/[pcre]/code/trunk/sljit/sljitLir.h
ViewVC logotype

Contents of /code/trunk/sljit/sljitLir.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1754 - (show annotations)
Wed Jul 17 07:17:16 2019 UTC (2 months ago) by zherczeg
File MIME type: text/plain
File size: 67112 byte(s)
JIT compiler update.
1 /*
2 * Stack-less Just-In-Time compiler
3 *
4 * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without modification, are
7 * permitted provided that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright notice, this list of
10 * conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13 * of conditions and the following disclaimer in the documentation and/or other materials
14 * provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #ifndef _SLJIT_LIR_H_
28 #define _SLJIT_LIR_H_
29
30 /*
31 ------------------------------------------------------------------------
32 Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33 ------------------------------------------------------------------------
34
35 Short description
36 Advantages:
37 - The execution can be continued from any LIR instruction. In other
38 words, it is possible to jump to any label from anywhere, even from
39 a code fragment, which is compiled later, if both compiled code
40 shares the same context. See sljit_emit_enter for more details
41 - Supports self modifying code: target of (conditional) jump and call
42 instructions and some constant values can be dynamically modified
43 during runtime
44 - although it is not suggested to do it frequently
45 - can be used for inline caching: save an important value once
46 in the instruction stream
47 - since this feature limits the optimization possibilities, a
48 special flag must be passed at compile time when these
49 instructions are emitted
50 - A fixed stack space can be allocated for local variables
51 - The compiler is thread-safe
52 - The compiler is highly configurable through preprocessor macros.
53 You can disable unneeded features (multithreading in single
54 threaded applications), and you can use your own system functions
55 (including memory allocators). See sljitConfig.h
56 Disadvantages:
57 - No automatic register allocation, and temporary results are
58 not stored on the stack. (hence the name comes)
59 In practice:
60 - This approach is very effective for interpreters
61 - One of the saved registers typically points to a stack interface
62 - It can jump to any exception handler anytime (even if it belongs
63 to another function)
64 - Hot paths can be modified during runtime reflecting the changes
65 of the fastest execution path of the dynamic language
66 - SLJIT supports complex memory addressing modes
67 - mainly position and context independent code (except some cases)
68
69 For valgrind users:
70 - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
71 */
72
73 #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
74 #include "sljitConfig.h"
75 #endif
76
77 /* The following header file defines useful macros for fine tuning
78 sljit based code generators. They are listed in the beginning
79 of sljitConfigInternal.h */
80
81 #include "sljitConfigInternal.h"
82
83 /* --------------------------------------------------------------------- */
84 /* Error codes */
85 /* --------------------------------------------------------------------- */
86
87 /* Indicates no error. */
88 #define SLJIT_SUCCESS 0
89 /* After the call of sljit_generate_code(), the error code of the compiler
90 is set to this value to avoid future sljit calls (in debug mode at least).
91 The complier should be freed after sljit_generate_code(). */
92 #define SLJIT_ERR_COMPILED 1
93 /* Cannot allocate non executable memory. */
94 #define SLJIT_ERR_ALLOC_FAILED 2
95 /* Cannot allocate executable memory.
96 Only for sljit_generate_code() */
97 #define SLJIT_ERR_EX_ALLOC_FAILED 3
98 /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
99 #define SLJIT_ERR_UNSUPPORTED 4
100 /* An ivalid argument is passed to any SLJIT function. */
101 #define SLJIT_ERR_BAD_ARGUMENT 5
102 /* Dynamic code modification is not enabled. */
103 #define SLJIT_ERR_DYN_CODE_MOD 6
104
105 /* --------------------------------------------------------------------- */
106 /* Registers */
107 /* --------------------------------------------------------------------- */
108
109 /*
110 Scratch (R) registers: registers whose may not preserve their values
111 across function calls.
112
113 Saved (S) registers: registers whose preserve their values across
114 function calls.
115
116 The scratch and saved register sets are overlap. The last scratch register
117 is the first saved register, the one before the last is the second saved
118 register, and so on.
119
120 If an architecture provides two scratch and three saved registers,
121 its scratch and saved register sets are the following:
122
123 R0 | | R0 is always a scratch register
124 R1 | | R1 is always a scratch register
125 [R2] | S2 | R2 and S2 represent the same physical register
126 [R3] | S1 | R3 and S1 represent the same physical register
127 [R4] | S0 | R4 and S0 represent the same physical register
128
129 Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
130 SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
131
132 Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 12
133 and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 6. However, 6 registers
134 are virtual on x86-32. See below.
135
136 The purpose of this definition is convenience: saved registers can
137 be used as extra scratch registers. For example four registers can
138 be specified as scratch registers and the fifth one as saved register
139 on the CPU above and any user code which requires four scratch
140 registers can run unmodified. The SLJIT compiler automatically saves
141 the content of the two extra scratch register on the stack. Scratch
142 registers can also be preserved by saving their value on the stack
143 but this needs to be done manually.
144
145 Note: To emphasize that registers assigned to R2-R4 are saved
146 registers, they are enclosed by square brackets.
147
148 Note: sljit_emit_enter and sljit_set_context defines whether a register
149 is S or R register. E.g: when 3 scratches and 1 saved is mapped
150 by sljit_emit_enter, the allowed register set will be: R0-R2 and
151 S0. Although S2 is mapped to the same position as R2, it does not
152 available in the current configuration. Furthermore the S1 register
153 is not available at all.
154 */
155
156 /* When SLJIT_UNUSED is specified as the destination of sljit_emit_op1
157 or sljit_emit_op2 operations the result is discarded. If no status
158 flags are set, no instructions are emitted for these operations. Data
159 prefetch is a special exception, see SLJIT_MOV operation. Other SLJIT
160 operations do not support SLJIT_UNUSED as a destination operand. */
161 #define SLJIT_UNUSED 0
162
163 /* Scratch registers. */
164 #define SLJIT_R0 1
165 #define SLJIT_R1 2
166 #define SLJIT_R2 3
167 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
168 are allocated on the stack). These registers are called virtual
169 and cannot be used for memory addressing (cannot be part of
170 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
171 limitation on other CPUs. See sljit_get_register_index(). */
172 #define SLJIT_R3 4
173 #define SLJIT_R4 5
174 #define SLJIT_R5 6
175 #define SLJIT_R6 7
176 #define SLJIT_R7 8
177 #define SLJIT_R8 9
178 #define SLJIT_R9 10
179 /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
180 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
181 #define SLJIT_R(i) (1 + (i))
182
183 /* Saved registers. */
184 #define SLJIT_S0 (SLJIT_NUMBER_OF_REGISTERS)
185 #define SLJIT_S1 (SLJIT_NUMBER_OF_REGISTERS - 1)
186 #define SLJIT_S2 (SLJIT_NUMBER_OF_REGISTERS - 2)
187 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
188 are allocated on the stack). These registers are called virtual
189 and cannot be used for memory addressing (cannot be part of
190 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
191 limitation on other CPUs. See sljit_get_register_index(). */
192 #define SLJIT_S3 (SLJIT_NUMBER_OF_REGISTERS - 3)
193 #define SLJIT_S4 (SLJIT_NUMBER_OF_REGISTERS - 4)
194 #define SLJIT_S5 (SLJIT_NUMBER_OF_REGISTERS - 5)
195 #define SLJIT_S6 (SLJIT_NUMBER_OF_REGISTERS - 6)
196 #define SLJIT_S7 (SLJIT_NUMBER_OF_REGISTERS - 7)
197 #define SLJIT_S8 (SLJIT_NUMBER_OF_REGISTERS - 8)
198 #define SLJIT_S9 (SLJIT_NUMBER_OF_REGISTERS - 9)
199 /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
200 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
201 #define SLJIT_S(i) (SLJIT_NUMBER_OF_REGISTERS - (i))
202
203 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
204 #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
205
206 /* The SLJIT_SP provides direct access to the linear stack space allocated by
