/[pcre]/code/trunk/sljit/sljitLir.h
ViewVC logotype

Contents of /code/trunk/sljit/sljitLir.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1506 - (show annotations)
Sat Sep 27 06:25:26 2014 UTC (4 years, 10 months ago) by zherczeg
File MIME type: text/plain
File size: 52786 byte(s)
Major JIT compiler update.
1 /*
2 * Stack-less Just-In-Time compiler
3 *
4 * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without modification, are
7 * permitted provided that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright notice, this list of
10 * conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13 * of conditions and the following disclaimer in the documentation and/or other materials
14 * provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #ifndef _SLJIT_LIR_H_
28 #define _SLJIT_LIR_H_
29
30 /*
31 ------------------------------------------------------------------------
32 Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33 ------------------------------------------------------------------------
34
35 Short description
36 Advantages:
37 - The execution can be continued from any LIR instruction. In other
38 words, it is possible to jump to any label from anywhere, even from
39 a code fragment, which is compiled later, if both compiled code
40 shares the same context. See sljit_emit_enter for more details
41 - Supports self modifying code: target of (conditional) jump and call
42 instructions and some constant values can be dynamically modified
43 during runtime
44 - although it is not suggested to do it frequently
45 - can be used for inline caching: save an important value once
46 in the instruction stream
47 - since this feature limits the optimization possibilities, a
48 special flag must be passed at compile time when these
49 instructions are emitted
50 - A fixed stack space can be allocated for local variables
51 - The compiler is thread-safe
52 - The compiler is highly configurable through preprocessor macros.
53 You can disable unneeded features (multithreading in single
54 threaded applications), and you can use your own system functions
55 (including memory allocators). See sljitConfig.h
56 Disadvantages:
57 - No automatic register allocation, and temporary results are
58 not stored on the stack. (hence the name comes)
59 In practice:
60 - This approach is very effective for interpreters
61 - One of the saved registers typically points to a stack interface
62 - It can jump to any exception handler anytime (even if it belongs
63 to another function)
64 - Hot paths can be modified during runtime reflecting the changes
65 of the fastest execution path of the dynamic language
66 - SLJIT supports complex memory addressing modes
67 - mainly position and context independent code (except some cases)
68
69 For valgrind users:
70 - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
71 */
72
73 #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
74 #include "sljitConfig.h"
75 #endif
76
77 /* The following header file defines useful macros for fine tuning
78 sljit based code generators. They are listed in the beginning
79 of sljitConfigInternal.h */
80
81 #include "sljitConfigInternal.h"
82
83 /* --------------------------------------------------------------------- */
84 /* Error codes */
85 /* --------------------------------------------------------------------- */
86
87 /* Indicates no error. */
88 #define SLJIT_SUCCESS 0
89 /* After the call of sljit_generate_code(), the error code of the compiler
90 is set to this value to avoid future sljit calls (in debug mode at least).
91 The complier should be freed after sljit_generate_code(). */
92 #define SLJIT_ERR_COMPILED 1
93 /* Cannot allocate non executable memory. */
94 #define SLJIT_ERR_ALLOC_FAILED 2
95 /* Cannot allocate executable memory.
96 Only for sljit_generate_code() */
97 #define SLJIT_ERR_EX_ALLOC_FAILED 3
98 /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
99 #define SLJIT_ERR_UNSUPPORTED 4
100 /* An ivalid argument is passed to any SLJIT function. */
101 #define SLJIT_ERR_BAD_ARGUMENT 5
102
103 /* --------------------------------------------------------------------- */
104 /* Registers */
105 /* --------------------------------------------------------------------- */
106
107 /*
108 Scratch (R) registers: registers whose may not preserve their values
109 across function calls.
110
111 Saved (S) registers: registers whose preserve their values across
112 function calls.
113
114 The scratch and saved register sets are overlap. The last scratch register
115 is the first saved register, the one before the last is the second saved
116 register, and so on.
117
118 If an architecture provides two scratch and three saved registers,
119 its scratch and saved register sets are the following:
120
121 R0 | [S4] | R0 and S4 represent the same physical register
122 R1 | [S3] | R1 and S3 represent the same physical register
123 [R2] | S2 | R2 and S2 represent the same physical register
124 [R3] | S1 | R3 and S1 represent the same physical register
125 [R4] | S0 | R4 and S0 represent the same physical register
126
127 Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
128 SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
129
130 Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 10
131 and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 5. However, 4 registers
132 are virtual on x86-32. See below.
133
134 The purpose of this definition is convenience. Although a register
135 is either scratch register or saved register, SLJIT allows accessing
136 them from the other set. For example, four registers can be used as
137 scratch registers and the fifth one as saved register on the architecture
138 above. Of course the last two scratch registers (R2 and R3) from this
139 four will be saved on the stack, because they are defined as saved
140 registers in the application binary interface. Still R2 and R3 can be
141 used for referencing to these registers instead of S2 and S1, which
142 makes easier to write platform independent code. Scratch registers
143 can be saved registers in a similar way, but these extra saved
144 registers will not be preserved across function calls! Hence the
145 application must save them on those platforms, where the number of
146 saved registers is too low. This can be done by copy them onto
147 the stack and restore them after a function call.
148
149 Note: To emphasize that registers assigned to R2-R4 are saved
150 registers, they are enclosed by square brackets. S3-S4
151 are marked in a similar way.
152
153 Note: sljit_emit_enter and sljit_set_context defines whether a register
154 is S or R register. E.g: when 3 scratches and 1 saved is mapped
155 by sljit_emit_enter, the allowed register set will be: R0-R2 and
156 S0. Although S2 is mapped to the same position as R2, it does not
157 available in the current configuration. Furthermore the R3 (S1)
158 register does not available as well.
