 | ----------------------------------------------------------------------------- |
12 | Redistribution and use in source and binary forms, with or without |
13 | modification, are permitted provided that the following conditions are met: |
14 | |
15 | * Redistributions of source code must retain the above copyright notice, |
16 | this list of conditions and the following disclaimer. |
17 | |
18 | * Redistributions in binary form must reproduce the above copyright |
19 | notice, this list of conditions and the following disclaimer in the |
20 | documentation and/or other materials provided with the distribution. |
21 | |
22 | * Neither the name of the University of Cambridge nor the names of its |
23 | contributors may be used to endorse or promote products derived from |
24 | this software without specific prior written permission. |
25 | |
26 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
27 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
28 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
29 | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
30 | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
31 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
32 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
33 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
34 | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
35 | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
36 | POSSIBILITY OF SUCH DAMAGE. |
37 | ----------------------------------------------------------------------------- |
38 | */ |
39 | |
40 | |
41 | /* This module contains the external function pcre_compile(), along with |
42 | supporting internal functions that are not used by other modules. */ |
43 | |
44 | |
45 | #ifdef HAVE_CONFIG_H |
46 | #include "config.h" |
47 | #endif |
48 | |
49 | #define NLBLOCK cd /* Block containing newline information */ |
50 | #define PSSTART start_pattern /* Field containing processed string start */ |
51 | #define PSEND end_pattern /* Field containing processed string end */ |
52 | |
53 | #include "pcre_internal.h" |
54 | |
55 | |
56 | /* When PCRE_DEBUG is defined, we need the pcre_printint() function, which is |
57 | also used by pcretest. PCRE_DEBUG is not defined when building a production |
58 | library. */ |
59 | |
60 | #ifdef PCRE_DEBUG |
61 | #include "pcre_printint.src" |
62 | #endif |
63 | |
64 | |
65 | /* Macro for setting individual bits in class bitmaps. */ |
66 | |
67 | #define SETBIT(a,b) a[b/8] |= (1 << (b%8)) |
68 | |
69 | /* Maximum length value to check against when making sure that the integer that |
70 | holds the compiled pattern length does not overflow. We make it a bit less than |
71 | INT_MAX to allow for adding in group terminating bytes, so that we don't have |
72 | to check them every time. */ |
73 | |
74 | #define OFLOW_MAX (INT_MAX - 20) |
75 | |
76 | |
77 | /************************************************* |
78 | * Code parameters and static tables * |
79 | *************************************************/ |
80 | |
81 | /* This value specifies the size of stack workspace that is used during the |
82 | first pre-compile phase that determines how much memory is required. The regex |
83 | is partly compiled into this space, but the compiled parts are discarded as |
84 | soon as they can be, so that hopefully there will never be an overrun. The code |
85 | does, however, check for an overrun. The largest amount I've seen used is 218, |
86 | so this number is very generous. |
87 | |
88 | The same workspace is used during the second, actual compile phase for |
89 | remembering forward references to groups so that they can be filled in at the |
90 | end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE |
91 | is 4 there is plenty of room. */ |
92 | |
93 | #define COMPILE_WORK_SIZE (4096) |
94 | |
95 | /* The overrun tests check for a slightly smaller size so that they detect the |
96 | overrun before it actually does run off the end of the data block. */ |
97 | |
98 | #define WORK_SIZE_CHECK (COMPILE_WORK_SIZE - 100) |
99 | |
100 | |
101 | /* Table for handling escaped characters in the range '0'-'z'. Positive returns |
102 | are simple data values; negative values are for special things like \d and so |
103 | on. Zero means further processing is needed (for things like \x), or the escape |
104 | is invalid. */ |
105 | |
106 | #ifndef EBCDIC |
107 | |
108 | /* This is the "normal" table for ASCII systems or for EBCDIC systems running |
109 | in UTF-8 mode. */ |
110 | |
111 | static const short int escapes[] = { |
112 | 0, 0, |
113 | 0, 0, |
114 | 0, 0, |
115 | 0, 0, |
116 | 0, 0, |
117 | CHAR_COLON, CHAR_SEMICOLON, |
118 | CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN, |
119 | CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK, |
120 | CHAR_COMMERCIAL_AT, -ESC_A, |
121 | -ESC_B, -ESC_C, |
122 | -ESC_D, -ESC_E, |
123 | 0, -ESC_G, |
124 | -ESC_H, 0, |
125 | 0, -ESC_K, |
126 | 0, 0, |
127 | -ESC_N, 0, |
128 | -ESC_P, -ESC_Q, |
129 | -ESC_R, -ESC_S, |
130 | 0, 0, |
131 | -ESC_V, -ESC_W, |
132 | -ESC_X, 0, |
133 | -ESC_Z, CHAR_LEFT_SQUARE_BRACKET, |
134 | CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET, |
135 | CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE, |
136 | CHAR_GRAVE_ACCENT, 7, |
137 | -ESC_b, 0, |
138 | -ESC_d, ESC_e, |
139 | ESC_f, 0, |
140 | -ESC_h, 0, |
141 | 0, -ESC_k, |
142 | 0, 0, |
143 | ESC_n, 0, |
144 | -ESC_p, 0, |
145 | ESC_r, -ESC_s, |
146 | ESC_tee, 0, |
147 | -ESC_v, -ESC_w, |
148 | 0, 0, |
149 | -ESC_z |
150 | }; |
151 | |
152 | #else |
153 | |
154 | /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */ |
155 | |
156 | static const short int escapes[] = { |
157 | /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|', |
158 | /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0, |
159 | /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~', |
160 | /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0, |
161 | /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?', |
162 | /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0, |
163 | /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"', |
164 | /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, |
165 | /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0, |
166 | /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p, |
167 | /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0, |
168 | /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0, |
169 | /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0, |
170 | /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
171 | /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-', |
172 | /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G, |
173 | /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0, |
174 | /* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P, |
175 | /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0, |
176 | /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X, |
177 | /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0, |
178 | /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
179 | /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0 |
180 | }; |
181 | #endif |
182 | |
183 | |
184 | /* Table of special "verbs" like (*PRUNE). This is a short table, so it is |
185 | searched linearly. Put all the names into a single string, in order to reduce |
186 | the number of relocations when a shared library is dynamically linked. The |
187 | string is built from string macros so that it works in UTF-8 mode on EBCDIC |
188 | platforms. */ |
189 | |
190 | typedef struct verbitem { |
191 | int len; /* Length of verb name */ |
192 | int op; /* Op when no arg, or -1 if arg mandatory */ |
193 | int op_arg; /* Op when arg present, or -1 if not allowed */ |
194 | } verbitem; |
195 | |
196 | static const char verbnames[] = |
197 | "\0" /* Empty name is a shorthand for MARK */ |
198 | STRING_MARK0 |
199 | STRING_ACCEPT0 |
200 | STRING_COMMIT0 |
201 | STRING_F0 |
202 | STRING_FAIL0 |
203 | STRING_PRUNE0 |
204 | STRING_SKIP0 |
205 | STRING_THEN; |
206 | |
207 | static const verbitem verbs[] = { |
208 | { 0, -1, OP_MARK }, |
209 | { 4, -1, OP_MARK }, |
210 | { 6, OP_ACCEPT, -1 }, |
211 | { 6, OP_COMMIT, -1 }, |
212 | { 1, OP_FAIL, -1 }, |
213 | { 4, OP_FAIL, -1 }, |
214 | { 5, OP_PRUNE, OP_PRUNE_ARG }, |
215 | { 4, OP_SKIP, OP_SKIP_ARG }, |
216 | { 4, OP_THEN, OP_THEN_ARG } |
217 | }; |
218 | |
219 | static const int verbcount = sizeof(verbs)/sizeof(verbitem); |
220 | |
221 | |
222 | /* Tables of names of POSIX character classes and their lengths. The names are |
223 | now all in a single string, to reduce the number of relocations when a shared |
224 | library is dynamically loaded. The list of lengths is terminated by a zero |
225 | length entry. The first three must be alpha, lower, upper, as this is assumed |
226 | for handling case independence. */ |
227 | |
228 | static const char posix_names[] = |
229 | STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0 |
230 | STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0 |
231 | STRING_graph0 STRING_print0 STRING_punct0 STRING_space0 |
232 | STRING_word0 STRING_xdigit; |
233 | |
234 | static const uschar posix_name_lengths[] = { |
235 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 }; |
236 | |
237 | /* Table of class bit maps for each POSIX class. Each class is formed from a |
238 | base map, with an optional addition or removal of another map. Then, for some |
239 | classes, there is some additional tweaking: for [:blank:] the vertical space |
240 | characters are removed, and for [:alpha:] and [:alnum:] the underscore |
241 | character is removed. The triples in the table consist of the base map offset, |
242 | second map offset or -1 if no second map, and a non-negative value for map |
243 | addition or a negative value for map subtraction (if there are two maps). The |
244 | absolute value of the third field has these meanings: 0 => no tweaking, 1 => |
245 | remove vertical space characters, 2 => remove underscore. */ |
246 | |
247 | static const int posix_class_maps[] = { |
248 | cbit_word, cbit_digit, -2, /* alpha */ |
249 | cbit_lower, -1, 0, /* lower */ |
250 | cbit_upper, -1, 0, /* upper */ |
251 | cbit_word, -1, 2, /* alnum - word without underscore */ |
252 | cbit_print, cbit_cntrl, 0, /* ascii */ |
253 | cbit_space, -1, 1, /* blank - a GNU extension */ |
254 | cbit_cntrl, -1, 0, /* cntrl */ |
255 | cbit_digit, -1, 0, /* digit */ |
256 | cbit_graph, -1, 0, /* graph */ |
257 | cbit_print, -1, 0, /* print */ |
258 | cbit_punct, -1, 0, /* punct */ |
259 | cbit_space, -1, 0, /* space */ |
260 | cbit_word, -1, 0, /* word - a Perl extension */ |
261 | cbit_xdigit,-1, 0 /* xdigit */ |
262 | }; |
263 | |
264 | /* Table of substitutes for \d etc when PCRE_UCP is set. The POSIX class |
265 | substitutes must be in the order of the names, defined above, and there are |
266 | both positive and negative cases. NULL means no substitute. */ |
267 | |
268 | #ifdef SUPPORT_UCP |
269 | static const uschar *substitutes[] = { |
270 | (uschar *)"\\P{Nd}", /* \D */ |
271 | (uschar *)"\\p{Nd}", /* \d */ |
272 | (uschar *)"\\P{Xsp}", /* \S */ /* NOTE: Xsp is Perl space */ |
273 | (uschar *)"\\p{Xsp}", /* \s */ |
274 | (uschar *)"\\P{Xwd}", /* \W */ |
275 | (uschar *)"\\p{Xwd}" /* \w */ |
276 | }; |
277 | |
278 | static const uschar *posix_substitutes[] = { |
279 | (uschar *)"\\p{L}", /* alpha */ |
280 | (uschar *)"\\p{Ll}", /* lower */ |
281 | (uschar *)"\\p{Lu}", /* upper */ |
282 | (uschar *)"\\p{Xan}", /* alnum */ |
283 | NULL, /* ascii */ |
284 | (uschar *)"\\h", /* blank */ |
285 | NULL, /* cntrl */ |
286 | (uschar *)"\\p{Nd}", /* digit */ |
287 | NULL, /* graph */ |
288 | NULL, /* print */ |
289 | NULL, /* punct */ |
290 | (uschar *)"\\p{Xps}", /* space */ /* NOTE: Xps is POSIX space */ |
291 | (uschar *)"\\p{Xwd}", /* word */ |
292 | NULL, /* xdigit */ |
293 | /* Negated cases */ |
294 | (uschar *)"\\P{L}", /* ^alpha */ |
295 | (uschar *)"\\P{Ll}", /* ^lower */ |
296 | (uschar *)"\\P{Lu}", /* ^upper */ |
297 | (uschar *)"\\P{Xan}", /* ^alnum */ |
298 | NULL, /* ^ascii */ |
299 | (uschar *)"\\H", /* ^blank */ |
300 | NULL, /* ^cntrl */ |
301 | (uschar *)"\\P{Nd}", /* ^digit */ |
302 | NULL, /* ^graph */ |
303 | NULL, /* ^print */ |
304 | NULL, /* ^punct */ |
305 | (uschar *)"\\P{Xps}", /* ^space */ /* NOTE: Xps is POSIX space */ |
306 | (uschar *)"\\P{Xwd}", /* ^word */ |
307 | NULL /* ^xdigit */ |
308 | }; |
309 | #define POSIX_SUBSIZE (sizeof(posix_substitutes)/sizeof(uschar *)) |
310 | #endif |
311 | |
312 | #define STRING(a) # a |
313 | #define XSTRING(s) STRING(s) |
314 | |
315 | /* The texts of compile-time error messages. These are "char *" because they |
316 | are passed to the outside world. Do not ever re-use any error number, because |
317 | they are documented. Always add a new error instead. Messages marked DEAD below |
318 | are no longer used. This used to be a table of strings, but in order to reduce |
319 | the number of relocations needed when a shared library is loaded dynamically, |
320 | it is now one long string. We cannot use a table of offsets, because the |
321 | lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we |
322 | simply count through to the one we want - this isn't a performance issue |
323 | because these strings are used only when there is a compilation error. |
324 | |
325 | Each substring ends with \0 to insert a null character. This includes the final |
326 | substring, so that the whole string ends with \0\0, which can be detected when |
327 | counting through. */ |
328 | |
329 | static const char error_texts[] = |
330 | "no error\0" |
331 | "\\ at end of pattern\0" |
332 | "\\c at end of pattern\0" |
333 | "unrecognized character follows \\\0" |
334 | "numbers out of order in {} quantifier\0" |
335 | /* 5 */ |
336 | "number too big in {} quantifier\0" |
337 | "missing terminating ] for character class\0" |
338 | "invalid escape sequence in character class\0" |
339 | "range out of order in character class\0" |
340 | "nothing to repeat\0" |
341 | /* 10 */ |
342 | "operand of unlimited repeat could match the empty string\0" /** DEAD **/ |
343 | "internal error: unexpected repeat\0" |
344 | "unrecognized character after (? or (?-\0" |
345 | "POSIX named classes are supported only within a class\0" |
346 | "missing )\0" |
347 | /* 15 */ |
348 | "reference to non-existent subpattern\0" |
349 | "erroffset passed as NULL\0" |
350 | "unknown option bit(s) set\0" |
351 | "missing ) after comment\0" |
352 | "parentheses nested too deeply\0" /** DEAD **/ |
353 | /* 20 */ |
354 | "regular expression is too large\0" |
355 | "failed to get memory\0" |
356 | "unmatched parentheses\0" |
357 | "internal error: code overflow\0" |
358 | "unrecognized character after (?<\0" |
359 | /* 25 */ |
360 | "lookbehind assertion is not fixed length\0" |
361 | "malformed number or name after (?(\0" |
362 | "conditional group contains more than two branches\0" |
363 | "assertion expected after (?(\0" |
364 | "(?R or (?[+-]digits must be followed by )\0" |
365 | /* 30 */ |
366 | "unknown POSIX class name\0" |
367 | "POSIX collating elements are not supported\0" |
368 | "this version of PCRE is not compiled with PCRE_UTF8 support\0" |
369 | "spare error\0" /** DEAD **/ |
370 | "character value in \\x{...} sequence is too large\0" |
371 | /* 35 */ |
372 | "invalid condition (?(0)\0" |
373 | "\\C not allowed in lookbehind assertion\0" |
374 | "PCRE does not support \\L, \\l, \\N{name}, \\U, or \\u\0" |
375 | "number after (?C is > 255\0" |
376 | "closing ) for (?C expected\0" |
377 | /* 40 */ |
378 | "recursive call could loop indefinitely\0" |
379 | "unrecognized character after (?P\0" |
380 | "syntax error in subpattern name (missing terminator)\0" |
381 | "two named subpatterns have the same name\0" |
382 | "invalid UTF-8 string\0" |
383 | /* 45 */ |
384 | "support for \\P, \\p, and \\X has not been compiled\0" |
385 | "malformed \\P or \\p sequence\0" |
386 | "unknown property name after \\P or \\p\0" |
387 | "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0" |
388 | "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0" |
389 | /* 50 */ |
390 | "repeated subpattern is too long\0" /** DEAD **/ |
391 | "octal value is greater than \\377 (not in UTF-8 mode)\0" |
392 | "internal error: overran compiling workspace\0" |
393 | "internal error: previously-checked referenced subpattern not found\0" |
394 | "DEFINE group contains more than one branch\0" |
395 | /* 55 */ |
396 | "repeating a DEFINE group is not allowed\0" /** DEAD **/ |
397 | "inconsistent NEWLINE options\0" |
398 | "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0" |
399 | "a numbered reference must not be zero\0" |
400 | "an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0" |
401 | /* 60 */ |
402 | "(*VERB) not recognized\0" |
403 | "number is too big\0" |
404 | "subpattern name expected\0" |
405 | "digit expected after (?+\0" |
406 | "] is an invalid data character in JavaScript compatibility mode\0" |
407 | /* 65 */ |
408 | "different names for subpatterns of the same number are not allowed\0" |
409 | "(*MARK) must have an argument\0" |
410 | "this version of PCRE is not compiled with PCRE_UCP support\0" |
411 | "\\c must be followed by an ASCII character\0" |
412 | "\\k is not followed by a braced, angle-bracketed, or quoted name\0" |
413 | ; |
414 | |
415 | /* Table to identify digits and hex digits. This is used when compiling |
416 | patterns. Note that the tables in chartables are dependent on the locale, and |
417 | may mark arbitrary characters as digits - but the PCRE compiling code expects |
418 | to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have |
419 | a private table here. It costs 256 bytes, but it is a lot faster than doing |
420 | character value tests (at least in some simple cases I timed), and in some |
421 | applications one wants PCRE to compile efficiently as well as match |
422 | efficiently. |
423 | |
424 | For convenience, we use the same bit definitions as in chartables: |
425 | |
426 | 0x04 decimal digit |
427 | 0x08 hexadecimal digit |
428 | |
429 | Then we can use ctype_digit and ctype_xdigit in the code. */ |
430 | |
431 | #ifndef EBCDIC |
432 | |
433 | /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in |
434 | UTF-8 mode. */ |
435 | |
436 | static const unsigned char digitab[] = |
437 | { |
438 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */ |
439 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
440 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */ |
441 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
442 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */ |
443 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */ |
444 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */ |
445 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */ |
446 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */ |
447 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */ |
448 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */ |
449 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */ |
450 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */ |
451 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */ |
452 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */ |
453 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */ |
454 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */ |
455 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */ |
456 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */ |
457 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */ |
458 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */ |
459 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */ |
460 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */ |
461 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
462 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */ |
463 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */ |
464 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */ |
465 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */ |
466 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */ |
467 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */ |
468 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */ |
469 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */ |
470 | |
471 | #else |
472 | |
473 | /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */ |
474 | |
475 | static const unsigned char digitab[] = |
476 | { |
477 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */ |
478 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
479 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */ |
480 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
481 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */ |
482 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
483 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */ |
484 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
485 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */ |
486 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */ |
487 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */ |
488 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */ |
489 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */ |
490 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */ |
491 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */ |
492 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
493 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */ |
494 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
495 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */ |
496 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
497 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */ |
498 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
499 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */ |
500 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
501 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */ |
502 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
503 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */ |
504 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
505 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */ |
506 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
507 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */ |
508 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
509 | |
510 | static const unsigned char ebcdic_chartab[] = { /* chartable partial dup */ |
511 | 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */ |
512 | 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */ |
513 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */ |
514 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
515 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */ |
516 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
517 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */ |
518 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
519 | 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */ |
520 | 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */ |
521 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */ |
522 | 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */ |
523 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */ |
524 | 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */ |
525 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */ |
526 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
527 | 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */ |
528 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
529 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */ |
530 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
531 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */ |
532 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
533 | 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */ |
534 | 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
535 | 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */ |
536 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
537 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */ |
538 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
539 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */ |
540 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
541 | 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */ |
542 | 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
543 | #endif |
544 | |
545 | |
546 | /* Definition to allow mutual recursion */ |
547 | |
548 | static BOOL |
549 | compile_regex(int, uschar **, const uschar **, int *, BOOL, BOOL, int, int *, |
550 | int *, branch_chain *, compile_data *, int *); |
551 | |
552 | |
553 | |
554 | /************************************************* |
555 | * Find an error text * |
556 | *************************************************/ |
557 | |
558 | /* The error texts are now all in one long string, to save on relocations. As |
559 | some of the text is of unknown length, we can't use a table of offsets. |
560 | Instead, just count through the strings. This is not a performance issue |
561 | because it happens only when there has been a compilation error. |
562 | |
563 | Argument: the error number |
564 | Returns: pointer to the error string |
565 | */ |
566 | |
567 | static const char * |
568 | find_error_text(int n) |
569 | { |
570 | const char *s = error_texts; |
571 | for (; n > 0; n--) |
572 | { |
573 | while (*s++ != 0) {}; |
574 | if (*s == 0) return "Error text not found (please report)"; |
575 | } |
576 | return s; |
577 | } |
578 | |
579 | |
580 | /************************************************* |
581 | * Handle escapes * |
582 | *************************************************/ |
583 | |
584 | /* This function is called when a \ has been encountered. It either returns a |
585 | positive value for a simple escape such as \n, or a negative value which |
586 | encodes one of the more complicated things such as \d. A backreference to group |
587 | n is returned as -(ESC_REF + n); ESC_REF is the highest ESC_xxx macro. When |
588 | UTF-8 is enabled, a positive value greater than 255 may be returned. On entry, |
589 | ptr is pointing at the \. On exit, it is on the final character of the escape |
590 | sequence. |
591 | |
592 | Arguments: |
593 | ptrptr points to the pattern position pointer |
594 | errorcodeptr points to the errorcode variable |
595 | bracount number of previous extracting brackets |
596 | options the options bits |
597 | isclass TRUE if inside a character class |
598 | |
599 | Returns: zero or positive => a data character |
600 | negative => a special escape sequence |
601 | on error, errorcodeptr is set |
602 | */ |
603 | |
604 | static int |
605 | check_escape(const uschar **ptrptr, int *errorcodeptr, int bracount, |
606 | int options, BOOL isclass) |
607 | { |
608 | BOOL utf8 = (options & PCRE_UTF8) != 0; |
609 | const uschar *ptr = *ptrptr + 1; |
610 | int c, i; |
611 | |
612 | GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */ |
613 | ptr--; /* Set pointer back to the last byte */ |
614 | |
615 | /* If backslash is at the end of the pattern, it's an error. */ |
616 | |
617 | if (c == 0) *errorcodeptr = ERR1; |
618 | |
619 | /* Non-alphanumerics are literals. For digits or letters, do an initial lookup |
620 | in a table. A non-zero result is something that can be returned immediately. |
621 | Otherwise further processing may be required. */ |
622 | |
623 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
624 | else if (c < CHAR_0 || c > CHAR_z) {} /* Not alphanumeric */ |
625 | else if ((i = escapes[c - CHAR_0]) != 0) c = i; |
626 | |
627 | #else /* EBCDIC coding */ |
628 | else if (c < 'a' || (ebcdic_chartab[c] & 0x0E) == 0) {} /* Not alphanumeric */ |
629 | else if ((i = escapes[c - 0x48]) != 0) c = i; |
630 | #endif |
631 | |
632 | /* Escapes that need further processing, or are illegal. */ |
633 | |
634 | else |
635 | { |
636 | const uschar *oldptr; |
637 | BOOL braced, negated; |
638 | |
639 | switch (c) |
640 | { |
641 | /* A number of Perl escapes are not handled by PCRE. We give an explicit |
642 | error. */ |
643 | |
644 | case CHAR_l: |
645 | case CHAR_L: |
646 | case CHAR_u: |
647 | case CHAR_U: |
648 | *errorcodeptr = ERR37; |
649 | break; |
650 | |
651 | /* \g must be followed by one of a number of specific things: |
652 | |
653 | (1) A number, either plain or braced. If positive, it is an absolute |
654 | backreference. If negative, it is a relative backreference. This is a Perl |
655 | 5.10 feature. |
656 | |
657 | (2) Perl 5.10 also supports \g{name} as a reference to a named group. This |
658 | is part of Perl's movement towards a unified syntax for back references. As |
659 | this is synonymous with \k{name}, we fudge it up by pretending it really |
660 | was \k. |
661 | |
662 | (3) For Oniguruma compatibility we also support \g followed by a name or a |
663 | number either in angle brackets or in single quotes. However, these are |
664 | (possibly recursive) subroutine calls, _not_ backreferences. Just return |
665 | the -ESC_g code (cf \k). */ |
666 | |
667 | case CHAR_g: |
668 | if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE) |
669 | { |
670 | c = -ESC_g; |
671 | break; |
672 | } |
673 | |
674 | /* Handle the Perl-compatible cases */ |
675 | |
676 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
677 | { |
678 | const uschar *p; |
679 | for (p = ptr+2; *p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET; p++) |
680 | if (*p != CHAR_MINUS && (digitab[*p] & ctype_digit) == 0) break; |
681 | if (*p != 0 && *p != CHAR_RIGHT_CURLY_BRACKET) |
682 | { |
683 | c = -ESC_k; |
684 | break; |
