/[pcre]/code/trunk/pcre_compile.c
ViewVC logotype

Diff of /code/trunk/pcre_compile.c

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 574 by ph10, Sat Nov 20 17:47:27 2010 UTC revision 638 by ph10, Mon Jul 25 09:41:19 2011 UTC
# Line 6  Line 6 
6  and semantics are as close as possible to those of the Perl 5 language.  and semantics are as close as possible to those of the Perl 5 language.
7    
8                         Written by Philip Hazel                         Written by Philip Hazel
9             Copyright (c) 1997-2010 University of Cambridge             Copyright (c) 1997-2011 University of Cambridge
10    
11  -----------------------------------------------------------------------------  -----------------------------------------------------------------------------
12  Redistribution and use in source and binary forms, with or without  Redistribution and use in source and binary forms, with or without
# Line 393  static const char error_texts[] = Line 393  static const char error_texts[] =
393    "internal error: previously-checked referenced subpattern not found\0"    "internal error: previously-checked referenced subpattern not found\0"
394    "DEFINE group contains more than one branch\0"    "DEFINE group contains more than one branch\0"
395    /* 55 */    /* 55 */
396    "repeating a DEFINE group is not allowed\0"    "repeating a DEFINE group is not allowed\0"  /** DEAD **/
397    "inconsistent NEWLINE options\0"    "inconsistent NEWLINE options\0"
398    "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0"    "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0"
399    "a numbered reference must not be zero\0"    "a numbered reference must not be zero\0"
# Line 408  static const char error_texts[] = Line 408  static const char error_texts[] =
408    "different names for subpatterns of the same number are not allowed\0"    "different names for subpatterns of the same number are not allowed\0"
409    "(*MARK) must have an argument\0"    "(*MARK) must have an argument\0"
410    "this version of PCRE is not compiled with PCRE_UCP support\0"    "this version of PCRE is not compiled with PCRE_UCP support\0"
411    "\\c must be followed by an ASCII character\0"    "\\c must be followed by an ASCII character\0"
412      "\\k is not followed by a braced, angle-bracketed, or quoted name\0"
413    ;    ;
414    
415  /* Table to identify digits and hex digits. This is used when compiling  /* Table to identify digits and hex digits. This is used when compiling
# Line 545  static const unsigned char ebcdic_charta Line 546  static const unsigned char ebcdic_charta
546  /* Definition to allow mutual recursion */  /* Definition to allow mutual recursion */
547    
548  static BOOL  static BOOL
549    compile_regex(int, int, uschar **, const uschar **, int *, BOOL, BOOL, int,    compile_regex(int, uschar **, const uschar **, int *, BOOL, BOOL, int, int *,
550      int *, int *, branch_chain *, compile_data *, int *);      int *, branch_chain *, compile_data *, int *);
551    
552    
553    
# Line 857  else Line 858  else
858      if (c > 127)  /* Excludes all non-ASCII in either mode */      if (c > 127)  /* Excludes all non-ASCII in either mode */
859        {        {
860        *errorcodeptr = ERR68;        *errorcodeptr = ERR68;
861        break;        break;
862        }        }
863      if (c >= CHAR_a && c <= CHAR_z) c -= 32;      if (c >= CHAR_a && c <= CHAR_z) c -= 32;
864      c ^= 0x40;      c ^= 0x40;
865  #else             /* EBCDIC coding */  #else             /* EBCDIC coding */
# Line 1105  top-level call starts at the beginning o Line 1106  top-level call starts at the beginning o
1106  start at a parenthesis. It scans along a pattern's text looking for capturing  start at a parenthesis. It scans along a pattern's text looking for capturing
1107  subpatterns, and counting them. If it finds a named pattern that matches the  subpatterns, and counting them. If it finds a named pattern that matches the
1108  name it is given, it returns its number. Alternatively, if the name is NULL, it  name it is given, it returns its number. Alternatively, if the name is NULL, it
1109  returns when it reaches a given numbered subpattern. We know that if (?P< is  returns when it reaches a given numbered subpattern. Recursion is used to keep
1110  encountered, the name will be terminated by '>' because that is checked in the  track of subpatterns that reset the capturing group numbers - the (?| feature.
1111  first pass. Recursion is used to keep track of subpatterns that reset the  
1112  capturing group numbers - the (?| feature.  This function was originally called only from the second pass, in which we know
1113    that if (?< or (?' or (?P< is encountered, the name will be correctly
1114    terminated because that is checked in the first pass. There is now one call to
1115    this function in the first pass, to check for a recursive back reference by
1116    name (so that we can make the whole group atomic). In this case, we need check
1117    only up to the current position in the pattern, and that is still OK because
1118    and previous occurrences will have been checked. To make this work, the test
1119    for "end of pattern" is a check against cd->end_pattern in the main loop,
1120    instead of looking for a binary zero. This means that the special first-pass
1121    call can adjust cd->end_pattern temporarily. (Checks for binary zero while
1122    processing items within the loop are OK, because afterwards the main loop will
1123    terminate.)
1124    
1125  Arguments:  Arguments:
1126    ptrptr       address of the current character pointer (updated)    ptrptr       address of the current character pointer (updated)
# Line 1116  Arguments: Line 1128  Arguments:
1128    name         name to seek, or NULL if seeking a numbered subpattern    name         name to seek, or NULL if seeking a numbered subpattern
1129    lorn         name length, or subpattern number if name is NULL    lorn         name length, or subpattern number if name is NULL
1130    xmode        TRUE if we are in /x mode    xmode        TRUE if we are in /x mode
1131    utf8         TRUE if we are in UTF-8 mode    utf8         TRUE if we are in UTF-8 mode
1132    count        pointer to the current capturing subpattern number (updated)    count        pointer to the current capturing subpattern number (updated)
1133    
1134  Returns:       the number of the named subpattern, or -1 if not found  Returns:       the number of the named subpattern, or -1 if not found
# Line 1209  if (ptr[0] == CHAR_LEFT_PARENTHESIS) Line 1221  if (ptr[0] == CHAR_LEFT_PARENTHESIS)
1221    }    }
1222    
1223  /* Past any initial parenthesis handling, scan for parentheses or vertical  /* Past any initial parenthesis handling, scan for parentheses or vertical
1224  bars. */  bars. Stop if we get to cd->end_pattern. Note that this is important for the
1225    first-pass call when this value is temporarily adjusted to stop at the current
1226    position. So DO NOT change this to a test for binary zero. */
1227    
1228  for (; *ptr != 0; ptr++)  for (; ptr < cd->end_pattern; ptr++)
1229    {    {
1230    /* Skip over backslashed characters and also entire \Q...\E */    /* Skip over backslashed characters and also entire \Q...\E */
1231    
# Line 1285  for (; *ptr != 0; ptr++) Line 1299  for (; *ptr != 0; ptr++)
1299    
1300    if (xmode && *ptr == CHAR_NUMBER_SIGN)    if (xmode && *ptr == CHAR_NUMBER_SIGN)
1301      {      {
1302      ptr++;      ptr++;
1303      while (*ptr != 0)      while (*ptr != 0)
1304        {        {
1305        if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }        if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
1306        ptr++;        ptr++;
1307  #ifdef SUPPORT_UTF8  #ifdef SUPPORT_UTF8
1308        if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++;        if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++;
1309  #endif  #endif
1310        }        }
# Line 1348  Arguments: Line 1362  Arguments:
1362    name         name to seek, or NULL if seeking a numbered subpattern    name         name to seek, or NULL if seeking a numbered subpattern
1363    lorn         name length, or subpattern number if name is NULL    lorn         name length, or subpattern number if name is NULL
1364    xmode        TRUE if we are in /x mode    xmode        TRUE if we are in /x mode
1365    utf8         TRUE if we are in UTF-8 mode    utf8         TRUE if we are in UTF-8 mode
1366    
1367  Returns:       the number of the found subpattern, or -1 if not found  Returns:       the number of the found subpattern, or -1 if not found
1368  */  */
# Line 1384  return rc; Line 1398  return rc;
1398    
1399  /* This is called by several functions that scan a compiled expression looking  /* This is called by several functions that scan a compiled expression looking
1400  for a fixed first character, or an anchoring op code etc. It skips over things  for a fixed first character, or an anchoring op code etc. It skips over things
1401  that do not influence this. For some calls, a change of option is important.  that do not influence this. For some calls, it makes sense to skip negative
1402  For some calls, it makes sense to skip negative forward and all backward  forward and all backward assertions, and also the \b assertion; for others it
1403  assertions, and also the \b assertion; for others it does not.  does not.
1404    
1405  Arguments:  Arguments:
1406    code         pointer to the start of the group    code         pointer to the start of the group
   options      pointer to external options  
   optbit       the option bit whose changing is significant, or  
                  zero if none are  
1407    skipassert   TRUE if certain assertions are to be skipped    skipassert   TRUE if certain assertions are to be skipped
1408    
1409  Returns:       pointer to the first significant opcode  Returns:       pointer to the first significant opcode
1410  */  */
1411    
1412  static const uschar*  static const uschar*
1413  first_significant_code(const uschar *code, int *options, int optbit,  first_significant_code(const uschar *code, BOOL skipassert)
   BOOL skipassert)  
1414  {  {
1415  for (;;)  for (;;)
1416    {    {
1417    switch ((int)*code)    switch ((int)*code)
1418      {      {
     case OP_OPT:  
     if (optbit > 0 && ((int)code[1] & optbit) != (*options & optbit))  
       *options = (int)code[1];  
     code += 2;  
     break;  
   