207 sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
208 The immediate offset is extended by the relative stack offset automatically.
209 The sljit_get_local_base can be used to obtain the absolute offset. */
210 #define SLJIT_SP (SLJIT_NUMBER_OF_REGISTERS + 1)
211
212 /* Return with machine word. */
213
214 #define SLJIT_RETURN_REG SLJIT_R0
215
216 /* --------------------------------------------------------------------- */
217 /* Floating point registers */
218 /* --------------------------------------------------------------------- */
219
220 /* Each floating point register can store a 32 or a 64 bit precision
221 value. The FR and FS register sets are overlap in the same way as R
222 and S register sets. See above. */
223
224 /* Note: SLJIT_UNUSED as destination is not valid for floating point
225 operations, since they cannot be used for setting flags. */
226
227 /* Floating point scratch registers. */
228 #define SLJIT_FR0 1
229 #define SLJIT_FR1 2
230 #define SLJIT_FR2 3
231 #define SLJIT_FR3 4
232 #define SLJIT_FR4 5
233 #define SLJIT_FR5 6
234 /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
235 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
236 #define SLJIT_FR(i) (1 + (i))
237
238 /* Floating point saved registers. */
239 #define SLJIT_FS0 (SLJIT_NUMBER_OF_FLOAT_REGISTERS)
240 #define SLJIT_FS1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
241 #define SLJIT_FS2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
242 #define SLJIT_FS3 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
243 #define SLJIT_FS4 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
244 #define SLJIT_FS5 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
245 /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
246 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
247 #define SLJIT_FS(i) (SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
248
249 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
250 #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
251
252 /* --------------------------------------------------------------------- */
253 /* Argument type definitions */
254 /* --------------------------------------------------------------------- */
255
256 /* Argument type definitions.
257 Used by SLJIT_[DEF_]ARGx and SLJIT_[DEF]_RET macros. */
258
259 #define SLJIT_ARG_TYPE_VOID 0
260 #define SLJIT_ARG_TYPE_SW 1
261 #define SLJIT_ARG_TYPE_UW 2
262 #define SLJIT_ARG_TYPE_S32 3
263 #define SLJIT_ARG_TYPE_U32 4
264 #define SLJIT_ARG_TYPE_F32 5
265 #define SLJIT_ARG_TYPE_F64 6
266
267 /* The following argument type definitions are used by sljit_emit_enter,
268 sljit_set_context, sljit_emit_call, and sljit_emit_icall functions.
269 The following return type definitions are used by sljit_emit_call
270 and sljit_emit_icall functions.
271
272 When a function is called, the first integer argument must be placed
273 in SLJIT_R0, the second in SLJIT_R1, and so on. Similarly the first
274 floating point argument must be placed in SLJIT_FR0, the second in
275 SLJIT_FR1, and so on.
276
277 Example function definition:
278 sljit_f32 SLJIT_FUNC example_c_callback(sljit_sw arg_a,
279 sljit_f64 arg_b, sljit_u32 arg_c, sljit_f32 arg_d);
280
281 Argument type definition:
282 SLJIT_DEF_RET(SLJIT_ARG_TYPE_F32)
283 | SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_SW) | SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_F64)
284 | SLJIT_DEF_ARG3(SLJIT_ARG_TYPE_U32) | SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_F32)
285
286 Short form of argument type definition:
287 SLJIT_RET(F32) | SLJIT_ARG1(SW) | SLJIT_ARG2(F64)
288 | SLJIT_ARG3(S32) | SLJIT_ARG4(F32)
289
290 Argument passing:
291 arg_a must be placed in SLJIT_R0
292 arg_c must be placed in SLJIT_R1
293 arg_b must be placed in SLJIT_FR0
294 arg_d must be placed in SLJIT_FR1
295
296 Note:
297 The SLJIT_ARG_TYPE_VOID type is only supported by
298 SLJIT_DEF_RET, and SLJIT_ARG_TYPE_VOID is also the
299 default value when SLJIT_DEF_RET is not specified. */
300 #define SLJIT_DEF_SHIFT 4
301 #define SLJIT_DEF_RET(type) (type)
302 #define SLJIT_DEF_ARG1(type) ((type) << SLJIT_DEF_SHIFT)
303 #define SLJIT_DEF_ARG2(type) ((type) << (2 * SLJIT_DEF_SHIFT))
304 #define SLJIT_DEF_ARG3(type) ((type) << (3 * SLJIT_DEF_SHIFT))
305 #define SLJIT_DEF_ARG4(type) ((type) << (4 * SLJIT_DEF_SHIFT))
306
307 /* Short form of the macros above.
308
309 For example the following definition:
310 SLJIT_DEF_RET(SLJIT_ARG_TYPE_SW) | SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_F32)
311
312 can be shortened to:
313 SLJIT_RET(SW) | SLJIT_ARG1(F32)
314
315 Note:
316 The VOID type is only supported by SLJIT_RET, and
317 VOID is also the default value when SLJIT_RET is
318 not specified. */
319 #define SLJIT_RET(type) SLJIT_DEF_RET(SLJIT_ARG_TYPE_ ## type)
320 #define SLJIT_ARG1(type) SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_ ## type)
321 #define SLJIT_ARG2(type) SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_ ## type)
322 #define SLJIT_ARG3(type) SLJIT_DEF_ARG3(SLJIT_ARG_TYPE_ ## type)
323 #define SLJIT_ARG4(type) SLJIT_DEF_ARG4(SLJIT_ARG_TYPE_ ## type)
324
325 /* --------------------------------------------------------------------- */
326 /* Main structures and functions */
327 /* --------------------------------------------------------------------- */
328
329 /*
330 The following structures are private, and can be changed in the
331 future. Keeping them here allows code inlining.
332 */
333
334 struct sljit_memory_fragment {
335 struct sljit_memory_fragment *next;
336 sljit_uw used_size;
337 /* Must be aligned to sljit_sw. */
338 sljit_u8 memory[1];
339 };
340
341 struct sljit_label {
342 struct sljit_label *next;
343 sljit_uw addr;
344 /* The maximum size difference. */
345 sljit_uw size;
346 };
347
348 struct sljit_jump {
349 struct sljit_jump *next;
350 sljit_uw addr;
351 sljit_uw flags;
352 union {
353 sljit_uw target;
354 struct sljit_label *label;
355 } u;
356 };
357
358 struct sljit_put_label {
359 struct sljit_put_label *next;
360 struct sljit_label *label;
361 sljit_uw addr;
362 sljit_uw flags;
363 };
364
365 struct sljit_const {
366 struct sljit_const *next;
367 sljit_uw addr;
368 };
369
370 struct sljit_compiler {
371 sljit_s32 error;
372 sljit_s32 options;
373
374 struct sljit_label *labels;
375 struct sljit_jump *jumps;
376 struct sljit_put_label *put_labels;
377 struct sljit_const *consts;
378 struct sljit_label *last_label;
379 struct sljit_jump *last_jump;
380 struct sljit_const *last_const;
381 struct sljit_put_label *last_put_label;
382
383 void *allocator_data;
384 struct sljit_memory_fragment *buf;
385 struct sljit_memory_fragment *abuf;
386
387 /* Used scratch registers. */
388 sljit_s32 scratches;
389 /* Used saved registers. */
390 sljit_s32 saveds;
391 /* Used float scratch registers. */
392 sljit_s32 fscratches;
393 /* Used float saved registers. */
394 sljit_s32 fsaveds;
395 /* Local stack size. */
396 sljit_s32 local_size;
397 /* Code size. */
398 sljit_uw size;
399 /* Relative offset of the executable mapping from the writable mapping. */
400 sljit_uw executable_offset;
401 /* Executable size for statistical purposes. */
402 sljit_uw executable_size;
403
404 #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
405 sljit_s32 args;
406 sljit_s32 locals_offset;
407 sljit_s32 saveds_offset;
408 sljit_s32 stack_tmp_size;
409 #endif
410
411 #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
412 sljit_s32 mode32;
413 #ifdef _WIN64
414 sljit_s32 locals_offset;
415 #endif
416 #endif
417
418 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
419 /* Constant pool handling. */
420 sljit_uw *cpool;
421 sljit_u8 *cpool_unique;
422 sljit_uw cpool_diff;
423 sljit_uw cpool_fill;
424 /* Other members. */
425 /* Contains pointer, "ldr pc, [...]" pairs. */
426 sljit_uw patches;
427 #endif
428
429 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
430 /* Temporary fields. */
431 sljit_uw shift_imm;
432 #endif
433
434 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
435 sljit_sw imm;
436 #endif
437
438 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
439 sljit_s32 delay_slot;
440 sljit_s32 cache_arg;
441 sljit_sw cache_argw;
442 #endif
443
444 #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
445 sljit_s32 delay_slot;
446 sljit_s32 cache_arg;
447 sljit_sw cache_argw;
448 #endif
449
450 #if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
451 sljit_s32 cache_arg;
452 sljit_sw cache_argw;
453 #endif
454
455 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
456 FILE* verbose;
457 #endif
458
459 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
460 || (defined SLJIT_DEBUG && SLJIT_DEBUG)
461 /* Flags specified by the last arithmetic instruction.
