Parent Directory
|
Revision Log
File tidies, preparing for 8.32-RC1.
1 | /************************************************* |
2 | * Perl-Compatible Regular Expressions * |
3 | *************************************************/ |
4 | |
5 | /* PCRE is a library of functions to support regular expressions whose syntax |
6 | and semantics are as close as possible to those of the Perl 5 language. |
7 | |
8 | Written by Philip Hazel |
9 | Copyright (c) 1997-2012 University of Cambridge |
10 | |
11 | ----------------------------------------------------------------------------- |
12 | Redistribution and use in source and binary forms, with or without |
13 | modification, are permitted provided that the following conditions are met: |
14 | |
15 | * Redistributions of source code must retain the above copyright notice, |
16 | this list of conditions and the following disclaimer. |
17 | |
18 | * Redistributions in binary form must reproduce the above copyright |
19 | notice, this list of conditions and the following disclaimer in the |
20 | documentation and/or other materials provided with the distribution. |
21 | |
22 | * Neither the name of the University of Cambridge nor the names of its |
23 | contributors may be used to endorse or promote products derived from |
24 | this software without specific prior written permission. |
25 | |
26 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
27 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
28 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
29 | ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
30 | LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
31 | CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
32 | SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
33 | INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
34 | CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
35 | ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
36 | POSSIBILITY OF SUCH DAMAGE. |
37 | ----------------------------------------------------------------------------- |
38 | */ |
39 | |
40 | |
41 | /* This module contains the external function pcre_compile(), along with |
42 | supporting internal functions that are not used by other modules. */ |
43 | |
44 | |
45 | #ifdef HAVE_CONFIG_H |
46 | #include "config.h" |
47 | #endif |
48 | |
49 | #define NLBLOCK cd /* Block containing newline information */ |
50 | #define PSSTART start_pattern /* Field containing processed string start */ |
51 | #define PSEND end_pattern /* Field containing processed string end */ |
52 | |
53 | #include "pcre_internal.h" |
54 | |
55 | |
56 | /* When PCRE_DEBUG is defined, we need the pcre(16|32)_printint() function, which |
57 | is also used by pcretest. PCRE_DEBUG is not defined when building a production |
58 | library. We do not need to select pcre16_printint.c specially, because the |
59 | COMPILE_PCREx macro will already be appropriately set. */ |
60 | |
61 | #ifdef PCRE_DEBUG |
62 | /* pcre_printint.c should not include any headers */ |
63 | #define PCRE_INCLUDED |
64 | #include "pcre_printint.c" |
65 | #undef PCRE_INCLUDED |
66 | #endif |
67 | |
68 | |
69 | /* Macro for setting individual bits in class bitmaps. */ |
70 | |
71 | #define SETBIT(a,b) a[(b)/8] |= (1 << ((b)&7)) |
72 | |
73 | /* Maximum length value to check against when making sure that the integer that |
74 | holds the compiled pattern length does not overflow. We make it a bit less than |
75 | INT_MAX to allow for adding in group terminating bytes, so that we don't have |
76 | to check them every time. */ |
77 | |
78 | #define OFLOW_MAX (INT_MAX - 20) |
79 | |
80 | /* Definitions to allow mutual recursion */ |
81 | |
82 | static int |
83 | add_list_to_class(pcre_uint8 *, pcre_uchar **, int, compile_data *, |
84 | const pcre_uint32 *, unsigned int); |
85 | |
86 | static BOOL |
87 | compile_regex(int, pcre_uchar **, const pcre_uchar **, int *, BOOL, BOOL, int, int, |
88 | pcre_uint32 *, pcre_int32 *, pcre_uint32 *, pcre_int32 *, branch_chain *, |
89 | compile_data *, int *); |
90 | |
91 | |
92 | |
93 | /************************************************* |
94 | * Code parameters and static tables * |
95 | *************************************************/ |
96 | |
97 | /* This value specifies the size of stack workspace that is used during the |
98 | first pre-compile phase that determines how much memory is required. The regex |
99 | is partly compiled into this space, but the compiled parts are discarded as |
100 | soon as they can be, so that hopefully there will never be an overrun. The code |
101 | does, however, check for an overrun. The largest amount I've seen used is 218, |
102 | so this number is very generous. |
103 | |
104 | The same workspace is used during the second, actual compile phase for |
105 | remembering forward references to groups so that they can be filled in at the |
106 | end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE |
107 | is 4 there is plenty of room for most patterns. However, the memory can get |
108 | filled up by repetitions of forward references, for example patterns like |
109 | /(?1){0,1999}(b)/, and one user did hit the limit. The code has been changed so |
110 | that the workspace is expanded using malloc() in this situation. The value |
111 | below is therefore a minimum, and we put a maximum on it for safety. The |
112 | minimum is now also defined in terms of LINK_SIZE so that the use of malloc() |
113 | kicks in at the same number of forward references in all cases. */ |
114 | |
115 | #define COMPILE_WORK_SIZE (2048*LINK_SIZE) |
116 | #define COMPILE_WORK_SIZE_MAX (100*COMPILE_WORK_SIZE) |
117 | |
118 | /* The overrun tests check for a slightly smaller size so that they detect the |
119 | overrun before it actually does run off the end of the data block. */ |
120 | |
121 | #define WORK_SIZE_SAFETY_MARGIN (100) |
122 | |
123 | /* Private flags added to firstchar and reqchar. */ |
124 | |
125 | #define REQ_CASELESS (1 << 0) /* Indicates caselessness */ |
126 | #define REQ_VARY (1 << 1) /* Reqchar followed non-literal item */ |
127 | /* Negative values for the firstchar and reqchar flags */ |
128 | #define REQ_UNSET (-2) |
129 | #define REQ_NONE (-1) |
130 | |
131 | /* Repeated character flags. */ |
132 | |
133 | #define UTF_LENGTH 0x10000000l /* The char contains its length. */ |
134 | |
135 | /* Table for handling escaped characters in the range '0'-'z'. Positive returns |
136 | are simple data values; negative values are for special things like \d and so |
137 | on. Zero means further processing is needed (for things like \x), or the escape |
138 | is invalid. */ |
139 | |
140 | #ifndef EBCDIC |
141 | |
142 | /* This is the "normal" table for ASCII systems or for EBCDIC systems running |
143 | in UTF-8 mode. */ |
144 | |
145 | static const short int escapes[] = { |
146 | 0, 0, |
147 | 0, 0, |
148 | 0, 0, |
149 | 0, 0, |
150 | 0, 0, |
151 | CHAR_COLON, CHAR_SEMICOLON, |
152 | CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN, |
153 | CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK, |
154 | CHAR_COMMERCIAL_AT, -ESC_A, |
155 | -ESC_B, -ESC_C, |
156 | -ESC_D, -ESC_E, |
157 | 0, -ESC_G, |
158 | -ESC_H, 0, |
159 | 0, -ESC_K, |
160 | 0, 0, |
161 | -ESC_N, 0, |
162 | -ESC_P, -ESC_Q, |
163 | -ESC_R, -ESC_S, |
164 | 0, 0, |
165 | -ESC_V, -ESC_W, |
166 | -ESC_X, 0, |
167 | -ESC_Z, CHAR_LEFT_SQUARE_BRACKET, |
168 | CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET, |
169 | CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE, |
170 | CHAR_GRAVE_ACCENT, 7, |
171 | -ESC_b, 0, |
172 | -ESC_d, ESC_e, |
173 | ESC_f, 0, |
174 | -ESC_h, 0, |
175 | 0, -ESC_k, |
176 | 0, 0, |
177 | ESC_n, 0, |
178 | -ESC_p, 0, |
179 | ESC_r, -ESC_s, |
180 | ESC_tee, 0, |
181 | -ESC_v, -ESC_w, |
182 | 0, 0, |
183 | -ESC_z |
184 | }; |
185 | |
186 | #else |
187 | |
188 | /* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */ |
189 | |
190 | static const short int escapes[] = { |
191 | /* 48 */ 0, 0, 0, '.', '<', '(', '+', '|', |
192 | /* 50 */ '&', 0, 0, 0, 0, 0, 0, 0, |
193 | /* 58 */ 0, 0, '!', '$', '*', ')', ';', '~', |
194 | /* 60 */ '-', '/', 0, 0, 0, 0, 0, 0, |
195 | /* 68 */ 0, 0, '|', ',', '%', '_', '>', '?', |
196 | /* 70 */ 0, 0, 0, 0, 0, 0, 0, 0, |
197 | /* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"', |
198 | /* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0, |
199 | /* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0, |
200 | /* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p, |
201 | /* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0, |
202 | /* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0, |
203 | /* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0, |
204 | /* B0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
205 | /* B8 */ 0, 0, 0, 0, 0, ']', '=', '-', |
206 | /* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G, |
207 | /* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0, |
208 | /* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P, |
209 | /* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0, |
210 | /* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X, |
211 | /* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0, |
212 | /* F0 */ 0, 0, 0, 0, 0, 0, 0, 0, |
213 | /* F8 */ 0, 0, 0, 0, 0, 0, 0, 0 |
214 | }; |
215 | #endif |
216 | |
217 | |
218 | /* Table of special "verbs" like (*PRUNE). This is a short table, so it is |
219 | searched linearly. Put all the names into a single string, in order to reduce |
220 | the number of relocations when a shared library is dynamically linked. The |
221 | string is built from string macros so that it works in UTF-8 mode on EBCDIC |
222 | platforms. */ |
223 | |
224 | typedef struct verbitem { |
225 | int len; /* Length of verb name */ |
226 | int op; /* Op when no arg, or -1 if arg mandatory */ |
227 | int op_arg; /* Op when arg present, or -1 if not allowed */ |
228 | } verbitem; |
229 | |
230 | static const char verbnames[] = |
231 | "\0" /* Empty name is a shorthand for MARK */ |
232 | STRING_MARK0 |
233 | STRING_ACCEPT0 |
234 | STRING_COMMIT0 |
235 | STRING_F0 |
236 | STRING_FAIL0 |
237 | STRING_PRUNE0 |
238 | STRING_SKIP0 |
239 | STRING_THEN; |
240 | |
241 | static const verbitem verbs[] = { |
242 | { 0, -1, OP_MARK }, |
243 | { 4, -1, OP_MARK }, |
244 | { 6, OP_ACCEPT, -1 }, |
245 | { 6, OP_COMMIT, -1 }, |
246 | { 1, OP_FAIL, -1 }, |
247 | { 4, OP_FAIL, -1 }, |
248 | { 5, OP_PRUNE, OP_PRUNE_ARG }, |
249 | { 4, OP_SKIP, OP_SKIP_ARG }, |
250 | { 4, OP_THEN, OP_THEN_ARG } |
251 | }; |
252 | |
253 | static const int verbcount = sizeof(verbs)/sizeof(verbitem); |
254 | |
255 | |
256 | /* Tables of names of POSIX character classes and their lengths. The names are |
257 | now all in a single string, to reduce the number of relocations when a shared |
258 | library is dynamically loaded. The list of lengths is terminated by a zero |
259 | length entry. The first three must be alpha, lower, upper, as this is assumed |
260 | for handling case independence. */ |
261 | |
262 | static const char posix_names[] = |
263 | STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0 |
264 | STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0 |
265 | STRING_graph0 STRING_print0 STRING_punct0 STRING_space0 |
266 | STRING_word0 STRING_xdigit; |
267 | |
268 | static const pcre_uint8 posix_name_lengths[] = { |
269 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 }; |
270 | |
271 | /* Table of class bit maps for each POSIX class. Each class is formed from a |
272 | base map, with an optional addition or removal of another map. Then, for some |
273 | classes, there is some additional tweaking: for [:blank:] the vertical space |
274 | characters are removed, and for [:alpha:] and [:alnum:] the underscore |
275 | character is removed. The triples in the table consist of the base map offset, |
276 | second map offset or -1 if no second map, and a non-negative value for map |
277 | addition or a negative value for map subtraction (if there are two maps). The |
278 | absolute value of the third field has these meanings: 0 => no tweaking, 1 => |
279 | remove vertical space characters, 2 => remove underscore. */ |
280 | |
281 | static const int posix_class_maps[] = { |
282 | cbit_word, cbit_digit, -2, /* alpha */ |
283 | cbit_lower, -1, 0, /* lower */ |
284 | cbit_upper, -1, 0, /* upper */ |
285 | cbit_word, -1, 2, /* alnum - word without underscore */ |
286 | cbit_print, cbit_cntrl, 0, /* ascii */ |
287 | cbit_space, -1, 1, /* blank - a GNU extension */ |
288 | cbit_cntrl, -1, 0, /* cntrl */ |
289 | cbit_digit, -1, 0, /* digit */ |
290 | cbit_graph, -1, 0, /* graph */ |
291 | cbit_print, -1, 0, /* print */ |
292 | cbit_punct, -1, 0, /* punct */ |
293 | cbit_space, -1, 0, /* space */ |
294 | cbit_word, -1, 0, /* word - a Perl extension */ |
295 | cbit_xdigit,-1, 0 /* xdigit */ |
296 | }; |
297 | |
298 | /* Table of substitutes for \d etc when PCRE_UCP is set. The POSIX class |
299 | substitutes must be in the order of the names, defined above, and there are |
300 | both positive and negative cases. NULL means no substitute. */ |
301 | |
302 | #ifdef SUPPORT_UCP |
303 | static const pcre_uchar string_PNd[] = { |
304 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
305 | CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
306 | static const pcre_uchar string_pNd[] = { |
307 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
308 | CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
309 | static const pcre_uchar string_PXsp[] = { |
310 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
311 | CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
312 | static const pcre_uchar string_pXsp[] = { |
313 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
314 | CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
315 | static const pcre_uchar string_PXwd[] = { |
316 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
317 | CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
318 | static const pcre_uchar string_pXwd[] = { |
319 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
320 | CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
321 | |
322 | static const pcre_uchar *substitutes[] = { |
323 | string_PNd, /* \D */ |
324 | string_pNd, /* \d */ |
325 | string_PXsp, /* \S */ /* NOTE: Xsp is Perl space */ |
326 | string_pXsp, /* \s */ |
327 | string_PXwd, /* \W */ |
328 | string_pXwd /* \w */ |
329 | }; |
330 | |
331 | static const pcre_uchar string_pL[] = { |
332 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
333 | CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
334 | static const pcre_uchar string_pLl[] = { |
335 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
336 | CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
337 | static const pcre_uchar string_pLu[] = { |
338 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
339 | CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
340 | static const pcre_uchar string_pXan[] = { |
341 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
342 | CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
343 | static const pcre_uchar string_h[] = { |
344 | CHAR_BACKSLASH, CHAR_h, '\0' }; |
345 | static const pcre_uchar string_pXps[] = { |
346 | CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET, |
347 | CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
348 | static const pcre_uchar string_PL[] = { |
349 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
350 | CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
351 | static const pcre_uchar string_PLl[] = { |
352 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
353 | CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
354 | static const pcre_uchar string_PLu[] = { |
355 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
356 | CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
357 | static const pcre_uchar string_PXan[] = { |
358 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
359 | CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
360 | static const pcre_uchar string_H[] = { |
361 | CHAR_BACKSLASH, CHAR_H, '\0' }; |
362 | static const pcre_uchar string_PXps[] = { |
363 | CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET, |
364 | CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' }; |
365 | |
366 | static const pcre_uchar *posix_substitutes[] = { |
367 | string_pL, /* alpha */ |
368 | string_pLl, /* lower */ |
369 | string_pLu, /* upper */ |
370 | string_pXan, /* alnum */ |
371 | NULL, /* ascii */ |
372 | string_h, /* blank */ |
373 | NULL, /* cntrl */ |
374 | string_pNd, /* digit */ |
375 | NULL, /* graph */ |
376 | NULL, /* print */ |
377 | NULL, /* punct */ |
378 | string_pXps, /* space */ /* NOTE: Xps is POSIX space */ |
379 | string_pXwd, /* word */ |
380 | NULL, /* xdigit */ |
381 | /* Negated cases */ |
382 | string_PL, /* ^alpha */ |
383 | string_PLl, /* ^lower */ |
384 | string_PLu, /* ^upper */ |
385 | string_PXan, /* ^alnum */ |
386 | NULL, /* ^ascii */ |
387 | string_H, /* ^blank */ |
388 | NULL, /* ^cntrl */ |
389 | string_PNd, /* ^digit */ |
390 | NULL, /* ^graph */ |
391 | NULL, /* ^print */ |
392 | NULL, /* ^punct */ |
393 | string_PXps, /* ^space */ /* NOTE: Xps is POSIX space */ |
394 | string_PXwd, /* ^word */ |
395 | NULL /* ^xdigit */ |
396 | }; |
397 | #define POSIX_SUBSIZE (sizeof(posix_substitutes) / sizeof(pcre_uchar *)) |
398 | #endif |
399 | |
400 | #define STRING(a) # a |
401 | #define XSTRING(s) STRING(s) |
402 | |
403 | /* The texts of compile-time error messages. These are "char *" because they |
404 | are passed to the outside world. Do not ever re-use any error number, because |
405 | they are documented. Always add a new error instead. Messages marked DEAD below |
406 | are no longer used. This used to be a table of strings, but in order to reduce |
407 | the number of relocations needed when a shared library is loaded dynamically, |
408 | it is now one long string. We cannot use a table of offsets, because the |
409 | lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we |
410 | simply count through to the one we want - this isn't a performance issue |
411 | because these strings are used only when there is a compilation error. |
412 | |
413 | Each substring ends with \0 to insert a null character. This includes the final |
414 | substring, so that the whole string ends with \0\0, which can be detected when |
415 | counting through. */ |
416 | |
417 | static const char error_texts[] = |
418 | "no error\0" |
419 | "\\ at end of pattern\0" |
420 | "\\c at end of pattern\0" |
421 | "unrecognized character follows \\\0" |
422 | "numbers out of order in {} quantifier\0" |
423 | /* 5 */ |
424 | "number too big in {} quantifier\0" |
425 | "missing terminating ] for character class\0" |
426 | "invalid escape sequence in character class\0" |
427 | "range out of order in character class\0" |
428 | "nothing to repeat\0" |
429 | /* 10 */ |
430 | "operand of unlimited repeat could match the empty string\0" /** DEAD **/ |
431 | "internal error: unexpected repeat\0" |
432 | "unrecognized character after (? or (?-\0" |
433 | "POSIX named classes are supported only within a class\0" |
434 | "missing )\0" |
435 | /* 15 */ |
436 | "reference to non-existent subpattern\0" |
437 | "erroffset passed as NULL\0" |
438 | "unknown option bit(s) set\0" |
439 | "missing ) after comment\0" |
440 | "parentheses nested too deeply\0" /** DEAD **/ |
441 | /* 20 */ |
442 | "regular expression is too large\0" |
443 | "failed to get memory\0" |
444 | "unmatched parentheses\0" |
445 | "internal error: code overflow\0" |
446 | "unrecognized character after (?<\0" |
447 | /* 25 */ |
448 | "lookbehind assertion is not fixed length\0" |
449 | "malformed number or name after (?(\0" |
450 | "conditional group contains more than two branches\0" |
451 | "assertion expected after (?(\0" |
452 | "(?R or (?[+-]digits must be followed by )\0" |
453 | /* 30 */ |
454 | "unknown POSIX class name\0" |
455 | "POSIX collating elements are not supported\0" |
456 | "this version of PCRE is compiled without UTF support\0" |
457 | "spare error\0" /** DEAD **/ |
458 | "character value in \\x{...} sequence is too large\0" |
459 | /* 35 */ |
460 | "invalid condition (?(0)\0" |
461 | "\\C not allowed in lookbehind assertion\0" |
462 | "PCRE does not support \\L, \\l, \\N{name}, \\U, or \\u\0" |
463 | "number after (?C is > 255\0" |
464 | "closing ) for (?C expected\0" |
465 | /* 40 */ |
466 | "recursive call could loop indefinitely\0" |
467 | "unrecognized character after (?P\0" |
468 | "syntax error in subpattern name (missing terminator)\0" |
469 | "two named subpatterns have the same name\0" |
470 | "invalid UTF-8 string\0" |
471 | /* 45 */ |
472 | "support for \\P, \\p, and \\X has not been compiled\0" |
473 | "malformed \\P or \\p sequence\0" |
474 | "unknown property name after \\P or \\p\0" |
475 | "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0" |
476 | "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0" |
477 | /* 50 */ |
478 | "repeated subpattern is too long\0" /** DEAD **/ |
479 | "octal value is greater than \\377 in 8-bit non-UTF-8 mode\0" |
480 | "internal error: overran compiling workspace\0" |
481 | "internal error: previously-checked referenced subpattern not found\0" |
482 | "DEFINE group contains more than one branch\0" |
483 | /* 55 */ |
484 | "repeating a DEFINE group is not allowed\0" /** DEAD **/ |
485 | "inconsistent NEWLINE options\0" |
486 | "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0" |
487 | "a numbered reference must not be zero\0" |
488 | "an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0" |
489 | /* 60 */ |
490 | "(*VERB) not recognized\0" |
491 | "number is too big\0" |
492 | "subpattern name expected\0" |
493 | "digit expected after (?+\0" |
494 | "] is an invalid data character in JavaScript compatibility mode\0" |
495 | /* 65 */ |
496 | "different names for subpatterns of the same number are not allowed\0" |
497 | "(*MARK) must have an argument\0" |
498 | "this version of PCRE is not compiled with Unicode property support\0" |
499 | "\\c must be followed by an ASCII character\0" |
500 | "\\k is not followed by a braced, angle-bracketed, or quoted name\0" |
501 | /* 70 */ |
502 | "internal error: unknown opcode in find_fixedlength()\0" |
503 | "\\N is not supported in a class\0" |
504 | "too many forward references\0" |
505 | "disallowed Unicode code point (>= 0xd800 && <= 0xdfff)\0" |
506 | "invalid UTF-16 string\0" |
507 | /* 75 */ |
508 | "name is too long in (*MARK), (*PRUNE), (*SKIP), or (*THEN)\0" |
509 | "character value in \\u.... sequence is too large\0" |
510 | "invalid UTF-32 string\0" |
511 | ; |
512 | |
513 | /* Table to identify digits and hex digits. This is used when compiling |
514 | patterns. Note that the tables in chartables are dependent on the locale, and |
515 | may mark arbitrary characters as digits - but the PCRE compiling code expects |
516 | to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have |
517 | a private table here. It costs 256 bytes, but it is a lot faster than doing |
518 | character value tests (at least in some simple cases I timed), and in some |
519 | applications one wants PCRE to compile efficiently as well as match |
520 | efficiently. |
521 | |
522 | For convenience, we use the same bit definitions as in chartables: |
523 | |
524 | 0x04 decimal digit |
525 | 0x08 hexadecimal digit |
526 | |
527 | Then we can use ctype_digit and ctype_xdigit in the code. */ |
528 | |
529 | /* Using a simple comparison for decimal numbers rather than a memory read |
530 | is much faster, and the resulting code is simpler (the compiler turns it |
531 | into a subtraction and unsigned comparison). */ |
532 | |
533 | #define IS_DIGIT(x) ((x) >= CHAR_0 && (x) <= CHAR_9) |
534 | |
535 | #ifndef EBCDIC |
536 | |
537 | /* This is the "normal" case, for ASCII systems, and EBCDIC systems running in |
538 | UTF-8 mode. */ |
539 | |
540 | static const pcre_uint8 digitab[] = |
541 | { |
542 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */ |
543 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
544 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */ |
545 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
546 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */ |
547 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */ |
548 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */ |
549 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */ |
550 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */ |
551 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */ |
552 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */ |
553 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */ |
554 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */ |
555 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */ |
556 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */ |
557 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */ |
558 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */ |
559 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */ |
560 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */ |
561 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */ |
562 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */ |
563 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */ |
564 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */ |
565 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
566 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */ |
567 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */ |
568 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */ |
569 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */ |
570 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */ |
571 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */ |
572 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */ |
573 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */ |
574 | |
575 | #else |
576 | |
577 | /* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */ |
578 | |
579 | static const pcre_uint8 digitab[] = |
580 | { |
581 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */ |
582 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */ |
583 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */ |
584 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
585 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */ |
586 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
587 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */ |
588 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
589 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */ |
590 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */ |
591 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */ |
592 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */ |
593 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */ |
594 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */ |
595 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */ |
596 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
597 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */ |
598 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
599 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */ |
600 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
601 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */ |
602 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
603 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */ |
604 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
605 | 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */ |
606 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
607 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */ |
608 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
609 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */ |
610 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
611 | 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */ |
612 | 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
613 | |
614 | static const pcre_uint8 ebcdic_chartab[] = { /* chartable partial dup */ |
615 | 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */ |
616 | 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */ |
617 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */ |
618 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */ |
619 | 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */ |
620 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */ |
621 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */ |
622 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */ |
623 | 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */ |
624 | 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */ |
625 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */ |
626 | 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */ |
627 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */ |
628 | 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */ |
629 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */ |
630 | 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */ |
631 | 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */ |
632 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */ |
633 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */ |
634 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */ |
635 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */ |
636 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */ |
637 | 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */ |
638 | 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */ |
639 | 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */ |
640 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */ |
641 | 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */ |
642 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */ |
643 | 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */ |
644 | 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */ |
645 | 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */ |
646 | 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */ |
647 | #endif |
648 | |
649 | |
650 | |
651 | /************************************************* |
652 | * Find an error text * |
653 | *************************************************/ |
654 | |
655 | /* The error texts are now all in one long string, to save on relocations. As |
656 | some of the text is of unknown length, we can't use a table of offsets. |
657 | Instead, just count through the strings. This is not a performance issue |
658 | because it happens only when there has been a compilation error. |
659 | |
660 | Argument: the error number |
661 | Returns: pointer to the error string |
662 | */ |
663 | |
664 | static const char * |
665 | find_error_text(int n) |
666 | { |
667 | const char *s = error_texts; |
668 | for (; n > 0; n--) |
669 | { |
670 | while (*s++ != CHAR_NULL) {}; |
671 | if (*s == CHAR_NULL) return "Error text not found (please report)"; |
672 | } |
673 | return s; |
674 | } |
675 | |
676 | |
677 | /************************************************* |
678 | * Expand the workspace * |
679 | *************************************************/ |
680 | |
681 | /* This function is called during the second compiling phase, if the number of |
682 | forward references fills the existing workspace, which is originally a block on |
683 | the stack. A larger block is obtained from malloc() unless the ultimate limit |
684 | has been reached or the increase will be rather small. |
685 | |
686 | Argument: pointer to the compile data block |
687 | Returns: 0 if all went well, else an error number |
688 | */ |
689 | |
690 | static int |
691 | expand_workspace(compile_data *cd) |
692 | { |
693 | pcre_uchar *newspace; |
694 | int newsize = cd->workspace_size * 2; |
695 | |
696 | if (newsize > COMPILE_WORK_SIZE_MAX) newsize = COMPILE_WORK_SIZE_MAX; |
697 | if (cd->workspace_size >= COMPILE_WORK_SIZE_MAX || |
698 | newsize - cd->workspace_size < WORK_SIZE_SAFETY_MARGIN) |
699 | return ERR72; |
700 | |
701 | newspace = (PUBL(malloc))(IN_UCHARS(newsize)); |
702 | if (newspace == NULL) return ERR21; |
703 | memcpy(newspace, cd->start_workspace, cd->workspace_size * sizeof(pcre_uchar)); |
704 | cd->hwm = (pcre_uchar *)newspace + (cd->hwm - cd->start_workspace); |
705 | if (cd->workspace_size > COMPILE_WORK_SIZE) |
706 | (PUBL(free))((void *)cd->start_workspace); |
707 | cd->start_workspace = newspace; |
708 | cd->workspace_size = newsize; |
709 | return 0; |
710 | } |
711 | |
712 | |
713 | |
714 | /************************************************* |
715 | * Check for counted repeat * |
716 | *************************************************/ |
717 | |
718 | /* This function is called when a '{' is encountered in a place where it might |
719 | start a quantifier. It looks ahead to see if it really is a quantifier or not. |
720 | It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd} |
721 | where the ddds are digits. |
722 | |
723 | Arguments: |
724 | p pointer to the first char after '{' |
725 | |
726 | Returns: TRUE or FALSE |
727 | */ |
728 | |
729 | static BOOL |
730 | is_counted_repeat(const pcre_uchar *p) |
731 | { |
732 | if (!IS_DIGIT(*p)) return FALSE; |
733 | p++; |
734 | while (IS_DIGIT(*p)) p++; |
735 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
736 | |
737 | if (*p++ != CHAR_COMMA) return FALSE; |
738 | if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE; |
739 | |
740 | if (!IS_DIGIT(*p)) return FALSE; |
741 | p++; |
742 | while (IS_DIGIT(*p)) p++; |
743 | |
744 | return (*p == CHAR_RIGHT_CURLY_BRACKET); |
745 | } |
746 | |
747 | |
748 | |
749 | /************************************************* |
750 | * Handle escapes * |
751 | *************************************************/ |
752 | |
753 | /* This function is called when a \ has been encountered. It either returns a |
754 | positive value for a simple escape such as \n, or 0 for a data character |
755 | which will be placed in chptr. A backreference to group n is returned as |
756 | negative n. When UTF-8 is enabled, a positive value greater than 255 may |
757 | be returned in chptr. |
758 | On entry,ptr is pointing at the \. On exit, it is on the final character of the |
759 | escape sequence. |
760 | |
761 | Arguments: |
762 | ptrptr points to the pattern position pointer |
763 | chptr points to the data character |
764 | errorcodeptr points to the errorcode variable |
765 | bracount number of previous extracting brackets |
766 | options the options bits |
767 | isclass TRUE if inside a character class |
768 | |
769 | Returns: zero => a data character |
770 | positive => a special escape sequence |
771 | negative => a back reference |
772 | on error, errorcodeptr is set |
773 | */ |
774 | |
775 | static int |
776 | check_escape(const pcre_uchar **ptrptr, pcre_uint32 *chptr, int *errorcodeptr, |
777 | int bracount, int options, BOOL isclass) |
778 | { |
779 | /* PCRE_UTF16 has the same value as PCRE_UTF8. */ |
780 | BOOL utf = (options & PCRE_UTF8) != 0; |
781 | const pcre_uchar *ptr = *ptrptr + 1; |
782 | pcre_uint32 c; |
783 | int escape = 0; |
784 | int i; |
785 | |
786 | GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */ |
787 | ptr--; /* Set pointer back to the last byte */ |
788 | |
789 | /* If backslash is at the end of the pattern, it's an error. */ |
790 | |
791 | if (c == CHAR_NULL) *errorcodeptr = ERR1; |
792 | |
793 | /* Non-alphanumerics are literals. For digits or letters, do an initial lookup |
794 | in a table. A non-zero result is something that can be returned immediately. |
795 | Otherwise further processing may be required. */ |
796 | |
797 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
798 | /* Not alphanumeric */ |
799 | else if (c < CHAR_0 || c > CHAR_z) {} |
800 | else if ((i = escapes[c - CHAR_0]) != 0) { if (i > 0) c = (pcre_uint32)i; else escape = -i; } |
801 | |
802 | #else /* EBCDIC coding */ |
803 | /* Not alphanumeric */ |
804 | else if (c < CHAR_a || (!MAX_255(c) || (ebcdic_chartab[c] & 0x0E) == 0)) {} |
805 | else if ((i = escapes[c - 0x48]) != 0) { if (i > 0) c = (pcre_uint32)i; else escape = -i; } |
806 | #endif |
807 | |
808 | /* Escapes that need further processing, or are illegal. */ |
809 | |
810 | else |
811 | { |
812 | const pcre_uchar *oldptr; |
813 | BOOL braced, negated, overflow; |
814 | int s; |
815 | |
816 | switch (c) |
817 | { |
818 | /* A number of Perl escapes are not handled by PCRE. We give an explicit |
819 | error. */ |
820 | |
821 | case CHAR_l: |
822 | case CHAR_L: |
823 | *errorcodeptr = ERR37; |
824 | break; |
825 | |
826 | case CHAR_u: |
827 | if ((options & PCRE_JAVASCRIPT_COMPAT) != 0) |
828 | { |
829 | /* In JavaScript, \u must be followed by four hexadecimal numbers. |
830 | Otherwise it is a lowercase u letter. */ |
831 | if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0 |
832 | && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0 |
833 | && MAX_255(ptr[3]) && (digitab[ptr[3]] & ctype_xdigit) != 0 |
834 | && MAX_255(ptr[4]) && (digitab[ptr[4]] & ctype_xdigit) != 0) |
835 | { |
836 | c = 0; |
837 | for (i = 0; i < 4; ++i) |
838 | { |
839 | register pcre_uint32 cc = *(++ptr); |
840 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
841 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
842 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
843 | #else /* EBCDIC coding */ |
844 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
845 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
846 | #endif |
847 | } |
848 | |
849 | #if defined COMPILE_PCRE8 |
850 | if (c > (utf ? 0x10ffff : 0xff)) |
851 | #elif defined COMPILE_PCRE16 |
852 | if (c > (utf ? 0x10ffff : 0xffff)) |
853 | #elif defined COMPILE_PCRE32 |
854 | if (utf && c > 0x10ffff) |
855 | #endif |
856 | { |
857 | *errorcodeptr = ERR76; |
858 | } |
859 | else if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73; |
860 | } |
861 | } |
862 | else |
863 | *errorcodeptr = ERR37; |
864 | break; |
865 | |
866 | case CHAR_U: |
867 | /* In JavaScript, \U is an uppercase U letter. */ |
868 | if ((options & PCRE_JAVASCRIPT_COMPAT) == 0) *errorcodeptr = ERR37; |
869 | break; |
870 | |
871 | /* In a character class, \g is just a literal "g". Outside a character |
872 | class, \g must be followed by one of a number of specific things: |
873 | |
874 | (1) A number, either plain or braced. If positive, it is an absolute |
875 | backreference. If negative, it is a relative backreference. This is a Perl |
876 | 5.10 feature. |
877 | |
878 | (2) Perl 5.10 also supports \g{name} as a reference to a named group. This |
879 | is part of Perl's movement towards a unified syntax for back references. As |
880 | this is synonymous with \k{name}, we fudge it up by pretending it really |
881 | was \k. |
882 | |
883 | (3) For Oniguruma compatibility we also support \g followed by a name or a |
884 | number either in angle brackets or in single quotes. However, these are |
885 | (possibly recursive) subroutine calls, _not_ backreferences. Just return |
886 | the ESC_g code (cf \k). */ |
887 | |
888 | case CHAR_g: |
889 | if (isclass) break; |
890 | if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE) |
891 | { |
892 | escape = ESC_g; |
893 | break; |
894 | } |
895 | |
896 | /* Handle the Perl-compatible cases */ |
897 | |
898 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
899 | { |
900 | const pcre_uchar *p; |
901 | for (p = ptr+2; *p != CHAR_NULL && *p != CHAR_RIGHT_CURLY_BRACKET; p++) |
902 | if (*p != CHAR_MINUS && !IS_DIGIT(*p)) break; |
903 | if (*p != CHAR_NULL && *p != CHAR_RIGHT_CURLY_BRACKET) |
904 | { |
905 | escape = ESC_k; |
906 | break; |
907 | } |
908 | braced = TRUE; |
909 | ptr++; |
910 | } |
911 | else braced = FALSE; |
912 | |
913 | if (ptr[1] == CHAR_MINUS) |
914 | { |
915 | negated = TRUE; |
916 | ptr++; |
917 | } |
918 | else negated = FALSE; |
919 | |
920 | /* The integer range is limited by the machine's int representation. */ |
921 | s = 0; |
922 | overflow = FALSE; |
923 | while (IS_DIGIT(ptr[1])) |
924 | { |
925 | if (s > INT_MAX / 10 - 1) /* Integer overflow */ |
926 | { |
927 | overflow = TRUE; |
928 | break; |
929 | } |
930 | s = s * 10 + (int)(*(++ptr) - CHAR_0); |
931 | } |
932 | if (overflow) /* Integer overflow */ |
933 | { |
934 | while (IS_DIGIT(ptr[1])) |
935 | ptr++; |
936 | *errorcodeptr = ERR61; |
937 | break; |
938 | } |
939 | |
940 | if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET) |
941 | { |
942 | *errorcodeptr = ERR57; |
943 | break; |
944 | } |
945 | |
946 | if (s == 0) |
947 | { |
948 | *errorcodeptr = ERR58; |
949 | break; |
950 | } |
951 | |
952 | if (negated) |
953 | { |
954 | if (s > bracount) |
955 | { |
956 | *errorcodeptr = ERR15; |
957 | break; |
958 | } |
959 | s = bracount - (s - 1); |
960 | } |
961 | |
962 | escape = -s; |
963 | break; |
964 | |
965 | /* The handling of escape sequences consisting of a string of digits |
966 | starting with one that is not zero is not straightforward. By experiment, |
967 | the way Perl works seems to be as follows: |
968 | |
969 | Outside a character class, the digits are read as a decimal number. If the |
970 | number is less than 10, or if there are that many previous extracting |
971 | left brackets, then it is a back reference. Otherwise, up to three octal |
972 | digits are read to form an escaped byte. Thus \123 is likely to be octal |
973 | 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal |
974 | value is greater than 377, the least significant 8 bits are taken. Inside a |
975 | character class, \ followed by a digit is always an octal number. */ |
976 | |
977 | case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5: |
978 | case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
979 | |
980 | if (!isclass) |
981 | { |
982 | oldptr = ptr; |
983 | /* The integer range is limited by the machine's int representation. */ |
984 | s = (int)(c -CHAR_0); |
985 | overflow = FALSE; |
986 | while (IS_DIGIT(ptr[1])) |
987 | { |
988 | if (s > INT_MAX / 10 - 1) /* Integer overflow */ |
989 | { |
990 | overflow = TRUE; |
991 | break; |
992 | } |
993 | s = s * 10 + (int)(*(++ptr) - CHAR_0); |
994 | } |
995 | if (overflow) /* Integer overflow */ |
996 | { |
997 | while (IS_DIGIT(ptr[1])) |
998 | ptr++; |
999 | *errorcodeptr = ERR61; |
1000 | break; |
1001 | } |
1002 | if (s < 10 || s <= bracount) |
1003 | { |
1004 | escape = -s; |
1005 | break; |
1006 | } |
1007 | ptr = oldptr; /* Put the pointer back and fall through */ |
1008 | } |
1009 | |
1010 | /* Handle an octal number following \. If the first digit is 8 or 9, Perl |
1011 | generates a binary zero byte and treats the digit as a following literal. |
1012 | Thus we have to pull back the pointer by one. */ |
1013 | |
1014 | if ((c = *ptr) >= CHAR_8) |
1015 | { |
1016 | ptr--; |
1017 | c = 0; |
1018 | break; |
1019 | } |
1020 | |
1021 | /* \0 always starts an octal number, but we may drop through to here with a |
1022 | larger first octal digit. The original code used just to take the least |
1023 | significant 8 bits of octal numbers (I think this is what early Perls used |
1024 | to do). Nowadays we allow for larger numbers in UTF-8 mode and 16-bit mode, |
1025 | but no more than 3 octal digits. */ |
1026 | |
1027 | case CHAR_0: |
1028 | c -= CHAR_0; |
1029 | while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7) |
1030 | c = c * 8 + *(++ptr) - CHAR_0; |
1031 | #ifdef COMPILE_PCRE8 |
1032 | if (!utf && c > 0xff) *errorcodeptr = ERR51; |
1033 | #endif |
1034 | break; |
1035 | |
1036 | /* \x is complicated. \x{ddd} is a character number which can be greater |
1037 | than 0xff in utf or non-8bit mode, but only if the ddd are hex digits. |
1038 | If not, { is treated as a data character. */ |
1039 | |
1040 | case CHAR_x: |
1041 | if ((options & PCRE_JAVASCRIPT_COMPAT) != 0) |
1042 | { |
1043 | /* In JavaScript, \x must be followed by two hexadecimal numbers. |
1044 | Otherwise it is a lowercase x letter. */ |
1045 | if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0 |
1046 | && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0) |
1047 | { |
1048 | c = 0; |
1049 | for (i = 0; i < 2; ++i) |
1050 | { |
1051 | register pcre_uint32 cc = *(++ptr); |
1052 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1053 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
1054 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
1055 | #else /* EBCDIC coding */ |
1056 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
1057 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
1058 | #endif |
1059 | } |
1060 | } |
1061 | break; |
1062 | } |
1063 | |
1064 | if (ptr[1] == CHAR_LEFT_CURLY_BRACKET) |
1065 | { |
1066 | const pcre_uchar *pt = ptr + 2; |
1067 | |
1068 | c = 0; |
1069 | overflow = FALSE; |
1070 | while (MAX_255(*pt) && (digitab[*pt] & ctype_xdigit) != 0) |
1071 | { |
1072 | register pcre_uint32 cc = *pt++; |
1073 | if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */ |
1074 | |
1075 | #ifdef COMPILE_PCRE32 |
1076 | if (c >= 0x10000000l) { overflow = TRUE; break; } |
1077 | #endif |
1078 | |
1079 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1080 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
1081 | c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
1082 | #else /* EBCDIC coding */ |
1083 | if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
1084 | c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
1085 | #endif |
1086 | |
1087 | #if defined COMPILE_PCRE8 |
1088 | if (c > (utf ? 0x10ffff : 0xff)) { overflow = TRUE; break; } |
1089 | #elif defined COMPILE_PCRE16 |
1090 | if (c > (utf ? 0x10ffff : 0xffff)) { overflow = TRUE; break; } |
1091 | #elif defined COMPILE_PCRE32 |
1092 | if (utf && c > 0x10ffff) { overflow = TRUE; break; } |
1093 | #endif |
1094 | } |
1095 | |
1096 | if (overflow) |
1097 | { |
1098 | while (MAX_255(*pt) && (digitab[*pt] & ctype_xdigit) != 0) pt++; |
1099 | *errorcodeptr = ERR34; |
1100 | } |
1101 | |
1102 | if (*pt == CHAR_RIGHT_CURLY_BRACKET) |
1103 | { |
1104 | if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73; |
1105 | ptr = pt; |
1106 | break; |
1107 | } |
1108 | |
1109 | /* If the sequence of hex digits does not end with '}', then we don't |
1110 | recognize this construct; fall through to the normal \x handling. */ |
1111 | } |
1112 | |
1113 | /* Read just a single-byte hex-defined char */ |
1114 | |
1115 | c = 0; |
1116 | while (i++ < 2 && MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0) |
1117 | { |
1118 | pcre_uint32 cc; /* Some compilers don't like */ |
1119 | cc = *(++ptr); /* ++ in initializers */ |
1120 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1121 | if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */ |
1122 | c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10)); |
1123 | #else /* EBCDIC coding */ |
1124 | if (cc <= CHAR_z) cc += 64; /* Convert to upper case */ |
1125 | c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10)); |
1126 | #endif |
1127 | } |
1128 | break; |
1129 | |
1130 | /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped. |
1131 | An error is given if the byte following \c is not an ASCII character. This |
1132 | coding is ASCII-specific, but then the whole concept of \cx is |
1133 | ASCII-specific. (However, an EBCDIC equivalent has now been added.) */ |
1134 | |
1135 | case CHAR_c: |
1136 | c = *(++ptr); |
1137 | if (c == CHAR_NULL) |
1138 | { |
1139 | *errorcodeptr = ERR2; |
1140 | break; |
1141 | } |
1142 | #ifndef EBCDIC /* ASCII/UTF-8 coding */ |
1143 | if (c > 127) /* Excludes all non-ASCII in either mode */ |
1144 | { |
1145 | *errorcodeptr = ERR68; |
1146 | break; |
1147 | } |
1148 | if (c >= CHAR_a && c <= CHAR_z) c -= 32; |
1149 | c ^= 0x40; |
1150 | #else /* EBCDIC coding */ |
1151 | if (c >= CHAR_a && c <= CHAR_z) c += 64; |
1152 | c ^= 0xC0; |
1153 | #endif |
1154 | break; |
1155 | |
1156 | /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any |
1157 | other alphanumeric following \ is an error if PCRE_EXTRA was set; |
1158 | otherwise, for Perl compatibility, it is a literal. This code looks a bit |
1159 | odd, but there used to be some cases other than the default, and there may |
1160 | be again in future, so I haven't "optimized" it. */ |
1161 | |
1162 | default: |
1163 | if ((options & PCRE_EXTRA) != 0) switch(c) |
1164 | { |
1165 | default: |
1166 | *errorcodeptr = ERR3; |
1167 | break; |
1168 | } |
1169 | break; |
1170 | } |
1171 | } |
1172 | |
1173 | /* Perl supports \N{name} for character names, as well as plain \N for "not |
1174 | newline". PCRE does not support \N{name}. However, it does support |
1175 | quantification such as \N{2,3}. */ |
1176 | |
1177 | if (escape == ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET && |
1178 | !is_counted_repeat(ptr+2)) |
1179 | *errorcodeptr = ERR37; |
1180 | |
1181 | /* If PCRE_UCP is set, we change the values for \d etc. */ |
1182 | |
1183 | if ((options & PCRE_UCP) != 0 && escape >= ESC_D && escape <= ESC_w) |
1184 | escape += (ESC_DU - ESC_D); |
1185 | |
1186 | /* Set the pointer to the final character before returning. */ |
1187 | |
1188 | *ptrptr = ptr; |
1189 | *chptr = c; |
1190 | return escape; |
1191 | } |
1192 | |
1193 | #ifdef SUPPORT_UCP |
1194 | /************************************************* |
1195 | * Handle \P and \p * |
1196 | *************************************************/ |
1197 | |
1198 | /* This function is called after \P or \p has been encountered, provided that |
1199 | PCRE is compiled with support for Unicode properties. On entry, ptrptr is |
1200 | pointing at the P or p. On exit, it is pointing at the final character of the |
1201 | escape sequence. |
1202 | |
1203 | Argument: |
1204 | ptrptr points to the pattern position pointer |
1205 | negptr points to a boolean that is set TRUE for negation else FALSE |
1206 | ptypeptr points to an unsigned int that is set to the type value |
1207 | pdataptr points to an unsigned int that is set to the detailed property value |
1208 | errorcodeptr points to the error code variable |
1209 | |
1210 | Returns: TRUE if the type value was found, or FALSE for an invalid type |
1211 | */ |
1212 | |
1213 | static BOOL |
1214 | get_ucp(const pcre_uchar **ptrptr, BOOL *negptr, unsigned int *ptypeptr, |
1215 | unsigned int *pdataptr, int *errorcodeptr) |
1216 | { |
1217 | pcre_uchar c; |
1218 | int i, bot, top; |
1219 | const pcre_uchar *ptr = *ptrptr; |
1220 | pcre_uchar name[32]; |
1221 | |
1222 | c = *(++ptr); |
1223 | if (c == CHAR_NULL) goto ERROR_RETURN; |
1224 | |
1225 | *negptr = FALSE; |
1226 | |
1227 | /* \P or \p can be followed by a name in {}, optionally preceded by ^ for |
1228 | negation. */ |
1229 | |
1230 | if (c == CHAR_LEFT_CURLY_BRACKET) |
1231 | { |
1232 | if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
1233 | { |
1234 | *negptr = TRUE; |
1235 | ptr++; |
1236 | } |
1237 | for (i = 0; i < (int)(sizeof(name) / sizeof(pcre_uchar)) - 1; i++) |
1238 | { |
1239 | c = *(++ptr); |
1240 | if (c == CHAR_NULL) goto ERROR_RETURN; |
1241 | if (c == CHAR_RIGHT_CURLY_BRACKET) break; |
1242 | name[i] = c; |
1243 | } |
1244 | if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN; |
1245 | name[i] = 0; |
1246 | } |
1247 | |
1248 | /* Otherwise there is just one following character */ |
1249 | |
1250 | else |
1251 | { |
1252 | name[0] = c; |
1253 | name[1] = 0; |
1254 | } |
1255 | |
1256 | *ptrptr = ptr; |
1257 | |
1258 | /* Search for a recognized property name using binary chop */ |
1259 | |
1260 | bot = 0; |
1261 | top = PRIV(utt_size); |
1262 | |
1263 | while (bot < top) |
1264 | { |
1265 | int r; |
1266 | i = (bot + top) >> 1; |
1267 | r = STRCMP_UC_C8(name, PRIV(utt_names) + PRIV(utt)[i].name_offset); |
1268 | if (r == 0) |
1269 | { |
1270 | *ptypeptr = PRIV(utt)[i].type; |
1271 | *pdataptr = PRIV(utt)[i].value; |
1272 | return TRUE; |
1273 | } |
1274 | if (r > 0) bot = i + 1; else top = i; |
1275 | } |
1276 | |
1277 | *errorcodeptr = ERR47; |
1278 | *ptrptr = ptr; |
1279 | return FALSE; |
1280 | |
1281 | ERROR_RETURN: |
1282 | *errorcodeptr = ERR46; |
1283 | *ptrptr = ptr; |
1284 | return FALSE; |
1285 | } |
1286 | #endif |
1287 | |
1288 | |
1289 | |
1290 | |
1291 | /************************************************* |
1292 | * Read repeat counts * |
1293 | *************************************************/ |
1294 | |
1295 | /* Read an item of the form {n,m} and return the values. This is called only |
1296 | after is_counted_repeat() has confirmed that a repeat-count quantifier exists, |
1297 | so the syntax is guaranteed to be correct, but we need to check the values. |
1298 | |
1299 | Arguments: |
1300 | p pointer to first char after '{' |
1301 | minp pointer to int for min |
1302 | maxp pointer to int for max |
1303 | returned as -1 if no max |
1304 | errorcodeptr points to error code variable |
1305 | |
1306 | Returns: pointer to '}' on success; |
1307 | current ptr on error, with errorcodeptr set non-zero |
1308 | */ |
1309 | |
1310 | static const pcre_uchar * |
1311 | read_repeat_counts(const pcre_uchar *p, int *minp, int *maxp, int *errorcodeptr) |
1312 | { |
1313 | int min = 0; |
1314 | int max = -1; |
1315 | |
1316 | /* Read the minimum value and do a paranoid check: a negative value indicates |
1317 | an integer overflow. */ |
1318 | |
1319 | while (IS_DIGIT(*p)) min = min * 10 + (int)(*p++ - CHAR_0); |
1320 | if (min < 0 || min > 65535) |
1321 | { |
1322 | *errorcodeptr = ERR5; |
1323 | return p; |
1324 | } |
1325 | |
1326 | /* Read the maximum value if there is one, and again do a paranoid on its size. |
1327 | Also, max must not be less than min. */ |
1328 | |
1329 | if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else |
1330 | { |
1331 | if (*(++p) != CHAR_RIGHT_CURLY_BRACKET) |
1332 | { |
1333 | max = 0; |
1334 | while(IS_DIGIT(*p)) max = max * 10 + (int)(*p++ - CHAR_0); |
1335 | if (max < 0 || max > 65535) |
1336 | { |
1337 | *errorcodeptr = ERR5; |
1338 | return p; |
1339 | } |
1340 | if (max < min) |
1341 | { |
1342 | *errorcodeptr = ERR4; |
1343 | return p; |
1344 | } |
1345 | } |
1346 | } |
1347 | |
1348 | /* Fill in the required variables, and pass back the pointer to the terminating |
1349 | '}'. */ |
1350 | |
1351 | *minp = min; |
1352 | *maxp = max; |
1353 | return p; |
1354 | } |
1355 | |
1356 | |
1357 | |
1358 | /************************************************* |
1359 | * Subroutine for finding forward reference * |
1360 | *************************************************/ |
1361 | |
1362 | /* This recursive function is called only from find_parens() below. The |
1363 | top-level call starts at the beginning of the pattern. All other calls must |
1364 | start at a parenthesis. It scans along a pattern's text looking for capturing |
1365 | subpatterns, and counting them. If it finds a named pattern that matches the |
1366 | name it is given, it returns its number. Alternatively, if the name is NULL, it |
1367 | returns when it reaches a given numbered subpattern. Recursion is used to keep |
1368 | track of subpatterns that reset the capturing group numbers - the (?| feature. |
1369 | |
1370 | This function was originally called only from the second pass, in which we know |
1371 | that if (?< or (?' or (?P< is encountered, the name will be correctly |
1372 | terminated because that is checked in the first pass. There is now one call to |
1373 | this function in the first pass, to check for a recursive back reference by |
1374 | name (so that we can make the whole group atomic). In this case, we need check |
1375 | only up to the current position in the pattern, and that is still OK because |
1376 | and previous occurrences will have been checked. To make this work, the test |
1377 | for "end of pattern" is a check against cd->end_pattern in the main loop, |
1378 | instead of looking for a binary zero. This means that the special first-pass |
1379 | call can adjust cd->end_pattern temporarily. (Checks for binary zero while |
1380 | processing items within the loop are OK, because afterwards the main loop will |
1381 | terminate.) |
1382 | |
1383 | Arguments: |
1384 | ptrptr address of the current character pointer (updated) |
1385 | cd compile background data |
1386 | name name to seek, or NULL if seeking a numbered subpattern |
1387 | lorn name length, or subpattern number if name is NULL |
1388 | xmode TRUE if we are in /x mode |
1389 | utf TRUE if we are in UTF-8 / UTF-16 / UTF-32 mode |
1390 | count pointer to the current capturing subpattern number (updated) |
1391 | |
1392 | Returns: the number of the named subpattern, or -1 if not found |
1393 | */ |
1394 | |
1395 | static int |
1396 | find_parens_sub(pcre_uchar **ptrptr, compile_data *cd, const pcre_uchar *name, int lorn, |
1397 | BOOL xmode, BOOL utf, int *count) |
1398 | { |
1399 | pcre_uchar *ptr = *ptrptr; |
1400 | int start_count = *count; |
1401 | int hwm_count = start_count; |
1402 | BOOL dup_parens = FALSE; |
1403 | |
1404 | /* If the first character is a parenthesis, check on the type of group we are |
1405 | dealing with. The very first call may not start with a parenthesis. */ |
1406 | |
1407 | if (ptr[0] == CHAR_LEFT_PARENTHESIS) |
1408 | { |
1409 | /* Handle specials such as (*SKIP) or (*UTF8) etc. */ |
1410 | |
1411 | if (ptr[1] == CHAR_ASTERISK) ptr += 2; |
1412 | |
1413 | /* Handle a normal, unnamed capturing parenthesis. */ |
1414 | |
1415 | else if (ptr[1] != CHAR_QUESTION_MARK) |
1416 | { |
1417 | *count += 1; |
1418 | if (name == NULL && *count == lorn) return *count; |
1419 | ptr++; |
1420 | } |
1421 | |
1422 | /* All cases now have (? at the start. Remember when we are in a group |
1423 | where the parenthesis numbers are duplicated. */ |
1424 | |
1425 | else if (ptr[2] == CHAR_VERTICAL_LINE) |
1426 | { |
1427 | ptr += 3; |
1428 | dup_parens = TRUE; |
1429 | } |
1430 | |
1431 | /* Handle comments; all characters are allowed until a ket is reached. */ |
1432 | |
1433 | else if (ptr[2] == CHAR_NUMBER_SIGN) |
1434 | { |
1435 | for (ptr += 3; *ptr != CHAR_NULL; ptr++) |
1436 | if (*ptr == CHAR_RIGHT_PARENTHESIS) break; |
1437 | goto FAIL_EXIT; |
1438 | } |
1439 | |
1440 | /* Handle a condition. If it is an assertion, just carry on so that it |
1441 | is processed as normal. If not, skip to the closing parenthesis of the |
1442 | condition (there can't be any nested parens). */ |
1443 | |
1444 | else if (ptr[2] == CHAR_LEFT_PARENTHESIS) |
1445 | { |
1446 | ptr += 2; |
1447 | if (ptr[1] != CHAR_QUESTION_MARK) |
1448 | { |
1449 | while (*ptr != CHAR_NULL && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
1450 | if (*ptr != CHAR_NULL) ptr++; |
1451 | } |
1452 | } |
1453 | |
1454 | /* Start with (? but not a condition. */ |
1455 | |
1456 | else |
1457 | { |
1458 | ptr += 2; |
1459 | if (*ptr == CHAR_P) ptr++; /* Allow optional P */ |
1460 | |
1461 | /* We have to disambiguate (?<! and (?<= from (?<name> for named groups */ |
1462 | |
1463 | if ((*ptr == CHAR_LESS_THAN_SIGN && ptr[1] != CHAR_EXCLAMATION_MARK && |
1464 | ptr[1] != CHAR_EQUALS_SIGN) || *ptr == CHAR_APOSTROPHE) |
1465 | { |
1466 | pcre_uchar term; |
1467 | const pcre_uchar *thisname; |
1468 | *count += 1; |
1469 | if (name == NULL && *count == lorn) return *count; |
1470 | term = *ptr++; |
1471 | if (term == CHAR_LESS_THAN_SIGN) term = CHAR_GREATER_THAN_SIGN; |
1472 | thisname = ptr; |
1473 | while (*ptr != term) ptr++; |
1474 | if (name != NULL && lorn == (int)(ptr - thisname) && |
1475 | STRNCMP_UC_UC(name, thisname, (unsigned int)lorn) == 0) |
1476 | return *count; |
1477 | term++; |
1478 | } |
1479 | } |
1480 | } |
1481 | |
1482 | /* Past any initial parenthesis handling, scan for parentheses or vertical |
1483 | bars. Stop if we get to cd->end_pattern. Note that this is important for the |
1484 | first-pass call when this value is temporarily adjusted to stop at the current |
1485 | position. So DO NOT change this to a test for binary zero. */ |
1486 | |
1487 | for (; ptr < cd->end_pattern; ptr++) |
1488 | { |
1489 | /* Skip over backslashed characters and also entire \Q...\E */ |
1490 | |
1491 | if (*ptr == CHAR_BACKSLASH) |
1492 | { |
1493 | if (*(++ptr) == CHAR_NULL) goto FAIL_EXIT; |
1494 | if (*ptr == CHAR_Q) for (;;) |
1495 | { |
1496 | while (*(++ptr) != CHAR_NULL && *ptr != CHAR_BACKSLASH) {}; |