1419      case OP_ASSERT_NOT:      case OP_ASSERT_NOT:
1420      case OP_ASSERTBACK:      case OP_ASSERTBACK:
1421      case OP_ASSERTBACK_NOT:      case OP_ASSERTBACK_NOT:
# Line 1461  and doing the check at the end; a flag s Line 1465  and doing the check at the end; a flag s
1465    
1466  Arguments:  Arguments:
1467    code     points to the start of the pattern (the bracket)    code     points to the start of the pattern (the bracket)
1468    options  the compiling options    utf8     TRUE in UTF-8 mode
1469    atend    TRUE if called when the pattern is complete    atend    TRUE if called when the pattern is complete
1470    cd       the "compile data" structure    cd       the "compile data" structure
1471    
# Line 1472  Returns:   the fixed length, Line 1476  Returns:   the fixed length,
1476  */  */
1477    
1478  static int  static int
1479  find_fixedlength(uschar *code, int options, BOOL atend, compile_data *cd)  find_fixedlength(uschar *code, BOOL utf8, BOOL atend, compile_data *cd)
1480  {  {
1481  int length = -1;  int length = -1;
1482    
# Line 1489  for (;;) Line 1493  for (;;)
1493    register int op = *cc;    register int op = *cc;
1494    switch (op)    switch (op)
1495      {      {
1496        /* We only need to continue for OP_CBRA (normal capturing bracket) and
1497        OP_BRA (normal non-capturing bracket) because the other variants of these
1498        opcodes are all concerned with unlimited repeated groups, which of course
1499        are not of fixed length. They will cause a -1 response from the default
1500        case of this switch. */
1501    
1502      case OP_CBRA:      case OP_CBRA:
1503      case OP_BRA:      case OP_BRA:
1504      case OP_ONCE:      case OP_ONCE:
1505      case OP_COND:      case OP_COND:
1506      d = find_fixedlength(cc + ((op == OP_CBRA)? 2:0), options, atend, cd);      d = find_fixedlength(cc + ((op == OP_CBRA)? 2:0), utf8, atend, cd);
1507      if (d < 0) return d;      if (d < 0) return d;
1508      branchlength += d;      branchlength += d;
1509      do cc += GET(cc, 1); while (*cc == OP_ALT);      do cc += GET(cc, 1); while (*cc == OP_ALT);
# Line 1502  for (;;) Line 1512  for (;;)
1512    
1513      /* Reached end of a branch; if it's a ket it is the end of a nested      /* Reached end of a branch; if it's a ket it is the end of a nested
1514      call. If it's ALT it is an alternation in a nested call. If it is      call. If it's ALT it is an alternation in a nested call. If it is
1515      END it's the end of the outer call. All can be handled by the same code. */      END it's the end of the outer call. All can be handled by the same code.
1516        Note that we must not include the OP_KETRxxx opcodes here, because they
1517        all imply an unlimited repeat. */
1518    
1519      case OP_ALT:      case OP_ALT:
1520      case OP_KET:      case OP_KET:
     case OP_KETRMAX:  
     case OP_KETRMIN:  
1521      case OP_END:      case OP_END:
1522      if (length < 0) length = branchlength;      if (length < 0) length = branchlength;
1523        else if (length != branchlength) return -1;        else if (length != branchlength) return -1;
# Line 1525  for (;;) Line 1535  for (;;)
1535      cs = ce = (uschar *)cd->start_code + GET(cc, 1);  /* Start subpattern */      cs = ce = (uschar *)cd->start_code + GET(cc, 1);  /* Start subpattern */
1536      do ce += GET(ce, 1); while (*ce == OP_ALT);       /* End subpattern */      do ce += GET(ce, 1); while (*ce == OP_ALT);       /* End subpattern */
1537      if (cc > cs && cc < ce) return -1;                /* Recursion */      if (cc > cs && cc < ce) return -1;                /* Recursion */
1538      d = find_fixedlength(cs + 2, options, atend, cd);      d = find_fixedlength(cs + 2, utf8, atend, cd);
1539      if (d < 0) return d;      if (d < 0) return d;
1540      branchlength += d;      branchlength += d;
1541      cc += 1 + LINK_SIZE;      cc += 1 + LINK_SIZE;
# Line 1548  for (;;) Line 1558  for (;;)
1558      case OP_RREF:      case OP_RREF:
1559      case OP_NRREF:      case OP_NRREF:
1560      case OP_DEF:      case OP_DEF:
     case OP_OPT:  
1561      case OP_CALLOUT:      case OP_CALLOUT:
1562      case OP_SOD:      case OP_SOD:
1563      case OP_SOM:      case OP_SOM:
# Line 1556  for (;;) Line 1565  for (;;)
1565      case OP_EOD:      case OP_EOD:
1566      case OP_EODN:      case OP_EODN:
1567      case OP_CIRC:      case OP_CIRC:
1568        case OP_CIRCM:
1569      case OP_DOLL:      case OP_DOLL:
1570        case OP_DOLLM:
1571      case OP_NOT_WORD_BOUNDARY:      case OP_NOT_WORD_BOUNDARY:
1572      case OP_WORD_BOUNDARY:      case OP_WORD_BOUNDARY:
1573      cc += _pcre_OP_lengths[*cc];      cc += _pcre_OP_lengths[*cc];
# Line 1565  for (;;) Line 1576  for (;;)
1576      /* Handle literal characters */      /* Handle literal characters */
1577    
1578      case OP_CHAR:      case OP_CHAR:
1579      case OP_CHARNC:      case OP_CHARI:
1580      case OP_NOT:      case OP_NOT:
1581        case OP_NOTI:
1582      branchlength++;      branchlength++;
1583      cc += 2;      cc += 2;
1584  #ifdef SUPPORT_UTF8  #ifdef SUPPORT_UTF8
1585      if ((options & PCRE_UTF8) != 0 && cc[-1] >= 0xc0)      if (utf8 && cc[-1] >= 0xc0) cc += _pcre_utf8_table4[cc[-1] & 0x3f];
       cc += _pcre_utf8_table4[cc[-1] & 0x3f];  
1586  #endif  #endif
1587      break;      break;
1588    
# Line 1582  for (;;) Line 1593  for (;;)
1593      branchlength += GET2(cc,1);      branchlength += GET2(cc,1);
1594      cc += 4;      cc += 4;
1595  #ifdef SUPPORT_UTF8  #ifdef SUPPORT_UTF8
1596      if ((options & PCRE_UTF8) != 0 && cc[-1] >= 0xc0)      if (utf8 && cc[-1] >= 0xc0) cc += _pcre_utf8_table4[cc[-1] & 0x3f];
       cc += _pcre_utf8_table4[cc[-1] & 0x3f];  
1597  #endif  #endif
1598      break;      break;
1599    
# Line 1685  _pcre_find_bracket(const uschar *code, B Line 1695  _pcre_find_bracket(const uschar *code, B
1695  for (;;)  for (;;)
1696    {    {
1697    register int c = *code;    register int c = *code;
1698    
1699    if (c == OP_END) return NULL;    if (c == OP_END) return NULL;
1700    
1701    /* XCLASS is used for classes that cannot be represented just by a bit    /* XCLASS is used for classes that cannot be represented just by a bit
# Line 1703  for (;;) Line 1714  for (;;)
1714    
1715    /* Handle capturing bracket */    /* Handle capturing bracket */
1716    
1717    else if (c == OP_CBRA)    else if (c == OP_CBRA || c == OP_SCBRA ||
1718               c == OP_CBRAPOS || c == OP_SCBRAPOS)
1719      {      {
1720      int n = GET2(code, 1+LINK_SIZE);      int n = GET2(code, 1+LINK_SIZE);
1721      if (n == number) return (uschar *)code;      if (n == number) return (uschar *)code;
# Line 1761  for (;;) Line 1773  for (;;)
1773      if (utf8) switch(c)      if (utf8) switch(c)
1774        {        {
1775        case OP_CHAR:        case OP_CHAR:
1776        case OP_CHARNC:        case OP_CHARI:
1777        case OP_EXACT:        case OP_EXACT:
1778          case OP_EXACTI:
1779        case OP_UPTO:        case OP_UPTO:
1780          case OP_UPTOI:
1781        case OP_MINUPTO:        case OP_MINUPTO:
1782          case OP_MINUPTOI:
1783        case OP_POSUPTO:        case OP_POSUPTO:
1784          case OP_POSUPTOI:
1785        case OP_STAR:        case OP_STAR:
1786          case OP_STARI:
1787        case OP_MINSTAR:        case OP_MINSTAR:
1788          case OP_MINSTARI:
1789        case OP_POSSTAR:        case OP_POSSTAR:
1790          case OP_POSSTARI:
1791        case OP_PLUS:        case OP_PLUS:
1792          case OP_PLUSI:
1793        case OP_MINPLUS:        case OP_MINPLUS:
1794          case OP_MINPLUSI:
1795        case OP_POSPLUS:        case OP_POSPLUS:
1796          case OP_POSPLUSI:
1797        case OP_QUERY:        case OP_QUERY:
1798          case OP_QUERYI:
1799        case OP_MINQUERY:        case OP_MINQUERY:
1800          case OP_MINQUERYI:
1801        case OP_POSQUERY:        case OP_POSQUERY:
1802          case OP_POSQUERYI:
1803        if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];        if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
1804        break;        break;
1805        }        }
# Line 1867  for (;;) Line 1892  for (;;)
1892      if (utf8) switch(c)      if (utf8) switch(c)
1893        {        {
1894        case OP_CHAR:        case OP_CHAR:
1895        case OP_CHARNC:        case OP_CHARI:
1896        case OP_EXACT:        case OP_EXACT:
1897          case OP_EXACTI:
1898        case OP_UPTO:        case OP_UPTO:
1899          case OP_UPTOI:
1900        case OP_MINUPTO:        case OP_MINUPTO:
1901          case OP_MINUPTOI:
1902        case OP_POSUPTO:        case OP_POSUPTO:
1903          case OP_POSUPTOI:
1904        case OP_STAR:        case OP_STAR:
1905          case OP_STARI:
1906        case OP_MINSTAR:        case OP_MINSTAR:
1907          case OP_MINSTARI:
1908        case OP_POSSTAR:        case OP_POSSTAR:
1909          case OP_POSSTARI:
1910        case OP_PLUS:        case OP_PLUS:
1911          case OP_PLUSI:
1912        case OP_MINPLUS:        case OP_MINPLUS:
1913          case OP_MINPLUSI:
1914        case OP_POSPLUS:        case OP_POSPLUS:
1915          case OP_POSPLUSI:
1916        case OP_QUERY:        case OP_QUERY:
1917          case OP_QUERYI:
1918        case OP_MINQUERY:        case OP_MINQUERY:
1919          case OP_MINQUERYI:
1920        case OP_POSQUERY:        case OP_POSQUERY:
1921          case OP_POSQUERYI:
1922        if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];        if (code[-1] >= 0xc0) code += _pcre_utf8_table4[code[-1] & 0x3f];
1923        break;        break;
1924        }        }
# Line 1919  could_be_empty_branch(const uschar *code Line 1957  could_be_empty_branch(const uschar *code
1957    compile_data *cd)    compile_data *cd)
1958  {  {
1959  register int c;  register int c;
1960  for (code = first_significant_code(code + _pcre_OP_lengths[*code], NULL, 0, TRUE);  for (code = first_significant_code(code + _pcre_OP_lengths[*code], TRUE);
1961       code < endcode;       code < endcode;
1962       code = first_significant_code(code + _pcre_OP_lengths[c], NULL, 0, TRUE))       code = first_significant_code(code + _pcre_OP_lengths[c], TRUE))
1963    {    {
1964    const uschar *ccode;    const uschar *ccode;
1965    
# Line 1937  for (code = first_significant_code(code Line 1975  for (code = first_significant_code(code
1975      continue;      continue;
1976      }      }
1977    
   /* Groups with zero repeats can of course be empty; skip them. */  
   
   if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO)  
     {  
     code += _pcre_OP_lengths[c];  
     do code += GET(code, 1); while (*code == OP_ALT);  
     c = *code;  
     continue;  
     }  
   