462 It contains the type of the variable flag. */
463 sljit_s32 last_flags;
464 /* Local size passed to the functions. */
465 sljit_s32 logical_local_size;
466 #endif
467
468 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
469 || (defined SLJIT_DEBUG && SLJIT_DEBUG) \
470 || (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
471 /* Trust arguments when the API function is called. */
472 sljit_s32 skip_checks;
473 #endif
474 };
475
476 /* --------------------------------------------------------------------- */
477 /* Main functions */
478 /* --------------------------------------------------------------------- */
479
480 /* Creates an sljit compiler. The allocator_data is required by some
481 custom memory managers. This pointer is passed to SLJIT_MALLOC
482 and SLJIT_FREE macros. Most allocators (including the default
483 one) ignores this value, and it is recommended to pass NULL
484 as a dummy value for allocator_data.
485
486 Returns NULL if failed. */
487 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data);
488
489 /* Frees everything except the compiled machine code. */
490 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
491
492 /* Returns the current error code. If an error is occurred, future sljit
493 calls which uses the same compiler argument returns early with the same
494 error code. Thus there is no need for checking the error after every
495 call, it is enough to do it before the code is compiled. Removing
496 these checks increases the performance of the compiling process. */
497 static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
498
499 /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
500 if an error was detected before. After the error code is set
501 the compiler behaves as if the allocation failure happened
502 during an sljit function call. This can greatly simplify error
503 checking, since only the compiler status needs to be checked
504 after the compilation. */
505 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
506
507 /*
508 Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
509 and <= 128 bytes on 64 bit architectures. The memory area is owned by the
510 compiler, and freed by sljit_free_compiler. The returned pointer is
511 sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
512 the compiling, and no need to worry about freeing them. The size is
513 enough to contain at most 16 pointers. If the size is outside of the range,
514 the function will return with NULL. However, this return value does not
515 indicate that there is no more memory (does not set the current error code
516 of the compiler to out-of-memory status).
517 */
518 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);
519
520 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
521 /* Passing NULL disables verbose. */
522 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
523 #endif
524
525 /*
526 Create executable code from the sljit instruction stream. This is the final step
527 of the code generation so no more instructions can be added after this call.
528 */
529
530 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
531
532 /* Free executable code. */
533
534 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
535
536 /*
537 When the protected executable allocator is used the JIT code is mapped
538 twice. The first mapping has read/write and the second mapping has read/exec
539 permissions. This function returns with the relative offset of the executable
540 mapping using the writable mapping as the base after the machine code is
541 successfully generated. The returned value is always 0 for the normal executable
542 allocator, since it uses only one mapping with read/write/exec permissions.
543 Dynamic code modifications requires this value.
544
545 Before a successful code generation, this function returns with 0.
546 */
547 static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; }
548
549 /*
550 The executable memory consumption of the generated code can be retrieved by
551 this function. The returned value can be used for statistical purposes.
552
553 Before a successful code generation, this function returns with 0.
554 */
555 static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
556
557 /* Returns with non-zero if the feature or limitation type passed as its
558 argument is present on the current CPU.
559
560 Some features (e.g. floating point operations) require hardware (CPU)
561 support while others (e.g. move with update) are emulated if not available.
562 However even if a feature is emulated, specialized code paths can be faster
563 than the emulation. Some limitations are emulated as well so their general
564 case is supported but it has extra performance costs. */
565
566 /* [Not emulated] Floating-point support is available. */
567 #define SLJIT_HAS_FPU 0
568 /* [Limitation] Some registers are virtual registers. */
569 #define SLJIT_HAS_VIRTUAL_REGISTERS 1
570 /* [Emulated] Count leading zero is supported. */
571 #define SLJIT_HAS_CLZ 2
572 /* [Emulated] Conditional move is supported. */
573 #define SLJIT_HAS_CMOV 3
574
575 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
576 /* [Not emulated] SSE2 support is available on x86. */
577 #define SLJIT_HAS_SSE2 100
578 #endif
579
580 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type);
581
582 /* Instruction generation. Returns with any error code. If there is no
583 error, they return with SLJIT_SUCCESS. */
584
585 /*
586 The executable code is a function from the viewpoint of the C
587 language. The function calls must obey to the ABI (Application
588 Binary Interface) of the platform, which specify the purpose of
589 machine registers and stack handling among other things. The
590 sljit_emit_enter function emits the necessary instructions for
591 setting up a new context for the executable code and moves function
592 arguments to the saved registers. Furthermore the options argument
593 can be used to pass configuration options to the compiler. The
594 available options are listed before sljit_emit_enter.
595
596 The function argument list is the combination of SLJIT_ARGx
597 (SLJIT_DEF_ARG1) macros. Currently maximum 3 SW / UW
598 (SLJIT_ARG_TYPE_SW / LJIT_ARG_TYPE_UW) arguments are supported.
599 The first argument goes to SLJIT_S0, the second goes to SLJIT_S1
600 and so on. The register set used by the function must be declared
601 as well. The number of scratch and saved registers used by the
602 function must be passed to sljit_emit_enter. Only R registers
603 between R0 and "scratches" argument can be used later. E.g. if
604 "scratches" is set to 2, the scratch register set will be limited
605 to SLJIT_R0 and SLJIT_R1. The S registers and the floating point
606 registers ("fscratches" and "fsaveds") are specified in a similar
607 manner. The sljit_emit_enter is also capable of allocating a stack
608 space for local variables. The "local_size" argument contains the
609 size in bytes of this local area and its staring address is stored
610 in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
611 SLJIT_SP + local_size (exclusive) can be modified freely until
612 the function returns. The stack space is not initialized.
613
614 Note: the following conditions must met:
615 0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
616 0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
617 scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
618 0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
619 0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
620 fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
621
622 Note: every call of sljit_emit_enter and sljit_set_context
623 overwrites the previous context.
624 */
625
626 /* The absolute address returned by sljit_get_local_base with
627 offset 0 is aligned to sljit_f64. Otherwise it is aligned to sljit_sw. */
628 #define SLJIT_F64_ALIGNMENT 0x00000001
629
630 /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
631 #define SLJIT_MAX_LOCAL_SIZE 65536
632
633 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
634 sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
635 sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
636
637 /* The machine code has a context (which contains the local stack space size,
638 number of used registers, etc.) which initialized by sljit_emit_enter. Several
639 functions (like sljit_emit_return) requres this context to be able to generate
640 the appropriate code. However, some code fragments (like inline cache) may have
641 no normal entry point so their context is unknown for the compiler. Their context
642 can be provided to the compiler by the sljit_set_context function.
643
644 Note: every call of sljit_emit_enter and sljit_set_context overwrites
645 the previous context. */
646
647 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
648 sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
649 sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
650
651 /* Return from machine code. The op argument can be SLJIT_UNUSED which means the
652 function does not return with anything or any opcode between SLJIT_MOV and
653 SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
654 is SLJIT_UNUSED, otherwise see below the description about source and
655 destination arguments. */
656
657 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
658 sljit_s32 src, sljit_sw srcw);
659
660 /* Generating entry and exit points for fast call functions (see SLJIT_FAST_CALL).
661 Both sljit_emit_fast_enter and sljit_emit_fast_return functions preserve the
662 values of all registers and stack frame. The return address is stored in the
663 dst argument of sljit_emit_fast_enter, and this return address can be passed
664 to sljit_emit_fast_return to continue the execution after the fast call.
665
666 Fast calls are cheap operations (usually only a single call instruction is
667 emitted) but they do not preserve any registers. However the callee function
668 can freely use / update any registers and stack values which can be
669 efficiently exploited by various optimizations. Registers can be saved
670 manually by the callee function if needed.