1497 | if (*ptr == CHAR_NULL) goto FAIL_EXIT; |
1498 | if (*(++ptr) == CHAR_E) break; |
1499 | } |
1500 | continue; |
1501 | } |
1502 | |
1503 | /* Skip over character classes; this logic must be similar to the way they |
1504 | are handled for real. If the first character is '^', skip it. Also, if the |
1505 | first few characters (either before or after ^) are \Q\E or \E we skip them |
1506 | too. This makes for compatibility with Perl. Note the use of STR macros to |
1507 | encode "Q\\E" so that it works in UTF-8 on EBCDIC platforms. */ |
1508 | |
1509 | if (*ptr == CHAR_LEFT_SQUARE_BRACKET) |
1510 | { |
1511 | BOOL negate_class = FALSE; |
1512 | for (;;) |
1513 | { |
1514 | if (ptr[1] == CHAR_BACKSLASH) |
1515 | { |
1516 | if (ptr[2] == CHAR_E) |
1517 | ptr+= 2; |
1518 | else if (STRNCMP_UC_C8(ptr + 2, |
1519 | STR_Q STR_BACKSLASH STR_E, 3) == 0) |
1520 | ptr += 4; |
1521 | else |
1522 | break; |
1523 | } |
1524 | else if (!negate_class && ptr[1] == CHAR_CIRCUMFLEX_ACCENT) |
1525 | { |
1526 | negate_class = TRUE; |
1527 | ptr++; |
1528 | } |
1529 | else break; |
1530 | } |
1531 | |
1532 | /* If the next character is ']', it is a data character that must be |
1533 | skipped, except in JavaScript compatibility mode. */ |
1534 | |
1535 | if (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET && |
1536 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) == 0) |
1537 | ptr++; |
1538 | |
1539 | while (*(++ptr) != CHAR_RIGHT_SQUARE_BRACKET) |
1540 | { |
1541 | if (*ptr == CHAR_NULL) return -1; |
1542 | if (*ptr == CHAR_BACKSLASH) |
1543 | { |
1544 | if (*(++ptr) == CHAR_NULL) goto FAIL_EXIT; |
1545 | if (*ptr == CHAR_Q) for (;;) |
1546 | { |
1547 | while (*(++ptr) != CHAR_NULL && *ptr != CHAR_BACKSLASH) {}; |
1548 | if (*ptr == CHAR_NULL) goto FAIL_EXIT; |
1549 | if (*(++ptr) == CHAR_E) break; |
1550 | } |
1551 | continue; |
1552 | } |
1553 | } |
1554 | continue; |
1555 | } |
1556 | |
1557 | /* Skip comments in /x mode */ |
1558 | |
1559 | if (xmode && *ptr == CHAR_NUMBER_SIGN) |
1560 | { |
1561 | ptr++; |
1562 | while (*ptr != CHAR_NULL) |
1563 | { |
1564 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; } |
1565 | ptr++; |
1566 | #ifdef SUPPORT_UTF |
1567 | if (utf) FORWARDCHAR(ptr); |
1568 | #endif |
1569 | } |
1570 | if (*ptr == CHAR_NULL) goto FAIL_EXIT; |
1571 | continue; |
1572 | } |
1573 | |
1574 | /* Check for the special metacharacters */ |
1575 | |
1576 | if (*ptr == CHAR_LEFT_PARENTHESIS) |
1577 | { |
1578 | int rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf, count); |
1579 | if (rc > 0) return rc; |
1580 | if (*ptr == CHAR_NULL) goto FAIL_EXIT; |
1581 | } |
1582 | |
1583 | else if (*ptr == CHAR_RIGHT_PARENTHESIS) |
1584 | { |
1585 | if (dup_parens && *count < hwm_count) *count = hwm_count; |
1586 | goto FAIL_EXIT; |
1587 | } |
1588 | |
1589 | else if (*ptr == CHAR_VERTICAL_LINE && dup_parens) |
1590 | { |
1591 | if (*count > hwm_count) hwm_count = *count; |
1592 | *count = start_count; |
1593 | } |
1594 | } |
1595 | |
1596 | FAIL_EXIT: |
1597 | *ptrptr = ptr; |
1598 | return -1; |
1599 | } |
1600 | |
1601 | |
1602 | |
1603 | |
1604 | /************************************************* |
1605 | * Find forward referenced subpattern * |
1606 | *************************************************/ |
1607 | |
1608 | /* This function scans along a pattern's text looking for capturing |
1609 | subpatterns, and counting them. If it finds a named pattern that matches the |
1610 | name it is given, it returns its number. Alternatively, if the name is NULL, it |
1611 | returns when it reaches a given numbered subpattern. This is used for forward |
1612 | references to subpatterns. We used to be able to start this scan from the |
1613 | current compiling point, using the current count value from cd->bracount, and |
1614 | do it all in a single loop, but the addition of the possibility of duplicate |
1615 | subpattern numbers means that we have to scan from the very start, in order to |
1616 | take account of such duplicates, and to use a recursive function to keep track |
1617 | of the different types of group. |
1618 | |
1619 | Arguments: |
1620 | cd compile background data |
1621 | name name to seek, or NULL if seeking a numbered subpattern |
1622 | lorn name length, or subpattern number if name is NULL |
1623 | xmode TRUE if we are in /x mode |
1624 | utf TRUE if we are in UTF-8 / UTF-16 / UTF-32 mode |
1625 | |
1626 | Returns: the number of the found subpattern, or -1 if not found |
1627 | */ |
1628 | |
1629 | static int |
1630 | find_parens(compile_data *cd, const pcre_uchar *name, int lorn, BOOL xmode, |
1631 | BOOL utf) |
1632 | { |
1633 | pcre_uchar *ptr = (pcre_uchar *)cd->start_pattern; |
1634 | int count = 0; |
1635 | int rc; |
1636 | |
1637 | /* If the pattern does not start with an opening parenthesis, the first call |
1638 | to find_parens_sub() will scan right to the end (if necessary). However, if it |
1639 | does start with a parenthesis, find_parens_sub() will return when it hits the |
1640 | matching closing parens. That is why we have to have a loop. */ |
1641 | |
1642 | for (;;) |
1643 | { |
1644 | rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf, &count); |
1645 | if (rc > 0 || *ptr++ == CHAR_NULL) break; |
1646 | } |
1647 | |
1648 | return rc; |
1649 | } |
1650 | |
1651 | |
1652 | |
1653 | |
1654 | /************************************************* |
1655 | * Find first significant op code * |
1656 | *************************************************/ |
1657 | |
1658 | /* This is called by several functions that scan a compiled expression looking |
1659 | for a fixed first character, or an anchoring op code etc. It skips over things |
1660 | that do not influence this. For some calls, it makes sense to skip negative |
1661 | forward and all backward assertions, and also the \b assertion; for others it |
1662 | does not. |
1663 | |
1664 | Arguments: |
1665 | code pointer to the start of the group |
1666 | skipassert TRUE if certain assertions are to be skipped |
1667 | |
1668 | Returns: pointer to the first significant opcode |
1669 | */ |
1670 | |
1671 | static const pcre_uchar* |
1672 | first_significant_code(const pcre_uchar *code, BOOL skipassert) |
1673 | { |
1674 | for (;;) |
1675 | { |
1676 | switch ((int)*code) |
1677 | { |
1678 | case OP_ASSERT_NOT: |
1679 | case OP_ASSERTBACK: |
1680 | case OP_ASSERTBACK_NOT: |
1681 | if (!skipassert) return code; |
1682 | do code += GET(code, 1); while (*code == OP_ALT); |
1683 | code += PRIV(OP_lengths)[*code]; |
1684 | break; |
1685 | |
1686 | case OP_WORD_BOUNDARY: |
1687 | case OP_NOT_WORD_BOUNDARY: |
1688 | if (!skipassert) return code; |
1689 | /* Fall through */ |
1690 | |
1691 | case OP_CALLOUT: |
1692 | case OP_CREF: |
1693 | case OP_NCREF: |
1694 | case OP_RREF: |
1695 | case OP_NRREF: |
1696 | case OP_DEF: |
1697 | code += PRIV(OP_lengths)[*code]; |
1698 | break; |
1699 | |
1700 | default: |
1701 | return code; |
1702 | } |
1703 | } |
1704 | /* Control never reaches here */ |
1705 | } |
1706 | |
1707 | |
1708 | |
1709 | |
1710 | /************************************************* |
1711 | * Find the fixed length of a branch * |
1712 | *************************************************/ |
1713 | |
1714 | /* Scan a branch and compute the fixed length of subject that will match it, |
1715 | if the length is fixed. This is needed for dealing with backward assertions. |
1716 | In UTF8 mode, the result is in characters rather than bytes. The branch is |
1717 | temporarily terminated with OP_END when this function is called. |
1718 | |
1719 | This function is called when a backward assertion is encountered, so that if it |
1720 | fails, the error message can point to the correct place in the pattern. |
1721 | However, we cannot do this when the assertion contains subroutine calls, |
1722 | because they can be forward references. We solve this by remembering this case |
1723 | and doing the check at the end; a flag specifies which mode we are running in. |
1724 | |
1725 | Arguments: |
1726 | code points to the start of the pattern (the bracket) |
1727 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
1728 | atend TRUE if called when the pattern is complete |
1729 | cd the "compile data" structure |
1730 | |
1731 | Returns: the fixed length, |
1732 | or -1 if there is no fixed length, |
1733 | or -2 if \C was encountered (in UTF-8 mode only) |
1734 | or -3 if an OP_RECURSE item was encountered and atend is FALSE |
1735 | or -4 if an unknown opcode was encountered (internal error) |
1736 | */ |
1737 | |
1738 | static int |
1739 | find_fixedlength(pcre_uchar *code, BOOL utf, BOOL atend, compile_data *cd) |
1740 | { |
1741 | int length = -1; |
1742 | |
1743 | register int branchlength = 0; |
1744 | register pcre_uchar *cc = code + 1 + LINK_SIZE; |
1745 | |
1746 | /* Scan along the opcodes for this branch. If we get to the end of the |
1747 | branch, check the length against that of the other branches. */ |
1748 | |
1749 | for (;;) |
1750 | { |
1751 | int d; |
1752 | pcre_uchar *ce, *cs; |
1753 | register pcre_uchar op = *cc; |
1754 | |
1755 | switch (op) |
1756 | { |
1757 | /* We only need to continue for OP_CBRA (normal capturing bracket) and |
1758 | OP_BRA (normal non-capturing bracket) because the other variants of these |
1759 | opcodes are all concerned with unlimited repeated groups, which of course |
1760 | are not of fixed length. */ |
1761 | |
1762 | case OP_CBRA: |
1763 | case OP_BRA: |
1764 | case OP_ONCE: |
1765 | case OP_ONCE_NC: |
1766 | case OP_COND: |
1767 | d = find_fixedlength(cc + ((op == OP_CBRA)? IMM2_SIZE : 0), utf, atend, cd); |
1768 | if (d < 0) return d; |
1769 | branchlength += d; |
1770 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1771 | cc += 1 + LINK_SIZE; |
1772 | break; |
1773 | |
1774 | /* Reached end of a branch; if it's a ket it is the end of a nested call. |
1775 | If it's ALT it is an alternation in a nested call. An ACCEPT is effectively |
1776 | an ALT. If it is END it's the end of the outer call. All can be handled by |
1777 | the same code. Note that we must not include the OP_KETRxxx opcodes here, |
1778 | because they all imply an unlimited repeat. */ |
1779 | |
1780 | case OP_ALT: |
1781 | case OP_KET: |
1782 | case OP_END: |
1783 | case OP_ACCEPT: |
1784 | case OP_ASSERT_ACCEPT: |
1785 | if (length < 0) length = branchlength; |
1786 | else if (length != branchlength) return -1; |
1787 | if (*cc != OP_ALT) return length; |
1788 | cc += 1 + LINK_SIZE; |
1789 | branchlength = 0; |
1790 | break; |
1791 | |
1792 | /* A true recursion implies not fixed length, but a subroutine call may |
1793 | be OK. If the subroutine is a forward reference, we can't deal with |
1794 | it until the end of the pattern, so return -3. */ |
1795 | |
1796 | case OP_RECURSE: |
1797 | if (!atend) return -3; |
1798 | cs = ce = (pcre_uchar *)cd->start_code + GET(cc, 1); /* Start subpattern */ |
1799 | do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */ |
1800 | if (cc > cs && cc < ce) return -1; /* Recursion */ |
1801 | d = find_fixedlength(cs + IMM2_SIZE, utf, atend, cd); |
1802 | if (d < 0) return d; |
1803 | branchlength += d; |
1804 | cc += 1 + LINK_SIZE; |
1805 | break; |
1806 | |
1807 | /* Skip over assertive subpatterns */ |
1808 | |
1809 | case OP_ASSERT: |
1810 | case OP_ASSERT_NOT: |
1811 | case OP_ASSERTBACK: |
1812 | case OP_ASSERTBACK_NOT: |
1813 | do cc += GET(cc, 1); while (*cc == OP_ALT); |
1814 | cc += PRIV(OP_lengths)[*cc]; |
1815 | break; |
1816 | |
1817 | /* Skip over things that don't match chars */ |
1818 | |
1819 | case OP_MARK: |
1820 | case OP_PRUNE_ARG: |
1821 | case OP_SKIP_ARG: |
1822 | case OP_THEN_ARG: |
1823 | cc += cc[1] + PRIV(OP_lengths)[*cc]; |
1824 | break; |
1825 | |
1826 | case OP_CALLOUT: |
1827 | case OP_CIRC: |
1828 | case OP_CIRCM: |
1829 | case OP_CLOSE: |
1830 | case OP_COMMIT: |
1831 | case OP_CREF: |
1832 | case OP_DEF: |
1833 | case OP_DOLL: |
1834 | case OP_DOLLM: |
1835 | case OP_EOD: |
1836 | case OP_EODN: |
1837 | case OP_FAIL: |
1838 | case OP_NCREF: |
1839 | case OP_NRREF: |
1840 | case OP_NOT_WORD_BOUNDARY: |
1841 | case OP_PRUNE: |
1842 | case OP_REVERSE: |
1843 | case OP_RREF: |
1844 | case OP_SET_SOM: |
1845 | case OP_SKIP: |
1846 | case OP_SOD: |
1847 | case OP_SOM: |
1848 | case OP_THEN: |
1849 | case OP_WORD_BOUNDARY: |
1850 | cc += PRIV(OP_lengths)[*cc]; |
1851 | break; |
1852 | |
1853 | /* Handle literal characters */ |
1854 | |
1855 | case OP_CHAR: |
1856 | case OP_CHARI: |
1857 | case OP_NOT: |
1858 | case OP_NOTI: |
1859 | branchlength++; |
1860 | cc += 2; |
1861 | #ifdef SUPPORT_UTF |
1862 | if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]); |
1863 | #endif |
1864 | break; |
1865 | |
1866 | /* Handle exact repetitions. The count is already in characters, but we |
1867 | need to skip over a multibyte character in UTF8 mode. */ |
1868 | |
1869 | case OP_EXACT: |
1870 | case OP_EXACTI: |
1871 | case OP_NOTEXACT: |
1872 | case OP_NOTEXACTI: |
1873 | branchlength += (int)GET2(cc,1); |
1874 | cc += 2 + IMM2_SIZE; |
1875 | #ifdef SUPPORT_UTF |
1876 | if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]); |
1877 | #endif |
1878 | break; |
1879 | |
1880 | case OP_TYPEEXACT: |
1881 | branchlength += GET2(cc,1); |
1882 | if (cc[1 + IMM2_SIZE] == OP_PROP || cc[1 + IMM2_SIZE] == OP_NOTPROP) |
1883 | cc += 2; |
1884 | cc += 1 + IMM2_SIZE + 1; |
1885 | break; |
1886 | |
1887 | /* Handle single-char matchers */ |
1888 | |
1889 | case OP_PROP: |
1890 | case OP_NOTPROP: |
1891 | cc += 2; |
1892 | /* Fall through */ |
1893 | |
1894 | case OP_HSPACE: |
1895 | case OP_VSPACE: |
1896 | case OP_NOT_HSPACE: |
1897 | case OP_NOT_VSPACE: |
1898 | case OP_NOT_DIGIT: |
1899 | case OP_DIGIT: |
1900 | case OP_NOT_WHITESPACE: |
1901 | case OP_WHITESPACE: |
1902 | case OP_NOT_WORDCHAR: |
1903 | case OP_WORDCHAR: |
1904 | case OP_ANY: |
1905 | case OP_ALLANY: |
1906 | branchlength++; |
1907 | cc++; |
1908 | break; |
1909 | |
1910 | /* The single-byte matcher isn't allowed. This only happens in UTF-8 mode; |
1911 | otherwise \C is coded as OP_ALLANY. */ |
1912 | |
1913 | case OP_ANYBYTE: |
1914 | return -2; |
1915 | |
1916 | /* Check a class for variable quantification */ |
1917 | |
1918 | case OP_CLASS: |
1919 | case OP_NCLASS: |
1920 | #if defined SUPPORT_UTF || defined COMPILE_PCRE16 || defined COMPILE_PCRE32 |
1921 | case OP_XCLASS: |
1922 | /* The original code caused an unsigned overflow in 64 bit systems, |
1923 | so now we use a conditional statement. */ |
1924 | if (op == OP_XCLASS) |
1925 | cc += GET(cc, 1); |
1926 | else |
1927 | cc += PRIV(OP_lengths)[OP_CLASS]; |
1928 | #else |
1929 | cc += PRIV(OP_lengths)[OP_CLASS]; |
1930 | #endif |
1931 | |
1932 | switch (*cc) |
1933 | { |
1934 | case OP_CRPLUS: |
1935 | case OP_CRMINPLUS: |
1936 | case OP_CRSTAR: |
1937 | case OP_CRMINSTAR: |
1938 | case OP_CRQUERY: |
1939 | case OP_CRMINQUERY: |
1940 | return -1; |
1941 | |
1942 | case OP_CRRANGE: |
1943 | case OP_CRMINRANGE: |
1944 | if (GET2(cc,1) != GET2(cc,1+IMM2_SIZE)) return -1; |
1945 | branchlength += (int)GET2(cc,1); |
1946 | cc += 1 + 2 * IMM2_SIZE; |
1947 | break; |
1948 | |
1949 | default: |
1950 | branchlength++; |
1951 | } |
1952 | break; |
1953 | |
1954 | /* Anything else is variable length */ |
1955 | |
1956 | case OP_ANYNL: |
1957 | case OP_BRAMINZERO: |
1958 | case OP_BRAPOS: |
1959 | case OP_BRAPOSZERO: |
1960 | case OP_BRAZERO: |
1961 | case OP_CBRAPOS: |
1962 | case OP_EXTUNI: |
1963 | case OP_KETRMAX: |
1964 | case OP_KETRMIN: |
1965 | case OP_KETRPOS: |
1966 | case OP_MINPLUS: |
1967 | case OP_MINPLUSI: |
1968 | case OP_MINQUERY: |
1969 | case OP_MINQUERYI: |
1970 | case OP_MINSTAR: |
1971 | case OP_MINSTARI: |
1972 | case OP_MINUPTO: |
1973 | case OP_MINUPTOI: |
1974 | case OP_NOTMINPLUS: |
1975 | case OP_NOTMINPLUSI: |
1976 | case OP_NOTMINQUERY: |
1977 | case OP_NOTMINQUERYI: |
1978 | case OP_NOTMINSTAR: |
1979 | case OP_NOTMINSTARI: |
1980 | case OP_NOTMINUPTO: |
1981 | case OP_NOTMINUPTOI: |
1982 | case OP_NOTPLUS: |
1983 | case OP_NOTPLUSI: |
1984 | case OP_NOTPOSPLUS: |
1985 | case OP_NOTPOSPLUSI: |
1986 | case OP_NOTPOSQUERY: |
1987 | case OP_NOTPOSQUERYI: |
1988 | case OP_NOTPOSSTAR: |
1989 | case OP_NOTPOSSTARI: |
1990 | case OP_NOTPOSUPTO: |
1991 | case OP_NOTPOSUPTOI: |
1992 | case OP_NOTQUERY: |
1993 | case OP_NOTQUERYI: |
1994 | case OP_NOTSTAR: |
1995 | case OP_NOTSTARI: |
1996 | case OP_NOTUPTO: |
1997 | case OP_NOTUPTOI: |
1998 | case OP_PLUS: |
1999 | case OP_PLUSI: |
2000 | case OP_POSPLUS: |
2001 | case OP_POSPLUSI: |
2002 | case OP_POSQUERY: |
2003 | case OP_POSQUERYI: |
2004 | case OP_POSSTAR: |
2005 | case OP_POSSTARI: |
2006 | case OP_POSUPTO: |
2007 | case OP_POSUPTOI: |
2008 | case OP_QUERY: |
2009 | case OP_QUERYI: |
2010 | case OP_REF: |
2011 | case OP_REFI: |
2012 | case OP_SBRA: |
2013 | case OP_SBRAPOS: |
2014 | case OP_SCBRA: |
2015 | case OP_SCBRAPOS: |
2016 | case OP_SCOND: |
2017 | case OP_SKIPZERO: |
2018 | case OP_STAR: |
2019 | case OP_STARI: |
2020 | case OP_TYPEMINPLUS: |
2021 | case OP_TYPEMINQUERY: |
2022 | case OP_TYPEMINSTAR: |
2023 | case OP_TYPEMINUPTO: |
2024 | case OP_TYPEPLUS: |
2025 | case OP_TYPEPOSPLUS: |
2026 | case OP_TYPEPOSQUERY: |
2027 | case OP_TYPEPOSSTAR: |
2028 | case OP_TYPEPOSUPTO: |
2029 | case OP_TYPEQUERY: |
2030 | case OP_TYPESTAR: |
2031 | case OP_TYPEUPTO: |
2032 | case OP_UPTO: |
2033 | case OP_UPTOI: |
2034 | return -1; |
2035 | |
2036 | /* Catch unrecognized opcodes so that when new ones are added they |
2037 | are not forgotten, as has happened in the past. */ |
2038 | |
2039 | default: |
2040 | return -4; |
2041 | } |
2042 | } |
2043 | /* Control never gets here */ |
2044 | } |
2045 | |
2046 | |
2047 | |
2048 | |
2049 | /************************************************* |
2050 | * Scan compiled regex for specific bracket * |
2051 | *************************************************/ |
2052 | |
2053 | /* This little function scans through a compiled pattern until it finds a |
2054 | capturing bracket with the given number, or, if the number is negative, an |
2055 | instance of OP_REVERSE for a lookbehind. The function is global in the C sense |
2056 | so that it can be called from pcre_study() when finding the minimum matching |
2057 | length. |
2058 | |
2059 | Arguments: |
2060 | code points to start of expression |
2061 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
2062 | number the required bracket number or negative to find a lookbehind |
2063 | |
2064 | Returns: pointer to the opcode for the bracket, or NULL if not found |
2065 | */ |
2066 | |
2067 | const pcre_uchar * |
2068 | PRIV(find_bracket)(const pcre_uchar *code, BOOL utf, int number) |
2069 | { |
2070 | for (;;) |
2071 | { |
2072 | register pcre_uchar c = *code; |
2073 | |
2074 | if (c == OP_END) return NULL; |
2075 | |
2076 | /* XCLASS is used for classes that cannot be represented just by a bit |
2077 | map. This includes negated single high-valued characters. The length in |
2078 | the table is zero; the actual length is stored in the compiled code. */ |
2079 | |
2080 | if (c == OP_XCLASS) code += GET(code, 1); |
2081 | |
2082 | /* Handle recursion */ |
2083 | |
2084 | else if (c == OP_REVERSE) |
2085 | { |
2086 | if (number < 0) return (pcre_uchar *)code; |
2087 | code += PRIV(OP_lengths)[c]; |
2088 | } |
2089 | |
2090 | /* Handle capturing bracket */ |
2091 | |
2092 | else if (c == OP_CBRA || c == OP_SCBRA || |
2093 | c == OP_CBRAPOS || c == OP_SCBRAPOS) |
2094 | { |
2095 | int n = (int)GET2(code, 1+LINK_SIZE); |
2096 | if (n == number) return (pcre_uchar *)code; |
2097 | code += PRIV(OP_lengths)[c]; |
2098 | } |
2099 | |
2100 | /* Otherwise, we can get the item's length from the table, except that for |
2101 | repeated character types, we have to test for \p and \P, which have an extra |
2102 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
2103 | must add in its length. */ |
2104 | |
2105 | else |
2106 | { |
2107 | switch(c) |
2108 | { |
2109 | case OP_TYPESTAR: |
2110 | case OP_TYPEMINSTAR: |
2111 | case OP_TYPEPLUS: |
2112 | case OP_TYPEMINPLUS: |
2113 | case OP_TYPEQUERY: |
2114 | case OP_TYPEMINQUERY: |
2115 | case OP_TYPEPOSSTAR: |
2116 | case OP_TYPEPOSPLUS: |
2117 | case OP_TYPEPOSQUERY: |
2118 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2119 | break; |
2120 | |
2121 | case OP_TYPEUPTO: |
2122 | case OP_TYPEMINUPTO: |
2123 | case OP_TYPEEXACT: |
2124 | case OP_TYPEPOSUPTO: |
2125 | if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP) |
2126 | code += 2; |
2127 | break; |
2128 | |
2129 | case OP_MARK: |
2130 | case OP_PRUNE_ARG: |
2131 | case OP_SKIP_ARG: |
2132 | code += code[1]; |
2133 | break; |
2134 | |
2135 | case OP_THEN_ARG: |
2136 | code += code[1]; |
2137 | break; |
2138 | } |
2139 | |
2140 | /* Add in the fixed length from the table */ |
2141 | |
2142 | code += PRIV(OP_lengths)[c]; |
2143 | |
2144 | /* In UTF-8 mode, opcodes that are followed by a character may be followed by |
2145 | a multi-byte character. The length in the table is a minimum, so we have to |
2146 | arrange to skip the extra bytes. */ |
2147 | |
2148 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
2149 | if (utf) switch(c) |
2150 | { |
2151 | case OP_CHAR: |
2152 | case OP_CHARI: |
2153 | case OP_EXACT: |
2154 | case OP_EXACTI: |
2155 | case OP_UPTO: |
2156 | case OP_UPTOI: |
2157 | case OP_MINUPTO: |
2158 | case OP_MINUPTOI: |
2159 | case OP_POSUPTO: |
2160 | case OP_POSUPTOI: |
2161 | case OP_STAR: |
2162 | case OP_STARI: |
2163 | case OP_MINSTAR: |
2164 | case OP_MINSTARI: |
2165 | case OP_POSSTAR: |
2166 | case OP_POSSTARI: |
2167 | case OP_PLUS: |
2168 | case OP_PLUSI: |
2169 | case OP_MINPLUS: |
2170 | case OP_MINPLUSI: |
2171 | case OP_POSPLUS: |
2172 | case OP_POSPLUSI: |
2173 | case OP_QUERY: |
2174 | case OP_QUERYI: |
2175 | case OP_MINQUERY: |
2176 | case OP_MINQUERYI: |
2177 | case OP_POSQUERY: |
2178 | case OP_POSQUERYI: |
2179 | if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]); |
2180 | break; |
2181 | } |
2182 | #else |
2183 | (void)(utf); /* Keep compiler happy by referencing function argument */ |
2184 | #endif |
2185 | } |
2186 | } |
2187 | } |
2188 | |
2189 | |
2190 | |
2191 | /************************************************* |
2192 | * Scan compiled regex for recursion reference * |
2193 | *************************************************/ |
2194 | |
2195 | /* This little function scans through a compiled pattern until it finds an |
2196 | instance of OP_RECURSE. |
2197 | |
2198 | Arguments: |
2199 | code points to start of expression |
2200 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
2201 | |
2202 | Returns: pointer to the opcode for OP_RECURSE, or NULL if not found |
2203 | */ |
2204 | |
2205 | static const pcre_uchar * |
2206 | find_recurse(const pcre_uchar *code, BOOL utf) |
2207 | { |
2208 | for (;;) |
2209 | { |
2210 | register pcre_uchar c = *code; |
2211 | if (c == OP_END) return NULL; |
2212 | if (c == OP_RECURSE) return code; |
2213 | |
2214 | /* XCLASS is used for classes that cannot be represented just by a bit |
2215 | map. This includes negated single high-valued characters. The length in |
2216 | the table is zero; the actual length is stored in the compiled code. */ |
2217 | |
2218 | if (c == OP_XCLASS) code += GET(code, 1); |
2219 | |
2220 | /* Otherwise, we can get the item's length from the table, except that for |
2221 | repeated character types, we have to test for \p and \P, which have an extra |
2222 | two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we |
2223 | must add in its length. */ |
2224 | |
2225 | else |
2226 | { |
2227 | switch(c) |
2228 | { |
2229 | case OP_TYPESTAR: |
2230 | case OP_TYPEMINSTAR: |
2231 | case OP_TYPEPLUS: |
2232 | case OP_TYPEMINPLUS: |
2233 | case OP_TYPEQUERY: |
2234 | case OP_TYPEMINQUERY: |
2235 | case OP_TYPEPOSSTAR: |
2236 | case OP_TYPEPOSPLUS: |
2237 | case OP_TYPEPOSQUERY: |
2238 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2239 | break; |
2240 | |
2241 | case OP_TYPEPOSUPTO: |
2242 | case OP_TYPEUPTO: |
2243 | case OP_TYPEMINUPTO: |
2244 | case OP_TYPEEXACT: |
2245 | if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP) |
2246 | code += 2; |
2247 | break; |
2248 | |
2249 | case OP_MARK: |
2250 | case OP_PRUNE_ARG: |
2251 | case OP_SKIP_ARG: |
2252 | code += code[1]; |
2253 | break; |
2254 | |
2255 | case OP_THEN_ARG: |
2256 | code += code[1]; |
2257 | break; |
2258 | } |
2259 | |
2260 | /* Add in the fixed length from the table */ |
2261 | |
2262 | code += PRIV(OP_lengths)[c]; |
2263 | |
2264 | /* In UTF-8 mode, opcodes that are followed by a character may be followed |
2265 | by a multi-byte character. The length in the table is a minimum, so we have |
2266 | to arrange to skip the extra bytes. */ |
2267 | |
2268 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
2269 | if (utf) switch(c) |
2270 | { |
2271 | case OP_CHAR: |
2272 | case OP_CHARI: |
2273 | case OP_NOT: |
2274 | case OP_NOTI: |
2275 | case OP_EXACT: |
2276 | case OP_EXACTI: |
2277 | case OP_NOTEXACT: |
2278 | case OP_NOTEXACTI: |
2279 | case OP_UPTO: |
2280 | case OP_UPTOI: |
2281 | case OP_NOTUPTO: |
2282 | case OP_NOTUPTOI: |
2283 | case OP_MINUPTO: |
2284 | case OP_MINUPTOI: |
2285 | case OP_NOTMINUPTO: |
2286 | case OP_NOTMINUPTOI: |
2287 | case OP_POSUPTO: |
2288 | case OP_POSUPTOI: |
2289 | case OP_NOTPOSUPTO: |
2290 | case OP_NOTPOSUPTOI: |
2291 | case OP_STAR: |
2292 | case OP_STARI: |
2293 | case OP_NOTSTAR: |
2294 | case OP_NOTSTARI: |
2295 | case OP_MINSTAR: |
2296 | case OP_MINSTARI: |
2297 | case OP_NOTMINSTAR: |
2298 | case OP_NOTMINSTARI: |
2299 | case OP_POSSTAR: |
2300 | case OP_POSSTARI: |
2301 | case OP_NOTPOSSTAR: |
2302 | case OP_NOTPOSSTARI: |
2303 | case OP_PLUS: |
2304 | case OP_PLUSI: |
2305 | case OP_NOTPLUS: |
2306 | case OP_NOTPLUSI: |
2307 | case OP_MINPLUS: |
2308 | case OP_MINPLUSI: |
2309 | case OP_NOTMINPLUS: |
2310 | case OP_NOTMINPLUSI: |
2311 | case OP_POSPLUS: |
2312 | case OP_POSPLUSI: |
2313 | case OP_NOTPOSPLUS: |
2314 | case OP_NOTPOSPLUSI: |
2315 | case OP_QUERY: |
2316 | case OP_QUERYI: |
2317 | case OP_NOTQUERY: |
2318 | case OP_NOTQUERYI: |
2319 | case OP_MINQUERY: |
2320 | case OP_MINQUERYI: |
2321 | case OP_NOTMINQUERY: |
2322 | case OP_NOTMINQUERYI: |
2323 | case OP_POSQUERY: |
2324 | case OP_POSQUERYI: |
2325 | case OP_NOTPOSQUERY: |
2326 | case OP_NOTPOSQUERYI: |
2327 | if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]); |
2328 | break; |
2329 | } |
2330 | #else |
2331 | (void)(utf); /* Keep compiler happy by referencing function argument */ |
2332 | #endif |
2333 | } |
2334 | } |
2335 | } |
2336 | |
2337 | |
2338 | |
2339 | /************************************************* |
2340 | * Scan compiled branch for non-emptiness * |
2341 | *************************************************/ |
2342 | |
2343 | /* This function scans through a branch of a compiled pattern to see whether it |
2344 | can match the empty string or not. It is called from could_be_empty() |
2345 | below and from compile_branch() when checking for an unlimited repeat of a |
2346 | group that can match nothing. Note that first_significant_code() skips over |
2347 | backward and negative forward assertions when its final argument is TRUE. If we |
2348 | hit an unclosed bracket, we return "empty" - this means we've struck an inner |
2349 | bracket whose current branch will already have been scanned. |
2350 | |
2351 | Arguments: |
2352 | code points to start of search |
2353 | endcode points to where to stop |
2354 | utf TRUE if in UTF-8 / UTF-16 / UTF-32 mode |
2355 | cd contains pointers to tables etc. |
2356 | |
2357 | Returns: TRUE if what is matched could be empty |
2358 | */ |
2359 | |
2360 | static BOOL |
2361 | could_be_empty_branch(const pcre_uchar *code, const pcre_uchar *endcode, |
2362 | BOOL utf, compile_data *cd) |
2363 | { |
2364 | register pcre_uchar c; |
2365 | for (code = first_significant_code(code + PRIV(OP_lengths)[*code], TRUE); |
2366 | code < endcode; |
2367 | code = first_significant_code(code + PRIV(OP_lengths)[c], TRUE)) |
2368 | { |
2369 | const pcre_uchar *ccode; |
2370 | |
2371 | c = *code; |
2372 | |
2373 | /* Skip over forward assertions; the other assertions are skipped by |
2374 | first_significant_code() with a TRUE final argument. */ |
2375 | |
2376 | if (c == OP_ASSERT) |
2377 | { |
2378 | do code += GET(code, 1); while (*code == OP_ALT); |
2379 | c = *code; |
2380 | continue; |
2381 | } |
2382 | |
2383 | /* For a recursion/subroutine call, if its end has been reached, which |
2384 | implies a backward reference subroutine call, we can scan it. If it's a |
2385 | forward reference subroutine call, we can't. To detect forward reference |
2386 | we have to scan up the list that is kept in the workspace. This function is |
2387 | called only when doing the real compile, not during the pre-compile that |
2388 | measures the size of the compiled pattern. */ |
2389 | |
2390 | if (c == OP_RECURSE) |
2391 | { |
2392 | const pcre_uchar *scode; |
2393 | BOOL empty_branch; |
2394 | |
2395 | /* Test for forward reference */ |
2396 | |
2397 | for (scode = cd->start_workspace; scode < cd->hwm; scode += LINK_SIZE) |
2398 | if ((int)GET(scode, 0) == (int)(code + 1 - cd->start_code)) return TRUE; |
2399 | |
2400 | /* Not a forward reference, test for completed backward reference */ |
2401 | |
2402 | empty_branch = FALSE; |
2403 | scode = cd->start_code + GET(code, 1); |
2404 | if (GET(scode, 1) == 0) return TRUE; /* Unclosed */ |
2405 | |
2406 | /* Completed backwards reference */ |
2407 | |
2408 | do |
2409 | { |
2410 | if (could_be_empty_branch(scode, endcode, utf, cd)) |
2411 | { |
2412 | empty_branch = TRUE; |
2413 | break; |
2414 | } |
2415 | scode += GET(scode, 1); |
2416 | } |
2417 | while (*scode == OP_ALT); |
2418 | |
2419 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
2420 | continue; |
2421 | } |
2422 | |
2423 | /* Groups with zero repeats can of course be empty; skip them. */ |
2424 | |
2425 | if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO || |
2426 | c == OP_BRAPOSZERO) |
2427 | { |
2428 | code += PRIV(OP_lengths)[c]; |
2429 | do code += GET(code, 1); while (*code == OP_ALT); |
2430 | c = *code; |
2431 | continue; |
2432 | } |
