/[pcre]/code/trunk/sljit/sljitNativeARM_v5.c
ViewVC logotype

Contents of /code/trunk/sljit/sljitNativeARM_v5.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 847 - (show annotations)
Tue Jan 3 17:49:03 2012 UTC (8 years ago) by zherczeg
File MIME type: text/plain
File size: 73646 byte(s)
fix signed/unsigned half load mismatches and JIT compiler update
1 /*
2 * Stack-less Just-In-Time compiler
3 *
4 * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without modification, are
7 * permitted provided that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright notice, this list of
10 * conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13 * of conditions and the following disclaimer in the documentation and/or other materials
14 * provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name()
28 {
29 #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
30 return "arm-v7";
31 #elif (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
32 return "arm-v5";
33 #else
34 #error "Internal error: Unknown ARM architecture"
35 #endif
36 }
37
38 /* Last register + 1. */
39 #define TMP_REG1 (SLJIT_NO_REGISTERS + 1)
40 #define TMP_REG2 (SLJIT_NO_REGISTERS + 2)
41 #define TMP_REG3 (SLJIT_NO_REGISTERS + 3)
42 #define TMP_PC (SLJIT_NO_REGISTERS + 4)
43
44 #define TMP_FREG1 (SLJIT_FLOAT_REG4 + 1)
45 #define TMP_FREG2 (SLJIT_FLOAT_REG4 + 2)
46
47 /* In ARM instruction words.
48 Cache lines are usually 32 byte aligned. */
49 #define CONST_POOL_ALIGNMENT 8
50 #define CONST_POOL_EMPTY 0xffffffff
51
52 #define ALIGN_INSTRUCTION(ptr) \
53 (sljit_uw*)(((sljit_uw)(ptr) + (CONST_POOL_ALIGNMENT * sizeof(sljit_uw)) - 1) & ~((CONST_POOL_ALIGNMENT * sizeof(sljit_uw)) - 1))
54 #define MAX_DIFFERENCE(max_diff) \
55 (((max_diff) / (int)sizeof(sljit_uw)) - (CONST_POOL_ALIGNMENT - 1))
56
57 /* See sljit_emit_enter and sljit_emit_op0 if you want to change them. */
58 static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 5] = {
59 0, 0, 1, 2, 10, 11, 4, 5, 6, 7, 8, 13, 3, 12, 14, 15
60 };
61
62 #define RM(rm) (reg_map[rm])
63 #define RD(rd) (reg_map[rd] << 12)
64 #define RN(rn) (reg_map[rn] << 16)
65
66 /* --------------------------------------------------------------------- */
67 /* Instrucion forms */
68 /* --------------------------------------------------------------------- */
69
70 /* The instruction includes the AL condition.
71 INST_NAME - CONDITIONAL remove this flag. */
72 #define COND_MASK 0xf0000000
73 #define CONDITIONAL 0xe0000000
74 #define PUSH_POOL 0xff000000
75
76 /* DP - Data Processing instruction (use with EMIT_DATA_PROCESS_INS). */
77 #define ADC_DP 0x5
78 #define ADD_DP 0x4
79 #define AND_DP 0x0
80 #define B 0xea000000
81 #define BIC_DP 0xe
82 #define BL 0xeb000000
83 #define BLX 0xe12fff30
84 #define BX 0xe12fff10
85 #define CLZ 0xe16f0f10
86 #define CMP_DP 0xa
87 #define BKPT 0xe1200070
88 #define EOR_DP 0x1
89 #define MOV_DP 0xd
90 #define MUL 0xe0000090
91 #define MVN_DP 0xf
92 #define NOP 0xe1a00000
93 #define ORR_DP 0xc
94 #define PUSH 0xe92d0000
95 #define POP 0xe8bd0000
96 #define RSB_DP 0x3
97 #define RSC_DP 0x7
98 #define SBC_DP 0x6
99 #define SMULL 0xe0c00090
100 #define SUB_DP 0x2
101 #define UMULL 0xe0800090
102 #define VABS_F64 0xeeb00bc0
103 #define VADD_F64 0xee300b00
104 #define VCMP_F64 0xeeb40b40
105 #define VDIV_F64 0xee800b00
106 #define VMOV_F64 0xeeb00b40
107 #define VMRS 0xeef1fa10
108 #define VMUL_F64 0xee200b00
109 #define VNEG_F64 0xeeb10b40
110 #define VSTR 0xed000b00
111 #define VSUB_F64 0xee300b40
112
113 #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
114 /* Arm v7 specific instructions. */
115 #define MOVW 0xe3000000
116 #define MOVT 0xe3400000
117 #define SXTB 0xe6af0070
118 #define SXTH 0xe6bf0070
119 #define UXTB 0xe6ef0070
120 #define UXTH 0xe6ff0070
121 #endif
122
123 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
124
125 static int push_cpool(struct sljit_compiler *compiler)
126 {
127 /* Pushing the constant pool into the instruction stream. */
128 sljit_uw* inst;
129 sljit_uw* cpool_ptr;
130 sljit_uw* cpool_end;
131 int i;
132
133 /* The label could point the address after the constant pool. */
134 if (compiler->last_label && compiler->last_label->size == compiler->size)
135 compiler->last_label->size += compiler->cpool_fill + (CONST_POOL_ALIGNMENT - 1) + 1;
136
137 SLJIT_ASSERT(compiler->cpool_fill > 0 && compiler->cpool_fill <= CPOOL_SIZE);
138 inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
139 FAIL_IF(!inst);
140 compiler->size++;
141 *inst = 0xff000000 | compiler->cpool_fill;
142
143 for (i = 0; i < CONST_POOL_ALIGNMENT - 1; i++) {
144 inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
145 FAIL_IF(!inst);
146 compiler->size++;
147 *inst = 0;
148 }
149
150 cpool_ptr = compiler->cpool;
151 cpool_end = cpool_ptr + compiler->cpool_fill;
152 while (cpool_ptr < cpool_end) {
153 inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
154 FAIL_IF(!inst);
155 compiler->size++;
156 *inst = *cpool_ptr++;
157 }
158 compiler->cpool_diff = CONST_POOL_EMPTY;
159 compiler->cpool_fill = 0;
160 return SLJIT_SUCCESS;
161 }
162
163 static int push_inst(struct sljit_compiler *compiler, sljit_uw inst)
164 {
165 sljit_uw* ptr;
166
167 if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)))
168 FAIL_IF(push_cpool(compiler));
169
170 ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
171 FAIL_IF(!ptr);
172 compiler->size++;
173 *ptr = inst;
174 return SLJIT_SUCCESS;
175 }
176
177 static int push_inst_with_literal(struct sljit_compiler *compiler, sljit_uw inst, sljit_uw literal)
178 {
179 sljit_uw* ptr;
180 sljit_uw cpool_index = CPOOL_SIZE;
181 sljit_uw* cpool_ptr;
182 sljit_uw* cpool_end;
183 sljit_ub* cpool_unique_ptr;
184
185 if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)))
186 FAIL_IF(push_cpool(compiler));
187 else if (compiler->cpool_fill > 0) {
188 cpool_ptr = compiler->cpool;
189 cpool_end = cpool_ptr + compiler->cpool_fill;
190 cpool_unique_ptr = compiler->cpool_unique;
191 do {
192 if ((*cpool_ptr == literal) && !(*cpool_unique_ptr)) {
193 cpool_index = cpool_ptr - compiler->cpool;
194 break;
195 }
196 cpool_ptr++;
197 cpool_unique_ptr++;
198 } while (cpool_ptr < cpool_end);
199 }
200
201 if (cpool_index == CPOOL_SIZE) {
202 /* Must allocate a new entry in the literal pool. */
203 if (compiler->cpool_fill < CPOOL_SIZE) {
204 cpool_index = compiler->cpool_fill;
205 compiler->cpool_fill++;
206 }
207 else {
208 FAIL_IF(push_cpool(compiler));
209 cpool_index = 0;
210 compiler->cpool_fill = 1;
211 }
212 }
213
214 SLJIT_ASSERT((inst & 0xfff) == 0);
215 ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
216 FAIL_IF(!ptr);
217 compiler->size++;
218 *ptr = inst | cpool_index;
219
220 compiler->cpool[cpool_index] = literal;
221 compiler->cpool_unique[cpool_index] = 0;
222 if (compiler->cpool_diff == CONST_POOL_EMPTY)
223 compiler->cpool_diff = compiler->size;
224 return SLJIT_SUCCESS;
225 }
226
227 static int push_inst_with_unique_literal(struct sljit_compiler *compiler, sljit_uw inst, sljit_uw literal)
228 {
229 sljit_uw* ptr;
230 if (SLJIT_UNLIKELY((compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)) || compiler->cpool_fill >= CPOOL_SIZE))
231 FAIL_IF(push_cpool(compiler));
232
233 SLJIT_ASSERT(compiler->cpool_fill < CPOOL_SIZE && (inst & 0xfff) == 0);
234 ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
235 FAIL_IF(!ptr);
236 compiler->size++;
237 *ptr = inst | compiler->cpool_fill;
238
239 compiler->cpool[compiler->cpool_fill] = literal;
240 compiler->cpool_unique[compiler->cpool_fill] = 1;
241 compiler->cpool_fill++;
242 if (compiler->cpool_diff == CONST_POOL_EMPTY)
243 compiler->cpool_diff = compiler->size;
244 return SLJIT_SUCCESS;
245 }
246
247 static SLJIT_INLINE int prepare_blx(struct sljit_compiler *compiler)
248 {
249 /* Place for at least two instruction (doesn't matter whether the first has a literal). */
250 if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4088)))
251 return push_cpool(compiler);
252 return SLJIT_SUCCESS;
253 }
254
255 static SLJIT_INLINE int emit_blx(struct sljit_compiler *compiler)
256 {
257 /* Must follow tightly the previous instruction (to be able to convert it to bl instruction). */
258 SLJIT_ASSERT(compiler->cpool_diff == CONST_POOL_EMPTY || compiler->size - compiler->cpool_diff < MAX_DIFFERENCE(4092));
259 return push_inst(compiler, BLX | RM(TMP_REG1));
260 }
261
262 static sljit_uw patch_pc_relative_loads(sljit_uw *last_pc_patch, sljit_uw *code_ptr, sljit_uw* const_pool, sljit_uw cpool_size)
263 {
264 sljit_uw diff;
265 sljit_uw ind;
266 sljit_uw counter = 0;
267 sljit_uw* clear_const_pool = const_pool;
268 sljit_uw* clear_const_pool_end = const_pool + cpool_size;
269
270 SLJIT_ASSERT(const_pool - code_ptr <= CONST_POOL_ALIGNMENT);
271 /* Set unused flag for all literals in the constant pool.