671
672 Although returning to different address by sljit_emit_fast_return is possible,
673 this address usually cannot be predicted by the return address predictor of
674 modern CPUs which may reduce performance. Furthermore using sljit_emit_ijump
675 to return is also inefficient since return address prediction is usually
676 triggered by a specific form of ijump.
677
678 Flags: - (does not modify flags). */
679
680 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
681 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw);
682
683 /*
684 Source and destination operands for arithmetical instructions
685 imm - a simple immediate value (cannot be used as a destination)
686 reg - any of the registers (immediate argument must be 0)
687 [imm] - absolute immediate memory address
688 [reg+imm] - indirect memory address
689 [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
690 useful for (byte, half, int, sljit_sw) array access
691 (fully supported by both x86 and ARM architectures, and cheap operation on others)
692 */
693
694 /*
695 IMPORATNT NOTE: memory access MUST be naturally aligned except
696 SLJIT_UNALIGNED macro is defined and its value is 1.
697
698 length | alignment
699 ---------+-----------
700 byte | 1 byte (any physical_address is accepted)
701 half | 2 byte (physical_address & 0x1 == 0)
702 int | 4 byte (physical_address & 0x3 == 0)
703 word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
704 | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
705 pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
706 | on 64 bit machines)
707
708 Note: Different architectures have different addressing limitations.
709 A single instruction is enough for the following addressing
710 modes. Other adrressing modes are emulated by instruction
711 sequences. This information could help to improve those code
712 generators which focuses only a few architectures.
713
714 x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
715 [reg+(reg<<imm)] is supported
716 [imm], -2^32+1 <= imm <= 2^32-1 is supported
717 Write-back is not supported
718 arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
719 bytes, any halfs or floating point values)
720 [reg+(reg<<imm)] is supported
721 Write-back is supported
722 arm-t2: [reg+imm], -255 <= imm <= 4095
723 [reg+(reg<<imm)] is supported
724 Write back is supported only for [reg+imm], where -255 <= imm <= 255
725 arm64: [reg+imm], -256 <= imm <= 255, 0 <= aligned imm <= 4095 * alignment
726 [reg+(reg<<imm)] is supported
727 Write back is supported only for [reg+imm], where -256 <= imm <= 255
728 ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
729 signed load on 64 bit requires immediates divisible by 4.
730 [reg+imm] is not supported for signed 8 bit values.
731 [reg+reg] is supported
732 Write-back is supported except for one instruction: 32 bit signed
733 load with [reg+imm] addressing mode on 64 bit.
734 mips: [reg+imm], -65536 <= imm <= 65535
735 sparc: [reg+imm], -4096 <= imm <= 4095
736 [reg+reg] is supported
737 */
738
739 /* Macros for specifying operand types. */
740 #define SLJIT_MEM 0x80
741 #define SLJIT_MEM0() (SLJIT_MEM)
742 #define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
743 #define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8))
744 #define SLJIT_IMM 0x40
745
746 /* Set 32 bit operation mode (I) on 64 bit CPUs. This option is ignored on
747 32 bit CPUs. When this option is set for an arithmetic operation, only
748 the lower 32 bit of the input registers are used, and the CPU status
749 flags are set according to the 32 bit result. Although the higher 32 bit
750 of the input and the result registers are not defined by SLJIT, it might
751 be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
752 requirements all source registers must be the result of those operations
753 where this option was also set. Memory loads read 32 bit values rather
754 than 64 bit ones. In other words 32 bit and 64 bit operations cannot
755 be mixed. The only exception is SLJIT_MOV32 and SLJIT_MOVU32 whose source
756 register can hold any 32 or 64 bit value, and it is converted to a 32 bit
757 compatible format first. This conversion is free (no instructions are
758 emitted) on most CPUs. A 32 bit value can also be converted to a 64 bit
759 value by SLJIT_MOV_S32 (sign extension) or SLJIT_MOV_U32 (zero extension).
760
761 Note: memory addressing always uses 64 bit values on 64 bit systems so
762 the result of a 32 bit operation must not be used with SLJIT_MEMx
763 macros.
764
765 This option is part of the instruction name, so there is no need to
766 manually set it. E.g:
767
768 SLJIT_ADD32 == (SLJIT_ADD | SLJIT_I32_OP) */
769 #define SLJIT_I32_OP 0x100
770
771 /* Set F32 (single) precision mode for floating-point computation. This
772 option is similar to SLJIT_I32_OP, it just applies to floating point
773 registers. When this option is passed, the CPU performs 32 bit floating
774 point operations, rather than 64 bit one. Similar to SLJIT_I32_OP, all
775 register arguments must be the result of those operations where this
776 option was also set.
777
778 This option is part of the instruction name, so there is no need to
779 manually set it. E.g:
780
781 SLJIT_MOV_F32 = (SLJIT_MOV_F64 | SLJIT_F32_OP)
782 */
783 #define SLJIT_F32_OP SLJIT_I32_OP
784
785 /* Many CPUs (x86, ARM, PPC) have status flags which can be set according
786 to the result of an operation. Other CPUs (MIPS) do not have status
787 flags, and results must be stored in registers. To cover both architecture
788 types efficiently only two flags are defined by SLJIT:
789
790 * Zero (equal) flag: it is set if the result is zero
791 * Variable flag: its value is defined by the last arithmetic operation
792
793 SLJIT instructions can set any or both of these flags. The value of
794 these flags is undefined if the instruction does not specify their value.
795 The description of each instruction contains the list of allowed flag
796 types.
797
798 Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence
799
800 sljit_op2(..., SLJIT_ADD, ...)
801 Both the zero and variable flags are undefined so they can
802 have any value after the operation is completed.
803
804 sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
805 Sets the zero flag if the result is zero, clears it otherwise.
806 The variable flag is undefined.
807
808 sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
809 Sets the variable flag if an integer overflow occurs, clears
810 it otherwise. The zero flag is undefined.
811
812 sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
813 Sets the zero flag if the result is zero, clears it otherwise.
814 Sets the variable flag if unsigned overflow (carry) occurs,
815 clears it otherwise.
816
817 If an instruction (e.g. SLJIT_MOV) does not modify flags the flags are
818 unchanged.
819
820 Using these flags can reduce the number of emitted instructions. E.g. a
821 fast loop can be implemented by decreasing a counter register and set the
822 zero flag to jump back if the counter register has not reached zero.
823
824 Motivation: although CPUs can set a large number of flags, usually their
825 values are ignored or only one of them is used. Emulating a large number
826 of flags on systems without flag register is complicated so SLJIT
827 instructions must specify the flag they want to use and only that flag
828 will be emulated. The last arithmetic instruction can be repeated if
829 multiple flags need to be checked.
830 */
831
832 /* Set Zero status flag. */
833 #define SLJIT_SET_Z 0x0200
834 /* Set the variable status flag if condition is true.
835 See comparison types. */
836 #define SLJIT_SET(condition) ((condition) << 10)
837
838 /* Notes:
839 - you cannot postpone conditional jump instructions except if noted that
840 the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
841 - flag combinations: '|' means 'logical or'. */
842
843 /* Starting index of opcodes for sljit_emit_op0. */
844 #define SLJIT_OP0_BASE 0
845
846 /* Flags: - (does not modify flags)
847 Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
848 It falls back to SLJIT_NOP in those cases. */
849 #define SLJIT_BREAKPOINT (SLJIT_OP0_BASE + 0)
850 /* Flags: - (does not modify flags)
851 Note: may or may not cause an extra cycle wait
852 it can even decrease the runtime in a few cases. */
853 #define SLJIT_NOP (SLJIT_OP0_BASE + 1)
854 /* Flags: - (may destroy flags)
855 Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
856 Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
857 #define SLJIT_LMUL_UW (SLJIT_OP0_BASE + 2)
858 /* Flags: - (may destroy flags)
859 Signed multiplication of SLJIT_R0 and SLJIT_R1.
860 Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
861 #define SLJIT_LMUL_SW (SLJIT_OP0_BASE + 3)
862 /* Flags: - (may destroy flags)
863 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
864 The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
865 Note: if SLJIT_R1 is 0, the behaviour is undefined. */
866 #define SLJIT_DIVMOD_UW (SLJIT_OP0_BASE + 4)
867 #define SLJIT_DIVMOD_U32 (SLJIT_DIVMOD_UW | SLJIT_I32_OP)
868 /* Flags: - (may destroy flags)