2433 | |
2434 | /* A nested group that is already marked as "could be empty" can just be |
2435 | skipped. */ |
2436 | |
2437 | if (c == OP_SBRA || c == OP_SBRAPOS || |
2438 | c == OP_SCBRA || c == OP_SCBRAPOS) |
2439 | { |
2440 | do code += GET(code, 1); while (*code == OP_ALT); |
2441 | c = *code; |
2442 | continue; |
2443 | } |
2444 | |
2445 | /* For other groups, scan the branches. */ |
2446 | |
2447 | if (c == OP_BRA || c == OP_BRAPOS || |
2448 | c == OP_CBRA || c == OP_CBRAPOS || |
2449 | c == OP_ONCE || c == OP_ONCE_NC || |
2450 | c == OP_COND) |
2451 | { |
2452 | BOOL empty_branch; |
2453 | if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */ |
2454 | |
2455 | /* If a conditional group has only one branch, there is a second, implied, |
2456 | empty branch, so just skip over the conditional, because it could be empty. |
2457 | Otherwise, scan the individual branches of the group. */ |
2458 | |
2459 | if (c == OP_COND && code[GET(code, 1)] != OP_ALT) |
2460 | code += GET(code, 1); |
2461 | else |
2462 | { |
2463 | empty_branch = FALSE; |
2464 | do |
2465 | { |
2466 | if (!empty_branch && could_be_empty_branch(code, endcode, utf, cd)) |
2467 | empty_branch = TRUE; |
2468 | code += GET(code, 1); |
2469 | } |
2470 | while (*code == OP_ALT); |
2471 | if (!empty_branch) return FALSE; /* All branches are non-empty */ |
2472 | } |
2473 | |
2474 | c = *code; |
2475 | continue; |
2476 | } |
2477 | |
2478 | /* Handle the other opcodes */ |
2479 | |
2480 | switch (c) |
2481 | { |
2482 | /* Check for quantifiers after a class. XCLASS is used for classes that |
2483 | cannot be represented just by a bit map. This includes negated single |
2484 | high-valued characters. The length in PRIV(OP_lengths)[] is zero; the |
2485 | actual length is stored in the compiled code, so we must update "code" |
2486 | here. */ |
2487 | |
2488 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
2489 | case OP_XCLASS: |
2490 | ccode = code += GET(code, 1); |
2491 | goto CHECK_CLASS_REPEAT; |
2492 | #endif |
2493 | |
2494 | case OP_CLASS: |
2495 | case OP_NCLASS: |
2496 | ccode = code + PRIV(OP_lengths)[OP_CLASS]; |
2497 | |
2498 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
2499 | CHECK_CLASS_REPEAT: |
2500 | #endif |
2501 | |
2502 | switch (*ccode) |
2503 | { |
2504 | case OP_CRSTAR: /* These could be empty; continue */ |
2505 | case OP_CRMINSTAR: |
2506 | case OP_CRQUERY: |
2507 | case OP_CRMINQUERY: |
2508 | break; |
2509 | |
2510 | default: /* Non-repeat => class must match */ |
2511 | case OP_CRPLUS: /* These repeats aren't empty */ |
2512 | case OP_CRMINPLUS: |
2513 | return FALSE; |
2514 | |
2515 | case OP_CRRANGE: |
2516 | case OP_CRMINRANGE: |
2517 | if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */ |
2518 | break; |
2519 | } |
2520 | break; |
2521 | |
2522 | /* Opcodes that must match a character */ |
2523 | |
2524 | case OP_PROP: |
2525 | case OP_NOTPROP: |
2526 | case OP_EXTUNI: |
2527 | case OP_NOT_DIGIT: |
2528 | case OP_DIGIT: |
2529 | case OP_NOT_WHITESPACE: |
2530 | case OP_WHITESPACE: |
2531 | case OP_NOT_WORDCHAR: |
2532 | case OP_WORDCHAR: |
2533 | case OP_ANY: |
2534 | case OP_ALLANY: |
2535 | case OP_ANYBYTE: |
2536 | case OP_CHAR: |
2537 | case OP_CHARI: |
2538 | case OP_NOT: |
2539 | case OP_NOTI: |
2540 | case OP_PLUS: |
2541 | case OP_MINPLUS: |
2542 | case OP_POSPLUS: |
2543 | case OP_EXACT: |
2544 | case OP_NOTPLUS: |
2545 | case OP_NOTMINPLUS: |
2546 | case OP_NOTPOSPLUS: |
2547 | case OP_NOTEXACT: |
2548 | case OP_TYPEPLUS: |
2549 | case OP_TYPEMINPLUS: |
2550 | case OP_TYPEPOSPLUS: |
2551 | case OP_TYPEEXACT: |
2552 | return FALSE; |
2553 | |
2554 | /* These are going to continue, as they may be empty, but we have to |
2555 | fudge the length for the \p and \P cases. */ |
2556 | |
2557 | case OP_TYPESTAR: |
2558 | case OP_TYPEMINSTAR: |
2559 | case OP_TYPEPOSSTAR: |
2560 | case OP_TYPEQUERY: |
2561 | case OP_TYPEMINQUERY: |
2562 | case OP_TYPEPOSQUERY: |
2563 | if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2; |
2564 | break; |
2565 | |
2566 | /* Same for these */ |
2567 | |
2568 | case OP_TYPEUPTO: |
2569 | case OP_TYPEMINUPTO: |
2570 | case OP_TYPEPOSUPTO: |
2571 | if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP) |
2572 | code += 2; |
2573 | break; |
2574 | |
2575 | /* End of branch */ |
2576 | |
2577 | case OP_KET: |
2578 | case OP_KETRMAX: |
2579 | case OP_KETRMIN: |
2580 | case OP_KETRPOS: |
2581 | case OP_ALT: |
2582 | return TRUE; |
2583 | |
2584 | /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO, |
2585 | MINUPTO, and POSUPTO may be followed by a multibyte character */ |
2586 | |
2587 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
2588 | case OP_STAR: |
2589 | case OP_STARI: |
2590 | case OP_MINSTAR: |
2591 | case OP_MINSTARI: |
2592 | case OP_POSSTAR: |
2593 | case OP_POSSTARI: |
2594 | case OP_QUERY: |
2595 | case OP_QUERYI: |
2596 | case OP_MINQUERY: |
2597 | case OP_MINQUERYI: |
2598 | case OP_POSQUERY: |
2599 | case OP_POSQUERYI: |
2600 | if (utf && HAS_EXTRALEN(code[1])) code += GET_EXTRALEN(code[1]); |
2601 | break; |
2602 | |
2603 | case OP_UPTO: |
2604 | case OP_UPTOI: |
2605 | case OP_MINUPTO: |
2606 | case OP_MINUPTOI: |
2607 | case OP_POSUPTO: |
2608 | case OP_POSUPTOI: |
2609 | if (utf && HAS_EXTRALEN(code[1 + IMM2_SIZE])) code += GET_EXTRALEN(code[1 + IMM2_SIZE]); |
2610 | break; |
2611 | #endif |
2612 | |
2613 | /* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument |
2614 | string. */ |
2615 | |
2616 | case OP_MARK: |
2617 | case OP_PRUNE_ARG: |
2618 | case OP_SKIP_ARG: |
2619 | code += code[1]; |
2620 | break; |
2621 | |
2622 | case OP_THEN_ARG: |
2623 | code += code[1]; |
2624 | break; |
2625 | |
2626 | /* None of the remaining opcodes are required to match a character. */ |
2627 | |
2628 | default: |
2629 | break; |
2630 | } |
2631 | } |
2632 | |
2633 | return TRUE; |
2634 | } |
2635 | |
2636 | |
2637 | |
2638 | /************************************************* |
2639 | * Scan compiled regex for non-emptiness * |
2640 | *************************************************/ |
2641 | |
2642 | /* This function is called to check for left recursive calls. We want to check |
2643 | the current branch of the current pattern to see if it could match the empty |
2644 | string. If it could, we must look outwards for branches at other levels, |
2645 | stopping when we pass beyond the bracket which is the subject of the recursion. |
2646 | This function is called only during the real compile, not during the |
2647 | pre-compile. |
2648 | |
2649 | Arguments: |
2650 | code points to start of the recursion |
2651 | endcode points to where to stop (current RECURSE item) |
2652 | bcptr points to the chain of current (unclosed) branch starts |
2653 | utf TRUE if in UTF-8 / UTF-16 / UTF-32 mode |
2654 | cd pointers to tables etc |
2655 | |
2656 | Returns: TRUE if what is matched could be empty |
2657 | */ |
2658 | |
2659 | static BOOL |
2660 | could_be_empty(const pcre_uchar *code, const pcre_uchar *endcode, |
2661 | branch_chain *bcptr, BOOL utf, compile_data *cd) |
2662 | { |
2663 | while (bcptr != NULL && bcptr->current_branch >= code) |
2664 | { |
2665 | if (!could_be_empty_branch(bcptr->current_branch, endcode, utf, cd)) |
2666 | return FALSE; |
2667 | bcptr = bcptr->outer; |
2668 | } |
2669 | return TRUE; |
2670 | } |
2671 | |
2672 | |
2673 | |
2674 | /************************************************* |
2675 | * Check for POSIX class syntax * |
2676 | *************************************************/ |
2677 | |
2678 | /* This function is called when the sequence "[:" or "[." or "[=" is |
2679 | encountered in a character class. It checks whether this is followed by a |
2680 | sequence of characters terminated by a matching ":]" or ".]" or "=]". If we |
2681 | reach an unescaped ']' without the special preceding character, return FALSE. |
2682 | |
2683 | Originally, this function only recognized a sequence of letters between the |
2684 | terminators, but it seems that Perl recognizes any sequence of characters, |
2685 | though of course unknown POSIX names are subsequently rejected. Perl gives an |
2686 | "Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE |
2687 | didn't consider this to be a POSIX class. Likewise for [:1234:]. |
2688 | |
2689 | The problem in trying to be exactly like Perl is in the handling of escapes. We |
2690 | have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX |
2691 | class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code |
2692 | below handles the special case of \], but does not try to do any other escape |
2693 | processing. This makes it different from Perl for cases such as [:l\ower:] |
2694 | where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize |
2695 | "l\ower". This is a lesser evil that not diagnosing bad classes when Perl does, |
2696 | I think. |
2697 | |
2698 | A user pointed out that PCRE was rejecting [:a[:digit:]] whereas Perl was not. |
2699 | It seems that the appearance of a nested POSIX class supersedes an apparent |
2700 | external class. For example, [:a[:digit:]b:] matches "a", "b", ":", or |
2701 | a digit. |
2702 | |
2703 | In Perl, unescaped square brackets may also appear as part of class names. For |
2704 | example, [:a[:abc]b:] gives unknown POSIX class "[:abc]b:]". However, for |
2705 | [:a[:abc]b][b:] it gives unknown POSIX class "[:abc]b][b:]", which does not |
2706 | seem right at all. PCRE does not allow closing square brackets in POSIX class |
2707 | names. |
2708 | |
2709 | Arguments: |
2710 | ptr pointer to the initial [ |
2711 | endptr where to return the end pointer |
2712 | |
2713 | Returns: TRUE or FALSE |
2714 | */ |
2715 | |
2716 | static BOOL |
2717 | check_posix_syntax(const pcre_uchar *ptr, const pcre_uchar **endptr) |
2718 | { |
2719 | pcre_uchar terminator; /* Don't combine these lines; the Solaris cc */ |
2720 | terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */ |
2721 | for (++ptr; *ptr != CHAR_NULL; ptr++) |
2722 | { |
2723 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
2724 | ptr++; |
2725 | else if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE; |
2726 | else |
2727 | { |
2728 | if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
2729 | { |
2730 | *endptr = ptr; |
2731 | return TRUE; |
2732 | } |
2733 | if (*ptr == CHAR_LEFT_SQUARE_BRACKET && |
2734 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
2735 | ptr[1] == CHAR_EQUALS_SIGN) && |
2736 | check_posix_syntax(ptr, endptr)) |
2737 | return FALSE; |
2738 | } |
2739 | } |
2740 | return FALSE; |
2741 | } |
2742 | |
2743 | |
2744 | |
2745 | |
2746 | /************************************************* |
2747 | * Check POSIX class name * |
2748 | *************************************************/ |
2749 | |
2750 | /* This function is called to check the name given in a POSIX-style class entry |
2751 | such as [:alnum:]. |
2752 | |
2753 | Arguments: |
2754 | ptr points to the first letter |
2755 | len the length of the name |
2756 | |
2757 | Returns: a value representing the name, or -1 if unknown |
2758 | */ |
2759 | |
2760 | static int |
2761 | check_posix_name(const pcre_uchar *ptr, int len) |
2762 | { |
2763 | const char *pn = posix_names; |
2764 | register int yield = 0; |
2765 | while (posix_name_lengths[yield] != 0) |
2766 | { |
2767 | if (len == posix_name_lengths[yield] && |
2768 | STRNCMP_UC_C8(ptr, pn, (unsigned int)len) == 0) return yield; |
2769 | pn += posix_name_lengths[yield] + 1; |
2770 | yield++; |
2771 | } |
2772 | return -1; |
2773 | } |
2774 | |
2775 | |
2776 | /************************************************* |
2777 | * Adjust OP_RECURSE items in repeated group * |
2778 | *************************************************/ |
2779 | |
2780 | /* OP_RECURSE items contain an offset from the start of the regex to the group |
2781 | that is referenced. This means that groups can be replicated for fixed |
2782 | repetition simply by copying (because the recursion is allowed to refer to |
2783 | earlier groups that are outside the current group). However, when a group is |
2784 | optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is |
2785 | inserted before it, after it has been compiled. This means that any OP_RECURSE |
2786 | items within it that refer to the group itself or any contained groups have to |
2787 | have their offsets adjusted. That one of the jobs of this function. Before it |
2788 | is called, the partially compiled regex must be temporarily terminated with |
2789 | OP_END. |
2790 | |
2791 | This function has been extended with the possibility of forward references for |
2792 | recursions and subroutine calls. It must also check the list of such references |
2793 | for the group we are dealing with. If it finds that one of the recursions in |
2794 | the current group is on this list, it adjusts the offset in the list, not the |
2795 | value in the reference (which is a group number). |
2796 | |
2797 | Arguments: |
2798 | group points to the start of the group |
2799 | adjust the amount by which the group is to be moved |
2800 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
2801 | cd contains pointers to tables etc. |
2802 | save_hwm the hwm forward reference pointer at the start of the group |
2803 | |
2804 | Returns: nothing |
2805 | */ |
2806 | |
2807 | static void |
2808 | adjust_recurse(pcre_uchar *group, int adjust, BOOL utf, compile_data *cd, |
2809 | pcre_uchar *save_hwm) |
2810 | { |
2811 | pcre_uchar *ptr = group; |
2812 | |
2813 | while ((ptr = (pcre_uchar *)find_recurse(ptr, utf)) != NULL) |
2814 | { |
2815 | int offset; |
2816 | pcre_uchar *hc; |
2817 | |
2818 | /* See if this recursion is on the forward reference list. If so, adjust the |
2819 | reference. */ |
2820 | |
2821 | for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE) |
2822 | { |
2823 | offset = (int)GET(hc, 0); |
2824 | if (cd->start_code + offset == ptr + 1) |
2825 | { |
2826 | PUT(hc, 0, offset + adjust); |
2827 | break; |
2828 | } |
2829 | } |
2830 | |
2831 | /* Otherwise, adjust the recursion offset if it's after the start of this |
2832 | group. */ |
2833 | |
2834 | if (hc >= cd->hwm) |
2835 | { |
2836 | offset = (int)GET(ptr, 1); |
2837 | if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust); |
2838 | } |
2839 | |
2840 | ptr += 1 + LINK_SIZE; |
2841 | } |
2842 | } |
2843 | |
2844 | |
2845 | |
2846 | /************************************************* |
2847 | * Insert an automatic callout point * |
2848 | *************************************************/ |
2849 | |
2850 | /* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert |
2851 | callout points before each pattern item. |
2852 | |
2853 | Arguments: |
2854 | code current code pointer |
2855 | ptr current pattern pointer |
2856 | cd pointers to tables etc |
2857 | |
2858 | Returns: new code pointer |
2859 | */ |
2860 | |
2861 | static pcre_uchar * |
2862 | auto_callout(pcre_uchar *code, const pcre_uchar *ptr, compile_data *cd) |
2863 | { |
2864 | *code++ = OP_CALLOUT; |
2865 | *code++ = 255; |
2866 | PUT(code, 0, (int)(ptr - cd->start_pattern)); /* Pattern offset */ |
2867 | PUT(code, LINK_SIZE, 0); /* Default length */ |
2868 | return code + 2 * LINK_SIZE; |
2869 | } |
2870 | |
2871 | |
2872 | |
2873 | /************************************************* |
2874 | * Complete a callout item * |
2875 | *************************************************/ |
2876 | |
2877 | /* A callout item contains the length of the next item in the pattern, which |
2878 | we can't fill in till after we have reached the relevant point. This is used |
2879 | for both automatic and manual callouts. |
2880 | |
2881 | Arguments: |
2882 | previous_callout points to previous callout item |
2883 | ptr current pattern pointer |
2884 | cd pointers to tables etc |
2885 | |
2886 | Returns: nothing |
2887 | */ |
2888 | |
2889 | static void |
2890 | complete_callout(pcre_uchar *previous_callout, const pcre_uchar *ptr, compile_data *cd) |
2891 | { |
2892 | int length = (int)(ptr - cd->start_pattern - GET(previous_callout, 2)); |
2893 | PUT(previous_callout, 2 + LINK_SIZE, length); |
2894 | } |
2895 | |
2896 | |
2897 | |
2898 | #ifdef SUPPORT_UCP |
2899 | /************************************************* |
2900 | * Get othercase range * |
2901 | *************************************************/ |
2902 | |
2903 | /* This function is passed the start and end of a class range, in UTF-8 mode |
2904 | with UCP support. It searches up the characters, looking for ranges of |
2905 | characters in the "other" case. Each call returns the next one, updating the |
2906 | start address. A character with multiple other cases is returned on its own |
2907 | with a special return value. |
2908 | |
2909 | Arguments: |
2910 | cptr points to starting character value; updated |
2911 | d end value |
2912 | ocptr where to put start of othercase range |
2913 | odptr where to put end of othercase range |
2914 | |
2915 | Yield: -1 when no more |
2916 | 0 when a range is returned |
2917 | >0 the CASESET offset for char with multiple other cases |
2918 | in this case, ocptr contains the original |
2919 | */ |
2920 | |
2921 | static int |
2922 | get_othercase_range(pcre_uint32 *cptr, pcre_uint32 d, pcre_uint32 *ocptr, |
2923 | pcre_uint32 *odptr) |
2924 | { |
2925 | pcre_uint32 c, othercase, next; |
2926 | unsigned int co; |
2927 | |
2928 | /* Find the first character that has an other case. If it has multiple other |
2929 | cases, return its case offset value. */ |
2930 | |
2931 | for (c = *cptr; c <= d; c++) |
2932 | { |
2933 | if ((co = UCD_CASESET(c)) != 0) |
2934 | { |
2935 | *ocptr = c++; /* Character that has the set */ |
2936 | *cptr = c; /* Rest of input range */ |
2937 | return (int)co; |
2938 | } |
2939 | if ((othercase = UCD_OTHERCASE(c)) != c) break; |
2940 | } |
2941 | |
2942 | if (c > d) return -1; /* Reached end of range */ |
2943 | |
2944 | *ocptr = othercase; |
2945 | next = othercase + 1; |
2946 | |
2947 | for (++c; c <= d; c++) |
2948 | { |
2949 | if (UCD_OTHERCASE(c) != next) break; |
2950 | next++; |
2951 | } |
2952 | |
2953 | *odptr = next - 1; /* End of othercase range */ |
2954 | *cptr = c; /* Rest of input range */ |
2955 | return 0; |
2956 | } |
2957 | |
2958 | |
2959 | |
2960 | /************************************************* |
2961 | * Check a character and a property * |
2962 | *************************************************/ |
2963 | |
2964 | /* This function is called by check_auto_possessive() when a property item |
2965 | is adjacent to a fixed character. |
2966 | |
2967 | Arguments: |
2968 | c the character |
2969 | ptype the property type |
2970 | pdata the data for the type |
2971 | negated TRUE if it's a negated property (\P or \p{^) |
2972 | |
2973 | Returns: TRUE if auto-possessifying is OK |
2974 | */ |
2975 | |
2976 | static BOOL |
2977 | check_char_prop(pcre_uint32 c, unsigned int ptype, unsigned int pdata, BOOL negated) |
2978 | { |
2979 | #ifdef SUPPORT_UCP |
2980 | const pcre_uint32 *p; |
2981 | #endif |
2982 | |
2983 | const ucd_record *prop = GET_UCD(c); |
2984 | |
2985 | switch(ptype) |
2986 | { |
2987 | case PT_LAMP: |
2988 | return (prop->chartype == ucp_Lu || |
2989 | prop->chartype == ucp_Ll || |
2990 | prop->chartype == ucp_Lt) == negated; |
2991 | |
2992 | case PT_GC: |
2993 | return (pdata == PRIV(ucp_gentype)[prop->chartype]) == negated; |
2994 | |
2995 | case PT_PC: |
2996 | return (pdata == prop->chartype) == negated; |
2997 | |
2998 | case PT_SC: |
2999 | return (pdata == prop->script) == negated; |
3000 | |
3001 | /* These are specials */ |
3002 | |
3003 | case PT_ALNUM: |
3004 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_L || |
3005 | PRIV(ucp_gentype)[prop->chartype] == ucp_N) == negated; |
3006 | |
3007 | case PT_SPACE: /* Perl space */ |
3008 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_Z || |
3009 | c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR) |
3010 | == negated; |
3011 | |
3012 | case PT_PXSPACE: /* POSIX space */ |
3013 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_Z || |
3014 | c == CHAR_HT || c == CHAR_NL || c == CHAR_VT || |
3015 | c == CHAR_FF || c == CHAR_CR) |
3016 | == negated; |
3017 | |
3018 | case PT_WORD: |
3019 | return (PRIV(ucp_gentype)[prop->chartype] == ucp_L || |
3020 | PRIV(ucp_gentype)[prop->chartype] == ucp_N || |
3021 | c == CHAR_UNDERSCORE) == negated; |
3022 | |
3023 | #ifdef SUPPORT_UCP |
3024 | case PT_CLIST: |
3025 | p = PRIV(ucd_caseless_sets) + prop->caseset; |
3026 | for (;;) |
3027 | { |
3028 | if (c < *p) return !negated; |
3029 | if (c == *p++) return negated; |
3030 | } |
3031 | break; /* Control never reaches here */ |
3032 | #endif |
3033 | } |
3034 | |
3035 | return FALSE; |
3036 | } |
3037 | #endif /* SUPPORT_UCP */ |
3038 | |
3039 | |
3040 | |
3041 | /************************************************* |
3042 | * Check if auto-possessifying is possible * |
3043 | *************************************************/ |
3044 | |
3045 | /* This function is called for unlimited repeats of certain items, to see |
3046 | whether the next thing could possibly match the repeated item. If not, it makes |
3047 | sense to automatically possessify the repeated item. |
3048 | |
3049 | Arguments: |
3050 | previous pointer to the repeated opcode |
3051 | utf TRUE in UTF-8 / UTF-16 / UTF-32 mode |
3052 | ptr next character in pattern |
3053 | options options bits |
3054 | cd contains pointers to tables etc. |
3055 | |
3056 | Returns: TRUE if possessifying is wanted |
3057 | */ |
3058 | |
3059 | static BOOL |
3060 | check_auto_possessive(const pcre_uchar *previous, BOOL utf, |
3061 | const pcre_uchar *ptr, int options, compile_data *cd) |
3062 | { |
3063 | pcre_uint32 c = NOTACHAR; |
3064 | pcre_uint32 next; |
3065 | int escape; |
3066 | pcre_uchar op_code = *previous++; |
3067 | |
3068 | /* Skip whitespace and comments in extended mode */ |
3069 | |
3070 | if ((options & PCRE_EXTENDED) != 0) |
3071 | { |
3072 | for (;;) |
3073 | { |
3074 | while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_space) != 0) ptr++; |
3075 | if (*ptr == CHAR_NUMBER_SIGN) |
3076 | { |
3077 | ptr++; |
3078 | while (*ptr != CHAR_NULL) |
3079 | { |
3080 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } |
3081 | ptr++; |
3082 | #ifdef SUPPORT_UTF |
3083 | if (utf) FORWARDCHAR(ptr); |
3084 | #endif |
3085 | } |
3086 | } |
3087 | else break; |
3088 | } |
3089 | } |
3090 | |
3091 | /* If the next item is one that we can handle, get its value. A non-negative |
3092 | value is a character, a negative value is an escape value. */ |
3093 | |
3094 | if (*ptr == CHAR_BACKSLASH) |
3095 | { |
3096 | int temperrorcode = 0; |
3097 | escape = check_escape(&ptr, &next, &temperrorcode, cd->bracount, options, FALSE); |
3098 | if (temperrorcode != 0) return FALSE; |
3099 | ptr++; /* Point after the escape sequence */ |
3100 | } |
3101 | else if (!MAX_255(*ptr) || (cd->ctypes[*ptr] & ctype_meta) == 0) |
3102 | { |
3103 | escape = 0; |
3104 | #ifdef SUPPORT_UTF |
3105 | if (utf) { GETCHARINC(next, ptr); } else |
3106 | #endif |
3107 | next = *ptr++; |
3108 | } |
3109 | else return FALSE; |
3110 | |
3111 | /* Skip whitespace and comments in extended mode */ |
3112 | |
3113 | if ((options & PCRE_EXTENDED) != 0) |
3114 | { |
3115 | for (;;) |
3116 | { |
3117 | while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_space) != 0) ptr++; |
3118 | if (*ptr == CHAR_NUMBER_SIGN) |
3119 | { |
3120 | ptr++; |
3121 | while (*ptr != CHAR_NULL) |
3122 | { |
3123 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; } |
3124 | ptr++; |
3125 | #ifdef SUPPORT_UTF |
3126 | if (utf) FORWARDCHAR(ptr); |
3127 | #endif |
3128 | } |
3129 | } |
3130 | else break; |
3131 | } |
3132 | } |
3133 | |
3134 | /* If the next thing is itself optional, we have to give up. */ |
3135 | |
3136 | if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK || |
3137 | STRNCMP_UC_C8(ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0) |
3138 | return FALSE; |
3139 | |
3140 | /* If the previous item is a character, get its value. */ |
3141 | |
3142 | if (op_code == OP_CHAR || op_code == OP_CHARI || |
3143 | op_code == OP_NOT || op_code == OP_NOTI) |
3144 | { |
3145 | #ifdef SUPPORT_UTF |
3146 | GETCHARTEST(c, previous); |
3147 | #else |
3148 | c = *previous; |
3149 | #endif |
3150 | } |
3151 | |
3152 | /* Now compare the next item with the previous opcode. First, handle cases when |
3153 | the next item is a character. */ |
3154 | |
3155 | if (escape == 0) |
3156 | { |
3157 | /* For a caseless UTF match, the next character may have more than one other |
3158 | case, which maps to the special PT_CLIST property. Check this first. */ |
3159 | |
3160 | #ifdef SUPPORT_UCP |
3161 | if (utf && c != NOTACHAR && (options & PCRE_CASELESS) != 0) |
3162 | { |
3163 | unsigned int ocs = UCD_CASESET(next); |
3164 | if (ocs > 0) return check_char_prop(c, PT_CLIST, ocs, op_code >= OP_NOT); |
3165 | } |
3166 | #endif |
3167 | |
3168 | switch(op_code) |
3169 | { |
3170 | case OP_CHAR: |
3171 | return c != next; |
3172 | |
3173 | /* For CHARI (caseless character) we must check the other case. If we have |
3174 | Unicode property support, we can use it to test the other case of |
3175 | high-valued characters. We know that next can have only one other case, |
3176 | because multi-other-case characters are dealt with above. */ |
3177 | |
3178 | case OP_CHARI: |
3179 | if (c == next) return FALSE; |
3180 | #ifdef SUPPORT_UTF |
3181 | if (utf) |
3182 | { |
3183 | pcre_uint32 othercase; |
3184 | if (next < 128) othercase = cd->fcc[next]; else |
3185 | #ifdef SUPPORT_UCP |
3186 | othercase = UCD_OTHERCASE(next); |
3187 | #else |
3188 | othercase = NOTACHAR; |
3189 | #endif |
3190 | return c != othercase; |
3191 | } |
3192 | else |
3193 | #endif /* SUPPORT_UTF */ |
3194 | return (c != TABLE_GET(next, cd->fcc, next)); /* Not UTF */ |
3195 | |
3196 | case OP_NOT: |
3197 | return c == next; |
3198 | |
3199 | case OP_NOTI: |
3200 | if (c == next) return TRUE; |
3201 | #ifdef SUPPORT_UTF |
3202 | if (utf) |
3203 | { |
3204 | pcre_uint32 othercase; |
3205 | if (next < 128) othercase = cd->fcc[next]; else |
3206 | #ifdef SUPPORT_UCP |
3207 | othercase = UCD_OTHERCASE(next); |
3208 | #else |
3209 | othercase = NOTACHAR; |
3210 | #endif |
3211 | return c == othercase; |
3212 | } |
3213 | else |
3214 | #endif /* SUPPORT_UTF */ |
3215 | return (c == TABLE_GET(next, cd->fcc, next)); /* Not UTF */ |
3216 | |
3217 | /* Note that OP_DIGIT etc. are generated only when PCRE_UCP is *not* set. |
3218 | When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */ |
3219 | |
3220 | case OP_DIGIT: |
3221 | return next > 255 || (cd->ctypes[next] & ctype_digit) == 0; |
3222 | |
3223 | case OP_NOT_DIGIT: |
3224 | return next <= 255 && (cd->ctypes[next] & ctype_digit) != 0; |
3225 | |
3226 | case OP_WHITESPACE: |
3227 | return next > 255 || (cd->ctypes[next] & ctype_space) == 0; |
3228 | |
3229 | case OP_NOT_WHITESPACE: |
3230 | return next <= 255 && (cd->ctypes[next] & ctype_space) != 0; |
3231 | |
3232 | case OP_WORDCHAR: |
3233 | return next > 255 || (cd->ctypes[next] & ctype_word) == 0; |
3234 | |
3235 | case OP_NOT_WORDCHAR: |
3236 | return next <= 255 && (cd->ctypes[next] & ctype_word) != 0; |
3237 | |
3238 | case OP_HSPACE: |
3239 | case OP_NOT_HSPACE: |
3240 | switch(next) |
3241 | { |
3242 | HSPACE_CASES: |
3243 | return op_code == OP_NOT_HSPACE; |
3244 | |
3245 | default: |
3246 | return op_code != OP_NOT_HSPACE; |
3247 | } |
3248 | |
3249 | case OP_ANYNL: |
3250 | case OP_VSPACE: |
3251 | case OP_NOT_VSPACE: |
3252 | switch(next) |
3253 | { |
3254 | VSPACE_CASES: |
3255 | return op_code == OP_NOT_VSPACE; |
3256 | |
3257 | default: |
3258 | return op_code != OP_NOT_VSPACE; |
3259 | } |
3260 | |
3261 | #ifdef SUPPORT_UCP |
3262 | case OP_PROP: |
3263 | return check_char_prop(next, previous[0], previous[1], FALSE); |
3264 | |
3265 | case OP_NOTPROP: |
3266 | return check_char_prop(next, previous[0], previous[1], TRUE); |
3267 | #endif |
3268 | |
3269 | default: |
3270 | return FALSE; |
3271 | } |
3272 | } |
3273 | |
3274 | /* Handle the case when the next item is \d, \s, etc. Note that when PCRE_UCP |
3275 | is set, \d turns into ESC_du rather than ESC_d, etc., so ESC_d etc. are |
3276 | generated only when PCRE_UCP is *not* set, that is, when only ASCII |
3277 | characteristics are recognized. Similarly, the opcodes OP_DIGIT etc. are |
3278 | replaced by OP_PROP codes when PCRE_UCP is set. */ |
3279 | |
3280 | switch(op_code) |
3281 | { |
3282 | case OP_CHAR: |
3283 | case OP_CHARI: |
3284 | switch(escape) |
3285 | { |
3286 | case ESC_d: |
3287 | return c > 255 || (cd->ctypes[c] & ctype_digit) == 0; |
3288 | |
3289 | case ESC_D: |
3290 | return c <= 255 && (cd->ctypes[c] & ctype_digit) != 0; |
3291 | |
3292 | case ESC_s: |
3293 | return c > 255 || (cd->ctypes[c] & ctype_space) == 0; |
3294 | |
3295 | case ESC_S: |
3296 | return c <= 255 && (cd->ctypes[c] & ctype_space) != 0; |
3297 | |
3298 | case ESC_w: |
3299 | return c > 255 || (cd->ctypes[c] & ctype_word) == 0; |
3300 | |
3301 | case ESC_W: |
3302 | return c <= 255 && (cd->ctypes[c] & ctype_word) != 0; |
3303 | |
3304 | case ESC_h: |
3305 | case ESC_H: |
3306 | switch(c) |
3307 | { |
3308 | HSPACE_CASES: |
3309 | return escape != ESC_h; |
3310 | |
3311 | default: |
3312 | return escape == ESC_h; |
3313 | } |
3314 | |
3315 | case ESC_v: |
3316 | case ESC_V: |
3317 | switch(c) |
3318 | { |
3319 | VSPACE_CASES: |
3320 | return escape != ESC_v; |
3321 | |
3322 | default: |
3323 | return escape == ESC_v; |
3324 | } |
3325 | |
3326 | /* When PCRE_UCP is set, these values get generated for \d etc. Find |
3327 | their substitutions and process them. The result will always be either |
3328 | ESC_p or ESC_P. Then fall through to process those values. */ |
3329 | |
3330 | #ifdef SUPPORT_UCP |
3331 | case ESC_du: |
3332 | case ESC_DU: |
3333 | case ESC_wu: |
3334 | case ESC_WU: |
3335 | case ESC_su: |
3336 | case ESC_SU: |
3337 | { |
3338 | int temperrorcode = 0; |
3339 | ptr = substitutes[escape - ESC_DU]; |
3340 | escape = check_escape(&ptr, &next, &temperrorcode, 0, options, FALSE); |
3341 | if (temperrorcode != 0) return FALSE; |
3342 | ptr++; /* For compatibility */ |