272 I.e.: unused literals can belong to branches, which can be encoded as B or BL.
273 We can "compress" the constant pool by discarding these literals. */
274 while (clear_const_pool < clear_const_pool_end)
275 *clear_const_pool++ = (sljit_uw)(-1);
276
277 while (last_pc_patch < code_ptr) {
278 /* Data transfer instruction with Rn == r15. */
279 if ((*last_pc_patch & 0x0c0f0000) == 0x040f0000) {
280 diff = const_pool - last_pc_patch;
281 ind = (*last_pc_patch) & 0xfff;
282
283 /* Must be a load instruction with immediate offset. */
284 SLJIT_ASSERT(ind < cpool_size && !(*last_pc_patch & (1 << 25)) && (*last_pc_patch & (1 << 20)));
285 if ((int)const_pool[ind] < 0) {
286 const_pool[ind] = counter;
287 ind = counter;
288 counter++;
289 }
290 else
291 ind = const_pool[ind];
292
293 SLJIT_ASSERT(diff >= 1);
294 if (diff >= 2 || ind > 0) {
295 diff = (diff + ind - 2) << 2;
296 SLJIT_ASSERT(diff <= 0xfff);
297 *last_pc_patch = (*last_pc_patch & ~0xfff) | diff;
298 }
299 else
300 *last_pc_patch = (*last_pc_patch & ~(0xfff | (1 << 23))) | 0x004;
301 }
302 last_pc_patch++;
303 }
304 return counter;
305 }
306
307 /* In some rare ocasions we may need future patches. The probability is close to 0 in practice. */
308 struct future_patch {
309 struct future_patch* next;
310 int index;
311 int value;
312 };
313
314 static SLJIT_INLINE int resolve_const_pool_index(struct future_patch **first_patch, sljit_uw cpool_current_index, sljit_uw *cpool_start_address, sljit_uw *buf_ptr)
315 {
316 int value;
317 struct future_patch *curr_patch, *prev_patch;
318
319 /* Using the values generated by patch_pc_relative_loads. */
320 if (!*first_patch)
321 value = (int)cpool_start_address[cpool_current_index];
322 else {
323 curr_patch = *first_patch;
324 prev_patch = 0;
325 while (1) {
326 if (!curr_patch) {
327 value = (int)cpool_start_address[cpool_current_index];
328 break;
329 }
330 if ((sljit_uw)curr_patch->index == cpool_current_index) {
331 value = curr_patch->value;
332 if (prev_patch)
333 prev_patch->next = curr_patch->next;
334 else
335 *first_patch = curr_patch->next;
336 SLJIT_FREE(curr_patch);
337 break;
338 }
339 prev_patch = curr_patch;
340 curr_patch = curr_patch->next;
341 }
342 }
343
344 if (value >= 0) {
345 if ((sljit_uw)value > cpool_current_index) {
346 curr_patch = (struct future_patch*)SLJIT_MALLOC(sizeof(struct future_patch));
347 if (!curr_patch) {
348 while (*first_patch) {
349 curr_patch = *first_patch;
350 *first_patch = (*first_patch)->next;
351 SLJIT_FREE(curr_patch);
352 }
353 return SLJIT_ERR_ALLOC_FAILED;
354 }
355 curr_patch->next = *first_patch;
356 curr_patch->index = value;
357 curr_patch->value = cpool_start_address[value];
358 *first_patch = curr_patch;
359 }
360 cpool_start_address[value] = *buf_ptr;
361 }
362 return SLJIT_SUCCESS;
363 }
364
365 #else
366
367 static int push_inst(struct sljit_compiler *compiler, sljit_uw inst)
368 {
369 sljit_uw* ptr;
370
371 ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
372 FAIL_IF(!ptr);
373 compiler->size++;
374 *ptr = inst;
375 return SLJIT_SUCCESS;
376 }
377
378 static SLJIT_INLINE int emit_imm(struct sljit_compiler *compiler, int reg, sljit_w imm)
379 {
380 FAIL_IF(push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff)));
381 return push_inst(compiler, MOVT | RD(reg) | ((imm >> 12) & 0xf0000) | ((imm >> 16) & 0xfff));
382 }
383
384 #endif
385
386 static SLJIT_INLINE int detect_jump_type(struct sljit_jump *jump, sljit_uw *code_ptr, sljit_uw *code)
387 {
388 sljit_w diff;
389
390 if (jump->flags & SLJIT_REWRITABLE_JUMP)
391 return 0;
392
393 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
394 if (jump->flags & IS_BL)
395 code_ptr--;
396
397 if (jump->flags & JUMP_ADDR)
398 diff = ((sljit_w)jump->u.target - (sljit_w)(code_ptr + 2));
399 else {
400 SLJIT_ASSERT(jump->flags & JUMP_LABEL);
401 diff = ((sljit_w)(code + jump->u.label->size) - (sljit_w)(code_ptr + 2));
402 }
403
404 /* Branch to Thumb code has not been optimized yet. */
405 if (diff & 0x3)
406 return 0;
407
408 diff >>= 2;
409 if (jump->flags & IS_BL) {
410 if (diff <= 0x01ffffff && diff >= -0x02000000) {
411 *code_ptr = (BL - CONDITIONAL) | (*(code_ptr + 1) & COND_MASK);
412 jump->flags |= PATCH_B;
413 return 1;
414 }
415 }
416 else {
417 if (diff <= 0x01ffffff && diff >= -0x02000000) {
418 *code_ptr = (B - CONDITIONAL) | (*code_ptr & COND_MASK);
419 jump->flags |= PATCH_B;
420 }
421 }
422 #else
423 if (jump->flags & JUMP_ADDR)
424 diff = ((sljit_w)jump->u.target - (sljit_w)code_ptr);
425 else {
426 SLJIT_ASSERT(jump->flags & JUMP_LABEL);
427 diff = ((sljit_w)(code + jump->u.label->size) - (sljit_w)code_ptr);
428 }
429
430 /* Branch to Thumb code has not been optimized yet. */
431 if (diff & 0x3)
432 return 0;
433
434 diff >>= 2;
435 if (diff <= 0x01ffffff && diff >= -0x02000000) {
436 code_ptr -= 2;
437 *code_ptr = ((jump->flags & IS_BL) ? (BL - CONDITIONAL) : (B - CONDITIONAL)) | (code_ptr[2] & COND_MASK);
438 jump->flags |= PATCH_B;
439 return 1;
440 }
441 #endif
442 return 0;
443 }
444
445 static SLJIT_INLINE void inline_set_jump_addr(sljit_uw addr, sljit_uw new_addr, int flush)
446 {
447 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
448 sljit_uw *ptr = (sljit_uw*)addr;
449 sljit_uw *inst = (sljit_uw*)ptr[0];
450 sljit_uw mov_pc = ptr[1];
451 int bl = (mov_pc & 0x0000f000) != RD(TMP_PC);
452 sljit_w diff = (sljit_w)(((sljit_w)new_addr - (sljit_w)(inst + 2)) >> 2);
453
454 if (diff <= 0x7fffff && diff >= -0x800000) {
455 /* Turn to branch. */
456 if (!bl) {
457 inst[0] = (mov_pc & COND_MASK) | (B - CONDITIONAL) | (diff & 0xffffff);
458 if (flush) {
459 SLJIT_CACHE_FLUSH(inst, inst + 1);
460 }
461 } else {
462 inst[0] = (mov_pc & COND_MASK) | (BL - CONDITIONAL) | (diff & 0xffffff);
463 inst[1] = NOP;
464 if (flush) {
465 SLJIT_CACHE_FLUSH(inst, inst + 2);
466 }
467 }
468 } else {
469 /* Get the position of the constant. */
470 if (mov_pc & (1 << 23))
471 ptr = inst + ((mov_pc & 0xfff) >> 2) + 2;
472 else
473 ptr = inst + 1;
474
475 if (*inst != mov_pc) {
476 inst[0] = mov_pc;
477 if (!bl) {
478 if (flush) {
479 SLJIT_CACHE_FLUSH(inst, inst + 1);
480 }
481 } else {
482 inst[1] = BLX | RM(TMP_REG1);
483 if (flush) {
484 SLJIT_CACHE_FLUSH(inst, inst + 2);
485 }
486 }
487 }
488 *ptr = new_addr;
489 }
490 #else
491 sljit_uw *inst = (sljit_uw*)addr;
492 SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT);
493 inst[0] = MOVW | (inst[0] & 0xf000) | ((new_addr << 4) & 0xf0000) | (new_addr & 0xfff);
494 inst[1] = MOVT | (inst[1] & 0xf000) | ((new_addr >> 12) & 0xf0000) | ((new_addr >> 16) & 0xfff);
495 if (flush) {
496 SLJIT_CACHE_FLUSH(inst, inst + 2);
497 }
498 #endif
499 }
500
501 static sljit_uw get_immediate(sljit_uw imm);
502
503 static SLJIT_INLINE void inline_set_const(sljit_uw addr, sljit_w new_constant, int flush)
504 {
505 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
506 sljit_uw *ptr = (sljit_uw*)addr;
507 sljit_uw *inst = (sljit_uw*)ptr[0];
508 sljit_uw ldr_literal = ptr[1];
509 sljit_uw src2;
510
511 src2 = get_immediate(new_constant);
512 if (src2) {
513 *inst = 0xe3a00000 | (ldr_literal & 0xf000) | src2;
514 if (flush) {
515 SLJIT_CACHE_FLUSH(inst, inst + 1);
516 }
517 return;
518 }
519
520 src2 = get_immediate(~new_constant);
521 if (src2) {
522 *inst = 0xe3e00000 | (ldr_literal & 0xf000) | src2;
523 if (flush) {
524 SLJIT_CACHE_FLUSH(inst, inst + 1);
525 }
526 return;
527 }
528
529 if (ldr_literal & (1 << 23))
530 ptr = inst + ((ldr_literal & 0xfff) >> 2) + 2;
531 else
532 ptr = inst + 1;
533
534 if (*inst != ldr_literal) {
535 *inst = ldr_literal;
536 if (flush) {
537 SLJIT_CACHE_FLUSH(inst, inst + 1);
538 }
539 }
540 *ptr = new_constant;
541 #else
542 sljit_uw *inst = (sljit_uw*)addr;
543 SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT);
544 inst[0] = MOVW | (inst[0] & 0xf000) | ((new_constant << 4) & 0xf0000) | (new_constant & 0xfff);