869 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
870 The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
871 Note: if SLJIT_R1 is 0, the behaviour is undefined.
872 Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
873 the behaviour is undefined. */
874 #define SLJIT_DIVMOD_SW (SLJIT_OP0_BASE + 5)
875 #define SLJIT_DIVMOD_S32 (SLJIT_DIVMOD_SW | SLJIT_I32_OP)
876 /* Flags: - (may destroy flags)
877 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
878 The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
879 Note: if SLJIT_R1 is 0, the behaviour is undefined. */
880 #define SLJIT_DIV_UW (SLJIT_OP0_BASE + 6)
881 #define SLJIT_DIV_U32 (SLJIT_DIV_UW | SLJIT_I32_OP)
882 /* Flags: - (may destroy flags)
883 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
884 The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
885 Note: if SLJIT_R1 is 0, the behaviour is undefined.
886 Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
887 the behaviour is undefined. */
888 #define SLJIT_DIV_SW (SLJIT_OP0_BASE + 7)
889 #define SLJIT_DIV_S32 (SLJIT_DIV_SW | SLJIT_I32_OP)
890
891 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);
892
893 /* Starting index of opcodes for sljit_emit_op1. */
894 #define SLJIT_OP1_BASE 32
895
896 /* The MOV instruction transfers data from source to destination.
897
898 MOV instruction suffixes:
899
900 U8 - unsigned 8 bit data transfer
901 S8 - signed 8 bit data transfer
902 U16 - unsigned 16 bit data transfer
903 S16 - signed 16 bit data transfer
904 U32 - unsigned int (32 bit) data transfer
905 S32 - signed int (32 bit) data transfer
906 P - pointer (sljit_p) data transfer
907
908 If the destination of a MOV instruction is SLJIT_UNUSED and the source
909 operand is a memory address the compiler emits a prefetch instruction
910 if this instruction is supported by the current CPU. Higher data sizes
911 bring the data closer to the core: a MOV with word size loads the data
912 into a higher level cache than a byte size. Otherwise the type does not
913 affect the prefetch instruction. Furthermore a prefetch instruction
914 never fails, so it can be used to prefetch a data from an address and
915 check whether that address is NULL afterwards.
916 */
917
918 /* Flags: - (does not modify flags) */
919 #define SLJIT_MOV (SLJIT_OP1_BASE + 0)
920 /* Flags: - (does not modify flags) */
921 #define SLJIT_MOV_U8 (SLJIT_OP1_BASE + 1)
922 #define SLJIT_MOV32_U8 (SLJIT_MOV_U8 | SLJIT_I32_OP)
923 /* Flags: - (does not modify flags) */
924 #define SLJIT_MOV_S8 (SLJIT_OP1_BASE + 2)
925 #define SLJIT_MOV32_S8 (SLJIT_MOV_S8 | SLJIT_I32_OP)
926 /* Flags: - (does not modify flags) */
927 #define SLJIT_MOV_U16 (SLJIT_OP1_BASE + 3)
928 #define SLJIT_MOV32_U16 (SLJIT_MOV_U16 | SLJIT_I32_OP)
929 /* Flags: - (does not modify flags) */
930 #define SLJIT_MOV_S16 (SLJIT_OP1_BASE + 4)
931 #define SLJIT_MOV32_S16 (SLJIT_MOV_S16 | SLJIT_I32_OP)
932 /* Flags: - (does not modify flags)
933 Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
934 #define SLJIT_MOV_U32 (SLJIT_OP1_BASE + 5)
935 /* Flags: - (does not modify flags)
936 Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
937 #define SLJIT_MOV_S32 (SLJIT_OP1_BASE + 6)
938 /* Flags: - (does not modify flags) */
939 #define SLJIT_MOV32 (SLJIT_MOV_S32 | SLJIT_I32_OP)
940 /* Flags: - (does not modify flags)
941 Note: load a pointer sized data, useful on x32 (a 32 bit mode on x86-64
942 where all x64 features are available, e.g. 16 register) or similar
943 compiling modes */
944 #define SLJIT_MOV_P (SLJIT_OP1_BASE + 7)
945 /* Flags: Z
946 Note: immediate source argument is not supported */
947 #define SLJIT_NOT (SLJIT_OP1_BASE + 8)
948 #define SLJIT_NOT32 (SLJIT_NOT | SLJIT_I32_OP)
949 /* Flags: Z | OVERFLOW
950 Note: immediate source argument is not supported */
951 #define SLJIT_NEG (SLJIT_OP1_BASE + 9)
952 #define SLJIT_NEG32 (SLJIT_NEG | SLJIT_I32_OP)
953 /* Count leading zeroes
954 Flags: - (may destroy flags)
955 Note: immediate source argument is not supported */
956 #define SLJIT_CLZ (SLJIT_OP1_BASE + 10)
957 #define SLJIT_CLZ32 (SLJIT_CLZ | SLJIT_I32_OP)
958
959 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
960 sljit_s32 dst, sljit_sw dstw,
961 sljit_s32 src, sljit_sw srcw);
962
963 /* Starting index of opcodes for sljit_emit_op2. */
964 #define SLJIT_OP2_BASE 96
965
966 /* Flags: Z | OVERFLOW | CARRY */
967 #define SLJIT_ADD (SLJIT_OP2_BASE + 0)
968 #define SLJIT_ADD32 (SLJIT_ADD | SLJIT_I32_OP)
969 /* Flags: CARRY */
970 #define SLJIT_ADDC (SLJIT_OP2_BASE + 1)
971 #define SLJIT_ADDC32 (SLJIT_ADDC | SLJIT_I32_OP)
972 /* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
973 SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
974 SIG_LESS_EQUAL | CARRY */
975 #define SLJIT_SUB (SLJIT_OP2_BASE + 2)
976 #define SLJIT_SUB32 (SLJIT_SUB | SLJIT_I32_OP)
977 /* Flags: CARRY */
978 #define SLJIT_SUBC (SLJIT_OP2_BASE + 3)
979 #define SLJIT_SUBC32 (SLJIT_SUBC | SLJIT_I32_OP)
980 /* Note: integer mul
981 Flags: MUL_OVERFLOW */
982 #define SLJIT_MUL (SLJIT_OP2_BASE + 4)
983 #define SLJIT_MUL32 (SLJIT_MUL | SLJIT_I32_OP)
984 /* Flags: Z */
985 #define SLJIT_AND (SLJIT_OP2_BASE + 5)
986 #define SLJIT_AND32 (SLJIT_AND | SLJIT_I32_OP)
987 /* Flags: Z */
988 #define SLJIT_OR (SLJIT_OP2_BASE + 6)
989 #define SLJIT_OR32 (SLJIT_OR | SLJIT_I32_OP)
990 /* Flags: Z */
991 #define SLJIT_XOR (SLJIT_OP2_BASE + 7)
992 #define SLJIT_XOR32 (SLJIT_XOR | SLJIT_I32_OP)
993 /* Flags: Z
994 Let bit_length be the length of the shift operation: 32 or 64.
995 If src2 is immediate, src2w is masked by (bit_length - 1).
996 Otherwise, if the content of src2 is outside the range from 0
997 to bit_length - 1, the result is undefined. */
998 #define SLJIT_SHL (SLJIT_OP2_BASE + 8)
999 #define SLJIT_SHL32 (SLJIT_SHL | SLJIT_I32_OP)
1000 /* Flags: Z
1001 Let bit_length be the length of the shift operation: 32 or 64.
1002 If src2 is immediate, src2w is masked by (bit_length - 1).
1003 Otherwise, if the content of src2 is outside the range from 0
1004 to bit_length - 1, the result is undefined. */
1005 #define SLJIT_LSHR (SLJIT_OP2_BASE + 9)
1006 #define SLJIT_LSHR32 (SLJIT_LSHR | SLJIT_I32_OP)