159 */
160
161 /* When SLJIT_UNUSED is specified as destination, the result is discarded. */
162 #define SLJIT_UNUSED 0
163
164 /* Scratch registers. */
165 #define SLJIT_R0 1
166 #define SLJIT_R1 2
167 #define SLJIT_R2 3
168 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
169 are allocated on the stack). These registers are called virtual
170 and cannot be used for memory addressing (cannot be part of
171 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
172 limitation on other CPUs. See sljit_get_register_index(). */
173 #define SLJIT_R3 4
174 #define SLJIT_R4 5
175 #define SLJIT_R5 6
176 #define SLJIT_R6 7
177 #define SLJIT_R7 8
178 #define SLJIT_R8 9
179 #define SLJIT_R9 10
180 /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
181 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
182 #define SLJIT_R(i) (1 + (i))
183
184 /* Saved registers. */
185 #define SLJIT_S0 (SLJIT_NUMBER_OF_REGISTERS)
186 #define SLJIT_S1 (SLJIT_NUMBER_OF_REGISTERS - 1)
187 #define SLJIT_S2 (SLJIT_NUMBER_OF_REGISTERS - 2)
188 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
189 are allocated on the stack). These registers are called virtual
190 and cannot be used for memory addressing (cannot be part of
191 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
192 limitation on other CPUs. See sljit_get_register_index(). */
193 #define SLJIT_S3 (SLJIT_NUMBER_OF_REGISTERS - 3)
194 #define SLJIT_S4 (SLJIT_NUMBER_OF_REGISTERS - 4)
195 #define SLJIT_S5 (SLJIT_NUMBER_OF_REGISTERS - 5)
196 #define SLJIT_S6 (SLJIT_NUMBER_OF_REGISTERS - 6)
197 #define SLJIT_S7 (SLJIT_NUMBER_OF_REGISTERS - 7)
198 #define SLJIT_S8 (SLJIT_NUMBER_OF_REGISTERS - 8)
199 #define SLJIT_S9 (SLJIT_NUMBER_OF_REGISTERS - 9)
200 /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
201 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
202 #define SLJIT_S(i) (SLJIT_NUMBER_OF_REGISTERS - (i))
203
204 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
205 #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
206
207 /* The SLJIT_SP provides direct access to the linear stack space allocated by
208 sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
209 The immediate offset is extended by the relative stack offset automatically.
210 The sljit_get_local_base can be used to obtain the absolute offset. */
211 #define SLJIT_SP (SLJIT_NUMBER_OF_REGISTERS + 1)
212
213 /* Return with machine word. */
214
215 #define SLJIT_RETURN_REG SLJIT_R0
216
217 /* x86 prefers specific registers for special purposes. In case of shift
218 by register it supports only SLJIT_R2 for shift argument
219 (which is the src2 argument of sljit_emit_op2). If another register is
220 used, sljit must exchange data between registers which cause a minor
221 slowdown. Other architectures has no such limitation. */
222
223 #define SLJIT_PREF_SHIFT_REG SLJIT_R2
224
225 /* --------------------------------------------------------------------- */
226 /* Floating point registers */
227 /* --------------------------------------------------------------------- */
228
229 /* Each floating point register can store a double or single precision
230 value. The FR and FS register sets are overlap in the same way as R
231 and S register sets. See above. */
232
233 /* Note: SLJIT_UNUSED as destination is not valid for floating point
234 operations, since they cannot be used for setting flags. */
235
236 /* Floating point scratch registers. */
237 #define SLJIT_FR0 1
238 #define SLJIT_FR1 2
239 #define SLJIT_FR2 3
240 #define SLJIT_FR3 4
241 #define SLJIT_FR4 5
242 #define SLJIT_FR5 6
243 /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
244 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
245 #define SLJIT_FR(i) (1 + (i))
246
247 /* Floating point saved registers. */
248 #define SLJIT_FS0 (SLJIT_NUMBER_OF_FLOAT_REGISTERS)
249 #define SLJIT_FS1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
250 #define SLJIT_FS2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
251 #define SLJIT_FS3 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
252 #define SLJIT_FS4 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
253 #define SLJIT_FS5 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
254 /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
255 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
256 #define SLJIT_FS(i) (SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
257
258 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
259 #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
260
261 /* --------------------------------------------------------------------- */
262 /* Main structures and functions */
263 /* --------------------------------------------------------------------- */
264
265 /*
266 The following structures are private, and can be changed in the
267 future. Keeping them here allows code inlining.
268 */
269
270 struct sljit_memory_fragment {
271 struct sljit_memory_fragment *next;
272 sljit_uw used_size;
273 /* Must be aligned to sljit_sw. */
274 sljit_ub memory[1];
275 };
276
277 struct sljit_label {
278 struct sljit_label *next;
279 sljit_uw addr;
280 /* The maximum size difference. */
281 sljit_uw size;
282 };
283
284 struct sljit_jump {
285 struct sljit_jump *next;
286 sljit_uw addr;
287 sljit_sw flags;
288 union {
289 sljit_uw target;
290 struct sljit_label* label;
291 } u;
292 };
293
294 struct sljit_const {
295 struct sljit_const *next;
296 sljit_uw addr;
297 };
298
299 struct sljit_compiler {
300 sljit_si error;
301 sljit_si options;
302
303 struct sljit_label *labels;
304 struct sljit_jump *jumps;
305 struct sljit_const *consts;
306 struct sljit_label *last_label;
307 struct sljit_jump *last_jump;
308 struct sljit_const *last_const;
309
310 struct sljit_memory_fragment *buf;
311 struct sljit_memory_fragment *abuf;
312
313 /* Used scratch registers. */
314 sljit_si scratches;
315 /* Used saved registers. */
316 sljit_si saveds;
317 /* Used float scratch registers. */
318 sljit_si fscratches;
319 /* Used float saved registers. */
320 sljit_si fsaveds;
321 /* Local stack size. */
322 sljit_si local_size;
323 /* Code size. */
324 sljit_uw size;
325 /* For statistical purposes. */
326 sljit_uw executable_size;
327
328 #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
329 sljit_si args;
330 #endif
331
332 #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
333 sljit_si mode32;
334 #endif
335
336 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
337 sljit_si flags_saved;
338 #endif
339
340 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
341 /* Constant pool handling. */
342 sljit_uw *cpool;
343 sljit_ub *cpool_unique;
344 sljit_uw cpool_diff;
345 sljit_uw cpool_fill;
346 /* Other members. */
347 /* Contains pointer, "ldr pc, [...]" pairs. */
348 sljit_uw patches;
349 #endif
350
351 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
352 /* Temporary fields. */
353 sljit_uw shift_imm;
354 sljit_si cache_arg;
355 sljit_sw cache_argw;
356 #endif
357
358 #if (defined SLJIT_CONFIG_ARM_THUMB2 && SLJIT_CONFIG_ARM_THUMB2)
359 sljit_si cache_arg;
360 sljit_sw cache_argw;
361 #endif
362
363 #if (defined SLJIT_CONFIG_ARM_64 && SLJIT_CONFIG_ARM_64)
364 sljit_si cache_arg;
365 sljit_sw cache_argw;
366 #endif
367
368 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
369 sljit_sw imm;
370 sljit_si cache_arg;
371 sljit_sw cache_argw;
372 #endif
373
374 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
375 sljit_si delay_slot;
376 sljit_si cache_arg;
377 sljit_sw cache_argw;
378 #endif
379
380 #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
381 sljit_si delay_slot;
382 sljit_si cache_arg;
383 sljit_sw cache_argw;
384 #endif
385
386 #if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
387 sljit_si cache_arg;
388 sljit_sw cache_argw;
389 #endif
390
391 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
392 FILE* verbose;
393 #endif
394
395 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
396 || (defined SLJIT_DEBUG && SLJIT_DEBUG)
397 /* Local size passed to the functions. */
398 sljit_si logical_local_size;
399 #endif
400
401 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
402 || (defined SLJIT_DEBUG && SLJIT_DEBUG) \
403 || (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
404 sljit_si skip_checks;
405 #endif
406 };
407
408 /* --------------------------------------------------------------------- */
409 /* Main functions */
410 /* --------------------------------------------------------------------- */
411
412 /* Creates an sljit compiler.