1978    /* For a recursion/subroutine call, if its end has been reached, which    /* For a recursion/subroutine call, if its end has been reached, which
1979    implies a subroutine call, we can scan it. */    implies a backward reference subroutine call, we can scan it. If it's a
1980      forward reference subroutine call, we can't. To detect forward reference
1981      we have to scan up the list that is kept in the workspace. This function is
1982      called only when doing the real compile, not during the pre-compile that
1983      measures the size of the compiled pattern. */
1984    
1985    if (c == OP_RECURSE)    if (c == OP_RECURSE)
1986      {      {
1987      BOOL empty_branch = FALSE;      const uschar *scode;
1988      const uschar *scode = cd->start_code + GET(code, 1);      BOOL empty_branch;
1989    
1990        /* Test for forward reference */
1991    
1992        for (scode = cd->start_workspace; scode < cd->hwm; scode += LINK_SIZE)
1993          if (GET(scode, 0) == code + 1 - cd->start_code) return TRUE;
1994    
1995        /* Not a forward reference, test for completed backward reference */
1996    
1997        empty_branch = FALSE;
1998        scode = cd->start_code + GET(code, 1);
1999      if (GET(scode, 1) == 0) return TRUE;    /* Unclosed */      if (GET(scode, 1) == 0) return TRUE;    /* Unclosed */
2000    
2001        /* Completed backwards reference */
2002    
2003      do      do
2004        {        {
2005        if (could_be_empty_branch(scode, endcode, utf8, cd))        if (could_be_empty_branch(scode, endcode, utf8, cd))
# Line 1965  for (code = first_significant_code(code Line 2010  for (code = first_significant_code(code
2010        scode += GET(scode, 1);        scode += GET(scode, 1);
2011        }        }
2012      while (*scode == OP_ALT);      while (*scode == OP_ALT);
2013    
2014      if (!empty_branch) return FALSE;  /* All branches are non-empty */      if (!empty_branch) return FALSE;  /* All branches are non-empty */
2015      continue;      continue;
2016      }      }
2017    
2018      /* Groups with zero repeats can of course be empty; skip them. */
2019    
2020      if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO ||
2021          c == OP_BRAPOSZERO)
2022        {
2023        code += _pcre_OP_lengths[c];
2024        do code += GET(code, 1); while (*code == OP_ALT);
2025        c = *code;
2026        continue;
2027        }
2028    
2029      /* A nested group that is already marked as "could be empty" can just be
2030      skipped. */
2031    
2032      if (c == OP_SBRA  || c == OP_SBRAPOS ||
2033          c == OP_SCBRA || c == OP_SCBRAPOS)
2034        {
2035        do code += GET(code, 1); while (*code == OP_ALT);
2036        c = *code;
2037        continue;
2038        }
2039    
2040    /* For other groups, scan the branches. */    /* For other groups, scan the branches. */
2041    
2042    if (c == OP_BRA || c == OP_CBRA || c == OP_ONCE || c == OP_COND)    if (c == OP_BRA  || c == OP_BRAPOS ||
2043          c == OP_CBRA || c == OP_CBRAPOS ||
2044          c == OP_ONCE || c == OP_COND)
2045      {      {
2046      BOOL empty_branch;      BOOL empty_branch;
2047      if (GET(code, 1) == 0) return TRUE;    /* Hit unclosed bracket */      if (GET(code, 1) == 0) return TRUE;    /* Hit unclosed bracket */
# Line 2058  for (code = first_significant_code(code Line 2128  for (code = first_significant_code(code
2128      case OP_ALLANY:      case OP_ALLANY:
2129      case OP_ANYBYTE:      case OP_ANYBYTE:
2130      case OP_CHAR:      case OP_CHAR:
2131      case OP_CHARNC:      case OP_CHARI:
2132      case OP_NOT:      case OP_NOT:
2133        case OP_NOTI:
2134      case OP_PLUS:      case OP_PLUS:
2135      case OP_MINPLUS:      case OP_MINPLUS:
2136      case OP_POSPLUS:      case OP_POSPLUS:
# Line 2099  for (code = first_significant_code(code Line 2170  for (code = first_significant_code(code
2170      case OP_KET:      case OP_KET:
2171      case OP_KETRMAX:      case OP_KETRMAX:
2172      case OP_KETRMIN:      case OP_KETRMIN:
2173        case OP_KETRPOS:
2174      case OP_ALT:      case OP_ALT:
2175      return TRUE;      return TRUE;
2176    
# Line 2107  for (code = first_significant_code(code Line 2179  for (code = first_significant_code(code
2179    
2180  #ifdef SUPPORT_UTF8  #ifdef SUPPORT_UTF8
2181      case OP_STAR:      case OP_STAR:
2182        case OP_STARI:
2183      case OP_MINSTAR:      case OP_MINSTAR:
2184        case OP_MINSTARI:
2185      case OP_POSSTAR:      case OP_POSSTAR:
2186        case OP_POSSTARI:
2187      case OP_QUERY:      case OP_QUERY:
2188        case OP_QUERYI:
2189      case OP_MINQUERY:      case OP_MINQUERY:
2190        case OP_MINQUERYI:
2191      case OP_POSQUERY:      case OP_POSQUERY:
2192        case OP_POSQUERYI:
2193      if (utf8 && code[1] >= 0xc0) code += _pcre_utf8_table4[code[1] & 0x3f];      if (utf8 && code[1] >= 0xc0) code += _pcre_utf8_table4[code[1] & 0x3f];
2194      break;      break;
2195    
2196      case OP_UPTO:      case OP_UPTO:
2197        case OP_UPTOI:
2198      case OP_MINUPTO:      case OP_MINUPTO:
2199        case OP_MINUPTOI:
2200      case OP_POSUPTO:      case OP_POSUPTO:
2201        case OP_POSUPTOI:
2202      if (utf8 && code[3] >= 0xc0) code += _pcre_utf8_table4[code[3] & 0x3f];      if (utf8 && code[3] >= 0xc0) code += _pcre_utf8_table4[code[3] & 0x3f];
2203      break;      break;
2204  #endif  #endif
# Line 2155  return TRUE; Line 2236  return TRUE;
2236  the current branch of the current pattern to see if it could match the empty  the current branch of the current pattern to see if it could match the empty
2237  string. If it could, we must look outwards for branches at other levels,  string. If it could, we must look outwards for branches at other levels,
2238  stopping when we pass beyond the bracket which is the subject of the recursion.  stopping when we pass beyond the bracket which is the subject of the recursion.
2239    This function is called only during the real compile, not during the
2240    pre-compile.
2241    
2242  Arguments:  Arguments:
2243    code        points to start of the recursion    code        points to start of the recursion
# Line 2532  if ((options & PCRE_EXTENDED) != 0) Line 2615  if ((options & PCRE_EXTENDED) != 0)
2615      while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;      while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
2616      if (*ptr == CHAR_NUMBER_SIGN)      if (*ptr == CHAR_NUMBER_SIGN)
2617        {        {
2618        ptr++;        ptr++;
2619        while (*ptr != 0)        while (*ptr != 0)
2620          {          {
2621          if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }          if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
2622          ptr++;          ptr++;
2623  #ifdef SUPPORT_UTF8  #ifdef SUPPORT_UTF8
2624          if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++;          if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++;
2625  #endif  #endif
2626          }          }
# Line 2576  if ((options & PCRE_EXTENDED) != 0) Line 2659  if ((options & PCRE_EXTENDED) != 0)
2659      while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;      while ((cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
2660      if (*ptr == CHAR_NUMBER_SIGN)      if (*ptr == CHAR_NUMBER_SIGN)
2661        {        {
2662        ptr++;        ptr++;
2663        while (*ptr != 0)        while (*ptr != 0)
2664          {          {
2665          if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }          if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
2666          ptr++;          ptr++;
2667  #ifdef SUPPORT_UTF8  #ifdef SUPPORT_UTF8
2668          if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++;          if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++;
2669  #endif  #endif
2670          }          }
# Line 2609  if (next >= 0) switch(op_code) Line 2692  if (next >= 0) switch(op_code)
2692  #endif  #endif
2693    return c != next;    return c != next;
2694    
2695    /* For CHARNC (caseless character) we must check the other case. If we have    /* For CHARI (caseless character) we must check the other case. If we have
2696    Unicode property support, we can use it to test the other case of    Unicode property support, we can use it to test the other case of
2697    high-valued characters. */    high-valued characters. */
2698    
2699    case OP_CHARNC:    case OP_CHARI:
2700  #ifdef SUPPORT_UTF8  #ifdef SUPPORT_UTF8
2701    GETCHARTEST(c, previous);    GETCHARTEST(c, previous);
2702  #else  #else
# Line 2636  if (next >= 0) switch(op_code) Line 2719  if (next >= 0) switch(op_code)
2719  #endif  /* SUPPORT_UTF8 */  #endif  /* SUPPORT_UTF8 */
2720    return (c != cd->fcc[next]);  /* Non-UTF-8 mode */    return (c != cd->fcc[next]);  /* Non-UTF-8 mode */
2721    
2722    /* For OP_NOT, its data is always a single-byte character. */    /* For OP_NOT and OP_NOTI, the data is always a single-byte character. These
2723      opcodes are not used for multi-byte characters, because they are coded using
2724      an XCLASS instead. */
2725    
2726    case OP_NOT:    case OP_NOT:
2727      return (c = *previous) == next;
2728    
2729      case OP_NOTI:
2730    if ((c = *previous) == next) return TRUE;    if ((c = *previous) == next) return TRUE;
   if ((options & PCRE_CASELESS) == 0) return FALSE;  
2731  #ifdef SUPPORT_UTF8  #ifdef SUPPORT_UTF8
2732    if (utf8)    if (utf8)
2733      {      {
# Line 2745  replaced by OP_PROP codes when PCRE_UCP Line 2832  replaced by OP_PROP codes when PCRE_UCP
2832  switch(op_code)  switch(op_code)
2833    {    {
2834    case OP_CHAR:    case OP_CHAR:
2835    case OP_CHARNC:    case OP_CHARI:
2836  #ifdef SUPPORT_UTF8  #ifdef SUPPORT_UTF8
2837    GETCHARTEST(c, previous);    GETCHARTEST(c, previous);
2838  #else  #else
# Line 2952  int greedy_default, greedy_non_default; Line 3039  int greedy_default, greedy_non_default;
3039  int firstbyte, reqbyte;  int firstbyte, reqbyte;
3040  int zeroreqbyte, zerofirstbyte;  int zeroreqbyte, zerofirstbyte;
3041  int req_caseopt, reqvary, tempreqvary;  int req_caseopt, reqvary, tempreqvary;
3042  int options = *optionsptr;  int options = *optionsptr;               /* May change dynamically */
3043  int after_manual_callout = 0;  int after_manual_callout = 0;
3044  int length_prevgroup = 0;  int length_prevgroup = 0;
3045  register int c;  register int c;
# Line 2970  uschar *previous_callout = NULL; Line 3057  uschar *previous_callout = NULL;
3057  uschar *save_hwm = NULL;  uschar *save_hwm = NULL;
3058  uschar classbits[32];  uschar classbits[32];
3059    
3060    /* We can fish out the UTF-8 setting once and for all into a BOOL, but we
3061    must not do this for other options (e.g. PCRE_EXTENDED) because they may change
3062    dynamically as we process the pattern. */
3063    
3064  #ifdef SUPPORT_UTF8  #ifdef SUPPORT_UTF8
3065  BOOL class_utf8;  BOOL class_utf8;
3066  BOOL utf8 = (options & PCRE_UTF8) != 0;  BOOL utf8 = (options & PCRE_UTF8) != 0;
# Line 3150  for (;; ptr++) Line 3241  for (;; ptr++)
3241      previous_callout = NULL;      previous_callout = NULL;
3242      }      }
3243    
3244    /* In extended mode, skip white space and comments */    /* In extended mode, skip white space and comments. */
3245    
3246    if ((options & PCRE_EXTENDED) != 0)    if ((options & PCRE_EXTENDED) != 0)
3247      {      {
3248      if ((cd->ctypes[c] & ctype_space) != 0) continue;      if ((cd->ctypes[c] & ctype_space) != 0) continue;
3249      if (c == CHAR_NUMBER_SIGN)      if (c == CHAR_NUMBER_SIGN)
3250        {        {
3251        ptr++;        ptr++;
3252        while (*ptr != 0)        while (*ptr != 0)
3253          {          {
3254          if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }          if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
3255          ptr++;          ptr++;
3256  #ifdef SUPPORT_UTF8  #ifdef SUPPORT_UTF8
3257          if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++;          if (utf8) while ((*ptr & 0xc0) == 0x80) ptr++;
3258  #endif  #endif
3259          }          }
# Line 3209  for (;; ptr++) Line 3300  for (;; ptr++)
3300      the setting of any following char as a first character. */      the setting of any following char as a first character. */
3301    
3302      case CHAR_CIRCUMFLEX_ACCENT:      case CHAR_CIRCUMFLEX_ACCENT:
3303        previous = NULL;
3304      if ((options & PCRE_MULTILINE) != 0)      if ((options & PCRE_MULTILINE) != 0)
3305        {        {
3306        if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;        if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
3307          *code++ = OP_CIRCM;
3308        }        }
3309      previous = NULL;      else *code++ = OP_CIRC;
     *code++ = OP_CIRC;  
3310      break;      break;
3311    
3312      case CHAR_DOLLAR_SIGN:      case CHAR_DOLLAR_SIGN:
3313      previous = NULL;      previous = NULL;
3314      *code++ = OP_DOLL;      *code++ = ((options & PCRE_MULTILINE) != 0)? OP_DOLLM : OP_DOLL;
3315      break;      break;
3316    
3317      /* There can never be a first char if '.' is first, whatever happens about      /* There can never be a first char if '.' is first, whatever happens about
# Line 3540  for (;; ptr++) Line 3632  for (;; ptr++)
3632              continue;              continue;
3633    
3634              /* Perl 5.004 onwards omits VT from \s, but we must preserve it              /* Perl 5.004 onwards omits VT from \s, but we must preserve it
3635              if it was previously set by something earlier in the character              if it was previously set by something earlier in the character
3636              class. */              class. */
3637    
3638              case ESC_s:              case ESC_s:
3639              classbits[0] |= cbits[cbit_space];              classbits[0] |= cbits[cbit_space];
3640              classbits[1] |= cbits[cbit_space+1] & ~0x08;              classbits[1] |= cbits[cbit_space+1] & ~0x08;
3641              for (c = 2; c < 32; c++) classbits[c] |= cbits[c+cbit_space];              for (c = 2; c < 32; c++) classbits[c] |= cbits[c+cbit_space];
3642              continue;              continue;
3643    
# Line 3965  for (;; ptr++) Line 4057  for (;; ptr++)
4057    
4058      In UTF-8 mode, we can optimize the negative case only if there were no      In UTF-8 mode, we can optimize the negative case only if there were no