545 inst[1] = MOVT | (inst[1] & 0xf000) | ((new_constant >> 12) & 0xf0000) | ((new_constant >> 16) & 0xfff);
546 if (flush) {
547 SLJIT_CACHE_FLUSH(inst, inst + 2);
548 }
549 #endif
550 }
551
552 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
553 {
554 struct sljit_memory_fragment *buf;
555 sljit_uw *code;
556 sljit_uw *code_ptr;
557 sljit_uw *buf_ptr;
558 sljit_uw *buf_end;
559 sljit_uw size;
560 sljit_uw word_count;
561 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
562 sljit_uw cpool_size;
563 sljit_uw cpool_skip_alignment;
564 sljit_uw cpool_current_index;
565 sljit_uw *cpool_start_address;
566 sljit_uw *last_pc_patch;
567 struct future_patch *first_patch;
568 #endif
569
570 struct sljit_label *label;
571 struct sljit_jump *jump;
572 struct sljit_const *const_;
573
574 CHECK_ERROR_PTR();
575 check_sljit_generate_code(compiler);
576 reverse_buf(compiler);
577
578 /* Second code generation pass. */
579 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
580 size = compiler->size + (compiler->patches << 1);
581 if (compiler->cpool_fill > 0)
582 size += compiler->cpool_fill + CONST_POOL_ALIGNMENT - 1;
583 #else
584 size = compiler->size;
585 #endif
586 code = (sljit_uw*)SLJIT_MALLOC_EXEC(size * sizeof(sljit_uw));
587 PTR_FAIL_WITH_EXEC_IF(code);
588 buf = compiler->buf;
589
590 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
591 cpool_size = 0;
592 cpool_skip_alignment = 0;
593 cpool_current_index = 0;
594 cpool_start_address = NULL;
595 first_patch = NULL;
596 last_pc_patch = code;
597 #endif
598
599 code_ptr = code;
600 word_count = 0;
601
602 label = compiler->labels;
603 jump = compiler->jumps;
604 const_ = compiler->consts;
605
606 if (label && label->size == 0) {
607 label->addr = (sljit_uw)code;
608 label->size = 0;
609 label = label->next;
610 }
611
612 do {
613 buf_ptr = (sljit_uw*)buf->memory;
614 buf_end = buf_ptr + (buf->used_size >> 2);
615 do {
616 word_count++;
617 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
618 if (cpool_size > 0) {
619 if (cpool_skip_alignment > 0) {
620 buf_ptr++;
621 cpool_skip_alignment--;
622 }
623 else {
624 if (SLJIT_UNLIKELY(resolve_const_pool_index(&first_patch, cpool_current_index, cpool_start_address, buf_ptr))) {
625 SLJIT_FREE_EXEC(code);
626 compiler->error = SLJIT_ERR_ALLOC_FAILED;
627 return NULL;
628 }
629 buf_ptr++;
630 if (++cpool_current_index >= cpool_size) {
631 SLJIT_ASSERT(!first_patch);
632 cpool_size = 0;
633 if (label && label->size == word_count) {
634 /* Points after the current instruction. */
635 label->addr = (sljit_uw)code_ptr;
636 label->size = code_ptr - code;
637 label = label->next;
638 }
639 }
640 }
641 }
642 else if ((*buf_ptr & 0xff000000) != PUSH_POOL) {
643 #endif
644 *code_ptr = *buf_ptr++;
645 /* These structures are ordered by their address. */
646 SLJIT_ASSERT(!label || label->size >= word_count);
647 SLJIT_ASSERT(!jump || jump->addr >= word_count);
648 SLJIT_ASSERT(!const_ || const_->addr >= word_count);
649 if (jump && jump->addr == word_count) {
650 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
651 if (detect_jump_type(jump, code_ptr, code))
652 code_ptr--;
653 jump->addr = (sljit_uw)code_ptr;
654 #else
655 jump->addr = (sljit_uw)(code_ptr - 2);
656 if (detect_jump_type(jump, code_ptr, code))
657 code_ptr -= 2;
658 #endif
659 jump = jump->next;
660 }
661 if (label && label->size == word_count) {
662 /* code_ptr can be affected above. */
663 label->addr = (sljit_uw)(code_ptr + 1);
664 label->size = (code_ptr + 1) - code;
665 label = label->next;
666 }
667 if (const_ && const_->addr == word_count) {
668 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
669 const_->addr = (sljit_uw)code_ptr;
670 #else
671 const_->addr = (sljit_uw)(code_ptr - 1);
672 #endif
673 const_ = const_->next;
674 }
675 code_ptr++;
676 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
677 }
678 else {
679 /* Fortunately, no need to shift. */
680 cpool_size = *buf_ptr++ & ~PUSH_POOL;
681 SLJIT_ASSERT(cpool_size > 0);
682 cpool_start_address = ALIGN_INSTRUCTION(code_ptr + 1);
683 cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, cpool_size);
684 if (cpool_current_index > 0) {
685 /* Unconditional branch. */
686 *code_ptr = B | (((cpool_start_address - code_ptr) + cpool_current_index - 2) & ~PUSH_POOL);
687 code_ptr = cpool_start_address + cpool_current_index;
688 }
689 cpool_skip_alignment = CONST_POOL_ALIGNMENT - 1;
690 cpool_current_index = 0;
691 last_pc_patch = code_ptr;
692 }
693 #endif
694 } while (buf_ptr < buf_end);
695 buf = buf->next;
696 } while (buf);
697
698 SLJIT_ASSERT(!label);
699 SLJIT_ASSERT(!jump);
700 SLJIT_ASSERT(!const_);
701
702 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
703 SLJIT_ASSERT(cpool_size == 0);
704 if (compiler->cpool_fill > 0) {
705 cpool_start_address = ALIGN_INSTRUCTION(code_ptr);
706 cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, compiler->cpool_fill);
707 if (cpool_current_index > 0)
708 code_ptr = cpool_start_address + cpool_current_index;
709
710 buf_ptr = compiler->cpool;
711 buf_end = buf_ptr + compiler->cpool_fill;
712 cpool_current_index = 0;
713 while (buf_ptr < buf_end) {
714 if (SLJIT_UNLIKELY(resolve_const_pool_index(&first_patch, cpool_current_index, cpool_start_address, buf_ptr))) {
715 SLJIT_FREE_EXEC(code);
716 compiler->error = SLJIT_ERR_ALLOC_FAILED;
717 return NULL;
718 }
719 buf_ptr++;
720 cpool_current_index++;
721 }
722 SLJIT_ASSERT(!first_patch);
723 }
724 #endif
725
726 jump = compiler->jumps;
727 while (jump) {
728 buf_ptr = (sljit_uw*)jump->addr;
729
730 if (jump->flags & PATCH_B) {
731 if (!(jump->flags & JUMP_ADDR)) {
732 SLJIT_ASSERT(jump->flags & JUMP_LABEL);
733 SLJIT_ASSERT(((sljit_w)jump->u.label->addr - (sljit_w)(buf_ptr + 2)) <= 0x01ffffff && ((sljit_w)jump->u.label->addr - (sljit_w)(buf_ptr + 2)) >= -0x02000000);
734 *buf_ptr |= (((sljit_w)jump->u.label->addr - (sljit_w)(buf_ptr + 2)) >> 2) & 0x00ffffff;
735 }
736 else {
737 SLJIT_ASSERT(((sljit_w)jump->u.target - (sljit_w)(buf_ptr + 2)) <= 0x01ffffff && ((sljit_w)jump->u.target - (sljit_w)(buf_ptr + 2)) >= -0x02000000);
738 *buf_ptr |= (((sljit_w)jump->u.target - (sljit_w)(buf_ptr + 2)) >> 2) & 0x00ffffff;
739 }
740 }
741 else if (jump->flags & SLJIT_REWRITABLE_JUMP) {
742 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
743 jump->addr = (sljit_uw)code_ptr;
744 code_ptr[0] = (sljit_uw)buf_ptr;
745 code_ptr[1] = *buf_ptr;
746 inline_set_jump_addr((sljit_uw)code_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
747 code_ptr += 2;
748 #else
749 inline_set_jump_addr((sljit_uw)buf_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
750 #endif
751 }
752 else {
753 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
754 if (jump->flags & IS_BL)
755 buf_ptr--;
756 if (*buf_ptr & (1 << 23))
757 buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2;
758 else
759 buf_ptr += 1;
760 *buf_ptr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
761 #else
762 inline_set_jump_addr((sljit_uw)buf_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
763 #endif
764 }
765 jump = jump->next;
766 }
767
768 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
769 const_ = compiler->consts;
770 while (const_) {
771 buf_ptr = (sljit_uw*)const_->addr;
772 const_->addr = (sljit_uw)code_ptr;
773
774 code_ptr[0] = (sljit_uw)buf_ptr;
775 code_ptr[1] = *buf_ptr;
776 if (*buf_ptr & (1 << 23))
777 buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2;
778 else
779 buf_ptr += 1;
780 /* Set the value again (can be a simple constant). */
781 inline_set_const((sljit_uw)code_ptr, *buf_ptr, 0);
782 code_ptr += 2;
783
784 const_ = const_->next;
785 }
786 #endif
787
788 SLJIT_ASSERT(code_ptr - code <= (int)size);
789
790 SLJIT_CACHE_FLUSH(code, code_ptr);
791 compiler->error = SLJIT_ERR_COMPILED;
792 compiler->executable_size = size * sizeof(sljit_uw);
793 return code;
794 }
795
796 /* emit_op inp_flags.