3343 | } |
3344 | /* Fall through */ |
3345 | |
3346 | case ESC_p: |
3347 | case ESC_P: |
3348 | { |
3349 | unsigned int ptype = 0, pdata = 0; |
3350 | int errorcodeptr; |
3351 | BOOL negated; |
3352 | |
3353 | ptr--; /* Make ptr point at the p or P */ |
3354 | if (!get_ucp(&ptr, &negated, &ptype, &pdata, &errorcodeptr)) |
3355 | return FALSE; |
3356 | ptr++; /* Point past the final curly ket */ |
3357 | |
3358 | /* If the property item is optional, we have to give up. (When generated |
3359 | from \d etc by PCRE_UCP, this test will have been applied much earlier, |
3360 | to the original \d etc. At this point, ptr will point to a zero byte. */ |
3361 | |
3362 | if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK || |
3363 | STRNCMP_UC_C8(ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0) |
3364 | return FALSE; |
3365 | |
3366 | /* Do the property check. */ |
3367 | |
3368 | return check_char_prop(c, ptype, pdata, (escape == ESC_P) != negated); |
3369 | } |
3370 | #endif |
3371 | |
3372 | default: |
3373 | return FALSE; |
3374 | } |
3375 | |
3376 | /* In principle, support for Unicode properties should be integrated here as |
3377 | well. It means re-organizing the above code so as to get hold of the property |
3378 | values before switching on the op-code. However, I wonder how many patterns |
3379 | combine ASCII \d etc with Unicode properties? (Note that if PCRE_UCP is set, |
3380 | these op-codes are never generated.) */ |
3381 | |
3382 | case OP_DIGIT: |
3383 | return escape == ESC_D || escape == ESC_s || escape == ESC_W || |
3384 | escape == ESC_h || escape == ESC_v || escape == ESC_R; |
3385 | |
3386 | case OP_NOT_DIGIT: |
3387 | return escape == ESC_d; |
3388 | |
3389 | case OP_WHITESPACE: |
3390 | return escape == ESC_S || escape == ESC_d || escape == ESC_w; |
3391 | |
3392 | case OP_NOT_WHITESPACE: |
3393 | return escape == ESC_s || escape == ESC_h || escape == ESC_v || escape == ESC_R; |
3394 | |
3395 | case OP_HSPACE: |
3396 | return escape == ESC_S || escape == ESC_H || escape == ESC_d || |
3397 | escape == ESC_w || escape == ESC_v || escape == ESC_R; |
3398 | |
3399 | case OP_NOT_HSPACE: |
3400 | return escape == ESC_h; |
3401 | |
3402 | /* Can't have \S in here because VT matches \S (Perl anomaly) */ |
3403 | case OP_ANYNL: |
3404 | case OP_VSPACE: |
3405 | return escape == ESC_V || escape == ESC_d || escape == ESC_w; |
3406 | |
3407 | case OP_NOT_VSPACE: |
3408 | return escape == ESC_v || escape == ESC_R; |
3409 | |
3410 | case OP_WORDCHAR: |
3411 | return escape == ESC_W || escape == ESC_s || escape == ESC_h || |
3412 | escape == ESC_v || escape == ESC_R; |
3413 | |
3414 | case OP_NOT_WORDCHAR: |
3415 | return escape == ESC_w || escape == ESC_d; |
3416 | |
3417 | default: |
3418 | return FALSE; |
3419 | } |
3420 | |
3421 | /* Control does not reach here */ |
3422 | } |
3423 | |
3424 | |
3425 | |
3426 | /************************************************* |
3427 | * Add a character or range to a class * |
3428 | *************************************************/ |
3429 | |
3430 | /* This function packages up the logic of adding a character or range of |
3431 | characters to a class. The character values in the arguments will be within the |
3432 | valid values for the current mode (8-bit, 16-bit, UTF, etc). This function is |
3433 | mutually recursive with the function immediately below. |
3434 | |
3435 | Arguments: |
3436 | classbits the bit map for characters < 256 |
3437 | uchardptr points to the pointer for extra data |
3438 | options the options word |
3439 | cd contains pointers to tables etc. |
3440 | start start of range character |
3441 | end end of range character |
3442 | |
3443 | Returns: the number of < 256 characters added |
3444 | the pointer to extra data is updated |
3445 | */ |
3446 | |
3447 | static int |
3448 | add_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, int options, |
3449 | compile_data *cd, pcre_uint32 start, pcre_uint32 end) |
3450 | { |
3451 | pcre_uint32 c; |
3452 | int n8 = 0; |
3453 | |
3454 | /* If caseless matching is required, scan the range and process alternate |
3455 | cases. In Unicode, there are 8-bit characters that have alternate cases that |
3456 | are greater than 255 and vice-versa. Sometimes we can just extend the original |
3457 | range. */ |
3458 | |
3459 | if ((options & PCRE_CASELESS) != 0) |
3460 | { |
3461 | #ifdef SUPPORT_UCP |
3462 | if ((options & PCRE_UTF8) != 0) |
3463 | { |
3464 | int rc; |
3465 | pcre_uint32 oc, od; |
3466 | |
3467 | options &= ~PCRE_CASELESS; /* Remove for recursive calls */ |
3468 | c = start; |
3469 | |
3470 | while ((rc = get_othercase_range(&c, end, &oc, &od)) >= 0) |
3471 | { |
3472 | /* Handle a single character that has more than one other case. */ |
3473 | |
3474 | if (rc > 0) n8 += add_list_to_class(classbits, uchardptr, options, cd, |
3475 | PRIV(ucd_caseless_sets) + rc, oc); |
3476 | |
3477 | /* Do nothing if the other case range is within the original range. */ |
3478 | |
3479 | else if (oc >= start && od <= end) continue; |
3480 | |
3481 | /* Extend the original range if there is overlap, noting that if oc < c, we |
3482 | can't have od > end because a subrange is always shorter than the basic |
3483 | range. Otherwise, use a recursive call to add the additional range. */ |
3484 | |
3485 | else if (oc < start && od >= start - 1) start = oc; /* Extend downwards */ |
3486 | else if (od > end && oc <= end + 1) end = od; /* Extend upwards */ |
3487 | else n8 += add_to_class(classbits, uchardptr, options, cd, oc, od); |
3488 | } |
3489 | } |
3490 | else |
3491 | #endif /* SUPPORT_UCP */ |
3492 | |
3493 | /* Not UTF-mode, or no UCP */ |
3494 | |
3495 | for (c = start; c <= end && c < 256; c++) |
3496 | { |
3497 | SETBIT(classbits, cd->fcc[c]); |
3498 | n8++; |
3499 | } |
3500 | } |
3501 | |
3502 | /* Now handle the original range. Adjust the final value according to the bit |
3503 | length - this means that the same lists of (e.g.) horizontal spaces can be used |
3504 | in all cases. */ |
3505 | |
3506 | #if defined COMPILE_PCRE8 |
3507 | #ifdef SUPPORT_UTF |
3508 | if ((options & PCRE_UTF8) == 0) |
3509 | #endif |
3510 | if (end > 0xff) end = 0xff; |
3511 | |
3512 | #elif defined COMPILE_PCRE16 |
3513 | #ifdef SUPPORT_UTF |
3514 | if ((options & PCRE_UTF16) == 0) |
3515 | #endif |
3516 | if (end > 0xffff) end = 0xffff; |
3517 | |
3518 | #endif /* COMPILE_PCRE[8|16] */ |
3519 | |
3520 | /* If all characters are less than 256, use the bit map. Otherwise use extra |
3521 | data. */ |
3522 | |
3523 | if (end < 0x100) |
3524 | { |
3525 | for (c = start; c <= end; c++) |
3526 | { |
3527 | n8++; |
3528 | SETBIT(classbits, c); |
3529 | } |
3530 | } |
3531 | |
3532 | else |
3533 | { |
3534 | pcre_uchar *uchardata = *uchardptr; |
3535 | |
3536 | #ifdef SUPPORT_UTF |
3537 | if ((options & PCRE_UTF8) != 0) /* All UTFs use the same flag bit */ |
3538 | { |
3539 | if (start < end) |
3540 | { |
3541 | *uchardata++ = XCL_RANGE; |
3542 | uchardata += PRIV(ord2utf)(start, uchardata); |
3543 | uchardata += PRIV(ord2utf)(end, uchardata); |
3544 | } |
3545 | else if (start == end) |
3546 | { |
3547 | *uchardata++ = XCL_SINGLE; |
3548 | uchardata += PRIV(ord2utf)(start, uchardata); |
3549 | } |
3550 | } |
3551 | else |
3552 | #endif /* SUPPORT_UTF */ |
3553 | |
3554 | /* Without UTF support, character values are constrained by the bit length, |
3555 | and can only be > 256 for 16-bit and 32-bit libraries. */ |
3556 | |
3557 | #ifdef COMPILE_PCRE8 |
3558 | {} |
3559 | #else |
3560 | if (start < end) |
3561 | { |
3562 | *uchardata++ = XCL_RANGE; |
3563 | *uchardata++ = start; |
3564 | *uchardata++ = end; |
3565 | } |
3566 | else if (start == end) |
3567 | { |
3568 | *uchardata++ = XCL_SINGLE; |
3569 | *uchardata++ = start; |
3570 | } |
3571 | #endif |
3572 | |
3573 | *uchardptr = uchardata; /* Updata extra data pointer */ |
3574 | } |
3575 | |
3576 | return n8; /* Number of 8-bit characters */ |
3577 | } |
3578 | |
3579 | |
3580 | |
3581 | |
3582 | /************************************************* |
3583 | * Add a list of characters to a class * |
3584 | *************************************************/ |
3585 | |
3586 | /* This function is used for adding a list of case-equivalent characters to a |
3587 | class, and also for adding a list of horizontal or vertical whitespace. If the |
3588 | list is in order (which it should be), ranges of characters are detected and |
3589 | handled appropriately. This function is mutually recursive with the function |
3590 | above. |
3591 | |
3592 | Arguments: |
3593 | classbits the bit map for characters < 256 |
3594 | uchardptr points to the pointer for extra data |
3595 | options the options word |
3596 | cd contains pointers to tables etc. |
3597 | p points to row of 32-bit values, terminated by NOTACHAR |
3598 | except character to omit; this is used when adding lists of |
3599 | case-equivalent characters to avoid including the one we |
3600 | already know about |
3601 | |
3602 | Returns: the number of < 256 characters added |
3603 | the pointer to extra data is updated |
3604 | */ |
3605 | |
3606 | static int |
3607 | add_list_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, int options, |
3608 | compile_data *cd, const pcre_uint32 *p, unsigned int except) |
3609 | { |
3610 | int n8 = 0; |
3611 | while (p[0] < NOTACHAR) |
3612 | { |
3613 | int n = 0; |
3614 | if (p[0] != except) |
3615 | { |
3616 | while(p[n+1] == p[0] + n + 1) n++; |
3617 | n8 += add_to_class(classbits, uchardptr, options, cd, p[0], p[n]); |
3618 | } |
3619 | p += n + 1; |
3620 | } |
3621 | return n8; |
3622 | } |
3623 | |
3624 | |
3625 | |
3626 | /************************************************* |
3627 | * Add characters not in a list to a class * |
3628 | *************************************************/ |
3629 | |
3630 | /* This function is used for adding the complement of a list of horizontal or |
3631 | vertical whitespace to a class. The list must be in order. |
3632 | |
3633 | Arguments: |
3634 | classbits the bit map for characters < 256 |
3635 | uchardptr points to the pointer for extra data |
3636 | options the options word |
3637 | cd contains pointers to tables etc. |
3638 | p points to row of 32-bit values, terminated by NOTACHAR |
3639 | |
3640 | Returns: the number of < 256 characters added |
3641 | the pointer to extra data is updated |
3642 | */ |
3643 | |
3644 | static int |
3645 | add_not_list_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, |
3646 | int options, compile_data *cd, const pcre_uint32 *p) |
3647 | { |
3648 | BOOL utf = (options & PCRE_UTF8) != 0; |
3649 | int n8 = 0; |
3650 | if (p[0] > 0) |
3651 | n8 += add_to_class(classbits, uchardptr, options, cd, 0, p[0] - 1); |
3652 | while (p[0] < NOTACHAR) |
3653 | { |
3654 | while (p[1] == p[0] + 1) p++; |
3655 | n8 += add_to_class(classbits, uchardptr, options, cd, p[0] + 1, |
3656 | (p[1] == NOTACHAR) ? (utf ? 0x10ffffu : 0xffffffffu) : p[1] - 1); |
3657 | p++; |
3658 | } |
3659 | return n8; |
3660 | } |
3661 | |
3662 | |
3663 | |
3664 | /************************************************* |
3665 | * Compile one branch * |
3666 | *************************************************/ |
3667 | |
3668 | /* Scan the pattern, compiling it into the a vector. If the options are |
3669 | changed during the branch, the pointer is used to change the external options |
3670 | bits. This function is used during the pre-compile phase when we are trying |
3671 | to find out the amount of memory needed, as well as during the real compile |
3672 | phase. The value of lengthptr distinguishes the two phases. |
3673 | |
3674 | Arguments: |
3675 | optionsptr pointer to the option bits |
3676 | codeptr points to the pointer to the current code point |
3677 | ptrptr points to the current pattern pointer |
3678 | errorcodeptr points to error code variable |
3679 | firstcharptr place to put the first required character |
3680 | firstcharflagsptr place to put the first character flags, or a negative number |
3681 | reqcharptr place to put the last required character |
3682 | reqcharflagsptr place to put the last required character flags, or a negative number |
3683 | bcptr points to current branch chain |
3684 | cond_depth conditional nesting depth |
3685 | cd contains pointers to tables etc. |
3686 | lengthptr NULL during the real compile phase |
3687 | points to length accumulator during pre-compile phase |
3688 | |
3689 | Returns: TRUE on success |
3690 | FALSE, with *errorcodeptr set non-zero on error |
3691 | */ |
3692 | |
3693 | static BOOL |
3694 | compile_branch(int *optionsptr, pcre_uchar **codeptr, |
3695 | const pcre_uchar **ptrptr, int *errorcodeptr, |
3696 | pcre_uint32 *firstcharptr, pcre_int32 *firstcharflagsptr, |
3697 | pcre_uint32 *reqcharptr, pcre_int32 *reqcharflagsptr, |
3698 | branch_chain *bcptr, int cond_depth, |
3699 | compile_data *cd, int *lengthptr) |
3700 | { |
3701 | int repeat_type, op_type; |
3702 | int repeat_min = 0, repeat_max = 0; /* To please picky compilers */ |
3703 | int bravalue = 0; |
3704 | int greedy_default, greedy_non_default; |
3705 | pcre_uint32 firstchar, reqchar; |
3706 | pcre_int32 firstcharflags, reqcharflags; |
3707 | pcre_uint32 zeroreqchar, zerofirstchar; |
3708 | pcre_int32 zeroreqcharflags, zerofirstcharflags; |
3709 | pcre_int32 req_caseopt, reqvary, tempreqvary; |
3710 | int options = *optionsptr; /* May change dynamically */ |
3711 | int after_manual_callout = 0; |
3712 | int length_prevgroup = 0; |
3713 | register pcre_uint32 c; |
3714 | int escape; |
3715 | register pcre_uchar *code = *codeptr; |
3716 | pcre_uchar *last_code = code; |
3717 | pcre_uchar *orig_code = code; |
3718 | pcre_uchar *tempcode; |
3719 | BOOL inescq = FALSE; |
3720 | BOOL groupsetfirstchar = FALSE; |
3721 | const pcre_uchar *ptr = *ptrptr; |
3722 | const pcre_uchar *tempptr; |
3723 | const pcre_uchar *nestptr = NULL; |
3724 | pcre_uchar *previous = NULL; |
3725 | pcre_uchar *previous_callout = NULL; |
3726 | pcre_uchar *save_hwm = NULL; |
3727 | pcre_uint8 classbits[32]; |
3728 | |
3729 | /* We can fish out the UTF-8 setting once and for all into a BOOL, but we |
3730 | must not do this for other options (e.g. PCRE_EXTENDED) because they may change |
3731 | dynamically as we process the pattern. */ |
3732 | |
3733 | #ifdef SUPPORT_UTF |
3734 | /* PCRE_UTF[16|32] have the same value as PCRE_UTF8. */ |
3735 | BOOL utf = (options & PCRE_UTF8) != 0; |
3736 | #ifndef COMPILE_PCRE32 |
3737 | pcre_uchar utf_chars[6]; |
3738 | #endif |
3739 | #else |
3740 | BOOL utf = FALSE; |
3741 | #endif |
3742 | |
3743 | /* Helper variables for OP_XCLASS opcode (for characters > 255). We define |
3744 | class_uchardata always so that it can be passed to add_to_class() always, |
3745 | though it will not be used in non-UTF 8-bit cases. This avoids having to supply |
3746 | alternative calls for the different cases. */ |
3747 | |
3748 | pcre_uchar *class_uchardata; |
3749 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
3750 | BOOL xclass; |
3751 | pcre_uchar *class_uchardata_base; |
3752 | #endif |
3753 | |
3754 | #ifdef PCRE_DEBUG |
3755 | if (lengthptr != NULL) DPRINTF((">> start branch\n")); |
3756 | #endif |
3757 | |
3758 | /* Set up the default and non-default settings for greediness */ |
3759 | |
3760 | greedy_default = ((options & PCRE_UNGREEDY) != 0); |
3761 | greedy_non_default = greedy_default ^ 1; |
3762 | |
3763 | /* Initialize no first byte, no required byte. REQ_UNSET means "no char |
3764 | matching encountered yet". It gets changed to REQ_NONE if we hit something that |
3765 | matches a non-fixed char first char; reqchar just remains unset if we never |
3766 | find one. |
3767 | |
3768 | When we hit a repeat whose minimum is zero, we may have to adjust these values |
3769 | to take the zero repeat into account. This is implemented by setting them to |
3770 | zerofirstbyte and zeroreqchar when such a repeat is encountered. The individual |
3771 | item types that can be repeated set these backoff variables appropriately. */ |
3772 | |
3773 | firstchar = reqchar = zerofirstchar = zeroreqchar = 0; |
3774 | firstcharflags = reqcharflags = zerofirstcharflags = zeroreqcharflags = REQ_UNSET; |
3775 | |
3776 | /* The variable req_caseopt contains either the REQ_CASELESS value |
3777 | or zero, according to the current setting of the caseless flag. The |
3778 | REQ_CASELESS leaves the lower 28 bit empty. It is added into the |
3779 | firstchar or reqchar variables to record the case status of the |
3780 | value. This is used only for ASCII characters. */ |
3781 | |
3782 | req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS:0; |
3783 | |
3784 | /* Switch on next character until the end of the branch */ |
3785 | |
3786 | for (;; ptr++) |
3787 | { |
3788 | BOOL negate_class; |
3789 | BOOL should_flip_negation; |
3790 | BOOL possessive_quantifier; |
3791 | BOOL is_quantifier; |
3792 | BOOL is_recurse; |
3793 | BOOL reset_bracount; |
3794 | int class_has_8bitchar; |
3795 | int class_one_char; |
3796 | int newoptions; |
3797 | int recno; |
3798 | int refsign; |
3799 | int skipbytes; |
3800 | pcre_uint32 subreqchar, subfirstchar; |
3801 | pcre_int32 subreqcharflags, subfirstcharflags; |
3802 | int terminator; |
3803 | unsigned int mclength; |
3804 | unsigned int tempbracount; |
3805 | pcre_uint32 ec; |
3806 | pcre_uchar mcbuffer[8]; |
3807 | |
3808 | /* Get next character in the pattern */ |
3809 | |
3810 | c = *ptr; |
3811 | |
3812 | /* If we are at the end of a nested substitution, revert to the outer level |
3813 | string. Nesting only happens one level deep. */ |
3814 | |
3815 | if (c == CHAR_NULL && nestptr != NULL) |
3816 | { |
3817 | ptr = nestptr; |
3818 | nestptr = NULL; |
3819 | c = *ptr; |
3820 | } |
3821 | |
3822 | /* If we are in the pre-compile phase, accumulate the length used for the |
3823 | previous cycle of this loop. */ |
3824 | |
3825 | if (lengthptr != NULL) |
3826 | { |
3827 | #ifdef PCRE_DEBUG |
3828 | if (code > cd->hwm) cd->hwm = code; /* High water info */ |
3829 | #endif |
3830 | if (code > cd->start_workspace + cd->workspace_size - |
3831 | WORK_SIZE_SAFETY_MARGIN) /* Check for overrun */ |
3832 | { |
3833 | *errorcodeptr = ERR52; |
3834 | goto FAILED; |
3835 | } |
3836 | |
3837 | /* There is at least one situation where code goes backwards: this is the |
3838 | case of a zero quantifier after a class (e.g. [ab]{0}). At compile time, |
3839 | the class is simply eliminated. However, it is created first, so we have to |
3840 | allow memory for it. Therefore, don't ever reduce the length at this point. |
3841 | */ |
3842 | |
3843 | if (code < last_code) code = last_code; |
3844 | |
3845 | /* Paranoid check for integer overflow */ |
3846 | |
3847 | if (OFLOW_MAX - *lengthptr < code - last_code) |
3848 | { |
3849 | *errorcodeptr = ERR20; |
3850 | goto FAILED; |
3851 | } |
3852 | |
3853 | *lengthptr += (int)(code - last_code); |
3854 | DPRINTF(("length=%d added %d c=%c (0x%x)\n", *lengthptr, |
3855 | (int)(code - last_code), c, c)); |
3856 | |
3857 | /* If "previous" is set and it is not at the start of the work space, move |
3858 | it back to there, in order to avoid filling up the work space. Otherwise, |
3859 | if "previous" is NULL, reset the current code pointer to the start. */ |
3860 | |
3861 | if (previous != NULL) |
3862 | { |
3863 | if (previous > orig_code) |
3864 | { |
3865 | memmove(orig_code, previous, IN_UCHARS(code - previous)); |
3866 | code -= previous - orig_code; |
3867 | previous = orig_code; |
3868 | } |
3869 | } |
3870 | else code = orig_code; |
3871 | |
3872 | /* Remember where this code item starts so we can pick up the length |
3873 | next time round. */ |
3874 | |
3875 | last_code = code; |
3876 | } |
3877 | |
3878 | /* In the real compile phase, just check the workspace used by the forward |
3879 | reference list. */ |
3880 | |
3881 | else if (cd->hwm > cd->start_workspace + cd->workspace_size - |
3882 | WORK_SIZE_SAFETY_MARGIN) |
3883 | { |
3884 | *errorcodeptr = ERR52; |
3885 | goto FAILED; |
3886 | } |
3887 | |
3888 | /* If in \Q...\E, check for the end; if not, we have a literal */ |
3889 | |
3890 | if (inescq && c != CHAR_NULL) |
3891 | { |
3892 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
3893 | { |
3894 | inescq = FALSE; |
3895 | ptr++; |
3896 | continue; |
3897 | } |
3898 | else |
3899 | { |
3900 | if (previous_callout != NULL) |
3901 | { |
3902 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
3903 | complete_callout(previous_callout, ptr, cd); |
3904 | previous_callout = NULL; |
3905 | } |
3906 | if ((options & PCRE_AUTO_CALLOUT) != 0) |
3907 | { |
3908 | previous_callout = code; |
3909 | code = auto_callout(code, ptr, cd); |
3910 | } |
3911 | goto NORMAL_CHAR; |
3912 | } |
3913 | } |
3914 | |
3915 | /* Fill in length of a previous callout, except when the next thing is |
3916 | a quantifier. */ |
3917 | |
3918 | is_quantifier = |
3919 | c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK || |
3920 | (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1)); |
3921 | |
3922 | if (!is_quantifier && previous_callout != NULL && |
3923 | after_manual_callout-- <= 0) |
3924 | { |
3925 | if (lengthptr == NULL) /* Don't attempt in pre-compile phase */ |
3926 | complete_callout(previous_callout, ptr, cd); |
3927 | previous_callout = NULL; |
3928 | } |
3929 | |
3930 | /* In extended mode, skip white space and comments. */ |
3931 | |
3932 | if ((options & PCRE_EXTENDED) != 0) |
3933 | { |
3934 | if (MAX_255(*ptr) && (cd->ctypes[c] & ctype_space) != 0) continue; |
3935 | if (c == CHAR_NUMBER_SIGN) |
3936 | { |
3937 | ptr++; |
3938 | while (*ptr != CHAR_NULL) |
3939 | { |
3940 | if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; } |
3941 | ptr++; |
3942 | #ifdef SUPPORT_UTF |
3943 | if (utf) FORWARDCHAR(ptr); |
3944 | #endif |
3945 | } |
3946 | if (*ptr != CHAR_NULL) continue; |
3947 | |
3948 | /* Else fall through to handle end of string */ |
3949 | c = 0; |
3950 | } |
3951 | } |
3952 | |
3953 | /* No auto callout for quantifiers. */ |
3954 | |
3955 | if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier) |
3956 | { |
3957 | previous_callout = code; |
3958 | code = auto_callout(code, ptr, cd); |
3959 | } |
3960 | |
3961 | switch(c) |
3962 | { |
3963 | /* ===================================================================*/ |
3964 | case 0: /* The branch terminates at string end */ |
3965 | case CHAR_VERTICAL_LINE: /* or | or ) */ |
3966 | case CHAR_RIGHT_PARENTHESIS: |
3967 | *firstcharptr = firstchar; |
3968 | *firstcharflagsptr = firstcharflags; |
3969 | *reqcharptr = reqchar; |
3970 | *reqcharflagsptr = reqcharflags; |
3971 | *codeptr = code; |
3972 | *ptrptr = ptr; |
3973 | if (lengthptr != NULL) |
3974 | { |
3975 | if (OFLOW_MAX - *lengthptr < code - last_code) |
3976 | { |
3977 | *errorcodeptr = ERR20; |
3978 | goto FAILED; |
3979 | } |
3980 | *lengthptr += (int)(code - last_code); /* To include callout length */ |
3981 | DPRINTF((">> end branch\n")); |
3982 | } |
3983 | return TRUE; |
3984 | |
3985 | |
3986 | /* ===================================================================*/ |
3987 | /* Handle single-character metacharacters. In multiline mode, ^ disables |
3988 | the setting of any following char as a first character. */ |
3989 | |
3990 | case CHAR_CIRCUMFLEX_ACCENT: |
3991 | previous = NULL; |
3992 | if ((options & PCRE_MULTILINE) != 0) |
3993 | { |
3994 | if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE; |
3995 | *code++ = OP_CIRCM; |
3996 | } |
3997 | else *code++ = OP_CIRC; |
3998 | break; |
3999 | |
4000 | case CHAR_DOLLAR_SIGN: |
4001 | previous = NULL; |
4002 | *code++ = ((options & PCRE_MULTILINE) != 0)? OP_DOLLM : OP_DOLL; |
4003 | break; |
4004 | |
4005 | /* There can never be a first char if '.' is first, whatever happens about |
4006 | repeats. The value of reqchar doesn't change either. */ |
4007 | |
4008 | case CHAR_DOT: |
4009 | if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE; |
4010 | zerofirstchar = firstchar; |
4011 | zerofirstcharflags = firstcharflags; |
4012 | zeroreqchar = reqchar; |
4013 | zeroreqcharflags = reqcharflags; |
4014 | previous = code; |
4015 | *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY; |
4016 | break; |
4017 | |
4018 | |
4019 | /* ===================================================================*/ |
4020 | /* Character classes. If the included characters are all < 256, we build a |
4021 | 32-byte bitmap of the permitted characters, except in the special case |
4022 | where there is only one such character. For negated classes, we build the |
4023 | map as usual, then invert it at the end. However, we use a different opcode |
4024 | so that data characters > 255 can be handled correctly. |
4025 | |
4026 | If the class contains characters outside the 0-255 range, a different |
4027 | opcode is compiled. It may optionally have a bit map for characters < 256, |
4028 | but those above are are explicitly listed afterwards. A flag byte tells |
4029 | whether the bitmap is present, and whether this is a negated class or not. |
4030 | |
4031 | In JavaScript compatibility mode, an isolated ']' causes an error. In |
4032 | default (Perl) mode, it is treated as a data character. */ |
4033 | |
4034 | case CHAR_RIGHT_SQUARE_BRACKET: |
4035 | if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
4036 | { |
4037 | *errorcodeptr = ERR64; |
4038 | goto FAILED; |
4039 | } |
4040 | goto NORMAL_CHAR; |
4041 | |
4042 | case CHAR_LEFT_SQUARE_BRACKET: |
4043 | previous = code; |
4044 | |
4045 | /* PCRE supports POSIX class stuff inside a class. Perl gives an error if |
4046 | they are encountered at the top level, so we'll do that too. */ |
4047 | |
4048 | if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
4049 | ptr[1] == CHAR_EQUALS_SIGN) && |
4050 | check_posix_syntax(ptr, &tempptr)) |
4051 | { |
4052 | *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31; |
4053 | goto FAILED; |
4054 | } |
4055 | |
4056 | /* If the first character is '^', set the negation flag and skip it. Also, |
4057 | if the first few characters (either before or after ^) are \Q\E or \E we |
4058 | skip them too. This makes for compatibility with Perl. */ |
4059 | |
4060 | negate_class = FALSE; |
4061 | for (;;) |
4062 | { |
4063 | c = *(++ptr); |
4064 | if (c == CHAR_BACKSLASH) |
4065 | { |
4066 | if (ptr[1] == CHAR_E) |
4067 | ptr++; |
4068 | else if (STRNCMP_UC_C8(ptr + 1, STR_Q STR_BACKSLASH STR_E, 3) == 0) |
4069 | ptr += 3; |
4070 | else |
4071 | break; |
4072 | } |
4073 | else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT) |
4074 | negate_class = TRUE; |
4075 | else break; |
4076 | } |
4077 | |
4078 | /* Empty classes are allowed in JavaScript compatibility mode. Otherwise, |
4079 | an initial ']' is taken as a data character -- the code below handles |
4080 | that. In JS mode, [] must always fail, so generate OP_FAIL, whereas |
4081 | [^] must match any character, so generate OP_ALLANY. */ |
4082 | |
4083 | if (c == CHAR_RIGHT_SQUARE_BRACKET && |
4084 | (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0) |
4085 | { |
4086 | *code++ = negate_class? OP_ALLANY : OP_FAIL; |
4087 | if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE; |
4088 | zerofirstchar = firstchar; |
4089 | zerofirstcharflags = firstcharflags; |
4090 | break; |
4091 | } |
4092 | |
4093 | /* If a class contains a negative special such as \S, we need to flip the |
4094 | negation flag at the end, so that support for characters > 255 works |
4095 | correctly (they are all included in the class). */ |
4096 | |
4097 | should_flip_negation = FALSE; |
4098 | |
4099 | /* For optimization purposes, we track some properties of the class: |
4100 | class_has_8bitchar will be non-zero if the class contains at least one < |
4101 | 256 character; class_one_char will be 1 if the class contains just one |
4102 | character. */ |
4103 | |
4104 | class_has_8bitchar = 0; |
4105 | class_one_char = 0; |
4106 | |
4107 | /* Initialize the 32-char bit map to all zeros. We build the map in a |
4108 | temporary bit of memory, in case the class contains fewer than two |
4109 | 8-bit characters because in that case the compiled code doesn't use the bit |
4110 | map. */ |
4111 | |
4112 | memset(classbits, 0, 32 * sizeof(pcre_uint8)); |
4113 | |
4114 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4115 | xclass = FALSE; |
4116 | class_uchardata = code + LINK_SIZE + 2; /* For XCLASS items */ |
4117 | class_uchardata_base = class_uchardata; /* Save the start */ |
4118 | #endif |
4119 | |
4120 | /* Process characters until ] is reached. By writing this as a "do" it |
4121 | means that an initial ] is taken as a data character. At the start of the |
4122 | loop, c contains the first byte of the character. */ |
4123 | |
4124 | if (c != CHAR_NULL) do |
4125 | { |
4126 | const pcre_uchar *oldptr; |
4127 | |
4128 | #ifdef SUPPORT_UTF |
4129 | if (utf && HAS_EXTRALEN(c)) |
4130 | { /* Braces are required because the */ |
4131 | GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */ |
4132 | } |
4133 | #endif |
4134 | |
4135 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4136 | /* In the pre-compile phase, accumulate the length of any extra |
4137 | data and reset the pointer. This is so that very large classes that |
4138 | contain a zillion > 255 characters no longer overwrite the work space |
4139 | (which is on the stack). We have to remember that there was XCLASS data, |
4140 | however. */ |
4141 | |
4142 | if (lengthptr != NULL && class_uchardata > class_uchardata_base) |
4143 | { |
4144 | xclass = TRUE; |
4145 | *lengthptr += class_uchardata - class_uchardata_base; |
4146 | class_uchardata = class_uchardata_base; |
4147 | } |
4148 | #endif |
4149 | |
4150 | /* Inside \Q...\E everything is literal except \E */ |
4151 | |
4152 | if (inescq) |
4153 | { |
4154 | if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */ |
4155 | { |
4156 | inescq = FALSE; /* Reset literal state */ |
4157 | ptr++; /* Skip the 'E' */ |
4158 | continue; /* Carry on with next */ |
4159 | } |
4160 | goto CHECK_RANGE; /* Could be range if \E follows */ |
4161 | } |
4162 | |
4163 | /* Handle POSIX class names. Perl allows a negation extension of the |