4059      characters >= 128 because OP_NOT and the related opcodes like OP_NOTSTAR      characters >= 128 because OP_NOT and the related opcodes like OP_NOTSTAR
4060      operate on single-bytes only. This is an historical hangover. Maybe one day      operate on single-bytes characters only. This is an historical hangover.
4061      we can tidy these opcodes to handle multi-byte characters.      Maybe one day we can tidy these opcodes to handle multi-byte characters.
4062    
4063      The optimization throws away the bit map. We turn the item into a      The optimization throws away the bit map. We turn the item into a
4064      1-character OP_CHAR[NC] if it's positive, or OP_NOT if it's negative. Note      1-character OP_CHAR[I] if it's positive, or OP_NOT[I] if it's negative.
4065      that OP_NOT does not support multibyte characters. In the positive case, it      Note that OP_NOT[I] does not support multibyte characters. In the positive
4066      can cause firstbyte to be set. Otherwise, there can be no first char if      case, it can cause firstbyte to be set. Otherwise, there can be no first
4067      this item is first, whatever repeat count may follow. In the case of      char if this item is first, whatever repeat count may follow. In the case
4068      reqbyte, save the previous value for reinstating. */      of reqbyte, save the previous value for reinstating. */
4069    
4070  #ifdef SUPPORT_UTF8  #ifdef SUPPORT_UTF8
4071      if (class_charcount == 1 && !class_utf8 &&      if (class_charcount == 1 && !class_utf8 &&
# Line 3984  for (;; ptr++) Line 4076  for (;; ptr++)
4076        {        {
4077        zeroreqbyte = reqbyte;        zeroreqbyte = reqbyte;
4078    
4079        /* The OP_NOT opcode works on one-byte characters only. */        /* The OP_NOT[I] opcodes work on one-byte characters only. */
4080    
4081        if (negate_class)        if (negate_class)
4082          {          {
4083          if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;          if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
4084          zerofirstbyte = firstbyte;          zerofirstbyte = firstbyte;
4085          *code++ = OP_NOT;          *code++ = ((options & PCRE_CASELESS) != 0)? OP_NOTI: OP_NOT;
4086          *code++ = class_lastchar;          *code++ = class_lastchar;
4087          break;          break;
4088          }          }
# Line 4118  for (;; ptr++) Line 4210  for (;; ptr++)
4210      op_type = 0;                    /* Default single-char op codes */      op_type = 0;                    /* Default single-char op codes */
4211      possessive_quantifier = FALSE;  /* Default not possessive quantifier */      possessive_quantifier = FALSE;  /* Default not possessive quantifier */
4212    
4213      /* Save start of previous item, in case we have to move it up to make space      /* Save start of previous item, in case we have to move it up in order to
4214      for an inserted OP_ONCE for the additional '+' extension. */      insert something before it. */
4215    
4216      tempcode = previous;      tempcode = previous;
4217    
# Line 4141  for (;; ptr++) Line 4233  for (;; ptr++)
4233        ptr++;        ptr++;
4234        }        }
4235      else repeat_type = greedy_default;      else repeat_type = greedy_default;
4236    
4237        /* If previous was a recursion call, wrap it in atomic brackets so that
4238        previous becomes the atomic group. All recursions were so wrapped in the
4239        past, but it no longer happens for non-repeated recursions. In fact, the
4240        repeated ones could be re-implemented independently so as not to need this,
4241        but for the moment we rely on the code for repeating groups. */
4242    
4243        if (*previous == OP_RECURSE)
4244          {
4245          memmove(previous + 1 + LINK_SIZE, previous, 1 + LINK_SIZE);
4246          *previous = OP_ONCE;
4247          PUT(previous, 1, 2 + 2*LINK_SIZE);
4248          previous[2 + 2*LINK_SIZE] = OP_KET;
4249          PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE);
4250          code += 2 + 2 * LINK_SIZE;
4251          length_prevgroup = 3 + 3*LINK_SIZE;
4252    
4253          /* When actually compiling, we need to check whether this was a forward
4254          reference, and if so, adjust the offset. */
4255    
4256          if (lengthptr == NULL && cd->hwm >= cd->start_workspace + LINK_SIZE)
4257            {
4258            int offset = GET(cd->hwm, -LINK_SIZE);
4259            if (offset == previous + 1 - cd->start_code)
4260              PUT(cd->hwm, -LINK_SIZE, offset + 1 + LINK_SIZE);
4261            }
4262          }
4263    
4264        /* Now handle repetition for the different types of item. */
4265    
4266      /* If previous was a character match, abolish the item and generate a      /* If previous was a character match, abolish the item and generate a
4267      repeat item instead. If a char item has a minumum of more than one, ensure      repeat item instead. If a char item has a minumum of more than one, ensure
# Line 4148  for (;; ptr++) Line 4269  for (;; ptr++)
4269      the first thing in a branch because the x will have gone into firstbyte      the first thing in a branch because the x will have gone into firstbyte
4270      instead.  */      instead.  */
4271    
4272      if (*previous == OP_CHAR || *previous == OP_CHARNC)      if (*previous == OP_CHAR || *previous == OP_CHARI)
4273        {        {
4274          op_type = (*previous == OP_CHAR)? 0 : OP_STARI - OP_STAR;
4275    
4276        /* Deal with UTF-8 characters that take up more than one byte. It's        /* Deal with UTF-8 characters that take up more than one byte. It's
4277        easier to write this out separately than try to macrify it. Use c to        easier to write this out separately than try to macrify it. Use c to
4278        hold the length of the character in bytes, plus 0x80 to flag that it's a        hold the length of the character in bytes, plus 0x80 to flag that it's a
# Line 4194  for (;; ptr++) Line 4317  for (;; ptr++)
4317      /* If previous was a single negated character ([^a] or similar), we use      /* If previous was a single negated character ([^a] or similar), we use
4318      one of the special opcodes, replacing it. The code is shared with single-      one of the special opcodes, replacing it. The code is shared with single-
4319      character repeats by setting opt_type to add a suitable offset into      character repeats by setting opt_type to add a suitable offset into
4320      repeat_type. We can also test for auto-possessification. OP_NOT is      repeat_type. We can also test for auto-possessification. OP_NOT and OP_NOTI
4321      currently used only for single-byte chars. */      are currently used only for single-byte chars. */
4322    
4323      else if (*previous == OP_NOT)      else if (*previous == OP_NOT || *previous == OP_NOTI)
4324        {        {
4325        op_type = OP_NOTSTAR - OP_STAR;  /* Use "not" opcodes */        op_type = ((*previous == OP_NOT)? OP_NOTSTAR : OP_NOTSTARI) - OP_STAR;
4326        c = previous[1];        c = previous[1];
4327        if (!possessive_quantifier &&        if (!possessive_quantifier &&
4328            repeat_max < 0 &&            repeat_max < 0 &&
# Line 4396  for (;; ptr++) Line 4519  for (;; ptr++)
4519  #ifdef SUPPORT_UTF8  #ifdef SUPPORT_UTF8
4520               *previous == OP_XCLASS ||               *previous == OP_XCLASS ||
4521  #endif  #endif
4522               *previous == OP_REF)               *previous == OP_REF ||
4523                 *previous == OP_REFI)
4524        {        {
4525        if (repeat_max == 0)        if (repeat_max == 0)
4526          {          {
# Line 4430  for (;; ptr++) Line 4554  for (;; ptr++)
4554        }        }
4555    
4556      /* If previous was a bracket group, we may have to replicate it in certain      /* If previous was a bracket group, we may have to replicate it in certain
4557      cases. */      cases. Note that at this point we can encounter only the "basic" bracket
4558        opcodes such as BRA and CBRA, as this is the place where they get converted
4559        into the more special varieties such as BRAPOS and SBRA. A test for >=
4560        OP_ASSERT and <= OP_COND includes ASSERT, ASSERT_NOT, ASSERTBACK,
4561        ASSERTBACK_NOT, ONCE, BRA, CBRA, and COND. Originally, PCRE did not allow
4562        repetition of assertions, but now it does, for Perl compatibility. */
4563    
4564      else if (*previous == OP_BRA  || *previous == OP_CBRA ||      else if (*previous >= OP_ASSERT && *previous <= OP_COND)
              *previous == OP_ONCE || *previous == OP_COND)  
4565        {        {
4566        register int i;        register int i;
       int ketoffset = 0;  
4567        int len = (int)(code - previous);        int len = (int)(code - previous);
4568        uschar *bralink = NULL;        uschar *bralink = NULL;
4569          uschar *brazeroptr = NULL;
4570        /* Repeating a DEFINE group is pointless */  
4571          /* Repeating a DEFINE group is pointless, but Perl allows the syntax, so
4572          we just ignore the repeat. */
4573    
4574        if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF)        if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF)
4575          {          goto END_REPEAT;
         *errorcodeptr = ERR55;  
         goto FAILED;  
         }  
4576    
4577        /* If the maximum repeat count is unlimited, find the end of the bracket        /* There is no sense in actually repeating assertions. The only potential
4578        by scanning through from the start, and compute the offset back to it        use of repetition is in cases when the assertion is optional. Therefore,
4579        from the current code pointer. There may be an OP_OPT setting following        if the minimum is greater than zero, just ignore the repeat. If the
4580        the final KET, so we can't find the end just by going back from the code        maximum is not not zero or one, set it to 1. */
4581        pointer. */  
4582          if (*previous < OP_ONCE)    /* Assertion */
4583        if (repeat_max == -1)          {
4584          {          if (repeat_min > 0) goto END_REPEAT;
4585          register uschar *ket = previous;          if (repeat_max < 0 || repeat_max > 1) repeat_max = 1;
4586          do ket += GET(ket, 1); while (*ket != OP_KET);          }
         ketoffset = (int)(code - ket);  
         }  
4587    
4588        /* The case of a zero minimum is special because of the need to stick        /* The case of a zero minimum is special because of the need to stick
4589        OP_BRAZERO in front of it, and because the group appears once in the        OP_BRAZERO in front of it, and because the group appears once in the
# Line 4479  for (;; ptr++) Line 4603  for (;; ptr++)
4603          **   goto END_REPEAT;          **   goto END_REPEAT;
4604          **   }          **   }
4605    
4606          However, that fails when a group is referenced as a subroutine from          However, that fails when a group or a subgroup within it is referenced
4607          elsewhere in the pattern, so now we stick in OP_SKIPZERO in front of it          as a subroutine from elsewhere in the pattern, so now we stick in
4608          so that it is skipped on execution. As we don't have a list of which          OP_SKIPZERO in front of it so that it is skipped on execution. As we
4609          groups are referenced, we cannot do this selectively.          don't have a list of which groups are referenced, we cannot do this
4610            selectively.
4611    
4612          If the maximum is 1 or unlimited, we just have to stick in the BRAZERO          If the maximum is 1 or unlimited, we just have to stick in the BRAZERO
4613          and do no more at this point. However, we do need to adjust any          and do no more at this point. However, we do need to adjust any
# Line 4502  for (;; ptr++) Line 4627  for (;; ptr++)
4627              *previous++ = OP_SKIPZERO;              *previous++ = OP_SKIPZERO;
4628              goto END_REPEAT;              goto END_REPEAT;
4629              }              }
4630              brazeroptr = previous;    /* Save for possessive optimizing */
4631            *previous++ = OP_BRAZERO + repeat_type;            *previous++ = OP_BRAZERO + repeat_type;
4632            }            }
4633    
# Line 4666  for (;; ptr++) Line 4792  for (;; ptr++)
4792            }            }
4793          }          }
4794    
4795        /* If the maximum is unlimited, set a repeater in the final copy. We        /* If the maximum is unlimited, set a repeater in the final copy. For
4796        can't just offset backwards from the current code point, because we        ONCE brackets, that's all we need to do. However, possessively repeated
4797        don't know if there's been an options resetting after the ket. The        ONCE brackets can be converted into non-capturing brackets, as the
4798        correct offset was computed above.        behaviour of (?:xx)++ is the same as (?>xx)++ and this saves having to
4799          deal with possessive ONCEs specially.
4800    
4801          Otherwise, if the quantifier was possessive, we convert the BRA code to
4802          the POS form, and the KET code to KETRPOS. (It turns out to be convenient
4803          at runtime to detect this kind of subpattern at both the start and at the
4804          end.) The use of special opcodes makes it possible to reduce greatly the
4805          stack usage in pcre_exec(). If the group is preceded by OP_BRAZERO,
4806          convert this to OP_BRAPOSZERO. Then cancel the possessive flag so that
4807          the default action below, of wrapping everything inside atomic brackets,
4808          does not happen.
4809    
4810        Then, when we are doing the actual compile phase, check to see whether        Then, when we are doing the actual compile phase, check to see whether
4811        this group is a non-atomic one that could match an empty string. If so,        this group is one that could match an empty string. If so, convert the
4812        convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so        initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so that runtime
4813        that runtime checking can be done. [This check is also applied to        checking can be done. [This check is also applied to ONCE groups at
4814        atomic groups at runtime, but in a different way.] */        runtime, but in a different way.] */
4815    
4816        else        else