413 Returns NULL if failed. */
414 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void);
415
416 /* Free everything except the compiled machine code. */
417 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
418
419 /* Returns the current error code. If an error is occurred, future sljit
420 calls which uses the same compiler argument returns early with the same
421 error code. Thus there is no need for checking the error after every
422 call, it is enough to do it before the code is compiled. Removing
423 these checks increases the performance of the compiling process. */
424 static SLJIT_INLINE sljit_si sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
425
426 /*
427 Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
428 and <= 128 bytes on 64 bit architectures. The memory area is owned by the
429 compiler, and freed by sljit_free_compiler. The returned pointer is
430 sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
431 the compiling, and no need to worry about freeing them. The size is
432 enough to contain at most 16 pointers. If the size is outside of the range,
433 the function will return with NULL. However, this return value does not
434 indicate that there is no more memory (does not set the current error code
435 of the compiler to out-of-memory status).
436 */
437 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_si size);
438
439 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
440 /* Passing NULL disables verbose. */
441 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
442 #endif
443
444 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
445 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
446
447 /*
448 After the machine code generation is finished we can retrieve the allocated
449 executable memory size, although this area may not be fully filled with
450 instructions depending on some optimizations. This function is useful only
451 for statistical purposes.
452
453 Before a successful code generation, this function returns with 0.
454 */
455 static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
456
457 /* Instruction generation. Returns with any error code. If there is no
458 error, they return with SLJIT_SUCCESS. */
459
460 /*
461 The executable code is a function call from the viewpoint of the C
462 language. The function calls must obey to the ABI (Application
463 Binary Interface) of the platform, which specify the purpose of
464 all machine registers and stack handling among other things. The
465 sljit_emit_enter function emits the necessary instructions for
466 setting up a new context for the executable code and moves function
467 arguments to the saved registers. Furthermore the options argument
468 can be used to pass configuration options to the compiler. The
469 available options are listed before sljit_emit_enter.
470
471 The number of sljit_sw arguments passed to the generated function
472 are specified in the "args" parameter. The number of arguments must
473 be less than or equal to 3. The first argument goes to SLJIT_S0,
474 the second goes to SLJIT_S1 and so on. The register set used by
475 the function must be declared as well. The number of scratch and
476 saved registers used by the function must be passed to sljit_emit_enter.
477 Only R registers between R0 and "scratches" argument can be used
478 later. E.g. if "scratches" is set to 2, the register set will be
479 limited to R0 and R1. The S registers and the floating point
480 registers ("fscratches" and "fsaveds") are specified in a similar
481 way. The sljit_emit_enter is also capable of allocating a stack
482 space for local variables. The "local_size" argument contains the
483 size in bytes of this local area and its staring address is stored
484 in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
485 SLJIT_SP + local_size (exclusive) can be modified freely until
486 the function returns. The stack space is not initialized.
487
488 Note: the following conditions must met:
489 0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
490 0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
491 scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
492 0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
493 0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
494 fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
495
496 Note: every call of sljit_emit_enter and sljit_set_context
497 overwrites the previous context.
498 */
499
500 /* The absolute address returned by sljit_get_local_base with
501 offset 0 is aligned to sljit_d. Otherwise it is aligned to sljit_uw. */
502 #define SLJIT_DOUBLE_ALIGNMENT 0x00000001
503
504 /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
505 #define SLJIT_MAX_LOCAL_SIZE 65536
506
507 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
508 sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
509 sljit_si fscratches, sljit_si fsaveds, sljit_si local_size);
510
511 /* The machine code has a context (which contains the local stack space size,
512 number of used registers, etc.) which initialized by sljit_emit_enter. Several
513 functions (like sljit_emit_return) requres this context to be able to generate
514 the appropriate code. However, some code fragments (like inline cache) may have
515 no normal entry point so their context is unknown for the compiler. Their context
516 can be provided to the compiler by the sljit_set_context function.
517
518 Note: every call of sljit_emit_enter and sljit_set_context overwrites
519 the previous context. */
520
521 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_set_context(struct sljit_compiler *compiler,
522 sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
523 sljit_si fscratches, sljit_si fsaveds, sljit_si local_size);
524
525 /* Return from machine code. The op argument can be SLJIT_UNUSED which means the
526 function does not return with anything or any opcode between SLJIT_MOV and
527 SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
528 is SLJIT_UNUSED, otherwise see below the description about source and
529 destination arguments. */
530
531 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op,
532 sljit_si src, sljit_sw srcw);
533
534 /* Fast calling mechanism for utility functions (see SLJIT_FAST_CALL). All registers and
535 even the stack frame is passed to the callee. The return address is preserved in
536 dst/dstw by sljit_emit_fast_enter (the type of the value stored by this function
537 is sljit_p), and sljit_emit_fast_return can use this as a return value later. */
538
539 /* Note: only for sljit specific, non ABI compilant calls. Fast, since only a few machine
540 instructions are needed. Excellent for small uility functions, where saving registers
541 and setting up a new stack frame would cost too much performance. However, it is still
542 possible to return to the address of the caller (or anywhere else). */
543
544 /* Note: flags are not changed (unlike sljit_emit_enter / sljit_emit_return). */
545
546 /* Note: although sljit_emit_fast_return could be replaced by an ijump, it is not suggested,
547 since many architectures do clever branch prediction on call / return instruction pairs. */
548
549 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw);
550 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw);
551
552 /*
553 Source and destination values for arithmetical instructions
554 imm - a simple immediate value (cannot be used as a destination)
555 reg - any of the registers (immediate argument must be 0)
556 [imm] - absolute immediate memory address
557 [reg+imm] - indirect memory address
558 [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
559 useful for (byte, half, int, sljit_sw) array access
560 (fully supported by both x86 and ARM architectures, and cheap operation on others)
561 */
562
563 /*
564 IMPORATNT NOTE: memory access MUST be naturally aligned except
565 SLJIT_UNALIGNED macro is defined and its value is 1.
566
567 length | alignment
568 ---------+-----------
569 byte | 1 byte (any physical_address is accepted)
570 half | 2 byte (physical_address & 0x1 == 0)
571 int | 4 byte (physical_address & 0x3 == 0)
572 word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
573 | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
574 pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
575 | on 64 bit machines)
576
577 Note: Different architectures have different addressing limitations.
578 A single instruction is enough for the following addressing
579 modes. Other adrressing modes are emulated by instruction
580 sequences. This information could help to improve those code
581 generators which focuses only a few architectures.