685 | } |
686 | braced = TRUE; |
687 | ptr++; |
688 | } |
689 | else braced = FALSE; |
690 | |
691 | if (ptr[1] == CHAR_MINUS) |
692 | { |
693 | negated = TRUE; |
694 | ptr++; |
695 | } |
696 | else negated = FALSE; |
697 | |
698 | c = 0; |
699 | while ((digitab[ptr[1]] & ctype_digit) != 0) |
700 | c = c * 10 + *(++ptr) - CHAR_0; |
701 | |
702 | if (c < 0) /* Integer overflow */ |
703 | { |
704 | *errorcodeptr = ERR61; |
705 | break; |
706 | } |
707 | |
708 | if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET) |
709 | { |
710 | *errorcodeptr = ERR57; |
711 | break; |
712 | } |
713 | |
714 | if (c == 0) |
715 | { |
716 | *errorcodeptr = ERR58; |
717 | break; |
718 | } |
719 | |
720 | if (negated) |
721 | { |
722 | if (c > bracount) |
723 | { |
724 | *errorcodeptr = ERR15; |
725 | break; |
726 | } |
727 | c = bracount - (c - 1); |
728 | } |
729 | |
730 | c = -(ESC_REF + c); |
731 | break; |
732 | |
733 | /* The handling of escape sequences consisting of a string of digits |
734 | starting with one that is not zero is not straightforward. By experiment, |
735 | the way Perl works seems to be as follows: |
736 | |
737 | Outside a character class, the digits are read as a decimal number. If the |
738 | number is less than 10, or if there are that many previous extracting |
739 | left brackets, then it is a back reference. Otherwise, up to three octal |
740 | digits are read to form an escaped byte. Thus \123 is likely to be octal |
741 | 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal |
742 | value is greater than 377, the least significant 8 bits are taken. Inside a |
743 | character class, \ followed by a digit is always an octal number. */ |
744 | |
745 | case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5: |
746 | case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
747 | |
748 | if (!isclass) |
749 | { |
750 | oldptr = ptr; |
751 | c -= CHAR_0; |
752 | while ((digitab[ptr[1]] & ctype_digit) != 0) |
753 | c = c * 10 + *(++ptr) - CHAR_0; |
754 | if (c < 0) /* Integer overflow */ |
755 | { |
756 | *errorcodeptr = ERR61; |
757 | break; |
758 | } |
759 | if (c < 10 || c <= bracount) |
760 | { |
761 | c = -(ESC_REF + c); |
762 | break; |
763 | } |
764 | ptr = oldptr; /* Put the pointer back and fall through */ |
765 | } |
766 | |
767 | /* Handle an octal number following \. If the first digit is 8 or 9, Perl |
768 | generates a binary zero byte and treats the digit as a following literal. |
769 | Thus we have to pull back the pointer by one. */ |
770 | |
771 | if ((c = *ptr) >= CHAR_8) |
772 | { |
773 | ptr--; |
774 | c = 0; |
775 | break; |
776 | } |
777 | |
778 | /* \0 always starts an octal number, but we may drop through to here with a |
779 | larger first octal digit. The original code used just to take the least |
780 | significant 8 bits of octal numbers (I think this is what early Perls used |
781 | to do). Nowadays we allow for larger numbers in UTF-8 mode, but no more |
782 | than 3 octal digits. */ |
783 | |
784 | case CHAR_0: |
785 | c -= CHAR_0; |
786 | while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7) |
787 | c = c * 8 + *(++ptr) - CHAR_0; |
788 | if (!utf8 && c > 255) *errorcodeptr = ERR51; |
789 | break; |
790 | |
791 | /* \x is complicated. \x{ddd} is a character number which can be greater |
792 | than 0xff in utf8 mode, but only if the ddd are hex digits. If not, { is |
793 | treated as a data character. */ |
794 | |
795 | case CHAR_x: |
796 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
797 | { |
798 | const uschar *pt = ptr + 2; |
799 | int count = 0; |
800 | |
801 | c = 0; |
802 | while ((digitab[*pt] & ctype_xdigit) != 0) |
803 | { |
804 | register int cc = *pt++; |
805 | if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */ |
806 | count++; |
807 | |
808 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
809 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
810 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
811 | #else /* EBCDIC coding */ |
812 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
813 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
814 | #endif |
815 | } |
816 | |
817 | if (*pt == CHAR_RIGHT_CURLY_BRACKET) |
818 | { |
819 | if (c < 0 || count > (utf8? 8 : 2)) *errorcodeptr = ERR34; |
820 | ptr = pt; |
821 | break; |
822 | } |
823 | |
824 | /* If the sequence of hex digits does not end with '}', then we don't |
825 | recognize this construct; fall through to the normal \x handling. */ |
826 | } |
827 | |
828 | /* Read just a single-byte hex-defined char */ |
829 | |
830 | c = 0; |
831 | while (i++ < 2 && (digitab[ptr[1]] & ctype_xdigit) != 0) |
832 | { |
833 | int cc; /* Some compilers don't like */ |
834 | cc = *(++ptr); /* ++ in initializers */ |
835 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
836 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
837 | c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
838 | #else /* EBCDIC coding */ |
839 | if (cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
840 | c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
841 | #endif |
842 | } |
843 | break; |
844 | |
845 | /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped. |
846 | An error is given if the byte following \c is not an ASCII character. This |
847 | coding is ASCII-specific, but then the whole concept of \cx is |
848 | ASCII-specific. (However, an EBCDIC equivalent has now been added.) */ |
849 | |
850 | case CHAR_c: |
851 | c = *(++ptr); |
852 | if (c == 0) |
853 | { |
854 | *errorcodeptr = ERR2; |
855 | break; |
856 | } |
857 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
858 | if (c > 127) /* Excludes all non-ASCII in either mode */ |
859 | { |
860 | *errorcodeptr = ERR68; |
861 | break; |
862 | } |
863 | if (c >= CHAR_a && c <= CHAR_z) c -= 32; |
864 | c ^= 0x40; |
865 | #else /* EBCDIC coding */ |
866 | if (c >= CHAR_a && c <= CHAR_z) c += 64; |
867 | c ^= 0xC0; |
868 | #endif |
869 | break; |
870 | |
871 | /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any |
872 | other alphanumeric following \ is an error if PCRE_EXTRA was set; |
873 | otherwise, for Perl compatibility, it is a literal. This code looks a bit |
874 | odd, but there used to be some cases other than the default, and there may |
875 | be again in future, so I haven't "optimized" it. */ |
876 | |
877 | default: |
878 | if ((options & PCRE_EXTRA) != 0) switch(c) |
879 | { |
880 | default: |
881 | *errorcodeptr = ERR3; |
882 | break; |
883 | } |
884 | break; |
885 | } |
886 | } |
887 | |
888 | /* Perl supports \N{name} for character names, as well as plain \N for "not |
889 | newline". PCRE does not support \N{name}. */ |
890 | |
891 | if (c == -ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
892 | *errorcodeptr = ERR37; |
893 | |
894 | /* If PCRE_UCP is set, we change the values for \d etc. */ |
895 | |
896 | if ((options & PCRE_UCP) != 0 && c <= -ESC_D && c >= -ESC_w) |
897 | c -= (ESC_DU - ESC_D); |
898 | |
899 | /* Set the pointer to the final character before returning. */ |
900 | |
901 | *ptrptr = ptr; |
902 | return c; |
903 | } |
904 | |
905 | |
906 | |
907 | #ifdef SUPPORT_UCP |
908 | /************************************************* |
909 | * Handle \P and \p * |
910 | *************************************************/ |
911 | |
912 | /* This function is called after \P or \p has been encountered, provided that |
913 | PCRE is compiled with support for Unicode properties. On entry, ptrptr is |
914 | pointing at the P or p. On exit, it is pointing at the final character of the |
915 | escape sequence. |
916 | |
917 | Argument: |
918 | ptrptr points to the pattern position pointer |
919 | negptr points to a boolean that is set TRUE for negation else FALSE |
920 | dptr points to an int that is set to the detailed property value |
921 | errorcodeptr points to the error code variable |
922 | |
923 | Returns: type value from ucp_type_table, or -1 for an invalid type |
924 | */ |
925 | |
926 | static int |
927 | get_ucp(const uschar **ptrptr, BOOL *negptr, int *dptr, int *errorcodeptr) |
928 | { |
929 | int c, i, bot, top; |
930 | const uschar *ptr = *ptrptr; |
931 | char name[32]; |
932 | |
933 | c = *(++ptr); |
934 | if (c == 0) goto ERROR_RETURN; |
935 | |
936 | *negptr = FALSE; |
937 | |
938 | /* \P or \p can be followed by a name in {}, optionally preceded by ^ for |
939 | negation. */ |
940 | |
941 | if (c == CHAR_LEFT_CURLY_BRACKET) |
942 | { |
943 | if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
944 | { |
945 | *negptr = TRUE; |
946 | ptr++; |
947 | } |
948 | for (i = 0; i < (int)sizeof(name) - 1; i++) |
949 | { |
950 | c = *(++ptr); |
951 | if (c == 0) goto ERROR_RETURN; |
952 | if (c == CHAR_RIGHT_CURLY_BRACKET) break; |
953 | name[i] = c; |
954 | } |
955 | if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN; |
956 | name[i] = 0; |
957 | } |
958 | |
959 | /* Otherwise there is just one following character */ |
960 | |
961 | else |
962 | { |
963 | name[0] = c; |
964 | name[1] = 0; |
965 | } |
966 | |
967 | *ptrptr = ptr; |
968 | |
969 | /* Search for a recognized property name using binary chop */ |
970 | |
971 | bot = 0; |
972 | top = _pcre_utt_size; |
973 | |
974 | while (bot < top) |
975 | { |
976 | i = (bot + top) >> 1; |
977 | c = strcmp(name, _pcre_utt_names + _pcre_utt[i].name_offset); |
978 | if (c == 0) |
979 | { |
980 | *dptr = _pcre_utt[i].value; |
981 | return _pcre_utt[i].type; |
982 | } |
983 | if (c > 0) bot = i + 1; else top = i; |
984 | } |
985 | |
986 | *errorcodeptr = ERR47; |
987 | *ptrptr = ptr; |
988 | return -1; |
989 | |
990 | ERROR_RETURN: |
991 | *errorcodeptr = ERR46; |
992 | *ptrptr = ptr; |
993 | return -1; |
994 | } |
995 | #endif |
996 | |
997 | |
998 | |
999 | |
1000 | /************************************************* |
1001 | * Check for counted repeat * |
1002 | *************************************************/ |
1003 | |
1004 | /* This function is called when a '{' is encountered in a place where it might |
1005 | start a quantifier. It looks ahead to see if it really is a quantifier or not. |
1006 | It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd} |
1007 | where the ddds are digits. |
1008 | |
1009 | Arguments: |
1010 | p pointer to the first char after '{' |
1011 | |
1012 | Returns: TRUE or FALSE |
1013 | */ |
1014 | |
1015 | static BOOL |
1016 | is_counted_repeat(const uschar *p) |
1017 | { |
1018 | if ((digitab[*p++] & ctype_digit) == 0) return FALSE; |
1019 | while ((digitab[*p] & ctype_digit) != 0) p++; |
1020 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
1021 | |
1022 | if (*p++ != CHAR_COMMA) return FALSE; |
1023 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
1024 | |
1025 | if ((digitab[*p++] & ctype_digit) == 0) return FALSE; |
1026 | while ((digitab[*p] & ctype_digit) != 0) p++; |
1027 | |
1028 | return (*p == CHAR_RIGHT_CURLY_BRACKET); |
1029 | } |
1030 | |
1031 | |
1032 | |
1033 | /************************************************* |
1034 | * Read repeat counts * |
1035 | *************************************************/ |
1036 | |
1037 | /* Read an item of the form {n,m} and return the values. This is called only |
1038 | after is_counted_repeat() has confirmed that a repeat-count quantifier exists, |
1039 | so the syntax is guaranteed to be correct, but we need to check the values. |
1040 | |
1041 | Arguments: |
1042 | p pointer to first char after '{' |
1043 | minp pointer to int for min |
1044 | maxp pointer to int for max |
1045 | returned as -1 if no max |
1046 | errorcodeptr points to error code variable |
1047 | |
1048 | Returns: pointer to '}' on success; |
1049 | current ptr on error, with errorcodeptr set non-zero |
1050 | */ |
1051 | |
1052 | static const uschar * |
1053 | read_repeat_counts(const uschar *p, int *minp, int *maxp, int *errorcodeptr) |
1054 | { |
1055 | int min = 0; |
1056 | int max = -1; |
1057 | |
1058 | /* Read the minimum value and do a paranoid check: a negative value indicates |
1059 | an integer overflow. */ |
1060 | |
1061 | while ((digitab[*p] & ctype_digit) != 0) min = min * 10 + *p++ - CHAR_0; |
1062 | if (min < 0 || min > 65535) |
1063 | { |
1064 | *errorcodeptr = ERR5; |
1065 | return p; |
1066 | } |
1067 | |
1068 | /* Read the maximum value if there is one, and again do a paranoid on its size. |
1069 | Also, max must not be less than min. */ |
1070 | |
1071 | if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else |
1072 | { |
1073 | if (*(++p) != CHAR_RIGHT_CURLY_BRACKET) |
1074 | { |
1075 | max = 0; |
1076 | while((digitab[*p] & ctype_digit) != 0) max = max * 10 + *p++ - CHAR_0; |
1077 | if (max < 0 || max > 65535) |
1078 | { |
1079 | *errorcodeptr = ERR5; |
1080 | return p; |
1081 | } |
1082 | if (max < min) |
1083 | { |
1084 | *errorcodeptr = ERR4; |
1085 | return p; |
1086 | } |
1087 | } |
1088 | } |
1089 | |
1090 | /* Fill in the required variables, and pass back the pointer to the terminating |
1091 | '}'. */ |
1092 | |
1093 | *minp = min; |
1094 | *maxp = max; |
1095 | return p; |
1096 | } |
1097 | |
1098 | |
1099 | |
1100 | /************************************************* |
1101 | * Subroutine for finding forward reference * |
1102 | *************************************************/ |
1103 | |
1104 | /* This recursive function is called only from find_parens() below. The |
1105 | top-level call starts at the beginning of the pattern. All other calls must |
1106 | start at a parenthesis. It scans along a pattern's text looking for capturing |
1107 | subpatterns, and counting them. If it finds a named pattern that matches the |
1108 | name it is given, it returns its number. Alternatively, if the name is NULL, it |
1109 | returns when it reaches a given numbered subpattern. Recursion is used to keep |
1110 | track of subpatterns that reset the capturing group numbers - the (?| feature. |
1111 | |
1112 | This function was originally called only from the second pass, in which we know |
1113 | that if (?< or (?' or (?P< is encountered, the name will be correctly |
1114 | terminated because that is checked in the first pass. There is now one call to |
1115 | this function in the first pass, to check for a recursive back reference by |
1116 | name (so that we can make the whole group atomic). In this case, we need check |
1117 | only up to the current position in the pattern, and that is still OK because |
1118 | and previous occurrences will have been checked. To make this work, the test |
1119 | for "end of pattern" is a check against cd->end_pattern in the main loop, |
1120 | instead of looking for a binary zero. This means that the special first-pass |
1121 | call can adjust cd->end_pattern temporarily. (Checks for binary zero while |
1122 | processing items within the loop are OK, because afterwards the main loop will |
1123 | terminate.) |
1124 | |
1125 | Arguments: |
1126 | ptrptr address of the current character pointer (updated) |
1127 | cd compile background data |
1128 | name name to seek, or NULL if seeking a numbered subpattern |
1129 | lorn name length, or subpattern number if name is NULL |
1130 | xmode TRUE if we are in /x mode |
1131 | utf8 TRUE if we are in UTF-8 mode |
1132 | count pointer to the current capturing subpattern number (updated) |
1133 | |
1134 | Returns: the number of the named subpattern, or -1 if not found |
1135 | */ |
1136 | |
1137 | static int |
1138 | find_parens_sub(uschar **ptrptr, compile_data *cd, const uschar *name, int lorn, |
1139 | BOOL xmode, BOOL utf8, int *count) |
1140 | { |
1141 | uschar *ptr = *ptrptr; |
1142 | int start_count = *count; |
1143 | int hwm_count = start_count; |
1144 | BOOL dup_parens = FALSE; |
1145 | |
1146 | /* If the first character is a parenthesis, check on the type of group we are |
1147 | dealing with. The very first call may not start with a parenthesis. */ |
1148 | |
1149 | if (ptr[0] == CHAR_LEFT_PARENTHESIS) |
1150 | { |
1151 | /* Handle specials such as (*SKIP) or (*UTF8) etc. */ |
1152 | |
1153 | if (ptr[1] == CHAR_ASTERISK) ptr += 2; |
1154 | |
1155 | /* Handle a normal, unnamed capturing parenthesis. */ |
1156 | |
1157 | else if (ptr[1] != CHAR_QUESTION_MARK) |
1158 | { |
1159 | *count += 1; |
1160 | if (name == NULL && *count == lorn) return *count; |
1161 | ptr++; |
1162 | } |
1163 | |
1164 | /* All cases now have (? at the start. Remember when we are in a group |
1165 | where the parenthesis numbers are duplicated. */ |
1166 | |
1167 | else if (ptr[2] == CHAR_VERTICAL_LINE) |
1168 | { |
1169 | ptr += 3; |
1170 | dup_parens = TRUE; |
1171 | } |
1172 | |
1173 | /* Handle comments; all characters are allowed until a ket is reached. */ |
1174 | |
1175 | else if (ptr[2] == CHAR_NUMBER_SIGN) |
1176 | { |
1177 | for (ptr += 3; *ptr != 0; ptr++) if (*ptr == CHAR_RIGHT_PARENTHESIS) break; |
1178 | goto FAIL_EXIT; |
1179 | } |
1180 | |
1181 | /* Handle a condition. If it is an assertion, just carry on so that it |
1182 | is processed as normal. If not, skip to the closing parenthesis of the |
1183 | condition (there can't be any nested parens). */ |
1184 | |
1185 | else if (ptr[2] == CHAR_LEFT_PARENTHESIS) |
1186 | { |
1187 | ptr += 2; |
1188 | if (ptr[1] != CHAR_QUESTION_MARK) |
1189 | { |
1190 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
1191 | if (*ptr != 0) ptr++; |
1192 | } |
1193 | } |
1194 | |
1195 | /* Start with (? but not a condition. */ |
1196 | |
1197 | else |
1198 | { |
1199 | ptr += 2; |
1200 | if (*ptr == CHAR_P) ptr++; /* Allow optional P */ |
1201 | |
1202 | /* We have to disambiguate (?<! and (?<= from (?<name> for named groups */ |
1203 | |
1204 | if ((*ptr == CHAR_LESS_THAN_SIGN && ptr[1] != CHAR_EXCLAMATION_MARK && |
1205 | ptr[1] != CHAR_EQUALS_SIGN) || *ptr == CHAR_APOSTROPHE) |
1206 | { |
1207 | int term; |
1208 | const uschar *thisname; |
1209 | *count += 1; |
1210 | if (name == NULL && *count == lorn) return *count; |
1211 | term = *ptr++; |
1212 | if (term == CHAR_LESS_THAN_SIGN) term = CHAR_GREATER_THAN_SIGN; |
1213 | thisname = ptr; |
1214 | while (*ptr != term) ptr++; |
1215 | if (name != NULL && lorn == ptr - thisname && |
1216 | strncmp((const char *)name, (const char *)thisname, lorn) == 0) |
1217 | return *count; |
1218 | term++; |
1219 | } |
1220 | } |
1221 | } |
1222 | |
1223 | /* Past any initial parenthesis handling, scan for parentheses or vertical |
1224 | bars. Stop if we get to cd->end_pattern. Note that this is important for the |
1225 | first-pass call when this value is temporarily adjusted to stop at the current |
1226 | position. So DO NOT change this to a test for binary zero. */ |
1227 | |
1228 | for (; ptr < cd->end_pattern; ptr++) |
1229 | { |
1230 | /* Skip over backslashed characters and also entire \Q...\E */ |
1231 | |
1232 | if (*ptr == CHAR_BACKSLASH) |
1233 | { |
1234 | if (*(++ptr) == 0) goto FAIL_EXIT; |
1235 | if (*ptr == CHAR_Q) for (;;) |
1236 | { |
1237 | while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {}; |
1238 | if (*ptr == 0) goto FAIL_EXIT; |
1239 | if (*(++ptr) == CHAR_E) break; |
1240 | } |
1241 | continue; |
1242 | } |
1243 | |
1244 | /* Skip over character classes; this logic must be similar to the way they |
1245 | are handled for real. If the first character is '^', skip it. Also, if the |
1246 | first few characters (either before or after ^) are \Q\E or \E we skip them |
1247 | too. This makes for compatibility with Perl. Note the use of STR macros to |
1248 | encode "Q\\E" so that it works in UTF-8 on EBCDIC platforms. */ |
1249 | |
1250 | if (*ptr == CHAR_LEFT_SQUARE_BRACKET) |
1251 | { |
1252 | BOOL negate_class = FALSE; |
1253 | for (;;) |
1254 | { |
1255 | if (ptr[1] == CHAR_BACKSLASH) |
1256 | { |
1257 | if (ptr[2] == CHAR_E) |
1258 | ptr+= 2; |
1259 | else if (strncmp((const char *)ptr+2, |
1260 | STR_Q STR_BACKSLASH STR_E, 3) == 0) |
1261 | ptr += 4; |
1262 | else |
1263 | break; |
1264 | } |
1265 | else if (!negate_class && ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
1266 | { |
1267 | negate_class = TRUE; |
1268 | ptr++; |
1269 | } |
1270 | else break; |
1271 | } |
1272 | |
1273 | /* If the next character is ']', it is a data character that must be |
1274 | skipped, except in JavaScript compatibility mode. */ |
1275 | |
1276 | if (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET && |
1277 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) == 0) |
1278 | ptr++; |
1279 | |
1280 | while (*(++ptr) != CHAR_RIGHT_SQUARE_BRACKET) |
1281 | { |
1282 | if (*ptr == 0) return -1; |
1283 | if (*ptr == CHAR_BACKSLASH) |
1284 | { |
1285 | if (*(++ptr) == 0) goto FAIL_EXIT; |
1286 | if (*ptr == CHAR_Q) for (;;) |
1287 | { |
1288 | while (*(++ptr) != 0 && *ptr != CHAR_BACKSLASH) {}; |
1289 | if (*ptr == 0) goto FAIL_EXIT; |
1290 | if (*(++ptr) == CHAR_E) break; |
1291 | } |
1292 | continue; |
1293 | } |
1294 | } |
1295 | continue; |
1296 | } |
1297 | |
1298 | /* Skip comments in /x mode */ |
1299 | |
1300 | if (xmode && *ptr == CHAR_NUMBER_SIGN) |
1301 | { |
1302 | ptr++; |
1303 | while (*ptr != 0) |
1304 | { |
1305 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; } |
1306 | ptr++; |
1307 | #ifdef SUPPORT_UTF8 |
1308 | if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++; |
1309 | #endif |
1310 | } |
1311 | if (*ptr == 0) goto FAIL_EXIT; |
1312 | continue; |
1313 | } |
1314 | |
1315 | /* Check for the special metacharacters */ |
1316 | |
1317 | if (*ptr == CHAR_LEFT_PARENTHESIS) |
1318 | { |
1319 | int rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf8, count); |
1320 | if (rc > 0) return rc; |
1321 | if (*ptr == 0) goto FAIL_EXIT; |
1322 | } |
1323 | |
1324 | else if (*ptr == CHAR_RIGHT_PARENTHESIS) |
1325 | { |
1326 | if (dup_parens && *count < hwm_count) *count = hwm_count; |
1327 | goto FAIL_EXIT; |
1328 | } |
1329 | |
1330 | else if (*ptr == CHAR_VERTICAL_LINE && dup_parens) |
1331 | { |
1332 | if (*count > hwm_count) hwm_count = *count; |
1333 | *count = start_count; |
1334 | } |
1335 | } |
1336 | |
1337 | FAIL_EXIT: |
1338 | *ptrptr = ptr; |
1339 | return -1; |
1340 | } |
1341 | |
1342 | |
1343 | |
1344 | |
1345 | /************************************************* |
1346 | * Find forward referenced subpattern * |
1347 | *************************************************/ |
1348 | |
1349 | /* This function scans along a pattern's text looking for capturing |
1350 | subpatterns, and counting them. If it finds a named pattern that matches the |
1351 | name it is given, it returns its number. Alternatively, if the name is NULL, it |
1352 | returns when it reaches a given numbered subpattern. This is used for forward |
1353 | references to subpatterns. We used to be able to start this scan from the |
1354 | current compiling point, using the current count value from cd->bracount, and |
1355 | do it all in a single loop, but the addition of the possibility of duplicate |
1356 | subpattern numbers means that we have to scan from the very start, in order to |
1357 | take account of such duplicates, and to use a recursive function to keep track |
1358 | of the different types of group. |
1359 | |
1360 | Arguments: |
1361 | cd compile background data |
1362 | name name to seek, or NULL if seeking a numbered subpattern |
1363 | lorn name length, or subpattern number if name is NULL |
1364 | xmode TRUE if we are in /x mode |
1365 | utf8 TRUE if we are in UTF-8 mode |
1366 | |
1367 | Returns: the number of the found subpattern, or -1 if not found |
1368 | */ |
1369 | |
1370 | static int |
1371 | find_parens(compile_data *cd, const uschar *name, int lorn, BOOL xmode, |
1372 | BOOL utf8) |
1373 | { |
1374 | uschar *ptr = (uschar *)cd->start_pattern; |
1375 | int count = 0; |
1376 | int rc; |
1377 | |
1378 | /* If the pattern does not start with an opening parenthesis, the first call |
1379 | to find_parens_sub() will scan right to the end (if necessary). However, if it |
1380 | does start with a parenthesis, find_parens_sub() will return when it hits the |
1381 | matching closing parens. That is why we have to have a loop. */ |
1382 | |
1383 | for (;;) |
1384 | { |
1385 | rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf8, &count); |
1386 | if (rc > 0 || *ptr++ == 0) break; |
1387 | } |
1388 | |
1389 | return rc; |
1390 | } |
1391 | |
1392 | |
1393 | |
1394 | |
1395 | /************************************************* |
1396 | * Find first significant op code * |
1397 | *************************************************/ |
1398 | |
1399 | /* This is called by several functions that scan a compiled expression looking |
1400 | for a fixed first character, or an anchoring op code etc. It skips over things |
1401 | that do not influence this. For some calls, it makes sense to skip negative |
1402 | forward and all backward assertions, and also the \b assertion; for others it |
1403 | does not. |
1404 | |
1405 | Arguments: |
1406 | code pointer to the start of the group |
1407 | skipassert TRUE if certain assertions are to be skipped |
1408 | |
1409 | Returns: pointer to the first significant opcode |
1410 | */ |
1411 | |
1412 | static const uschar* |
1413 | first_significant_code(const uschar *code, BOOL skipassert) |
1414 | { |
1415 | for (;;) |
1416 | { |
1417 | switch ((int)*code) |
1418 | { |
1419 | case OP_ASSERT_NOT: |
1420 | case OP_ASSERTBACK: |
1421 | case OP_ASSERTBACK_NOT: |
1422 | if (!skipassert) return code; |
1423 | do code += GET(code, 1); while (*code == OP_ALT); |
1424 | code += _pcre_OP_lengths[*code]; |
1425 | break; |
1426 | |
1427 | case OP_WORD_BOUNDARY: |
1428 | case OP_NOT_WORD_BOUNDARY: |
1429 | if (!skipassert) return code; |
1430 | /* Fall through */ |
1431 | |
1432 | case OP_CALLOUT: |
1433 | case OP_CREF: |
1434 | case OP_NCREF: |
1435 | case OP_RREF: |
1436 | case OP_NRREF: |
1437 | case OP_DEF: |
1438 | code += _pcre_OP_lengths[*code]; |
1439 | break; |
1440 | |
1441 | default: |
1442 | return code; |
1443 | } |
1444 | } |
1445 | /* Control never reaches here */ |
1446 | } |
1447 | |
1448 | |
1449 | |
1450 | |
1451 | /************************************************* |
1452 | * Find the fixed length of a branch * |
1453 | *************************************************/ |
1454 | |
1455 | /* Scan a branch and compute the fixed length of subject that will match it, |
1456 | if the length is fixed. This is needed for dealing with backward assertions. |
1457 | In UTF8 mode, the result is in characters rather than bytes. The branch is |
1458 | temporarily terminated with OP_END when this function is called. |
1459 | |
1460 | This function is called when a backward assertion is encountered, so that if it |
1461 | fails, the error message can point to the correct place in the pattern. |
1462 | However, we cannot do this when the assertion contains subroutine calls, |
1463 | because they can be forward references. We solve this by remembering this case |
1464 | and doing the check at the end; a flag specifies which mode we are running in. |
1465 | |
1466 | Arguments: |
1467 | code points to the start of the pattern (the bracket) |
1468 | utf8 TRUE in UTF-8 mode |
1469 | atend TRUE if called when the pattern is complete |
1470 | cd the "compile data" structure |
1471 | |
1472 | Returns: the fixed length, |
1473 | or -1 if there is no fixed length, |
1474 | or -2 if \C was encountered |
1475 | or -3 if an OP_RECURSE item was encountered and atend is FALSE |
1476 | */ |
1477 | |
1478 | static int |
1479 | find_fixedlength(uschar *code, BOOL utf8, BOOL atend, compile_data *cd) |
1480 | { |
1481 | int length = -1; |
1482 | |
1483 | register int branchlength = 0; |
1484 | register uschar *cc = code + 1 + LINK_SIZE; |
1485 | |
1486 | /* Scan along the opcodes for this branch. If we get to the end of the |
1487 | branch, check the length against that of the other branches. */ |
1488 | |
1489 | for (;;) |
1490 | { |
1491 | int d; |
1492 | uschar *ce, *cs; |
1493 | register int op = *cc; |
1494 | switch (op) |
1495 | { |
1496 | /* We only need to continue for OP_CBRA (normal capturing bracket) and |
1497 | OP_BRA (normal non-capturing bracket) because the other variants of these |
1498 | opcodes are all concerned with unlimited repeated groups, which of course |
1499 | are not of fixed length. They will cause a -1 response from the default |
1500 | case of this switch. */ |
1501 | |
1502 | case OP_CBRA: |
1503 | case OP_BRA: |
1504 | case OP_ONCE: |
1505 | case OP_COND: |
1506 | d = find_fixedlength(cc + ((op == OP_CBRA)? 2:0), utf8, atend, cd); |
1507 | if (d < 0) return d; |
1508 | branchlength += d; |
1509 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1510 | cc += 1 + LINK_SIZE; |
1511 | break; |
1512 | |
1513 | /* Reached end of a branch; if it's a ket it is the end of a nested |
1514 | call. If it's ALT it is an alternation in a nested call. If it is |
1515 | END it's the end of the outer call. All can be handled by the same code. |
1516 | Note that we must not include the OP_KETRxxx opcodes here, because they |
1517 | all imply an unlimited repeat. */ |
1518 | |
1519 | case OP_ALT: |
1520 | case OP_KET: |
1521 | case OP_END: |
1522 | if (length < 0) length = branchlength; |
1523 | else if (length != branchlength) return -1; |
1524 | if (*cc != OP_ALT) return length; |
1525 | cc += 1 + LINK_SIZE; |
1526 | branchlength = 0; |
1527 | break; |
1528 | |
1529 | /* A true recursion implies not fixed length, but a subroutine call may |
1530 | be OK. If the subroutine is a forward reference, we can't deal with |
1531 | it until the end of the pattern, so return -3. */ |
1532 | |
1533 | case OP_RECURSE: |
1534 | if (!atend) return -3; |
1535 | cs = ce = (uschar *)cd->start_code + GET(cc, 1); /* Start subpattern */ |
1536 | do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */ |
1537 | if (cc > cs && cc < ce) return -1; /* Recursion */ |
1538 | d = find_fixedlength(cs + 2, utf8, atend, cd); |
1539 | if (d < 0) return d; |