4817          {          {
4818          uschar *ketcode = code - ketoffset;          uschar *ketcode = code - 1 - LINK_SIZE;
4819          uschar *bracode = ketcode - GET(ketcode, 1);          uschar *bracode = ketcode - GET(ketcode, 1);
4820          *ketcode = OP_KETRMAX + repeat_type;  
4821          if (lengthptr == NULL && *bracode != OP_ONCE)          if (*bracode == OP_ONCE && possessive_quantifier) *bracode = OP_BRA;
4822            if (*bracode == OP_ONCE)
4823              *ketcode = OP_KETRMAX + repeat_type;
4824            else
4825            {            {
4826            uschar *scode = bracode;            if (possessive_quantifier)
           do  
4827              {              {
4828              if (could_be_empty_branch(scode, ketcode, utf8, cd))              *bracode += 1;                   /* Switch to xxxPOS opcodes */
4829                *ketcode = OP_KETRPOS;
4830                if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO;
4831                possessive_quantifier = FALSE;
4832                }
4833              else *ketcode = OP_KETRMAX + repeat_type;
4834    
4835              if (lengthptr == NULL)
4836                {
4837                uschar *scode = bracode;
4838                do
4839                {                {
4840                *bracode += OP_SBRA - OP_BRA;                if (could_be_empty_branch(scode, ketcode, utf8, cd))
4841                break;                  {
4842                    *bracode += OP_SBRA - OP_BRA;
4843                    break;
4844                    }
4845                  scode += GET(scode, 1);
4846                }                }
4847              scode += GET(scode, 1);              while (*scode == OP_ALT);
4848              }              }
           while (*scode == OP_ALT);  
4849            }            }
4850          }          }
4851        }        }
# Line 4715  for (;; ptr++) Line 4866  for (;; ptr++)
4866        }        }
4867    
4868      /* If the character following a repeat is '+', or if certain optimization      /* If the character following a repeat is '+', or if certain optimization
4869      tests above succeeded, possessive_quantifier is TRUE. For some of the      tests above succeeded, possessive_quantifier is TRUE. For some opcodes,
4870      simpler opcodes, there is an special alternative opcode for this. For      there are special alternative opcodes for this case. For anything else, we
4871      anything else, we wrap the entire repeated item inside OP_ONCE brackets.      wrap the entire repeated item inside OP_ONCE brackets. Logically, the '+'
4872      The '+' notation is just syntactic sugar, taken from Sun's Java package,      notation is just syntactic sugar, taken from Sun's Java package, but the
4873      but the special opcodes can optimize it a bit. The repeated item starts at      special opcodes can optimize it.
4874      tempcode, not at previous, which might be the first part of a string whose  
4875      (former) last char we repeated.      Possessively repeated subpatterns have already been handled in the code
4876        just above, so possessive_quantifier is always FALSE for them at this
4877        stage.
4878    
4879        Note that the repeated item starts at tempcode, not at previous, which
4880        might be the first part of a string whose (former) last char we repeated.
4881    
4882      Possessifying an 'exact' quantifier has no effect, so we can ignore it. But      Possessifying an 'exact' quantifier has no effect, so we can ignore it. But
4883      an 'upto' may follow. We skip over an 'exact' item, and then test the      an 'upto' may follow. We skip over an 'exact' item, and then test the
# Line 4752  for (;; ptr++) Line 4908  for (;; ptr++)
4908          case OP_QUERY: *tempcode = OP_POSQUERY; break;          case OP_QUERY: *tempcode = OP_POSQUERY; break;
4909          case OP_UPTO:  *tempcode = OP_POSUPTO; break;          case OP_UPTO:  *tempcode = OP_POSUPTO; break;
4910    
4911          case OP_TYPESTAR:  *tempcode = OP_TYPEPOSSTAR; break;          case OP_STARI:  *tempcode = OP_POSSTARI; break;
4912          case OP_TYPEPLUS:  *tempcode = OP_TYPEPOSPLUS; break;          case OP_PLUSI:  *tempcode = OP_POSPLUSI; break;
4913          case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break;          case OP_QUERYI: *tempcode = OP_POSQUERYI; break;
4914          case OP_TYPEUPTO:  *tempcode = OP_TYPEPOSUPTO; break;          case OP_UPTOI:  *tempcode = OP_POSUPTOI; break;
4915    
4916          case OP_NOTSTAR:  *tempcode = OP_NOTPOSSTAR; break;          case OP_NOTSTAR:  *tempcode = OP_NOTPOSSTAR; break;
4917          case OP_NOTPLUS:  *tempcode = OP_NOTPOSPLUS; break;          case OP_NOTPLUS:  *tempcode = OP_NOTPOSPLUS; break;
4918          case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break;          case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break;
4919          case OP_NOTUPTO:  *tempcode = OP_NOTPOSUPTO; break;          case OP_NOTUPTO:  *tempcode = OP_NOTPOSUPTO; break;
4920    
4921            case OP_NOTSTARI:  *tempcode = OP_NOTPOSSTARI; break;
4922            case OP_NOTPLUSI:  *tempcode = OP_NOTPOSPLUSI; break;
4923            case OP_NOTQUERYI: *tempcode = OP_NOTPOSQUERYI; break;
4924            case OP_NOTUPTOI:  *tempcode = OP_NOTPOSUPTOI; break;
4925    
4926            case OP_TYPESTAR:  *tempcode = OP_TYPEPOSSTAR; break;
4927            case OP_TYPEPLUS:  *tempcode = OP_TYPEPOSPLUS; break;
4928            case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break;
4929            case OP_TYPEUPTO:  *tempcode = OP_TYPEPOSUPTO; break;
4930    
4931          /* Because we are moving code along, we must ensure that any          /* Because we are moving code along, we must ensure that any
4932          pending recursive references are updated. */          pending recursive references are updated. */
4933    
# Line 4836  for (;; ptr++) Line 5002  for (;; ptr++)
5002          if (namelen == verbs[i].len &&          if (namelen == verbs[i].len &&
5003              strncmp((char *)name, vn, namelen) == 0)              strncmp((char *)name, vn, namelen) == 0)
5004            {            {
5005            /* Check for open captures before ACCEPT */            /* Check for open captures before ACCEPT and convert it to
5006              ASSERT_ACCEPT if in an assertion. */
5007    
5008            if (verbs[i].op == OP_ACCEPT)            if (verbs[i].op == OP_ACCEPT)
5009              {              {
5010              open_capitem *oc;              open_capitem *oc;
5011                if (arglen != 0)
5012                  {
5013                  *errorcodeptr = ERR59;
5014                  goto FAILED;
5015                  }
5016              cd->had_accept = TRUE;              cd->had_accept = TRUE;
5017              for (oc = cd->open_caps; oc != NULL; oc = oc->next)              for (oc = cd->open_caps; oc != NULL; oc = oc->next)
5018                {                {
5019                *code++ = OP_CLOSE;                *code++ = OP_CLOSE;
5020                PUT2INC(code, 0, oc->number);                PUT2INC(code, 0, oc->number);
5021                }                }
5022                *code++ = (cd->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT;
5023              }              }
5024    
5025            /* Handle the cases with/without an argument */            /* Handle other cases with/without an argument */
5026    
5027            if (arglen == 0)            else if (arglen == 0)
5028              {              {
5029              if (verbs[i].op < 0)   /* Argument is mandatory */              if (verbs[i].op < 0)   /* Argument is mandatory */
5030                {                {
# Line 4862  for (;; ptr++) Line 5035  for (;; ptr++)
5035              if (*code++ == OP_THEN)              if (*code++ == OP_THEN)
5036                {                {
5037                PUT(code, 0, code - bcptr->current_branch - 1);                PUT(code, 0, code - bcptr->current_branch - 1);
5038                code += LINK_SIZE;                code += LINK_SIZE;
5039                }                }
5040              }              }
5041    
5042            else            else
# Line 4877  for (;; ptr++) Line 5050  for (;; ptr++)
5050              if (*code++ == OP_THEN_ARG)              if (*code++ == OP_THEN_ARG)
5051                {                {
5052                PUT(code, 0, code - bcptr->current_branch - 1);                PUT(code, 0, code - bcptr->current_branch - 1);
5053                code += LINK_SIZE;                code += LINK_SIZE;
5054                }                }
5055              *code++ = arglen;              *code++ = arglen;
5056              memcpy(code, arg, arglen);              memcpy(code, arg, arglen);
5057              code += arglen;              code += arglen;
# Line 5140  for (;; ptr++) Line 5313  for (;; ptr++)
5313          /* ------------------------------------------------------------ */          /* ------------------------------------------------------------ */
5314          case CHAR_EQUALS_SIGN:                 /* Positive lookahead */          case CHAR_EQUALS_SIGN:                 /* Positive lookahead */
5315          bravalue = OP_ASSERT;          bravalue = OP_ASSERT;
5316            cd->assert_depth += 1;
5317          ptr++;          ptr++;
5318          break;          break;
5319    
# Line 5154  for (;; ptr++) Line 5328  for (;; ptr++)
5328            continue;            continue;
5329            }            }
5330          bravalue = OP_ASSERT_NOT;          bravalue = OP_ASSERT_NOT;
5331            cd->assert_depth += 1;
5332          break;          break;
5333    
5334    
# Line 5163  for (;; ptr++) Line 5338  for (;; ptr++)
5338            {            {
5339            case CHAR_EQUALS_SIGN:               /* Positive lookbehind */            case CHAR_EQUALS_SIGN:               /* Positive lookbehind */
5340            bravalue = OP_ASSERTBACK;            bravalue = OP_ASSERTBACK;
5341              cd->assert_depth += 1;
5342            ptr += 2;            ptr += 2;
5343            break;            break;
5344    
5345            case CHAR_EXCLAMATION_MARK:          /* Negative lookbehind */            case CHAR_EXCLAMATION_MARK:          /* Negative lookbehind */
5346            bravalue = OP_ASSERTBACK_NOT;            bravalue = OP_ASSERTBACK_NOT;
5347              cd->assert_depth += 1;
5348            ptr += 2;            ptr += 2;
5349            break;            break;
5350    
# Line 5373  for (;; ptr++) Line 5550  for (;; ptr++)
5550          while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;          while ((cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
5551          namelen = (int)(ptr - name);          namelen = (int)(ptr - name);
5552    
5553          /* In the pre-compile phase, do a syntax check and set a dummy          /* In the pre-compile phase, do a syntax check. We used to just set
5554          reference number. */          a dummy reference number, because it was not used in the first pass.
5555            However, with the change of recursive back references to be atomic,
5556            we have to look for the number so that this state can be identified, as
5557            otherwise the incorrect length is computed. If it's not a backwards
5558            reference, the dummy number will do. */
5559    
5560          if (lengthptr != NULL)          if (lengthptr != NULL)
5561            {            {
5562              const uschar *temp;
5563    
5564            if (namelen == 0)            if (namelen == 0)
5565              {              {
5566              *errorcodeptr = ERR62;              *errorcodeptr = ERR62;
# Line 5393  for (;; ptr++) Line 5576  for (;; ptr++)
5576              *errorcodeptr = ERR48;              *errorcodeptr = ERR48;
5577              goto FAILED;              goto FAILED;
5578              }              }
5579            recno = 0;  
5580              /* The name table does not exist in the first pass, so we cannot
5581              do a simple search as in the code below. Instead, we have to scan the
5582              pattern to find the number. It is important that we scan it only as
5583              far as we have got because the syntax of named subpatterns has not
5584              been checked for the rest of the pattern, and find_parens() assumes
5585              correct syntax. In any case, it's a waste of resources to scan
5586              further. We stop the scan at the current point by temporarily
5587              adjusting the value of cd->endpattern. */
5588    
5589              temp = cd->end_pattern;
5590              cd->end_pattern = ptr;
5591              recno = find_parens(cd, name, namelen,
5592                (options & PCRE_EXTENDED) != 0, utf8);
5593              cd->end_pattern = temp;
5594              if (recno < 0) recno = 0;    /* Forward ref; set dummy number */
5595            }            }
5596    
5597          /* In the real compile, seek the name in the table. We check the name          /* In the real compile, seek the name in the table. We check the name
# Line 5537  for (;; ptr++) Line 5735  for (;; ptr++)
5735    
5736                /* Fudge the value of "called" so that when it is inserted as an                /* Fudge the value of "called" so that when it is inserted as an
5737                offset below, what it actually inserted is the reference number                offset below, what it actually inserted is the reference number
5738                of the group. */                of the group. Then remember the forward reference. */
5739    
5740                called = cd->start_code + recno;                called = cd->start_code + recno;
5741                PUTINC(cd->hwm, 0, (int)(code + 2 + LINK_SIZE - cd->start_code));                PUTINC(cd->hwm, 0, (int)(code + 1 - cd->start_code));
5742                }                }
5743    
5744              /* If not a forward reference, and the subpattern is still open,              /* If not a forward reference, and the subpattern is still open,
# Line 5555  for (;; ptr++) Line 5753  for (;; ptr++)
5753                }                }
5754              }              }
5755    
5756            /* Insert the recursion/subroutine item, automatically wrapped inside            /* Insert the recursion/subroutine item. */
5757            "once" brackets. Set up a "previous group" length so that a  
           subsequent quantifier will work. */  
   