1007 /* Flags: Z
1008 Let bit_length be the length of the shift operation: 32 or 64.
1009 If src2 is immediate, src2w is masked by (bit_length - 1).
1010 Otherwise, if the content of src2 is outside the range from 0
1011 to bit_length - 1, the result is undefined. */
1012 #define SLJIT_ASHR (SLJIT_OP2_BASE + 10)
1013 #define SLJIT_ASHR32 (SLJIT_ASHR | SLJIT_I32_OP)
1014
1015 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
1016 sljit_s32 dst, sljit_sw dstw,
1017 sljit_s32 src1, sljit_sw src1w,
1018 sljit_s32 src2, sljit_sw src2w);
1019
1020 /* Starting index of opcodes for sljit_emit_fop1. */
1021 #define SLJIT_FOP1_BASE 128
1022
1023 /* Flags: - (does not modify flags) */
1024 #define SLJIT_MOV_F64 (SLJIT_FOP1_BASE + 0)
1025 #define SLJIT_MOV_F32 (SLJIT_MOV_F64 | SLJIT_F32_OP)
1026 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
1027 SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
1028 Rounding mode when the destination is W or I: round towards zero. */
1029 /* Flags: - (does not modify flags) */
1030 #define SLJIT_CONV_F64_FROM_F32 (SLJIT_FOP1_BASE + 1)
1031 #define SLJIT_CONV_F32_FROM_F64 (SLJIT_CONV_F64_FROM_F32 | SLJIT_F32_OP)
1032 /* Flags: - (does not modify flags) */
1033 #define SLJIT_CONV_SW_FROM_F64 (SLJIT_FOP1_BASE + 2)
1034 #define SLJIT_CONV_SW_FROM_F32 (SLJIT_CONV_SW_FROM_F64 | SLJIT_F32_OP)
1035 /* Flags: - (does not modify flags) */
1036 #define SLJIT_CONV_S32_FROM_F64 (SLJIT_FOP1_BASE + 3)
1037 #define SLJIT_CONV_S32_FROM_F32 (SLJIT_CONV_S32_FROM_F64 | SLJIT_F32_OP)
1038 /* Flags: - (does not modify flags) */
1039 #define SLJIT_CONV_F64_FROM_SW (SLJIT_FOP1_BASE + 4)
1040 #define SLJIT_CONV_F32_FROM_SW (SLJIT_CONV_F64_FROM_SW | SLJIT_F32_OP)
1041 /* Flags: - (does not modify flags) */
1042 #define SLJIT_CONV_F64_FROM_S32 (SLJIT_FOP1_BASE + 5)
1043 #define SLJIT_CONV_F32_FROM_S32 (SLJIT_CONV_F64_FROM_S32 | SLJIT_F32_OP)
1044 /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
1045 Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
1046 #define SLJIT_CMP_F64 (SLJIT_FOP1_BASE + 6)
1047 #define SLJIT_CMP_F32 (SLJIT_CMP_F64 | SLJIT_F32_OP)
1048 /* Flags: - (does not modify flags) */
1049 #define SLJIT_NEG_F64 (SLJIT_FOP1_BASE + 7)
1050 #define SLJIT_NEG_F32 (SLJIT_NEG_F64 | SLJIT_F32_OP)
1051 /* Flags: - (does not modify flags) */
1052 #define SLJIT_ABS_F64 (SLJIT_FOP1_BASE + 8)
1053 #define SLJIT_ABS_F32 (SLJIT_ABS_F64 | SLJIT_F32_OP)
1054
1055 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
1056 sljit_s32 dst, sljit_sw dstw,
1057 sljit_s32 src, sljit_sw srcw);
1058
1059 /* Starting index of opcodes for sljit_emit_fop2. */
1060 #define SLJIT_FOP2_BASE 160
1061
1062 /* Flags: - (does not modify flags) */
1063 #define SLJIT_ADD_F64 (SLJIT_FOP2_BASE + 0)
1064 #define SLJIT_ADD_F32 (SLJIT_ADD_F64 | SLJIT_F32_OP)
1065 /* Flags: - (does not modify flags) */
1066 #define SLJIT_SUB_F64 (SLJIT_FOP2_BASE + 1)
1067 #define SLJIT_SUB_F32 (SLJIT_SUB_F64 | SLJIT_F32_OP)
1068 /* Flags: - (does not modify flags) */
1069 #define SLJIT_MUL_F64 (SLJIT_FOP2_BASE + 2)
1070 #define SLJIT_MUL_F32 (SLJIT_MUL_F64 | SLJIT_F32_OP)
1071 /* Flags: - (does not modify flags) */
1072 #define SLJIT_DIV_F64 (SLJIT_FOP2_BASE + 3)
1073 #define SLJIT_DIV_F32 (SLJIT_DIV_F64 | SLJIT_F32_OP)
1074
1075 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
1076 sljit_s32 dst, sljit_sw dstw,
1077 sljit_s32 src1, sljit_sw src1w,
1078 sljit_s32 src2, sljit_sw src2w);
1079
1080 /* Label and jump instructions. */
1081
1082 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
1083
1084 /* Invert (negate) conditional type: xor (^) with 0x1 */
1085
1086 /* Integer comparison types. */
1087 #define SLJIT_EQUAL 0
1088 #define SLJIT_EQUAL32 (SLJIT_EQUAL | SLJIT_I32_OP)
1089 #define SLJIT_ZERO 0
1090 #define SLJIT_ZERO32 (SLJIT_ZERO | SLJIT_I32_OP)
1091 #define SLJIT_NOT_EQUAL 1
1092 #define SLJIT_NOT_EQUAL32 (SLJIT_NOT_EQUAL | SLJIT_I32_OP)
1093 #define SLJIT_NOT_ZERO 1
1094 #define SLJIT_NOT_ZERO32 (SLJIT_NOT_ZERO | SLJIT_I32_OP)
1095
1096 #define SLJIT_LESS 2
1097 #define SLJIT_LESS32 (SLJIT_LESS | SLJIT_I32_OP)
1098 #define SLJIT_SET_LESS SLJIT_SET(SLJIT_LESS)
1099 #define SLJIT_GREATER_EQUAL 3
1100 #define SLJIT_GREATER_EQUAL32 (SLJIT_GREATER_EQUAL | SLJIT_I32_OP)
1101 #define SLJIT_SET_GREATER_EQUAL SLJIT_SET(SLJIT_GREATER_EQUAL)
1102 #define SLJIT_GREATER 4
1103 #define SLJIT_GREATER32 (SLJIT_GREATER | SLJIT_I32_OP)
1104 #define SLJIT_SET_GREATER SLJIT_SET(SLJIT_GREATER)
1105 #define SLJIT_LESS_EQUAL 5
1106 #define SLJIT_LESS_EQUAL32 (SLJIT_LESS_EQUAL | SLJIT_I32_OP)
1107 #define SLJIT_SET_LESS_EQUAL SLJIT_SET(SLJIT_LESS_EQUAL)
1108 #define SLJIT_SIG_LESS 6
1109 #define SLJIT_SIG_LESS32 (SLJIT_SIG_LESS | SLJIT_I32_OP)
1110 #define SLJIT_SET_SIG_LESS SLJIT_SET(SLJIT_SIG_LESS)
1111 #define SLJIT_SIG_GREATER_EQUAL 7
1112 #define SLJIT_SIG_GREATER_EQUAL32 (SLJIT_SIG_GREATER_EQUAL | SLJIT_I32_OP)
1113 #define SLJIT_SET_SIG_GREATER_EQUAL SLJIT_SET(SLJIT_SIG_GREATER_EQUAL)
1114 #define SLJIT_SIG_GREATER 8
1115 #define SLJIT_SIG_GREATER32 (SLJIT_SIG_GREATER | SLJIT_I32_OP)
1116 #define SLJIT_SET_SIG_GREATER SLJIT_SET(SLJIT_SIG_GREATER)
1117 #define SLJIT_SIG_LESS_EQUAL 9
1118 #define SLJIT_SIG_LESS_EQUAL32 (SLJIT_SIG_LESS_EQUAL | SLJIT_I32_OP)
1119 #define SLJIT_SET_SIG_LESS_EQUAL SLJIT_SET(SLJIT_SIG_LESS_EQUAL)
1120
1121 #define SLJIT_OVERFLOW 10
1122 #define SLJIT_OVERFLOW32 (SLJIT_OVERFLOW | SLJIT_I32_OP)
1123 #define SLJIT_SET_OVERFLOW SLJIT_SET(SLJIT_OVERFLOW)
1124 #define SLJIT_NOT_OVERFLOW 11
1125 #define SLJIT_NOT_OVERFLOW32 (SLJIT_NOT_OVERFLOW | SLJIT_I32_OP)
1126
1127 #define SLJIT_MUL_OVERFLOW 12
1128 #define SLJIT_MUL_OVERFLOW32 (SLJIT_MUL_OVERFLOW | SLJIT_I32_OP)
1129 #define SLJIT_SET_MUL_OVERFLOW SLJIT_SET(SLJIT_MUL_OVERFLOW)
1130 #define SLJIT_MUL_NOT_OVERFLOW 13
1131 #define SLJIT_MUL_NOT_OVERFLOW32 (SLJIT_MUL_NOT_OVERFLOW | SLJIT_I32_OP)
1132
1133 /* There is no SLJIT_CARRY or SLJIT_NOT_CARRY. */
1134 #define SLJIT_SET_CARRY SLJIT_SET(14)
1135
1136 /* Floating point comparison types. */
1137 #define SLJIT_EQUAL_F64 16
1138 #define SLJIT_EQUAL_F32 (SLJIT_EQUAL_F64 | SLJIT_F32_OP)
1139 #define SLJIT_SET_EQUAL_F SLJIT_SET(SLJIT_EQUAL_F64)
1140 #define SLJIT_NOT_EQUAL_F64 17
1141 #define SLJIT_NOT_EQUAL_F32 (SLJIT_NOT_EQUAL_F64 | SLJIT_F32_OP)
1142 #define SLJIT_SET_NOT_EQUAL_F SLJIT_SET(SLJIT_NOT_EQUAL_F64)
1143 #define SLJIT_LESS_F64 18
1144 #define SLJIT_LESS_F32 (SLJIT_LESS_F64 | SLJIT_F32_OP)
1145 #define SLJIT_SET_LESS_F SLJIT_SET(SLJIT_LESS_F64)
1146 #define SLJIT_GREATER_EQUAL_F64 19
1147 #define SLJIT_GREATER_EQUAL_F32 (SLJIT_GREATER_EQUAL_F64 | SLJIT_F32_OP)
1148 #define SLJIT_SET_GREATER_EQUAL_F SLJIT_SET(SLJIT_GREATER_EQUAL_F64)