1540 | branchlength += d; |
1541 | cc += 1 + LINK_SIZE; |
1542 | break; |
1543 | |
1544 | /* Skip over assertive subpatterns */ |
1545 | |
1546 | case OP_ASSERT: |
1547 | case OP_ASSERT_NOT: |
1548 | case OP_ASSERTBACK: |
1549 | case OP_ASSERTBACK_NOT: |
1550 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1551 | /* Fall through */ |
1552 | |
1553 | /* Skip over things that don't match chars */ |
1554 | |
1555 | case OP_REVERSE: |
1556 | case OP_CREF: |
1557 | case OP_NCREF: |
1558 | case OP_RREF: |
1559 | case OP_NRREF: |
1560 | case OP_DEF: |
1561 | case OP_CALLOUT: |
1562 | case OP_SOD: |
1563 | case OP_SOM: |
1564 | case OP_SET_SOM: |
1565 | case OP_EOD: |
1566 | case OP_EODN: |
1567 | case OP_CIRC: |
1568 | case OP_CIRCM: |
1569 | case OP_DOLL: |
1570 | case OP_DOLLM: |
1571 | case OP_NOT_WORD_BOUNDARY: |
1572 | case OP_WORD_BOUNDARY: |
1573 | cc += _pcre_OP_lengths[*cc]; |
1574 | break; |
1575 | |
1576 | /* Handle literal characters */ |
1577 | |
1578 | case OP_CHAR: |
1579 | case OP_CHARI: |
1580 | case OP_NOT: |
1581 | case OP_NOTI: |
1582 | branchlength++; |
1583 | cc += 2; |
1584 | #ifdef SUPPORT_UTF8 |
1585 | if (utf8 && cc[-1] >= 0xc0) cc += _pcre_utf8_table4[cc[-1] & 0x3f]; |
1586 | #endif |
1587 | break; |
1588 | |
1589 | /* Handle exact repetitions. The count is already in characters, but we |
1590 | need to skip over a multibyte character in UTF8 mode. */ |
1591 | |
1592 | case OP_EXACT: |
1593 | branchlength += GET2(cc,1); |
1594 | cc += 4; |
1595 | #ifdef SUPPORT_UTF8 |
1596 | if (utf8 && cc[-1] >= 0xc0) cc += _pcre_utf8_table4[cc[-1] & 0x3f]; |
1597 | #endif |
1598 | break; |
1599 | |
1600 | case OP_TYPEEXACT: |
1601 | branchlength += GET2(cc,1); |
1602 | if (cc[3] == OP_PROP || cc[3] == OP_NOTPROP) cc += 2; |
1603 | cc += 4; |
1604 | break; |
1605 | |
1606 | /* Handle single-char matchers */ |
1607 | |
1608 | case OP_PROP: |
1609 | case OP_NOTPROP: |
1610 | cc += 2; |
1611 | /* Fall through */ |
1612 | |
1613 | case OP_NOT_DIGIT: |
1614 | case OP_DIGIT: |
1615 | case OP_NOT_WHITESPACE: |
1616 | case OP_WHITESPACE: |
1617 | case OP_NOT_WORDCHAR: |
1618 | case OP_WORDCHAR: |
1619 | case OP_ANY: |
1620 | case OP_ALLANY: |
1621 | branchlength++; |
1622 | cc++; |
1623 | break; |
1624 | |
1625 | /* The single-byte matcher isn't allowed */ |
1626 | |
1627 | case OP_ANYBYTE: |
1628 | return -2; |
1629 | |
1630 | /* Check a class for variable quantification */ |
1631 | |
1632 | #ifdef SUPPORT_UTF8 |
1633 | case OP_XCLASS: |
1634 | cc += GET(cc, 1) - 33; |
1635 | /* Fall through */ |
1636 | #endif |
1637 | |
1638 | case OP_CLASS: |
1639 | case OP_NCLASS: |
1640 | cc += 33; |
1641 | |
1642 | switch (*cc) |
1643 | { |
1644 | case OP_CRSTAR: |
1645 | case OP_CRMINSTAR: |
1646 | case OP_CRQUERY: |
1647 | case OP_CRMINQUERY: |
1648 | return -1; |
1649 | |
1650 | case OP_CRRANGE: |
1651 | case OP_CRMINRANGE: |
1652 | if (GET2(cc,1) != GET2(cc,3)) return -1; |
1653 | branchlength += GET2(cc,1); |
1654 | cc += 5; |
1655 | break; |
1656 | |
1657 | default: |
1658 | branchlength++; |
1659 | } |
1660 | break; |
1661 | |
1662 | /* Anything else is variable length */ |
1663 | |
1664 | default: |
1665 | return -1; |
1666 | } |
1667 | } |
1668 | /* Control never gets here */ |
1669 | } |
1670 | |
1671 | |
1672 | |
1673 | |
1674 | /************************************************* |
1675 | * Scan compiled regex for specific bracket * |
1676 | *************************************************/ |
1677 | |
1678 | /* This little function scans through a compiled pattern until it finds a |
1679 | capturing bracket with the given number, or, if the number is negative, an |
1680 | instance of OP_REVERSE for a lookbehind. The function is global in the C sense |
1681 | so that it can be called from pcre_study() when finding the minimum matching |
1682 | length. |
1683 | |
1684 | Arguments: |
1685 | code points to start of expression |
1686 | utf8 TRUE in UTF-8 mode |
1687 | number the required bracket number or negative to find a lookbehind |
1688 | |
1689 | Returns: pointer to the opcode for the bracket, or NULL if not found |
1690 | */ |
1691 | |
1692 | const uschar * |
1693 | _pcre_find_bracket(const uschar *code, BOOL utf8, int number) |
1694 | { |
1695 | for (;;) |
1696 | { |
1697 | register int c = *code; |
1698 | |
1699 | if (c == OP_END) return NULL; |
1700 | |
1701 | /* XCLASS is used for classes that cannot be represented just by a bit |
1702 | map. This includes negated single high-valued characters. The length in |
1703 | the table is zero; the actual length is stored in the compiled code. */ |
1704 | |
1705 | if (c == OP_XCLASS) code += GET(code, 1); |
1706 | |
1707 | /* Handle recursion */ |
1708 | |
1709 | else if (c == OP_REVERSE) |
1710 | { |
1711 | if (number < 0) return (uschar *)code; |
1712 | code += _pcre_OP_lengths[c]; |
1713 | } |
1714 | |
1715 | /* Handle capturing bracket */ |
1716 | |
1717 | else if (c == OP_CBRA || c == OP_SCBRA || |
1718 | c == OP_CBRAPOS || c == OP_SCBRAPOS) |
1719 | { |
1720 | int n = GET2(code, 1+LINK_SIZE); |
1721 | if (n == number) return (uschar *)code; |
1722 | code += _pcre_OP_lengths[c]; |
1723 | } |
1724 | |
1725 | /* Otherwise, we can get the item's length from the table, except that for |
1726 | repeated character types, we have to test for \p and \P, which have an extra |
1727 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
1728 | must add in its length. */ |
1729 | |
1730 | else |
1731 | { |
1732 | switch(c) |
1733 | { |
1734 | case OP_TYPESTAR: |
1735 | case OP_TYPEMINSTAR: |
1736 | case OP_TYPEPLUS: |
1737 | case OP_TYPEMINPLUS: |
1738 | case OP_TYPEQUERY: |
1739 | case OP_TYPEMINQUERY: |
1740 | case OP_TYPEPOSSTAR: |
1741 | case OP_TYPEPOSPLUS: |
1742 | case OP_TYPEPOSQUERY: |
1743 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
1744 | break; |
1745 | |
1746 | case OP_TYPEUPTO: |
1747 | case OP_TYPEMINUPTO: |
1748 | case OP_TYPEEXACT: |
1749 | case OP_TYPEPOSUPTO: |
1750 | if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; |
1751 | break; |
1752 | |
1753 | case OP_MARK: |
1754 | case OP_PRUNE_ARG: |
1755 | case OP_SKIP_ARG: |
1756 | code += code[1]; |
1757 | break; |
1758 | |
1759 | case OP_THEN_ARG: |
1760 | code += code[1+LINK_SIZE]; |
1761 | break; |
1762 | } |
1763 | |
1764 | /* Add in the fixed length from the table */ |
1765 | |
1766 | code += _pcre_OP_lengths[c]; |
1767 | |
1768 | /* In UTF-8 mode, opcodes that are followed by a character may be followed by |
1769 | a multi-byte character. The length in the table is a minimum, so we have to |
1770 | arrange to skip the extra bytes. */ |
1771 | |
1772 | #ifdef SUPPORT_UTF8 |
1773 | if (utf8) switch(c) |
1774 | { |
1775 | case OP_CHAR: |
1776 | case OP_CHARI: |
1777 | case OP_EXACT: |
1778 | case OP_EXACTI: |
1779 | case OP_UPTO: |
1780 | case OP_UPTOI: |
1781 | case OP_MINUPTO: |
1782 | case OP_MINUPTOI: |
1783 | case OP_POSUPTO: |
1784 | case OP_POSUPTOI: |
1785 | case OP_STAR: |
1786 | case OP_STARI: |
1787 | case OP_MINSTAR: |
1788 | case OP_MINSTARI: |
1789 | case OP_POSSTAR: |
1790 | case OP_POSSTARI: |
1791 | case OP_PLUS: |
1792 | case OP_PLUSI: |
1793 | case OP_MINPLUS: |
1794 | case OP_MINPLUSI: |
1795 | case OP_POSPLUS: |
1796 | case OP_POSPLUSI: |
1797 | case OP_QUERY: |
1798 | case OP_QUERYI: |
1799 | case OP_MINQUERY: |
1800 | case OP_MINQUERYI: |
1801 | case OP_POSQUERY: |
1802 | case OP_POSQUERYI: |
1803 | if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f]; |
1804 | break; |
1805 | } |
1806 | #else |
1807 | (void)(utf8); /* Keep compiler happy by referencing function argument */ |
1808 | #endif |
1809 | } |
1810 | } |
1811 | } |
1812 | |
1813 | |
1814 | |
1815 | /************************************************* |
1816 | * Scan compiled regex for recursion reference * |
1817 | *************************************************/ |
1818 | |
1819 | /* This little function scans through a compiled pattern until it finds an |
1820 | instance of OP_RECURSE. |
1821 | |
1822 | Arguments: |
1823 | code points to start of expression |
1824 | utf8 TRUE in UTF-8 mode |
1825 | |
1826 | Returns: pointer to the opcode for OP_RECURSE, or NULL if not found |
1827 | */ |
1828 | |
1829 | static const uschar * |
1830 | find_recurse(const uschar *code, BOOL utf8) |
1831 | { |
1832 | for (;;) |
1833 | { |
1834 | register int c = *code; |
1835 | if (c == OP_END) return NULL; |
1836 | if (c == OP_RECURSE) return code; |
1837 | |
1838 | /* XCLASS is used for classes that cannot be represented just by a bit |
1839 | map. This includes negated single high-valued characters. The length in |
1840 | the table is zero; the actual length is stored in the compiled code. */ |
1841 | |
1842 | if (c == OP_XCLASS) code += GET(code, 1); |
1843 | |
1844 | /* Otherwise, we can get the item's length from the table, except that for |
1845 | repeated character types, we have to test for \p and \P, which have an extra |
1846 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
1847 | must add in its length. */ |
1848 | |
1849 | else |
1850 | { |
1851 | switch(c) |
1852 | { |
1853 | case OP_TYPESTAR: |
1854 | case OP_TYPEMINSTAR: |
1855 | case OP_TYPEPLUS: |
1856 | case OP_TYPEMINPLUS: |
1857 | case OP_TYPEQUERY: |
1858 | case OP_TYPEMINQUERY: |
1859 | case OP_TYPEPOSSTAR: |
1860 | case OP_TYPEPOSPLUS: |
1861 | case OP_TYPEPOSQUERY: |
1862 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
1863 | break; |
1864 | |
1865 | case OP_TYPEPOSUPTO: |
1866 | case OP_TYPEUPTO: |
1867 | case OP_TYPEMINUPTO: |
1868 | case OP_TYPEEXACT: |
1869 | if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; |
1870 | break; |
1871 | |
1872 | case OP_MARK: |
1873 | case OP_PRUNE_ARG: |
1874 | case OP_SKIP_ARG: |
1875 | code += code[1]; |
1876 | break; |
1877 | |
1878 | case OP_THEN_ARG: |
1879 | code += code[1+LINK_SIZE]; |
1880 | break; |
1881 | } |
1882 | |
1883 | /* Add in the fixed length from the table */ |
1884 | |
1885 | code += _pcre_OP_lengths[c]; |
1886 | |
1887 | /* In UTF-8 mode, opcodes that are followed by a character may be followed |
1888 | by a multi-byte character. The length in the table is a minimum, so we have |
1889 | to arrange to skip the extra bytes. */ |
1890 | |
1891 | #ifdef SUPPORT_UTF8 |
1892 | if (utf8) switch(c) |
1893 | { |
1894 | case OP_CHAR: |
1895 | case OP_CHARI: |
1896 | case OP_EXACT: |
1897 | case OP_EXACTI: |
1898 | case OP_UPTO: |
1899 | case OP_UPTOI: |
1900 | case OP_MINUPTO: |
1901 | case OP_MINUPTOI: |
1902 | case OP_POSUPTO: |
1903 | case OP_POSUPTOI: |
1904 | case OP_STAR: |
1905 | case OP_STARI: |
1906 | case OP_MINSTAR: |
1907 | case OP_MINSTARI: |
1908 | case OP_POSSTAR: |
1909 | case OP_POSSTARI: |
1910 | case OP_PLUS: |
1911 | case OP_PLUSI: |
1912 | case OP_MINPLUS: |
1913 | case OP_MINPLUSI: |
1914 | case OP_POSPLUS: |
1915 | case OP_POSPLUSI: |
1916 | case OP_QUERY: |
1917 | case OP_QUERYI: |
1918 | case OP_MINQUERY: |
1919 | case OP_MINQUERYI: |
1920 | case OP_POSQUERY: |
1921 | case OP_POSQUERYI: |
1922 | if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f]; |
1923 | break; |
1924 | } |
1925 | #else |
1926 | (void)(utf8); /* Keep compiler happy by referencing function argument */ |
1927 | #endif |
1928 | } |
1929 | } |
1930 | } |
1931 | |
1932 | |
1933 | |
1934 | /************************************************* |
1935 | * Scan compiled branch for non-emptiness * |
1936 | *************************************************/ |
1937 | |
1938 | /* This function scans through a branch of a compiled pattern to see whether it |
1939 | can match the empty string or not. It is called from could_be_empty() |
1940 | below and from compile_branch() when checking for an unlimited repeat of a |
1941 | group that can match nothing. Note that first_significant_code() skips over |
1942 | backward and negative forward assertions when its final argument is TRUE. If we |
1943 | hit an unclosed bracket, we return "empty" - this means we've struck an inner |
1944 | bracket whose current branch will already have been scanned. |
1945 | |
1946 | Arguments: |
1947 | code points to start of search |
1948 | endcode points to where to stop |
1949 | utf8 TRUE if in UTF8 mode |
1950 | cd contains pointers to tables etc. |
1951 | |
1952 | Returns: TRUE if what is matched could be empty |
1953 | */ |
1954 | |
1955 | static BOOL |
1956 | could_be_empty_branch(const uschar *code, const uschar *endcode, BOOL utf8, |
1957 | compile_data *cd) |
1958 | { |
1959 | register int c; |
1960 | for (code = first_significant_code(code + _pcre_OP_lengths[*code], TRUE); |
1961 | code < endcode; |
1962 | code = first_significant_code(code + _pcre_OP_lengths[c], TRUE)) |
1963 | { |
1964 | const uschar *ccode; |
1965 | |
1966 | c = *code; |
1967 | |
1968 | /* Skip over forward assertions; the other assertions are skipped by |
1969 | first_significant_code() with a TRUE final argument. */ |
1970 | |
1971 | if (c == OP_ASSERT) |
1972 | { |
1973 | do code += GET(code, 1); while (*code == OP_ALT); |
1974 | c = *code; |
1975 | continue; |
1976 | } |
1977 | |
1978 | /* For a recursion/subroutine call, if its end has been reached, which |
1979 | implies a backward reference subroutine call, we can scan it. If it's a |
1980 | forward reference subroutine call, we can't. To detect forward reference |
1981 | we have to scan up the list that is kept in the workspace. This function is |
1982 | called only when doing the real compile, not during the pre-compile that |
1983 | measures the size of the compiled pattern. */ |
1984 | |
1985 | if (c == OP_RECURSE) |
1986 | { |
1987 | const uschar *scode; |
1988 | BOOL empty_branch; |
1989 | |
1990 | /* Test for forward reference */ |
1991 | |
1992 | for (scode = cd->start_workspace; scode < cd->hwm; scode += LINK_SIZE) |
1993 | if (GET(scode, 0) == code + 1 - cd->start_code) return TRUE; |
1994 | |
1995 | /* Not a forward reference, test for completed backward reference */ |
1996 | |
1997 | empty_branch = FALSE; |
1998 | scode = cd->start_code + GET(code, 1); |
1999 | if (GET(scode, 1) == 0) return TRUE; /* Unclosed */ |
2000 | |
2001 | /* Completed backwards reference */ |
2002 | |
2003 | do |
2004 | { |
2005 | if (could_be_empty_branch(scode, endcode, utf8, cd)) |
2006 | { |
2007 | empty_branch = TRUE; |
2008 | break; |
2009 | } |
2010 | scode += GET(scode, 1); |
2011 | } |
2012 | while (*scode == OP_ALT); |
2013 | |
2014 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
2015 | continue; |
2016 | } |
2017 | |
2018 | /* Groups with zero repeats can of course be empty; skip them. */ |
2019 | |
2020 | if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO || |
2021 | c == OP_BRAPOSZERO) |
2022 | { |
2023 | code += _pcre_OP_lengths[c]; |
2024 | do code += GET(code, 1); while (*code == OP_ALT); |
2025 | c = *code; |
2026 | continue; |
2027 | } |
2028 | |
2029 | /* A nested group that is already marked as "could be empty" can just be |
2030 | skipped. */ |
2031 | |
2032 | if (c == OP_SBRA || c == OP_SBRAPOS || |
2033 | c == OP_SCBRA || c == OP_SCBRAPOS) |
2034 | { |
2035 | do code += GET(code, 1); while (*code == OP_ALT); |
2036 | c = *code; |
2037 | continue; |
2038 | } |
2039 | |
2040 | /* For other groups, scan the branches. */ |
2041 | |
2042 | if (c == OP_BRA || c == OP_BRAPOS || |
2043 | c == OP_CBRA || c == OP_CBRAPOS || |
2044 | c == OP_ONCE || c == OP_COND) |
2045 | { |
2046 | BOOL empty_branch; |
2047 | if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */ |
2048 | |
2049 | /* If a conditional group has only one branch, there is a second, implied, |
2050 | empty branch, so just skip over the conditional, because it could be empty. |
2051 | Otherwise, scan the individual branches of the group. */ |
2052 | |
2053 | if (c == OP_COND && code[GET(code, 1)] != OP_ALT) |
2054 | code += GET(code, 1); |
2055 | else |
2056 | { |
2057 | empty_branch = FALSE; |
2058 | do |
2059 | { |
2060 | if (!empty_branch && could_be_empty_branch(code, endcode, utf8, cd)) |
2061 | empty_branch = TRUE; |
2062 | code += GET(code, 1); |
2063 | } |
2064 | while (*code == OP_ALT); |
2065 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
2066 | } |
2067 | |
2068 | c = *code; |
2069 | continue; |
2070 | } |
2071 | |
2072 | /* Handle the other opcodes */ |
2073 | |
2074 | switch (c) |
2075 | { |
2076 | /* Check for quantifiers after a class. XCLASS is used for classes that |
2077 | cannot be represented just by a bit map. This includes negated single |
2078 | high-valued characters. The length in _pcre_OP_lengths[] is zero; the |
2079 | actual length is stored in the compiled code, so we must update "code" |
2080 | here. */ |
2081 | |
2082 | #ifdef SUPPORT_UTF8 |
2083 | case OP_XCLASS: |
2084 | ccode = code += GET(code, 1); |
2085 | goto CHECK_CLASS_REPEAT; |
2086 | #endif |
2087 | |
2088 | case OP_CLASS: |
2089 | case OP_NCLASS: |
2090 | ccode = code + 33; |
2091 | |
2092 | #ifdef SUPPORT_UTF8 |
2093 | CHECK_CLASS_REPEAT: |
2094 | #endif |
2095 | |
2096 | switch (*ccode) |
2097 | { |
2098 | case OP_CRSTAR: /* These could be empty; continue */ |
2099 | case OP_CRMINSTAR: |
2100 | case OP_CRQUERY: |
2101 | case OP_CRMINQUERY: |
2102 | break; |
2103 | |
2104 | default: /* Non-repeat => class must match */ |
2105 | case OP_CRPLUS: /* These repeats aren't empty */ |
2106 | case OP_CRMINPLUS: |
2107 | return FALSE; |
2108 | |
2109 | case OP_CRRANGE: |
2110 | case OP_CRMINRANGE: |
2111 | if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */ |
2112 | break; |
2113 | } |
2114 | break; |
2115 | |
2116 | /* Opcodes that must match a character */ |
2117 | |
2118 | case OP_PROP: |
2119 | case OP_NOTPROP: |
2120 | case OP_EXTUNI: |
2121 | case OP_NOT_DIGIT: |
2122 | case OP_DIGIT: |
2123 | case OP_NOT_WHITESPACE: |
2124 | case OP_WHITESPACE: |
2125 | case OP_NOT_WORDCHAR: |
2126 | case OP_WORDCHAR: |
2127 | case OP_ANY: |
2128 | case OP_ALLANY: |
2129 | case OP_ANYBYTE: |
2130 | case OP_CHAR: |
2131 | case OP_CHARI: |
2132 | case OP_NOT: |
2133 | case OP_NOTI: |
2134 | case OP_PLUS: |
2135 | case OP_MINPLUS: |
2136 | case OP_POSPLUS: |
2137 | case OP_EXACT: |
2138 | case OP_NOTPLUS: |
2139 | case OP_NOTMINPLUS: |
2140 | case OP_NOTPOSPLUS: |
2141 | case OP_NOTEXACT: |
2142 | case OP_TYPEPLUS: |
2143 | case OP_TYPEMINPLUS: |
2144 | case OP_TYPEPOSPLUS: |
2145 | case OP_TYPEEXACT: |
2146 | return FALSE; |
2147 | |
2148 | /* These are going to continue, as they may be empty, but we have to |
2149 | fudge the length for the \p and \P cases. */ |
2150 | |
2151 | case OP_TYPESTAR: |
2152 | case OP_TYPEMINSTAR: |
2153 | case OP_TYPEPOSSTAR: |
2154 | case OP_TYPEQUERY: |
2155 | case OP_TYPEMINQUERY: |
2156 | case OP_TYPEPOSQUERY: |
2157 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2158 | break; |
2159 | |
2160 | /* Same for these */ |
2161 | |
2162 | case OP_TYPEUPTO: |
2163 | case OP_TYPEMINUPTO: |
2164 | case OP_TYPEPOSUPTO: |
2165 | if (code[3] == OP_PROP || code[3] == OP_NOTPROP) code += 2; |
2166 | break; |
2167 | |
2168 | /* End of branch */ |
2169 | |
2170 | case OP_KET: |
2171 | case OP_KETRMAX: |
2172 | case OP_KETRMIN: |
2173 | case OP_KETRPOS: |
2174 | case OP_ALT: |
2175 | return TRUE; |
2176 | |
2177 | /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO, |
2178 | MINUPTO, and POSUPTO may be followed by a multibyte character */ |
2179 | |
2180 | #ifdef SUPPORT_UTF8 |
2181 | case OP_STAR: |
2182 | case OP_STARI: |
2183 | case OP_MINSTAR: |
2184 | case OP_MINSTARI: |
2185 | case OP_POSSTAR: |
2186 | case OP_POSSTARI: |
2187 | case OP_QUERY: |
2188 | case OP_QUERYI: |
2189 | case OP_MINQUERY: |
2190 | case OP_MINQUERYI: |
2191 | case OP_POSQUERY: |
2192 | case OP_POSQUERYI: |
2193 | if (utf8 && code[1] >= 0xc0) code += _pcre_utf8_table4[code[1] & 0x3f]; |
2194 | break; |
2195 | |
2196 | case OP_UPTO: |
2197 | case OP_UPTOI: |
2198 | case OP_MINUPTO: |
2199 | case OP_MINUPTOI: |
2200 | case OP_POSUPTO: |
2201 | case OP_POSUPTOI: |
2202 | if (utf8 && code[3] >= 0xc0) code += _pcre_utf8_table4[code[3] & 0x3f]; |
2203 | break; |
2204 | #endif |
2205 | |
2206 | /* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument |
2207 | string. */ |
2208 | |
2209 | case OP_MARK: |
2210 | case OP_PRUNE_ARG: |
2211 | case OP_SKIP_ARG: |
2212 | code += code[1]; |
2213 | break; |
2214 | |
2215 | case OP_THEN_ARG: |
2216 | code += code[1+LINK_SIZE]; |
2217 | break; |
2218 | |
2219 | /* None of the remaining opcodes are required to match a character. */ |
2220 | |
2221 | default: |
2222 | break; |
2223 | } |
2224 | } |
2225 | |
2226 | return TRUE; |
2227 | } |
2228 | |
2229 | |
2230 | |
2231 | /************************************************* |
2232 | * Scan compiled regex for non-emptiness * |
2233 | *************************************************/ |
2234 | |
2235 | /* This function is called to check for left recursive calls. We want to check |
2236 | the current branch of the current pattern to see if it could match the empty |
2237 | string. If it could, we must look outwards for branches at other levels, |
2238 | stopping when we pass beyond the bracket which is the subject of the recursion. |
2239 | This function is called only during the real compile, not during the |
2240 | pre-compile. |
2241 | |
2242 | Arguments: |
2243 | code points to start of the recursion |
2244 | endcode points to where to stop (current RECURSE item) |
2245 | bcptr points to the chain of current (unclosed) branch starts |
2246 | utf8 TRUE if in UTF-8 mode |
2247 | cd pointers to tables etc |
2248 | |
2249 | Returns: TRUE if what is matched could be empty |
2250 | */ |
2251 | |
2252 | static BOOL |
2253 | could_be_empty(const uschar *code, const uschar *endcode, branch_chain *bcptr, |
2254 | BOOL utf8, compile_data *cd) |
2255 | { |
2256 | while (bcptr != NULL && bcptr->current_branch >= code) |
2257 | { |
2258 | if (!could_be_empty_branch(bcptr->current_branch, endcode, utf8, cd)) |
2259 | return FALSE; |
2260 | bcptr = bcptr->outer; |
2261 | } |
2262 | return TRUE; |
2263 | } |
2264 | |
2265 | |
2266 | |
2267 | /************************************************* |
2268 | * Check for POSIX class syntax * |
2269 | *************************************************/ |
2270 | |
2271 | /* This function is called when the sequence "[:" or "[." or "[=" is |
2272 | encountered in a character class. It checks whether this is followed by a |
2273 | sequence of characters terminated by a matching ":]" or ".]" or "=]". If we |
2274 | reach an unescaped ']' without the special preceding character, return FALSE. |
2275 | |
2276 | Originally, this function only recognized a sequence of letters between the |
2277 | terminators, but it seems that Perl recognizes any sequence of characters, |
2278 | though of course unknown POSIX names are subsequently rejected. Perl gives an |
2279 | "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE |
2280 | didn't consider this to be a POSIX class. Likewise for [:1234:]. |
2281 | |
2282 | The problem in trying to be exactly like Perl is in the handling of escapes. We |
2283 | have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX |
2284 | class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code |
2285 | below handles the special case of \], but does not try to do any other escape |
2286 | processing. This makes it different from Perl for cases such as [:l\ower:] |
2287 | where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize |
2288 | "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does, |
2289 | I think. |
2290 | |
2291 | Arguments: |
2292 | ptr pointer to the initial [ |
2293 | endptr where to return the end pointer |
2294 | |
2295 | Returns: TRUE or FALSE |
2296 | */ |
2297 | |
2298 | static BOOL |
2299 | check_posix_syntax(const uschar *ptr, const uschar **endptr) |
2300 | { |
2301 | int terminator; /* Don't combine these lines; the Solaris cc */ |
2302 | terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */ |
2303 | for (++ptr; *ptr != 0; ptr++) |
2304 | { |
2305 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) ptr++; else |
2306 | { |
2307 | if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE; |
2308 | if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
2309 | { |
2310 | *endptr = ptr; |
2311 | return TRUE; |
2312 | } |
2313 | } |
2314 | } |
2315 | return FALSE; |
2316 | } |
2317 | |
2318 | |
2319 | |
2320 | |
2321 | /************************************************* |
2322 | * Check POSIX class name * |
2323 | *************************************************/ |
2324 | |
2325 | /* This function is called to check the name given in a POSIX-style class entry |
2326 | such as [:alnum:]. |
2327 | |
2328 | Arguments: |
2329 | ptr points to the first letter |
2330 | len the length of the name |
2331 | |
2332 | Returns: a value representing the name, or -1 if unknown |
2333 | */ |
2334 | |
2335 | static int |
2336 | check_posix_name(const uschar *ptr, int len) |
2337 | { |
2338 | const char *pn = posix_names; |
2339 | register int yield = 0; |
2340 | while (posix_name_lengths[yield] != 0) |
2341 | { |
2342 | if (len == posix_name_lengths[yield] && |
2343 | strncmp((const char *)ptr, pn, len) == 0) return yield; |
2344 | pn += posix_name_lengths[yield] + 1; |
2345 | yield++; |
2346 | } |
2347 | return -1; |
2348 | } |
2349 | |
2350 | |
2351 | /************************************************* |
2352 | * Adjust OP_RECURSE items in repeated group * |
2353 | *************************************************/ |
2354 | |
2355 | /* OP_RECURSE items contain an offset from the start of the regex to the group |
2356 | that is referenced. This means that groups can be replicated for fixed |
2357 | repetition simply by copying (because the recursion is allowed to refer to |
2358 | earlier groups that are outside the current group). However, when a group is |
2359 | optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is |
2360 | inserted before it, after it has been compiled. This means that any OP_RECURSE |
2361 | items within it that refer to the group itself or any contained groups have to |
2362 | have their offsets adjusted. That one of the jobs of this function. Before it |
2363 | is called, the partially compiled regex must be temporarily terminated with |
2364 | OP_END. |
2365 | |
2366 | This function has been extended with the possibility of forward references for |
2367 | recursions and subroutine calls. It must also check the list of such references |
2368 | for the group we are dealing with. If it finds that one of the recursions in |
2369 | the current group is on this list, it adjusts the offset in the list, not the |
2370 | value in the reference (which is a group number). |
2371 | |
2372 | Arguments: |
2373 | group points to the start of the group |
2374 | adjust the amount by which the group is to be moved |
2375 | utf8 TRUE in UTF-8 mode |
2376 | cd contains pointers to tables etc. |
2377 | save_hwm the hwm forward reference pointer at the start of the group |
2378 | |
2379 | Returns: nothing |
2380 | */ |
2381 | |
2382 | static void |
2383 | adjust_recurse(uschar *group, int adjust, BOOL utf8, compile_data *cd, |
2384 | uschar *save_hwm) |
2385 | { |
2386 | uschar *ptr = group; |
2387 | |
2388 | while ((ptr = (uschar *)find_recurse(ptr, utf8)) != NULL) |
2389 | { |
2390 | int offset; |
2391 | uschar *hc; |
2392 | |
2393 | /* See if this recursion is on the forward reference list. If so, adjust the |
2394 | reference. */ |
2395 | |
2396 | for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE) |
2397 | { |
2398 | offset = GET(hc, 0); |
2399 | if (cd->start_code + offset == ptr + 1) |
2400 | { |
2401 | PUT(hc, 0, offset + adjust); |
2402 | break; |
2403 | } |
2404 | } |
2405 | |
2406 | /* Otherwise, adjust the recursion offset if it's after the start of this |
2407 | group. */ |
2408 | |
2409 | if (hc >= cd->hwm) |
2410 | { |
2411 | offset = GET(ptr, 1); |
2412 | if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust); |
2413 | } |
2414 | |
2415 | ptr += 1 + LINK_SIZE; |
2416 | } |
2417 | } |
2418 | |
2419 | |
2420 | |
2421 | /************************************************* |
2422 | * Insert an automatic callout point * |
2423 | *************************************************/ |
2424 | |
2425 | /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert |
2426 | callout points before each pattern item. |
2427 | |
2428 | Arguments: |
2429 | code current code pointer |
2430 | ptr current pattern pointer |
2431 | cd pointers to tables etc |
2432 | |
2433 | Returns: new code pointer |
2434 | */ |
2435 | |
2436 | static uschar * |
2437 | auto_callout(uschar *code, const uschar *ptr, compile_data *cd) |
2438 | { |
2439 | *code++ = OP_CALLOUT; |
2440 | *code++ = 255; |
2441 | PUT(code, 0, (int)(ptr - cd->start_pattern)); /* Pattern offset */ |
2442 | PUT(code, LINK_SIZE, 0); /* Default length */ |
2443 | return code + 2*LINK_SIZE; |
2444 | } |
2445 | |
2446 | |
2447 | |
2448 | /************************************************* |
2449 | * Complete a callout item * |
2450 | *************************************************/ |
2451 | |
2452 | /* A callout item contains the length of the next item in the pattern, which |
2453 | we can't fill in till after we have reached the relevant point. This is used |
2454 | for both automatic and manual callouts. |
2455 | |
2456 | Arguments: |
2457 | previous_callout points to previous callout item |
2458 | ptr current pattern pointer |
2459 | cd pointers to tables etc |
2460 | |
2461 | Returns: nothing |
2462 | */ |
2463 | |
2464 | static void |
2465 | complete_callout(uschar *previous_callout, const uschar *ptr, compile_data *cd) |
2466 | { |
2467 | int length = (int)(ptr - cd->start_pattern - GET(previous_callout, 2)); |
2468 | PUT(previous_callout, 2 + LINK_SIZE, length); |
2469 | } |
2470 | |
2471 | |
2472 | |
2473 | #ifdef SUPPORT_UCP |
2474 | /************************************************* |