           *code = OP_ONCE;  
           PUT(code, 1, 2 + 2*LINK_SIZE);  
           code += 1 + LINK_SIZE;  
   
5758            *code = OP_RECURSE;            *code = OP_RECURSE;
5759            PUT(code, 1, (int)(called - cd->start_code));            PUT(code, 1, (int)(called - cd->start_code));
5760            code += 1 + LINK_SIZE;            code += 1 + LINK_SIZE;
   
           *code = OP_KET;  
           PUT(code, 1, 2 + 2*LINK_SIZE);  
           code += 1 + LINK_SIZE;  
   
           length_prevgroup = 3 + 3*LINK_SIZE;  
5761            }            }
5762    
5763          /* Can't determine a first byte now */          /* Can't determine a first byte now */
# Line 5632  for (;; ptr++) Line 5818  for (;; ptr++)
5818          is necessary to ensure we correctly detect the start of the pattern in          is necessary to ensure we correctly detect the start of the pattern in
5819          both phases.          both phases.
5820    
5821          If we are not at the pattern start, compile code to change the ims          If we are not at the pattern start, reset the greedy defaults and the
5822          options if this setting actually changes any of them, and reset the          case value for firstbyte and reqbyte. */
         greedy defaults and the case value for firstbyte and reqbyte. */  
5823    
5824          if (*ptr == CHAR_RIGHT_PARENTHESIS)          if (*ptr == CHAR_RIGHT_PARENTHESIS)
5825            {            {
# Line 5645  for (;; ptr++) Line 5830  for (;; ptr++)
5830              }              }
5831            else            else
5832              {              {
             if ((options & PCRE_IMS) != (newoptions & PCRE_IMS))  
               {  
               *code++ = OP_OPT;  
               *code++ = newoptions & PCRE_IMS;  
               }  
5833              greedy_default = ((newoptions & PCRE_UNGREEDY) != 0);              greedy_default = ((newoptions & PCRE_UNGREEDY) != 0);
5834              greedy_non_default = greedy_default ^ 1;              greedy_non_default = greedy_default ^ 1;
5835              req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;              req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS : 0;
5836              }              }
5837    
5838            /* Change options at this level, and pass them back for use            /* Change options at this level, and pass them back for use
5839            in subsequent branches. When not at the start of the pattern, this            in subsequent branches. */
           information is also necessary so that a resetting item can be  
           compiled at the end of a group (if we are in a group). */  
5840    
5841            *optionsptr = options = newoptions;            *optionsptr = options = newoptions;
5842            previous = NULL;       /* This item can't be repeated */            previous = NULL;       /* This item can't be repeated */
# Line 5694  for (;; ptr++) Line 5872  for (;; ptr++)
5872        skipbytes = 2;        skipbytes = 2;
5873        }        }
5874    
5875      /* Process nested bracketed regex. Assertions may not be repeated, but      /* Process nested bracketed regex. Assertions used not to be repeatable,
5876      other kinds can be. All their opcodes are >= OP_ONCE. We copy code into a      but this was changed for Perl compatibility, so all kinds can now be
5877      non-register variable in order to be able to pass its address because some      repeated. We copy code into a non-register variable (tempcode) in order to
5878      compilers complain otherwise. Pass in a new setting for the ims options if      be able to pass its address because some compilers complain otherwise. */
     they have changed. */  
5879    
5880      previous = (bravalue >= OP_ONCE)? code : NULL;      previous = code;                   /* For handling repetition */
5881      *code = bravalue;      *code = bravalue;
5882      tempcode = code;      tempcode = code;
5883      tempreqvary = cd->req_varyopt;     /* Save value before bracket */      tempreqvary = cd->req_varyopt;     /* Save value before bracket */
# Line 5708  for (;; ptr++) Line 5885  for (;; ptr++)
5885    
5886      if (!compile_regex(      if (!compile_regex(
5887           newoptions,                   /* The complete new option state */           newoptions,                   /* The complete new option state */
          options & PCRE_IMS,           /* The previous ims option state */  
5888           &tempcode,                    /* Where to put code (updated) */           &tempcode,                    /* Where to put code (updated) */
5889           &ptr,                         /* Input pointer (updated) */           &ptr,                         /* Input pointer (updated) */
5890           errorcodeptr,                 /* Where to put an error message */           errorcodeptr,                 /* Where to put an error message */
# Line 5724  for (;; ptr++) Line 5900  for (;; ptr++)
5900             &length_prevgroup           /* Pre-compile phase */             &length_prevgroup           /* Pre-compile phase */
5901           ))           ))
5902        goto FAILED;        goto FAILED;
5903    
5904        if (bravalue >= OP_ASSERT && bravalue <= OP_ASSERTBACK_NOT)
5905          cd->assert_depth -= 1;
5906    
5907      /* At the end of compiling, code is still pointing to the start of the      /* At the end of compiling, code is still pointing to the start of the
5908      group, while tempcode has been updated to point past the end of the group      group, while tempcode has been updated to point past the end of the group
# Line 5795  for (;; ptr++) Line 5974  for (;; ptr++)
5974          goto FAILED;          goto FAILED;
5975          }          }
5976        *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE;        *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE;
5977        *code++ = OP_BRA;        code++;   /* This already contains bravalue */
5978        PUTINC(code, 0, 1 + LINK_SIZE);        PUTINC(code, 0, 1 + LINK_SIZE);
5979        *code++ = OP_KET;        *code++ = OP_KET;
5980        PUTINC(code, 0, 1 + LINK_SIZE);        PUTINC(code, 0, 1 + LINK_SIZE);
# Line 5963  for (;; ptr++) Line 6142  for (;; ptr++)
6142          }          }
6143    
6144        /* \k<name> or \k'name' is a back reference by name (Perl syntax).        /* \k<name> or \k'name' is a back reference by name (Perl syntax).
6145        We also support \k{name} (.NET syntax) */        We also support \k{name} (.NET syntax).  */
6146    
6147        if (-c == ESC_k && (ptr[1] == CHAR_LESS_THAN_SIGN ||        if (-c == ESC_k)
           ptr[1] == CHAR_APOSTROPHE || ptr[1] == CHAR_LEFT_CURLY_BRACKET))  
6148          {          {
6149            if ((ptr[1] != CHAR_LESS_THAN_SIGN &&
6150              ptr[1] != CHAR_APOSTROPHE && ptr[1] != CHAR_LEFT_CURLY_BRACKET))
6151              {
6152              *errorcodeptr = ERR69;
6153              break;
6154              }
6155          is_recurse = FALSE;          is_recurse = FALSE;
6156          terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)?          terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)?
6157            CHAR_GREATER_THAN_SIGN : (*ptr == CHAR_APOSTROPHE)?            CHAR_GREATER_THAN_SIGN : (*ptr == CHAR_APOSTROPHE)?
6158            CHAR_APOSTROPHE : CHAR_RIGHT_CURLY_BRACKET;            CHAR_APOSTROPHE : CHAR_RIGHT_CURLY_BRACKET;
6159          goto NAMED_REF_OR_RECURSE;          goto NAMED_REF_OR_RECURSE;
6160          }          }
6161    
6162        /* Back references are handled specially; must disable firstbyte if        /* Back references are handled specially; must disable firstbyte if
6163        not set to cope with cases like (?=(\w+))\1: which would otherwise set        not set to cope with cases like (?=(\w+))\1: which would otherwise set
# Line 5987  for (;; ptr++) Line 6171  for (;; ptr++)
6171          HANDLE_REFERENCE:    /* Come here from named backref handling */          HANDLE_REFERENCE:    /* Come here from named backref handling */
6172          if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;          if (firstbyte == REQ_UNSET) firstbyte = REQ_NONE;
6173          previous = code;          previous = code;
6174          *code++ = OP_REF;          *code++ = ((options & PCRE_CASELESS) != 0)? OP_REFI : OP_REF;
6175          PUT2INC(code, 0, recno);          PUT2INC(code, 0, recno);
6176          cd->backref_map |= (recno < 32)? (1 << recno) : 1;          cd->backref_map |= (recno < 32)? (1 << recno) : 1;
6177          if (recno > cd->top_backref) cd->top_backref = recno;          if (recno > cd->top_backref) cd->top_backref = recno;
# Line 6095  for (;; ptr++) Line 6279  for (;; ptr++)
6279    
6280      ONE_CHAR:      ONE_CHAR:
6281      previous = code;      previous = code;
6282      *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARNC : OP_CHAR;      *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARI : OP_CHAR;
6283      for (c = 0; c < mclength; c++) *code++ = mcbuffer[c];      for (c = 0; c < mclength; c++) *code++ = mcbuffer[c];
6284    
6285      /* Remember if \r or \n were seen */      /* Remember if \r or \n were seen */
# Line 6159  return FALSE; Line 6343  return FALSE;
6343  /* On entry, ptr is pointing past the bracket character, but on return it  /* On entry, ptr is pointing past the bracket character, but on return it
6344  points to the closing bracket, or vertical bar, or end of string. The code  points to the closing bracket, or vertical bar, or end of string. The code
6345  variable is pointing at the byte into which the BRA operator has been stored.  variable is pointing at the byte into which the BRA operator has been stored.
 If the ims options are changed at the start (for a (?ims: group) or during any  
 branch, we need to insert an OP_OPT item at the start of every following branch  
 to ensure they get set correctly at run time, and also pass the new options  
 into every subsequent branch compile.  
   