582
583 x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
584 [reg+(reg<<imm)] is supported
585 [imm], -2^32+1 <= imm <= 2^32-1 is supported
586 Write-back is not supported
587 arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
588 bytes, any halfs or floating point values)
589 [reg+(reg<<imm)] is supported
590 Write-back is supported
591 arm-t2: [reg+imm], -255 <= imm <= 4095
592 [reg+(reg<<imm)] is supported
593 Write back is supported only for [reg+imm], where -255 <= imm <= 255
594 ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
595 signed load on 64 bit requires immediates divisible by 4.
596 [reg+imm] is not supported for signed 8 bit values.
597 [reg+reg] is supported
598 Write-back is supported except for one instruction: 32 bit signed
599 load with [reg+imm] addressing mode on 64 bit.
600 mips: [reg+imm], -65536 <= imm <= 65535
601 sparc: [reg+imm], -4096 <= imm <= 4095
602 [reg+reg] is supported
603 */
604
605 /* Register output: simply the name of the register.
606 For destination, you can use SLJIT_UNUSED as well. */
607 #define SLJIT_MEM 0x80
608 #define SLJIT_MEM0() (SLJIT_MEM)
609 #define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
610 #define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8))
611 #define SLJIT_IMM 0x40
612
613 /* Set 32 bit operation mode (I) on 64 bit CPUs. The flag is totally ignored on
614 32 bit CPUs. If this flag is set for an arithmetic operation, it uses only the
615 lower 32 bit of the input register(s), and set the CPU status flags according
616 to the 32 bit result. The higher 32 bits are undefined for both the input and
617 output. However, the CPU might not ignore those higher 32 bits, like MIPS, which
618 expects it to be the sign extension of the lower 32 bit. All 32 bit operations
619 are undefined, if this condition is not fulfilled. Therefore, when SLJIT_INT_OP
620 is specified, all register arguments must be the result of other operations with
621 the same SLJIT_INT_OP flag. In other words, although a register can hold either
622 a 64 or 32 bit value, these values cannot be mixed. The only exceptions are
623 SLJIT_IMOV and SLJIT_IMOVU (SLJIT_MOV_SI/SLJIT_MOVU_SI with SLJIT_INT_OP flag)
624 which can convert any source argument to SLJIT_INT_OP compatible result. This
625 conversion might be unnecessary on some CPUs like x86-64, since the upper 32
626 bit is always ignored. In this case SLJIT is clever enough to not generate any
627 instructions if the source and destination operands are the same registers.
628 Affects sljit_emit_op0, sljit_emit_op1 and sljit_emit_op2. */
629 #define SLJIT_INT_OP 0x100
630
631 /* Single precision mode (SP). This flag is similar to SLJIT_INT_OP, just
632 it applies to floating point registers (it is even the same bit). When
633 this flag is passed, the CPU performs single precision floating point
634 operations. Similar to SLJIT_INT_OP, all register arguments must be the
635 result of other floating point operations with this flag. Affects
636 sljit_emit_fop1, sljit_emit_fop2 and sljit_emit_fcmp. */
637 #define SLJIT_SINGLE_OP 0x100
638
639 /* Common CPU status flags for all architectures (x86, ARM, PPC)
640 - carry flag
641 - overflow flag
642 - zero flag
643 - negative/positive flag (depends on arc)
644 On mips, these flags are emulated by software. */
645
646 /* By default, the instructions may, or may not set the CPU status flags.
647 Forcing to set or keep status flags can be done with the following flags: */
648
649 /* Note: sljit tries to emit the minimum number of instructions. Using these
650 flags can increase them, so use them wisely to avoid unnecessary code generation. */
651
652 /* Set Equal (Zero) status flag (E). */
653 #define SLJIT_SET_E 0x0200
654 /* Set unsigned status flag (U). */
655 #define SLJIT_SET_U 0x0400
656 /* Set signed status flag (S). */
657 #define SLJIT_SET_S 0x0800
658 /* Set signed overflow flag (O). */
659 #define SLJIT_SET_O 0x1000
660 /* Set carry flag (C).
661 Note: Kinda unsigned overflow, but behaves differently on various cpus. */
662 #define SLJIT_SET_C 0x2000
663 /* Do not modify the flags (K).
664 Note: This flag cannot be combined with any other SLJIT_SET_* flag. */
665 #define SLJIT_KEEP_FLAGS 0x4000
666
667 /* Notes:
668 - you cannot postpone conditional jump instructions except if noted that
669 the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
670 - flag combinations: '|' means 'logical or'. */
671
672 /* Starting index of opcodes for sljit_emit_op0. */
673 #define SLJIT_OP0_BASE 0
674
675 /* Flags: - (never set any flags)
676 Note: breakpoint instruction is not supported by all architectures (namely ppc)
677 It falls back to SLJIT_NOP in those cases. */
678 #define SLJIT_BREAKPOINT (SLJIT_OP0_BASE + 0)
679 /* Flags: - (never set any flags)
680 Note: may or may not cause an extra cycle wait
681 it can even decrease the runtime in a few cases. */
682 #define SLJIT_NOP (SLJIT_OP0_BASE + 1)
683 /* Flags: - (may destroy flags)
684 Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
685 Result goes to SLJIT_R1:SLJIT_R0 (high:low) word */
686 #define SLJIT_LUMUL (SLJIT_OP0_BASE + 2)
687 /* Flags: - (may destroy flags)
688 Signed multiplication of SLJIT_R0 and SLJIT_R1.
689 Result goes to SLJIT_R1:SLJIT_R0 (high:low) word */
690 #define SLJIT_LSMUL (SLJIT_OP0_BASE + 3)
691 /* Flags: I - (may destroy flags)
692 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
693 The result is placed in SLJIT_R0 and the remainder goes to SLJIT_R1.
694 Note: if SLJIT_R1 contains 0, the behaviour is undefined. */
695 #define SLJIT_LUDIV (SLJIT_OP0_BASE + 4)
696 #define SLJIT_ILUDIV (SLJIT_LUDIV | SLJIT_INT_OP)
697 /* Flags: I - (may destroy flags)