2475 | * Get othercase range * |
2476 | *************************************************/ |
2477 | |
2478 | /* This function is passed the start and end of a class range, in UTF-8 mode |
2479 | with UCP support. It searches up the characters, looking for internal ranges of |
2480 | characters in the "other" case. Each call returns the next one, updating the |
2481 | start address. |
2482 | |
2483 | Arguments: |
2484 | cptr points to starting character value; updated |
2485 | d end value |
2486 | ocptr where to put start of othercase range |
2487 | odptr where to put end of othercase range |
2488 | |
2489 | Yield: TRUE when range returned; FALSE when no more |
2490 | */ |
2491 | |
2492 | static BOOL |
2493 | get_othercase_range(unsigned int *cptr, unsigned int d, unsigned int *ocptr, |
2494 | unsigned int *odptr) |
2495 | { |
2496 | unsigned int c, othercase, next; |
2497 | |
2498 | for (c = *cptr; c <= d; c++) |
2499 | { if ((othercase = UCD_OTHERCASE(c)) != c) break; } |
2500 | |
2501 | if (c > d) return FALSE; |
2502 | |
2503 | *ocptr = othercase; |
2504 | next = othercase + 1; |
2505 | |
2506 | for (++c; c <= d; c++) |
2507 | { |
2508 | if (UCD_OTHERCASE(c) != next) break; |
2509 | next++; |
2510 | } |
2511 | |
2512 | *odptr = next - 1; |
2513 | *cptr = c; |
2514 | |
2515 | return TRUE; |
2516 | } |
2517 | |
2518 | |
2519 | |
2520 | /************************************************* |
2521 | * Check a character and a property * |
2522 | *************************************************/ |
2523 | |
2524 | /* This function is called by check_auto_possessive() when a property item |
2525 | is adjacent to a fixed character. |
2526 | |
2527 | Arguments: |
2528 | c the character |
2529 | ptype the property type |
2530 | pdata the data for the type |
2531 | negated TRUE if it's a negated property (\P or \p{^) |
2532 | |
2533 | Returns: TRUE if auto-possessifying is OK |
2534 | */ |
2535 | |
2536 | static BOOL |
2537 | check_char_prop(int c, int ptype, int pdata, BOOL negated) |
2538 | { |
2539 | const ucd_record *prop = GET_UCD(c); |
2540 | switch(ptype) |
2541 | { |
2542 | case PT_LAMP: |
2543 | return (prop->chartype == ucp_Lu || |
2544 | prop->chartype == ucp_Ll || |
2545 | prop->chartype == ucp_Lt) == negated; |
2546 | |
2547 | case PT_GC: |
2548 | return (pdata == _pcre_ucp_gentype[prop->chartype]) == negated; |
2549 | |
2550 | case PT_PC: |
2551 | return (pdata == prop->chartype) == negated; |
2552 | |
2553 | case PT_SC: |
2554 | return (pdata == prop->script) == negated; |
2555 | |
2556 | /* These are specials */ |
2557 | |
2558 | case PT_ALNUM: |
2559 | return (_pcre_ucp_gentype[prop->chartype] == ucp_L || |
2560 | _pcre_ucp_gentype[prop->chartype] == ucp_N) == negated; |
2561 | |
2562 | case PT_SPACE: /* Perl space */ |
2563 | return (_pcre_ucp_gentype[prop->chartype] == ucp_Z || |
2564 | c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR) |
2565 | == negated; |
2566 | |
2567 | case PT_PXSPACE: /* POSIX space */ |
2568 | return (_pcre_ucp_gentype[prop->chartype] == ucp_Z || |
2569 | c == CHAR_HT || c == CHAR_NL || c == CHAR_VT || |
2570 | c == CHAR_FF || c == CHAR_CR) |
2571 | == negated; |
2572 | |
2573 | case PT_WORD: |
2574 | return (_pcre_ucp_gentype[prop->chartype] == ucp_L || |
2575 | _pcre_ucp_gentype[prop->chartype] == ucp_N || |
2576 | c == CHAR_UNDERSCORE) == negated; |
2577 | } |
2578 | return FALSE; |
2579 | } |
2580 | #endif /* SUPPORT_UCP */ |
2581 | |
2582 | |
2583 | |
2584 | /************************************************* |
2585 | * Check if auto-possessifying is possible * |
2586 | *************************************************/ |
2587 | |
2588 | /* This function is called for unlimited repeats of certain items, to see |
2589 | whether the next thing could possibly match the repeated item. If not, it makes |
2590 | sense to automatically possessify the repeated item. |
2591 | |
2592 | Arguments: |
2593 | previous pointer to the repeated opcode |
2594 | utf8 TRUE in UTF-8 mode |
2595 | ptr next character in pattern |
2596 | options options bits |
2597 | cd contains pointers to tables etc. |
2598 | |
2599 | Returns: TRUE if possessifying is wanted |
2600 | */ |
2601 | |
2602 | static BOOL |
2603 | check_auto_possessive(const uschar *previous, BOOL utf8, const uschar *ptr, |
2604 | int options, compile_data *cd) |
2605 | { |
2606 | int c, next; |
2607 | int op_code = *previous++; |
2608 | |
2609 | /* Skip whitespace and comments in extended mode */ |
2610 | |
2611 | if ((options & PCRE_EXTENDED) != 0) |
2612 | { |
2613 | for (;;) |
2614 | { |
2615 | while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++; |
2616 | if (*ptr == CHAR_NUMBER_SIGN) |
2617 | { |
2618 | ptr++; |
2619 | while (*ptr != 0) |
2620 | { |
2621 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } |
2622 | ptr++; |
2623 | #ifdef SUPPORT_UTF8 |
2624 | if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++; |
2625 | #endif |
2626 | } |
2627 | } |
2628 | else break; |
2629 | } |
2630 | } |
2631 | |
2632 | /* If the next item is one that we can handle, get its value. A non-negative |
2633 | value is a character, a negative value is an escape value. */ |
2634 | |
2635 | if (*ptr == CHAR_BACKSLASH) |
2636 | { |
2637 | int temperrorcode = 0; |
2638 | next = check_escape(&ptr, &temperrorcode, cd->bracount, options, FALSE); |
2639 | if (temperrorcode != 0) return FALSE; |
2640 | ptr++; /* Point after the escape sequence */ |
2641 | } |
2642 | |
2643 | else if ((cd->ctypes[*ptr] & ctype_meta) == 0) |
2644 | { |
2645 | #ifdef SUPPORT_UTF8 |
2646 | if (utf8) { GETCHARINC(next, ptr); } else |
2647 | #endif |
2648 | next = *ptr++; |
2649 | } |
2650 | |
2651 | else return FALSE; |
2652 | |
2653 | /* Skip whitespace and comments in extended mode */ |
2654 | |
2655 | if ((options & PCRE_EXTENDED) != 0) |
2656 | { |
2657 | for (;;) |
2658 | { |
2659 | while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++; |
2660 | if (*ptr == CHAR_NUMBER_SIGN) |
2661 | { |
2662 | ptr++; |
2663 | while (*ptr != 0) |
2664 | { |
2665 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } |
2666 | ptr++; |
2667 | #ifdef SUPPORT_UTF8 |
2668 | if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++; |
2669 | #endif |
2670 | } |
2671 | } |
2672 | else break; |
2673 | } |
2674 | } |
2675 | |
2676 | /* If the next thing is itself optional, we have to give up. */ |
2677 | |
2678 | if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK || |
2679 | strncmp((char *)ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0) |
2680 | return FALSE; |
2681 | |
2682 | /* Now compare the next item with the previous opcode. First, handle cases when |
2683 | the next item is a character. */ |
2684 | |
2685 | if (next >= 0) switch(op_code) |
2686 | { |
2687 | case OP_CHAR: |
2688 | #ifdef SUPPORT_UTF8 |
2689 | GETCHARTEST(c, previous); |
2690 | #else |
2691 | c = *previous; |
2692 | #endif |
2693 | return c != next; |
2694 | |
2695 | /* For CHARI (caseless character) we must check the other case. If we have |
2696 | Unicode property support, we can use it to test the other case of |
2697 | high-valued characters. */ |
2698 | |
2699 | case OP_CHARI: |
2700 | #ifdef SUPPORT_UTF8 |
2701 | GETCHARTEST(c, previous); |
2702 | #else |
2703 | c = *previous; |
2704 | #endif |
2705 | if (c == next) return FALSE; |
2706 | #ifdef SUPPORT_UTF8 |
2707 | if (utf8) |
2708 | { |
2709 | unsigned int othercase; |
2710 | if (next < 128) othercase = cd->fcc[next]; else |
2711 | #ifdef SUPPORT_UCP |
2712 | othercase = UCD_OTHERCASE((unsigned int)next); |
2713 | #else |
2714 | othercase = NOTACHAR; |
2715 | #endif |
2716 | return (unsigned int)c != othercase; |
2717 | } |
2718 | else |
2719 | #endif /* SUPPORT_UTF8 */ |
2720 | return (c != cd->fcc[next]); /* Non-UTF-8 mode */ |
2721 | |
2722 | /* For OP_NOT and OP_NOTI, the data is always a single-byte character. These |
2723 | opcodes are not used for multi-byte characters, because they are coded using |
2724 | an XCLASS instead. */ |
2725 | |
2726 | case OP_NOT: |
2727 | return (c = *previous) == next; |
2728 | |
2729 | case OP_NOTI: |
2730 | if ((c = *previous) == next) return TRUE; |
2731 | #ifdef SUPPORT_UTF8 |
2732 | if (utf8) |
2733 | { |
2734 | unsigned int othercase; |
2735 | if (next < 128) othercase = cd->fcc[next]; else |
2736 | #ifdef SUPPORT_UCP |
2737 | othercase = UCD_OTHERCASE(next); |
2738 | #else |
2739 | othercase = NOTACHAR; |
2740 | #endif |
2741 | return (unsigned int)c == othercase; |
2742 | } |
2743 | else |
2744 | #endif /* SUPPORT_UTF8 */ |
2745 | return (c == cd->fcc[next]); /* Non-UTF-8 mode */ |
2746 | |
2747 | /* Note that OP_DIGIT etc. are generated only when PCRE_UCP is *not* set. |
2748 | When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */ |
2749 | |
2750 | case OP_DIGIT: |
2751 | return next > 127 || (cd->ctypes[next] & ctype_digit) == 0; |
2752 | |
2753 | case OP_NOT_DIGIT: |
2754 | return next <= 127 && (cd->ctypes[next] & ctype_digit) != 0; |
2755 | |
2756 | case OP_WHITESPACE: |
2757 | return next > 127 || (cd->ctypes[next] & ctype_space) == 0; |
2758 | |
2759 | case OP_NOT_WHITESPACE: |
2760 | return next <= 127 && (cd->ctypes[next] & ctype_space) != 0; |
2761 | |
2762 | case OP_WORDCHAR: |
2763 | return next > 127 || (cd->ctypes[next] & ctype_word) == 0; |
2764 | |
2765 | case OP_NOT_WORDCHAR: |
2766 | return next <= 127 && (cd->ctypes[next] & ctype_word) != 0; |
2767 | |
2768 | case OP_HSPACE: |
2769 | case OP_NOT_HSPACE: |
2770 | switch(next) |
2771 | { |
2772 | case 0x09: |
2773 | case 0x20: |
2774 | case 0xa0: |
2775 | case 0x1680: |
2776 | case 0x180e: |
2777 | case 0x2000: |
2778 | case 0x2001: |
2779 | case 0x2002: |
2780 | case 0x2003: |
2781 | case 0x2004: |
2782 | case 0x2005: |
2783 | case 0x2006: |
2784 | case 0x2007: |
2785 | case 0x2008: |
2786 | case 0x2009: |
2787 | case 0x200A: |
2788 | case 0x202f: |
2789 | case 0x205f: |
2790 | case 0x3000: |
2791 | return op_code == OP_NOT_HSPACE; |
2792 | default: |
2793 | return op_code != OP_NOT_HSPACE; |
2794 | } |
2795 | |
2796 | case OP_ANYNL: |
2797 | case OP_VSPACE: |
2798 | case OP_NOT_VSPACE: |
2799 | switch(next) |
2800 | { |
2801 | case 0x0a: |
2802 | case 0x0b: |
2803 | case 0x0c: |
2804 | case 0x0d: |
2805 | case 0x85: |
2806 | case 0x2028: |
2807 | case 0x2029: |
2808 | return op_code == OP_NOT_VSPACE; |
2809 | default: |
2810 | return op_code != OP_NOT_VSPACE; |
2811 | } |
2812 | |
2813 | #ifdef SUPPORT_UCP |
2814 | case OP_PROP: |
2815 | return check_char_prop(next, previous[0], previous[1], FALSE); |
2816 | |
2817 | case OP_NOTPROP: |
2818 | return check_char_prop(next, previous[0], previous[1], TRUE); |
2819 | #endif |
2820 | |
2821 | default: |
2822 | return FALSE; |
2823 | } |
2824 | |
2825 | |
2826 | /* Handle the case when the next item is \d, \s, etc. Note that when PCRE_UCP |
2827 | is set, \d turns into ESC_du rather than ESC_d, etc., so ESC_d etc. are |
2828 | generated only when PCRE_UCP is *not* set, that is, when only ASCII |
2829 | characteristics are recognized. Similarly, the opcodes OP_DIGIT etc. are |
2830 | replaced by OP_PROP codes when PCRE_UCP is set. */ |
2831 | |
2832 | switch(op_code) |
2833 | { |
2834 | case OP_CHAR: |
2835 | case OP_CHARI: |
2836 | #ifdef SUPPORT_UTF8 |
2837 | GETCHARTEST(c, previous); |
2838 | #else |
2839 | c = *previous; |
2840 | #endif |
2841 | switch(-next) |
2842 | { |
2843 | case ESC_d: |
2844 | return c > 127 || (cd->ctypes[c] & ctype_digit) == 0; |
2845 | |
2846 | case ESC_D: |
2847 | return c <= 127 && (cd->ctypes[c] & ctype_digit) != 0; |
2848 | |
2849 | case ESC_s: |
2850 | return c > 127 || (cd->ctypes[c] & ctype_space) == 0; |
2851 | |
2852 | case ESC_S: |
2853 | return c <= 127 && (cd->ctypes[c] & ctype_space) != 0; |
2854 | |
2855 | case ESC_w: |
2856 | return c > 127 || (cd->ctypes[c] & ctype_word) == 0; |
2857 | |
2858 | case ESC_W: |
2859 | return c <= 127 && (cd->ctypes[c] & ctype_word) != 0; |
2860 | |
2861 | case ESC_h: |
2862 | case ESC_H: |
2863 | switch(c) |
2864 | { |
2865 | case 0x09: |
2866 | case 0x20: |
2867 | case 0xa0: |
2868 | case 0x1680: |
2869 | case 0x180e: |
2870 | case 0x2000: |
2871 | case 0x2001: |
2872 | case 0x2002: |
2873 | case 0x2003: |
2874 | case 0x2004: |
2875 | case 0x2005: |
2876 | case 0x2006: |
2877 | case 0x2007: |
2878 | case 0x2008: |
2879 | case 0x2009: |
2880 | case 0x200A: |
2881 | case 0x202f: |
2882 | case 0x205f: |
2883 | case 0x3000: |
2884 | return -next != ESC_h; |
2885 | default: |
2886 | return -next == ESC_h; |
2887 | } |
2888 | |
2889 | case ESC_v: |
2890 | case ESC_V: |
2891 | switch(c) |
2892 | { |
2893 | case 0x0a: |
2894 | case 0x0b: |
2895 | case 0x0c: |
2896 | case 0x0d: |
2897 | case 0x85: |
2898 | case 0x2028: |
2899 | case 0x2029: |
2900 | return -next != ESC_v; |
2901 | default: |
2902 | return -next == ESC_v; |
2903 | } |
2904 | |
2905 | /* When PCRE_UCP is set, these values get generated for \d etc. Find |
2906 | their substitutions and process them. The result will always be either |
2907 | -ESC_p or -ESC_P. Then fall through to process those values. */ |
2908 | |
2909 | #ifdef SUPPORT_UCP |
2910 | case ESC_du: |
2911 | case ESC_DU: |
2912 | case ESC_wu: |
2913 | case ESC_WU: |
2914 | case ESC_su: |
2915 | case ESC_SU: |
2916 | { |
2917 | int temperrorcode = 0; |
2918 | ptr = substitutes[-next - ESC_DU]; |
2919 | next = check_escape(&ptr, &temperrorcode, 0, options, FALSE); |
2920 | if (temperrorcode != 0) return FALSE; |
2921 | ptr++; /* For compatibility */ |
2922 | } |
2923 | /* Fall through */ |
2924 | |
2925 | case ESC_p: |
2926 | case ESC_P: |
2927 | { |
2928 | int ptype, pdata, errorcodeptr; |
2929 | BOOL negated; |
2930 | |
2931 | ptr--; /* Make ptr point at the p or P */ |
2932 | ptype = get_ucp(&ptr, &negated, &pdata, &errorcodeptr); |
2933 | if (ptype < 0) return FALSE; |
2934 | ptr++; /* Point past the final curly ket */ |
2935 | |
2936 | /* If the property item is optional, we have to give up. (When generated |
2937 | from \d etc by PCRE_UCP, this test will have been applied much earlier, |
2938 | to the original \d etc. At this point, ptr will point to a zero byte. */ |
2939 | |
2940 | if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK || |
2941 | strncmp((char *)ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0) |
2942 | return FALSE; |
2943 | |
2944 | /* Do the property check. */ |
2945 | |
2946 | return check_char_prop(c, ptype, pdata, (next == -ESC_P) != negated); |
2947 | } |
2948 | #endif |
2949 | |
2950 | default: |
2951 | return FALSE; |
2952 | } |
2953 | |
2954 | /* In principle, support for Unicode properties should be integrated here as |
2955 | well. It means re-organizing the above code so as to get hold of the property |
2956 | values before switching on the op-code. However, I wonder how many patterns |
2957 | combine ASCII \d etc with Unicode properties? (Note that if PCRE_UCP is set, |
2958 | these op-codes are never generated.) */ |
2959 | |
2960 | case OP_DIGIT: |
2961 | return next == -ESC_D || next == -ESC_s || next == -ESC_W || |
2962 | next == -ESC_h || next == -ESC_v || next == -ESC_R; |
2963 | |
2964 | case OP_NOT_DIGIT: |
2965 | return next == -ESC_d; |
2966 | |
2967 | case OP_WHITESPACE: |
2968 | return next == -ESC_S || next == -ESC_d || next == -ESC_w || next == -ESC_R; |
2969 | |
2970 | case OP_NOT_WHITESPACE: |
2971 | return next == -ESC_s || next == -ESC_h || next == -ESC_v; |
2972 | |
2973 | case OP_HSPACE: |
2974 | return next == -ESC_S || next == -ESC_H || next == -ESC_d || |
2975 | next == -ESC_w || next == -ESC_v || next == -ESC_R; |
2976 | |
2977 | case OP_NOT_HSPACE: |
2978 | return next == -ESC_h; |
2979 | |
2980 | /* Can't have \S in here because VT matches \S (Perl anomaly) */ |
2981 | case OP_ANYNL: |
2982 | case OP_VSPACE: |
2983 | return next == -ESC_V || next == -ESC_d || next == -ESC_w; |
2984 | |
2985 | case OP_NOT_VSPACE: |
2986 | return next == -ESC_v || next == -ESC_R; |
2987 | |
2988 | case OP_WORDCHAR: |
2989 | return next == -ESC_W || next == -ESC_s || next == -ESC_h || |
2990 | next == -ESC_v || next == -ESC_R; |
2991 | |
2992 | case OP_NOT_WORDCHAR: |
2993 | return next == -ESC_w || next == -ESC_d; |
2994 | |
2995 | default: |
2996 | return FALSE; |
2997 | } |
2998 | |
2999 | /* Control does not reach here */ |
3000 | } |
3001 | |
3002 | |
3003 | |
3004 | /************************************************* |
3005 | * Compile one branch * |
3006 | *************************************************/ |
3007 | |
3008 | /* Scan the pattern, compiling it into the a vector. If the options are |
3009 | changed during the branch, the pointer is used to change the external options |
3010 | bits. This function is used during the pre-compile phase when we are trying |
3011 | to find out the amount of memory needed, as well as during the real compile |
3012 | phase. The value of lengthptr distinguishes the two phases. |
3013 | |
3014 | Arguments: |
3015 | optionsptr pointer to the option bits |
3016 | codeptr points to the pointer to the current code point |
3017 | ptrptr points to the current pattern pointer |
3018 | errorcodeptr points to error code variable |
3019 | firstbyteptr set to initial literal character, or < 0 (REQ_UNSET, REQ_NONE) |
3020 | reqbyteptr set to the last literal character required, else < 0 |
3021 | bcptr points to current branch chain |
3022 | cd contains pointers to tables etc. |
3023 | lengthptr NULL during the real compile phase |
3024 | points to length accumulator during pre-compile phase |
3025 | |
3026 | Returns: TRUE on success |
3027 | FALSE, with *errorcodeptr set non-zero on error |
3028 | */ |
3029 | |
3030 | static BOOL |
3031 | compile_branch(int *optionsptr, uschar **codeptr, const uschar **ptrptr, |
3032 | int *errorcodeptr, int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, |
3033 | compile_data *cd, int *lengthptr) |
3034 | { |
3035 | int repeat_type, op_type; |
3036 | int repeat_min = 0, repeat_max = 0; /* To please picky compilers */ |
3037 | int bravalue = 0; |
3038 | int greedy_default, greedy_non_default; |
3039 | int firstbyte, reqbyte; |
3040 | int zeroreqbyte, zerofirstbyte; |
3041 | int req_caseopt, reqvary, tempreqvary; |
3042 | int options = *optionsptr; /* May change dynamically */ |
3043 | int after_manual_callout = 0; |
3044 | int length_prevgroup = 0; |
3045 | register int c; |
3046 | register uschar *code = *codeptr; |
3047 | uschar *last_code = code; |
3048 | uschar *orig_code = code; |
3049 | uschar *tempcode; |
3050 | BOOL inescq = FALSE; |
3051 | BOOL groupsetfirstbyte = FALSE; |
3052 | const uschar *ptr = *ptrptr; |
3053 | const uschar *tempptr; |
3054 | const uschar *nestptr = NULL; |
3055 | uschar *previous = NULL; |
3056 | uschar *previous_callout = NULL; |
3057 | uschar *save_hwm = NULL; |
3058 | uschar classbits[32]; |
3059 | |
3060 | /* We can fish out the UTF-8 setting once and for all into a BOOL, but we |
3061 | must not do this for other options (e.g. PCRE_EXTENDED) because they may change |
3062 | dynamically as we process the pattern. */ |
3063 | |
3064 | #ifdef SUPPORT_UTF8 |
3065 | BOOL class_utf8; |
3066 | BOOL utf8 = (options & PCRE_UTF8) != 0; |
3067 | uschar *class_utf8data; |
3068 | uschar *class_utf8data_base; |
3069 | uschar utf8_char[6]; |
3070 | #else |
3071 | BOOL utf8 = FALSE; |
3072 | uschar *utf8_char = NULL; |
3073 | #endif |
3074 | |
3075 | #ifdef PCRE_DEBUG |
3076 | if (lengthptr != NULL) DPRINTF((">> start branch\n")); |
3077 | #endif |
3078 | |
3079 | /* Set up the default and non-default settings for greediness */ |
3080 | |
3081 | greedy_default = ((options & PCRE_UNGREEDY) != 0); |
3082 | greedy_non_default = greedy_default ^ 1; |
3083 | |
3084 | /* Initialize no first byte, no required byte. REQ_UNSET means "no char |
3085 | matching encountered yet". It gets changed to REQ_NONE if we hit something that |
3086 | matches a non-fixed char first char; reqbyte just remains unset if we never |
3087 | find one. |
3088 | |
3089 | When we hit a repeat whose minimum is zero, we may have to adjust these values |
3090 | to take the zero repeat into account. This is implemented by setting them to |
3091 | zerofirstbyte and zeroreqbyte when such a repeat is encountered. The individual |
3092 | item types that can be repeated set these backoff variables appropriately. */ |
3093 | |
3094 | firstbyte = reqbyte = zerofirstbyte = zeroreqbyte = REQ_UNSET; |
3095 | |
3096 | /* The variable req_caseopt contains either the REQ_CASELESS value or zero, |
3097 | according to the current setting of the caseless flag. REQ_CASELESS is a bit |
3098 | value > 255. It is added into the firstbyte or reqbyte variables to record the |
3099 | case status of the value. This is used only for ASCII characters. */ |
3100 | |
3101 | req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS : 0; |
3102 | |
3103 | /* Switch on next character until the end of the branch */ |
3104 | |
3105 | for (;; ptr++) |
3106 | { |
3107 | BOOL negate_class; |
3108 | BOOL should_flip_negation; |
3109 | BOOL possessive_quantifier; |
3110 | BOOL is_quantifier; |
3111 | BOOL is_recurse; |
3112 | BOOL reset_bracount; |
3113 | int class_charcount; |
3114 | int class_lastchar; |
3115 | int newoptions; |
3116 | int recno; |
3117 | int refsign; |
3118 | int skipbytes; |
3119 | int subreqbyte; |
3120 | int subfirstbyte; |
3121 | int terminator; |
3122 | int mclength; |
3123 | uschar mcbuffer[8]; |
3124 | |
3125 | /* Get next byte in the pattern */ |
3126 | |
3127 | c = *ptr; |
3128 | |
3129 | /* If we are at the end of a nested substitution, revert to the outer level |
3130 | string. Nesting only happens one level deep. */ |
3131 | |
3132 | if (c == 0 && nestptr != NULL) |
3133 | { |
3134 | ptr = nestptr; |
3135 | nestptr = NULL; |
3136 | c = *ptr; |
3137 | } |
3138 | |
3139 | /* If we are in the pre-compile phase, accumulate the length used for the |
3140 | previous cycle of this loop. */ |
3141 | |
3142 | if (lengthptr != NULL) |
3143 | { |
3144 | #ifdef PCRE_DEBUG |
3145 | if (code > cd->hwm) cd->hwm = code; /* High water info */ |
3146 | #endif |
3147 | if (code > cd->start_workspace + WORK_SIZE_CHECK) /* Check for overrun */ |
3148 | { |
3149 | *errorcodeptr = ERR52; |
3150 | goto FAILED; |
3151 | } |
3152 | |
3153 | /* There is at least one situation where code goes backwards: this is the |
3154 | case of a zero quantifier after a class (e.g. [ab]{0}). At compile time, |
3155 | the class is simply eliminated. However, it is created first, so we have to |
3156 | allow memory for it. Therefore, don't ever reduce the length at this point. |
3157 | */ |
3158 | |
3159 | if (code < last_code) code = last_code; |
3160 | |
3161 | /* Paranoid check for integer overflow */ |
3162 | |
3163 | if (OFLOW_MAX - *lengthptr < code - last_code) |
3164 | { |
3165 | *errorcodeptr = ERR20; |
3166 | goto FAILED; |
3167 | } |
3168 | |
3169 | *lengthptr += (int)(code - last_code); |
3170 | DPRINTF(("length=%d added %d c=%c\n", *lengthptr, code - last_code, c)); |
3171 | |
3172 | /* If "previous" is set and it is not at the start of the work space, move |
3173 | it back to there, in order to avoid filling up the work space. Otherwise, |
3174 | if "previous" is NULL, reset the current code pointer to the start. */ |
3175 | |
3176 | if (previous != NULL) |
3177 | { |
3178 | if (previous > orig_code) |
3179 | { |
3180 | memmove(orig_code, previous, code - previous); |
3181 | code -= previous - orig_code; |
3182 | previous = orig_code; |
3183 | } |
3184 | } |
3185 | else code = orig_code; |
3186 | |
3187 | /* Remember where this code item starts so we can pick up the length |
3188 | next time round. */ |
3189 | |
3190 | last_code = code; |
3191 | } |
3192 | |
3193 | /* In the real compile phase, just check the workspace used by the forward |
3194 | reference list. */ |
3195 | |
3196 | else if (cd->hwm > cd->start_workspace + WORK_SIZE_CHECK) |
3197 | { |
3198 | *errorcodeptr = ERR52; |
3199 | goto FAILED; |
3200 | } |
3201 | |
3202 | /* If in \Q...\E, check for the end; if not, we have a literal */ |
3203 | |
3204 | if (inescq && c != 0) |
3205 | { |
3206 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
3207 | { |
3208 | inescq = FALSE; |
3209 | ptr++; |
3210 | continue; |
3211 | } |
3212 | else |
3213 | { |
3214 | if (previous_callout != NULL) |
3215 | { |
3216 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
3217 | complete_callout(previous_callout, ptr, cd); |
3218 | previous_callout = NULL; |
3219 | } |
3220 | if ((options & PCRE_AUTO_CALLOUT) != 0) |
3221 | { |
3222 | previous_callout = code; |
3223 | code = auto_callout(code, ptr, cd); |
3224 | } |
3225 | goto NORMAL_CHAR; |
3226 | } |
3227 | } |
3228 | |
3229 | /* Fill in length of a previous callout, except when the next thing is |
3230 | a quantifier. */ |
3231 | |
3232 | is_quantifier = |
3233 | c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK || |
3234 | (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1)); |
3235 | |
3236 | if (!is_quantifier && previous_callout != NULL && |
3237 | after_manual_callout-- <= 0) |
3238 | { |
3239 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
3240 | complete_callout(previous_callout, ptr, cd); |
3241 | previous_callout = NULL; |
3242 | } |
3243 | |
3244 | /* In extended mode, skip white space and comments. */ |
3245 | |
3246 | if ((options & PCRE_EXTENDED) != 0) |
3247 | { |
3248 | if ((cd->ctypes[c] & ctype_space) != 0) continue; |
3249 | if (c == CHAR_NUMBER_SIGN) |
3250 | { |
3251 | ptr++; |
3252 | while (*ptr != 0) |
3253 | { |
3254 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; } |
3255 | ptr++; |
3256 | #ifdef SUPPORT_UTF8 |
3257 | if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++; |
3258 | #endif |
3259 | } |
3260 | if (*ptr != 0) continue; |
3261 | |
3262 | /* Else fall through to handle end of string */ |
3263 | c = 0; |
3264 | } |
3265 | } |
3266 | |
3267 | /* No auto callout for quantifiers. */ |
3268 | |
3269 | if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier) |
3270 | { |
3271 | previous_callout = code; |
3272 | code = auto_callout(code, ptr, cd); |
3273 | } |
3274 | |
3275 | switch(c) |
3276 | { |
3277 | /* ===================================================================*/ |
3278 | case 0: /* The branch terminates at string end */ |
3279 | case CHAR_VERTICAL_LINE: /* or | or ) */ |
3280 | case CHAR_RIGHT_PARENTHESIS: |
3281 | *firstbyteptr = firstbyte; |
3282 | *reqbyteptr = reqbyte; |
3283 | *codeptr = code; |
3284 | *ptrptr = ptr; |
3285 | if (lengthptr != NULL) |
3286 | { |
3287 | if (OFLOW_MAX - *lengthptr < code - last_code) |
3288 | { |
3289 | *errorcodeptr = ERR20; |
3290 | goto FAILED; |
3291 | } |
3292 | *lengthptr += (int)(code - last_code); /* To include callout length */ |
3293 | DPRINTF((">> end branch\n")); |
3294 | } |
3295 | return TRUE; |
3296 | |
3297 | |
3298 | /* ===================================================================*/ |
3299 | /* Handle single-character metacharacters. In multiline mode, ^ disables |
3300 | the setting of any following char as a first character. */ |
3301 | |
3302 | case CHAR_CIRCUMFLEX_ACCENT: |
3303 | previous = NULL; |
3304 | if ((options & PCRE_MULTILINE) != 0) |
3305 | { |
3306 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
3307 | *code++ = OP_CIRCM; |
3308 | } |
3309 | else *code++ = OP_CIRC; |
3310 | break; |
3311 | |
3312 | case CHAR_DOLLAR_SIGN: |
3313 | previous = NULL; |
3314 | *code++ = ((options & PCRE_MULTILINE) != 0)? OP_DOLLM : OP_DOLL; |
3315 | break; |
3316 | |
3317 | /* There can never be a first char if '.' is first, whatever happens about |
3318 | repeats. The value of reqbyte doesn't change either. */ |
3319 | |
3320 | case CHAR_DOT: |
3321 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
3322 | zerofirstbyte = firstbyte; |
3323 | zeroreqbyte = reqbyte; |
3324 | previous = code; |
3325 | *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY; |
3326 | break; |
3327 | |
3328 | |
3329 | /* ===================================================================*/ |
3330 | /* Character classes. If the included characters are all < 256, we build a |
3331 | 32-byte bitmap of the permitted characters, except in the special case |
3332 | where there is only one such character. For negated classes, we build the |
3333 | map as usual, then invert it at the end. However, we use a different opcode |
3334 | so that data characters > 255 can be handled correctly. |
3335 | |
3336 | If the class contains characters outside the 0-255 range, a different |
3337 | opcode is compiled. It may optionally have a bit map for characters < 256, |
3338 | but those above are are explicitly listed afterwards. A flag byte tells |
3339 | whether the bitmap is present, and whether this is a negated class or not. |
3340 | |
3341 | In JavaScript compatibility mode, an isolated ']' causes an error. In |
3342 | default (Perl) mode, it is treated as a data character. */ |
3343 | |
3344 | case CHAR_RIGHT_SQUARE_BRACKET: |
3345 | if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
3346 | { |
3347 | *errorcodeptr = ERR64; |
3348 | goto FAILED; |
3349 | } |
3350 | goto NORMAL_CHAR; |
3351 | |
3352 | case CHAR_LEFT_SQUARE_BRACKET: |
3353 | previous = code; |
3354 | |
3355 | /* PCRE supports POSIX class stuff inside a class. Perl gives an error if |
3356 | they are encountered at the top level, so we'll do that too. */ |
3357 | |
3358 | if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
3359 | ptr[1] == CHAR_EQUALS_SIGN) && |
3360 | check_posix_syntax(ptr, &tempptr)) |
3361 | { |
3362 | *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31; |
3363 | goto FAILED; |
3364 | } |
3365 | |
3366 | /* If the first character is '^', set the negation flag and skip it. Also, |
3367 | if the first few characters (either before or after ^) are \Q\E or \E we |