797 WRITE_BACK must be the first, since it is a flag. */
798 #define WRITE_BACK 0x01
799 #define ALLOW_IMM 0x02
800 #define ALLOW_INV_IMM 0x04
801 #define ALLOW_ANY_IMM (ALLOW_IMM | ALLOW_INV_IMM)
802 #define ARG_TEST 0x08
803
804 /* Creates an index in data_transfer_insts array. */
805 #define WORD_DATA 0x00
806 #define BYTE_DATA 0x10
807 #define HALF_DATA 0x20
808 #define SIGNED_DATA 0x40
809 #define LOAD_DATA 0x80
810
811 #define EMIT_INSTRUCTION(inst) \
812 FAIL_IF(push_inst(compiler, (inst)))
813
814 /* Condition: AL. */
815 #define EMIT_DATA_PROCESS_INS(opcode, set_flags, dst, src1, src2) \
816 (0xe0000000 | ((opcode) << 21) | (set_flags) | RD(dst) | RN(src1) | (src2))
817
818 static int emit_op(struct sljit_compiler *compiler, int op, int inp_flags,
819 int dst, sljit_w dstw,
820 int src1, sljit_w src1w,
821 int src2, sljit_w src2w);
822
823 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_enter(struct sljit_compiler *compiler, int args, int temporaries, int generals, int local_size)
824 {
825 int size;
826 sljit_uw push;
827
828 CHECK_ERROR();
829 check_sljit_emit_enter(compiler, args, temporaries, generals, local_size);
830
831 compiler->temporaries = temporaries;
832 compiler->generals = generals;
833
834 /* Push general registers, temporary registers
835 stmdb sp!, {..., lr} */
836 push = PUSH | (1 << 14);
837 if (temporaries >= 5)
838 push |= 1 << 11;
839 if (temporaries >= 4)
840 push |= 1 << 10;
841 if (generals >= 5)
842 push |= 1 << 8;
843 if (generals >= 4)
844 push |= 1 << 7;
845 if (generals >= 3)
846 push |= 1 << 6;
847 if (generals >= 2)
848 push |= 1 << 5;
849 if (generals >= 1)
850 push |= 1 << 4;
851 EMIT_INSTRUCTION(push);
852
853 /* Stack must be aligned to 8 bytes: */
854 size = (1 + generals) * sizeof(sljit_uw);
855 if (temporaries >= 4)
856 size += (temporaries - 3) * sizeof(sljit_uw);
857 local_size += size;
858 local_size = (local_size + 7) & ~7;
859 local_size -= size;
860 compiler->local_size = local_size;
861 if (local_size > 0)
862 FAIL_IF(emit_op(compiler, SLJIT_SUB, ALLOW_IMM, SLJIT_LOCALS_REG, 0, SLJIT_LOCALS_REG, 0, SLJIT_IMM, local_size));
863
864 if (args >= 1)
865 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_GENERAL_REG1, SLJIT_UNUSED, RM(SLJIT_TEMPORARY_REG1)));
866 if (args >= 2)
867 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_GENERAL_REG2, SLJIT_UNUSED, RM(SLJIT_TEMPORARY_REG2)));
868 if (args >= 3)
869 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_GENERAL_REG3, SLJIT_UNUSED, RM(SLJIT_TEMPORARY_REG3)));
870
871 return SLJIT_SUCCESS;
872 }
873
874 SLJIT_API_FUNC_ATTRIBUTE void sljit_fake_enter(struct sljit_compiler *compiler, int args, int temporaries, int generals, int local_size)
875 {
876 int size;
877
878 CHECK_ERROR_VOID();
879 check_sljit_fake_enter(compiler, args, temporaries, generals, local_size);
880
881 compiler->temporaries = temporaries;
882 compiler->generals = generals;
883
884 size = (1 + generals) * sizeof(sljit_uw);
885 if (temporaries >= 4)
886 size += (temporaries - 3) * sizeof(sljit_uw);
887 local_size += size;
888 local_size = (local_size + 7) & ~7;
889 local_size -= size;
890 compiler->local_size = local_size;
891 }
892
893 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_return(struct sljit_compiler *compiler, int src, sljit_w srcw)
894 {
895 sljit_uw pop;
896
897 CHECK_ERROR();
898 check_sljit_emit_return(compiler, src, srcw);
899
900 if (src != SLJIT_UNUSED && src != SLJIT_RETURN_REG)
901 FAIL_IF(emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, SLJIT_RETURN_REG, 0, TMP_REG1, 0, src, srcw));
902
903 if (compiler->local_size > 0)
904 FAIL_IF(emit_op(compiler, SLJIT_ADD, ALLOW_IMM, SLJIT_LOCALS_REG, 0, SLJIT_LOCALS_REG, 0, SLJIT_IMM, compiler->local_size));
905
906 pop = POP | (1 << 15);
907 /* Push general registers, temporary registers
908 ldmia sp!, {..., pc} */
909 if (compiler->temporaries >= 5)
910 pop |= 1 << 11;
911 if (compiler->temporaries >= 4)
912 pop |= 1 << 10;
913 if (compiler->generals >= 5)
914 pop |= 1 << 8;
915 if (compiler->generals >= 4)
916 pop |= 1 << 7;
917 if (compiler->generals >= 3)
918 pop |= 1 << 6;
919 if (compiler->generals >= 2)
920 pop |= 1 << 5;
921 if (compiler->generals >= 1)
922 pop |= 1 << 4;
923
924 return push_inst(compiler, pop);
925 }
926
927 /* --------------------------------------------------------------------- */
928 /* Operators */
929 /* --------------------------------------------------------------------- */
930
931 /* s/l - store/load (1 bit)
932 u/s - signed/unsigned (1 bit)
933 w/b/h/N - word/byte/half/NOT allowed (2 bit)
934 It contans 16 items, but not all are different. */
935
936 static sljit_w data_transfer_insts[16] = {
937 /* s u w */ 0xe5000000 /* str */,
938 /* s u b */ 0xe5400000 /* strb */,
939 /* s u h */ 0xe10000b0 /* strh */,
940 /* s u N */ 0x00000000 /* not allowed */,
941 /* s s w */ 0xe5000000 /* str */,
942 /* s s b */ 0xe5400000 /* strb */,
943 /* s s h */ 0xe10000b0 /* strh */,
944 /* s s N */ 0x00000000 /* not allowed */,
945
946 /* l u w */ 0xe5100000 /* ldr */,
947 /* l u b */ 0xe5500000 /* ldrb */,
948 /* l u h */ 0xe11000b0 /* ldrh */,
949 /* l u N */ 0x00000000 /* not allowed */,
950 /* l s w */ 0xe5100000 /* ldr */,
951 /* l s b */ 0xe11000d0 /* ldrsb */,
952 /* l s h */ 0xe11000f0 /* ldrsh */,
953 /* l s N */ 0x00000000 /* not allowed */,
954 };
955
956 #define EMIT_DATA_TRANSFER(type, add, wb, target, base1, base2) \
957 (data_transfer_insts[(type) >> 4] | ((add) << 23) | ((wb) << 21) | (reg_map[target] << 12) | (reg_map[base1] << 16) | (base2))
958 /* Normal ldr/str instruction.