698 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
699 The result is placed in SLJIT_R0 and the remainder goes to SLJIT_R1.
700 Note: if SLJIT_R1 contains 0, the behaviour is undefined. */
701 #define SLJIT_LSDIV (SLJIT_OP0_BASE + 5)
702 #define SLJIT_ILSDIV (SLJIT_LSDIV | SLJIT_INT_OP)
703
704 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op);
705
706 /* Starting index of opcodes for sljit_emit_op1. */
707 #define SLJIT_OP1_BASE 32
708
709 /* Notes for MOV instructions:
710 U = Mov with update (pre form). If source or destination defined as SLJIT_MEM1(r1)
711 or SLJIT_MEM2(r1, r2), r1 is increased by the sum of r2 and the constant argument
712 UB = unsigned byte (8 bit)
713 SB = signed byte (8 bit)
714 UH = unsigned half (16 bit)
715 SH = signed half (16 bit)
716 UI = unsigned int (32 bit)
717 SI = signed int (32 bit)
718 P = pointer (sljit_p) size */
719
720 /* Flags: - (never set any flags) */
721 #define SLJIT_MOV (SLJIT_OP1_BASE + 0)
722 /* Flags: I - (never set any flags) */
723 #define SLJIT_MOV_UB (SLJIT_OP1_BASE + 1)
724 #define SLJIT_IMOV_UB (SLJIT_MOV_UB | SLJIT_INT_OP)
725 /* Flags: I - (never set any flags) */
726 #define SLJIT_MOV_SB (SLJIT_OP1_BASE + 2)
727 #define SLJIT_IMOV_SB (SLJIT_MOV_SB | SLJIT_INT_OP)
728 /* Flags: I - (never set any flags) */
729 #define SLJIT_MOV_UH (SLJIT_OP1_BASE + 3)
730 #define SLJIT_IMOV_UH (SLJIT_MOV_UH | SLJIT_INT_OP)
731 /* Flags: I - (never set any flags) */
732 #define SLJIT_MOV_SH (SLJIT_OP1_BASE + 4)
733 #define SLJIT_IMOV_SH (SLJIT_MOV_SH | SLJIT_INT_OP)
734 /* Flags: I - (never set any flags)
735 Note: see SLJIT_INT_OP for further details. */
736 #define SLJIT_MOV_UI (SLJIT_OP1_BASE + 5)
737 /* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOV. */
738 /* Flags: I - (never set any flags)
739 Note: see SLJIT_INT_OP for further details. */
740 #define SLJIT_MOV_SI (SLJIT_OP1_BASE + 6)
741 #define SLJIT_IMOV (SLJIT_MOV_SI | SLJIT_INT_OP)
742 /* Flags: - (never set any flags) */
743 #define SLJIT_MOV_P (SLJIT_OP1_BASE + 7)
744 /* Flags: - (never set any flags) */
745 #define SLJIT_MOVU (SLJIT_OP1_BASE + 8)
746 /* Flags: I - (never set any flags) */
747 #define SLJIT_MOVU_UB (SLJIT_OP1_BASE + 9)
748 #define SLJIT_IMOVU_UB (SLJIT_MOVU_UB | SLJIT_INT_OP)
749 /* Flags: I - (never set any flags) */
750 #define SLJIT_MOVU_SB (SLJIT_OP1_BASE + 10)
751 #define SLJIT_IMOVU_SB (SLJIT_MOVU_SB | SLJIT_INT_OP)
752 /* Flags: I - (never set any flags) */
753 #define SLJIT_MOVU_UH (SLJIT_OP1_BASE + 11)
754 #define SLJIT_IMOVU_UH (SLJIT_MOVU_UH | SLJIT_INT_OP)
755 /* Flags: I - (never set any flags) */
756 #define SLJIT_MOVU_SH (SLJIT_OP1_BASE + 12)
757 #define SLJIT_IMOVU_SH (SLJIT_MOVU_SH | SLJIT_INT_OP)
758 /* Flags: I - (never set any flags)
759 Note: see SLJIT_INT_OP for further details. */
760 #define SLJIT_MOVU_UI (SLJIT_OP1_BASE + 13)
761 /* No SLJIT_INT_OP form, since it is the same as SLJIT_IMOVU. */
762 /* Flags: I - (never set any flags)
763 Note: see SLJIT_INT_OP for further details. */
764 #define SLJIT_MOVU_SI (SLJIT_OP1_BASE + 14)
765 #define SLJIT_IMOVU (SLJIT_MOVU_SI | SLJIT_INT_OP)
766 /* Flags: - (never set any flags) */
767 #define SLJIT_MOVU_P (SLJIT_OP1_BASE + 15)
768 /* Flags: I | E | K */
769 #define SLJIT_NOT (SLJIT_OP1_BASE + 16)
770 #define SLJIT_INOT (SLJIT_NOT | SLJIT_INT_OP)
771 /* Flags: I | E | O | K */
772 #define SLJIT_NEG (SLJIT_OP1_BASE + 17)
773 #define SLJIT_INEG (SLJIT_NEG | SLJIT_INT_OP)
774 /* Count leading zeroes
775 Flags: I | E | K
776 Important note! Sparc 32 does not support K flag, since
777 the required popc instruction is introduced only in sparc 64. */
778 #define SLJIT_CLZ (SLJIT_OP1_BASE + 18)
779 #define SLJIT_ICLZ (SLJIT_CLZ | SLJIT_INT_OP)
780
781 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
782 sljit_si dst, sljit_sw dstw,
783 sljit_si src, sljit_sw srcw);
784
785 /* Starting index of opcodes for sljit_emit_op2. */
786 #define SLJIT_OP2_BASE 96
787
788 /* Flags: I | E | O | C | K */
789 #define SLJIT_ADD (SLJIT_OP2_BASE + 0)
790 #define SLJIT_IADD (SLJIT_ADD | SLJIT_INT_OP)
791 /* Flags: I | C | K */
792 #define SLJIT_ADDC (SLJIT_OP2_BASE + 1)
793 #define SLJIT_IADDC (SLJIT_ADDC | SLJIT_INT_OP)
794 /* Flags: I | E | U | S | O | C | K */
795 #define SLJIT_SUB (SLJIT_OP2_BASE + 2)
796 #define SLJIT_ISUB (SLJIT_SUB | SLJIT_INT_OP)
797 /* Flags: I | C | K */
798 #define SLJIT_SUBC (SLJIT_OP2_BASE + 3)
799 #define SLJIT_ISUBC (SLJIT_SUBC | SLJIT_INT_OP)
800 /* Note: integer mul
801 Flags: I | O (see SLJIT_C_MUL_*) | K */
802 #define SLJIT_MUL (SLJIT_OP2_BASE + 4)
803 #define SLJIT_IMUL (SLJIT_MUL | SLJIT_INT_OP)
804 /* Flags: I | E | K */
805 #define SLJIT_AND (SLJIT_OP2_BASE + 5)
806 #define SLJIT_IAND (SLJIT_AND | SLJIT_INT_OP)
807 /* Flags: I | E | K */
808 #define SLJIT_OR (SLJIT_OP2_BASE + 6)
809 #define SLJIT_IOR (SLJIT_OR | SLJIT_INT_OP)
810 /* Flags: I | E | K */
811 #define SLJIT_XOR (SLJIT_OP2_BASE + 7)
812 #define SLJIT_IXOR (SLJIT_XOR | SLJIT_INT_OP)