3368 | skip them too. This makes for compatibility with Perl. */ |
3369 | |
3370 | negate_class = FALSE; |
3371 | for (;;) |
3372 | { |
3373 | c = *(++ptr); |
3374 | if (c == CHAR_BACKSLASH) |
3375 | { |
3376 | if (ptr[1] == CHAR_E) |
3377 | ptr++; |
3378 | else if (strncmp((const char *)ptr+1, |
3379 | STR_Q STR_BACKSLASH STR_E, 3) == 0) |
3380 | ptr += 3; |
3381 | else |
3382 | break; |
3383 | } |
3384 | else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT) |
3385 | negate_class = TRUE; |
3386 | else break; |
3387 | } |
3388 | |
3389 | /* Empty classes are allowed in JavaScript compatibility mode. Otherwise, |
3390 | an initial ']' is taken as a data character -- the code below handles |
3391 | that. In JS mode, [] must always fail, so generate OP_FAIL, whereas |
3392 | [^] must match any character, so generate OP_ALLANY. */ |
3393 | |
3394 | if (c == CHAR_RIGHT_SQUARE_BRACKET && |
3395 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
3396 | { |
3397 | *code++ = negate_class? OP_ALLANY : OP_FAIL; |
3398 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
3399 | zerofirstbyte = firstbyte; |
3400 | break; |
3401 | } |
3402 | |
3403 | /* If a class contains a negative special such as \S, we need to flip the |
3404 | negation flag at the end, so that support for characters > 255 works |
3405 | correctly (they are all included in the class). */ |
3406 | |
3407 | should_flip_negation = FALSE; |
3408 | |
3409 | /* Keep a count of chars with values < 256 so that we can optimize the case |
3410 | of just a single character (as long as it's < 256). However, For higher |
3411 | valued UTF-8 characters, we don't yet do any optimization. */ |
3412 | |
3413 | class_charcount = 0; |
3414 | class_lastchar = -1; |
3415 | |
3416 | /* Initialize the 32-char bit map to all zeros. We build the map in a |
3417 | temporary bit of memory, in case the class contains only 1 character (less |
3418 | than 256), because in that case the compiled code doesn't use the bit map. |
3419 | */ |
3420 | |
3421 | memset(classbits, 0, 32 * sizeof(uschar)); |
3422 | |
3423 | #ifdef SUPPORT_UTF8 |
3424 | class_utf8 = FALSE; /* No chars >= 256 */ |
3425 | class_utf8data = code + LINK_SIZE + 2; /* For UTF-8 items */ |
3426 | class_utf8data_base = class_utf8data; /* For resetting in pass 1 */ |
3427 | #endif |
3428 | |
3429 | /* Process characters until ] is reached. By writing this as a "do" it |
3430 | means that an initial ] is taken as a data character. At the start of the |
3431 | loop, c contains the first byte of the character. */ |
3432 | |
3433 | if (c != 0) do |
3434 | { |
3435 | const uschar *oldptr; |
3436 | |
3437 | #ifdef SUPPORT_UTF8 |
3438 | if (utf8 && c > 127) |
3439 | { /* Braces are required because the */ |
3440 | GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */ |
3441 | } |
3442 | |
3443 | /* In the pre-compile phase, accumulate the length of any UTF-8 extra |
3444 | data and reset the pointer. This is so that very large classes that |
3445 | contain a zillion UTF-8 characters no longer overwrite the work space |
3446 | (which is on the stack). */ |
3447 | |
3448 | if (lengthptr != NULL) |
3449 | { |
3450 | *lengthptr += class_utf8data - class_utf8data_base; |
3451 | class_utf8data = class_utf8data_base; |
3452 | } |
3453 | |
3454 | #endif |
3455 | |
3456 | /* Inside \Q...\E everything is literal except \E */ |
3457 | |
3458 | if (inescq) |
3459 | { |
3460 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */ |
3461 | { |
3462 | inescq = FALSE; /* Reset literal state */ |
3463 | ptr++; /* Skip the 'E' */ |
3464 | continue; /* Carry on with next */ |
3465 | } |
3466 | goto CHECK_RANGE; /* Could be range if \E follows */ |
3467 | } |
3468 | |
3469 | /* Handle POSIX class names. Perl allows a negation extension of the |
3470 | form [:^name:]. A square bracket that doesn't match the syntax is |
3471 | treated as a literal. We also recognize the POSIX constructions |
3472 | [.ch.] and [=ch=] ("collating elements") and fault them, as Perl |
3473 | 5.6 and 5.8 do. */ |
3474 | |
3475 | if (c == CHAR_LEFT_SQUARE_BRACKET && |
3476 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
3477 | ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr)) |
3478 | { |
3479 | BOOL local_negate = FALSE; |
3480 | int posix_class, taboffset, tabopt; |
3481 | register const uschar *cbits = cd->cbits; |
3482 | uschar pbits[32]; |
3483 | |
3484 | if (ptr[1] != CHAR_COLON) |
3485 | { |
3486 | *errorcodeptr = ERR31; |
3487 | goto FAILED; |
3488 | } |
3489 | |
3490 | ptr += 2; |
3491 | if (*ptr == CHAR_CIRCUMFLEX_ACCENT) |
3492 | { |
3493 | local_negate = TRUE; |
3494 | should_flip_negation = TRUE; /* Note negative special */ |
3495 | ptr++; |
3496 | } |
3497 | |
3498 | posix_class = check_posix_name(ptr, (int)(tempptr - ptr)); |
3499 | if (posix_class < 0) |
3500 | { |
3501 | *errorcodeptr = ERR30; |
3502 | goto FAILED; |
3503 | } |
3504 | |
3505 | /* If matching is caseless, upper and lower are converted to |
3506 | alpha. This relies on the fact that the class table starts with |
3507 | alpha, lower, upper as the first 3 entries. */ |
3508 | |
3509 | if ((options & PCRE_CASELESS) != 0 && posix_class <= 2) |
3510 | posix_class = 0; |
3511 | |
3512 | /* When PCRE_UCP is set, some of the POSIX classes are converted to |
3513 | different escape sequences that use Unicode properties. */ |
3514 | |
3515 | #ifdef SUPPORT_UCP |
3516 | if ((options & PCRE_UCP) != 0) |
3517 | { |
3518 | int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0); |
3519 | if (posix_substitutes[pc] != NULL) |
3520 | { |
3521 | nestptr = tempptr + 1; |
3522 | ptr = posix_substitutes[pc] - 1; |
3523 | continue; |
3524 | } |
3525 | } |
3526 | #endif |
3527 | /* In the non-UCP case, we build the bit map for the POSIX class in a |
3528 | chunk of local store because we may be adding and subtracting from it, |
3529 | and we don't want to subtract bits that may be in the main map already. |
3530 | At the end we or the result into the bit map that is being built. */ |
3531 | |
3532 | posix_class *= 3; |
3533 | |
3534 | /* Copy in the first table (always present) */ |
3535 | |
3536 | memcpy(pbits, cbits + posix_class_maps[posix_class], |
3537 | 32 * sizeof(uschar)); |
3538 | |
3539 | /* If there is a second table, add or remove it as required. */ |
3540 | |
3541 | taboffset = posix_class_maps[posix_class + 1]; |
3542 | tabopt = posix_class_maps[posix_class + 2]; |
3543 | |
3544 | if (taboffset >= 0) |
3545 | { |
3546 | if (tabopt >= 0) |
3547 | for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset]; |
3548 | else |
3549 | for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset]; |
3550 | } |
3551 | |
3552 | /* Not see if we need to remove any special characters. An option |
3553 | value of 1 removes vertical space and 2 removes underscore. */ |
3554 | |
3555 | if (tabopt < 0) tabopt = -tabopt; |
3556 | if (tabopt == 1) pbits[1] &= ~0x3c; |
3557 | else if (tabopt == 2) pbits[11] &= 0x7f; |
3558 | |
3559 | /* Add the POSIX table or its complement into the main table that is |
3560 | being built and we are done. */ |
3561 | |
3562 | if (local_negate) |
3563 | for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c]; |
3564 | else |
3565 | for (c = 0; c < 32; c++) classbits[c] |= pbits[c]; |
3566 | |
3567 | ptr = tempptr + 1; |
3568 | class_charcount = 10; /* Set > 1; assumes more than 1 per class */ |
3569 | continue; /* End of POSIX syntax handling */ |
3570 | } |
3571 | |
3572 | /* Backslash may introduce a single character, or it may introduce one |
3573 | of the specials, which just set a flag. The sequence \b is a special |
3574 | case. Inside a class (and only there) it is treated as backspace. We |
3575 | assume that other escapes have more than one character in them, so set |
3576 | class_charcount bigger than one. Unrecognized escapes fall through and |
3577 | are either treated as literal characters (by default), or are faulted if |
3578 | PCRE_EXTRA is set. */ |
3579 | |
3580 | if (c == CHAR_BACKSLASH) |
3581 | { |
3582 | c = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE); |
3583 | if (*errorcodeptr != 0) goto FAILED; |
3584 | |
3585 | if (-c == ESC_b) c = CHAR_BS; /* \b is backspace in a class */ |
3586 | else if (-c == ESC_Q) /* Handle start of quoted string */ |
3587 | { |
3588 | if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
3589 | { |
3590 | ptr += 2; /* avoid empty string */ |
3591 | } |
3592 | else inescq = TRUE; |
3593 | continue; |
3594 | } |
3595 | else if (-c == ESC_E) continue; /* Ignore orphan \E */ |
3596 | |
3597 | if (c < 0) |
3598 | { |
3599 | register const uschar *cbits = cd->cbits; |
3600 | class_charcount += 2; /* Greater than 1 is what matters */ |
3601 | |
3602 | switch (-c) |
3603 | { |
3604 | #ifdef SUPPORT_UCP |
3605 | case ESC_du: /* These are the values given for \d etc */ |
3606 | case ESC_DU: /* when PCRE_UCP is set. We replace the */ |
3607 | case ESC_wu: /* escape sequence with an appropriate \p */ |
3608 | case ESC_WU: /* or \P to test Unicode properties instead */ |
3609 | case ESC_su: /* of the default ASCII testing. */ |
3610 | case ESC_SU: |
3611 | nestptr = ptr; |
3612 | ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */ |
3613 | class_charcount -= 2; /* Undo! */ |
3614 | continue; |
3615 | #endif |
3616 | case ESC_d: |
3617 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit]; |
3618 | continue; |
3619 | |
3620 | case ESC_D: |
3621 | should_flip_negation = TRUE; |
3622 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit]; |
3623 | continue; |
3624 | |
3625 | case ESC_w: |
3626 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word]; |
3627 | continue; |
3628 | |
3629 | case ESC_W: |
3630 | should_flip_negation = TRUE; |
3631 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word]; |
3632 | continue; |
3633 | |
3634 | /* Perl 5.004 onwards omits VT from \s, but we must preserve it |
3635 | if it was previously set by something earlier in the character |
3636 | class. */ |
3637 | |
3638 | case ESC_s: |
3639 | classbits[0] |= cbits[cbit_space]; |
3640 | classbits[1] |= cbits[cbit_space+1] & ~0x08; |
3641 | for (c = 2; c < 32; c++) classbits[c] |= cbits[c+cbit_space]; |
3642 | continue; |
3643 | |
3644 | case ESC_S: |
3645 | should_flip_negation = TRUE; |
3646 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space]; |
3647 | classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */ |
3648 | continue; |
3649 | |
3650 | case ESC_h: |
3651 | SETBIT(classbits, 0x09); /* VT */ |
3652 | SETBIT(classbits, 0x20); /* SPACE */ |
3653 | SETBIT(classbits, 0xa0); /* NSBP */ |
3654 | #ifdef SUPPORT_UTF8 |
3655 | if (utf8) |
3656 | { |
3657 | class_utf8 = TRUE; |
3658 | *class_utf8data++ = XCL_SINGLE; |
3659 | class_utf8data += _pcre_ord2utf8(0x1680, class_utf8data); |
3660 | *class_utf8data++ = XCL_SINGLE; |
3661 | class_utf8data += _pcre_ord2utf8(0x180e, class_utf8data); |
3662 | *class_utf8data++ = XCL_RANGE; |
3663 | class_utf8data += _pcre_ord2utf8(0x2000, class_utf8data); |
3664 | class_utf8data += _pcre_ord2utf8(0x200A, class_utf8data); |
3665 | *class_utf8data++ = XCL_SINGLE; |
3666 | class_utf8data += _pcre_ord2utf8(0x202f, class_utf8data); |
3667 | *class_utf8data++ = XCL_SINGLE; |
3668 | class_utf8data += _pcre_ord2utf8(0x205f, class_utf8data); |
3669 | *class_utf8data++ = XCL_SINGLE; |
3670 | class_utf8data += _pcre_ord2utf8(0x3000, class_utf8data); |
3671 | } |
3672 | #endif |
3673 | continue; |
3674 | |
3675 | case ESC_H: |
3676 | for (c = 0; c < 32; c++) |
3677 | { |
3678 | int x = 0xff; |
3679 | switch (c) |
3680 | { |
3681 | case 0x09/8: x ^= 1 << (0x09%8); break; |
3682 | case 0x20/8: x ^= 1 << (0x20%8); break; |
3683 | case 0xa0/8: x ^= 1 << (0xa0%8); break; |
3684 | default: break; |
3685 | } |
3686 | classbits[c] |= x; |
3687 | } |
3688 | |
3689 | #ifdef SUPPORT_UTF8 |
3690 | if (utf8) |
3691 | { |
3692 | class_utf8 = TRUE; |
3693 | *class_utf8data++ = XCL_RANGE; |
3694 | class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data); |
3695 | class_utf8data += _pcre_ord2utf8(0x167f, class_utf8data); |
3696 | *class_utf8data++ = XCL_RANGE; |
3697 | class_utf8data += _pcre_ord2utf8(0x1681, class_utf8data); |
3698 | class_utf8data += _pcre_ord2utf8(0x180d, class_utf8data); |
3699 | *class_utf8data++ = XCL_RANGE; |
3700 | class_utf8data += _pcre_ord2utf8(0x180f, class_utf8data); |
3701 | class_utf8data += _pcre_ord2utf8(0x1fff, class_utf8data); |
3702 | *class_utf8data++ = XCL_RANGE; |
3703 | class_utf8data += _pcre_ord2utf8(0x200B, class_utf8data); |
3704 | class_utf8data += _pcre_ord2utf8(0x202e, class_utf8data); |
3705 | *class_utf8data++ = XCL_RANGE; |
3706 | class_utf8data += _pcre_ord2utf8(0x2030, class_utf8data); |
3707 | class_utf8data += _pcre_ord2utf8(0x205e, class_utf8data); |
3708 | *class_utf8data++ = XCL_RANGE; |
3709 | class_utf8data += _pcre_ord2utf8(0x2060, class_utf8data); |
3710 | class_utf8data += _pcre_ord2utf8(0x2fff, class_utf8data); |
3711 | *class_utf8data++ = XCL_RANGE; |
3712 | class_utf8data += _pcre_ord2utf8(0x3001, class_utf8data); |
3713 | class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data); |
3714 | } |
3715 | #endif |
3716 | continue; |
3717 | |
3718 | case ESC_v: |
3719 | SETBIT(classbits, 0x0a); /* LF */ |
3720 | SETBIT(classbits, 0x0b); /* VT */ |
3721 | SETBIT(classbits, 0x0c); /* FF */ |
3722 | SETBIT(classbits, 0x0d); /* CR */ |
3723 | SETBIT(classbits, 0x85); /* NEL */ |
3724 | #ifdef SUPPORT_UTF8 |
3725 | if (utf8) |
3726 | { |
3727 | class_utf8 = TRUE; |
3728 | *class_utf8data++ = XCL_RANGE; |
3729 | class_utf8data += _pcre_ord2utf8(0x2028, class_utf8data); |
3730 | class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data); |
3731 | } |
3732 | #endif |
3733 | continue; |
3734 | |
3735 | case ESC_V: |
3736 | for (c = 0; c < 32; c++) |
3737 | { |
3738 | int x = 0xff; |
3739 | switch (c) |
3740 | { |
3741 | case 0x0a/8: x ^= 1 << (0x0a%8); |
3742 | x ^= 1 << (0x0b%8); |
3743 | x ^= 1 << (0x0c%8); |
3744 | x ^= 1 << (0x0d%8); |
3745 | break; |
3746 | case 0x85/8: x ^= 1 << (0x85%8); break; |
3747 | default: break; |
3748 | } |
3749 | classbits[c] |= x; |
3750 | } |
3751 | |
3752 | #ifdef SUPPORT_UTF8 |
3753 | if (utf8) |
3754 | { |
3755 | class_utf8 = TRUE; |
3756 | *class_utf8data++ = XCL_RANGE; |
3757 | class_utf8data += _pcre_ord2utf8(0x0100, class_utf8data); |
3758 | class_utf8data += _pcre_ord2utf8(0x2027, class_utf8data); |
3759 | *class_utf8data++ = XCL_RANGE; |
3760 | class_utf8data += _pcre_ord2utf8(0x2029, class_utf8data); |
3761 | class_utf8data += _pcre_ord2utf8(0x7fffffff, class_utf8data); |
3762 | } |
3763 | #endif |
3764 | continue; |
3765 | |
3766 | #ifdef SUPPORT_UCP |
3767 | case ESC_p: |
3768 | case ESC_P: |
3769 | { |
3770 | BOOL negated; |
3771 | int pdata; |
3772 | int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr); |
3773 | if (ptype < 0) goto FAILED; |
3774 | class_utf8 = TRUE; |
3775 | *class_utf8data++ = ((-c == ESC_p) != negated)? |
3776 | XCL_PROP : XCL_NOTPROP; |
3777 | *class_utf8data++ = ptype; |
3778 | *class_utf8data++ = pdata; |
3779 | class_charcount -= 2; /* Not a < 256 character */ |
3780 | continue; |
3781 | } |
3782 | #endif |
3783 | /* Unrecognized escapes are faulted if PCRE is running in its |
3784 | strict mode. By default, for compatibility with Perl, they are |
3785 | treated as literals. */ |
3786 | |
3787 | default: |
3788 | if ((options & PCRE_EXTRA) != 0) |
3789 | { |
3790 | *errorcodeptr = ERR7; |
3791 | goto FAILED; |
3792 | } |
3793 | class_charcount -= 2; /* Undo the default count from above */ |
3794 | c = *ptr; /* Get the final character and fall through */ |
3795 | break; |
3796 | } |
3797 | } |
3798 | |
3799 | /* Fall through if we have a single character (c >= 0). This may be |
3800 | greater than 256 in UTF-8 mode. */ |
3801 | |
3802 | } /* End of backslash handling */ |
3803 | |
3804 | /* A single character may be followed by '-' to form a range. However, |
3805 | Perl does not permit ']' to be the end of the range. A '-' character |
3806 | at the end is treated as a literal. Perl ignores orphaned \E sequences |
3807 | entirely. The code for handling \Q and \E is messy. */ |
3808 | |
3809 | CHECK_RANGE: |
3810 | while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
3811 | { |
3812 | inescq = FALSE; |
3813 | ptr += 2; |
3814 | } |
3815 | |
3816 | oldptr = ptr; |
3817 | |
3818 | /* Remember \r or \n */ |
3819 | |
3820 | if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
3821 | |
3822 | /* Check for range */ |
3823 | |
3824 | if (!inescq && ptr[1] == CHAR_MINUS) |
3825 | { |
3826 | int d; |
3827 | ptr += 2; |
3828 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2; |
3829 | |
3830 | /* If we hit \Q (not followed by \E) at this point, go into escaped |
3831 | mode. */ |
3832 | |
3833 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q) |
3834 | { |
3835 | ptr += 2; |
3836 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
3837 | { ptr += 2; continue; } |
3838 | inescq = TRUE; |
3839 | break; |
3840 | } |
3841 | |
3842 | if (*ptr == 0 || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET)) |
3843 | { |
3844 | ptr = oldptr; |
3845 | goto LONE_SINGLE_CHARACTER; |
3846 | } |
3847 | |
3848 | #ifdef SUPPORT_UTF8 |
3849 | if (utf8) |
3850 | { /* Braces are required because the */ |
3851 | GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */ |
3852 | } |
3853 | else |
3854 | #endif |
3855 | d = *ptr; /* Not UTF-8 mode */ |
3856 | |
3857 | /* The second part of a range can be a single-character escape, but |
3858 | not any of the other escapes. Perl 5.6 treats a hyphen as a literal |
3859 | in such circumstances. */ |
3860 | |
3861 | if (!inescq && d == CHAR_BACKSLASH) |
3862 | { |
3863 | d = check_escape(&ptr, errorcodeptr, cd->bracount, options, TRUE); |
3864 | if (*errorcodeptr != 0) goto FAILED; |
3865 | |
3866 | /* \b is backspace; any other special means the '-' was literal */ |
3867 | |
3868 | if (d < 0) |
3869 | { |
3870 | if (d == -ESC_b) d = CHAR_BS; else |
3871 | { |
3872 | ptr = oldptr; |
3873 | goto LONE_SINGLE_CHARACTER; /* A few lines below */ |
3874 | } |
3875 | } |
3876 | } |
3877 | |
3878 | /* Check that the two values are in the correct order. Optimize |
3879 | one-character ranges */ |
3880 | |
3881 | if (d < c) |
3882 | { |
3883 | *errorcodeptr = ERR8; |
3884 | goto FAILED; |
3885 | } |
3886 | |
3887 | if (d == c) goto LONE_SINGLE_CHARACTER; /* A few lines below */ |
3888 | |
3889 | /* Remember \r or \n */ |
3890 | |
3891 | if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
3892 | |
3893 | /* In UTF-8 mode, if the upper limit is > 255, or > 127 for caseless |
3894 | matching, we have to use an XCLASS with extra data items. Caseless |
3895 | matching for characters > 127 is available only if UCP support is |
3896 | available. */ |
3897 | |
3898 | #ifdef SUPPORT_UTF8 |
3899 | if (utf8 && (d > 255 || ((options & PCRE_CASELESS) != 0 && d > 127))) |
3900 | { |
3901 | class_utf8 = TRUE; |
3902 | |
3903 | /* With UCP support, we can find the other case equivalents of |
3904 | the relevant characters. There may be several ranges. Optimize how |
3905 | they fit with the basic range. */ |
3906 | |
3907 | #ifdef SUPPORT_UCP |
3908 | if ((options & PCRE_CASELESS) != 0) |
3909 | { |
3910 | unsigned int occ, ocd; |
3911 | unsigned int cc = c; |
3912 | unsigned int origd = d; |
3913 | while (get_othercase_range(&cc, origd, &occ, &ocd)) |
3914 | { |
3915 | if (occ >= (unsigned int)c && |
3916 | ocd <= (unsigned int)d) |
3917 | continue; /* Skip embedded ranges */ |
3918 | |
3919 | if (occ < (unsigned int)c && |
3920 | ocd >= (unsigned int)c - 1) /* Extend the basic range */ |
3921 | { /* if there is overlap, */ |
3922 | c = occ; /* noting that if occ < c */ |
3923 | continue; /* we can't have ocd > d */ |
3924 | } /* because a subrange is */ |
3925 | if (ocd > (unsigned int)d && |
3926 | occ <= (unsigned int)d + 1) /* always shorter than */ |
3927 | { /* the basic range. */ |
3928 | d = ocd; |
3929 | continue; |
3930 | } |
3931 | |
3932 | if (occ == ocd) |
3933 | { |
3934 | *class_utf8data++ = XCL_SINGLE; |
3935 | } |
3936 | else |
3937 | { |
3938 | *class_utf8data++ = XCL_RANGE; |
3939 | class_utf8data += _pcre_ord2utf8(occ, class_utf8data); |
3940 | } |
3941 | class_utf8data += _pcre_ord2utf8(ocd, class_utf8data); |
3942 | } |
3943 | } |
3944 | #endif /* SUPPORT_UCP */ |
3945 | |
3946 | /* Now record the original range, possibly modified for UCP caseless |
3947 | overlapping ranges. */ |
3948 | |
3949 | *class_utf8data++ = XCL_RANGE; |
3950 | class_utf8data += _pcre_ord2utf8(c, class_utf8data); |
3951 | class_utf8data += _pcre_ord2utf8(d, class_utf8data); |
3952 | |
3953 | /* With UCP support, we are done. Without UCP support, there is no |
3954 | caseless matching for UTF-8 characters > 127; we can use the bit map |
3955 | for the smaller ones. */ |
3956 | |
3957 | #ifdef SUPPORT_UCP |
3958 | continue; /* With next character in the class */ |
3959 | #else |
3960 | if ((options & PCRE_CASELESS) == 0 || c > 127) continue; |
3961 | |
3962 | /* Adjust upper limit and fall through to set up the map */ |
3963 | |
3964 | d = 127; |
3965 | |
3966 | #endif /* SUPPORT_UCP */ |
3967 | } |
3968 | #endif /* SUPPORT_UTF8 */ |
3969 | |
3970 | /* We use the bit map for all cases when not in UTF-8 mode; else |
3971 | ranges that lie entirely within 0-127 when there is UCP support; else |
3972 | for partial ranges without UCP support. */ |
3973 | |
3974 | class_charcount += d - c + 1; |
3975 | class_lastchar = d; |
3976 | |
3977 | /* We can save a bit of time by skipping this in the pre-compile. */ |
3978 | |
3979 | if (lengthptr == NULL) for (; c <= d; c++) |
3980 | { |
3981 | classbits[c/8] |= (1 << (c&7)); |
3982 | if ((options & PCRE_CASELESS) != 0) |
3983 | { |
3984 | int uc = cd->fcc[c]; /* flip case */ |
3985 | classbits[uc/8] |= (1 << (uc&7)); |
3986 | } |
3987 | } |
3988 | |
3989 | continue; /* Go get the next char in the class */ |
3990 | } |
3991 | |
3992 | /* Handle a lone single character - we can get here for a normal |
3993 | non-escape char, or after \ that introduces a single character or for an |
3994 | apparent range that isn't. */ |
3995 | |
3996 | LONE_SINGLE_CHARACTER: |
3997 | |
3998 | /* Handle a character that cannot go in the bit map */ |
3999 | |
4000 | #ifdef SUPPORT_UTF8 |
4001 | if (utf8 && (c > 255 || ((options & PCRE_CASELESS) != 0 && c > 127))) |
4002 | { |
4003 | class_utf8 = TRUE; |
4004 | *class_utf8data++ = XCL_SINGLE; |
4005 | class_utf8data += _pcre_ord2utf8(c, class_utf8data); |
4006 | |
4007 | #ifdef SUPPORT_UCP |
4008 | if ((options & PCRE_CASELESS) != 0) |
4009 | { |
4010 | unsigned int othercase; |
4011 | if ((othercase = UCD_OTHERCASE(c)) != c) |
4012 | { |
4013 | *class_utf8data++ = XCL_SINGLE; |
4014 | class_utf8data += _pcre_ord2utf8(othercase, class_utf8data); |
4015 | } |
4016 | } |
4017 | #endif /* SUPPORT_UCP */ |
4018 | |
4019 | } |
4020 | else |
4021 | #endif /* SUPPORT_UTF8 */ |
4022 | |
4023 | /* Handle a single-byte character */ |
4024 | { |
4025 | classbits[c/8] |= (1 << (c&7)); |
4026 | if ((options & PCRE_CASELESS) != 0) |
4027 | { |
4028 | c = cd->fcc[c]; /* flip case */ |
4029 | classbits[c/8] |= (1 << (c&7)); |
4030 | } |
4031 | class_charcount++; |
4032 | class_lastchar = c; |
4033 | } |
4034 | } |
4035 | |
4036 | /* Loop until ']' reached. This "while" is the end of the "do" far above. |
4037 | If we are at the end of an internal nested string, revert to the outer |
4038 | string. */ |
4039 | |
4040 | while (((c = *(++ptr)) != 0 || |
4041 | (nestptr != NULL && |
4042 | (ptr = nestptr, nestptr = NULL, c = *(++ptr)) != 0)) && |
4043 | (c != CHAR_RIGHT_SQUARE_BRACKET || inescq)); |
4044 | |
4045 | /* Check for missing terminating ']' */ |
4046 | |
4047 | if (c == 0) |
4048 | { |
4049 | *errorcodeptr = ERR6; |
4050 | goto FAILED; |
4051 | } |
4052 | |
4053 | /* If class_charcount is 1, we saw precisely one character whose value is |
4054 | less than 256. As long as there were no characters >= 128 and there was no |
4055 | use of \p or \P, in other words, no use of any XCLASS features, we can |
4056 | optimize. |
4057 | |
4058 | In UTF-8 mode, we can optimize the negative case only if there were no |
4059 | characters >= 128 because OP_NOT and the related opcodes like OP_NOTSTAR |
4060 | operate on single-bytes characters only. This is an historical hangover. |
4061 | Maybe one day we can tidy these opcodes to handle multi-byte characters. |
4062 | |
4063 | The optimization throws away the bit map. We turn the item into a |
4064 | 1-character OP_CHAR[I] if it's positive, or OP_NOT[I] if it's negative. |
4065 | Note that OP_NOT[I] does not support multibyte characters. In the positive |
4066 | case, it can cause firstbyte to be set. Otherwise, there can be no first |
4067 | char if this item is first, whatever repeat count may follow. In the case |
4068 | of reqbyte, save the previous value for reinstating. */ |
4069 | |
4070 | #ifdef SUPPORT_UTF8 |
4071 | if (class_charcount == 1 && !class_utf8 && |
4072 | (!utf8 || !negate_class || class_lastchar < 128)) |
4073 | #else |
4074 | if (class_charcount == 1) |
4075 | #endif |
4076 | { |
4077 | zeroreqbyte = reqbyte; |
4078 | |
4079 | /* The OP_NOT[I] opcodes work on one-byte characters only. */ |
4080 | |
4081 | if (negate_class) |
4082 | { |
4083 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
4084 | zerofirstbyte = firstbyte; |
4085 | *code++ = ((options & PCRE_CASELESS) != 0)? OP_NOTI: OP_NOT; |
4086 | *code++ = class_lastchar; |
4087 | break; |
4088 | } |
4089 | |
4090 | /* For a single, positive character, get the value into mcbuffer, and |
4091 | then we can handle this with the normal one-character code. */ |
4092 | |
4093 | #ifdef SUPPORT_UTF8 |
4094 | if (utf8 && class_lastchar > 127) |
4095 | mclength = _pcre_ord2utf8(class_lastchar, mcbuffer); |
4096 | else |
4097 | #endif |
4098 | { |
4099 | mcbuffer[0] = class_lastchar; |
4100 | mclength = 1; |
4101 | } |
4102 | goto ONE_CHAR; |
4103 | } /* End of 1-char optimization */ |
4104 | |
4105 | /* The general case - not the one-char optimization. If this is the first |
4106 | thing in the branch, there can be no first char setting, whatever the |
4107 | repeat count. Any reqbyte setting must remain unchanged after any kind of |
4108 | repeat. */ |
4109 | |
4110 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
4111 | zerofirstbyte = firstbyte; |
4112 | zeroreqbyte = reqbyte; |
4113 | |
4114 | /* If there are characters with values > 255, we have to compile an |
4115 | extended class, with its own opcode, unless there was a negated special |
4116 | such as \S in the class, and PCRE_UCP is not set, because in that case all |
4117 | characters > 255 are in the class, so any that were explicitly given as |
4118 | well can be ignored. If (when there are explicit characters > 255 that must |
4119 | be listed) there are no characters < 256, we can omit the bitmap in the |
4120 | actual compiled code. */ |
4121 | |
4122 | #ifdef SUPPORT_UTF8 |
4123 | if (class_utf8 && (!should_flip_negation || (options & PCRE_UCP) != 0)) |
4124 | { |
4125 | *class_utf8data++ = XCL_END; /* Marks the end of extra data */ |
4126 | *code++ = OP_XCLASS; |
4127 | code += LINK_SIZE; |
4128 | *code = negate_class? XCL_NOT : 0; |
4129 | |
4130 | /* If the map is required, move up the extra data to make room for it; |
4131 | otherwise just move the code pointer to the end of the extra data. */ |
4132 | |
4133 | if (class_charcount > 0) |
4134 | { |
4135 | *code++ |= XCL_MAP; |
4136 | memmove(code + 32, code, class_utf8data - code); |
4137 | memcpy(code, classbits, 32); |
4138 | code = class_utf8data + 32; |
4139 | } |
4140 | else code = class_utf8data; |
4141 | |
4142 | /* Now fill in the complete length of the item */ |
4143 | |
4144 | PUT(previous, 1, code - previous); |
4145 | break; /* End of class handling */ |
4146 | } |
4147 | #endif |
4148 | |
4149 | /* If there are no characters > 255, or they are all to be included or |
4150 | excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the |
4151 | whole class was negated and whether there were negative specials such as \S |
4152 | (non-UCP) in the class. Then copy the 32-byte map into the code vector, |
4153 | negating it if necessary. */ |
4154 | |
4155 | *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS; |
4156 | if (negate_class) |
4157 | { |
4158 | if (lengthptr == NULL) /* Save time in the pre-compile phase */ |
4159 | for (c = 0; c < 32; c++) code[c] = ~classbits[c]; |
4160 | } |
4161 | else |
4162 | { |
4163 | memcpy(code, classbits, 32); |
4164 | } |
4165 | code += 32; |
4166 | break; |
4167 | |
4168 | |
4169 | /* ===================================================================*/ |
4170 | /* Various kinds of repeat; '{' is not necessarily a quantifier, but this |
4171 | has been tested above. */ |
4172 | |
4173 | case CHAR_LEFT_CURLY_BRACKET: |
4174 | if (!is_quantifier) goto NORMAL_CHAR; |
4175 | ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr); |
4176 | if (*errorcodeptr != 0) goto FAILED; |
4177 | goto REPEAT; |
4178 | |
4179 | case CHAR_ASTERISK: |
4180 | repeat_min = 0; |
4181 | repeat_max = -1; |
4182 | goto REPEAT; |
4183 | |
4184 | case CHAR_PLUS: |
4185 | repeat_min = 1; |
4186 | repeat_max = -1; |
4187 | goto REPEAT; |
4188 | |
4189 | case CHAR_QUESTION_MARK: |
4190 | repeat_min = 0; |
4191 | repeat_max = 1; |
4192 | |
4193 | REPEAT: |
4194 | if (previous == NULL) |
4195 | { |
4196 | *errorcodeptr = ERR9; |
4197 | goto FAILED; |
4198 | } |
4199 | |
4200 | if (repeat_min == 0) |
4201 | { |
4202 | firstbyte = zerofirstbyte; /* Adjust for zero repeat */ |
4203 | reqbyte = zeroreqbyte; /* Ditto */ |
4204 | } |
4205 | |
4206 | /* Remember whether this is a variable length repeat */ |
4207 | |
4208 | reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY; |