959 Type2: ldrsb, ldrh, ldrsh */
960 #define IS_TYPE1_TRANSFER(type) \
961 (data_transfer_insts[(type) >> 4] & 0x04000000)
962 #define TYPE2_TRANSFER_IMM(imm) \
963 (((imm) & 0xf) | (((imm) & 0xf0) << 4) | (1 << 22))
964
965 /* flags: */
966 /* Arguments are swapped. */
967 #define ARGS_SWAPPED 0x01
968 /* Inverted immediate. */
969 #define INV_IMM 0x02
970 /* Source and destination is register. */
971 #define REG_DEST 0x04
972 #define REG_SOURCE 0x08
973 /* One instruction is enough. */
974 #define FAST_DEST 0x10
975 /* Multiple instructions are required. */
976 #define SLOW_DEST 0x20
977 /* SET_FLAGS must be (1 << 20) as it is also the value of S bit (can be used for optimization). */
978 #define SET_FLAGS (1 << 20)
979 /* dst: reg
980 src1: reg
981 src2: reg or imm (if allowed)
982 SRC2_IMM must be (1 << 25) as it is also the value of I bit (can be used for optimization). */
983 #define SRC2_IMM (1 << 25)
984
985 #define EMIT_DATA_PROCESS_INS_AND_RETURN(opcode) \
986 return push_inst(compiler, EMIT_DATA_PROCESS_INS(opcode, flags & SET_FLAGS, dst, src1, (src2 & SRC2_IMM) ? src2 : RM(src2)))
987
988 #define EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(opcode, dst, src1, src2) \
989 return push_inst(compiler, EMIT_DATA_PROCESS_INS(opcode, flags & SET_FLAGS, dst, src1, src2))
990
991 #define EMIT_SHIFT_INS_AND_RETURN(opcode) \
992 SLJIT_ASSERT(!(flags & INV_IMM) && !(src2 & SRC2_IMM)); \
993 if (compiler->shift_imm != 0x20) { \
994 SLJIT_ASSERT(src1 == TMP_REG1); \
995 SLJIT_ASSERT(!(flags & ARGS_SWAPPED)); \
996 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, flags & SET_FLAGS, dst, SLJIT_UNUSED, (compiler->shift_imm << 7) | (opcode << 5) | reg_map[src2])); \
997 } \
998 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, flags & SET_FLAGS, dst, SLJIT_UNUSED, (reg_map[(flags & ARGS_SWAPPED) ? src1 : src2] << 8) | (opcode << 5) | 0x10 | ((flags & ARGS_SWAPPED) ? reg_map[src2] : reg_map[src1])));
999
1000 static SLJIT_INLINE int emit_single_op(struct sljit_compiler *compiler, int op, int flags,
1001 int dst, int src1, int src2)
1002 {
1003 sljit_w mul_inst;
1004
1005 switch (GET_OPCODE(op)) {
1006 case SLJIT_ADD:
1007 SLJIT_ASSERT(!(flags & INV_IMM));
1008 EMIT_DATA_PROCESS_INS_AND_RETURN(ADD_DP);
1009
1010 case SLJIT_ADDC:
1011 SLJIT_ASSERT(!(flags & INV_IMM));
1012 EMIT_DATA_PROCESS_INS_AND_RETURN(ADC_DP);
1013
1014 case SLJIT_SUB:
1015 SLJIT_ASSERT(!(flags & INV_IMM));
1016 if (!(flags & ARGS_SWAPPED))
1017 EMIT_DATA_PROCESS_INS_AND_RETURN(SUB_DP);
1018 EMIT_DATA_PROCESS_INS_AND_RETURN(RSB_DP);
1019
1020 case SLJIT_SUBC:
1021 SLJIT_ASSERT(!(flags & INV_IMM));
1022 if (!(flags & ARGS_SWAPPED))
1023 EMIT_DATA_PROCESS_INS_AND_RETURN(SBC_DP);
1024 EMIT_DATA_PROCESS_INS_AND_RETURN(RSC_DP);
1025
1026 case SLJIT_MUL:
1027 SLJIT_ASSERT(!(flags & INV_IMM));
1028 SLJIT_ASSERT(!(src2 & SRC2_IMM));
1029 if (SLJIT_UNLIKELY(op & SLJIT_SET_O))
1030 mul_inst = SMULL | (reg_map[TMP_REG3] << 16) | (reg_map[dst] << 12);
1031 else
1032 mul_inst = MUL | (reg_map[dst] << 16);
1033
1034 if (dst != src2)
1035 FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src1] << 8) | reg_map[src2]));
1036 else if (dst != src1)
1037 FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src2] << 8) | reg_map[src1]));
1038 else {
1039 /* Rm and Rd must not be the same register. */
1040 SLJIT_ASSERT(dst != TMP_REG1);
1041 FAIL_IF(push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, reg_map[src2])));
1042 FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src2] << 8) | reg_map[TMP_REG1]));
1043 }
1044
1045 if (!(op & SLJIT_SET_O))
1046 return SLJIT_SUCCESS;
1047
1048 /* We need to use TMP_REG3. */
1049 compiler->cache_arg = 0;
1050 compiler->cache_argw = 0;
1051 /* cmp TMP_REG2, dst asr #31. */
1052 return push_inst(compiler, EMIT_DATA_PROCESS_INS(CMP_DP, SET_FLAGS, SLJIT_UNUSED, TMP_REG3, RM(dst) | 0xfc0));
1053
1054 case SLJIT_AND:
1055 if (!(flags & INV_IMM))
1056 EMIT_DATA_PROCESS_INS_AND_RETURN(AND_DP);
1057 EMIT_DATA_PROCESS_INS_AND_RETURN(BIC_DP);
1058
1059 case SLJIT_OR:
1060 SLJIT_ASSERT(!(flags & INV_IMM));
1061 EMIT_DATA_PROCESS_INS_AND_RETURN(ORR_DP);
1062
1063 case SLJIT_XOR:
1064 SLJIT_ASSERT(!(flags & INV_IMM));
1065 EMIT_DATA_PROCESS_INS_AND_RETURN(EOR_DP);
1066
1067 case SLJIT_SHL:
1068 EMIT_SHIFT_INS_AND_RETURN(0);
1069
1070 case SLJIT_LSHR:
1071 EMIT_SHIFT_INS_AND_RETURN(1);
1072
1073 case SLJIT_ASHR:
1074 EMIT_SHIFT_INS_AND_RETURN(2);
1075
1076 case SLJIT_MOV:
1077 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
1078 if (dst != src2) {
1079 if (src2 & SRC2_IMM) {
1080 if (flags & INV_IMM)
1081 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
1082 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
1083 }
1084 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, reg_map[src2]);
1085 }
1086 return SLJIT_SUCCESS;
1087
1088 case SLJIT_MOV_UB:
1089 case SLJIT_MOV_SB:
1090 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
1091 if ((flags & (REG_DEST | REG_SOURCE)) == (REG_DEST | REG_SOURCE)) {
1092 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
1093 if (op == SLJIT_MOV_UB)
1094 return push_inst(compiler, EMIT_DATA_PROCESS_INS(AND_DP, 0, dst, src2, SRC2_IMM | 0xff));
1095 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (24 << 7) | reg_map[src2]));
1096 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (24 << 7) | (op == SLJIT_MOV_UB ? 0x20 : 0x40) | reg_map[dst]));
1097 #else
1098 return push_inst(compiler, (op == SLJIT_MOV_UB ? UXTB : SXTB) | RD(dst) | RM(src2));
1099 #endif
1100 }
1101 else if (dst != src2) {
1102 SLJIT_ASSERT(src2 & SRC2_IMM);
1103 if (flags & INV_IMM)
1104 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
1105 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
1106 }
1107 return SLJIT_SUCCESS;
1108
1109 case SLJIT_MOV_UH:
1110 case SLJIT_MOV_SH:
1111 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
1112 if ((flags & (REG_DEST | REG_SOURCE)) == (REG_DEST | REG_SOURCE)) {
1113 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
1114 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (16 << 7) | reg_map[src2]));
1115 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (16 << 7) | (op == SLJIT_MOV_UH ? 0x20 : 0x40) | reg_map[dst]));
1116 #else
1117 return push_inst(compiler, (op == SLJIT_MOV_UH ? UXTH : SXTH) | RD(dst) | RM(src2));
1118 #endif
1119 }
1120 else if (dst != src2) {
1121 SLJIT_ASSERT(src2 & SRC2_IMM);
1122 if (flags & INV_IMM)
1123 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
1124 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
1125 }
1126 return SLJIT_SUCCESS;
1127
1128 case SLJIT_NOT:
1129 if (src2 & SRC2_IMM) {
1130 if (flags & INV_IMM)
1131 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
1132 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
1133 }
1134 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, RM(src2));
1135
1136 case SLJIT_CLZ:
1137 SLJIT_ASSERT(!(flags & INV_IMM));
1138 SLJIT_ASSERT(!(src2 & SRC2_IMM));
1139 FAIL_IF(push_inst(compiler, CLZ | RD(dst) | RM(src2)));
1140 if (flags & SET_FLAGS)
1141 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(CMP_DP, SLJIT_UNUSED, dst, SRC2_IMM);
1142 return SLJIT_SUCCESS;
1143 }
1144 SLJIT_ASSERT_STOP();
1145 return SLJIT_SUCCESS;
1146 }
1147
1148 #undef EMIT_DATA_PROCESS_INS_AND_RETURN
1149 #undef EMIT_FULL_DATA_PROCESS_INS_AND_RETURN
1150 #undef EMIT_SHIFT_INS_AND_RETURN
1151
1152 /* Tests whether the immediate can be stored in the 12 bit imm field.