813 /* Flags: I | E | K
814 Let bit_length be the length of the shift operation: 32 or 64.
815 If src2 is immediate, src2w is masked by (bit_length - 1).
816 Otherwise, if the content of src2 is outside the range from 0
817 to bit_length - 1, the result is undefined. */
818 #define SLJIT_SHL (SLJIT_OP2_BASE + 8)
819 #define SLJIT_ISHL (SLJIT_SHL | SLJIT_INT_OP)
820 /* Flags: I | E | K
821 Let bit_length be the length of the shift operation: 32 or 64.
822 If src2 is immediate, src2w is masked by (bit_length - 1).
823 Otherwise, if the content of src2 is outside the range from 0
824 to bit_length - 1, the result is undefined. */
825 #define SLJIT_LSHR (SLJIT_OP2_BASE + 9)
826 #define SLJIT_ILSHR (SLJIT_LSHR | SLJIT_INT_OP)
827 /* Flags: I | E | K
828 Let bit_length be the length of the shift operation: 32 or 64.
829 If src2 is immediate, src2w is masked by (bit_length - 1).
830 Otherwise, if the content of src2 is outside the range from 0
831 to bit_length - 1, the result is undefined. */
832 #define SLJIT_ASHR (SLJIT_OP2_BASE + 10)
833 #define SLJIT_IASHR (SLJIT_ASHR | SLJIT_INT_OP)
834
835 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
836 sljit_si dst, sljit_sw dstw,
837 sljit_si src1, sljit_sw src1w,
838 sljit_si src2, sljit_sw src2w);
839
840 /* The following function is a helper function for sljit_emit_op_custom.
841 It returns with the real machine register index ( >=0 ) of any SLJIT_R,
842 SLJIT_S and SLJIT_SP registers.
843
844 Note: it returns with -1 for virtual registers (only on x86-32). */
845
846 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg);
847
848 /* The following function is a helper function for sljit_emit_op_custom.
849 It returns with the real machine register index of any SLJIT_FLOAT register.
850
851 Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
852
853 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg);
854
855 /* Any instruction can be inserted into the instruction stream by
856 sljit_emit_op_custom. It has a similar purpose as inline assembly.
857 The size parameter must match to the instruction size of the target
858 architecture:
859
860 x86: 0 < size <= 15. The instruction argument can be byte aligned.
861 Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
862 if size == 4, the instruction argument must be 4 byte aligned.
863 Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
864
865 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
866 void *instruction, sljit_si size);
867
868 /* Returns with non-zero if fpu is available. */
869
870 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void);
871
872 /* Starting index of opcodes for sljit_emit_fop1. */
873 #define SLJIT_FOP1_BASE 128
874
875 /* Flags: SP - (never set any flags) */
876 #define SLJIT_DMOV (SLJIT_FOP1_BASE + 0)
877 #define SLJIT_SMOV (SLJIT_DMOV | SLJIT_SINGLE_OP)
878 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
879 SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
880 Rounding mode when the destination is W or I: round towards zero. */
881 /* Flags: SP - (never set any flags) */
882 #define SLJIT_CONVD_FROMS (SLJIT_FOP1_BASE + 1)
883 #define SLJIT_CONVS_FROMD (SLJIT_CONVD_FROMS | SLJIT_SINGLE_OP)
884 /* Flags: SP - (never set any flags) */
885 #define SLJIT_CONVW_FROMD (SLJIT_FOP1_BASE + 2)
886 #define SLJIT_CONVW_FROMS (SLJIT_CONVW_FROMD | SLJIT_SINGLE_OP)
887 /* Flags: SP - (never set any flags) */
888 #define SLJIT_CONVI_FROMD (SLJIT_FOP1_BASE + 3)
889 #define SLJIT_CONVI_FROMS (SLJIT_CONVI_FROMD | SLJIT_SINGLE_OP)
890 /* Flags: SP - (never set any flags) */
891 #define SLJIT_CONVD_FROMW (SLJIT_FOP1_BASE + 4)
892 #define SLJIT_CONVS_FROMW (SLJIT_CONVD_FROMW | SLJIT_SINGLE_OP)
893 /* Flags: SP - (never set any flags) */
894 #define SLJIT_CONVD_FROMI (SLJIT_FOP1_BASE + 5)
895 #define SLJIT_CONVS_FROMI (SLJIT_CONVD_FROMI | SLJIT_SINGLE_OP)
896 /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
897 Note: NaN check is always performed. If SLJIT_C_FLOAT_UNORDERED flag
898 is set, the comparison result is unpredictable.