4209 | |
4210 | op_type = 0; /* Default single-char op codes */ |
4211 | possessive_quantifier = FALSE; /* Default not possessive quantifier */ |
4212 | |
4213 | /* Save start of previous item, in case we have to move it up in order to |
4214 | insert something before it. */ |
4215 | |
4216 | tempcode = previous; |
4217 | |
4218 | /* If the next character is '+', we have a possessive quantifier. This |
4219 | implies greediness, whatever the setting of the PCRE_UNGREEDY option. |
4220 | If the next character is '?' this is a minimizing repeat, by default, |
4221 | but if PCRE_UNGREEDY is set, it works the other way round. We change the |
4222 | repeat type to the non-default. */ |
4223 | |
4224 | if (ptr[1] == CHAR_PLUS) |
4225 | { |
4226 | repeat_type = 0; /* Force greedy */ |
4227 | possessive_quantifier = TRUE; |
4228 | ptr++; |
4229 | } |
4230 | else if (ptr[1] == CHAR_QUESTION_MARK) |
4231 | { |
4232 | repeat_type = greedy_non_default; |
4233 | ptr++; |
4234 | } |
4235 | else repeat_type = greedy_default; |
4236 | |
4237 | /* If previous was a recursion call, wrap it in atomic brackets so that |
4238 | previous becomes the atomic group. All recursions were so wrapped in the |
4239 | past, but it no longer happens for non-repeated recursions. In fact, the |
4240 | repeated ones could be re-implemented independently so as not to need this, |
4241 | but for the moment we rely on the code for repeating groups. */ |
4242 | |
4243 | if (*previous == OP_RECURSE) |
4244 | { |
4245 | memmove(previous + 1 + LINK_SIZE, previous, 1 + LINK_SIZE); |
4246 | *previous = OP_ONCE; |
4247 | PUT(previous, 1, 2 + 2*LINK_SIZE); |
4248 | previous[2 + 2*LINK_SIZE] = OP_KET; |
4249 | PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE); |
4250 | code += 2 + 2 * LINK_SIZE; |
4251 | length_prevgroup = 3 + 3*LINK_SIZE; |
4252 | |
4253 | /* When actually compiling, we need to check whether this was a forward |
4254 | reference, and if so, adjust the offset. */ |
4255 | |
4256 | if (lengthptr == NULL && cd->hwm >= cd->start_workspace + LINK_SIZE) |
4257 | { |
4258 | int offset = GET(cd->hwm, -LINK_SIZE); |
4259 | if (offset == previous + 1 - cd->start_code) |
4260 | PUT(cd->hwm, -LINK_SIZE, offset + 1 + LINK_SIZE); |
4261 | } |
4262 | } |
4263 | |
4264 | /* Now handle repetition for the different types of item. */ |
4265 | |
4266 | /* If previous was a character match, abolish the item and generate a |
4267 | repeat item instead. If a char item has a minumum of more than one, ensure |
4268 | that it is set in reqbyte - it might not be if a sequence such as x{3} is |
4269 | the first thing in a branch because the x will have gone into firstbyte |
4270 | instead. */ |
4271 | |
4272 | if (*previous == OP_CHAR || *previous == OP_CHARI) |
4273 | { |
4274 | op_type = (*previous == OP_CHAR)? 0 : OP_STARI - OP_STAR; |
4275 | |
4276 | /* Deal with UTF-8 characters that take up more than one byte. It's |
4277 | easier to write this out separately than try to macrify it. Use c to |
4278 | hold the length of the character in bytes, plus 0x80 to flag that it's a |
4279 | length rather than a small character. */ |
4280 | |
4281 | #ifdef SUPPORT_UTF8 |
4282 | if (utf8 && (code[-1] & 0x80) != 0) |
4283 | { |
4284 | uschar *lastchar = code - 1; |
4285 | while((*lastchar & 0xc0) == 0x80) lastchar--; |
4286 | c = code - lastchar; /* Length of UTF-8 character */ |
4287 | memcpy(utf8_char, lastchar, c); /* Save the char */ |
4288 | c |= 0x80; /* Flag c as a length */ |
4289 | } |
4290 | else |
4291 | #endif |
4292 | |
4293 | /* Handle the case of a single byte - either with no UTF8 support, or |
4294 | with UTF-8 disabled, or for a UTF-8 character < 128. */ |
4295 | |
4296 | { |
4297 | c = code[-1]; |
4298 | if (repeat_min > 1) reqbyte = c | req_caseopt | cd->req_varyopt; |
4299 | } |
4300 | |
4301 | /* If the repetition is unlimited, it pays to see if the next thing on |
4302 | the line is something that cannot possibly match this character. If so, |
4303 | automatically possessifying this item gains some performance in the case |
4304 | where the match fails. */ |
4305 | |
4306 | if (!possessive_quantifier && |
4307 | repeat_max < 0 && |
4308 | check_auto_possessive(previous, utf8, ptr + 1, options, cd)) |
4309 | { |
4310 | repeat_type = 0; /* Force greedy */ |
4311 | possessive_quantifier = TRUE; |
4312 | } |
4313 | |
4314 | goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */ |
4315 | } |
4316 | |
4317 | /* If previous was a single negated character ([^a] or similar), we use |
4318 | one of the special opcodes, replacing it. The code is shared with single- |
4319 | character repeats by setting opt_type to add a suitable offset into |
4320 | repeat_type. We can also test for auto-possessification. OP_NOT and OP_NOTI |
4321 | are currently used only for single-byte chars. */ |
4322 | |
4323 | else if (*previous == OP_NOT || *previous == OP_NOTI) |
4324 | { |
4325 | op_type = ((*previous == OP_NOT)? OP_NOTSTAR : OP_NOTSTARI) - OP_STAR; |
4326 | c = previous[1]; |
4327 | if (!possessive_quantifier && |
4328 | repeat_max < 0 && |
4329 | check_auto_possessive(previous, utf8, ptr + 1, options, cd)) |
4330 | { |
4331 | repeat_type = 0; /* Force greedy */ |
4332 | possessive_quantifier = TRUE; |
4333 | } |
4334 | goto OUTPUT_SINGLE_REPEAT; |
4335 | } |
4336 | |
4337 | /* If previous was a character type match (\d or similar), abolish it and |
4338 | create a suitable repeat item. The code is shared with single-character |
4339 | repeats by setting op_type to add a suitable offset into repeat_type. Note |
4340 | the the Unicode property types will be present only when SUPPORT_UCP is |
4341 | defined, but we don't wrap the little bits of code here because it just |
4342 | makes it horribly messy. */ |
4343 | |
4344 | else if (*previous < OP_EODN) |
4345 | { |
4346 | uschar *oldcode; |
4347 | int prop_type, prop_value; |
4348 | op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ |
4349 | c = *previous; |
4350 | |
4351 | if (!possessive_quantifier && |
4352 | repeat_max < 0 && |
4353 | check_auto_possessive(previous, utf8, ptr + 1, options, cd)) |
4354 | { |
4355 | repeat_type = 0; /* Force greedy */ |
4356 | possessive_quantifier = TRUE; |
4357 | } |
4358 | |
4359 | OUTPUT_SINGLE_REPEAT: |
4360 | if (*previous == OP_PROP || *previous == OP_NOTPROP) |
4361 | { |
4362 | prop_type = previous[1]; |
4363 | prop_value = previous[2]; |
4364 | } |
4365 | else prop_type = prop_value = -1; |
4366 | |
4367 | oldcode = code; |
4368 | code = previous; /* Usually overwrite previous item */ |
4369 | |
4370 | /* If the maximum is zero then the minimum must also be zero; Perl allows |
4371 | this case, so we do too - by simply omitting the item altogether. */ |
4372 | |
4373 | if (repeat_max == 0) goto END_REPEAT; |
4374 | |
4375 | /*--------------------------------------------------------------------*/ |
4376 | /* This code is obsolete from release 8.00; the restriction was finally |
4377 | removed: */ |
4378 | |
4379 | /* All real repeats make it impossible to handle partial matching (maybe |
4380 | one day we will be able to remove this restriction). */ |
4381 | |
4382 | /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ |
4383 | /*--------------------------------------------------------------------*/ |
4384 | |
4385 | /* Combine the op_type with the repeat_type */ |
4386 | |
4387 | repeat_type += op_type; |
4388 | |
4389 | /* A minimum of zero is handled either as the special case * or ?, or as |
4390 | an UPTO, with the maximum given. */ |
4391 | |
4392 | if (repeat_min == 0) |
4393 | { |
4394 | if (repeat_max == -1) *code++ = OP_STAR + repeat_type; |
4395 | else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type; |
4396 | else |
4397 | { |
4398 | *code++ = OP_UPTO + repeat_type; |
4399 | PUT2INC(code, 0, repeat_max); |
4400 | } |
4401 | } |
4402 | |
4403 | /* A repeat minimum of 1 is optimized into some special cases. If the |
4404 | maximum is unlimited, we use OP_PLUS. Otherwise, the original item is |
4405 | left in place and, if the maximum is greater than 1, we use OP_UPTO with |
4406 | one less than the maximum. */ |
4407 | |
4408 | else if (repeat_min == 1) |
4409 | { |
4410 | if (repeat_max == -1) |
4411 | *code++ = OP_PLUS + repeat_type; |
4412 | else |
4413 | { |
4414 | code = oldcode; /* leave previous item in place */ |
4415 | if (repeat_max == 1) goto END_REPEAT; |
4416 | *code++ = OP_UPTO + repeat_type; |
4417 | PUT2INC(code, 0, repeat_max - 1); |
4418 | } |
4419 | } |
4420 | |
4421 | /* The case {n,n} is just an EXACT, while the general case {n,m} is |
4422 | handled as an EXACT followed by an UPTO. */ |
4423 | |
4424 | else |
4425 | { |
4426 | *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */ |
4427 | PUT2INC(code, 0, repeat_min); |
4428 | |
4429 | /* If the maximum is unlimited, insert an OP_STAR. Before doing so, |
4430 | we have to insert the character for the previous code. For a repeated |
4431 | Unicode property match, there are two extra bytes that define the |
4432 | required property. In UTF-8 mode, long characters have their length in |
4433 | c, with the 0x80 bit as a flag. */ |
4434 | |
4435 | if (repeat_max < 0) |
4436 | { |
4437 | #ifdef SUPPORT_UTF8 |
4438 | if (utf8 && c >= 128) |
4439 | { |
4440 | memcpy(code, utf8_char, c & 7); |
4441 | code += c & 7; |
4442 | } |
4443 | else |
4444 | #endif |
4445 | { |
4446 | *code++ = c; |
4447 | if (prop_type >= 0) |
4448 | { |
4449 | *code++ = prop_type; |
4450 | *code++ = prop_value; |
4451 | } |
4452 | } |
4453 | *code++ = OP_STAR + repeat_type; |
4454 | } |
4455 | |
4456 | /* Else insert an UPTO if the max is greater than the min, again |
4457 | preceded by the character, for the previously inserted code. If the |
4458 | UPTO is just for 1 instance, we can use QUERY instead. */ |
4459 | |
4460 | else if (repeat_max != repeat_min) |
4461 | { |
4462 | #ifdef SUPPORT_UTF8 |
4463 | if (utf8 && c >= 128) |
4464 | { |
4465 | memcpy(code, utf8_char, c & 7); |
4466 | code += c & 7; |
4467 | } |
4468 | else |
4469 | #endif |
4470 | *code++ = c; |
4471 | if (prop_type >= 0) |
4472 | { |
4473 | *code++ = prop_type; |
4474 | *code++ = prop_value; |
4475 | } |
4476 | repeat_max -= repeat_min; |
4477 | |
4478 | if (repeat_max == 1) |
4479 | { |
4480 | *code++ = OP_QUERY + repeat_type; |
4481 | } |
4482 | else |
4483 | { |
4484 | *code++ = OP_UPTO + repeat_type; |
4485 | PUT2INC(code, 0, repeat_max); |
4486 | } |
4487 | } |
4488 | } |
4489 | |
4490 | /* The character or character type itself comes last in all cases. */ |
4491 | |
4492 | #ifdef SUPPORT_UTF8 |
4493 | if (utf8 && c >= 128) |
4494 | { |
4495 | memcpy(code, utf8_char, c & 7); |
4496 | code += c & 7; |
4497 | } |
4498 | else |
4499 | #endif |
4500 | *code++ = c; |
4501 | |
4502 | /* For a repeated Unicode property match, there are two extra bytes that |
4503 | define the required property. */ |
4504 | |
4505 | #ifdef SUPPORT_UCP |
4506 | if (prop_type >= 0) |
4507 | { |
4508 | *code++ = prop_type; |
4509 | *code++ = prop_value; |
4510 | } |
4511 | #endif |
4512 | } |
4513 | |
4514 | /* If previous was a character class or a back reference, we put the repeat |
4515 | stuff after it, but just skip the item if the repeat was {0,0}. */ |
4516 | |
4517 | else if (*previous == OP_CLASS || |
4518 | *previous == OP_NCLASS || |
4519 | #ifdef SUPPORT_UTF8 |
4520 | *previous == OP_XCLASS || |
4521 | #endif |
4522 | *previous == OP_REF || |
4523 | *previous == OP_REFI) |
4524 | { |
4525 | if (repeat_max == 0) |
4526 | { |
4527 | code = previous; |
4528 | goto END_REPEAT; |
4529 | } |
4530 | |
4531 | /*--------------------------------------------------------------------*/ |
4532 | /* This code is obsolete from release 8.00; the restriction was finally |
4533 | removed: */ |
4534 | |
4535 | /* All real repeats make it impossible to handle partial matching (maybe |
4536 | one day we will be able to remove this restriction). */ |
4537 | |
4538 | /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ |
4539 | /*--------------------------------------------------------------------*/ |
4540 | |
4541 | if (repeat_min == 0 && repeat_max == -1) |
4542 | *code++ = OP_CRSTAR + repeat_type; |
4543 | else if (repeat_min == 1 && repeat_max == -1) |
4544 | *code++ = OP_CRPLUS + repeat_type; |
4545 | else if (repeat_min == 0 && repeat_max == 1) |
4546 | *code++ = OP_CRQUERY + repeat_type; |
4547 | else |
4548 | { |
4549 | *code++ = OP_CRRANGE + repeat_type; |
4550 | PUT2INC(code, 0, repeat_min); |
4551 | if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */ |
4552 | PUT2INC(code, 0, repeat_max); |
4553 | } |
4554 | } |
4555 | |
4556 | /* If previous was a bracket group, we may have to replicate it in certain |
4557 | cases. Note that at this point we can encounter only the "basic" bracket |
4558 | opcodes such as BRA and CBRA, as this is the place where they get converted |
4559 | into the more special varieties such as BRAPOS and SBRA. A test for >= |
4560 | OP_ASSERT and <= OP_COND includes ASSERT, ASSERT_NOT, ASSERTBACK, |
4561 | ASSERTBACK_NOT, ONCE, BRA, CBRA, and COND. Originally, PCRE did not allow |
4562 | repetition of assertions, but now it does, for Perl compatibility. */ |
4563 | |
4564 | else if (*previous >= OP_ASSERT && *previous <= OP_COND) |
4565 | { |
4566 | register int i; |
4567 | int len = (int)(code - previous); |
4568 | uschar *bralink = NULL; |
4569 | uschar *brazeroptr = NULL; |
4570 | |
4571 | /* Repeating a DEFINE group is pointless, but Perl allows the syntax, so |
4572 | we just ignore the repeat. */ |
4573 | |
4574 | if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF) |
4575 | goto END_REPEAT; |
4576 | |
4577 | /* There is no sense in actually repeating assertions. The only potential |
4578 | use of repetition is in cases when the assertion is optional. Therefore, |
4579 | if the minimum is greater than zero, just ignore the repeat. If the |
4580 | maximum is not not zero or one, set it to 1. */ |
4581 | |
4582 | if (*previous < OP_ONCE) /* Assertion */ |
4583 | { |
4584 | if (repeat_min > 0) goto END_REPEAT; |
4585 | if (repeat_max < 0 || repeat_max > 1) repeat_max = 1; |
4586 | } |
4587 | |
4588 | /* The case of a zero minimum is special because of the need to stick |
4589 | OP_BRAZERO in front of it, and because the group appears once in the |
4590 | data, whereas in other cases it appears the minimum number of times. For |
4591 | this reason, it is simplest to treat this case separately, as otherwise |
4592 | the code gets far too messy. There are several special subcases when the |
4593 | minimum is zero. */ |
4594 | |
4595 | if (repeat_min == 0) |
4596 | { |
4597 | /* If the maximum is also zero, we used to just omit the group from the |
4598 | output altogether, like this: |
4599 | |
4600 | ** if (repeat_max == 0) |
4601 | ** { |
4602 | ** code = previous; |
4603 | ** goto END_REPEAT; |
4604 | ** } |
4605 | |
4606 | However, that fails when a group or a subgroup within it is referenced |
4607 | as a subroutine from elsewhere in the pattern, so now we stick in |
4608 | OP_SKIPZERO in front of it so that it is skipped on execution. As we |
4609 | don't have a list of which groups are referenced, we cannot do this |
4610 | selectively. |
4611 | |
4612 | If the maximum is 1 or unlimited, we just have to stick in the BRAZERO |
4613 | and do no more at this point. However, we do need to adjust any |
4614 | OP_RECURSE calls inside the group that refer to the group itself or any |
4615 | internal or forward referenced group, because the offset is from the |
4616 | start of the whole regex. Temporarily terminate the pattern while doing |
4617 | this. */ |
4618 | |
4619 | if (repeat_max <= 1) /* Covers 0, 1, and unlimited */ |
4620 | { |
4621 | *code = OP_END; |
4622 | adjust_recurse(previous, 1, utf8, cd, save_hwm); |
4623 | memmove(previous+1, previous, len); |
4624 | code++; |
4625 | if (repeat_max == 0) |
4626 | { |
4627 | *previous++ = OP_SKIPZERO; |
4628 | goto END_REPEAT; |
4629 | } |
4630 | brazeroptr = previous; /* Save for possessive optimizing */ |
4631 | *previous++ = OP_BRAZERO + repeat_type; |
4632 | } |
4633 | |
4634 | /* If the maximum is greater than 1 and limited, we have to replicate |
4635 | in a nested fashion, sticking OP_BRAZERO before each set of brackets. |
4636 | The first one has to be handled carefully because it's the original |
4637 | copy, which has to be moved up. The remainder can be handled by code |
4638 | that is common with the non-zero minimum case below. We have to |
4639 | adjust the value or repeat_max, since one less copy is required. Once |
4640 | again, we may have to adjust any OP_RECURSE calls inside the group. */ |
4641 | |
4642 | else |
4643 | { |
4644 | int offset; |
4645 | *code = OP_END; |
4646 | adjust_recurse(previous, 2 + LINK_SIZE, utf8, cd, save_hwm); |
4647 | memmove(previous + 2 + LINK_SIZE, previous, len); |
4648 | code += 2 + LINK_SIZE; |
4649 | *previous++ = OP_BRAZERO + repeat_type; |
4650 | *previous++ = OP_BRA; |
4651 | |
4652 | /* We chain together the bracket offset fields that have to be |
4653 | filled in later when the ends of the brackets are reached. */ |
4654 | |
4655 | offset = (bralink == NULL)? 0 : (int)(previous - bralink); |
4656 | bralink = previous; |
4657 | PUTINC(previous, 0, offset); |
4658 | } |
4659 | |
4660 | repeat_max--; |
4661 | } |
4662 | |
4663 | /* If the minimum is greater than zero, replicate the group as many |
4664 | times as necessary, and adjust the maximum to the number of subsequent |
4665 | copies that we need. If we set a first char from the group, and didn't |
4666 | set a required char, copy the latter from the former. If there are any |
4667 | forward reference subroutine calls in the group, there will be entries on |
4668 | the workspace list; replicate these with an appropriate increment. */ |
4669 | |
4670 | else |
4671 | { |
4672 | if (repeat_min > 1) |
4673 | { |
4674 | /* In the pre-compile phase, we don't actually do the replication. We |
4675 | just adjust the length as if we had. Do some paranoid checks for |
4676 | potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit |
4677 | integer type when available, otherwise double. */ |
4678 | |
4679 | if (lengthptr != NULL) |
4680 | { |
4681 | int delta = (repeat_min - 1)*length_prevgroup; |
4682 | if ((INT64_OR_DOUBLE)(repeat_min - 1)* |
4683 | (INT64_OR_DOUBLE)length_prevgroup > |
4684 | (INT64_OR_DOUBLE)INT_MAX || |
4685 | OFLOW_MAX - *lengthptr < delta) |
4686 | { |
4687 | *errorcodeptr = ERR20; |
4688 | goto FAILED; |
4689 | } |
4690 | *lengthptr += delta; |
4691 | } |
4692 | |
4693 | /* This is compiling for real */ |
4694 | |
4695 | else |
4696 | { |
4697 | if (groupsetfirstbyte && reqbyte < 0) reqbyte = firstbyte; |
4698 | for (i = 1; i < repeat_min; i++) |
4699 | { |
4700 | uschar *hc; |
4701 | uschar *this_hwm = cd->hwm; |
4702 | memcpy(code, previous, len); |
4703 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
4704 | { |
4705 | PUT(cd->hwm, 0, GET(hc, 0) + len); |
4706 | cd->hwm += LINK_SIZE; |
4707 | } |
4708 | save_hwm = this_hwm; |
4709 | code += len; |
4710 | } |
4711 | } |
4712 | } |
4713 | |
4714 | if (repeat_max > 0) repeat_max -= repeat_min; |
4715 | } |
4716 | |
4717 | /* This code is common to both the zero and non-zero minimum cases. If |
4718 | the maximum is limited, it replicates the group in a nested fashion, |
4719 | remembering the bracket starts on a stack. In the case of a zero minimum, |
4720 | the first one was set up above. In all cases the repeat_max now specifies |
4721 | the number of additional copies needed. Again, we must remember to |
4722 | replicate entries on the forward reference list. */ |
4723 | |
4724 | if (repeat_max >= 0) |
4725 | { |
4726 | /* In the pre-compile phase, we don't actually do the replication. We |
4727 | just adjust the length as if we had. For each repetition we must add 1 |
4728 | to the length for BRAZERO and for all but the last repetition we must |
4729 | add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some |
4730 | paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is |
4731 | a 64-bit integer type when available, otherwise double. */ |
4732 | |
4733 | if (lengthptr != NULL && repeat_max > 0) |
4734 | { |
4735 | int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) - |
4736 | 2 - 2*LINK_SIZE; /* Last one doesn't nest */ |
4737 | if ((INT64_OR_DOUBLE)repeat_max * |
4738 | (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE) |
4739 | > (INT64_OR_DOUBLE)INT_MAX || |
4740 | OFLOW_MAX - *lengthptr < delta) |
4741 | { |
4742 | *errorcodeptr = ERR20; |
4743 | goto FAILED; |
4744 | } |
4745 | *lengthptr += delta; |
4746 | } |
4747 | |
4748 | /* This is compiling for real */ |
4749 | |
4750 | else for (i = repeat_max - 1; i >= 0; i--) |
4751 | { |
4752 | uschar *hc; |
4753 | uschar *this_hwm = cd->hwm; |
4754 | |
4755 | *code++ = OP_BRAZERO + repeat_type; |
4756 | |
4757 | /* All but the final copy start a new nesting, maintaining the |
4758 | chain of brackets outstanding. */ |
4759 | |
4760 | if (i != 0) |
4761 | { |
4762 | int offset; |
4763 | *code++ = OP_BRA; |
4764 | offset = (bralink == NULL)? 0 : (int)(code - bralink); |
4765 | bralink = code; |
4766 | PUTINC(code, 0, offset); |
4767 | } |
4768 | |
4769 | memcpy(code, previous, len); |
4770 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
4771 | { |
4772 | PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1)); |
4773 | cd->hwm += LINK_SIZE; |
4774 | } |
4775 | save_hwm = this_hwm; |
4776 | code += len; |
4777 | } |
4778 | |
4779 | /* Now chain through the pending brackets, and fill in their length |
4780 | fields (which are holding the chain links pro tem). */ |
4781 | |
4782 | while (bralink != NULL) |
4783 | { |
4784 | int oldlinkoffset; |
4785 | int offset = (int)(code - bralink + 1); |
4786 | uschar *bra = code - offset; |
4787 | oldlinkoffset = GET(bra, 1); |
4788 | bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset; |
4789 | *code++ = OP_KET; |
4790 | PUTINC(code, 0, offset); |
4791 | PUT(bra, 1, offset); |
4792 | } |
4793 | } |
4794 | |
4795 | /* If the maximum is unlimited, set a repeater in the final copy. For |
4796 | ONCE brackets, that's all we need to do. However, possessively repeated |
4797 | ONCE brackets can be converted into non-capturing brackets, as the |
4798 | behaviour of (?:xx)++ is the same as (?>xx)++ and this saves having to |
4799 | deal with possessive ONCEs specially. |
4800 | |
4801 | Otherwise, if the quantifier was possessive, we convert the BRA code to |
4802 | the POS form, and the KET code to KETRPOS. (It turns out to be convenient |
4803 | at runtime to detect this kind of subpattern at both the start and at the |
4804 | end.) The use of special opcodes makes it possible to reduce greatly the |
4805 | stack usage in pcre_exec(). If the group is preceded by OP_BRAZERO, |
4806 | convert this to OP_BRAPOSZERO. Then cancel the possessive flag so that |
4807 | the default action below, of wrapping everything inside atomic brackets, |
4808 | does not happen. |
4809 | |
4810 | Then, when we are doing the actual compile phase, check to see whether |
4811 | this group is one that could match an empty string. If so, convert the |
4812 | initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so that runtime |
4813 | checking can be done. [This check is also applied to ONCE groups at |
4814 | runtime, but in a different way.] */ |
4815 | |
4816 | else |
4817 | { |
4818 | uschar *ketcode = code - 1 - LINK_SIZE; |
4819 | uschar *bracode = ketcode - GET(ketcode, 1); |
4820 | |
4821 | if (*bracode == OP_ONCE && possessive_quantifier) *bracode = OP_BRA; |
4822 | if (*bracode == OP_ONCE) |
4823 | *ketcode = OP_KETRMAX + repeat_type; |
4824 | else |
4825 | { |
4826 | if (possessive_quantifier) |
4827 | { |
4828 | *bracode += 1; /* Switch to xxxPOS opcodes */ |
4829 | *ketcode = OP_KETRPOS; |
4830 | if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO; |
4831 | possessive_quantifier = FALSE; |
4832 | } |
4833 | else *ketcode = OP_KETRMAX + repeat_type; |
4834 | |
4835 | if (lengthptr == NULL) |
4836 | { |
4837 | uschar *scode = bracode; |
4838 | do |
4839 | { |
4840 | if (could_be_empty_branch(scode, ketcode, utf8, cd)) |
4841 | { |
4842 | *bracode += OP_SBRA - OP_BRA; |
4843 | break; |
4844 | } |
4845 | scode += GET(scode, 1); |
4846 | } |
4847 | while (*scode == OP_ALT); |
4848 | } |
4849 | } |
4850 | } |
4851 | } |
4852 | |
4853 | /* If previous is OP_FAIL, it was generated by an empty class [] in |
4854 | JavaScript mode. The other ways in which OP_FAIL can be generated, that is |
4855 | by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat" |
4856 | error above. We can just ignore the repeat in JS case. */ |
4857 | |
4858 | else if (*previous == OP_FAIL) goto END_REPEAT; |
4859 | |
4860 | /* Else there's some kind of shambles */ |
4861 | |
4862 | else |
4863 | { |
4864 | *errorcodeptr = ERR11; |
4865 | goto FAILED; |
4866 | } |
4867 | |
4868 | /* If the character following a repeat is '+', or if certain optimization |
4869 | tests above succeeded, possessive_quantifier is TRUE. For some opcodes, |
4870 | there are special alternative opcodes for this case. For anything else, we |
4871 | wrap the entire repeated item inside OP_ONCE brackets. Logically, the '+' |
4872 | notation is just syntactic sugar, taken from Sun's Java package, but the |
4873 | special opcodes can optimize it. |
4874 | |
4875 | Possessively repeated subpatterns have already been handled in the code |
4876 | just above, so possessive_quantifier is always FALSE for them at this |
4877 | stage. |
4878 | |
4879 | Note that the repeated item starts at tempcode, not at previous, which |
4880 | might be the first part of a string whose (former) last char we repeated. |
4881 | |
4882 | Possessifying an 'exact' quantifier has no effect, so we can ignore it. But |
4883 | an 'upto' may follow. We skip over an 'exact' item, and then test the |
4884 | length of what remains before proceeding. */ |
4885 | |
4886 | if (possessive_quantifier) |
4887 | { |
4888 | int len; |
4889 | |
4890 | if (*tempcode == OP_TYPEEXACT) |
4891 | tempcode += _pcre_OP_lengths[*tempcode] + |
4892 | ((tempcode[3] == OP_PROP || tempcode[3] == OP_NOTPROP)? 2 : 0); |
4893 | |
4894 | else if (*tempcode == OP_EXACT || *tempcode == OP_NOTEXACT) |
4895 | { |
4896 | tempcode += _pcre_OP_lengths[*tempcode]; |
4897 | #ifdef SUPPORT_UTF8 |
4898 | if (utf8 && tempcode[-1] >= 0xc0) |
4899 | tempcode += _pcre_utf8_table4[tempcode[-1] & 0x3f]; |
4900 | #endif |
4901 | } |
4902 | |
4903 | len = (int)(code - tempcode); |
4904 | if (len > 0) switch (*tempcode) |
4905 | { |
4906 | case OP_STAR: *tempcode = OP_POSSTAR; break; |
4907 | case OP_PLUS: *tempcode = OP_POSPLUS; break; |
4908 | case OP_QUERY: *tempcode = OP_POSQUERY; break; |
4909 | case OP_UPTO: *tempcode = OP_POSUPTO; break; |
4910 | |
4911 | case OP_STARI: *tempcode = OP_POSSTARI; break; |
4912 | case OP_PLUSI: *tempcode = OP_POSPLUSI; break; |
4913 | case OP_QUERYI: *tempcode = OP_POSQUERYI; break; |
4914 | case OP_UPTOI: *tempcode = OP_POSUPTOI; break; |
4915 | |
4916 | case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break; |
4917 | case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break; |
4918 | case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break; |
4919 | case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break; |
4920 | |
4921 | case OP_NOTSTARI: *tempcode = OP_NOTPOSSTARI; break; |
4922 | case OP_NOTPLUSI: *tempcode = OP_NOTPOSPLUSI; break; |
4923 | case OP_NOTQUERYI: *tempcode = OP_NOTPOSQUERYI; break; |
4924 | case OP_NOTUPTOI: *tempcode = OP_NOTPOSUPTOI; break; |
4925 | |
4926 | case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break; |
4927 | case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break; |
4928 | case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break; |
4929 | case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break; |
4930 | |
4931 | /* Because we are moving code along, we must ensure that any |
4932 | pending recursive references are updated. */ |
4933 | |
4934 | default: |
4935 | *code = OP_END; |
4936 | adjust_recurse(tempcode, 1 + LINK_SIZE, utf8, cd, save_hwm); |
4937 | memmove(tempcode + 1+LINK_SIZE, tempcode, len); |
4938 | code += 1 + LINK_SIZE; |
4939 | len += 1 + LINK_SIZE; |
4940 | tempcode[0] = OP_ONCE; |
4941 | *code++ = OP_KET; |
4942 | PUTINC(code, 0, len); |
4943 | PUT(tempcode, 1, len); |
4944 | break; |
4945 | } |
4946 | } |
4947 | |
4948 | /* In all case we no longer have a previous item. We also set the |
4949 | "follows varying string" flag for subsequently encountered reqbytes if |
4950 | it isn't already set and we have just passed a varying length item. */ |
4951 | |
4952 | END_REPEAT: |
4953 | previous = NULL; |
4954 | cd->req_varyopt |= reqvary; |
4955 | break; |
4956 | |
4957 | |
4958 | /* ===================================================================*/ |
4959 | /* Start of nested parenthesized sub-expression, or comment or lookahead or |
4960 | lookbehind or option setting or condition or all the other extended |
4961 | parenthesis forms. */ |
4962 | |
4963 | case CHAR_LEFT_PARENTHESIS: |
4964 | newoptions = options; |
4965 | skipbytes = 0; |
4966 | bravalue = OP_CBRA; |
4967 | save_hwm = cd->hwm; |
4968 | reset_bracount = FALSE; |
4969 | |
4970 | /* First deal with various "verbs" that can be introduced by '*'. */ |
4971 | |
4972 | if (*(++ptr) == CHAR_ASTERISK && |
4973 | ((cd->ctypes[ptr[1]] & ctype_letter) != 0 || ptr[1] == ':')) |
4974 | { |
4975 | int i, namelen; |
4976 | int arglen = 0; |
4977 | const char *vn = verbnames; |
4978 | const uschar *name = ptr + 1; |
4979 | const uschar *arg = NULL; |
4980 | previous = NULL; |