4164 | form [:^name:]. A square bracket that doesn't match the syntax is |
4165 | treated as a literal. We also recognize the POSIX constructions |
4166 | [.ch.] and [=ch=] ("collating elements") and fault them, as Perl |
4167 | 5.6 and 5.8 do. */ |
4168 | |
4169 | if (c == CHAR_LEFT_SQUARE_BRACKET && |
4170 | (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT || |
4171 | ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr)) |
4172 | { |
4173 | BOOL local_negate = FALSE; |
4174 | int posix_class, taboffset, tabopt; |
4175 | register const pcre_uint8 *cbits = cd->cbits; |
4176 | pcre_uint8 pbits[32]; |
4177 | |
4178 | if (ptr[1] != CHAR_COLON) |
4179 | { |
4180 | *errorcodeptr = ERR31; |
4181 | goto FAILED; |
4182 | } |
4183 | |
4184 | ptr += 2; |
4185 | if (*ptr == CHAR_CIRCUMFLEX_ACCENT) |
4186 | { |
4187 | local_negate = TRUE; |
4188 | should_flip_negation = TRUE; /* Note negative special */ |
4189 | ptr++; |
4190 | } |
4191 | |
4192 | posix_class = check_posix_name(ptr, (int)(tempptr - ptr)); |
4193 | if (posix_class < 0) |
4194 | { |
4195 | *errorcodeptr = ERR30; |
4196 | goto FAILED; |
4197 | } |
4198 | |
4199 | /* If matching is caseless, upper and lower are converted to |
4200 | alpha. This relies on the fact that the class table starts with |
4201 | alpha, lower, upper as the first 3 entries. */ |
4202 | |
4203 | if ((options & PCRE_CASELESS) != 0 && posix_class <= 2) |
4204 | posix_class = 0; |
4205 | |
4206 | /* When PCRE_UCP is set, some of the POSIX classes are converted to |
4207 | different escape sequences that use Unicode properties. */ |
4208 | |
4209 | #ifdef SUPPORT_UCP |
4210 | if ((options & PCRE_UCP) != 0) |
4211 | { |
4212 | int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0); |
4213 | if (posix_substitutes[pc] != NULL) |
4214 | { |
4215 | nestptr = tempptr + 1; |
4216 | ptr = posix_substitutes[pc] - 1; |
4217 | continue; |
4218 | } |
4219 | } |
4220 | #endif |
4221 | /* In the non-UCP case, we build the bit map for the POSIX class in a |
4222 | chunk of local store because we may be adding and subtracting from it, |
4223 | and we don't want to subtract bits that may be in the main map already. |
4224 | At the end we or the result into the bit map that is being built. */ |
4225 | |
4226 | posix_class *= 3; |
4227 | |
4228 | /* Copy in the first table (always present) */ |
4229 | |
4230 | memcpy(pbits, cbits + posix_class_maps[posix_class], |
4231 | 32 * sizeof(pcre_uint8)); |
4232 | |
4233 | /* If there is a second table, add or remove it as required. */ |
4234 | |
4235 | taboffset = posix_class_maps[posix_class + 1]; |
4236 | tabopt = posix_class_maps[posix_class + 2]; |
4237 | |
4238 | if (taboffset >= 0) |
4239 | { |
4240 | if (tabopt >= 0) |
4241 | for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset]; |
4242 | else |
4243 | for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset]; |
4244 | } |
4245 | |
4246 | /* Now see if we need to remove any special characters. An option |
4247 | value of 1 removes vertical space and 2 removes underscore. */ |
4248 | |
4249 | if (tabopt < 0) tabopt = -tabopt; |
4250 | if (tabopt == 1) pbits[1] &= ~0x3c; |
4251 | else if (tabopt == 2) pbits[11] &= 0x7f; |
4252 | |
4253 | /* Add the POSIX table or its complement into the main table that is |
4254 | being built and we are done. */ |
4255 | |
4256 | if (local_negate) |
4257 | for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c]; |
4258 | else |
4259 | for (c = 0; c < 32; c++) classbits[c] |= pbits[c]; |
4260 | |
4261 | ptr = tempptr + 1; |
4262 | /* Every class contains at least one < 256 character. */ |
4263 | class_has_8bitchar = 1; |
4264 | /* Every class contains at least two characters. */ |
4265 | class_one_char = 2; |
4266 | continue; /* End of POSIX syntax handling */ |
4267 | } |
4268 | |
4269 | /* Backslash may introduce a single character, or it may introduce one |
4270 | of the specials, which just set a flag. The sequence \b is a special |
4271 | case. Inside a class (and only there) it is treated as backspace. We |
4272 | assume that other escapes have more than one character in them, so |
4273 | speculatively set both class_has_8bitchar and class_one_char bigger |
4274 | than one. Unrecognized escapes fall through and are either treated |
4275 | as literal characters (by default), or are faulted if |
4276 | PCRE_EXTRA is set. */ |
4277 | |
4278 | if (c == CHAR_BACKSLASH) |
4279 | { |
4280 | escape = check_escape(&ptr, &ec, errorcodeptr, cd->bracount, options, TRUE); |
4281 | |
4282 | if (*errorcodeptr != 0) goto FAILED; |
4283 | |
4284 | if (escape == 0) |
4285 | c = ec; |
4286 | else if (escape == ESC_b) c = CHAR_BS; /* \b is backspace in a class */ |
4287 | else if (escape == ESC_N) /* \N is not supported in a class */ |
4288 | { |
4289 | *errorcodeptr = ERR71; |
4290 | goto FAILED; |
4291 | } |
4292 | else if (escape == ESC_Q) /* Handle start of quoted string */ |
4293 | { |
4294 | if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
4295 | { |
4296 | ptr += 2; /* avoid empty string */ |
4297 | } |
4298 | else inescq = TRUE; |
4299 | continue; |
4300 | } |
4301 | else if (escape == ESC_E) continue; /* Ignore orphan \E */ |
4302 | |
4303 | else |
4304 | { |
4305 | register const pcre_uint8 *cbits = cd->cbits; |
4306 | /* Every class contains at least two < 256 characters. */ |
4307 | class_has_8bitchar++; |
4308 | /* Every class contains at least two characters. */ |
4309 | class_one_char += 2; |
4310 | |
4311 | switch (escape) |
4312 | { |
4313 | #ifdef SUPPORT_UCP |
4314 | case ESC_du: /* These are the values given for \d etc */ |
4315 | case ESC_DU: /* when PCRE_UCP is set. We replace the */ |
4316 | case ESC_wu: /* escape sequence with an appropriate \p */ |
4317 | case ESC_WU: /* or \P to test Unicode properties instead */ |
4318 | case ESC_su: /* of the default ASCII testing. */ |
4319 | case ESC_SU: |
4320 | nestptr = ptr; |
4321 | ptr = substitutes[escape - ESC_DU] - 1; /* Just before substitute */ |
4322 | class_has_8bitchar--; /* Undo! */ |
4323 | continue; |
4324 | #endif |
4325 | case ESC_d: |
4326 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit]; |
4327 | continue; |
4328 | |
4329 | case ESC_D: |
4330 | should_flip_negation = TRUE; |
4331 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit]; |
4332 | continue; |
4333 | |
4334 | case ESC_w: |
4335 | for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word]; |
4336 | continue; |
4337 | |
4338 | case ESC_W: |
4339 | should_flip_negation = TRUE; |
4340 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word]; |
4341 | continue; |
4342 | |
4343 | /* Perl 5.004 onwards omits VT from \s, but we must preserve it |
4344 | if it was previously set by something earlier in the character |
4345 | class. Luckily, the value of CHAR_VT is 0x0b in both ASCII and |
4346 | EBCDIC, so we lazily just adjust the appropriate bit. */ |
4347 | |
4348 | case ESC_s: |
4349 | classbits[0] |= cbits[cbit_space]; |
4350 | classbits[1] |= cbits[cbit_space+1] & ~0x08; |
4351 | for (c = 2; c < 32; c++) classbits[c] |= cbits[c+cbit_space]; |
4352 | continue; |
4353 | |
4354 | case ESC_S: |
4355 | should_flip_negation = TRUE; |
4356 | for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space]; |
4357 | classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */ |
4358 | continue; |
4359 | |
4360 | /* The rest apply in both UCP and non-UCP cases. */ |
4361 | |
4362 | case ESC_h: |
4363 | (void)add_list_to_class(classbits, &class_uchardata, options, cd, |
4364 | PRIV(hspace_list), NOTACHAR); |
4365 | continue; |
4366 | |
4367 | case ESC_H: |
4368 | (void)add_not_list_to_class(classbits, &class_uchardata, options, |
4369 | cd, PRIV(hspace_list)); |
4370 | continue; |
4371 | |
4372 | case ESC_v: |
4373 | (void)add_list_to_class(classbits, &class_uchardata, options, cd, |
4374 | PRIV(vspace_list), NOTACHAR); |
4375 | continue; |
4376 | |
4377 | case ESC_V: |
4378 | (void)add_not_list_to_class(classbits, &class_uchardata, options, |
4379 | cd, PRIV(vspace_list)); |
4380 | continue; |
4381 | |
4382 | #ifdef SUPPORT_UCP |
4383 | case ESC_p: |
4384 | case ESC_P: |
4385 | { |
4386 | BOOL negated; |
4387 | unsigned int ptype = 0, pdata = 0; |
4388 | if (!get_ucp(&ptr, &negated, &ptype, &pdata, errorcodeptr)) |
4389 | goto FAILED; |
4390 | *class_uchardata++ = ((escape == ESC_p) != negated)? |
4391 | XCL_PROP : XCL_NOTPROP; |
4392 | *class_uchardata++ = ptype; |
4393 | *class_uchardata++ = pdata; |
4394 | class_has_8bitchar--; /* Undo! */ |
4395 | continue; |
4396 | } |
4397 | #endif |
4398 | /* Unrecognized escapes are faulted if PCRE is running in its |
4399 | strict mode. By default, for compatibility with Perl, they are |
4400 | treated as literals. */ |
4401 | |
4402 | default: |
4403 | if ((options & PCRE_EXTRA) != 0) |
4404 | { |
4405 | *errorcodeptr = ERR7; |
4406 | goto FAILED; |
4407 | } |
4408 | class_has_8bitchar--; /* Undo the speculative increase. */ |
4409 | class_one_char -= 2; /* Undo the speculative increase. */ |
4410 | c = *ptr; /* Get the final character and fall through */ |
4411 | break; |
4412 | } |
4413 | } |
4414 | |
4415 | /* Fall through if the escape just defined a single character (c >= 0). |
4416 | This may be greater than 256. */ |
4417 | |
4418 | escape = 0; |
4419 | |
4420 | } /* End of backslash handling */ |
4421 | |
4422 | /* A character may be followed by '-' to form a range. However, Perl does |
4423 | not permit ']' to be the end of the range. A '-' character at the end is |
4424 | treated as a literal. Perl ignores orphaned \E sequences entirely. The |
4425 | code for handling \Q and \E is messy. */ |
4426 | |
4427 | CHECK_RANGE: |
4428 | while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E) |
4429 | { |
4430 | inescq = FALSE; |
4431 | ptr += 2; |
4432 | } |
4433 | oldptr = ptr; |
4434 | |
4435 | /* Remember if \r or \n were explicitly used */ |
4436 | |
4437 | if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
4438 | |
4439 | /* Check for range */ |
4440 | |
4441 | if (!inescq && ptr[1] == CHAR_MINUS) |
4442 | { |
4443 | pcre_uint32 d; |
4444 | ptr += 2; |
4445 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2; |
4446 | |
4447 | /* If we hit \Q (not followed by \E) at this point, go into escaped |
4448 | mode. */ |
4449 | |
4450 | while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q) |
4451 | { |
4452 | ptr += 2; |
4453 | if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) |
4454 | { ptr += 2; continue; } |
4455 | inescq = TRUE; |
4456 | break; |
4457 | } |
4458 | |
4459 | /* Minus (hyphen) at the end of a class is treated as a literal, so put |
4460 | back the pointer and jump to handle the character that preceded it. */ |
4461 | |
4462 | if (*ptr == CHAR_NULL || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET)) |
4463 | { |
4464 | ptr = oldptr; |
4465 | goto CLASS_SINGLE_CHARACTER; |
4466 | } |
4467 | |
4468 | /* Otherwise, we have a potential range; pick up the next character */ |
4469 | |
4470 | #ifdef SUPPORT_UTF |
4471 | if (utf) |
4472 | { /* Braces are required because the */ |
4473 | GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */ |
4474 | } |
4475 | else |
4476 | #endif |
4477 | d = *ptr; /* Not UTF-8 mode */ |
4478 | |
4479 | /* The second part of a range can be a single-character escape, but |
4480 | not any of the other escapes. Perl 5.6 treats a hyphen as a literal |
4481 | in such circumstances. */ |
4482 | |
4483 | if (!inescq && d == CHAR_BACKSLASH) |
4484 | { |
4485 | int descape; |
4486 | descape = check_escape(&ptr, &d, errorcodeptr, cd->bracount, options, TRUE); |
4487 | if (*errorcodeptr != 0) goto FAILED; |
4488 | |
4489 | /* \b is backspace; any other special means the '-' was literal. */ |
4490 | |
4491 | if (descape != 0) |
4492 | { |
4493 | if (descape == ESC_b) d = CHAR_BS; else |
4494 | { |
4495 | ptr = oldptr; |
4496 | goto CLASS_SINGLE_CHARACTER; /* A few lines below */ |
4497 | } |
4498 | } |
4499 | } |
4500 | |
4501 | /* Check that the two values are in the correct order. Optimize |
4502 | one-character ranges. */ |
4503 | |
4504 | if (d < c) |
4505 | { |
4506 | *errorcodeptr = ERR8; |
4507 | goto FAILED; |
4508 | } |
4509 | if (d == c) goto CLASS_SINGLE_CHARACTER; /* A few lines below */ |
4510 | |
4511 | /* We have found a character range, so single character optimizations |
4512 | cannot be done anymore. Any value greater than 1 indicates that there |
4513 | is more than one character. */ |
4514 | |
4515 | class_one_char = 2; |
4516 | |
4517 | /* Remember an explicit \r or \n, and add the range to the class. */ |
4518 | |
4519 | if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF; |
4520 | |
4521 | class_has_8bitchar += |
4522 | add_to_class(classbits, &class_uchardata, options, cd, c, d); |
4523 | |
4524 | continue; /* Go get the next char in the class */ |
4525 | } |
4526 | |
4527 | /* Handle a single character - we can get here for a normal non-escape |
4528 | char, or after \ that introduces a single character or for an apparent |
4529 | range that isn't. Only the value 1 matters for class_one_char, so don't |
4530 | increase it if it is already 2 or more ... just in case there's a class |
4531 | with a zillion characters in it. */ |
4532 | |
4533 | CLASS_SINGLE_CHARACTER: |
4534 | if (class_one_char < 2) class_one_char++; |
4535 | |
4536 | /* If class_one_char is 1, we have the first single character in the |
4537 | class, and there have been no prior ranges, or XCLASS items generated by |
4538 | escapes. If this is the final character in the class, we can optimize by |
4539 | turning the item into a 1-character OP_CHAR[I] if it's positive, or |
4540 | OP_NOT[I] if it's negative. In the positive case, it can cause firstchar |
4541 | to be set. Otherwise, there can be no first char if this item is first, |
4542 | whatever repeat count may follow. In the case of reqchar, save the |
4543 | previous value for reinstating. */ |
4544 | |
4545 | if (class_one_char == 1 && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET) |
4546 | { |
4547 | ptr++; |
4548 | zeroreqchar = reqchar; |
4549 | zeroreqcharflags = reqcharflags; |
4550 | |
4551 | if (negate_class) |
4552 | { |
4553 | #ifdef SUPPORT_UCP |
4554 | int d; |
4555 | #endif |
4556 | if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE; |
4557 | zerofirstchar = firstchar; |
4558 | zerofirstcharflags = firstcharflags; |
4559 | |
4560 | /* For caseless UTF-8 mode when UCP support is available, check |
4561 | whether this character has more than one other case. If so, generate |
4562 | a special OP_NOTPROP item instead of OP_NOTI. */ |
4563 | |
4564 | #ifdef SUPPORT_UCP |
4565 | if (utf && (options & PCRE_CASELESS) != 0 && |
4566 | (d = UCD_CASESET(c)) != 0) |
4567 | { |
4568 | *code++ = OP_NOTPROP; |
4569 | *code++ = PT_CLIST; |
4570 | *code++ = d; |
4571 | } |
4572 | else |
4573 | #endif |
4574 | /* Char has only one other case, or UCP not available */ |
4575 | |
4576 | { |
4577 | *code++ = ((options & PCRE_CASELESS) != 0)? OP_NOTI: OP_NOT; |
4578 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
4579 | if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR) |
4580 | code += PRIV(ord2utf)(c, code); |
4581 | else |
4582 | #endif |
4583 | *code++ = c; |
4584 | } |
4585 | |
4586 | /* We are finished with this character class */ |
4587 | |
4588 | goto END_CLASS; |
4589 | } |
4590 | |
4591 | /* For a single, positive character, get the value into mcbuffer, and |
4592 | then we can handle this with the normal one-character code. */ |
4593 | |
4594 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
4595 | if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR) |
4596 | mclength = PRIV(ord2utf)(c, mcbuffer); |
4597 | else |
4598 | #endif |
4599 | { |
4600 | mcbuffer[0] = c; |
4601 | mclength = 1; |
4602 | } |
4603 | goto ONE_CHAR; |
4604 | } /* End of 1-char optimization */ |
4605 | |
4606 | /* There is more than one character in the class, or an XCLASS item |
4607 | has been generated. Add this character to the class. */ |
4608 | |
4609 | class_has_8bitchar += |
4610 | add_to_class(classbits, &class_uchardata, options, cd, c, c); |
4611 | } |
4612 | |
4613 | /* Loop until ']' reached. This "while" is the end of the "do" far above. |
4614 | If we are at the end of an internal nested string, revert to the outer |
4615 | string. */ |
4616 | |
4617 | while (((c = *(++ptr)) != CHAR_NULL || |
4618 | (nestptr != NULL && |
4619 | (ptr = nestptr, nestptr = NULL, c = *(++ptr)) != CHAR_NULL)) && |
4620 | (c != CHAR_RIGHT_SQUARE_BRACKET || inescq)); |
4621 | |
4622 | /* Check for missing terminating ']' */ |
4623 | |
4624 | if (c == CHAR_NULL) |
4625 | { |
4626 | *errorcodeptr = ERR6; |
4627 | goto FAILED; |
4628 | } |
4629 | |
4630 | /* We will need an XCLASS if data has been placed in class_uchardata. In |
4631 | the second phase this is a sufficient test. However, in the pre-compile |
4632 | phase, class_uchardata gets emptied to prevent workspace overflow, so it |
4633 | only if the very last character in the class needs XCLASS will it contain |
4634 | anything at this point. For this reason, xclass gets set TRUE above when |
4635 | uchar_classdata is emptied, and that's why this code is the way it is here |
4636 | instead of just doing a test on class_uchardata below. */ |
4637 | |
4638 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4639 | if (class_uchardata > class_uchardata_base) xclass = TRUE; |
4640 | #endif |
4641 | |
4642 | /* If this is the first thing in the branch, there can be no first char |
4643 | setting, whatever the repeat count. Any reqchar setting must remain |
4644 | unchanged after any kind of repeat. */ |
4645 | |
4646 | if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE; |
4647 | zerofirstchar = firstchar; |
4648 | zerofirstcharflags = firstcharflags; |
4649 | zeroreqchar = reqchar; |
4650 | zeroreqcharflags = reqcharflags; |
4651 | |
4652 | /* If there are characters with values > 255, we have to compile an |
4653 | extended class, with its own opcode, unless there was a negated special |
4654 | such as \S in the class, and PCRE_UCP is not set, because in that case all |
4655 | characters > 255 are in the class, so any that were explicitly given as |
4656 | well can be ignored. If (when there are explicit characters > 255 that must |
4657 | be listed) there are no characters < 256, we can omit the bitmap in the |
4658 | actual compiled code. */ |
4659 | |
4660 | #ifdef SUPPORT_UTF |
4661 | if (xclass && (!should_flip_negation || (options & PCRE_UCP) != 0)) |
4662 | #elif !defined COMPILE_PCRE8 |
4663 | if (xclass && !should_flip_negation) |
4664 | #endif |
4665 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
4666 | { |
4667 | *class_uchardata++ = XCL_END; /* Marks the end of extra data */ |
4668 | *code++ = OP_XCLASS; |
4669 | code += LINK_SIZE; |
4670 | *code = negate_class? XCL_NOT:0; |
4671 | |
4672 | /* If the map is required, move up the extra data to make room for it; |
4673 | otherwise just move the code pointer to the end of the extra data. */ |
4674 | |
4675 | if (class_has_8bitchar > 0) |
4676 | { |
4677 | *code++ |= XCL_MAP; |
4678 | memmove(code + (32 / sizeof(pcre_uchar)), code, |
4679 | IN_UCHARS(class_uchardata - code)); |
4680 | memcpy(code, classbits, 32); |
4681 | code = class_uchardata + (32 / sizeof(pcre_uchar)); |
4682 | } |
4683 | else code = class_uchardata; |
4684 | |
4685 | /* Now fill in the complete length of the item */ |
4686 | |
4687 | PUT(previous, 1, (int)(code - previous)); |
4688 | break; /* End of class handling */ |
4689 | } |
4690 | #endif |
4691 | |
4692 | /* If there are no characters > 255, or they are all to be included or |
4693 | excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the |
4694 | whole class was negated and whether there were negative specials such as \S |
4695 | (non-UCP) in the class. Then copy the 32-byte map into the code vector, |
4696 | negating it if necessary. */ |
4697 | |
4698 | *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS; |
4699 | if (lengthptr == NULL) /* Save time in the pre-compile phase */ |
4700 | { |
4701 | if (negate_class) |
4702 | for (c = 0; c < 32; c++) classbits[c] = ~classbits[c]; |
4703 | memcpy(code, classbits, 32); |
4704 | } |
4705 | code += 32 / sizeof(pcre_uchar); |
4706 | |
4707 | END_CLASS: |
4708 | break; |
4709 | |
4710 | |
4711 | /* ===================================================================*/ |
4712 | /* Various kinds of repeat; '{' is not necessarily a quantifier, but this |
4713 | has been tested above. */ |
4714 | |
4715 | case CHAR_LEFT_CURLY_BRACKET: |
4716 | if (!is_quantifier) goto NORMAL_CHAR; |
4717 | ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr); |
4718 | if (*errorcodeptr != 0) goto FAILED; |
4719 | goto REPEAT; |
4720 | |
4721 | case CHAR_ASTERISK: |
4722 | repeat_min = 0; |
4723 | repeat_max = -1; |
4724 | goto REPEAT; |
4725 | |
4726 | case CHAR_PLUS: |
4727 | repeat_min = 1; |
4728 | repeat_max = -1; |
4729 | goto REPEAT; |
4730 | |
4731 | case CHAR_QUESTION_MARK: |
4732 | repeat_min = 0; |
4733 | repeat_max = 1; |
4734 | |
4735 | REPEAT: |
4736 | if (previous == NULL) |
4737 | { |
4738 | *errorcodeptr = ERR9; |
4739 | goto FAILED; |
4740 | } |
4741 | |
4742 | if (repeat_min == 0) |
4743 | { |
4744 | firstchar = zerofirstchar; /* Adjust for zero repeat */ |
4745 | firstcharflags = zerofirstcharflags; |
4746 | reqchar = zeroreqchar; /* Ditto */ |
4747 | reqcharflags = zeroreqcharflags; |
4748 | } |
4749 | |
4750 | /* Remember whether this is a variable length repeat */ |
4751 | |
4752 | reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY; |
4753 | |
4754 | op_type = 0; /* Default single-char op codes */ |
4755 | possessive_quantifier = FALSE; /* Default not possessive quantifier */ |
4756 | |
4757 | /* Save start of previous item, in case we have to move it up in order to |
4758 | insert something before it. */ |
4759 | |
4760 | tempcode = previous; |
4761 | |
4762 | /* If the next character is '+', we have a possessive quantifier. This |
4763 | implies greediness, whatever the setting of the PCRE_UNGREEDY option. |
4764 | If the next character is '?' this is a minimizing repeat, by default, |
4765 | but if PCRE_UNGREEDY is set, it works the other way round. We change the |
4766 | repeat type to the non-default. */ |
4767 | |
4768 | if (ptr[1] == CHAR_PLUS) |
4769 | { |
4770 | repeat_type = 0; /* Force greedy */ |
4771 | possessive_quantifier = TRUE; |
4772 | ptr++; |
4773 | } |
4774 | else if (ptr[1] == CHAR_QUESTION_MARK) |
4775 | { |
4776 | repeat_type = greedy_non_default; |
4777 | ptr++; |
4778 | } |
4779 | else repeat_type = greedy_default; |
4780 | |
4781 | /* If previous was a recursion call, wrap it in atomic brackets so that |
4782 | previous becomes the atomic group. All recursions were so wrapped in the |
4783 | past, but it no longer happens for non-repeated recursions. In fact, the |
4784 | repeated ones could be re-implemented independently so as not to need this, |
4785 | but for the moment we rely on the code for repeating groups. */ |
4786 | |
4787 | if (*previous == OP_RECURSE) |
4788 | { |
4789 | memmove(previous + 1 + LINK_SIZE, previous, IN_UCHARS(1 + LINK_SIZE)); |
4790 | *previous = OP_ONCE; |
4791 | PUT(previous, 1, 2 + 2*LINK_SIZE); |
4792 | previous[2 + 2*LINK_SIZE] = OP_KET; |
4793 | PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE); |
4794 | code += 2 + 2 * LINK_SIZE; |
4795 | length_prevgroup = 3 + 3*LINK_SIZE; |
4796 | |
4797 | /* When actually compiling, we need to check whether this was a forward |
4798 | reference, and if so, adjust the offset. */ |
4799 | |
4800 | if (lengthptr == NULL && cd->hwm >= cd->start_workspace + LINK_SIZE) |
4801 | { |
4802 | int offset = GET(cd->hwm, -LINK_SIZE); |
4803 | if (offset == previous + 1 - cd->start_code) |
4804 | PUT(cd->hwm, -LINK_SIZE, offset + 1 + LINK_SIZE); |
4805 | } |
4806 | } |
4807 | |
4808 | /* Now handle repetition for the different types of item. */ |
4809 | |
4810 | /* If previous was a character or negated character match, abolish the item |
4811 | and generate a repeat item instead. If a char item has a minimum of more |
4812 | than one, ensure that it is set in reqchar - it might not be if a sequence |
4813 | such as x{3} is the first thing in a branch because the x will have gone |
4814 | into firstchar instead. */ |
4815 | |
4816 | if (*previous == OP_CHAR || *previous == OP_CHARI |
4817 | || *previous == OP_NOT || *previous == OP_NOTI) |
4818 | { |
4819 | switch (*previous) |
4820 | { |
4821 | default: /* Make compiler happy. */ |
4822 | case OP_CHAR: op_type = OP_STAR - OP_STAR; break; |
4823 | case OP_CHARI: op_type = OP_STARI - OP_STAR; break; |
4824 | case OP_NOT: op_type = OP_NOTSTAR - OP_STAR; break; |
4825 | case OP_NOTI: op_type = OP_NOTSTARI - OP_STAR; break; |
4826 | } |
4827 | |
4828 | /* Deal with UTF characters that take up more than one character. It's |
4829 | easier to write this out separately than try to macrify it. Use c to |
4830 | hold the length of the character in bytes, plus UTF_LENGTH to flag that |
4831 | it's a length rather than a small character. */ |
4832 | |
4833 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
4834 | if (utf && NOT_FIRSTCHAR(code[-1])) |
4835 | { |
4836 | pcre_uchar *lastchar = code - 1; |
4837 | BACKCHAR(lastchar); |
4838 | c = (int)(code - lastchar); /* Length of UTF-8 character */ |
4839 | memcpy(utf_chars, lastchar, IN_UCHARS(c)); /* Save the char */ |
4840 | c |= UTF_LENGTH; /* Flag c as a length */ |
4841 | } |
4842 | else |
4843 | #endif /* SUPPORT_UTF */ |
4844 | |
4845 | /* Handle the case of a single charater - either with no UTF support, or |
4846 | with UTF disabled, or for a single character UTF character. */ |
4847 | { |
4848 | c = code[-1]; |
4849 | if (*previous <= OP_CHARI && repeat_min > 1) |
4850 | { |
4851 | reqchar = c; |
4852 | reqcharflags = req_caseopt | cd->req_varyopt; |
4853 | } |
4854 | } |
4855 | |
4856 | /* If the repetition is unlimited, it pays to see if the next thing on |
4857 | the line is something that cannot possibly match this character. If so, |
4858 | automatically possessifying this item gains some performance in the case |
4859 | where the match fails. */ |
4860 | |
4861 | if (!possessive_quantifier && |
4862 | repeat_max < 0 && |
4863 | check_auto_possessive(previous, utf, ptr + 1, options, cd)) |
4864 | { |
4865 | repeat_type = 0; /* Force greedy */ |
4866 | possessive_quantifier = TRUE; |
4867 | } |
4868 | |
4869 | goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */ |
4870 | } |
4871 | |
4872 | /* If previous was a character type match (\d or similar), abolish it and |
4873 | create a suitable repeat item. The code is shared with single-character |
4874 | repeats by setting op_type to add a suitable offset into repeat_type. Note |
4875 | the the Unicode property types will be present only when SUPPORT_UCP is |
4876 | defined, but we don't wrap the little bits of code here because it just |
4877 | makes it horribly messy. */ |
4878 | |
4879 | else if (*previous < OP_EODN) |
4880 | { |
4881 | pcre_uchar *oldcode; |
4882 | int prop_type, prop_value; |
4883 | op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */ |
4884 | c = *previous; |
4885 | |
4886 | if (!possessive_quantifier && |
4887 | repeat_max < 0 && |
4888 | check_auto_possessive(previous, utf, ptr + 1, options, cd)) |
4889 | { |
4890 | repeat_type = 0; /* Force greedy */ |
4891 | possessive_quantifier = TRUE; |
4892 | } |
4893 | |
4894 | OUTPUT_SINGLE_REPEAT: |
4895 | if (*previous == OP_PROP || *previous == OP_NOTPROP) |
4896 | { |
4897 | prop_type = previous[1]; |
4898 | prop_value = previous[2]; |
4899 | } |
4900 | else prop_type = prop_value = -1; |
4901 | |
4902 | oldcode = code; |
4903 | code = previous; /* Usually overwrite previous item */ |
4904 | |
4905 | /* If the maximum is zero then the minimum must also be zero; Perl allows |
4906 | this case, so we do too - by simply omitting the item altogether. */ |
4907 | |
4908 | if (repeat_max == 0) goto END_REPEAT; |
4909 | |
4910 | /*--------------------------------------------------------------------*/ |
4911 | /* This code is obsolete from release 8.00; the restriction was finally |
4912 | removed: */ |
4913 | |
4914 | /* All real repeats make it impossible to handle partial matching (maybe |
4915 | one day we will be able to remove this restriction). */ |
4916 | |
4917 | /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ |
4918 | /*--------------------------------------------------------------------*/ |
4919 | |
4920 | /* Combine the op_type with the repeat_type */ |
4921 | |
4922 | repeat_type += op_type; |
4923 | |
4924 | /* A minimum of zero is handled either as the special case * or ?, or as |
4925 | an UPTO, with the maximum given. */ |
4926 | |
4927 | if (repeat_min == 0) |
4928 | { |
4929 | if (repeat_max == -1) *code++ = OP_STAR + repeat_type; |
4930 | else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type; |
4931 | else |
4932 | { |
4933 | *code++ = OP_UPTO + repeat_type; |
4934 | PUT2INC(code, 0, repeat_max); |
4935 | } |
4936 | } |
4937 | |
4938 | /* A repeat minimum of 1 is optimized into some special cases. If the |
4939 | maximum is unlimited, we use OP_PLUS. Otherwise, the original item is |
4940 | left in place and, if the maximum is greater than 1, we use OP_UPTO with |
4941 | one less than the maximum. */ |
4942 | |
4943 | else if (repeat_min == 1) |
4944 | { |
4945 | if (repeat_max == -1) |
4946 | *code++ = OP_PLUS + repeat_type; |
4947 | else |
4948 | { |
4949 | code = oldcode; /* leave previous item in place */ |
4950 | if (repeat_max == 1) goto END_REPEAT; |
4951 | *code++ = OP_UPTO + repeat_type; |
4952 | PUT2INC(code, 0, repeat_max - 1); |
4953 | } |
4954 | } |
4955 | |
4956 | /* The case {n,n} is just an EXACT, while the general case {n,m} is |
4957 | handled as an EXACT followed by an UPTO. */ |
4958 | |
4959 | else |
4960 | { |
4961 | *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */ |
4962 | PUT2INC(code, 0, repeat_min); |
4963 | |
4964 | /* If the maximum is unlimited, insert an OP_STAR. Before doing so, |
4965 | we have to insert the character for the previous code. For a repeated |