1153 Returns with 0 if not possible. */
1154 static sljit_uw get_immediate(sljit_uw imm)
1155 {
1156 int rol;
1157
1158 if (imm <= 0xff)
1159 return SRC2_IMM | imm;
1160
1161 if (!(imm & 0xff000000)) {
1162 imm <<= 8;
1163 rol = 8;
1164 }
1165 else {
1166 imm = (imm << 24) | (imm >> 8);
1167 rol = 0;
1168 }
1169
1170 if (!(imm & 0xff000000)) {
1171 imm <<= 8;
1172 rol += 4;
1173 }
1174
1175 if (!(imm & 0xf0000000)) {
1176 imm <<= 4;
1177 rol += 2;
1178 }
1179
1180 if (!(imm & 0xc0000000)) {
1181 imm <<= 2;
1182 rol += 1;
1183 }
1184
1185 if (!(imm & 0x00ffffff))
1186 return SRC2_IMM | (imm >> 24) | (rol << 8);
1187 else
1188 return 0;
1189 }
1190
1191 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
1192 static int generate_int(struct sljit_compiler *compiler, int reg, sljit_uw imm, int positive)
1193 {
1194 sljit_uw mask;
1195 sljit_uw imm1;
1196 sljit_uw imm2;
1197 int rol;
1198
1199 /* Step1: Search a zero byte (8 continous zero bit). */
1200 mask = 0xff000000;
1201 rol = 8;
1202 while(1) {
1203 if (!(imm & mask)) {
1204 /* Rol imm by rol. */
1205 imm = (imm << rol) | (imm >> (32 - rol));
1206 /* Calculate arm rol. */
1207 rol = 4 + (rol >> 1);
1208 break;
1209 }
1210 rol += 2;
1211 mask >>= 2;
1212 if (mask & 0x3) {
1213 /* rol by 8. */
1214 imm = (imm << 8) | (imm >> 24);
1215 mask = 0xff00;
1216 rol = 24;
1217 while (1) {
1218 if (!(imm & mask)) {
1219 /* Rol imm by rol. */
1220 imm = (imm << rol) | (imm >> (32 - rol));
1221 /* Calculate arm rol. */
1222 rol = (rol >> 1) - 8;
1223 break;
1224 }
1225 rol += 2;
1226 mask >>= 2;
1227 if (mask & 0x3)
1228 return 0;
1229 }
1230 break;
1231 }
1232 }
1233
1234 /* The low 8 bit must be zero. */
1235 SLJIT_ASSERT(!(imm & 0xff));
1236
1237 if (!(imm & 0xff000000)) {
1238 imm1 = SRC2_IMM | ((imm >> 16) & 0xff) | (((rol + 4) & 0xf) << 8);
1239 imm2 = SRC2_IMM | ((imm >> 8) & 0xff) | (((rol + 8) & 0xf) << 8);
1240 }
1241 else if (imm & 0xc0000000) {
1242 imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8);
1243 imm <<= 8;
1244 rol += 4;
1245
1246 if (!(imm & 0xff000000)) {
1247 imm <<= 8;
1248 rol += 4;
1249 }
1250
1251 if (!(imm & 0xf0000000)) {
1252 imm <<= 4;
1253 rol += 2;
1254 }
1255
1256 if (!(imm & 0xc0000000)) {
1257 imm <<= 2;
1258 rol += 1;
1259 }
1260
1261 if (!(imm & 0x00ffffff))
1262 imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8);
1263 else
1264 return 0;
1265 }
1266 else {
1267 if (!(imm & 0xf0000000)) {
1268 imm <<= 4;
1269 rol += 2;
1270 }
1271
1272 if (!(imm & 0xc0000000)) {
1273 imm <<= 2;
1274 rol += 1;
1275 }
1276
1277 imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8);
1278 imm <<= 8;
1279 rol += 4;
1280
1281 if (!(imm & 0xf0000000)) {
1282 imm <<= 4;
1283 rol += 2;
1284 }
1285
1286 if (!(imm & 0xc0000000)) {
1287 imm <<= 2;
1288 rol += 1;
1289 }
1290
1291 if (!(imm & 0x00ffffff))
1292 imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8);
1293 else
1294 return 0;
1295 }
1296
1297 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(positive ? MOV_DP : MVN_DP, 0, reg, SLJIT_UNUSED, imm1));
1298 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(positive ? ORR_DP : BIC_DP, 0, reg, reg, imm2));
1299 return 1;
1300 }
1301 #endif
1302
1303 static int load_immediate(struct sljit_compiler *compiler, int reg, sljit_uw imm)
1304 {
1305 sljit_uw tmp;
1306
1307 #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
1308 if (!(imm & ~0xffff))
1309 return push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff));
1310 #endif
1311
1312 /* Create imm by 1 inst. */
1313 tmp = get_immediate(imm);
1314 if (tmp) {
1315 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, tmp));
1316 return SLJIT_SUCCESS;
1317 }
1318
1319 tmp = get_immediate(~imm);
1320 if (tmp) {
1321 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MVN_DP, 0, reg, SLJIT_UNUSED, tmp));
1322 return SLJIT_SUCCESS;
1323 }
1324
1325 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
1326 /* Create imm by 2 inst. */
1327 FAIL_IF(generate_int(compiler, reg, imm, 1));
1328 FAIL_IF(generate_int(compiler, reg, ~imm, 0));
1329
1330 /* Load integer. */
1331 return push_inst_with_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, reg, TMP_PC, 0), imm);
1332 #else
1333 return emit_imm(compiler, reg, imm);
1334 #endif
1335 }
1336
1337 /* Can perform an operation using at most 1 instruction. */
1338 static int getput_arg_fast(struct sljit_compiler *compiler, int inp_flags, int reg, int arg, sljit_w argw)
1339 {
1340 sljit_uw imm;
1341
1342 if (arg & SLJIT_IMM) {
1343 imm = get_immediate(argw);
1344 if (imm) {
1345 if (inp_flags & ARG_TEST)
1346 return 1;
1347 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, imm));
1348 return -1;
1349 }
1350 imm = get_immediate(~argw);
1351 if (imm) {
1352 if (inp_flags & ARG_TEST)
1353 return 1;
1354 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MVN_DP, 0, reg, SLJIT_UNUSED, imm));
1355 return -1;
1356 }
1357 return (inp_flags & ARG_TEST) ? SLJIT_SUCCESS : 0;
1358 }
1359
1360 SLJIT_ASSERT(arg & SLJIT_MEM);
1361
1362 /* Fast loads/stores. */
1363 if (arg & 0xf) {
1364 if (!(arg & 0xf0)) {
1365 if (IS_TYPE1_TRANSFER(inp_flags)) {
1366 if (argw >= 0 && argw <= 0xfff) {
1367 if (inp_flags & ARG_TEST)
1368 return 1;
1369 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, argw));
1370 return -1;
1371 }
1372 if (argw < 0 && argw >= -0xfff) {
1373 if (inp_flags & ARG_TEST)
1374 return 1;
1375 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 0, inp_flags & WRITE_BACK, reg, arg & 0xf, -argw));
1376 return -1;
1377 }
1378 }
1379 else {
1380 if (argw >= 0 && argw <= 0xff) {
1381 if (inp_flags & ARG_TEST)
1382 return 1;
1383 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, TYPE2_TRANSFER_IMM(argw)));
1384 return -1;
1385 }
1386 if (argw < 0 && argw >= -0xff) {
1387 if (inp_flags & ARG_TEST)
1388 return 1;
1389 argw = -argw;
1390 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 0, inp_flags & WRITE_BACK, reg, arg & 0xf, TYPE2_TRANSFER_IMM(argw)));
1391 return -1;
1392 }
1393 }
1394 }
1395 else if ((argw & 0x3) == 0 || IS_TYPE1_TRANSFER(inp_flags)) {
1396 if (inp_flags & ARG_TEST)
1397 return 1;
1398 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf,
1399 RM((arg >> 4) & 0xf) | (IS_TYPE1_TRANSFER(inp_flags) ? SRC2_IMM : 0) | ((argw & 0x3) << 7)));
1400 return -1;
1401 }
1402 }
1403
1404 return (inp_flags & ARG_TEST) ? SLJIT_SUCCESS : 0;
1405 }
1406
1407 /* See getput_arg below.