6346  This function is used during the pre-compile phase when we are trying to find  This function is used during the pre-compile phase when we are trying to find
6347  out the amount of memory needed, as well as during the real compile phase. The  out the amount of memory needed, as well as during the real compile phase. The
6348  value of lengthptr distinguishes the two phases.  value of lengthptr distinguishes the two phases.
6349    
6350  Arguments:  Arguments:
6351    options        option bits, including any changes for this subpattern    options        option bits, including any changes for this subpattern
   oldims         previous settings of ims option bits  
6352    codeptr        -> the address of the current code pointer    codeptr        -> the address of the current code pointer
6353    ptrptr         -> the address of the current pattern pointer    ptrptr         -> the address of the current pattern pointer
6354    errorcodeptr   -> pointer to error code variable    errorcodeptr   -> pointer to error code variable
# Line 6188  Returns:         TRUE on success Line 6366  Returns:         TRUE on success
6366  */  */
6367    
6368  static BOOL  static BOOL
6369  compile_regex(int options, int oldims, uschar **codeptr, const uschar **ptrptr,  compile_regex(int options, uschar **codeptr, const uschar **ptrptr,
6370    int *errorcodeptr, BOOL lookbehind, BOOL reset_bracount, int skipbytes,    int *errorcodeptr, BOOL lookbehind, BOOL reset_bracount, int skipbytes,
6371    int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, compile_data *cd,    int *firstbyteptr, int *reqbyteptr, branch_chain *bcptr, compile_data *cd,
6372    int *lengthptr)    int *lengthptr)
# Line 6205  int branchfirstbyte, branchreqbyte; Line 6383  int branchfirstbyte, branchreqbyte;
6383  int length;  int length;
6384  int orig_bracount;  int orig_bracount;
6385  int max_bracount;  int max_bracount;
 int old_external_options = cd->external_options;  
6386  branch_chain bc;  branch_chain bc;
6387    
6388  bc.outer = bcptr;  bc.outer = bcptr;
# Line 6229  pre-compile phase to find out whether an Line 6406  pre-compile phase to find out whether an
6406    
6407  /* If this is a capturing subpattern, add to the chain of open capturing items  /* If this is a capturing subpattern, add to the chain of open capturing items
6408  so that we can detect them if (*ACCEPT) is encountered. This is also used to  so that we can detect them if (*ACCEPT) is encountered. This is also used to
6409  detect groups that contain recursive back references to themselves. */  detect groups that contain recursive back references to themselves. Note that
6410    only OP_CBRA need be tested here; changing this opcode to one of its variants,
6411    e.g. OP_SCBRAPOS, happens later, after the group has been compiled. */
6412    
6413  if (*code == OP_CBRA)  if (*code == OP_CBRA)
6414    {    {
# Line 6255  for (;;) Line 6434  for (;;)
6434    
6435    if (reset_bracount) cd->bracount = orig_bracount;    if (reset_bracount) cd->bracount = orig_bracount;
6436    
   /* Handle a change of ims options at the start of the branch */  
   
   if ((options & PCRE_IMS) != oldims)  
     {  
     *code++ = OP_OPT;  
     *code++ = options & PCRE_IMS;  
     length += 2;  
     }  
   
6437    /* Set up dummy OP_REVERSE if lookbehind assertion */    /* Set up dummy OP_REVERSE if lookbehind assertion */
6438    
6439    if (lookbehind)    if (lookbehind)
# Line 6284  for (;;) Line 6454  for (;;)
6454      return FALSE;      return FALSE;
6455      }      }
6456    
   /* If the external options have changed during this branch, it means that we  
   are at the top level, and a leading option setting has been encountered. We  
   need to re-set the original option values to take account of this so that,  
   during the pre-compile phase, we know to allow for a re-set at the start of  
   subsequent branches. */  
   
   if (old_external_options != cd->external_options)  
     oldims = cd->external_options & PCRE_IMS;  
   
6457    /* Keep the highest bracket count in case (?| was used and some branch    /* Keep the highest bracket count in case (?| was used and some branch
6458    has fewer than the rest. */    has fewer than the rest. */
6459    
# Line 6353  for (;;) Line 6514  for (;;)
6514        {        {
6515        int fixed_length;        int fixed_length;
6516        *code = OP_END;        *code = OP_END;
6517        fixed_length = find_fixedlength(last_branch, options, FALSE, cd);        fixed_length = find_fixedlength(last_branch,  (options & PCRE_UTF8) != 0,
6518            FALSE, cd);
6519        DPRINTF(("fixed length = %d\n", fixed_length));        DPRINTF(("fixed length = %d\n", fixed_length));
6520        if (fixed_length == -3)        if (fixed_length == -3)
6521          {          {
# Line 6374  for (;;) Line 6536  for (;;)
6536    of offsets, with the field in the BRA item now becoming an offset to the    of offsets, with the field in the BRA item now becoming an offset to the
6537    first alternative. If there are no alternatives, it points to the end of the    first alternative. If there are no alternatives, it points to the end of the
6538    group. The length in the terminating ket is always the length of the whole    group. The length in the terminating ket is always the length of the whole
6539    bracketed item. If any of the ims options were changed inside the group,    bracketed item. Return leaving the pointer at the terminating char. */
   compile a resetting op-code following, except at the very end of the pattern.  
   Return leaving the pointer at the terminating char. */  
6540    
6541    if (*ptr != CHAR_VERTICAL_LINE)    if (*ptr != CHAR_VERTICAL_LINE)
6542      {      {
# Line 6420  for (;;) Line 6580  for (;;)
6580        cd->open_caps = cd->open_caps->next;        cd->open_caps = cd->open_caps->next;
6581        }        }
6582    
     /* Reset options if needed. */  
   
     if ((options & PCRE_IMS) != oldims && *ptr == CHAR_RIGHT_PARENTHESIS)  
       {  
       *code++ = OP_OPT;  
       *code++ = oldims;  
       length += 2;  
       }  
   