4966 | Unicode property match, there are two extra bytes that define the |
4967 | required property. In UTF-8 mode, long characters have their length in |
4968 | c, with the UTF_LENGTH bit as a flag. */ |
4969 | |
4970 | if (repeat_max < 0) |
4971 | { |
4972 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
4973 | if (utf && (c & UTF_LENGTH) != 0) |
4974 | { |
4975 | memcpy(code, utf_chars, IN_UCHARS(c & 7)); |
4976 | code += c & 7; |
4977 | } |
4978 | else |
4979 | #endif |
4980 | { |
4981 | *code++ = c; |
4982 | if (prop_type >= 0) |
4983 | { |
4984 | *code++ = prop_type; |
4985 | *code++ = prop_value; |
4986 | } |
4987 | } |
4988 | *code++ = OP_STAR + repeat_type; |
4989 | } |
4990 | |
4991 | /* Else insert an UPTO if the max is greater than the min, again |
4992 | preceded by the character, for the previously inserted code. If the |
4993 | UPTO is just for 1 instance, we can use QUERY instead. */ |
4994 | |
4995 | else if (repeat_max != repeat_min) |
4996 | { |
4997 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
4998 | if (utf && (c & UTF_LENGTH) != 0) |
4999 | { |
5000 | memcpy(code, utf_chars, IN_UCHARS(c & 7)); |
5001 | code += c & 7; |
5002 | } |
5003 | else |
5004 | #endif |
5005 | *code++ = c; |
5006 | if (prop_type >= 0) |
5007 | { |
5008 | *code++ = prop_type; |
5009 | *code++ = prop_value; |
5010 | } |
5011 | repeat_max -= repeat_min; |
5012 | |
5013 | if (repeat_max == 1) |
5014 | { |
5015 | *code++ = OP_QUERY + repeat_type; |
5016 | } |
5017 | else |
5018 | { |
5019 | *code++ = OP_UPTO + repeat_type; |
5020 | PUT2INC(code, 0, repeat_max); |
5021 | } |
5022 | } |
5023 | } |
5024 | |
5025 | /* The character or character type itself comes last in all cases. */ |
5026 | |
5027 | #if defined SUPPORT_UTF && !defined COMPILE_PCRE32 |
5028 | if (utf && (c & UTF_LENGTH) != 0) |
5029 | { |
5030 | memcpy(code, utf_chars, IN_UCHARS(c & 7)); |
5031 | code += c & 7; |
5032 | } |
5033 | else |
5034 | #endif |
5035 | *code++ = c; |
5036 | |
5037 | /* For a repeated Unicode property match, there are two extra bytes that |
5038 | define the required property. */ |
5039 | |
5040 | #ifdef SUPPORT_UCP |
5041 | if (prop_type >= 0) |
5042 | { |
5043 | *code++ = prop_type; |
5044 | *code++ = prop_value; |
5045 | } |
5046 | #endif |
5047 | } |
5048 | |
5049 | /* If previous was a character class or a back reference, we put the repeat |
5050 | stuff after it, but just skip the item if the repeat was {0,0}. */ |
5051 | |
5052 | else if (*previous == OP_CLASS || |
5053 | *previous == OP_NCLASS || |
5054 | #if defined SUPPORT_UTF || !defined COMPILE_PCRE8 |
5055 | *previous == OP_XCLASS || |
5056 | #endif |
5057 | *previous == OP_REF || |
5058 | *previous == OP_REFI) |
5059 | { |
5060 | if (repeat_max == 0) |
5061 | { |
5062 | code = previous; |
5063 | goto END_REPEAT; |
5064 | } |
5065 | |
5066 | /*--------------------------------------------------------------------*/ |
5067 | /* This code is obsolete from release 8.00; the restriction was finally |
5068 | removed: */ |
5069 | |
5070 | /* All real repeats make it impossible to handle partial matching (maybe |
5071 | one day we will be able to remove this restriction). */ |
5072 | |
5073 | /* if (repeat_max != 1) cd->external_flags |= PCRE_NOPARTIAL; */ |
5074 | /*--------------------------------------------------------------------*/ |
5075 | |
5076 | if (repeat_min == 0 && repeat_max == -1) |
5077 | *code++ = OP_CRSTAR + repeat_type; |
5078 | else if (repeat_min == 1 && repeat_max == -1) |
5079 | *code++ = OP_CRPLUS + repeat_type; |
5080 | else if (repeat_min == 0 && repeat_max == 1) |
5081 | *code++ = OP_CRQUERY + repeat_type; |
5082 | else |
5083 | { |
5084 | *code++ = OP_CRRANGE + repeat_type; |
5085 | PUT2INC(code, 0, repeat_min); |
5086 | if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */ |
5087 | PUT2INC(code, 0, repeat_max); |
5088 | } |
5089 | } |
5090 | |
5091 | /* If previous was a bracket group, we may have to replicate it in certain |
5092 | cases. Note that at this point we can encounter only the "basic" bracket |
5093 | opcodes such as BRA and CBRA, as this is the place where they get converted |
5094 | into the more special varieties such as BRAPOS and SBRA. A test for >= |
5095 | OP_ASSERT and <= OP_COND includes ASSERT, ASSERT_NOT, ASSERTBACK, |
5096 | ASSERTBACK_NOT, ONCE, BRA, CBRA, and COND. Originally, PCRE did not allow |
5097 | repetition of assertions, but now it does, for Perl compatibility. */ |
5098 | |
5099 | else if (*previous >= OP_ASSERT && *previous <= OP_COND) |
5100 | { |
5101 | register int i; |
5102 | int len = (int)(code - previous); |
5103 | pcre_uchar *bralink = NULL; |
5104 | pcre_uchar *brazeroptr = NULL; |
5105 | |
5106 | /* Repeating a DEFINE group is pointless, but Perl allows the syntax, so |
5107 | we just ignore the repeat. */ |
5108 | |
5109 | if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF) |
5110 | goto END_REPEAT; |
5111 | |
5112 | /* There is no sense in actually repeating assertions. The only potential |
5113 | use of repetition is in cases when the assertion is optional. Therefore, |
5114 | if the minimum is greater than zero, just ignore the repeat. If the |
5115 | maximum is not not zero or one, set it to 1. */ |
5116 | |
5117 | if (*previous < OP_ONCE) /* Assertion */ |
5118 | { |
5119 | if (repeat_min > 0) goto END_REPEAT; |
5120 | if (repeat_max < 0 || repeat_max > 1) repeat_max = 1; |
5121 | } |
5122 | |
5123 | /* The case of a zero minimum is special because of the need to stick |
5124 | OP_BRAZERO in front of it, and because the group appears once in the |
5125 | data, whereas in other cases it appears the minimum number of times. For |
5126 | this reason, it is simplest to treat this case separately, as otherwise |
5127 | the code gets far too messy. There are several special subcases when the |
5128 | minimum is zero. */ |
5129 | |
5130 | if (repeat_min == 0) |
5131 | { |
5132 | /* If the maximum is also zero, we used to just omit the group from the |
5133 | output altogether, like this: |
5134 | |
5135 | ** if (repeat_max == 0) |
5136 | ** { |
5137 | ** code = previous; |
5138 | ** goto END_REPEAT; |
5139 | ** } |
5140 | |
5141 | However, that fails when a group or a subgroup within it is referenced |
5142 | as a subroutine from elsewhere in the pattern, so now we stick in |
5143 | OP_SKIPZERO in front of it so that it is skipped on execution. As we |
5144 | don't have a list of which groups are referenced, we cannot do this |
5145 | selectively. |
5146 | |
5147 | If the maximum is 1 or unlimited, we just have to stick in the BRAZERO |
5148 | and do no more at this point. However, we do need to adjust any |
5149 | OP_RECURSE calls inside the group that refer to the group itself or any |
5150 | internal or forward referenced group, because the offset is from the |
5151 | start of the whole regex. Temporarily terminate the pattern while doing |
5152 | this. */ |
5153 | |
5154 | if (repeat_max <= 1) /* Covers 0, 1, and unlimited */ |
5155 | { |
5156 | *code = OP_END; |
5157 | adjust_recurse(previous, 1, utf, cd, save_hwm); |
5158 | memmove(previous + 1, previous, IN_UCHARS(len)); |
5159 | code++; |
5160 | if (repeat_max == 0) |
5161 | { |
5162 | *previous++ = OP_SKIPZERO; |
5163 | goto END_REPEAT; |
5164 | } |
5165 | brazeroptr = previous; /* Save for possessive optimizing */ |
5166 | *previous++ = OP_BRAZERO + repeat_type; |
5167 | } |
5168 | |
5169 | /* If the maximum is greater than 1 and limited, we have to replicate |
5170 | in a nested fashion, sticking OP_BRAZERO before each set of brackets. |
5171 | The first one has to be handled carefully because it's the original |
5172 | copy, which has to be moved up. The remainder can be handled by code |
5173 | that is common with the non-zero minimum case below. We have to |
5174 | adjust the value or repeat_max, since one less copy is required. Once |
5175 | again, we may have to adjust any OP_RECURSE calls inside the group. */ |
5176 | |
5177 | else |
5178 | { |
5179 | int offset; |
5180 | *code = OP_END; |
5181 | adjust_recurse(previous, 2 + LINK_SIZE, utf, cd, save_hwm); |
5182 | memmove(previous + 2 + LINK_SIZE, previous, IN_UCHARS(len)); |
5183 | code += 2 + LINK_SIZE; |
5184 | *previous++ = OP_BRAZERO + repeat_type; |
5185 | *previous++ = OP_BRA; |
5186 | |
5187 | /* We chain together the bracket offset fields that have to be |
5188 | filled in later when the ends of the brackets are reached. */ |
5189 | |
5190 | offset = (bralink == NULL)? 0 : (int)(previous - bralink); |
5191 | bralink = previous; |
5192 | PUTINC(previous, 0, offset); |
5193 | } |
5194 | |
5195 | repeat_max--; |
5196 | } |
5197 | |
5198 | /* If the minimum is greater than zero, replicate the group as many |
5199 | times as necessary, and adjust the maximum to the number of subsequent |
5200 | copies that we need. If we set a first char from the group, and didn't |
5201 | set a required char, copy the latter from the former. If there are any |
5202 | forward reference subroutine calls in the group, there will be entries on |
5203 | the workspace list; replicate these with an appropriate increment. */ |
5204 | |
5205 | else |
5206 | { |
5207 | if (repeat_min > 1) |
5208 | { |
5209 | /* In the pre-compile phase, we don't actually do the replication. We |
5210 | just adjust the length as if we had. Do some paranoid checks for |
5211 | potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit |
5212 | integer type when available, otherwise double. */ |
5213 | |
5214 | if (lengthptr != NULL) |
5215 | { |
5216 | int delta = (repeat_min - 1)*length_prevgroup; |
5217 | if ((INT64_OR_DOUBLE)(repeat_min - 1)* |
5218 | (INT64_OR_DOUBLE)length_prevgroup > |
5219 | (INT64_OR_DOUBLE)INT_MAX || |
5220 | OFLOW_MAX - *lengthptr < delta) |
5221 | { |
5222 | *errorcodeptr = ERR20; |
5223 | goto FAILED; |
5224 | } |
5225 | *lengthptr += delta; |
5226 | } |
5227 | |
5228 | /* This is compiling for real. If there is a set first byte for |
5229 | the group, and we have not yet set a "required byte", set it. Make |
5230 | sure there is enough workspace for copying forward references before |
5231 | doing the copy. */ |
5232 | |
5233 | else |
5234 | { |
5235 | if (groupsetfirstchar && reqcharflags < 0) |
5236 | { |
5237 | reqchar = firstchar; |
5238 | reqcharflags = firstcharflags; |
5239 | } |
5240 | |
5241 | for (i = 1; i < repeat_min; i++) |
5242 | { |
5243 | pcre_uchar *hc; |
5244 | pcre_uchar *this_hwm = cd->hwm; |
5245 | memcpy(code, previous, IN_UCHARS(len)); |
5246 | |
5247 | while (cd->hwm > cd->start_workspace + cd->workspace_size - |
5248 | WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm)) |
5249 | { |
5250 | int save_offset = save_hwm - cd->start_workspace; |
5251 | int this_offset = this_hwm - cd->start_workspace; |
5252 | *errorcodeptr = expand_workspace(cd); |
5253 | if (*errorcodeptr != 0) goto FAILED; |
5254 | save_hwm = (pcre_uchar *)cd->start_workspace + save_offset; |
5255 | this_hwm = (pcre_uchar *)cd->start_workspace + this_offset; |
5256 | } |
5257 | |
5258 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
5259 | { |
5260 | PUT(cd->hwm, 0, GET(hc, 0) + len); |
5261 | cd->hwm += LINK_SIZE; |
5262 | } |
5263 | save_hwm = this_hwm; |
5264 | code += len; |
5265 | } |
5266 | } |
5267 | } |
5268 | |
5269 | if (repeat_max > 0) repeat_max -= repeat_min; |
5270 | } |
5271 | |
5272 | /* This code is common to both the zero and non-zero minimum cases. If |
5273 | the maximum is limited, it replicates the group in a nested fashion, |
5274 | remembering the bracket starts on a stack. In the case of a zero minimum, |
5275 | the first one was set up above. In all cases the repeat_max now specifies |
5276 | the number of additional copies needed. Again, we must remember to |
5277 | replicate entries on the forward reference list. */ |
5278 | |
5279 | if (repeat_max >= 0) |
5280 | { |
5281 | /* In the pre-compile phase, we don't actually do the replication. We |
5282 | just adjust the length as if we had. For each repetition we must add 1 |
5283 | to the length for BRAZERO and for all but the last repetition we must |
5284 | add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some |
5285 | paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is |
5286 | a 64-bit integer type when available, otherwise double. */ |
5287 | |
5288 | if (lengthptr != NULL && repeat_max > 0) |
5289 | { |
5290 | int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) - |
5291 | 2 - 2*LINK_SIZE; /* Last one doesn't nest */ |
5292 | if ((INT64_OR_DOUBLE)repeat_max * |
5293 | (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE) |
5294 | > (INT64_OR_DOUBLE)INT_MAX || |
5295 | OFLOW_MAX - *lengthptr < delta) |
5296 | { |
5297 | *errorcodeptr = ERR20; |
5298 | goto FAILED; |
5299 | } |
5300 | *lengthptr += delta; |
5301 | } |
5302 | |
5303 | /* This is compiling for real */ |
5304 | |
5305 | else for (i = repeat_max - 1; i >= 0; i--) |
5306 | { |
5307 | pcre_uchar *hc; |
5308 | pcre_uchar *this_hwm = cd->hwm; |
5309 | |
5310 | *code++ = OP_BRAZERO + repeat_type; |
5311 | |
5312 | /* All but the final copy start a new nesting, maintaining the |
5313 | chain of brackets outstanding. */ |
5314 | |
5315 | if (i != 0) |
5316 | { |
5317 | int offset; |
5318 | *code++ = OP_BRA; |
5319 | offset = (bralink == NULL)? 0 : (int)(code - bralink); |
5320 | bralink = code; |
5321 | PUTINC(code, 0, offset); |
5322 | } |
5323 | |
5324 | memcpy(code, previous, IN_UCHARS(len)); |
5325 | |
5326 | /* Ensure there is enough workspace for forward references before |
5327 | copying them. */ |
5328 | |
5329 | while (cd->hwm > cd->start_workspace + cd->workspace_size - |
5330 | WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm)) |
5331 | { |
5332 | int save_offset = save_hwm - cd->start_workspace; |
5333 | int this_offset = this_hwm - cd->start_workspace; |
5334 | *errorcodeptr = expand_workspace(cd); |
5335 | if (*errorcodeptr != 0) goto FAILED; |
5336 | save_hwm = (pcre_uchar *)cd->start_workspace + save_offset; |
5337 | this_hwm = (pcre_uchar *)cd->start_workspace + this_offset; |
5338 | } |
5339 | |
5340 | for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE) |
5341 | { |
5342 | PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1)); |
5343 | cd->hwm += LINK_SIZE; |
5344 | } |
5345 | save_hwm = this_hwm; |
5346 | code += len; |
5347 | } |
5348 | |
5349 | /* Now chain through the pending brackets, and fill in their length |
5350 | fields (which are holding the chain links pro tem). */ |
5351 | |
5352 | while (bralink != NULL) |
5353 | { |
5354 | int oldlinkoffset; |
5355 | int offset = (int)(code - bralink + 1); |
5356 | pcre_uchar *bra = code - offset; |
5357 | oldlinkoffset = GET(bra, 1); |
5358 | bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset; |
5359 | *code++ = OP_KET; |
5360 | PUTINC(code, 0, offset); |
5361 | PUT(bra, 1, offset); |
5362 | } |
5363 | } |
5364 | |
5365 | /* If the maximum is unlimited, set a repeater in the final copy. For |
5366 | ONCE brackets, that's all we need to do. However, possessively repeated |
5367 | ONCE brackets can be converted into non-capturing brackets, as the |
5368 | behaviour of (?:xx)++ is the same as (?>xx)++ and this saves having to |
5369 | deal with possessive ONCEs specially. |
5370 | |
5371 | Otherwise, when we are doing the actual compile phase, check to see |
5372 | whether this group is one that could match an empty string. If so, |
5373 | convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so |
5374 | that runtime checking can be done. [This check is also applied to ONCE |
5375 | groups at runtime, but in a different way.] |
5376 | |
5377 | Then, if the quantifier was possessive and the bracket is not a |
5378 | conditional, we convert the BRA code to the POS form, and the KET code to |
5379 | KETRPOS. (It turns out to be convenient at runtime to detect this kind of |
5380 | subpattern at both the start and at the end.) The use of special opcodes |
5381 | makes it possible to reduce greatly the stack usage in pcre_exec(). If |
5382 | the group is preceded by OP_BRAZERO, convert this to OP_BRAPOSZERO. |
5383 | |
5384 | Then, if the minimum number of matches is 1 or 0, cancel the possessive |
5385 | flag so that the default action below, of wrapping everything inside |
5386 | atomic brackets, does not happen. When the minimum is greater than 1, |
5387 | there will be earlier copies of the group, and so we still have to wrap |
5388 | the whole thing. */ |
5389 | |
5390 | else |
5391 | { |
5392 | pcre_uchar *ketcode = code - 1 - LINK_SIZE; |
5393 | pcre_uchar *bracode = ketcode - GET(ketcode, 1); |
5394 | |
5395 | /* Convert possessive ONCE brackets to non-capturing */ |
5396 | |
5397 | if ((*bracode == OP_ONCE || *bracode == OP_ONCE_NC) && |
5398 | possessive_quantifier) *bracode = OP_BRA; |
5399 | |
5400 | /* For non-possessive ONCE brackets, all we need to do is to |
5401 | set the KET. */ |
5402 | |
5403 | if (*bracode == OP_ONCE || *bracode == OP_ONCE_NC) |
5404 | *ketcode = OP_KETRMAX + repeat_type; |
5405 | |
5406 | /* Handle non-ONCE brackets and possessive ONCEs (which have been |
5407 | converted to non-capturing above). */ |
5408 | |
5409 | else |
5410 | { |
5411 | /* In the compile phase, check for empty string matching. */ |
5412 | |
5413 | if (lengthptr == NULL) |
5414 | { |
5415 | pcre_uchar *scode = bracode; |
5416 | do |
5417 | { |
5418 | if (could_be_empty_branch(scode, ketcode, utf, cd)) |
5419 | { |
5420 | *bracode += OP_SBRA - OP_BRA; |
5421 | break; |
5422 | } |
5423 | scode += GET(scode, 1); |
5424 | } |
5425 | while (*scode == OP_ALT); |
5426 | } |
5427 | |
5428 | /* Handle possessive quantifiers. */ |
5429 | |
5430 | if (possessive_quantifier) |
5431 | { |
5432 | /* For COND brackets, we wrap the whole thing in a possessively |
5433 | repeated non-capturing bracket, because we have not invented POS |
5434 | versions of the COND opcodes. Because we are moving code along, we |
5435 | must ensure that any pending recursive references are updated. */ |
5436 | |
5437 | if (*bracode == OP_COND || *bracode == OP_SCOND) |
5438 | { |
5439 | int nlen = (int)(code - bracode); |
5440 | *code = OP_END; |
5441 | adjust_recurse(bracode, 1 + LINK_SIZE, utf, cd, save_hwm); |
5442 | memmove(bracode + 1 + LINK_SIZE, bracode, IN_UCHARS(nlen)); |
5443 | code += 1 + LINK_SIZE; |
5444 | nlen += 1 + LINK_SIZE; |
5445 | *bracode = OP_BRAPOS; |
5446 | *code++ = OP_KETRPOS; |
5447 | PUTINC(code, 0, nlen); |
5448 | PUT(bracode, 1, nlen); |
5449 | } |
5450 | |
5451 | /* For non-COND brackets, we modify the BRA code and use KETRPOS. */ |
5452 | |
5453 | else |
5454 | { |
5455 | *bracode += 1; /* Switch to xxxPOS opcodes */ |
5456 | *ketcode = OP_KETRPOS; |
5457 | } |
5458 | |
5459 | /* If the minimum is zero, mark it as possessive, then unset the |
5460 | possessive flag when the minimum is 0 or 1. */ |
5461 | |
5462 | if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO; |
5463 | if (repeat_min < 2) possessive_quantifier = FALSE; |
5464 | } |
5465 | |
5466 | /* Non-possessive quantifier */ |
5467 | |
5468 | else *ketcode = OP_KETRMAX + repeat_type; |
5469 | } |
5470 | } |
5471 | } |
5472 | |
5473 | /* If previous is OP_FAIL, it was generated by an empty class [] in |
5474 | JavaScript mode. The other ways in which OP_FAIL can be generated, that is |
5475 | by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat" |
5476 | error above. We can just ignore the repeat in JS case. */ |
5477 | |
5478 | else if (*previous == OP_FAIL) goto END_REPEAT; |
5479 | |
5480 | /* Else there's some kind of shambles */ |
5481 | |
5482 | else |
5483 | { |
5484 | *errorcodeptr = ERR11; |
5485 | goto FAILED; |
5486 | } |
5487 | |
5488 | /* If the character following a repeat is '+', or if certain optimization |
5489 | tests above succeeded, possessive_quantifier is TRUE. For some opcodes, |
5490 | there are special alternative opcodes for this case. For anything else, we |
5491 | wrap the entire repeated item inside OP_ONCE brackets. Logically, the '+' |
5492 | notation is just syntactic sugar, taken from Sun's Java package, but the |
5493 | special opcodes can optimize it. |
5494 | |
5495 | Some (but not all) possessively repeated subpatterns have already been |
5496 | completely handled in the code just above. For them, possessive_quantifier |
5497 | is always FALSE at this stage. |
5498 | |
5499 | Note that the repeated item starts at tempcode, not at previous, which |
5500 | might be the first part of a string whose (former) last char we repeated. |
5501 | |
5502 | Possessifying an 'exact' quantifier has no effect, so we can ignore it. But |
5503 | an 'upto' may follow. We skip over an 'exact' item, and then test the |
5504 | length of what remains before proceeding. */ |
5505 | |
5506 | if (possessive_quantifier) |
5507 | { |
5508 | int len; |
5509 | |
5510 | if (*tempcode == OP_TYPEEXACT) |
5511 | tempcode += PRIV(OP_lengths)[*tempcode] + |
5512 | ((tempcode[1 + IMM2_SIZE] == OP_PROP |
5513 | || tempcode[1 + IMM2_SIZE] == OP_NOTPROP)? 2 : 0); |
5514 | |
5515 | else if (*tempcode == OP_EXACT || *tempcode == OP_NOTEXACT) |
5516 | { |
5517 | tempcode += PRIV(OP_lengths)[*tempcode]; |
5518 | #ifdef SUPPORT_UTF |
5519 | if (utf && HAS_EXTRALEN(tempcode[-1])) |
5520 | tempcode += GET_EXTRALEN(tempcode[-1]); |
5521 | #endif |
5522 | } |
5523 | |
5524 | len = (int)(code - tempcode); |
5525 | if (len > 0) switch (*tempcode) |
5526 | { |
5527 | case OP_STAR: *tempcode = OP_POSSTAR; break; |
5528 | case OP_PLUS: *tempcode = OP_POSPLUS; break; |
5529 | case OP_QUERY: *tempcode = OP_POSQUERY; break; |
5530 | case OP_UPTO: *tempcode = OP_POSUPTO; break; |
5531 | |
5532 | case OP_STARI: *tempcode = OP_POSSTARI; break; |
5533 | case OP_PLUSI: *tempcode = OP_POSPLUSI; break; |
5534 | case OP_QUERYI: *tempcode = OP_POSQUERYI; break; |
5535 | case OP_UPTOI: *tempcode = OP_POSUPTOI; break; |
5536 | |
5537 | case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break; |
5538 | case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break; |
5539 | case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break; |
5540 | case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break; |
5541 | |
5542 | case OP_NOTSTARI: *tempcode = OP_NOTPOSSTARI; break; |
5543 | case OP_NOTPLUSI: *tempcode = OP_NOTPOSPLUSI; break; |
5544 | case OP_NOTQUERYI: *tempcode = OP_NOTPOSQUERYI; break; |
5545 | case OP_NOTUPTOI: *tempcode = OP_NOTPOSUPTOI; break; |
5546 | |
5547 | case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break; |
5548 | case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break; |
5549 | case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break; |
5550 | case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break; |
5551 | |
5552 | /* Because we are moving code along, we must ensure that any |
5553 | pending recursive references are updated. */ |
5554 | |
5555 | default: |
5556 | *code = OP_END; |
5557 | adjust_recurse(tempcode, 1 + LINK_SIZE, utf, cd, save_hwm); |
5558 | memmove(tempcode + 1 + LINK_SIZE, tempcode, IN_UCHARS(len)); |
5559 | code += 1 + LINK_SIZE; |
5560 | len += 1 + LINK_SIZE; |
5561 | tempcode[0] = OP_ONCE; |
5562 | *code++ = OP_KET; |
5563 | PUTINC(code, 0, len); |
5564 | PUT(tempcode, 1, len); |
5565 | break; |
5566 | } |
5567 | } |
5568 | |
5569 | /* In all case we no longer have a previous item. We also set the |
5570 | "follows varying string" flag for subsequently encountered reqchars if |
5571 | it isn't already set and we have just passed a varying length item. */ |
5572 | |
5573 | END_REPEAT: |
5574 | previous = NULL; |
5575 | cd->req_varyopt |= reqvary; |
5576 | break; |
5577 | |
5578 | |
5579 | /* ===================================================================*/ |
5580 | /* Start of nested parenthesized sub-expression, or comment or lookahead or |
5581 | lookbehind or option setting or condition or all the other extended |
5582 | parenthesis forms. */ |
5583 | |
5584 | case CHAR_LEFT_PARENTHESIS: |
5585 | newoptions = options; |
5586 | skipbytes = 0; |
5587 | bravalue = OP_CBRA; |
5588 | save_hwm = cd->hwm; |
5589 | reset_bracount = FALSE; |
5590 | |
5591 | /* First deal with various "verbs" that can be introduced by '*'. */ |
5592 | |
5593 | ptr++; |
5594 | if (ptr[0] == CHAR_ASTERISK && (ptr[1] == ':' |
5595 | || (MAX_255(ptr[1]) && ((cd->ctypes[ptr[1]] & ctype_letter) != 0)))) |
5596 | { |
5597 | int i, namelen; |
5598 | int arglen = 0; |
5599 | const char *vn = verbnames; |
5600 | const pcre_uchar *name = ptr + 1; |
5601 | const pcre_uchar *arg = NULL; |
5602 | previous = NULL; |
5603 | ptr++; |
5604 | while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_letter) != 0) ptr++; |
5605 | namelen = (int)(ptr - name); |
5606 | |
5607 | /* It appears that Perl allows any characters whatsoever, other than |
5608 | a closing parenthesis, to appear in arguments, so we no longer insist on |
5609 | letters, digits, and underscores. */ |
5610 | |
5611 | if (*ptr == CHAR_COLON) |
5612 | { |
5613 | arg = ++ptr; |
5614 | while (*ptr != CHAR_NULL && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
5615 | arglen = (int)(ptr - arg); |
5616 | if ((unsigned int)arglen > MAX_MARK) |
5617 | { |
5618 | *errorcodeptr = ERR75; |
5619 | goto FAILED; |
5620 | } |
5621 | } |
5622 | |
5623 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
5624 | { |
5625 | *errorcodeptr = ERR60; |
5626 | goto FAILED; |
5627 | } |
5628 | |
5629 | /* Scan the table of verb names */ |
5630 | |
5631 | for (i = 0; i < verbcount; i++) |
5632 | { |
5633 | if (namelen == verbs[i].len && |
5634 | STRNCMP_UC_C8(name, vn, namelen) == 0) |
5635 | { |
5636 | int setverb; |
5637 | |
5638 | /* Check for open captures before ACCEPT and convert it to |
5639 | ASSERT_ACCEPT if in an assertion. */ |
5640 | |
5641 | if (verbs[i].op == OP_ACCEPT) |
5642 | { |
5643 | open_capitem *oc; |
5644 | if (arglen != 0) |
5645 | { |
5646 | *errorcodeptr = ERR59; |
5647 | goto FAILED; |
5648 | } |
5649 | cd->had_accept = TRUE; |
5650 | for (oc = cd->open_caps; oc != NULL; oc = oc->next) |
5651 | { |
5652 | *code++ = OP_CLOSE; |
5653 | PUT2INC(code, 0, oc->number); |
5654 | } |
5655 | setverb = *code++ = |
5656 | (cd->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT; |
5657 | |
5658 | /* Do not set firstchar after *ACCEPT */ |
5659 | if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE; |
5660 | } |
5661 | |
5662 | /* Handle other cases with/without an argument */ |
5663 | |
5664 | else if (arglen == 0) |
5665 | { |
5666 | if (verbs[i].op < 0) /* Argument is mandatory */ |
5667 | { |
5668 | *errorcodeptr = ERR66; |
5669 | goto FAILED; |
5670 | } |
5671 | setverb = *code++ = verbs[i].op; |
5672 | } |
5673 | |
5674 | else |
5675 | { |
5676 | if (verbs[i].op_arg < 0) /* Argument is forbidden */ |
5677 | { |
5678 | *errorcodeptr = ERR59; |
5679 | goto FAILED; |
5680 | } |
5681 | setverb = *code++ = verbs[i].op_arg; |
5682 | *code++ = arglen; |
5683 | memcpy(code, arg, IN_UCHARS(arglen)); |
5684 | code += arglen; |
5685 | *code++ = 0; |
5686 | } |
5687 | |
5688 | switch (setverb) |
5689 | { |
5690 | case OP_THEN: |
5691 | case OP_THEN_ARG: |
5692 | cd->external_flags |= PCRE_HASTHEN; |
5693 | break; |
5694 | |
5695 | case OP_PRUNE: |
5696 | case OP_PRUNE_ARG: |
5697 | case OP_SKIP: |
5698 | case OP_SKIP_ARG: |
5699 | cd->had_pruneorskip = TRUE; |
5700 | break; |
5701 | } |
5702 | |
5703 | break; /* Found verb, exit loop */ |
5704 | } |
5705 | |
5706 | vn += verbs[i].len + 1; |
5707 | } |
5708 | |
5709 | if (i < verbcount) continue; /* Successfully handled a verb */ |
5710 | *errorcodeptr = ERR60; /* Verb not recognized */ |
5711 | goto FAILED; |
5712 | } |
5713 | |
5714 | /* Deal with the extended parentheses; all are introduced by '?', and the |
5715 | appearance of any of them means that this is not a capturing group. */ |
5716 | |
5717 | else if (*ptr == CHAR_QUESTION_MARK) |
5718 | { |
5719 | int i, set, unset, namelen; |
5720 | int *optset; |
5721 | const pcre_uchar *name; |
5722 | pcre_uchar *slot; |
5723 | |
5724 | switch (*(++ptr)) |
5725 | { |
5726 | case CHAR_NUMBER_SIGN: /* Comment; skip to ket */ |
5727 | ptr++; |
5728 | while (*ptr != CHAR_NULL && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++; |
5729 | if (*ptr == CHAR_NULL) |
5730 | { |
5731 | *errorcodeptr = ERR18; |
5732 | goto FAILED; |
5733 | } |
5734 | continue; |
5735 | |
5736 | |
5737 | /* ------------------------------------------------------------ */ |
5738 | case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */ |
5739 | reset_bracount = TRUE; |
5740 | /* Fall through */ |
5741 | |
5742 | /* ------------------------------------------------------------ */ |
5743 | case CHAR_COLON: /* Non-capturing bracket */ |
5744 | bravalue = OP_BRA; |
5745 | ptr++; |
5746 | break; |
5747 | |
5748 | |
5749 | /* ------------------------------------------------------------ */ |
5750 | case CHAR_LEFT_PARENTHESIS: |
5751 | bravalue = OP_COND; /* Conditional group */ |
5752 | |
5753 | /* A condition can be an assertion, a number (referring to a numbered |
5754 | group), a name (referring to a named group), or 'R', referring to |
5755 | recursion. R<digits> and R&name are also permitted for recursion tests. |
5756 | |
5757 | There are several syntaxes for testing a named group: (?(name)) is used |
5758 | by Python; Perl 5.10 onwards uses (?(<name>) or (?('name')). |
5759 | |
5760 | There are two unfortunate ambiguities, caused by history. (a) 'R' can |
5761 | be the recursive thing or the name 'R' (and similarly for 'R' followed |
5762 | by digits), and (b) a number could be a name that consists of digits. |
5763 | In both cases, we look for a name first; if not found, we try the other |
5764 | cases. */ |
5765 | |
5766 | /* For conditions that are assertions, check the syntax, and then exit |
5767 | the switch. This will take control down to where bracketed groups, |
5768 | including assertions, are processed. */ |
5769 | |
5770 | if (ptr[1] == CHAR_QUESTION_MARK && (ptr[2] == CHAR_EQUALS_SIGN || |
5771 | ptr[2] == CHAR_EXCLAMATION_MARK || ptr[2] == CHAR_LESS_THAN_SIGN)) |
5772 | break; |
5773 | |
5774 | /* Most other conditions use OP_CREF (a couple change to OP_RREF |