1408 Note: can_cache is called only for binary operators. Those
1409 operators always uses word arguments without write back. */
1410 static int can_cache(int arg, sljit_w argw, int next_arg, sljit_w next_argw)
1411 {
1412 /* Immediate caching is not supported as it would be an operation on constant arguments. */
1413 if (arg & SLJIT_IMM)
1414 return 0;
1415
1416 /* Always a simple operation. */
1417 if (arg & 0xf0)
1418 return 0;
1419
1420 if (!(arg & 0xf)) {
1421 /* Immediate access. */
1422 if ((next_arg & SLJIT_MEM) && ((sljit_uw)argw - (sljit_uw)next_argw <= 0xfff || (sljit_uw)next_argw - (sljit_uw)argw <= 0xfff))
1423 return 1;
1424 return 0;
1425 }
1426
1427 if (argw <= 0xfffff && argw >= -0xfffff)
1428 return 0;
1429
1430 if (argw == next_argw && (next_arg & SLJIT_MEM))
1431 return 1;
1432
1433 if (arg == next_arg && ((sljit_uw)argw - (sljit_uw)next_argw <= 0xfff || (sljit_uw)next_argw - (sljit_uw)argw <= 0xfff))
1434 return 1;
1435
1436 return 0;
1437 }
1438
1439 #define GETPUT_ARG_DATA_TRANSFER(add, wb, target, base, imm) \
1440 if (max_delta & 0xf00) \
1441 FAIL_IF(push_inst(compiler, EMIT_DATA_TRANSFER(inp_flags, add, wb, target, base, imm))); \
1442 else \
1443 FAIL_IF(push_inst(compiler, EMIT_DATA_TRANSFER(inp_flags, add, wb, target, base, TYPE2_TRANSFER_IMM(imm))));
1444
1445 #define TEST_WRITE_BACK() \
1446 if (inp_flags & WRITE_BACK) { \
1447 tmp_r = arg & 0xf; \
1448 if (reg == tmp_r) { \
1449 /* This can only happen for stores */ \
1450 /* since ldr reg, [reg, ...]! has no meaning */ \
1451 SLJIT_ASSERT(!(inp_flags & LOAD_DATA)); \
1452 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(reg))); \
1453 reg = TMP_REG3; \
1454 } \
1455 }
1456
1457 /* Emit the necessary instructions. See can_cache above. */
1458 static int getput_arg(struct sljit_compiler *compiler, int inp_flags, int reg, int arg, sljit_w argw, int next_arg, sljit_w next_argw)
1459 {
1460 int tmp_r;
1461 sljit_w max_delta;
1462 sljit_w sign;
1463
1464 if (arg & SLJIT_IMM) {
1465 SLJIT_ASSERT(inp_flags & LOAD_DATA);
1466 return load_immediate(compiler, reg, argw);
1467 }
1468
1469 SLJIT_ASSERT(arg & SLJIT_MEM);
1470
1471 tmp_r = (inp_flags & LOAD_DATA) ? reg : TMP_REG3;
1472 max_delta = IS_TYPE1_TRANSFER(inp_flags) ? 0xfff : 0xff;
1473
1474 if ((arg & 0xf) == SLJIT_UNUSED) {
1475 /* Write back is not used. */
1476 if ((compiler->cache_arg & SLJIT_IMM) && (((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= (sljit_uw)max_delta || ((sljit_uw)compiler->cache_argw - (sljit_uw)argw) <= (sljit_uw)max_delta)) {
1477 if (((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= (sljit_uw)max_delta) {
1478 sign = 1;
1479 argw = argw - compiler->cache_argw;
1480 }
1481 else {
1482 sign = 0;
1483 argw = compiler->cache_argw - argw;
1484 }
1485
1486 if (max_delta & 0xf00) {
1487 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, sign, 0, reg, TMP_REG3, argw));
1488 }
1489 else {
1490 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, sign, 0, reg, TMP_REG3, TYPE2_TRANSFER_IMM(argw)));
1491 }
1492 return SLJIT_SUCCESS;
1493 }
1494
1495 /* With write back, we can create some sophisticated loads, but
1496 it is hard to decide whether we should convert downward (0s) or upward (1s). */
1497 if ((next_arg & SLJIT_MEM) && ((sljit_uw)argw - (sljit_uw)next_argw <= (sljit_uw)max_delta || (sljit_uw)next_argw - (sljit_uw)argw <= (sljit_uw)max_delta)) {
1498 SLJIT_ASSERT(inp_flags & LOAD_DATA);
1499
1500 compiler->cache_arg = SLJIT_IMM;
1501 compiler->cache_argw = argw;
1502 tmp_r = TMP_REG3;
1503 }
1504
1505 FAIL_IF(load_immediate(compiler, tmp_r, argw));
1506 GETPUT_ARG_DATA_TRANSFER(1, 0, reg, tmp_r, 0);
1507 return SLJIT_SUCCESS;
1508 }
1509
1510 /* Extended imm addressing for [reg+imm] format. */
1511 sign = (max_delta << 8) | 0xff;
1512 if (!(arg & 0xf0) && argw <= sign && argw >= -sign) {
1513 TEST_WRITE_BACK();
1514 if (argw >= 0) {
1515 sign = 1;
1516 }
1517 else {
1518 sign = 0;
1519 argw = -argw;
1520 }
1521
1522 /* Optimization: add is 0x4, sub is 0x2. Sign is 1 for add and 0 for sub. */
1523 if (max_delta & 0xf00)
1524 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(SUB_DP << sign, 0, tmp_r, arg & 0xf, SRC2_IMM | (argw >> 12) | 0xa00));
1525 else
1526 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(SUB_DP << sign, 0, tmp_r, arg & 0xf, SRC2_IMM | (argw >> 8) | 0xc00));
1527
1528 argw &= max_delta;
1529 GETPUT_ARG_DATA_TRANSFER(sign, inp_flags & WRITE_BACK, reg, tmp_r, argw);
1530 return SLJIT_SUCCESS;
1531 }
1532
1533 if (arg & 0xf0) {
1534 SLJIT_ASSERT((argw & 0x3) && !(max_delta & 0xf00));
1535 if (inp_flags & WRITE_BACK)
1536 tmp_r = arg & 0xf;
1537 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, tmp_r, arg & 0xf, RM((arg >> 4) & 0xf) | ((argw & 0x3) << 7)));
1538 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, 0, reg, tmp_r, TYPE2_TRANSFER_IMM(0)));
1539 return SLJIT_SUCCESS;
1540 }
1541
1542 if (compiler->cache_arg == arg && ((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= (sljit_uw)max_delta) {
1543 SLJIT_ASSERT(!(inp_flags & WRITE_BACK));
1544 argw = argw - compiler->cache_argw;
1545 GETPUT_ARG_DATA_TRANSFER(1, 0, reg, TMP_REG3, argw);
1546 return SLJIT_SUCCESS;
1547 }
1548
1549 if (compiler->cache_arg == arg && ((sljit_uw)compiler->cache_argw - (sljit_uw)argw) <= (sljit_uw)max_delta) {
1550 SLJIT_ASSERT(!(inp_flags & WRITE_BACK));
1551 argw = compiler->cache_argw - argw;
1552 GETPUT_ARG_DATA_TRANSFER(0, 0, reg, TMP_REG3, argw);
1553 return SLJIT_SUCCESS;
1554 }
1555
1556 if ((compiler->cache_arg & SLJIT_IMM) && compiler->cache_argw == argw) {
1557 TEST_WRITE_BACK();
1558 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, RM(TMP_REG3) | (max_delta & 0xf00 ? SRC2_IMM : 0)));
1559 return SLJIT_SUCCESS;
1560 }
1561
1562 if (argw == next_argw && (next_arg & SLJIT_MEM)) {
1563 SLJIT_ASSERT(inp_flags & LOAD_DATA);
1564 FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
1565
1566 compiler->cache_arg = SLJIT_IMM;
1567 compiler->cache_argw = argw;
1568
1569 TEST_WRITE_BACK();
1570 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, RM(TMP_REG3) | (max_delta & 0xf00 ? SRC2_IMM : 0)));
1571 return SLJIT_SUCCESS;
1572 }
1573
1574 if (arg == next_arg && !(inp_flags & WRITE_BACK) && ((sljit_uw)argw - (sljit_uw)next_argw <= (sljit_uw)max_delta || (sljit_uw)next_argw - (sljit_uw)argw <= (sljit_uw)max_delta)) {
1575 SLJIT_ASSERT(inp_flags & LOAD_DATA);
1576 FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
1577 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG3, TMP_REG3, reg_map[arg & 0xf]));
1578
1579 compiler->cache_arg = arg;
1580 compiler->cache_argw = argw;
1581
1582 GETPUT_ARG_DATA_TRANSFER(1, 0, reg, TMP_REG3, 0);
1583 return SLJIT_SUCCESS;
1584 }
1585
1586 if ((arg & 0xf) == tmp_r) {
1587 compiler->cache_arg = SLJIT_IMM;
1588 compiler->cache_argw = argw;
1589 tmp_r = TMP_REG3;
1590 }
1591
1592 FAIL_IF(load_immediate(compiler, tmp_r, argw));
1593 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, reg_map[tmp_r] | (max_delta & 0xf00 ? SRC2_IMM : 0)));
1594 return SLJIT_SUCCESS;
1595 }
1596
1597 static int emit_op(struct sljit_compiler *compiler, int op, int inp_flags,
1598 int dst, sljit_w dstw,
1599 int src1, sljit_w src1w,
1600 int src2, sljit_w src2w)
1601 {
1602 /* arg1 goes to TMP_REG1 or src reg
1603 arg2 goes to TMP_REG2, imm or src reg
1604 TMP_REG3 can be used for caching
1605 result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
1606
1607 /* We prefers register and simple consts. */
1608 int dst_r;
1609 int src1_r;
1610 int src2_r = 0;
1611 int sugg_src2_r = TMP_REG2;
1612 int flags = GET_FLAGS(op) ? SET_FLAGS : 0;
1613
1614 compiler->cache_arg = 0;
1615 compiler->cache_argw = 0;
1616
1617 /* Destination check. */
1618 if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REG3) {
1619 dst_r = dst;
1620 flags |= REG_DEST;
1621 if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
1622 sugg_src2_r = dst_r;
1623 }
1624 else if (dst == SLJIT_UNUSED) {
1625 if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
1626 return SLJIT_SUCCESS;
1627 dst_r = TMP_REG2;
1628 }
1629 else {
1630 SLJIT_ASSERT(dst & SLJIT_MEM);
1631 if (getput_arg_fast(compiler, inp_flags | ARG_TEST, TMP_REG2, dst, dstw)) {
1632 flags |= FAST_DEST;
1633 dst_r = TMP_REG2;
1634 }
1635 else {
1636 flags |= SLOW_DEST;
1637 dst_r = 0;
1638 }
1639 }
1640
1641 /* Source 1. */
1642 if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= TMP_REG3)
1643 src1_r = src1;
1644 else if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= TMP_REG3) {
1645 flags |= ARGS_SWAPPED;
1646 src1_r = src2;
1647 src2 = src1;
1648 src2w = src1w;
1649 }
1650 else {
1651 if ((inp_flags & ALLOW_ANY_IMM) && (src1 & SLJIT_IMM)) {
1652 /* The second check will generate a hit. */
1653 src2_r = get_immediate(src1w);
1654 if (src2_r) {
1655 flags |= ARGS_SWAPPED;
1656 src1 = src2;
1657 src1w = src2w;
1658 }
1659 if (inp_flags & ALLOW_INV_IMM) {
1660 src2_r = get_immediate(~src1w);
1661 if (src2_r) {
1662 flags |= ARGS_SWAPPED | INV_IMM;
1663 src1 = src2;
1664 src1w = src2w;
1665 }
1666 }
1667 }
1668
1669 src1_r = 0;
1670 if (getput_arg_fast(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w)) {
1671 FAIL_IF(compiler->error);
1672 src1_r = TMP_REG1;
1673 }
1674 }
1675
1676 /* Source 2. */
1677 if (src2_r == 0) {
1678 if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= TMP_REG3) {
1679 src2_r = src2;
1680 flags |= REG_SOURCE;
1681 if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
1682 dst_r = src2_r;
1683 }
1684 else do { /* do { } while(0) is used because of breaks. */
1685 if ((inp_flags & ALLOW_ANY_IMM) && (src2 & SLJIT_IMM)) {
1686 src2_r = get_immediate(src2w);
1687 if (src2_r)
1688 break;
1689 if (inp_flags & ALLOW_INV_IMM) {
1690 src2_r = get_immediate(~src2w);
1691 if (src2_r) {
1692 flags |= INV_IMM;
1693 break;
1694 }
1695 }
1696 }
1697
1698 /* src2_r is 0. */
1699 if (getput_arg_fast(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w)) {
1700 FAIL_IF(compiler->error);
1701 src2_r = sugg_src2_r;
1702 }
1703 } while (0);
1704 }
1705
1706 /* src1_r, src2_r and dst_r can be zero (=unprocessed) or non-zero.