4981 | while ((cd->ctypes[*++ptr] & ctype_letter) != 0) {}; |
4982 | namelen = (int)(ptr - name); |
4983 | |
4984 | if (*ptr == CHAR_COLON) |
4985 | { |
4986 | arg = ++ptr; |
4987 | while ((cd->ctypes[*ptr] & (ctype_letter|ctype_digit)) != 0 |
4988 | || *ptr == '_') ptr++; |
4989 | arglen = (int)(ptr - arg); |
4990 | } |
4991 | |
4992 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
4993 | { |
4994 | *errorcodeptr = ERR60; |
4995 | goto FAILED; |
4996 | } |
4997 | |
4998 | /* Scan the table of verb names */ |
4999 | |
5000 | for (i = 0; i < verbcount; i++) |
5001 | { |
5002 | if (namelen == verbs[i].len && |
5003 | strncmp((char *)name, vn, namelen) == 0) |
5004 | { |
5005 | /* Check for open captures before ACCEPT and convert it to |
5006 | ASSERT_ACCEPT if in an assertion. */ |
5007 | |
5008 | if (verbs[i].op == OP_ACCEPT) |
5009 | { |
5010 | open_capitem *oc; |
5011 | if (arglen != 0) |
5012 | { |
5013 | *errorcodeptr = ERR59; |
5014 | goto FAILED; |
5015 | } |
5016 | cd->had_accept = TRUE; |
5017 | for (oc = cd->open_caps; oc != NULL; oc = oc->next) |
5018 | { |
5019 | *code++ = OP_CLOSE; |
5020 | PUT2INC(code, 0, oc->number); |
5021 | } |
5022 | *code++ = (cd->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT; |
5023 | } |
5024 | |
5025 | /* Handle other cases with/without an argument */ |
5026 | |
5027 | else if (arglen == 0) |
5028 | { |
5029 | if (verbs[i].op < 0) /* Argument is mandatory */ |
5030 | { |
5031 | *errorcodeptr = ERR66; |
5032 | goto FAILED; |
5033 | } |
5034 | *code = verbs[i].op; |
5035 | if (*code++ == OP_THEN) |
5036 | { |
5037 | PUT(code, 0, code - bcptr->current_branch - 1); |
5038 | code += LINK_SIZE; |
5039 | } |
5040 | } |
5041 | |
5042 | else |
5043 | { |
5044 | if (verbs[i].op_arg < 0) /* Argument is forbidden */ |
5045 | { |
5046 | *errorcodeptr = ERR59; |
5047 | goto FAILED; |
5048 | } |
5049 | *code = verbs[i].op_arg; |
5050 | if (*code++ == OP_THEN_ARG) |
5051 | { |
5052 | PUT(code, 0, code - bcptr->current_branch - 1); |
5053 | code += LINK_SIZE; |
5054 | } |
5055 | *code++ = arglen; |
5056 | memcpy(code, arg, arglen); |
5057 | code += arglen; |
5058 | *code++ = 0; |
5059 | } |
5060 | |
5061 | break; /* Found verb, exit loop */ |
5062 | } |
5063 | |
5064 | vn += verbs[i].len + 1; |
5065 | } |
5066 | |
5067 | if (i < verbcount) continue; /* Successfully handled a verb */ |
5068 | *errorcodeptr = ERR60; /* Verb not recognized */ |
5069 | goto FAILED; |
5070 | } |
5071 | |
5072 | /* Deal with the extended parentheses; all are introduced by '?', and the |
5073 | appearance of any of them means that this is not a capturing group. */ |
5074 | |
5075 | else if (*ptr == CHAR_QUESTION_MARK) |
5076 | { |
5077 | int i, set, unset, namelen; |
5078 | int *optset; |
5079 | const uschar *name; |
5080 | uschar *slot; |
5081 | |
5082 | switch (*(++ptr)) |
5083 | { |
5084 | case CHAR_NUMBER_SIGN: /* Comment; skip to ket */ |
5085 | ptr++; |
5086 | while (*ptr != 0 && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
5087 | if (*ptr == 0) |
5088 | { |
5089 | *errorcodeptr = ERR18; |
5090 | goto FAILED; |
5091 | } |
5092 | continue; |
5093 | |
5094 | |
5095 | /* ------------------------------------------------------------ */ |
5096 | case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */ |
5097 | reset_bracount = TRUE; |
5098 | /* Fall through */ |
5099 | |
5100 | /* ------------------------------------------------------------ */ |
5101 | case CHAR_COLON: /* Non-capturing bracket */ |
5102 | bravalue = OP_BRA; |
5103 | ptr++; |
5104 | break; |
5105 | |
5106 | |
5107 | /* ------------------------------------------------------------ */ |
5108 | case CHAR_LEFT_PARENTHESIS: |
5109 | bravalue = OP_COND; /* Conditional group */ |
5110 | |
5111 | /* A condition can be an assertion, a number (referring to a numbered |
5112 | group), a name (referring to a named group), or 'R', referring to |
5113 | recursion. R<digits> and R&name are also permitted for recursion tests. |
5114 | |
5115 | There are several syntaxes for testing a named group: (?(name)) is used |
5116 | by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')). |
5117 | |
5118 | There are two unfortunate ambiguities, caused by history. (a) 'R' can |
5119 | be the recursive thing or the name 'R' (and similarly for 'R' followed |
5120 | by digits), and (b) a number could be a name that consists of digits. |
5121 | In both cases, we look for a name first; if not found, we try the other |
5122 | cases. */ |
5123 | |
5124 | /* For conditions that are assertions, check the syntax, and then exit |
5125 | the switch. This will take control down to where bracketed groups, |
5126 | including assertions, are processed. */ |
5127 | |
5128 | if (ptr[1] == CHAR_QUESTION_MARK && (ptr[2] == CHAR_EQUALS_SIGN || |
5129 | ptr[2] == CHAR_EXCLAMATION_MARK || ptr[2] == CHAR_LESS_THAN_SIGN)) |
5130 | break; |
5131 | |
5132 | /* Most other conditions use OP_CREF (a couple change to OP_RREF |
5133 | below), and all need to skip 3 bytes at the start of the group. */ |
5134 | |
5135 | code[1+LINK_SIZE] = OP_CREF; |
5136 | skipbytes = 3; |
5137 | refsign = -1; |
5138 | |
5139 | /* Check for a test for recursion in a named group. */ |
5140 | |
5141 | if (ptr[1] == CHAR_R && ptr[2] == CHAR_AMPERSAND) |
5142 | { |
5143 | terminator = -1; |
5144 | ptr += 2; |
5145 | code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */ |
5146 | } |
5147 | |
5148 | /* Check for a test for a named group's having been set, using the Perl |
5149 | syntax (?(<name>) or (?('name') */ |
5150 | |
5151 | else if (ptr[1] == CHAR_LESS_THAN_SIGN) |
5152 | { |
5153 | terminator = CHAR_GREATER_THAN_SIGN; |
5154 | ptr++; |
5155 | } |
5156 | else if (ptr[1] == CHAR_APOSTROPHE) |
5157 | { |
5158 | terminator = CHAR_APOSTROPHE; |
5159 | ptr++; |
5160 | } |
5161 | else |
5162 | { |
5163 | terminator = 0; |
5164 | if (ptr[1] == CHAR_MINUS || ptr[1] == CHAR_PLUS) refsign = *(++ptr); |
5165 | } |
5166 | |
5167 | /* We now expect to read a name; any thing else is an error */ |
5168 | |
5169 | if ((cd->ctypes[ptr[1]] & ctype_word) == 0) |
5170 | { |
5171 | ptr += 1; /* To get the right offset */ |
5172 | *errorcodeptr = ERR28; |
5173 | goto FAILED; |
5174 | } |
5175 | |
5176 | /* Read the name, but also get it as a number if it's all digits */ |
5177 | |
5178 | recno = 0; |
5179 | name = ++ptr; |
5180 | while ((cd->ctypes[*ptr] & ctype_word) != 0) |
5181 | { |
5182 | if (recno >= 0) |
5183 | recno = ((digitab[*ptr] & ctype_digit) != 0)? |
5184 | recno * 10 + *ptr - CHAR_0 : -1; |
5185 | ptr++; |
5186 | } |
5187 | namelen = (int)(ptr - name); |
5188 | |
5189 | if ((terminator > 0 && *ptr++ != terminator) || |
5190 | *ptr++ != CHAR_RIGHT_PARENTHESIS) |
5191 | { |
5192 | ptr--; /* Error offset */ |
5193 | *errorcodeptr = ERR26; |
5194 | goto FAILED; |
5195 | } |
5196 | |
5197 | /* Do no further checking in the pre-compile phase. */ |
5198 | |
5199 | if (lengthptr != NULL) break; |
5200 | |
5201 | /* In the real compile we do the work of looking for the actual |
5202 | reference. If the string started with "+" or "-" we require the rest to |
5203 | be digits, in which case recno will be set. */ |
5204 | |
5205 | if (refsign > 0) |
5206 | { |
5207 | if (recno <= 0) |
5208 | { |
5209 | *errorcodeptr = ERR58; |
5210 | goto FAILED; |
5211 | } |
5212 | recno = (refsign == CHAR_MINUS)? |
5213 | cd->bracount - recno + 1 : recno +cd->bracount; |
5214 | if (recno <= 0 || recno > cd->final_bracount) |
5215 | { |
5216 | *errorcodeptr = ERR15; |
5217 | goto FAILED; |
5218 | } |
5219 | PUT2(code, 2+LINK_SIZE, recno); |
5220 | break; |
5221 | } |
5222 | |
5223 | /* Otherwise (did not start with "+" or "-"), start by looking for the |
5224 | name. If we find a name, add one to the opcode to change OP_CREF or |
5225 | OP_RREF into OP_NCREF or OP_NRREF. These behave exactly the same, |
5226 | except they record that the reference was originally to a name. The |
5227 | information is used to check duplicate names. */ |
5228 | |
5229 | slot = cd->name_table; |
5230 | for (i = 0; i < cd->names_found; i++) |
5231 | { |
5232 | if (strncmp((char *)name, (char *)slot+2, namelen) == 0) break; |
5233 | slot += cd->name_entry_size; |
5234 | } |
5235 | |
5236 | /* Found a previous named subpattern */ |
5237 | |
5238 | if (i < cd->names_found) |
5239 | { |
5240 | recno = GET2(slot, 0); |
5241 | PUT2(code, 2+LINK_SIZE, recno); |
5242 | code[1+LINK_SIZE]++; |
5243 | } |
5244 | |
5245 | /* Search the pattern for a forward reference */ |
5246 | |
5247 | else if ((i = find_parens(cd, name, namelen, |
5248 | (options & PCRE_EXTENDED) != 0, utf8)) > 0) |
5249 | { |
5250 | PUT2(code, 2+LINK_SIZE, i); |
5251 | code[1+LINK_SIZE]++; |
5252 | } |
5253 | |
5254 | /* If terminator == 0 it means that the name followed directly after |
5255 | the opening parenthesis [e.g. (?(abc)...] and in this case there are |
5256 | some further alternatives to try. For the cases where terminator != 0 |
5257 | [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have |
5258 | now checked all the possibilities, so give an error. */ |
5259 | |
5260 | else if (terminator != 0) |
5261 | { |
5262 | *errorcodeptr = ERR15; |
5263 | goto FAILED; |
5264 | } |
5265 | |
5266 | /* Check for (?(R) for recursion. Allow digits after R to specify a |
5267 | specific group number. */ |
5268 | |
5269 | else if (*name == CHAR_R) |
5270 | { |
5271 | recno = 0; |
5272 | for (i = 1; i < namelen; i++) |
5273 | { |
5274 | if ((digitab[name[i]] & ctype_digit) == 0) |
5275 | { |
5276 | *errorcodeptr = ERR15; |
5277 | goto FAILED; |
5278 | } |
5279 | recno = recno * 10 + name[i] - CHAR_0; |
5280 | } |
5281 | if (recno == 0) recno = RREF_ANY; |
5282 | code[1+LINK_SIZE] = OP_RREF; /* Change test type */ |
5283 | PUT2(code, 2+LINK_SIZE, recno); |
5284 | } |
5285 | |
5286 | /* Similarly, check for the (?(DEFINE) "condition", which is always |
5287 | false. */ |
5288 | |
5289 | else if (namelen == 6 && strncmp((char *)name, STRING_DEFINE, 6) == 0) |
5290 | { |
5291 | code[1+LINK_SIZE] = OP_DEF; |
5292 | skipbytes = 1; |
5293 | } |
5294 | |
5295 | /* Check for the "name" actually being a subpattern number. We are |
5296 | in the second pass here, so final_bracount is set. */ |
5297 | |
5298 | else if (recno > 0 && recno <= cd->final_bracount) |
5299 | { |
5300 | PUT2(code, 2+LINK_SIZE, recno); |
5301 | } |
5302 | |
5303 | /* Either an unidentified subpattern, or a reference to (?(0) */ |
5304 | |
5305 | else |
5306 | { |
5307 | *errorcodeptr = (recno == 0)? ERR35: ERR15; |
5308 | goto FAILED; |
5309 | } |
5310 | break; |
5311 | |
5312 | |
5313 | /* ------------------------------------------------------------ */ |
5314 | case CHAR_EQUALS_SIGN: /* Positive lookahead */ |
5315 | bravalue = OP_ASSERT; |
5316 | cd->assert_depth += 1; |
5317 | ptr++; |
5318 | break; |
5319 | |
5320 | |
5321 | /* ------------------------------------------------------------ */ |
5322 | case CHAR_EXCLAMATION_MARK: /* Negative lookahead */ |
5323 | ptr++; |
5324 | if (*ptr == CHAR_RIGHT_PARENTHESIS) /* Optimize (?!) */ |
5325 | { |
5326 | *code++ = OP_FAIL; |
5327 | previous = NULL; |
5328 | continue; |
5329 | } |
5330 | bravalue = OP_ASSERT_NOT; |
5331 | cd->assert_depth += 1; |
5332 | break; |
5333 | |
5334 | |
5335 | /* ------------------------------------------------------------ */ |
5336 | case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */ |
5337 | switch (ptr[1]) |
5338 | { |
5339 | case CHAR_EQUALS_SIGN: /* Positive lookbehind */ |
5340 | bravalue = OP_ASSERTBACK; |
5341 | cd->assert_depth += 1; |
5342 | ptr += 2; |
5343 | break; |
5344 | |
5345 | case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */ |
5346 | bravalue = OP_ASSERTBACK_NOT; |
5347 | cd->assert_depth += 1; |
5348 | ptr += 2; |
5349 | break; |
5350 | |
5351 | default: /* Could be name define, else bad */ |
5352 | if ((cd->ctypes[ptr[1]] & ctype_word) != 0) goto DEFINE_NAME; |
5353 | ptr++; /* Correct offset for error */ |
5354 | *errorcodeptr = ERR24; |
5355 | goto FAILED; |
5356 | } |
5357 | break; |
5358 | |
5359 | |
5360 | /* ------------------------------------------------------------ */ |
5361 | case CHAR_GREATER_THAN_SIGN: /* One-time brackets */ |
5362 | bravalue = OP_ONCE; |
5363 | ptr++; |
5364 | break; |
5365 | |
5366 | |
5367 | /* ------------------------------------------------------------ */ |
5368 | case CHAR_C: /* Callout - may be followed by digits; */ |
5369 | previous_callout = code; /* Save for later completion */ |
5370 | after_manual_callout = 1; /* Skip one item before completing */ |
5371 | *code++ = OP_CALLOUT; |
5372 | { |
5373 | int n = 0; |
5374 | while ((digitab[*(++ptr)] & ctype_digit) != 0) |
5375 | n = n * 10 + *ptr - CHAR_0; |
5376 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
5377 | { |
5378 | *errorcodeptr = ERR39; |
5379 | goto FAILED; |
5380 | } |
5381 | if (n > 255) |
5382 | { |
5383 | *errorcodeptr = ERR38; |
5384 | goto FAILED; |
5385 | } |
5386 | *code++ = n; |
5387 | PUT(code, 0, (int)(ptr - cd->start_pattern + 1)); /* Pattern offset */ |
5388 | PUT(code, LINK_SIZE, 0); /* Default length */ |
5389 | code += 2 * LINK_SIZE; |
5390 | } |
5391 | previous = NULL; |
5392 | continue; |
5393 | |
5394 | |
5395 | /* ------------------------------------------------------------ */ |
5396 | case CHAR_P: /* Python-style named subpattern handling */ |
5397 | if (*(++ptr) == CHAR_EQUALS_SIGN || |
5398 | *ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */ |
5399 | { |
5400 | is_recurse = *ptr == CHAR_GREATER_THAN_SIGN; |
5401 | terminator = CHAR_RIGHT_PARENTHESIS; |
5402 | goto NAMED_REF_OR_RECURSE; |
5403 | } |
5404 | else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */ |
5405 | { |
5406 | *errorcodeptr = ERR41; |
5407 | goto FAILED; |
5408 | } |
5409 | /* Fall through to handle (?P< as (?< is handled */ |
5410 | |
5411 | |
5412 | /* ------------------------------------------------------------ */ |
5413 | DEFINE_NAME: /* Come here from (?< handling */ |
5414 | case CHAR_APOSTROPHE: |
5415 | { |
5416 | terminator = (*ptr == CHAR_LESS_THAN_SIGN)? |
5417 | CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE; |
5418 | name = ++ptr; |
5419 | |
5420 | while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++; |
5421 | namelen = (int)(ptr - name); |
5422 | |
5423 | /* In the pre-compile phase, just do a syntax check. */ |
5424 | |
5425 | if (lengthptr != NULL) |
5426 | { |
5427 | if (*ptr != terminator) |
5428 | { |
5429 | *errorcodeptr = ERR42; |
5430 | goto FAILED; |
5431 | } |
5432 | if (cd->names_found >= MAX_NAME_COUNT) |
5433 | { |
5434 | *errorcodeptr = ERR49; |
5435 | goto FAILED; |
5436 | } |
5437 | if (namelen + 3 > cd->name_entry_size) |
5438 | { |
5439 | cd->name_entry_size = namelen + 3; |
5440 | if (namelen > MAX_NAME_SIZE) |
5441 | { |
5442 | *errorcodeptr = ERR48; |
5443 | goto FAILED; |
5444 | } |
5445 | } |
5446 | } |
5447 | |
5448 | /* In the real compile, create the entry in the table, maintaining |
5449 | alphabetical order. Duplicate names for different numbers are |
5450 | permitted only if PCRE_DUPNAMES is set. Duplicate names for the same |
5451 | number are always OK. (An existing number can be re-used if (?| |
5452 | appears in the pattern.) In either event, a duplicate name results in |
5453 | a duplicate entry in the table, even if the number is the same. This |
5454 | is because the number of names, and hence the table size, is computed |
5455 | in the pre-compile, and it affects various numbers and pointers which |
5456 | would all have to be modified, and the compiled code moved down, if |
5457 | duplicates with the same number were omitted from the table. This |
5458 | doesn't seem worth the hassle. However, *different* names for the |
5459 | same number are not permitted. */ |
5460 | |
5461 | else |
5462 | { |
5463 | BOOL dupname = FALSE; |
5464 | slot = cd->name_table; |
5465 | |
5466 | for (i = 0; i < cd->names_found; i++) |
5467 | { |
5468 | int crc = memcmp(name, slot+2, namelen); |
5469 | if (crc == 0) |
5470 | { |
5471 | if (slot[2+namelen] == 0) |
5472 | { |
5473 | if (GET2(slot, 0) != cd->bracount + 1 && |
5474 | (options & PCRE_DUPNAMES) == 0) |
5475 | { |
5476 | *errorcodeptr = ERR43; |
5477 | goto FAILED; |
5478 | } |
5479 | else dupname = TRUE; |
5480 | } |
5481 | else crc = -1; /* Current name is a substring */ |
5482 | } |
5483 | |
5484 | /* Make space in the table and break the loop for an earlier |
5485 | name. For a duplicate or later name, carry on. We do this for |
5486 | duplicates so that in the simple case (when ?(| is not used) they |
5487 | are in order of their numbers. */ |
5488 | |
5489 | if (crc < 0) |
5490 | { |
5491 | memmove(slot + cd->name_entry_size, slot, |
5492 | (cd->names_found - i) * cd->name_entry_size); |
5493 | break; |
5494 | } |
5495 | |
5496 | /* Continue the loop for a later or duplicate name */ |
5497 | |
5498 | slot += cd->name_entry_size; |
5499 | } |
5500 | |
5501 | /* For non-duplicate names, check for a duplicate number before |
5502 | adding the new name. */ |
5503 | |
5504 | if (!dupname) |
5505 | { |
5506 | uschar *cslot = cd->name_table; |
5507 | for (i = 0; i < cd->names_found; i++) |
5508 | { |
5509 | if (cslot != slot) |
5510 | { |
5511 | if (GET2(cslot, 0) == cd->bracount + 1) |
5512 | { |
5513 | *errorcodeptr = ERR65; |
5514 | goto FAILED; |
5515 | } |
5516 | } |
5517 | else i--; |
5518 | cslot += cd->name_entry_size; |
5519 | } |
5520 | } |
5521 | |
5522 | PUT2(slot, 0, cd->bracount + 1); |
5523 | memcpy(slot + 2, name, namelen); |
5524 | slot[2+namelen] = 0; |
5525 | } |
5526 | } |
5527 | |
5528 | /* In both pre-compile and compile, count the number of names we've |
5529 | encountered. */ |
5530 | |
5531 | cd->names_found++; |
5532 | ptr++; /* Move past > or ' */ |
5533 | goto NUMBERED_GROUP; |
5534 | |
5535 | |
5536 | /* ------------------------------------------------------------ */ |
5537 | case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */ |
5538 | terminator = CHAR_RIGHT_PARENTHESIS; |
5539 | is_recurse = TRUE; |
5540 | /* Fall through */ |
5541 | |
5542 | /* We come here from the Python syntax above that handles both |
5543 | references (?P=name) and recursion (?P>name), as well as falling |
5544 | through from the Perl recursion syntax (?&name). We also come here from |
5545 | the Perl \k<name> or \k'name' back reference syntax and the \k{name} |
5546 | .NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */ |
5547 | |
5548 | NAMED_REF_OR_RECURSE: |
5549 | name = ++ptr; |
5550 | while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++; |
5551 | namelen = (int)(ptr - name); |
5552 | |
5553 | /* In the pre-compile phase, do a syntax check. We used to just set |
5554 | a dummy reference number, because it was not used in the first pass. |
5555 | However, with the change of recursive back references to be atomic, |
5556 | we have to look for the number so that this state can be identified, as |
5557 | otherwise the incorrect length is computed. If it's not a backwards |
5558 | reference, the dummy number will do. */ |
5559 | |
5560 | if (lengthptr != NULL) |
5561 | { |
5562 | const uschar *temp; |
5563 | |
5564 | if (namelen == 0) |
5565 | { |
5566 | *errorcodeptr = ERR62; |
5567 | goto FAILED; |
5568 | } |
5569 | if (*ptr != terminator) |
5570 | { |
5571 | *errorcodeptr = ERR42; |
5572 | goto FAILED; |
5573 | } |
5574 | if (namelen > MAX_NAME_SIZE) |
5575 | { |
5576 | *errorcodeptr = ERR48; |
5577 | goto FAILED; |
5578 | } |
5579 | |
5580 | /* The name table does not exist in the first pass, so we cannot |
5581 | do a simple search as in the code below. Instead, we have to scan the |
5582 | pattern to find the number. It is important that we scan it only as |
5583 | far as we have got because the syntax of named subpatterns has not |
5584 | been checked for the rest of the pattern, and find_parens() assumes |
5585 | correct syntax. In any case, it's a waste of resources to scan |
5586 | further. We stop the scan at the current point by temporarily |
5587 | adjusting the value of cd->endpattern. */ |
5588 | |
5589 | temp = cd->end_pattern; |
5590 | cd->end_pattern = ptr; |
5591 | recno = find_parens(cd, name, namelen, |
5592 | (options & PCRE_EXTENDED) != 0, utf8); |
5593 | cd->end_pattern = temp; |
5594 | if (recno < 0) recno = 0; /* Forward ref; set dummy number */ |
5595 | } |
5596 | |
5597 | /* In the real compile, seek the name in the table. We check the name |
5598 | first, and then check that we have reached the end of the name in the |
5599 | table. That way, if the name that is longer than any in the table, |
5600 | the comparison will fail without reading beyond the table entry. */ |
5601 | |
5602 | else |
5603 | { |
5604 | slot = cd->name_table; |
5605 | for (i = 0; i < cd->names_found; i++) |
5606 | { |
5607 | if (strncmp((char *)name, (char *)slot+2, namelen) == 0 && |
5608 | slot[2+namelen] == 0) |
5609 | break; |
5610 | slot += cd->name_entry_size; |
5611 | } |
5612 | |
5613 | if (i < cd->names_found) /* Back reference */ |
5614 | { |
5615 | recno = GET2(slot, 0); |
5616 | } |
5617 | else if ((recno = /* Forward back reference */ |
5618 | find_parens(cd, name, namelen, |
5619 | (options & PCRE_EXTENDED) != 0, utf8)) <= 0) |
5620 | { |
5621 | *errorcodeptr = ERR15; |
5622 | goto FAILED; |
5623 | } |
5624 | } |
5625 | |
5626 | /* In both phases, we can now go to the code than handles numerical |
5627 | recursion or backreferences. */ |
5628 | |
5629 | if (is_recurse) goto HANDLE_RECURSION; |
5630 | else goto HANDLE_REFERENCE; |
5631 | |
5632 | |
5633 | /* ------------------------------------------------------------ */ |
5634 | case CHAR_R: /* Recursion */ |
5635 | ptr++; /* Same as (?0) */ |
5636 | /* Fall through */ |
5637 | |
5638 | |
5639 | /* ------------------------------------------------------------ */ |
5640 | case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */ |
5641 | case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: |
5642 | case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
5643 | { |
5644 | const uschar *called; |
5645 | terminator = CHAR_RIGHT_PARENTHESIS; |
5646 | |
5647 | /* Come here from the \g<...> and \g'...' code (Oniguruma |
5648 | compatibility). However, the syntax has been checked to ensure that |
5649 | the ... are a (signed) number, so that neither ERR63 nor ERR29 will |
5650 | be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY |
5651 | ever be taken. */ |
5652 | |
5653 | HANDLE_NUMERICAL_RECURSION: |
5654 | |
5655 | if ((refsign = *ptr) == CHAR_PLUS) |
5656 | { |
5657 | ptr++; |
5658 | if ((digitab[*ptr] & ctype_digit) == 0) |
5659 | { |
5660 | *errorcodeptr = ERR63; |
5661 | goto FAILED; |
5662 | } |
5663 | } |
5664 | else if (refsign == CHAR_MINUS) |
5665 | { |
5666 | if ((digitab[ptr[1]] & ctype_digit) == 0) |
5667 | goto OTHER_CHAR_AFTER_QUERY; |
5668 | ptr++; |
5669 | } |
5670 | |
5671 | recno = 0; |
5672 | while((digitab[*ptr] & ctype_digit) != 0) |
5673 | recno = recno * 10 + *ptr++ - CHAR_0; |
5674 | |
5675 | if (*ptr != terminator) |
5676 | { |
5677 | *errorcodeptr = ERR29; |
5678 | goto FAILED; |
5679 | } |
5680 | |
5681 | if (refsign == CHAR_MINUS) |
5682 | { |
5683 | if (recno == 0) |
5684 | { |
5685 | *errorcodeptr = ERR58; |
5686 | goto FAILED; |
5687 | } |
5688 | recno = cd->bracount - recno + 1; |
5689 | if (recno <= 0) |
5690 | { |
5691 | *errorcodeptr = ERR15; |
5692 | goto FAILED; |
5693 | } |
5694 | } |
5695 | else if (refsign == CHAR_PLUS) |
5696 | { |
5697 | if (recno == 0) |
5698 | { |
5699 | *errorcodeptr = ERR58; |
5700 | goto FAILED; |
5701 | } |
5702 | recno += cd->bracount; |
5703 | } |
5704 | |
5705 | /* Come here from code above that handles a named recursion */ |
5706 | |
5707 | HANDLE_RECURSION: |
5708 | |
5709 | previous = code; |
5710 | called = cd->start_code; |
5711 | |
5712 | /* When we are actually compiling, find the bracket that is being |
5713 | referenced. Temporarily end the regex in case it doesn't exist before |
5714 | this point. If we end up with a forward reference, first check that |
5715 | the bracket does occur later so we can give the error (and position) |
5716 | now. Then remember this forward reference in the workspace so it can |
5717 | be filled in at the end. */ |
5718 | |
5719 | if (lengthptr == NULL) |
5720 | { |
5721 | *code = OP_END; |
5722 | if (recno != 0) |
5723 | called = _pcre_find_bracket(cd->start_code, utf8, recno); |
5724 | |
5725 | /* Forward reference */ |
5726 | |
5727 | if (called == NULL) |
5728 | { |
5729 | if (find_parens(cd, NULL, recno, |
5730 | (options & PCRE_EXTENDED) != 0, utf8) < 0) |
5731 | { |
5732 | *errorcodeptr = ERR15; |
5733 | goto FAILED; |
5734 | } |
5735 | |
5736 | /* Fudge the value of "called" so that when it is inserted as an |
5737 | offset below, what it actually inserted is the reference number |
5738 | of the group. Then remember the forward reference. */ |
5739 | |
5740 | called = cd->start_code + recno; |
5741 | PUTINC(cd->hwm, 0, (int)(code + 1 - cd->start_code)); |
5742 | } |
5743 | |
5744 | /* If not a forward reference, and the subpattern is still open, |
5745 | this is a recursive call. We check to see if this is a left |
5746 | recursion that could loop for ever, and diagnose that case. */ |
5747 | |
5748 | else if (GET(called, 1) == 0 && |
5749 | could_be_empty(called, code, bcptr, utf8, cd)) |
5750 | { |
5751 | *errorcodeptr = ERR40; |
5752 | goto FAILED; |
5753 | } |
5754 | } |
5755 | |
5756 | /* Insert the recursion/subroutine item. */ |
5757 | |
5758 | *code = OP_RECURSE; |
5759 | PUT(code, 1, (int)(called - cd->start_code)); |
5760 | code += 1 + LINK_SIZE; |
5761 | } |
5762 | |
5763 | /* Can't determine a first byte now */ |
5764 | |
5765 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
5766 | continue; |
5767 | |
5768 | |
5769 | /* ------------------------------------------------------------ */ |
5770 | default: /* Other characters: check option setting */ |
5771 | OTHER_CHAR_AFTER_QUERY: |
5772 | set = unset = 0; |
5773 | optset = &set; |
5774 | |
5775 | while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON) |
5776 | { |
5777 | switch (*ptr++) |
5778 | { |
5779 | case CHAR_MINUS: optset = &unset; break; |
5780 | |
5781 | case CHAR_J: /* Record that it changed in the external options */ |
5782 | *optset |= PCRE_DUPNAMES; |
5783 | cd->external_flags |= PCRE_JCHANGED; |
5784 | break; |
5785 | |
5786 | case CHAR_i: *optset |= PCRE_CASELESS; break; |
5787 | case CHAR_m: *optset |= PCRE_MULTILINE; break; |
5788 | case CHAR_s: *optset |= PCRE_DOTALL; break; |
5789 | case CHAR_x: *optset |= PCRE_EXTENDED; break; |
5790 | case CHAR_U: *optset |= PCRE_UNGREEDY; break; |
5791 | case CHAR_X: *optset |= PCRE_EXTRA; break; |
5792 | |
5793 | default: *errorcodeptr = ERR12; |
5794 | ptr--; /* Correct the offset */ |
5795 | goto FAILED; |
5796 | } |
5797 | } |
5798 | |
5799 | /* Set up the changed option bits, but don't change anything yet. */ |
5800 | |
5801 | newoptions = (options | set) & (~unset); |
5802 | |
5803 | /* If the options ended with ')' this is not the start of a nested |
5804 | group with option changes, so the options change at this level. If this |
5805 | item is right at the start of the pattern, the options can be |
5806 | abstracted and made external in the pre-compile phase, and ignored in |
5807 | the compile phase. This can be helpful when matching -- for instance in |
5808 | caseless checking of required bytes. |
5809 | |
5810 | If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are |
5811 | definitely *not* at the start of the pattern because something has been |
5812 | compiled. In the pre-compile phase, however, the code pointer can have |
5813 | that value after the start, because it gets reset as code is discarded |
5814 | during the pre-compile. However, this can happen only at top level - if |
5815 | we are within parentheses, the starting BRA will still be present. At |
5816 | any parenthesis level, the length value can be used to test if anything |
5817 | has been compiled at that level. Thus, a test for both these conditions |
5818 | is necessary to ensure we correctly detect the start of the pattern in |
5819 | both phases. |
5820 | |
5821 | If we are not at the pattern start, reset the greedy defaults and the |
5822 | case value for firstbyte and reqbyte. */ |
5823 | |
5824 | if (*ptr == CHAR_RIGHT_PARENTHESIS) |
5825 | { |
5826 | if (code == cd->start_code + 1 + LINK_SIZE && |
5827 | (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE)) |
5828 | { |
5829 | cd->external_options = newoptions; |
5830 | } |
5831 | else |
5832 | { |
5833 | greedy_default = ((newoptions & PCRE_UNGREEDY) != 0); |
5834 | greedy_non_default = greedy_default ^ 1; |
5835 | req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS : 0; |
5836 | } |
5837 | |
5838 | /* Change options at this level, and pass them back for use |
5839 | in subsequent branches. */ |
5840 | |
5841 | *optionsptr = options = newoptions; |
5842 | previous = NULL; /* This item can't be repeated */ |
5843 | continue; /* It is complete */ |
5844 | } |
5845 | |
5846 | /* If the options ended with ':' we are heading into a nested group |
5847 | with possible change of options. Such groups are non-capturing and are |
5848 | not assertions of any kind. All we need to do is skip over the ':'; |
5849 | the newoptions value is handled below. */ |
5850 | |
5851 | bravalue = OP_BRA; |
5852 | ptr++; |
5853 | } /* End of switch for character following (? */ |
5854 | } /* End of (? handling */ |
5855 | |
5856 | /* Opening parenthesis not followed by '*' or '?'. If PCRE_NO_AUTO_CAPTURE |
5857 | is set, all unadorned brackets become non-capturing and behave like (?:...) |
5858 | brackets. */ |
5859 | |
5860 | else if ((options & PCRE_NO_AUTO_CAPTURE) != 0) |
5861 | { |
5862 | bravalue = OP_BRA; |
5863 | } |