5775 | below), and all need to skip 1+IMM2_SIZE bytes at the start of the group. */ |
5776 | |
5777 | code[1+LINK_SIZE] = OP_CREF; |
5778 | skipbytes = 1+IMM2_SIZE; |
5779 | refsign = -1; |
5780 | |
5781 | /* Check for a test for recursion in a named group. */ |
5782 | |
5783 | if (ptr[1] == CHAR_R && ptr[2] == CHAR_AMPERSAND) |
5784 | { |
5785 | terminator = -1; |
5786 | ptr += 2; |
5787 | code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */ |
5788 | } |
5789 | |
5790 | /* Check for a test for a named group's having been set, using the Perl |
5791 | syntax (?(<name>) or (?('name') */ |
5792 | |
5793 | else if (ptr[1] == CHAR_LESS_THAN_SIGN) |
5794 | { |
5795 | terminator = CHAR_GREATER_THAN_SIGN; |
5796 | ptr++; |
5797 | } |
5798 | else if (ptr[1] == CHAR_APOSTROPHE) |
5799 | { |
5800 | terminator = CHAR_APOSTROPHE; |
5801 | ptr++; |
5802 | } |
5803 | else |
5804 | { |
5805 | terminator = CHAR_NULL; |
5806 | if (ptr[1] == CHAR_MINUS || ptr[1] == CHAR_PLUS) refsign = *(++ptr); |
5807 | } |
5808 | |
5809 | /* We now expect to read a name; any thing else is an error */ |
5810 | |
5811 | if (!MAX_255(ptr[1]) || (cd->ctypes[ptr[1]] & ctype_word) == 0) |
5812 | { |
5813 | ptr += 1; /* To get the right offset */ |
5814 | *errorcodeptr = ERR28; |
5815 | goto FAILED; |
5816 | } |
5817 | |
5818 | /* Read the name, but also get it as a number if it's all digits */ |
5819 | |
5820 | recno = 0; |
5821 | name = ++ptr; |
5822 | while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0) |
5823 | { |
5824 | if (recno >= 0) |
5825 | recno = (IS_DIGIT(*ptr))? recno * 10 + (int)(*ptr - CHAR_0) : -1; |
5826 | ptr++; |
5827 | } |
5828 | namelen = (int)(ptr - name); |
5829 | |
5830 | if ((terminator > 0 && *ptr++ != (pcre_uchar)terminator) || |
5831 | *ptr++ != CHAR_RIGHT_PARENTHESIS) |
5832 | { |
5833 | ptr--; /* Error offset */ |
5834 | *errorcodeptr = ERR26; |
5835 | goto FAILED; |
5836 | } |
5837 | |
5838 | /* Do no further checking in the pre-compile phase. */ |
5839 | |
5840 | if (lengthptr != NULL) break; |
5841 | |
5842 | /* In the real compile we do the work of looking for the actual |
5843 | reference. If the string started with "+" or "-" we require the rest to |
5844 | be digits, in which case recno will be set. */ |
5845 | |
5846 | if (refsign > 0) |
5847 | { |
5848 | if (recno <= 0) |
5849 | { |
5850 | *errorcodeptr = ERR58; |
5851 | goto FAILED; |
5852 | } |
5853 | recno = (refsign == CHAR_MINUS)? |
5854 | cd->bracount - recno + 1 : recno +cd->bracount; |
5855 | if (recno <= 0 || recno > cd->final_bracount) |
5856 | { |
5857 | *errorcodeptr = ERR15; |
5858 | goto FAILED; |
5859 | } |
5860 | PUT2(code, 2+LINK_SIZE, recno); |
5861 | break; |
5862 | } |
5863 | |
5864 | /* Otherwise (did not start with "+" or "-"), start by looking for the |
5865 | name. If we find a name, add one to the opcode to change OP_CREF or |
5866 | OP_RREF into OP_NCREF or OP_NRREF. These behave exactly the same, |
5867 | except they record that the reference was originally to a name. The |
5868 | information is used to check duplicate names. */ |
5869 | |
5870 | slot = cd->name_table; |
5871 | for (i = 0; i < cd->names_found; i++) |
5872 | { |
5873 | if (STRNCMP_UC_UC(name, slot+IMM2_SIZE, namelen) == 0) break; |
5874 | slot += cd->name_entry_size; |
5875 | } |
5876 | |
5877 | /* Found a previous named subpattern */ |
5878 | |
5879 | if (i < cd->names_found) |
5880 | { |
5881 | recno = GET2(slot, 0); |
5882 | PUT2(code, 2+LINK_SIZE, recno); |
5883 | code[1+LINK_SIZE]++; |
5884 | } |
5885 | |
5886 | /* Search the pattern for a forward reference */ |
5887 | |
5888 | else if ((i = find_parens(cd, name, namelen, |
5889 | (options & PCRE_EXTENDED) != 0, utf)) > 0) |
5890 | { |
5891 | PUT2(code, 2+LINK_SIZE, i); |
5892 | code[1+LINK_SIZE]++; |
5893 | } |
5894 | |
5895 | /* If terminator == CHAR_NULL it means that the name followed directly |
5896 | after the opening parenthesis [e.g. (?(abc)...] and in this case there |
5897 | are some further alternatives to try. For the cases where terminator != |
5898 | 0 [things like (?(<name>... or (?('name')... or (?(R&name)... ] we have |
5899 | now checked all the possibilities, so give an error. */ |
5900 | |
5901 | else if (terminator != CHAR_NULL) |
5902 | { |
5903 | *errorcodeptr = ERR15; |
5904 | goto FAILED; |
5905 | } |
5906 | |
5907 | /* Check for (?(R) for recursion. Allow digits after R to specify a |
5908 | specific group number. */ |
5909 | |
5910 | else if (*name == CHAR_R) |
5911 | { |
5912 | recno = 0; |
5913 | for (i = 1; i < namelen; i++) |
5914 | { |
5915 | if (!IS_DIGIT(name[i])) |
5916 | { |
5917 | *errorcodeptr = ERR15; |
5918 | goto FAILED; |
5919 | } |
5920 | recno = recno * 10 + name[i] - CHAR_0; |
5921 | } |
5922 | if (recno == 0) recno = RREF_ANY; |
5923 | code[1+LINK_SIZE] = OP_RREF; /* Change test type */ |
5924 | PUT2(code, 2+LINK_SIZE, recno); |
5925 | } |
5926 | |
5927 | /* Similarly, check for the (?(DEFINE) "condition", which is always |
5928 | false. */ |
5929 | |
5930 | else if (namelen == 6 && STRNCMP_UC_C8(name, STRING_DEFINE, 6) == 0) |
5931 | { |
5932 | code[1+LINK_SIZE] = OP_DEF; |
5933 | skipbytes = 1; |
5934 | } |
5935 | |
5936 | /* Check for the "name" actually being a subpattern number. We are |
5937 | in the second pass here, so final_bracount is set. */ |
5938 | |
5939 | else if (recno > 0 && recno <= cd->final_bracount) |
5940 | { |
5941 | PUT2(code, 2+LINK_SIZE, recno); |
5942 | } |
5943 | |
5944 | /* Either an unidentified subpattern, or a reference to (?(0) */ |
5945 | |
5946 | else |
5947 | { |
5948 | *errorcodeptr = (recno == 0)? ERR35: ERR15; |
5949 | goto FAILED; |
5950 | } |
5951 | break; |
5952 | |
5953 | |
5954 | /* ------------------------------------------------------------ */ |
5955 | case CHAR_EQUALS_SIGN: /* Positive lookahead */ |
5956 | bravalue = OP_ASSERT; |
5957 | cd->assert_depth += 1; |
5958 | ptr++; |
5959 | break; |
5960 | |
5961 | |
5962 | /* ------------------------------------------------------------ */ |
5963 | case CHAR_EXCLAMATION_MARK: /* Negative lookahead */ |
5964 | ptr++; |
5965 | if (*ptr == CHAR_RIGHT_PARENTHESIS) /* Optimize (?!) */ |
5966 | { |
5967 | *code++ = OP_FAIL; |
5968 | previous = NULL; |
5969 | continue; |
5970 | } |
5971 | bravalue = OP_ASSERT_NOT; |
5972 | cd->assert_depth += 1; |
5973 | break; |
5974 | |
5975 | |
5976 | /* ------------------------------------------------------------ */ |
5977 | case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */ |
5978 | switch (ptr[1]) |
5979 | { |
5980 | case CHAR_EQUALS_SIGN: /* Positive lookbehind */ |
5981 | bravalue = OP_ASSERTBACK; |
5982 | cd->assert_depth += 1; |
5983 | ptr += 2; |
5984 | break; |
5985 | |
5986 | case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */ |
5987 | bravalue = OP_ASSERTBACK_NOT; |
5988 | cd->assert_depth += 1; |
5989 | ptr += 2; |
5990 | break; |
5991 | |
5992 | default: /* Could be name define, else bad */ |
5993 | if (MAX_255(ptr[1]) && (cd->ctypes[ptr[1]] & ctype_word) != 0) |
5994 | goto DEFINE_NAME; |
5995 | ptr++; /* Correct offset for error */ |
5996 | *errorcodeptr = ERR24; |
5997 | goto FAILED; |
5998 | } |
5999 | break; |
6000 | |
6001 | |
6002 | /* ------------------------------------------------------------ */ |
6003 | case CHAR_GREATER_THAN_SIGN: /* One-time brackets */ |
6004 | bravalue = OP_ONCE; |
6005 | ptr++; |
6006 | break; |
6007 | |
6008 | |
6009 | /* ------------------------------------------------------------ */ |
6010 | case CHAR_C: /* Callout - may be followed by digits; */ |
6011 | previous_callout = code; /* Save for later completion */ |
6012 | after_manual_callout = 1; /* Skip one item before completing */ |
6013 | *code++ = OP_CALLOUT; |
6014 | { |
6015 | int n = 0; |
6016 | ptr++; |
6017 | while(IS_DIGIT(*ptr)) |
6018 | n = n * 10 + *ptr++ - CHAR_0; |
6019 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
6020 | { |
6021 | *errorcodeptr = ERR39; |
6022 | goto FAILED; |
6023 | } |
6024 | if (n > 255) |
6025 | { |
6026 | *errorcodeptr = ERR38; |
6027 | goto FAILED; |
6028 | } |
6029 | *code++ = n; |
6030 | PUT(code, 0, (int)(ptr - cd->start_pattern + 1)); /* Pattern offset */ |
6031 | PUT(code, LINK_SIZE, 0); /* Default length */ |
6032 | code += 2 * LINK_SIZE; |
6033 | } |
6034 | previous = NULL; |
6035 | continue; |
6036 | |
6037 | |
6038 | /* ------------------------------------------------------------ */ |
6039 | case CHAR_P: /* Python-style named subpattern handling */ |
6040 | if (*(++ptr) == CHAR_EQUALS_SIGN || |
6041 | *ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */ |
6042 | { |
6043 | is_recurse = *ptr == CHAR_GREATER_THAN_SIGN; |
6044 | terminator = CHAR_RIGHT_PARENTHESIS; |
6045 | goto NAMED_REF_OR_RECURSE; |
6046 | } |
6047 | else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */ |
6048 | { |
6049 | *errorcodeptr = ERR41; |
6050 | goto FAILED; |
6051 | } |
6052 | /* Fall through to handle (?P< as (?< is handled */ |
6053 | |
6054 | |
6055 | /* ------------------------------------------------------------ */ |
6056 | DEFINE_NAME: /* Come here from (?< handling */ |
6057 | case CHAR_APOSTROPHE: |
6058 | { |
6059 | terminator = (*ptr == CHAR_LESS_THAN_SIGN)? |
6060 | CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE; |
6061 | name = ++ptr; |
6062 | |
6063 | while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0) ptr++; |
6064 | namelen = (int)(ptr - name); |
6065 | |
6066 | /* In the pre-compile phase, just do a syntax check. */ |
6067 | |
6068 | if (lengthptr != NULL) |
6069 | { |
6070 | if (*ptr != (pcre_uchar)terminator) |
6071 | { |
6072 | *errorcodeptr = ERR42; |
6073 | goto FAILED; |
6074 | } |
6075 | if (cd->names_found >= MAX_NAME_COUNT) |
6076 | { |
6077 | *errorcodeptr = ERR49; |
6078 | goto FAILED; |
6079 | } |
6080 | if (namelen + IMM2_SIZE + 1 > cd->name_entry_size) |
6081 | { |
6082 | cd->name_entry_size = namelen + IMM2_SIZE + 1; |
6083 | if (namelen > MAX_NAME_SIZE) |
6084 | { |
6085 | *errorcodeptr = ERR48; |
6086 | goto FAILED; |
6087 | } |
6088 | } |
6089 | } |
6090 | |
6091 | /* In the real compile, create the entry in the table, maintaining |
6092 | alphabetical order. Duplicate names for different numbers are |
6093 | permitted only if PCRE_DUPNAMES is set. Duplicate names for the same |
6094 | number are always OK. (An existing number can be re-used if (?| |
6095 | appears in the pattern.) In either event, a duplicate name results in |
6096 | a duplicate entry in the table, even if the number is the same. This |
6097 | is because the number of names, and hence the table size, is computed |
6098 | in the pre-compile, and it affects various numbers and pointers which |
6099 | would all have to be modified, and the compiled code moved down, if |
6100 | duplicates with the same number were omitted from the table. This |
6101 | doesn't seem worth the hassle. However, *different* names for the |
6102 | same number are not permitted. */ |
6103 | |
6104 | else |
6105 | { |
6106 | BOOL dupname = FALSE; |
6107 | slot = cd->name_table; |
6108 | |
6109 | for (i = 0; i < cd->names_found; i++) |
6110 | { |
6111 | int crc = memcmp(name, slot+IMM2_SIZE, IN_UCHARS(namelen)); |
6112 | if (crc == 0) |
6113 | { |
6114 | if (slot[IMM2_SIZE+namelen] == 0) |
6115 | { |
6116 | if (GET2(slot, 0) != cd->bracount + 1 && |
6117 | (options & PCRE_DUPNAMES) == 0) |
6118 | { |
6119 | *errorcodeptr = ERR43; |
6120 | goto FAILED; |
6121 | } |
6122 | else dupname = TRUE; |
6123 | } |
6124 | else crc = -1; /* Current name is a substring */ |
6125 | } |
6126 | |
6127 | /* Make space in the table and break the loop for an earlier |
6128 | name. For a duplicate or later name, carry on. We do this for |
6129 | duplicates so that in the simple case (when ?(| is not used) they |
6130 | are in order of their numbers. */ |
6131 | |
6132 | if (crc < 0) |
6133 | { |
6134 | memmove(slot + cd->name_entry_size, slot, |
6135 | IN_UCHARS((cd->names_found - i) * cd->name_entry_size)); |
6136 | break; |
6137 | } |
6138 | |
6139 | /* Continue the loop for a later or duplicate name */ |
6140 | |
6141 | slot += cd->name_entry_size; |
6142 | } |
6143 | |
6144 | /* For non-duplicate names, check for a duplicate number before |
6145 | adding the new name. */ |
6146 | |
6147 | if (!dupname) |
6148 | { |
6149 | pcre_uchar *cslot = cd->name_table; |
6150 | for (i = 0; i < cd->names_found; i++) |
6151 | { |
6152 | if (cslot != slot) |
6153 | { |
6154 | if (GET2(cslot, 0) == cd->bracount + 1) |
6155 | { |
6156 | *errorcodeptr = ERR65; |
6157 | goto FAILED; |
6158 | } |
6159 | } |
6160 | else i--; |
6161 | cslot += cd->name_entry_size; |
6162 | } |
6163 | } |
6164 | |
6165 | PUT2(slot, 0, cd->bracount + 1); |
6166 | memcpy(slot + IMM2_SIZE, name, IN_UCHARS(namelen)); |
6167 | slot[IMM2_SIZE + namelen] = 0; |
6168 | } |
6169 | } |
6170 | |
6171 | /* In both pre-compile and compile, count the number of names we've |
6172 | encountered. */ |
6173 | |
6174 | cd->names_found++; |
6175 | ptr++; /* Move past > or ' */ |
6176 | goto NUMBERED_GROUP; |
6177 | |
6178 | |
6179 | /* ------------------------------------------------------------ */ |
6180 | case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */ |
6181 | terminator = CHAR_RIGHT_PARENTHESIS; |
6182 | is_recurse = TRUE; |
6183 | /* Fall through */ |
6184 | |
6185 | /* We come here from the Python syntax above that handles both |
6186 | references (?P=name) and recursion (?P>name), as well as falling |
6187 | through from the Perl recursion syntax (?&name). We also come here from |
6188 | the Perl \k<name> or \k'name' back reference syntax and the \k{name} |
6189 | .NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */ |
6190 | |
6191 | NAMED_REF_OR_RECURSE: |
6192 | name = ++ptr; |
6193 | while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0) ptr++; |
6194 | namelen = (int)(ptr - name); |
6195 | |
6196 | /* In the pre-compile phase, do a syntax check. We used to just set |
6197 | a dummy reference number, because it was not used in the first pass. |
6198 | However, with the change of recursive back references to be atomic, |
6199 | we have to look for the number so that this state can be identified, as |
6200 | otherwise the incorrect length is computed. If it's not a backwards |
6201 | reference, the dummy number will do. */ |
6202 | |
6203 | if (lengthptr != NULL) |
6204 | { |
6205 | const pcre_uchar *temp; |
6206 | |
6207 | if (namelen == 0) |
6208 | { |
6209 | *errorcodeptr = ERR62; |
6210 | goto FAILED; |
6211 | } |
6212 | if (*ptr != (pcre_uchar)terminator) |
6213 | { |
6214 | *errorcodeptr = ERR42; |
6215 | goto FAILED; |
6216 | } |
6217 | if (namelen > MAX_NAME_SIZE) |
6218 | { |
6219 | *errorcodeptr = ERR48; |
6220 | goto FAILED; |
6221 | } |
6222 | |
6223 | /* The name table does not exist in the first pass, so we cannot |
6224 | do a simple search as in the code below. Instead, we have to scan the |
6225 | pattern to find the number. It is important that we scan it only as |
6226 | far as we have got because the syntax of named subpatterns has not |
6227 | been checked for the rest of the pattern, and find_parens() assumes |
6228 | correct syntax. In any case, it's a waste of resources to scan |
6229 | further. We stop the scan at the current point by temporarily |
6230 | adjusting the value of cd->endpattern. */ |
6231 | |
6232 | temp = cd->end_pattern; |
6233 | cd->end_pattern = ptr; |
6234 | recno = find_parens(cd, name, namelen, |
6235 | (options & PCRE_EXTENDED) != 0, utf); |
6236 | cd->end_pattern = temp; |
6237 | if (recno < 0) recno = 0; /* Forward ref; set dummy number */ |
6238 | } |
6239 | |
6240 | /* In the real compile, seek the name in the table. We check the name |
6241 | first, and then check that we have reached the end of the name in the |
6242 | table. That way, if the name that is longer than any in the table, |
6243 | the comparison will fail without reading beyond the table entry. */ |
6244 | |
6245 | else |
6246 | { |
6247 | slot = cd->name_table; |
6248 | for (i = 0; i < cd->names_found; i++) |
6249 | { |
6250 | if (STRNCMP_UC_UC(name, slot+IMM2_SIZE, namelen) == 0 && |
6251 | slot[IMM2_SIZE+namelen] == 0) |
6252 | break; |
6253 | slot += cd->name_entry_size; |
6254 | } |
6255 | |
6256 | if (i < cd->names_found) /* Back reference */ |
6257 | { |
6258 | recno = GET2(slot, 0); |
6259 | } |
6260 | else if ((recno = /* Forward back reference */ |
6261 | find_parens(cd, name, namelen, |
6262 | (options & PCRE_EXTENDED) != 0, utf)) <= 0) |
6263 | { |
6264 | *errorcodeptr = ERR15; |
6265 | goto FAILED; |
6266 | } |
6267 | } |
6268 | |
6269 | /* In both phases, we can now go to the code than handles numerical |
6270 | recursion or backreferences. */ |
6271 | |
6272 | if (is_recurse) goto HANDLE_RECURSION; |
6273 | else goto HANDLE_REFERENCE; |
6274 | |
6275 | |
6276 | /* ------------------------------------------------------------ */ |
6277 | case CHAR_R: /* Recursion */ |
6278 | ptr++; /* Same as (?0) */ |
6279 | /* Fall through */ |
6280 | |
6281 | |
6282 | /* ------------------------------------------------------------ */ |
6283 | case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */ |
6284 | case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: |
6285 | case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9: |
6286 | { |
6287 | const pcre_uchar *called; |
6288 | terminator = CHAR_RIGHT_PARENTHESIS; |
6289 | |
6290 | /* Come here from the \g<...> and \g'...' code (Oniguruma |
6291 | compatibility). However, the syntax has been checked to ensure that |
6292 | the ... are a (signed) number, so that neither ERR63 nor ERR29 will |
6293 | be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY |
6294 | ever be taken. */ |
6295 | |
6296 | HANDLE_NUMERICAL_RECURSION: |
6297 | |
6298 | if ((refsign = *ptr) == CHAR_PLUS) |
6299 | { |
6300 | ptr++; |
6301 | if (!IS_DIGIT(*ptr)) |
6302 | { |
6303 | *errorcodeptr = ERR63; |
6304 | goto FAILED; |
6305 | } |
6306 | } |
6307 | else if (refsign == CHAR_MINUS) |
6308 | { |
6309 | if (!IS_DIGIT(ptr[1])) |
6310 | goto OTHER_CHAR_AFTER_QUERY; |
6311 | ptr++; |
6312 | } |
6313 | |
6314 | recno = 0; |
6315 | while(IS_DIGIT(*ptr)) |
6316 | recno = recno * 10 + *ptr++ - CHAR_0; |
6317 | |
6318 | if (*ptr != (pcre_uchar)terminator) |
6319 | { |
6320 | *errorcodeptr = ERR29; |
6321 | goto FAILED; |
6322 | } |
6323 | |
6324 | if (refsign == CHAR_MINUS) |
6325 | { |
6326 | if (recno == 0) |
6327 | { |
6328 | *errorcodeptr = ERR58; |
6329 | goto FAILED; |
6330 | } |
6331 | recno = cd->bracount - recno + 1; |
6332 | if (recno <= 0) |
6333 | { |
6334 | *errorcodeptr = ERR15; |
6335 | goto FAILED; |
6336 | } |
6337 | } |
6338 | else if (refsign == CHAR_PLUS) |
6339 | { |
6340 | if (recno == 0) |
6341 | { |
6342 | *errorcodeptr = ERR58; |
6343 | goto FAILED; |
6344 | } |
6345 | recno += cd->bracount; |
6346 | } |
6347 | |
6348 | /* Come here from code above that handles a named recursion */ |
6349 | |
6350 | HANDLE_RECURSION: |
6351 | |
6352 | previous = code; |
6353 | called = cd->start_code; |
6354 | |
6355 | /* When we are actually compiling, find the bracket that is being |
6356 | referenced. Temporarily end the regex in case it doesn't exist before |
6357 | this point. If we end up with a forward reference, first check that |
6358 | the bracket does occur later so we can give the error (and position) |
6359 | now. Then remember this forward reference in the workspace so it can |
6360 | be filled in at the end. */ |
6361 | |
6362 | if (lengthptr == NULL) |
6363 | { |
6364 | *code = OP_END; |
6365 | if (recno != 0) |
6366 | called = PRIV(find_bracket)(cd->start_code, utf, recno); |
6367 | |
6368 | /* Forward reference */ |
6369 | |
6370 | if (called == NULL) |
6371 | { |
6372 | if (find_parens(cd, NULL, recno, |
6373 | (options & PCRE_EXTENDED) != 0, utf) < 0) |
6374 | { |
6375 | *errorcodeptr = ERR15; |
6376 | goto FAILED; |
6377 | } |
6378 | |
6379 | /* Fudge the value of "called" so that when it is inserted as an |
6380 | offset below, what it actually inserted is the reference number |
6381 | of the group. Then remember the forward reference. */ |
6382 | |
6383 | called = cd->start_code + recno; |
6384 | if (cd->hwm >= cd->start_workspace + cd->workspace_size - |
6385 | WORK_SIZE_SAFETY_MARGIN) |
6386 | { |
6387 | *errorcodeptr = expand_workspace(cd); |
6388 | if (*errorcodeptr != 0) goto FAILED; |
6389 | } |
6390 | PUTINC(cd->hwm, 0, (int)(code + 1 - cd->start_code)); |
6391 | } |
6392 | |
6393 | /* If not a forward reference, and the subpattern is still open, |
6394 | this is a recursive call. We check to see if this is a left |
6395 | recursion that could loop for ever, and diagnose that case. We |
6396 | must not, however, do this check if we are in a conditional |
6397 | subpattern because the condition might be testing for recursion in |
6398 | a pattern such as /(?(R)a+|(?R)b)/, which is perfectly valid. |
6399 | Forever loops are also detected at runtime, so those that occur in |
6400 | conditional subpatterns will be picked up then. */ |
6401 | |
6402 | else if (GET(called, 1) == 0 && cond_depth <= 0 && |
6403 | could_be_empty(called, code, bcptr, utf, cd)) |
6404 | { |
6405 | *errorcodeptr = ERR40; |
6406 | goto FAILED; |
6407 | } |
6408 | } |
6409 | |
6410 | /* Insert the recursion/subroutine item. It does not have a set first |
6411 | character (relevant if it is repeated, because it will then be |
6412 | wrapped with ONCE brackets). */ |
6413 | |
6414 | *code = OP_RECURSE; |
6415 | PUT(code, 1, (int)(called - cd->start_code)); |
6416 | code += 1 + LINK_SIZE; |
6417 | groupsetfirstchar = FALSE; |
6418 | } |
6419 | |
6420 | /* Can't determine a first byte now */ |
6421 | |
6422 | if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE; |
6423 | continue; |
6424 | |
6425 | |
6426 | /* ------------------------------------------------------------ */ |
6427 | default: /* Other characters: check option setting */ |
6428 | OTHER_CHAR_AFTER_QUERY: |
6429 | set = unset = 0; |
6430 | optset = &set; |
6431 | |
6432 | while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON) |
6433 | { |
6434 | switch (*ptr++) |
6435 | { |
6436 | case CHAR_MINUS: optset = &unset; break; |
6437 | |
6438 | case CHAR_J: /* Record that it changed in the external options */ |
6439 | *optset |= PCRE_DUPNAMES; |
6440 | cd->external_flags |= PCRE_JCHANGED; |
6441 | break; |
6442 | |
6443 | case CHAR_i: *optset |= PCRE_CASELESS; break; |
6444 | case CHAR_m: *optset |= PCRE_MULTILINE; break; |
6445 | case CHAR_s: *optset |= PCRE_DOTALL; break; |
6446 | case CHAR_x: *optset |= PCRE_EXTENDED; break; |
6447 | case CHAR_U: *optset |= PCRE_UNGREEDY; break; |
6448 | case CHAR_X: *optset |= PCRE_EXTRA; break; |
6449 | |
6450 | default: *errorcodeptr = ERR12; |
6451 | ptr--; /* Correct the offset */ |
6452 | goto FAILED; |
6453 | } |
6454 | } |
6455 | |
6456 | /* Set up the changed option bits, but don't change anything yet. */ |
6457 | |
6458 | newoptions = (options | set) & (~unset); |
6459 | |
6460 | /* If the options ended with ')' this is not the start of a nested |
6461 | group with option changes, so the options change at this level. If this |
6462 | item is right at the start of the pattern, the options can be |
6463 | abstracted and made external in the pre-compile phase, and ignored in |
6464 | the compile phase. This can be helpful when matching -- for instance in |
6465 | caseless checking of required bytes. |
6466 | |
6467 | If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are |
6468 | definitely *not* at the start of the pattern because something has been |
6469 | compiled. In the pre-compile phase, however, the code pointer can have |
6470 | that value after the start, because it gets reset as code is discarded |
6471 | during the pre-compile. However, this can happen only at top level - if |
6472 | we are within parentheses, the starting BRA will still be present. At |
6473 | any parenthesis level, the length value can be used to test if anything |
6474 | has been compiled at that level. Thus, a test for both these conditions |
6475 | is necessary to ensure we correctly detect the start of the pattern in |
6476 | both phases. |
6477 | |
6478 | If we are not at the pattern start, reset the greedy defaults and the |
6479 | case value for firstchar and reqchar. */ |
6480 | |
6481 | if (*ptr == CHAR_RIGHT_PARENTHESIS) |
6482 | { |
6483 | if (code == cd->start_code + 1 + LINK_SIZE && |
6484 | (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE)) |
6485 | { |
6486 | cd->external_options = newoptions; |
6487 | } |
6488 | else |
6489 | { |
6490 | greedy_default = ((newoptions & PCRE_UNGREEDY) != 0); |
6491 | greedy_non_default = greedy_default ^ 1; |
6492 | req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS:0; |
6493 | } |
6494 | |
6495 | /* Change options at this level, and pass them back for use |
6496 | in subsequent branches. */ |
6497 | |
6498 | *optionsptr = options = newoptions; |
6499 | previous = NULL; /* This item can't be repeated */ |
6500 | continue; /* It is complete */ |
6501 | } |
6502 | |
6503 | /* If the options ended with ':' we are heading into a nested group |
6504 | with possible change of options. Such groups are non-capturing and are |
6505 | not assertions of any kind. All we need to do is skip over the ':'; |
6506 | the newoptions value is handled below. */ |
6507 | |
6508 | bravalue = OP_BRA; |
6509 | ptr++; |
6510 | } /* End of switch for character following (? */ |
6511 | } /* End of (? handling */ |
6512 | |
6513 | /* Opening parenthesis not followed by '*' or '?'. If PCRE_NO_AUTO_CAPTURE |
6514 | is set, all unadorned brackets become non-capturing and behave like (?:...) |
6515 | brackets. */ |
6516 | |
6517 | else if ((options & PCRE_NO_AUTO_CAPTURE) != 0) |
6518 | { |
6519 | bravalue = OP_BRA; |
6520 | } |
6521 | |
6522 | /* Else we have a capturing group. */ |
6523 | |
6524 | else |
6525 | { |
6526 | NUMBERED_GROUP: |
6527 | cd->bracount += 1; |
6528 | PUT2(code, 1+LINK_SIZE, cd->bracount); |
6529 | skipbytes = IMM2_SIZE; |
6530 | } |
6531 | |
6532 | /* Process nested bracketed regex. Assertions used not to be repeatable, |
6533 | but this was changed for Perl compatibility, so all kinds can now be |
6534 | repeated. We copy code into a non-register variable (tempcode) in order to |
6535 | be able to pass its address because some compilers complain otherwise. */ |
6536 | |
6537 | previous = code; /* For handling repetition */ |
6538 | *code = bravalue; |
6539 | tempcode = code; |
6540 | tempreqvary = cd->req_varyopt; /* Save value before bracket */ |
6541 | tempbracount = cd->bracount; /* Save value before bracket */ |
6542 | length_prevgroup = 0; /* Initialize for pre-compile phase */ |
6543 | |
6544 | if (!compile_regex( |
6545 | newoptions, /* The complete new option state */ |
6546 | &tempcode, /* Where to put code (updated) */ |
6547 | &ptr, /* Input pointer (updated) */ |
6548 | errorcodeptr, /* Where to put an error message */ |
6549 | (bravalue == OP_ASSERTBACK || |
6550 | bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */ |
6551 | reset_bracount, /* True if (?| group */ |
6552 | skipbytes, /* Skip over bracket number */ |
6553 | cond_depth + |
6554 | ((bravalue == OP_COND)?1:0), /* Depth of condition subpatterns */ |
6555 | &subfirstchar, /* For possible first char */ |
6556 | &subfirstcharflags, |
6557 | &subreqchar, /* For possible last char */ |
6558 | &subreqcharflags, |
6559 | bcptr, /* Current branch chain */ |
6560 | cd, /* Tables block */ |
6561 | (lengthptr == NULL)? NULL : /* Actual compile phase */ |
6562 | &length_prevgroup /* Pre-compile phase */ |
6563 | )) |
6564 | goto FAILED; |
6565 | |
6566 | /* If this was an atomic group and there are no capturing groups within it, |
6567 | generate OP_ONCE_NC instead of OP_ONCE. */ |
6568 | |
6569 | if (bravalue == OP_ONCE && cd->bracount <= tempbracount) |
6570 | *code = OP_ONCE_NC; |
6571 | |
6572 | if (bravalue >= OP_ASSERT && bravalue <= OP_ASSERTBACK_NOT) |
6573 | cd->assert_depth -= 1; |
6574 | |
6575 | /* At the end of compiling, code is still pointing to the start of the |
6576 | group, while tempcode has been updated to point past the end of the group. |
6577 | The pattern pointer (ptr) is on the bracket. |
6578 | |
6579 | If this is a conditional bracket, check that there are no more than |
6580 | two branches in the group, or just one if it's a DEFINE group. We do this |
6581 | in the real compile phase, not in the pre-pass, where the whole group may |
6582 | not be available. */ |
6583 | |
6584 | if (bravalue == OP_COND && lengthptr == NULL) |
6585 | { |
6586 | pcre_uchar *tc = code; |
6587 | int condcount = 0; |
6588 | |
6589 | do { |
6590 | condcount++; |
6591 | tc += GET(tc,1); |
6592 | } |
6593 | while (*tc != OP_KET); |
6594 | |
6595 | /* A DEFINE group is never obeyed inline (the "condition" is always |
6596 | false). It must have only one branch. */ |
6597 | |
6598 | if (code[LINK_SIZE+1] == OP_DEF) |
6599 | { |
6600 | if (condcount > 1) |
6601 | { |
6602 | *errorcodeptr = ERR54; |
6603 | goto FAILED; |
6604 | } |
6605 | bravalue = OP_DEF; /* Just a flag to suppress char handling below */ |
6606 | } |
6607 | |
6608 | /* A "normal" conditional group. If there is just one branch, we must not |
6609 | make use of its firstchar or reqchar, because this is equivalent to an |
6610 | empty second branch. */ |
6611 | |
6612 | else |
6613 | { |
6614 | if (condcount > 2) |
6615 | { |
6616 | *errorcodeptr = ERR27; |
6617 | goto FAILED; |
6618 | } |
6619 | if (condcount == 1) subfirstcharflags = subreqcharflags = REQ_NONE; |
6620 | } |
6621 | } |
6622 | |
6623 | /* Error if hit end of pattern */ |
6624 | |
6625 | if (*ptr != CHAR_RIGHT_PARENTHESIS) |
6626 | { |
6627 | *errorcodeptr = ERR14; |
6628 | goto FAILED; |
6629 | } |
6630 | |
6631 | /* In the pre-compile phase, update the length by the length of the group, |
6632 | less the brackets at either end. Then reduce the compiled code to just a |
6633 | set of non-capturing brackets so that it doesn't use much memory if it is |
6634 | duplicated by a quantifier.*/ |
6635 | |
6636 | if (lengthptr != NULL) |
6637 | { |
6638 | if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE) |
6639 | { |
6640 | *errorcodeptr = ERR20; |
6641 | goto FAILED; |