899 Flags: SP | E | S (see SLJIT_C_FLOAT_*) */
900 #define SLJIT_DCMP (SLJIT_FOP1_BASE + 6)
901 #define SLJIT_SCMP (SLJIT_DCMP | SLJIT_SINGLE_OP)
902 /* Flags: SP - (never set any flags) */
903 #define SLJIT_DNEG (SLJIT_FOP1_BASE + 7)
904 #define SLJIT_SNEG (SLJIT_DNEG | SLJIT_SINGLE_OP)
905 /* Flags: SP - (never set any flags) */
906 #define SLJIT_DABS (SLJIT_FOP1_BASE + 8)
907 #define SLJIT_SABS (SLJIT_DABS | SLJIT_SINGLE_OP)
908
909 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
910 sljit_si dst, sljit_sw dstw,
911 sljit_si src, sljit_sw srcw);
912
913 /* Starting index of opcodes for sljit_emit_fop2. */
914 #define SLJIT_FOP2_BASE 160
915
916 /* Flags: SP - (never set any flags) */
917 #define SLJIT_DADD (SLJIT_FOP2_BASE + 0)
918 #define SLJIT_SADD (SLJIT_DADD | SLJIT_SINGLE_OP)
919 /* Flags: SP - (never set any flags) */
920 #define SLJIT_DSUB (SLJIT_FOP2_BASE + 1)
921 #define SLJIT_SSUB (SLJIT_DSUB | SLJIT_SINGLE_OP)
922 /* Flags: SP - (never set any flags) */
923 #define SLJIT_DMUL (SLJIT_FOP2_BASE + 2)
924 #define SLJIT_SMUL (SLJIT_DMUL | SLJIT_SINGLE_OP)
925 /* Flags: SP - (never set any flags) */
926 #define SLJIT_DDIV (SLJIT_FOP2_BASE + 3)
927 #define SLJIT_SDIV (SLJIT_DDIV | SLJIT_SINGLE_OP)
928
929 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
930 sljit_si dst, sljit_sw dstw,
931 sljit_si src1, sljit_sw src1w,
932 sljit_si src2, sljit_sw src2w);
933
934 /* Label and jump instructions. */
935
936 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
937
938 /* Invert (negate) conditional type: xor (^) with 0x1 */
939
940 /* Integer comparison types. */
941 #define SLJIT_EQUAL 0
942 #define SLJIT_I_EQUAL (SLJIT_EQUAL | SLJIT_INT_OP)
943 #define SLJIT_ZERO 0
944 #define SLJIT_I_ZERO (SLJIT_ZERO | SLJIT_INT_OP)
945 #define SLJIT_NOT_EQUAL 1
946 #define SLJIT_I_NOT_EQUAL (SLJIT_NOT_EQUAL | SLJIT_INT_OP)
947 #define SLJIT_NOT_ZERO 1
948 #define SLJIT_I_NOT_ZERO (SLJIT_NOT_ZERO | SLJIT_INT_OP)
949
950 #define SLJIT_LESS 2
951 #define SLJIT_I_LESS (SLJIT_LESS | SLJIT_INT_OP)
952 #define SLJIT_GREATER_EQUAL 3
953 #define SLJIT_I_GREATER_EQUAL (SLJIT_GREATER_EQUAL | SLJIT_INT_OP)
954 #define SLJIT_GREATER 4
955 #define SLJIT_I_GREATER (SLJIT_GREATER | SLJIT_INT_OP)
956 #define SLJIT_LESS_EQUAL 5
957 #define SLJIT_I_LESS_EQUAL (SLJIT_LESS_EQUAL | SLJIT_INT_OP)
958 #define SLJIT_SIG_LESS 6
959 #define SLJIT_I_SIG_LESS (SLJIT_SIG_LESS | SLJIT_INT_OP)
960 #define SLJIT_SIG_GREATER_EQUAL 7
961 #define SLJIT_I_SIG_GREATER_EQUAL (SLJIT_SIG_GREATER_EQUAL | SLJIT_INT_OP)
962 #define SLJIT_SIG_GREATER 8
963 #define SLJIT_I_SIG_GREATER (SLJIT_SIG_GREATER | SLJIT_INT_OP)
964 #define SLJIT_SIG_LESS_EQUAL 9
965 #define SLJIT_I_SIG_LESS_EQUAL (SLJIT_SIG_LESS_EQUAL | SLJIT_INT_OP)
966
967 #define SLJIT_OVERFLOW 10
968 #define SLJIT_I_OVERFLOW (SLJIT_OVERFLOW | SLJIT_INT_OP)
969 #define SLJIT_NOT_OVERFLOW 11
970 #define SLJIT_I_NOT_OVERFLOW (SLJIT_NOT_OVERFLOW | SLJIT_INT_OP)
971
972 #define SLJIT_MUL_OVERFLOW 12
973 #define SLJIT_I_MUL_OVERFLOW (SLJIT_MUL_OVERFLOW | SLJIT_INT_OP)
974 #define SLJIT_MUL_NOT_OVERFLOW 13
975 #define SLJIT_I_MUL_NOT_OVERFLOW (SLJIT_MUL_NOT_OVERFLOW | SLJIT_INT_OP)
976
977 /* Floating point comparison types. */
978 #define SLJIT_D_EQUAL 14
979 #define SLJIT_S_EQUAL (SLJIT_D_EQUAL | SLJIT_SINGLE_OP)
980 #define SLJIT_D_NOT_EQUAL 15
981 #define SLJIT_S_NOT_EQUAL (SLJIT_D_NOT_EQUAL | SLJIT_SINGLE_OP)
982 #define SLJIT_D_LESS 16
983 #define SLJIT_S_LESS (SLJIT_D_LESS | SLJIT_SINGLE_OP)
984 #define SLJIT_D_GREATER_EQUAL 17
985 #define SLJIT_S_GREATER_EQUAL (SLJIT_D_GREATER_EQUAL | SLJIT_SINGLE_OP)
986 #define SLJIT_D_GREATER 18
987 #define SLJIT_S_GREATER (SLJIT_D_GREATER | SLJIT_SINGLE_OP)
988 #define SLJIT_D_LESS_EQUAL 19
989 #define SLJIT_S_LESS_EQUAL (SLJIT_D_LESS_EQUAL | SLJIT_SINGLE_OP)
990 #define SLJIT_D_UNORDERED 20
991 #define SLJIT_S_UNORDERED (SLJIT_D_UNORDERED | SLJIT_SINGLE_OP)
992 #define SLJIT_D_ORDERED 21
993 #define SLJIT_S_ORDERED (SLJIT_D_ORDERED | SLJIT_SINGLE_OP)
994
995 /* Unconditional jump types. */
996 #define SLJIT_JUMP 22
997 #define SLJIT_FAST_CALL 23
998 #define SLJIT_CALL0 24
999 #define SLJIT_CALL1 25
1000 #define SLJIT_CALL2 26
1001 #define SLJIT_CALL3 27
1002
1003 /* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
1004
1005 /* The target can be changed during runtime (see: sljit_set_jump_addr). */
1006 #define SLJIT_REWRITABLE_JUMP 0x1000
1007
1008 /* Emit a jump instruction. The destination is not set, only the type of the jump.
1009 type must be between SLJIT_EQUAL and SLJIT_CALL3
1010 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1011 Flags: - (never set any flags) for both conditional and unconditional jumps.
1012 Flags: destroy all flags for calls. */
1013 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type);
1014
1015 /* Basic arithmetic comparison. In most architectures it is implemented as
1016 an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
1017 appropriate flags) followed by a sljit_emit_jump. However some
1018 architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
1019 It is suggested to use this comparison form when appropriate.
1020 type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
1021 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1022 Flags: destroy flags. */
1023 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_si type,
1024 sljit_si src1, sljit_sw src1w,
1025 sljit_si src2, sljit_sw src2w);
1026
1027 /* Basic floating point comparison. In most architectures it is implemented as
1028 an SLJIT_FCMP operation (setting appropriate flags) followed by a
1029 sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1030 special optimizations here. It is suggested to use this comparison form
1031 when appropriate.