5864 | |
5865 | /* Else we have a capturing group. */ |
5866 | |
5867 | else |
5868 | { |
5869 | NUMBERED_GROUP: |
5870 | cd->bracount += 1; |
5871 | PUT2(code, 1+LINK_SIZE, cd->bracount); |
5872 | skipbytes = 2; |
5873 | } |
5874 | |
5875 | /* Process nested bracketed regex. Assertions used not to be repeatable, |
5876 | but this was changed for Perl compatibility, so all kinds can now be |
5877 | repeated. We copy code into a non-register variable (tempcode) in order to |
5878 | be able to pass its address because some compilers complain otherwise. */ |
5879 | |
5880 | previous = code; /* For handling repetition */ |
5881 | *code = bravalue; |
5882 | tempcode = code; |
5883 | tempreqvary = cd->req_varyopt; /* Save value before bracket */ |
5884 | length_prevgroup = 0; /* Initialize for pre-compile phase */ |
5885 | |
5886 | if (!compile_regex( |
5887 | newoptions, /* The complete new option state */ |
5888 | &tempcode, /* Where to put code (updated) */ |
5889 | &ptr, /* Input pointer (updated) */ |
5890 | errorcodeptr, /* Where to put an error message */ |
5891 | (bravalue == OP_ASSERTBACK || |
5892 | bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */ |
5893 | reset_bracount, /* True if (?| group */ |
5894 | skipbytes, /* Skip over bracket number */ |
5895 | &subfirstbyte, /* For possible first char */ |
5896 | &subreqbyte, /* For possible last char */ |
5897 | bcptr, /* Current branch chain */ |
5898 | cd, /* Tables block */ |
5899 | (lengthptr == NULL)? NULL : /* Actual compile phase */ |
5900 | &length_prevgroup /* Pre-compile phase */ |
5901 | )) |
5902 | goto FAILED; |
5903 | |
5904 | if (bravalue >= OP_ASSERT && bravalue <= OP_ASSERTBACK_NOT) |
5905 | cd->assert_depth -= 1; |
5906 | |
5907 | /* At the end of compiling, code is still pointing to the start of the |
5908 | group, while tempcode has been updated to point past the end of the group |
5909 | and any option resetting that may follow it. The pattern pointer (ptr) |
5910 | is on the bracket. */ |
5911 | |
5912 | /* If this is a conditional bracket, check that there are no more than |
5913 | two branches in the group, or just one if it's a DEFINE group. We do this |
5914 | in the real compile phase, not in the pre-pass, where the whole group may |
5915 | not be available. */ |
5916 | |
5917 | if (bravalue == OP_COND && lengthptr == NULL) |
5918 | { |
5919 | uschar *tc = code; |
5920 | int condcount = 0; |
5921 | |
5922 | do { |
5923 | condcount++; |
5924 | tc += GET(tc,1); |
5925 | } |
5926 | while (*tc != OP_KET); |
5927 | |
5928 | /* A DEFINE group is never obeyed inline (the "condition" is always |
5929 | false). It must have only one branch. */ |
5930 | |
5931 | if (code[LINK_SIZE+1] == OP_DEF) |
5932 | { |
5933 | if (condcount > 1) |
5934 | { |
5935 | *errorcodeptr = ERR54; |
5936 | goto FAILED; |
5937 | } |
5938 | bravalue = OP_DEF; /* Just a flag to suppress char handling below */ |
5939 | } |
5940 | |
5941 | /* A "normal" conditional group. If there is just one branch, we must not |
5942 | make use of its firstbyte or reqbyte, because this is equivalent to an |
5943 | empty second branch. */ |
5944 | |
5945 | else |
5946 | { |
5947 | if (condcount > 2) |
5948 | { |
5949 | *errorcodeptr = ERR27; |
5950 | goto FAILED; |
5951 | } |
5952 | if (condcount == 1) subfirstbyte = subreqbyte = REQ_NONE; |
5953 | } |
5954 | } |
5955 | |
5956 | /* Error if hit end of pattern */ |
5957 | |
5958 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
5959 | { |
5960 | *errorcodeptr = ERR14; |
5961 | goto FAILED; |
5962 | } |
5963 | |
5964 | /* In the pre-compile phase, update the length by the length of the group, |
5965 | less the brackets at either end. Then reduce the compiled code to just a |
5966 | set of non-capturing brackets so that it doesn't use much memory if it is |
5967 | duplicated by a quantifier.*/ |
5968 | |
5969 | if (lengthptr != NULL) |
5970 | { |
5971 | if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE) |
5972 | { |
5973 | *errorcodeptr = ERR20; |
5974 | goto FAILED; |
5975 | } |
5976 | *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE; |
5977 | code++; /* This already contains bravalue */ |
5978 | PUTINC(code, 0, 1 + LINK_SIZE); |
5979 | *code++ = OP_KET; |
5980 | PUTINC(code, 0, 1 + LINK_SIZE); |
5981 | break; /* No need to waste time with special character handling */ |
5982 | } |
5983 | |
5984 | /* Otherwise update the main code pointer to the end of the group. */ |
5985 | |
5986 | code = tempcode; |
5987 | |
5988 | /* For a DEFINE group, required and first character settings are not |
5989 | relevant. */ |
5990 | |
5991 | if (bravalue == OP_DEF) break; |
5992 | |
5993 | /* Handle updating of the required and first characters for other types of |
5994 | group. Update for normal brackets of all kinds, and conditions with two |
5995 | branches (see code above). If the bracket is followed by a quantifier with |
5996 | zero repeat, we have to back off. Hence the definition of zeroreqbyte and |
5997 | zerofirstbyte outside the main loop so that they can be accessed for the |
5998 | back off. */ |
5999 | |
6000 | zeroreqbyte = reqbyte; |
6001 | zerofirstbyte = firstbyte; |
6002 | groupsetfirstbyte = FALSE; |
6003 | |
6004 | if (bravalue >= OP_ONCE) |
6005 | { |
6006 | /* If we have not yet set a firstbyte in this branch, take it from the |
6007 | subpattern, remembering that it was set here so that a repeat of more |
6008 | than one can replicate it as reqbyte if necessary. If the subpattern has |
6009 | no firstbyte, set "none" for the whole branch. In both cases, a zero |
6010 | repeat forces firstbyte to "none". */ |
6011 | |
6012 | if (firstbyte == REQ_UNSET) |
6013 | { |
6014 | if (subfirstbyte >= 0) |
6015 | { |
6016 | firstbyte = subfirstbyte; |
6017 | groupsetfirstbyte = TRUE; |
6018 | } |
6019 | else firstbyte = REQ_NONE; |
6020 | zerofirstbyte = REQ_NONE; |
6021 | } |
6022 | |
6023 | /* If firstbyte was previously set, convert the subpattern's firstbyte |
6024 | into reqbyte if there wasn't one, using the vary flag that was in |
6025 | existence beforehand. */ |
6026 | |
6027 | else if (subfirstbyte >= 0 && subreqbyte < 0) |
6028 | subreqbyte = subfirstbyte | tempreqvary; |
6029 | |
6030 | /* If the subpattern set a required byte (or set a first byte that isn't |
6031 | really the first byte - see above), set it. */ |
6032 | |
6033 | if (subreqbyte >= 0) reqbyte = subreqbyte; |
6034 | } |
6035 | |
6036 | /* For a forward assertion, we take the reqbyte, if set. This can be |
6037 | helpful if the pattern that follows the assertion doesn't set a different |
6038 | char. For example, it's useful for /(?=abcde).+/. We can't set firstbyte |
6039 | for an assertion, however because it leads to incorrect effect for patterns |
6040 | such as /(?=a)a.+/ when the "real" "a" would then become a reqbyte instead |
6041 | of a firstbyte. This is overcome by a scan at the end if there's no |
6042 | firstbyte, looking for an asserted first char. */ |
6043 | |
6044 | else if (bravalue == OP_ASSERT && subreqbyte >= 0) reqbyte = subreqbyte; |
6045 | break; /* End of processing '(' */ |
6046 | |
6047 | |
6048 | /* ===================================================================*/ |
6049 | /* Handle metasequences introduced by \. For ones like \d, the ESC_ values |
6050 | are arranged to be the negation of the corresponding OP_values in the |
6051 | default case when PCRE_UCP is not set. For the back references, the values |
6052 | are ESC_REF plus the reference number. Only back references and those types |
6053 | that consume a character may be repeated. We can test for values between |
6054 | ESC_b and ESC_Z for the latter; this may have to change if any new ones are |
6055 | ever created. */ |
6056 | |
6057 | case CHAR_BACKSLASH: |
6058 | tempptr = ptr; |
6059 | c = check_escape(&ptr, errorcodeptr, cd->bracount, options, FALSE); |
6060 | if (*errorcodeptr != 0) goto FAILED; |
6061 | |
6062 | if (c < 0) |
6063 | { |
6064 | if (-c == ESC_Q) /* Handle start of quoted string */ |
6065 | { |
6066 | if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
6067 | ptr += 2; /* avoid empty string */ |
6068 | else inescq = TRUE; |
6069 | continue; |
6070 | } |
6071 | |
6072 | if (-c == ESC_E) continue; /* Perl ignores an orphan \E */ |
6073 | |
6074 | /* For metasequences that actually match a character, we disable the |
6075 | setting of a first character if it hasn't already been set. */ |
6076 | |
6077 | if (firstbyte == REQ_UNSET && -c > ESC_b && -c < ESC_Z) |
6078 | firstbyte = REQ_NONE; |
6079 | |
6080 | /* Set values to reset to if this is followed by a zero repeat. */ |
6081 | |
6082 | zerofirstbyte = firstbyte; |
6083 | zeroreqbyte = reqbyte; |
6084 | |
6085 | /* \g<name> or \g'name' is a subroutine call by name and \g<n> or \g'n' |
6086 | is a subroutine call by number (Oniguruma syntax). In fact, the value |
6087 | -ESC_g is returned only for these cases. So we don't need to check for < |
6088 | or ' if the value is -ESC_g. For the Perl syntax \g{n} the value is |
6089 | -ESC_REF+n, and for the Perl syntax \g{name} the result is -ESC_k (as |
6090 | that is a synonym for a named back reference). */ |
6091 | |
6092 | if (-c == ESC_g) |
6093 | { |
6094 | const uschar *p; |
6095 | save_hwm = cd->hwm; /* Normally this is set when '(' is read */ |
6096 | terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)? |
6097 | CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE; |
6098 | |
6099 | /* These two statements stop the compiler for warning about possibly |
6100 | unset variables caused by the jump to HANDLE_NUMERICAL_RECURSION. In |
6101 | fact, because we actually check for a number below, the paths that |
6102 | would actually be in error are never taken. */ |
6103 | |
6104 | skipbytes = 0; |
6105 | reset_bracount = FALSE; |
6106 | |
6107 | /* Test for a name */ |
6108 | |
6109 | if (ptr[1] != CHAR_PLUS && ptr[1] != CHAR_MINUS) |
6110 | { |
6111 | BOOL isnumber = TRUE; |
6112 | for (p = ptr + 1; *p != 0 && *p != terminator; p++) |
6113 | { |
6114 | if ((cd->ctypes[*p] & ctype_digit) == 0) isnumber = FALSE; |
6115 | if ((cd->ctypes[*p] & ctype_word) == 0) break; |
6116 | } |
6117 | if (*p != terminator) |
6118 | { |
6119 | *errorcodeptr = ERR57; |
6120 | break; |
6121 | } |
6122 | if (isnumber) |
6123 | { |
6124 | ptr++; |
6125 | goto HANDLE_NUMERICAL_RECURSION; |
6126 | } |
6127 | is_recurse = TRUE; |
6128 | goto NAMED_REF_OR_RECURSE; |
6129 | } |
6130 | |
6131 | /* Test a signed number in angle brackets or quotes. */ |
6132 | |
6133 | p = ptr + 2; |
6134 | while ((digitab[*p] & ctype_digit) != 0) p++; |
6135 | if (*p != terminator) |
6136 | { |
6137 | *errorcodeptr = ERR57; |
6138 | break; |
6139 | } |
6140 | ptr++; |
6141 | goto HANDLE_NUMERICAL_RECURSION; |
6142 | } |
6143 | |
6144 | /* \k<name> or \k'name' is a back reference by name (Perl syntax). |
6145 | We also support \k{name} (.NET syntax). */ |
6146 | |
6147 | if (-c == ESC_k) |
6148 | { |
6149 | if ((ptr[1] != CHAR_LESS_THAN_SIGN && |
6150 | ptr[1] != CHAR_APOSTROPHE && ptr[1] != CHAR_LEFT_CURLY_BRACKET)) |
6151 | { |
6152 | *errorcodeptr = ERR69; |
6153 | break; |
6154 | } |
6155 | is_recurse = FALSE; |
6156 | terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)? |
6157 | CHAR_GREATER_THAN_SIGN : (*ptr == CHAR_APOSTROPHE)? |
6158 | CHAR_APOSTROPHE : CHAR_RIGHT_CURLY_BRACKET; |
6159 | goto NAMED_REF_OR_RECURSE; |
6160 | } |
6161 | |
6162 | /* Back references are handled specially; must disable firstbyte if |
6163 | not set to cope with cases like (?=(\w+))\1: which would otherwise set |
6164 | ':' later. */ |
6165 | |
6166 | if (-c >= ESC_REF) |
6167 | { |
6168 | open_capitem *oc; |
6169 | recno = -c - ESC_REF; |
6170 | |
6171 | HANDLE_REFERENCE: /* Come here from named backref handling */ |
6172 | if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE; |
6173 | previous = code; |
6174 | *code++ = ((options & PCRE_CASELESS) != 0)? OP_REFI : OP_REF; |
6175 | PUT2INC(code, 0, recno); |
6176 | cd->backref_map |= (recno < 32)? (1 << recno) : 1; |
6177 | if (recno > cd->top_backref) cd->top_backref = recno; |
6178 | |
6179 | /* Check to see if this back reference is recursive, that it, it |
6180 | is inside the group that it references. A flag is set so that the |
6181 | group can be made atomic. */ |
6182 | |
6183 | for (oc = cd->open_caps; oc != NULL; oc = oc->next) |
6184 | { |
6185 | if (oc->number == recno) |
6186 | { |
6187 | oc->flag = TRUE; |
6188 | break; |
6189 | } |
6190 | } |
6191 | } |
6192 | |
6193 | /* So are Unicode property matches, if supported. */ |
6194 | |
6195 | #ifdef SUPPORT_UCP |
6196 | else if (-c == ESC_P || -c == ESC_p) |
6197 | { |
6198 | BOOL negated; |
6199 | int pdata; |
6200 | int ptype = get_ucp(&ptr, &negated, &pdata, errorcodeptr); |
6201 | if (ptype < 0) goto FAILED; |
6202 | previous = code; |
6203 | *code++ = ((-c == ESC_p) != negated)? OP_PROP : OP_NOTPROP; |
6204 | *code++ = ptype; |
6205 | *code++ = pdata; |
6206 | } |
6207 | #else |
6208 | |
6209 | /* If Unicode properties are not supported, \X, \P, and \p are not |
6210 | allowed. */ |
6211 | |
6212 | else if (-c == ESC_X || -c == ESC_P || -c == ESC_p) |
6213 | { |
6214 | *errorcodeptr = ERR45; |
6215 | goto FAILED; |
6216 | } |
6217 | #endif |
6218 | |
6219 | /* For the rest (including \X when Unicode properties are supported), we |
6220 | can obtain the OP value by negating the escape value in the default |
6221 | situation when PCRE_UCP is not set. When it *is* set, we substitute |
6222 | Unicode property tests. */ |
6223 | |
6224 | else |
6225 | { |
6226 | #ifdef SUPPORT_UCP |
6227 | if (-c >= ESC_DU && -c <= ESC_wu) |
6228 | { |
6229 | nestptr = ptr + 1; /* Where to resume */ |
6230 | ptr = substitutes[-c - ESC_DU] - 1; /* Just before substitute */ |
6231 | } |
6232 | else |
6233 | #endif |
6234 | { |
6235 | previous = (-c > ESC_b && -c < ESC_Z)? code : NULL; |
6236 | *code++ = -c; |
6237 | } |
6238 | } |
6239 | continue; |
6240 | } |
6241 | |
6242 | /* We have a data character whose value is in c. In UTF-8 mode it may have |
6243 | a value > 127. We set its representation in the length/buffer, and then |
6244 | handle it as a data character. */ |
6245 | |
6246 | #ifdef SUPPORT_UTF8 |
6247 | if (utf8 && c > 127) |
6248 | mclength = _pcre_ord2utf8(c, mcbuffer); |
6249 | else |
6250 | #endif |
6251 | |
6252 | { |
6253 | mcbuffer[0] = c; |
6254 | mclength = 1; |
6255 | } |
6256 | goto ONE_CHAR; |
6257 | |
6258 | |
6259 | /* ===================================================================*/ |
6260 | /* Handle a literal character. It is guaranteed not to be whitespace or # |
6261 | when the extended flag is set. If we are in UTF-8 mode, it may be a |
6262 | multi-byte literal character. */ |
6263 | |
6264 | default: |
6265 | NORMAL_CHAR: |
6266 | mclength = 1; |
6267 | mcbuffer[0] = c; |
6268 | |
6269 | #ifdef SUPPORT_UTF8 |
6270 | if (utf8 && c >= 0xc0) |
6271 | { |
6272 | while ((ptr[1] & 0xc0) == 0x80) |
6273 | mcbuffer[mclength++] = *(++ptr); |
6274 | } |
6275 | #endif |
6276 | |
6277 | /* At this point we have the character's bytes in mcbuffer, and the length |
6278 | in mclength. When not in UTF-8 mode, the length is always 1. */ |
6279 | |
6280 | ONE_CHAR: |
6281 | previous = code; |
6282 | *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARI : OP_CHAR; |
6283 | for (c = 0; c < mclength; c++) *code++ = mcbuffer[c]; |
6284 | |
6285 | /* Remember if \r or \n were seen */ |
6286 | |
6287 | if (mcbuffer[0] == CHAR_CR || mcbuffer[0] == CHAR_NL) |
6288 | cd->external_flags |= PCRE_HASCRORLF; |
6289 | |
6290 | /* Set the first and required bytes appropriately. If no previous first |
6291 | byte, set it from this character, but revert to none on a zero repeat. |
6292 | Otherwise, leave the firstbyte value alone, and don't change it on a zero |
6293 | repeat. */ |
6294 | |
6295 | if (firstbyte == REQ_UNSET) |
6296 | { |
6297 | zerofirstbyte = REQ_NONE; |
6298 | zeroreqbyte = reqbyte; |
6299 | |
6300 | /* If the character is more than one byte long, we can set firstbyte |
6301 | only if it is not to be matched caselessly. */ |
6302 | |
6303 | if (mclength == 1 || req_caseopt == 0) |
6304 | { |
6305 | firstbyte = mcbuffer[0] | req_caseopt; |
6306 | if (mclength != 1) reqbyte = code[-1] | cd->req_varyopt; |
6307 | } |
6308 | else firstbyte = reqbyte = REQ_NONE; |
6309 | } |
6310 | |
6311 | /* firstbyte was previously set; we can set reqbyte only the length is |
6312 | 1 or the matching is caseful. */ |
6313 | |
6314 | else |
6315 | { |
6316 | zerofirstbyte = firstbyte; |
6317 | zeroreqbyte = reqbyte; |
6318 | if (mclength == 1 || req_caseopt == 0) |
6319 | reqbyte = code[-1] | req_caseopt | cd->req_varyopt; |
6320 | } |
6321 | |
6322 | break; /* End of literal character handling */ |
6323 | } |
6324 | } /* end of big loop */ |
6325 | |
6326 | |
6327 | /* Control never reaches here by falling through, only by a goto for all the |
6328 | error states. Pass back the position in the pattern so that it can be displayed |
6329 | to the user for diagnosing the error. */ |
6330 | |
6331 | FAILED: |
6332 | *ptrptr = ptr; |
6333 | return FALSE; |
6334 | } |
6335 | |
6336 | |
6337 | |
6338 | |
6339 | /************************************************* |
6340 | * Compile sequence of alternatives * |
6341 | *************************************************/ |
6342 | |
6343 | /* On entry, ptr is pointing past the bracket character, but on return it |
6344 | points to the closing bracket, or vertical bar, or end of string. The code |
6345 | variable is pointing at the byte into which the BRA operator has been stored. |
6346 | This function is used during the pre-compile phase when we are trying to find |
6347 | out the amount of memory needed, as well as during the real compile phase. The |
6348 | value of lengthptr distinguishes the two phases. |
6349 | |
6350 | Arguments: |
6351 | options option bits, including any changes for this subpattern |
6352 | codeptr -> the address of the current code pointer |
6353 | ptrptr -> the address of the current pattern pointer |
6354 | errorcodeptr -> pointer to error code variable |
6355 | lookbehind TRUE if this is a lookbehind assertion |
6356 | reset_bracount TRUE to reset the count for each branch |
6357 | skipbytes skip this many bytes at start (for brackets and OP_COND) |
6358 | firstbyteptr place to put the first required character, or a negative number |
6359 | reqbyteptr place to put the last required character, or a negative number |
6360 | bcptr pointer to the chain of currently open branches |
6361 | cd points to the data block with tables pointers etc. |
6362 | lengthptr NULL during the real compile phase |
6363 | points to length accumulator during pre-compile phase |
6364 | |
6365 | Returns: TRUE on success |
6366 | */ |
6367 | |
6368 | static BOOL |
6369 | compile_regex(int options, uschar **codeptr, const uschar **ptrptr, |
6370 | int *errorcodeptr, BOOL lookbehind, BOOL reset_bracount, int skipbytes, |
6371 | int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, compile_data *cd, |
6372 | int *lengthptr) |
6373 | { |
6374 | const uschar *ptr = *ptrptr; |
6375 | uschar *code = *codeptr; |
6376 | uschar *last_branch = code; |
6377 | uschar *start_bracket = code; |
6378 | uschar *reverse_count = NULL; |
6379 | open_capitem capitem; |
6380 | int capnumber = 0; |
6381 | int firstbyte, reqbyte; |
6382 | int branchfirstbyte, branchreqbyte; |
6383 | int length; |
6384 | int orig_bracount; |
6385 | int max_bracount; |
6386 | branch_chain bc; |
6387 | |
6388 | bc.outer = bcptr; |
6389 | bc.current_branch = code; |
6390 | |
6391 | firstbyte = reqbyte = REQ_UNSET; |
6392 | |
6393 | /* Accumulate the length for use in the pre-compile phase. Start with the |
6394 | length of the BRA and KET and any extra bytes that are required at the |
6395 | beginning. We accumulate in a local variable to save frequent testing of |
6396 | lenthptr for NULL. We cannot do this by looking at the value of code at the |
6397 | start and end of each alternative, because compiled items are discarded during |
6398 | the pre-compile phase so that the work space is not exceeded. */ |
6399 | |
6400 | length = 2 + 2*LINK_SIZE + skipbytes; |
6401 | |
6402 | /* WARNING: If the above line is changed for any reason, you must also change |
6403 | the code that abstracts option settings at the start of the pattern and makes |
6404 | them global. It tests the value of length for (2 + 2*LINK_SIZE) in the |
6405 | pre-compile phase to find out whether anything has yet been compiled or not. */ |
6406 | |
6407 | /* If this is a capturing subpattern, add to the chain of open capturing items |
6408 | so that we can detect them if (*ACCEPT) is encountered. This is also used to |
6409 | detect groups that contain recursive back references to themselves. Note that |
6410 | only OP_CBRA need be tested here; changing this opcode to one of its variants, |
6411 | e.g. OP_SCBRAPOS, happens later, after the group has been compiled. */ |
6412 | |
6413 | if (*code == OP_CBRA) |
6414 | { |
6415 | capnumber = GET2(code, 1 + LINK_SIZE); |
6416 | capitem.number = capnumber; |
6417 | capitem.next = cd->open_caps; |
6418 | capitem.flag = FALSE; |
6419 | cd->open_caps = &capitem; |
6420 | } |
6421 | |
6422 | /* Offset is set zero to mark that this bracket is still open */ |
6423 | |
6424 | PUT(code, 1, 0); |
6425 | code += 1 + LINK_SIZE + skipbytes; |
6426 | |
6427 | /* Loop for each alternative branch */ |
6428 | |
6429 | orig_bracount = max_bracount = cd->bracount; |
6430 | for (;;) |
6431 | { |
6432 | /* For a (?| group, reset the capturing bracket count so that each branch |
6433 | uses the same numbers. */ |
6434 | |
6435 | if (reset_bracount) cd->bracount = orig_bracount; |
6436 | |
6437 | /* Set up dummy OP_REVERSE if lookbehind assertion */ |
6438 | |
6439 | if (lookbehind) |
6440 | { |
6441 | *code++ = OP_REVERSE; |
6442 | reverse_count = code; |
6443 | PUTINC(code, 0, 0); |
6444 | length += 1 + LINK_SIZE; |
6445 | } |
6446 | |
6447 | /* Now compile the branch; in the pre-compile phase its length gets added |
6448 | into the length. */ |
6449 | |
6450 | if (!compile_branch(&options, &code, &ptr, errorcodeptr, &branchfirstbyte, |
6451 | &branchreqbyte, &bc, cd, (lengthptr == NULL)? NULL : &length)) |
6452 | { |
6453 | *ptrptr = ptr; |
6454 | return FALSE; |
6455 | } |
6456 | |
6457 | /* Keep the highest bracket count in case (?| was used and some branch |
6458 | has fewer than the rest. */ |
6459 | |
6460 | if (cd->bracount > max_bracount) max_bracount = cd->bracount; |
6461 | |
6462 | /* In the real compile phase, there is some post-processing to be done. */ |
6463 | |
6464 | if (lengthptr == NULL) |
6465 | { |
6466 | /* If this is the first branch, the firstbyte and reqbyte values for the |
6467 | branch become the values for the regex. */ |
6468 | |
6469 | if (*last_branch != OP_ALT) |
6470 | { |
6471 | firstbyte = branchfirstbyte; |
6472 | reqbyte = branchreqbyte; |
6473 | } |
6474 | |
6475 | /* If this is not the first branch, the first char and reqbyte have to |
6476 | match the values from all the previous branches, except that if the |
6477 | previous value for reqbyte didn't have REQ_VARY set, it can still match, |
6478 | and we set REQ_VARY for the regex. */ |
6479 | |
6480 | else |
6481 | { |
6482 | /* If we previously had a firstbyte, but it doesn't match the new branch, |
6483 | we have to abandon the firstbyte for the regex, but if there was |
6484 | previously no reqbyte, it takes on the value of the old firstbyte. */ |
6485 | |
6486 | if (firstbyte >= 0 && firstbyte != branchfirstbyte) |
6487 | { |
6488 | if (reqbyte < 0) reqbyte = firstbyte; |
6489 | firstbyte = REQ_NONE; |
6490 | } |
6491 | |
6492 | /* If we (now or from before) have no firstbyte, a firstbyte from the |
6493 | branch becomes a reqbyte if there isn't a branch reqbyte. */ |
6494 | |
6495 | if (firstbyte < 0 && branchfirstbyte >= 0 && branchreqbyte < 0) |
6496 | branchreqbyte = branchfirstbyte; |
6497 | |
6498 | /* Now ensure that the reqbytes match */ |
6499 | |
6500 | if ((reqbyte & ~REQ_VARY) != (branchreqbyte & ~REQ_VARY)) |
6501 | reqbyte = REQ_NONE; |
6502 | else reqbyte |= branchreqbyte; /* To "or" REQ_VARY */ |
6503 | } |
6504 | |
6505 | /* If lookbehind, check that this branch matches a fixed-length string, and |
6506 | put the length into the OP_REVERSE item. Temporarily mark the end of the |
6507 | branch with OP_END. If the branch contains OP_RECURSE, the result is -3 |
6508 | because there may be forward references that we can't check here. Set a |
6509 | flag to cause another lookbehind check at the end. Why not do it all at the |
6510 | end? Because common, erroneous checks are picked up here and the offset of |
6511 | the problem can be shown. */ |
6512 | |
6513 | if (lookbehind) |
6514 | { |
6515 | int fixed_length; |
6516 | *code = OP_END; |
6517 | fixed_length = find_fixedlength(last_branch, (options & PCRE_UTF8) != 0, |
6518 | FALSE, cd); |
6519 | DPRINTF(("fixed length = %d\n", fixed_length)); |
6520 | if (fixed_length == -3) |
6521 | { |
6522 | cd->check_lookbehind = TRUE; |
6523 | } |
6524 | else if (fixed_length < 0) |
6525 | { |
6526 | *errorcodeptr = (fixed_length == -2)? ERR36 : ERR25; |
6527 | *ptrptr = ptr; |
6528 | return FALSE; |
6529 | } |
6530 | else { PUT(reverse_count, 0, fixed_length); } |
6531 | } |
6532 | } |
6533 | |
6534 | /* Reached end of expression, either ')' or end of pattern. In the real |
6535 | compile phase, go back through the alternative branches and reverse the chain |
6536 | of offsets, with the field in the BRA item now becoming an offset to the |
6537 | first alternative. If there are no alternatives, it points to the end of the |
6538 | group. The length in the terminating ket is always the length of the whole |
6539 | bracketed item. Return leaving the pointer at the terminating char. */ |
6540 | |
6541 | if (*ptr != CHAR_VERTICAL_LINE) |
6542 | { |
6543 | if (lengthptr == NULL) |
6544 | { |
6545 | int branch_length = (int)(code - last_branch); |
6546 | do |
6547 | { |
6548 | int prev_length = GET(last_branch, 1); |
6549 | PUT(last_branch, 1, branch_length); |
6550 | branch_length = prev_length; |
6551 | last_branch -= branch_length; |
6552 | } |
6553 | while (branch_length > 0); |
6554 | } |
6555 | |
6556 | /* Fill in the ket */ |
6557 | |
6558 | *code = OP_KET; |
6559 | PUT(code, 1, (int)(code - start_bracket)); |
6560 | code += 1 + LINK_SIZE; |
6561 | |
6562 | /* If it was a capturing subpattern, check to see if it contained any |
6563 | recursive back references. If so, we must wrap it in atomic brackets. |
6564 | In any event, remove the block from the chain. */ |
6565 | |
6566 | if (capnumber > 0) |
6567 | { |
6568 | if (cd->open_caps->flag) |
6569 | { |
6570 | memmove(start_bracket + 1 + LINK_SIZE, start_bracket, |
6571 | code - start_bracket); |
6572 | *start_bracket = OP_ONCE; |
6573 | code += 1 + LINK_SIZE; |
6574 | PUT(start_bracket, 1, (int)(code - start_bracket)); |
6575 | *code = OP_KET; |
6576 | PUT(code, 1, (int)(code - start_bracket)); |
6577 | code += 1 + LINK_SIZE; |
6578 | length += 2 + 2*LINK_SIZE; |
6579 | } |
6580 | cd->open_caps = cd->open_caps->next; |
6581 | } |
6582 | |
6583 | /* Retain the highest bracket number, in case resetting was used. */ |
6584 | |
6585 | cd->bracount = max_bracount; |
6586 | |
6587 | /* Set values to pass back */ |
6588 | |
6589 | *codeptr = code; |
6590 | *ptrptr = ptr; |
6591 | *firstbyteptr = firstbyte; |
6592 | *reqbyteptr = reqbyte; |
6593 | if (lengthptr != NULL) |
6594 | { |
6595 | if (OFLOW_MAX - *lengthptr < length) |
6596 | { |
6597 | *errorcodeptr = ERR20; |
6598 | return FALSE; |
6599 | } |
6600 | *lengthptr += length; |
6601 | } |
6602 | return TRUE; |
6603 | } |
6604 | |
6605 | /* Another branch follows. In the pre-compile phase, we can move the code |
6606 | pointer back to where it was for the start of the first branch. (That is, |
6607 | pretend that each branch is the only one.) |
6608 | |
6609 | In the real compile phase, insert an ALT node. Its length field points back |
6610 | to the previous branch while the bracket remains open. At the end the chain |
6611 | is reversed. It's done like this so that the start of the bracket has a |
6612 | zero offset until it is closed, making it possible to detect recursion. */ |
6613 | |
6614 | if (lengthptr != NULL) |
6615 | { |
6616 | code = *codeptr + 1 + LINK_SIZE + skipbytes; |
6617 | length += 1 + LINK_SIZE; |
6618 | } |
6619 | else |
6620 | { |
6621 | *code = OP_ALT; |
6622 | PUT(code, 1, (int)(code - last_branch)); |
6623 | bc.current_branch = last_branch = code; |
6624 | code += 1 + LINK_SIZE; |
6625 | } |
6626 | |
6627 | ptr++; |
6628 | } |
6629 | /* Control never reaches here */ |
6630 | } |
6631 | |
6632 | |
6633 | |
6634 | |
6635 | /************************************************* |
6636 | * Check for anchored expression * |
6637 | *************************************************/ |
6638 | |
6639 | /* Try to find out if this is an anchored regular expression. Consider each |
6640 | alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket |
6641 | all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then |
6642 | it's anchored. However, if this is a multiline pattern, then only OP_SOD will |
6643 | be found, because ^ generates OP_CIRCM in that mode. |
6644 | |
6645 | We can also consider a regex to be anchored if OP_SOM starts all its branches. |
6646 | This is the code for \G, which means "match at start of match position, taking |
6647 | into account the match offset". |
6648 | |
6649 | A branch is also implicitly anchored if it starts with .* and DOTALL is set, |
6650 | because that will try the rest of the pattern at all possible matching points, |
6651 | so there is no point trying again.... er .... |