6583      /* Retain the highest bracket number, in case resetting was used. */      /* Retain the highest bracket number, in case resetting was used. */
6584    
6585      cd->bracount = max_bracount;      cd->bracount = max_bracount;
# Line 6488  for (;;) Line 6639  for (;;)
6639  /* Try to find out if this is an anchored regular expression. Consider each  /* Try to find out if this is an anchored regular expression. Consider each
6640  alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket  alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket
6641  all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then  all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then
6642  it's anchored. However, if this is a multiline pattern, then only OP_SOD  it's anchored. However, if this is a multiline pattern, then only OP_SOD will
6643  counts, since OP_CIRC can match in the middle.  be found, because ^ generates OP_CIRCM in that mode.
6644    
6645  We can also consider a regex to be anchored if OP_SOM starts all its branches.  We can also consider a regex to be anchored if OP_SOM starts all its branches.
6646  This is the code for \G, which means "match at start of match position, taking  This is the code for \G, which means "match at start of match position, taking
# Line 6510  of the more common cases more precisely. Line 6661  of the more common cases more precisely.
6661    
6662  Arguments:  Arguments:
6663    code           points to start of expression (the bracket)    code           points to start of expression (the bracket)
   options        points to the options setting  
6664    bracket_map    a bitmap of which brackets we are inside while testing; this    bracket_map    a bitmap of which brackets we are inside while testing; this
6665                    handles up to substring 31; after that we just have to take                    handles up to substring 31; after that we just have to take
6666                    the less precise approach                    the less precise approach
# Line 6520  Returns:     TRUE or FALSE Line 6670  Returns:     TRUE or FALSE
6670  */  */
6671    
6672  static BOOL  static BOOL
6673  is_anchored(register const uschar *code, int *options, unsigned int bracket_map,  is_anchored(register const uschar *code, unsigned int bracket_map,
6674    unsigned int backref_map)    unsigned int backref_map)
6675  {  {
6676  do {  do {
6677     const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],     const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],
6678       options, PCRE_MULTILINE, FALSE);       FALSE);
6679     register int op = *scode;     register int op = *scode;
6680    
6681     /* Non-capturing brackets */     /* Non-capturing brackets */
6682    
6683     if (op == OP_BRA)     if (op == OP_BRA  || op == OP_BRAPOS ||
6684           op == OP_SBRA || op == OP_SBRAPOS)
6685       {       {
6686       if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE;       if (!is_anchored(scode, bracket_map, backref_map)) return FALSE;
6687       }       }
6688    
6689     /* Capturing brackets */     /* Capturing brackets */
6690    
6691     else if (op == OP_CBRA)     else if (op == OP_CBRA  || op == OP_CBRAPOS ||
6692                op == OP_SCBRA || op == OP_SCBRAPOS)
6693       {       {
6694       int n = GET2(scode, 1+LINK_SIZE);       int n = GET2(scode, 1+LINK_SIZE);
6695       int new_map = bracket_map | ((n < 32)? (1 << n) : 1);       int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
6696       if (!is_anchored(scode, options, new_map, backref_map)) return FALSE;       if (!is_anchored(scode, new_map, backref_map)) return FALSE;
6697       }       }
6698    
6699     /* Other brackets */     /* Other brackets */
6700    
6701     else if (op == OP_ASSERT || op == OP_ONCE || op == OP_COND)     else if (op == OP_ASSERT || op == OP_ONCE || op == OP_COND)
6702       {       {
6703       if (!is_anchored(scode, options, bracket_map, backref_map)) return FALSE;       if (!is_anchored(scode, bracket_map, backref_map)) return FALSE;
6704       }       }
6705    
6706     /* .* is not anchored unless DOTALL is set (which generates OP_ALLANY) and     /* .* is not anchored unless DOTALL is set (which generates OP_ALLANY) and
# Line 6563  do { Line 6715  do {
6715    
6716     /* Check for explicit anchoring */     /* Check for explicit anchoring */
6717    
6718     else if (op != OP_SOD && op != OP_SOM &&     else if (op != OP_SOD && op != OP_SOM && op != OP_CIRC) return FALSE;
            ((*options & PCRE_MULTILINE) != 0 || op != OP_CIRC))  
      return FALSE;  
6719     code += GET(code, 1);     code += GET(code, 1);
6720     }     }
6721  while (*code == OP_ALT);   /* Loop for each alternative */  while (*code == OP_ALT);   /* Loop for each alternative */
# Line 6601  is_startline(const uschar *code, unsigne Line 6751  is_startline(const uschar *code, unsigne
6751  {  {
6752  do {  do {
6753     const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],     const uschar *scode = first_significant_code(code + _pcre_OP_lengths[*code],
6754       NULL, 0, FALSE);       FALSE);
6755     register int op = *scode;     register int op = *scode;
6756    
6757     /* If we are at the start of a conditional assertion group, *both* the     /* If we are at the start of a conditional assertion group, *both* the
# Line 6628  do { Line 6778  do {
6778         scode += 1 + LINK_SIZE;         scode += 1 + LINK_SIZE;
6779         break;         break;
6780         }         }
6781       scode = first_significant_code(scode, NULL, 0, FALSE);       scode = first_significant_code(scode, FALSE);
6782       op = *scode;       op = *scode;
6783       }       }
6784    
6785     /* Non-capturing brackets */     /* Non-capturing brackets */
6786    
6787     if (op == OP_BRA)     if (op == OP_BRA  || op == OP_BRAPOS ||
6788           op == OP_SBRA || op == OP_SBRAPOS)
6789       {       {
6790       if (!is_startline(scode, bracket_map, backref_map)) return FALSE;       if (!is_startline(scode, bracket_map, backref_map)) return FALSE;
6791       }       }
6792    
6793     /* Capturing brackets */     /* Capturing brackets */
6794    
6795     else if (op == OP_CBRA)     else if (op == OP_CBRA  || op == OP_CBRAPOS ||
6796                op == OP_SCBRA || op == OP_SCBRAPOS)
6797       {       {
6798       int n = GET2(scode, 1+LINK_SIZE);       int n = GET2(scode, 1+LINK_SIZE);
6799       int new_map = bracket_map | ((n < 32)? (1 << n) : 1);       int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
# Line 6665  do { Line 6817  do {
6817    
6818     /* Check for explicit circumflex */     /* Check for explicit circumflex */
6819    
6820     else if (op != OP_CIRC) return FALSE;     else if (op != OP_CIRC && op != OP_CIRCM) return FALSE;
6821    
6822     /* Move on to the next alternative */     /* Move on to the next alternative */
6823    
# Line 6691  we return that char, otherwise -1. Line 6843  we return that char, otherwise -1.
6843    
6844  Arguments:  Arguments:
6845    code       points to start of expression (the bracket)    code       points to start of expression (the bracket)
   options    pointer to the options (used to check casing changes)  
6846    inassert   TRUE if in an assertion    inassert   TRUE if in an assertion
6847    
6848  Returns:     -1 or the fixed first char  Returns:     -1 or the fixed first char
6849  */  */
6850    
6851  static int  static int
6852  find_firstassertedchar(const uschar *code, int *options, BOOL inassert)  find_firstassertedchar(const uschar *code, BOOL inassert)
6853  {  {
6854  register int c = -1;  register int c = -1;
6855  do {  do {
6856     int d;     int d;
6857     const uschar *scode =     int xl = (*code == OP_CBRA || *code == OP_SCBRA ||
6858       first_significant_code(code + 1+LINK_SIZE, options, PCRE_CASELESS, TRUE);               *code == OP_CBRAPOS || *code == OP_SCBRAPOS)? 2:0;
6859       const uschar *scode = first_significant_code(code + 1+LINK_SIZE + xl, TRUE);
6860     register int op = *scode;     register int op = *scode;
6861    
6862     switch(op)     switch(op)
# Line 6713  do { Line 6865  do {
6865       return -1;       return -1;
6866    
6867       case OP_BRA:       case OP_BRA:
6868         case OP_BRAPOS:
6869       case OP_CBRA:       case OP_CBRA:
6870         case OP_SCBRA:
6871         case OP_CBRAPOS:
6872         case OP_SCBRAPOS:
6873       case OP_ASSERT:       case OP_ASSERT:
6874       case OP_ONCE:       case OP_ONCE:
6875       case OP_COND:       case OP_COND:
6876       if ((d = find_firstassertedchar(scode, options, op == OP_ASSERT)) < 0)       if ((d = find_firstassertedchar(scode, op == OP_ASSERT)) < 0)
6877         return -1;         return -1;
6878       if (c < 0) c = d; else if (c != d) return -1;       if (c < 0) c = d; else if (c != d) return -1;
6879       break;       break;
6880    
6881       case OP_EXACT:       /* Fall through */       case OP_EXACT:
6882       scode += 2;       scode += 2;
6883         /* Fall through */
6884    
6885       case OP_CHAR:       case OP_CHAR:
      case OP_CHARNC:  
6886       case OP_PLUS:       case OP_PLUS:
6887       case OP_MINPLUS:       case OP_MINPLUS:
6888       case OP_POSPLUS:       case OP_POSPLUS:
6889       if (!inassert) return -1;       if (!inassert) return -1;
6890       if (c < 0)       if (c < 0) c = scode[1];
6891         {         else if (c != scode[1]) return -1;
6892         c = scode[1];       break;
6893         if ((*options & PCRE_CASELESS) != 0) c |= REQ_CASELESS;  
6894         }       case OP_EXACTI:
6895       else if (c != scode[1]) return -1;       scode += 2;
6896         /* Fall through */
6897    
6898         case OP_CHARI:
6899         case OP_PLUSI:
6900         case OP_MINPLUSI:
6901         case OP_POSPLUSI:
6902         if (!inassert) return -1;
6903         if (c < 0) c = scode[1] | REQ_CASELESS;
6904           else if (c != scode[1]) return -1;
6905       break;       break;
6906       }       }
6907    
# Line 6859  while (ptr[skipatstart] == CHAR_LEFT_PAR Line 7024  while (ptr[skipatstart] == CHAR_LEFT_PAR
7024      { skipatstart += 7; options |= PCRE_UTF8; continue; }      { skipatstart += 7; options |= PCRE_UTF8; continue; }
7025    else if (strncmp((char *)(ptr+skipatstart+2), STRING_UCP_RIGHTPAR, 4) == 0)    else if (strncmp((char *)(ptr+skipatstart+2), STRING_UCP_RIGHTPAR, 4) == 0)
7026      { skipatstart += 6; options |= PCRE_UCP; continue; }      { skipatstart += 6; options |= PCRE_UCP; continue; }
7027      else if (strncmp((char *)(ptr+skipatstart+2), STRING_NO_START_OPT_RIGHTPAR, 13) == 0)
7028        { skipatstart += 15; options |= PCRE_NO_START_OPTIMIZE; continue; }
7029    
7030    if (strncmp((char *)(ptr+skipatstart+2), STRING_CR_RIGHTPAR, 3) == 0)    if (strncmp((char *)(ptr+skipatstart+2), STRING_CR_RIGHTPAR, 3) == 0)
7031      { skipatstart += 5; newnl = PCRE_NEWLINE_CR; }      { skipatstart += 5; newnl = PCRE_NEWLINE_CR; }
# Line 6885  while (ptr[skipatstart] == CHAR_LEFT_PAR Line 7052  while (ptr[skipatstart] == CHAR_LEFT_PAR
7052    
7053  utf8 = (options & PCRE_UTF8) != 0;  utf8 = (options & PCRE_UTF8) != 0;
7054    
7055  /* Can't support UTF8 unless PCRE has been compiled to include the code. */  /* Can't support UTF8 unless PCRE has been compiled to include the code. The
7056    return of an error code from _pcre_valid_utf8() is a new feature, introduced in
7057    release 8.13. It is passed back from pcre_[dfa_]exec(), but at the moment is
7058    not used here. */
7059    
7060  #ifdef SUPPORT_UTF8  #ifdef SUPPORT_UTF8
7061  if (utf8 && (options & PCRE_NO_UTF8_CHECK) == 0 &&  if (utf8 && (options & PCRE_NO_UTF8_CHECK) == 0 &&
7062       (*erroroffset = _pcre_valid_utf8((USPTR)pattern, -1)) >= 0)       (errorcode = _pcre_valid_utf8((USPTR)pattern, -1, erroroffset)) != 0)
7063    {    {
7064    errorcode = ERR44;    errorcode = ERR44;
7065    goto PCRE_EARLY_ERROR_RETURN2;    goto PCRE_EARLY_ERROR_RETURN2;
# Line 6914  if ((options & PCRE_UCP) != 0) Line 7084  if ((options & PCRE_UCP) != 0)
7084    
7085  /* Check validity of \R options. */  /* Check validity of \R options. */
7086    
7087  switch (options & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE))  if ((options & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) ==
7088         (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE))
7089    {    {
7090    case 0:    errorcode = ERR56;
7091    case PCRE_BSR_ANYCRLF:    goto PCRE_EARLY_ERROR_RETURN;
   case PCRE_BSR_UNICODE:  
   break;  
   default: errorcode = ERR56; goto PCRE_EARLY_ERROR_RETURN;  
7092    }    }
7093    
7094  /* Handle different types of newline. The three bits give seven cases. The  /* Handle different types of newline. The three bits give seven cases. The
# Line 7005  outside can help speed up starting point Line 7173  outside can help speed up starting point
7173  ptr += skipatstart;  ptr += skipatstart;
7174  code = cworkspace;  code = cworkspace;
7175  *code = OP_BRA;  *code = OP_BRA;
7176  (void)compile_regex(cd->external_options, cd->external_options & PCRE_IMS,  (void)compile_regex(cd->external_options, &code, &ptr, &errorcode, FALSE,
7177    &code, &ptr, &errorcode, FALSE, FALSE, 0, &firstbyte, &reqbyte, NULL, cd,    FALSE, 0, &firstbyte, &reqbyte, NULL, cd, &length);
   &length);  
7178  if (errorcode != 0) goto PCRE_EARLY_ERROR_RETURN;  if (errorcode != 0) goto PCRE_EARLY_ERROR_RETURN;
7179    
7180  DPRINTF(("end pre-compile: length=%d workspace=%d\n", length,  DPRINTF(("end pre-compile: length=%d workspace=%d\n", length,
# Line 7061  field; this time it's used for rememberi Line 7228  field; this time it's used for rememberi
7228  */  */
7229    
7230  cd->final_bracount = cd->bracount;  /* Save for checking forward references */  cd->final_bracount = cd->bracount;  /* Save for checking forward references */
7231    cd->assert_depth = 0;
7232  cd->bracount = 0;  cd->bracount = 0;
7233  cd->names_found = 0;  cd->names_found = 0;
7234  cd->name_table = (uschar *)re + re->name_table_offset;  cd->name_table = (uschar *)re + re->name_table_offset;
# Line 7079  of the function here. */ Line 7247  of the function here. */
7247  ptr = (const uschar *)pattern + skipatstart;  ptr = (const uschar *)pattern + skipatstart;
7248  code = (uschar *)codestart;  code = (uschar *)codestart;
7249  *code = OP_BRA;  *code = OP_BRA;
7250  (void)compile_regex(re->options, re->options & PCRE_IMS, &code, &ptr,  (void)compile_regex(re->options, &code, &ptr, &errorcode, FALSE, FALSE, 0,
7251    &errorcode, FALSE, FALSE, 0, &firstbyte, &reqbyte, NULL, cd, NULL);    &firstbyte, &reqbyte, NULL, cd, NULL);
7252  re->top_bracket = cd->bracount;  re->top_bracket = cd->bracount;
7253  re->top_backref = cd->top_backref;  re->top_backref = cd->top_backref;
7254  re->flags = cd->external_flags;  re->flags = cd->external_flags;
# Line 7146  if (cd->check_lookbehind) Line 7314  if (cd->check_lookbehind)
7314        uschar *be = cc - 1 - LINK_SIZE + GET(cc, -LINK_SIZE);        uschar *be = cc - 1 - LINK_SIZE + GET(cc, -LINK_SIZE);
7315        int end_op = *be;        int end_op = *be;
7316        *be = OP_END;        *be = OP_END;
7317        fixed_length = find_fixedlength(cc, re->options, TRUE, cd);        fixed_length = find_fixedlength(cc, (re->options & PCRE_UTF8) != 0, TRUE,
7318            cd);
7319        *be = end_op;        *be = end_op;
7320        DPRINTF(("fixed length = %d\n", fixed_length));        DPRINTF(("fixed length = %d\n", fixed_length));
7321        if (fixed_length < 0)        if (fixed_length < 0)
# Line 7185  start with ^. and also when all branches Line 7354  start with ^. and also when all branches
7354    
7355  if ((re->options & PCRE_ANCHORED) == 0)  if ((re->options & PCRE_ANCHORED) == 0)
7356    {    {
7357    int temp_options = re->options;   /* May get changed during these scans */    if (is_anchored(codestart, 0, cd->backref_map))
   if (is_anchored(codestart, &temp_options, 0, cd->backref_map))  
7358      re->options |= PCRE_ANCHORED;      re->options |= PCRE_ANCHORED;
7359    else    else
7360      {      {
7361      if (firstbyte < 0)      if (firstbyte < 0)
7362        firstbyte = find_firstassertedchar(codestart, &temp_options, FALSE);        firstbyte = find_firstassertedchar(codestart, FALSE);
7363      if (firstbyte >= 0)   /* Remove caseless flag for non-caseable chars */      if (firstbyte >= 0)   /* Remove caseless flag for non-caseable chars */
7364        {        {
7365        int ch = firstbyte & 255;        int ch = firstbyte & 255;

Legend:
Removed from v.574  
changed lines
  Added in v.638

  ViewVC Help
Powered by ViewVC 1.1.5