1032 type must be between SLJIT_D_EQUAL and SLJIT_S_ORDERED
1033 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1034 Flags: destroy flags.
1035 Note: if either operand is NaN, the behaviour is undefined for
1036 types up to SLJIT_S_LESS_EQUAL. */
1037 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_si type,
1038 sljit_si src1, sljit_sw src1w,
1039 sljit_si src2, sljit_sw src2w);
1040
1041 /* Set the destination of the jump to this label. */
1042 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1043 /* Set the destination address of the jump to this label. */
1044 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1045
1046 /* Call function or jump anywhere. Both direct and indirect form
1047 type must be between SLJIT_JUMP and SLJIT_CALL3
1048 Direct form: set src to SLJIT_IMM() and srcw to the address
1049 Indirect form: any other valid addressing mode
1050 Flags: - (never set any flags) for unconditional jumps.
1051 Flags: destroy all flags for calls. */
1052 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw);
1053
1054 /* Perform the operation using the conditional flags as the second argument.
1055 Type must always be between SLJIT_EQUAL and SLJIT_S_ORDERED. The value
1056 represented by the type is 1, if the condition represented by the type
1057 is fulfilled, and 0 otherwise.
1058
1059 If op == SLJIT_MOV, SLJIT_MOV_SI, SLJIT_MOV_UI:
1060 Set dst to the value represented by the type (0 or 1).
1061 Src must be SLJIT_UNUSED, and srcw must be 0
1062 Flags: - (never set any flags)
1063 If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
1064 Performs the binary operation using src as the first, and the value
1065 represented by type as the second argument.
1066 Important note: only dst=src and dstw=srcw is supported at the moment!
1067 Flags: I | E | K
1068 Note: sljit_emit_op_flags does nothing, if dst is SLJIT_UNUSED (regardless of op). */
1069 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
1070 sljit_si dst, sljit_sw dstw,
1071 sljit_si src, sljit_sw srcw,
1072 sljit_si type);
1073
1074 /* Copies the base address of SLJIT_SP + offset to dst.
1075 Flags: - (never set any flags) */
1076 SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_local_base(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw offset);
1077
1078 /* The constant can be changed runtime (see: sljit_set_const)
1079 Flags: - (never set any flags) */
1080 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value);
1081
1082 /* After the code generation the address for label, jump and const instructions
1083 are computed. Since these structures are freed by sljit_free_compiler, the
1084 addresses must be preserved by the user program elsewere. */
1085 static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
1086 static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
1087 static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
1088
1089 /* Only the address is required to rewrite the code. */
1090 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr);
1091 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant);
1092
1093 /* --------------------------------------------------------------------- */
1094 /* Miscellaneous utility functions */
1095 /* --------------------------------------------------------------------- */
1096
1097 #define SLJIT_MAJOR_VERSION 0
1098 #define SLJIT_MINOR_VERSION 92
1099
1100 /* Get the human readable name of the platform. Can be useful on platforms
1101 like ARM, where ARM and Thumb2 functions can be mixed, and
1102 it is useful to know the type of the code generator. */
1103 SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void);
1104
1105 /* Portable helper function to get an offset of a member. */
1106 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1107
1108 #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
1109 /* This global lock is useful to compile common functions. */
1110 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_grab_lock(void);
1111 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_release_lock(void);
1112 #endif
1113
1114 #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
1115
1116 /* The sljit_stack is a utiliy feature of sljit, which allocates a
1117 writable memory region between base (inclusive) and limit (exclusive).
1118 Both base and limit is a pointer, and base is always <= than limit.
1119 This feature uses the "address space reserve" feature
1120 of modern operating systems. Basically we don't need to allocate a
1121 huge memory block in one step for the worst case, we can start with
1122 a smaller chunk and extend it later. Since the address space is
1123 reserved, the data never copied to other regions, thus it is safe
1124 to store pointers here. */
1125
1126 /* Note: The base field is aligned to PAGE_SIZE bytes (usually 4k or more).
1127 Note: stack growing should not happen in small steps: 4k, 16k or even
1128 bigger growth is better.
1129 Note: this structure may not be supported by all operating systems.
1130 Some kind of fallback mechanism is suggested when SLJIT_UTIL_STACK
1131 is not defined. */
1132
1133 struct sljit_stack {
1134 /* User data, anything can be stored here.
1135 Starting with the same value as base. */
1136 sljit_uw top;
1137 /* These members are read only. */
1138 sljit_uw base;
1139 sljit_uw limit;
1140 sljit_uw max_limit;
1141 };
1142
1143 /* Returns NULL if unsuccessful.
1144 Note: limit and max_limit contains the size for stack allocation
1145 Note: the top field is initialized to base. */
1146 SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_CALL sljit_allocate_stack(sljit_uw limit, sljit_uw max_limit);
1147 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_CALL sljit_free_stack(struct sljit_stack* stack);
1148
1149 /* Can be used to increase (allocate) or decrease (free) the memory area.
1150 Returns with a non-zero value if unsuccessful. If new_limit is greater than
1151 max_limit, it will fail. It is very easy to implement a stack data structure,
1152 since the growth ratio can be added to the current limit, and sljit_stack_resize
1153 will do all the necessary checks. The fields of the stack are not changed if
1154 sljit_stack_resize fails. */
1155 SLJIT_API_FUNC_ATTRIBUTE sljit_sw SLJIT_CALL sljit_stack_resize(struct sljit_stack* stack, sljit_uw new_limit);
1156
1157 #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
1158
1159 #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
1160
1161 /* Get the entry address of a given function. */
1162 #define SLJIT_FUNC_OFFSET(func_name) ((sljit_sw)func_name)
1163
1164 #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1165
1166 /* All JIT related code should be placed in the same context (library, binary, etc.). */
1167
1168 #define SLJIT_FUNC_OFFSET(func_name) (*(sljit_sw*)(void*)func_name)
1169
1170 /* For powerpc64, the function pointers point to a context descriptor. */
1171 struct sljit_function_context {
1172 sljit_sw addr;
1173 sljit_sw r2;
1174 sljit_sw r11;
1175 };
1176
1177 /* Fill the context arguments using the addr and the function.
1178 If func_ptr is NULL, it will not be set to the address of context
1179 If addr is NULL, the function address also comes from the func pointer. */
1180 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
1181
1182 #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1183
1184 #endif /* _SLJIT_LIR_H_ */

  ViewVC Help
Powered by ViewVC 1.1.5