1149 #define SLJIT_GREATER_F64 20
1150 #define SLJIT_GREATER_F32 (SLJIT_GREATER_F64 | SLJIT_F32_OP)
1151 #define SLJIT_SET_GREATER_F SLJIT_SET(SLJIT_GREATER_F64)
1152 #define SLJIT_LESS_EQUAL_F64 21
1153 #define SLJIT_LESS_EQUAL_F32 (SLJIT_LESS_EQUAL_F64 | SLJIT_F32_OP)
1154 #define SLJIT_SET_LESS_EQUAL_F SLJIT_SET(SLJIT_LESS_EQUAL_F64)
1155 #define SLJIT_UNORDERED_F64 22
1156 #define SLJIT_UNORDERED_F32 (SLJIT_UNORDERED_F64 | SLJIT_F32_OP)
1157 #define SLJIT_SET_UNORDERED_F SLJIT_SET(SLJIT_UNORDERED_F64)
1158 #define SLJIT_ORDERED_F64 23
1159 #define SLJIT_ORDERED_F32 (SLJIT_ORDERED_F64 | SLJIT_F32_OP)
1160 #define SLJIT_SET_ORDERED_F SLJIT_SET(SLJIT_ORDERED_F64)
1161
1162 /* Unconditional jump types. */
1163 #define SLJIT_JUMP 24
1164 /* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
1165 #define SLJIT_FAST_CALL 25
1166 /* Called function must be declared with the SLJIT_FUNC attribute. */
1167 #define SLJIT_CALL 26
1168 /* Called function must be declared with cdecl attribute.
1169 This is the default attribute for C functions. */
1170 #define SLJIT_CALL_CDECL 27
1171
1172 /* The target can be changed during runtime (see: sljit_set_jump_addr). */
1173 #define SLJIT_REWRITABLE_JUMP 0x1000
1174
1175 /* Emit a jump instruction. The destination is not set, only the type of the jump.
1176 type must be between SLJIT_EQUAL and SLJIT_FAST_CALL
1177 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1178
1179 Flags: does not modify flags. */
1180 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
1181
1182 /* Emit a C compiler (ABI) compatible function call.
1183 type must be SLJIT_CALL or SLJIT_CALL_CDECL
1184 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1185 arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1186
1187 Flags: destroy all flags. */
1188 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types);
1189
1190 /* Basic arithmetic comparison. In most architectures it is implemented as
1191 an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
1192 appropriate flags) followed by a sljit_emit_jump. However some
1193 architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
1194 It is suggested to use this comparison form when appropriate.
1195 type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
1196 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1197
1198 Flags: may destroy flags. */
1199 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
1200 sljit_s32 src1, sljit_sw src1w,
1201 sljit_s32 src2, sljit_sw src2w);
1202
1203 /* Basic floating point comparison. In most architectures it is implemented as
1204 an SLJIT_FCMP operation (setting appropriate flags) followed by a
1205 sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1206 special optimizations here. It is suggested to use this comparison form
1207 when appropriate.
1208 type must be between SLJIT_EQUAL_F64 and SLJIT_ORDERED_F32
1209 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1210 Flags: destroy flags.
1211 Note: if either operand is NaN, the behaviour is undefined for
1212 types up to SLJIT_S_LESS_EQUAL. */
1213 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
1214 sljit_s32 src1, sljit_sw src1w,
1215 sljit_s32 src2, sljit_sw src2w);
1216
1217 /* Set the destination of the jump to this label. */
1218 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1219 /* Set the destination address of the jump to this label. */
1220 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1221
1222 /* Emit an indirect jump or fast call.
1223 Direct form: set src to SLJIT_IMM() and srcw to the address
1224 Indirect form: any other valid addressing mode
1225 type must be between SLJIT_JUMP and SLJIT_FAST_CALL
1226
1227 Flags: does not modify flags. */
1228 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
1229
1230 /* Emit a C compiler (ABI) compatible function call.
1231 Direct form: set src to SLJIT_IMM() and srcw to the address
1232 Indirect form: any other valid addressing mode
1233 type must be SLJIT_CALL or SLJIT_CALL_CDECL
1234 arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1235
1236 Flags: destroy all flags. */
1237 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw);
1238
1239 /* Perform the operation using the conditional flags as the second argument.
1240 Type must always be between SLJIT_EQUAL and SLJIT_ORDERED_F64. The value
1241 represented by the type is 1, if the condition represented by the type
1242 is fulfilled, and 0 otherwise.
1243
1244 If op == SLJIT_MOV, SLJIT_MOV32:
1245 Set dst to the value represented by the type (0 or 1).
1246 Flags: - (does not modify flags)
1247 If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
1248 Performs the binary operation using dst as the first, and the value
1249 represented by type as the second argument. Result is written into dst.
1250 Flags: Z (may destroy flags) */
1251 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
1252 sljit_s32 dst, sljit_sw dstw,
1253 sljit_s32 type);
1254
1255 /* Emit a conditional mov instruction which moves source to destination,
1256 if the condition is satisfied. Unlike other arithmetic operations this
1257 instruction does not support memory access.
1258
1259 type must be between SLJIT_EQUAL and SLJIT_ORDERED_F64
1260 dst_reg must be a valid register and it can be combined
1261 with SLJIT_I32_OP to perform a 32 bit arithmetic operation
1262 src must be register or immediate (SLJIT_IMM)
1263
1264 Flags: - (does not modify flags) */
1265 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type,
1266 sljit_s32 dst_reg,
1267 sljit_s32 src, sljit_sw srcw);
1268
1269 /* The following flags are used by sljit_emit_mem() and sljit_emit_fmem(). */
1270
1271 /* When SLJIT_MEM_SUPP is passed, no instructions are emitted.
1272 Instead the function returns with SLJIT_SUCCESS if the instruction
1273 form is supported and SLJIT_ERR_UNSUPPORTED otherwise. This flag
1274 allows runtime checking of available instruction forms. */
1275 #define SLJIT_MEM_SUPP 0x0200
1276 /* Memory load operation. This is the default. */
1277 #define SLJIT_MEM_LOAD 0x0000
1278 /* Memory store operation. */
1279 #define SLJIT_MEM_STORE 0x0400
1280 /* Base register is updated before the memory access. */
1281 #define SLJIT_MEM_PRE 0x0800
1282 /* Base register is updated after the memory access. */
1283 #define SLJIT_MEM_POST 0x1000
1284
1285 /* Emit a single memory load or store with update instruction. When the
1286 requested instruction form is not supported by the CPU, it returns
1287 with SLJIT_ERR_UNSUPPORTED instead of emulating the instruction. This
1288 allows specializing tight loops based on the supported instruction
1289 forms (see SLJIT_MEM_SUPP flag).
1290
1291 type must be between SLJIT_MOV and SLJIT_MOV_P and can be
1292 combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1293 or SLJIT_MEM_POST must be specified.
1294 reg is the source or destination register, and must be
1295 different from the base register of the mem operand
1296 mem must be a SLJIT_MEM1() or SLJIT_MEM2() operand
1297
1298 Flags: - (does not modify flags) */
1299 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type,
1300 sljit_s32 reg,
1301 sljit_s32 mem, sljit_sw memw);
1302
1303 /* Same as sljit_emit_mem except the followings:
1304
1305 type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
1306 combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1307 or SLJIT_MEM_POST must be specified.
1308 freg is the source or destination floating point register */
1309
1310 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem(struct sljit_compiler *compiler, sljit_s32 type,
1311 sljit_s32 freg,
1312 sljit_s32 mem, sljit_sw memw);
1313
1314 /* Copies the base address of SLJIT_SP + offset to dst. The offset can be
1315 anything to negate the effect of relative addressing. For example if an
1316 array of sljit_sw values is stored on the stack from offset 0x40, and R0
1317 contains the offset of an array item plus 0x120, this item can be
1318 overwritten by two SLJIT instructions:
1319
1320 sljit_get_local_base(compiler, SLJIT_R1, 0, 0x40 - 0x120);
1321 sljit_emit_op1(compiler, SLJIT_MOV, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_IMM, 0x5);
1322
1323 Flags: - (may destroy flags) */
1324 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
1325
1326 /* Store a value that can be changed runtime (see: sljit_get_const_addr / sljit_set_const)
1327 Flags: - (does not modify flags) */
1328 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
1329
1330 /* Store the value of a label (see: sljit_set_put_label)
1331 Flags: - (does not modify flags) */
1332 SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
1333
1334 /* Set the value stored by put_label to this label. */
1335 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_put_label(struct sljit_put_label *put_label, struct sljit_label *label);
1336
1337 /* After the code generation the address for label, jump and const instructions
1338 are computed. Since these structures are freed by sljit_free_compiler, the
1339 addresses must be preserved by the user program elsewere. */
1340 static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
1341 static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
1342 static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
1343
1344 /* Only the address and executable offset are required to perform dynamic
1345 code modifications. See sljit_get_executable_offset function. */
1346 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset);
1347 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset);
1348
1349 /* --------------------------------------------------------------------- */
1350 /* Miscellaneous utility functions */
1351 /* --------------------------------------------------------------------- */
1352
1353 #define SLJIT_MAJOR_VERSION 0
1354 #define SLJIT_MINOR_VERSION 94
1355
1356 /* Get the human readable name of the platform. Can be useful on platforms
1357 like ARM, where ARM and Thumb2 functions can be mixed, and
1358 it is useful to know the type of the code generator. */
1359 SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);
1360
1361 /* Portable helper function to get an offset of a member. */
1362 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1363
1364 #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
1365 /* This global lock is useful to compile common functions. */
1366 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_grab_lock(void);
1367 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_release_lock(void);
1368 #endif
1369
1370 #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
1371
1372 /* The sljit_stack structure and its manipulation functions provides
1373 an implementation for a top-down stack. The stack top is stored
1374 in the end field of the sljit_stack structure and the stack goes
1375 down to the min_start field, so the memory region reserved for
1376 this stack is between min_start (inclusive) and end (exclusive)
1377 fields. However the application can only use the region between
1378 start (inclusive) and end (exclusive) fields. The sljit_stack_resize
1379 function can be used to extend this region up to min_start.
1380
1381 This feature uses the "address space reserve" feature of modern
1382 operating systems. Instead of allocating a large memory block
1383 applications can allocate a small memory region and extend it
1384 later without moving the content of the memory area. Therefore
1385 after a successful resize by sljit_stack_resize all pointers into
1386 this region are still valid.
1387
1388 Note:
1389 this structure may not be supported by all operating systems.
1390 end and max_limit fields are aligned to PAGE_SIZE bytes (usually
1391 4 Kbyte or more).
1392 stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more. */
1393
1394 struct sljit_stack {
1395 /* User data, anything can be stored here.
1396 Initialized to the same value as the end field. */
1397 sljit_u8 *top;
1398 /* These members are read only. */
1399 /* End address of the stack */
1400 sljit_u8 *end;
1401 /* Current start address of the stack. */
1402 sljit_u8 *start;
1403 /* Lowest start address of the stack. */
1404 sljit_u8 *min_start;
1405 };
1406
1407 /* Allocates a new stack. Returns NULL if unsuccessful.
1408 Note: see sljit_create_compiler for the explanation of allocator_data. */
1409 SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_FUNC sljit_allocate_stack(sljit_uw start_size, sljit_uw max_size, void *allocator_data);
1410 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
1411
1412 /* Can be used to increase (extend) or decrease (shrink) the stack
1413 memory area. Returns with new_start if successful and NULL otherwise.
1414 It always fails if new_start is less than min_start or greater or equal
1415 than end fields. The fields of the stack are not changed if the returned
1416 value is NULL (the current memory content is never lost). */
1417 SLJIT_API_FUNC_ATTRIBUTE sljit_u8 *SLJIT_FUNC sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_start);
1418
1419 #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
1420
1421 #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
1422
1423 /* Get the entry address of a given function. */
1424 #define SLJIT_FUNC_OFFSET(func_name) ((sljit_sw)func_name)
1425
1426 #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1427
1428 /* All JIT related code should be placed in the same context (library, binary, etc.). */
1429
1430 #define SLJIT_FUNC_OFFSET(func_name) (*(sljit_sw*)(void*)func_name)
1431
1432 /* For powerpc64, the function pointers point to a context descriptor. */
1433 struct sljit_function_context {
1434 sljit_sw addr;
1435 sljit_sw r2;
1436 sljit_sw r11;
1437 };
1438
1439 /* Fill the context arguments using the addr and the function.
1440 If func_ptr is NULL, it will not be set to the address of context
1441 If addr is NULL, the function address also comes from the func pointer. */
1442 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
1443
1444 #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1445
1446 #if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
1447 /* Free unused executable memory. The allocator keeps some free memory
1448 around to reduce the number of OS executable memory allocations.
1449 This improves performance since these calls are costly. However
1450 it is sometimes desired to free all unused memory regions, e.g.
1451 before the application terminates. */
1452 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void);
1453 #endif
1454
1455 /* --------------------------------------------------------------------- */
1456 /* CPU specific functions */
1457 /* --------------------------------------------------------------------- */
1458
1459 /* The following function is a helper function for sljit_emit_op_custom.
1460 It returns with the real machine register index ( >=0 ) of any SLJIT_R,
1461 SLJIT_S and SLJIT_SP registers.
1462
1463 Note: it returns with -1 for virtual registers (only on x86-32). */
1464
1465 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg);
1466
1467 /* The following function is a helper function for sljit_emit_op_custom.
1468 It returns with the real machine register index of any SLJIT_FLOAT register.
1469
1470 Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
1471
1472 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg);
1473
1474 /* Any instruction can be inserted into the instruction stream by
1475 sljit_emit_op_custom. It has a similar purpose as inline assembly.
1476 The size parameter must match to the instruction size of the target
1477 architecture:
1478
1479 x86: 0 < size <= 15. The instruction argument can be byte aligned.
1480 Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
1481 if size == 4, the instruction argument must be 4 byte aligned.
1482 Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
1483
1484 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
1485 void *instruction, sljit_s32 size);
1486
1487 /* Define the currently available CPU status flags. It is usually used after an
1488 sljit_emit_op_custom call to define which flags are set. */
1489
1490 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler,
1491 sljit_s32 current_flags);
1492
1493 #endif /* _SLJIT_LIR_H_ */

  ViewVC Help
Powered by ViewVC 1.1.5