1707 If they are zero, they must not be registers. */
1708 if (src1_r == 0 && src2_r == 0 && dst_r == 0) {
1709 if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
1710 SLJIT_ASSERT(!(flags & ARGS_SWAPPED));
1711 flags |= ARGS_SWAPPED;
1712 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src2, src2w, src1, src1w));
1713 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG2, src1, src1w, dst, dstw));
1714 }
1715 else {
1716 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
1717 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG2, src2, src2w, dst, dstw));
1718 }
1719 src1_r = TMP_REG1;
1720 src2_r = TMP_REG2;
1721 }
1722 else if (src1_r == 0 && src2_r == 0) {
1723 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
1724 src1_r = TMP_REG1;
1725 }
1726 else if (src1_r == 0 && dst_r == 0) {
1727 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
1728 src1_r = TMP_REG1;
1729 }
1730 else if (src2_r == 0 && dst_r == 0) {
1731 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w, dst, dstw));
1732 src2_r = sugg_src2_r;
1733 }
1734
1735 if (dst_r == 0)
1736 dst_r = TMP_REG2;
1737
1738 if (src1_r == 0) {
1739 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, 0, 0));
1740 src1_r = TMP_REG1;
1741 }
1742
1743 if (src2_r == 0) {
1744 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w, 0, 0));
1745 src2_r = sugg_src2_r;
1746 }
1747
1748 FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
1749
1750 if (flags & (FAST_DEST | SLOW_DEST)) {
1751 if (flags & FAST_DEST)
1752 FAIL_IF(getput_arg_fast(compiler, inp_flags, dst_r, dst, dstw));
1753 else
1754 FAIL_IF(getput_arg(compiler, inp_flags, dst_r, dst, dstw, 0, 0));
1755 }
1756 return SLJIT_SUCCESS;
1757 }
1758
1759 #ifdef __cplusplus
1760 extern "C" {
1761 #endif
1762
1763 #if defined(__GNUC__)
1764 extern unsigned int __aeabi_uidivmod(unsigned numerator, unsigned denominator);
1765 extern unsigned int __aeabi_idivmod(unsigned numerator, unsigned denominator);
1766 #else
1767 #error "Software divmod functions are needed"
1768 #endif
1769
1770 #ifdef __cplusplus
1771 }
1772 #endif
1773
1774 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op0(struct sljit_compiler *compiler, int op)
1775 {
1776 CHECK_ERROR();
1777 check_sljit_emit_op0(compiler, op);
1778
1779 op = GET_OPCODE(op);
1780 switch (op) {
1781 case SLJIT_BREAKPOINT:
1782 EMIT_INSTRUCTION(BKPT);
1783 break;
1784 case SLJIT_NOP:
1785 EMIT_INSTRUCTION(NOP);
1786 break;
1787 case SLJIT_UMUL:
1788 case SLJIT_SMUL:
1789 #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
1790 return push_inst(compiler, (op == SLJIT_UMUL ? UMULL : SMULL)
1791 | (reg_map[SLJIT_TEMPORARY_REG2] << 16)
1792 | (reg_map[SLJIT_TEMPORARY_REG1] << 12)
1793 | (reg_map[SLJIT_TEMPORARY_REG1] << 8)
1794 | reg_map[SLJIT_TEMPORARY_REG2]);
1795 #else
1796 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, RM(SLJIT_TEMPORARY_REG2)));
1797 return push_inst(compiler, (op == SLJIT_UMUL ? UMULL : SMULL)
1798 | (reg_map[SLJIT_TEMPORARY_REG2] << 16)
1799 | (reg_map[SLJIT_TEMPORARY_REG1] << 12)
1800 | (reg_map[SLJIT_TEMPORARY_REG1] << 8)
1801 | reg_map[TMP_REG1]);
1802 #endif
1803 case SLJIT_UDIV:
1804 case SLJIT_SDIV:
1805 EMIT_INSTRUCTION(0xe52d2008 /* str r2, [sp, #-8]! */);
1806 #if defined(__GNUC__)
1807 FAIL_IF(sljit_emit_ijump(compiler, SLJIT_FAST_CALL, SLJIT_IMM,
1808 (op == SLJIT_UDIV ? SLJIT_FUNC_OFFSET(__aeabi_uidivmod) : SLJIT_FUNC_OFFSET(__aeabi_idivmod))));
1809 #else
1810 #error "Software divmod functions are needed"
1811 #endif
1812 return push_inst(compiler, 0xe49d2008 /* ldr r2, [sp], #8 */);
1813 }
1814
1815 return SLJIT_SUCCESS;
1816 }
1817
1818 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op1(struct sljit_compiler *compiler, int op,
1819 int dst, sljit_w dstw,
1820 int src, sljit_w srcw)
1821 {
1822 CHECK_ERROR();
1823 check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw);
1824
1825 switch (GET_OPCODE(op)) {
1826 case SLJIT_MOV:
1827 case SLJIT_MOV_UI:
1828 case SLJIT_MOV_SI:
1829 return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, src, srcw);
1830
1831 case SLJIT_MOV_UB:
1832 return emit_op(compiler, SLJIT_MOV_UB, ALLOW_ANY_IMM | BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned char)srcw : srcw);
1833
1834 case SLJIT_MOV_SB:
1835 return emit_op(compiler, SLJIT_MOV_SB, ALLOW_ANY_IMM | SIGNED_DATA | BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed char)srcw : srcw);
1836
1837 case SLJIT_MOV_UH:
1838 return emit_op(compiler, SLJIT_MOV_UH, ALLOW_ANY_IMM | HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned short)srcw : srcw);
1839
1840 case SLJIT_MOV_SH:
1841 return emit_op(compiler, SLJIT_MOV_SH, ALLOW_ANY_IMM | SIGNED_DATA | HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed short)srcw : srcw);
1842
1843 case SLJIT_MOVU:
1844 case SLJIT_MOVU_UI:
1845 case SLJIT_MOVU_SI:
1846 return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
1847
1848 case SLJIT_MOVU_UB:
1849 return emit_op(compiler, SLJIT_MOV_UB, ALLOW_ANY_IMM | BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned char)srcw : srcw);
1850
1851 case SLJIT_MOVU_SB:
1852 return emit_op(compiler, SLJIT_MOV_SB, ALLOW_ANY_IMM | SIGNED_DATA | BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed char)srcw : srcw);
1853
1854 case SLJIT_MOVU_UH:
1855 return emit_op(compiler, SLJIT_MOV_UH, ALLOW_ANY_IMM | HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned short)srcw : srcw);
1856
1857 case SLJIT_MOVU_SH:
1858 return emit_op(compiler, SLJIT_MOV_SH, ALLOW_ANY_IMM | SIGNED_DATA | HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed short)srcw : srcw);
1859
1860 case SLJIT_NOT:
1861 return emit_op(compiler, op, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, src, srcw);
1862
1863 case SLJIT_NEG:
1864 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG)
1865 compiler->skip_checks = 1;
1866 #endif
1867 return sljit_emit_op2(compiler, SLJIT_SUB | GET_FLAGS(op), dst, dstw, SLJIT_IMM, 0, src, srcw);
1868
1869 case SLJIT_CLZ:
1870 return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
1871 }
1872
1873 return SLJIT_SUCCESS;
1874 }
1875
1876 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op2(struct sljit_compiler *compiler, int op,
1877 int dst, sljit_w dstw,
1878 int src1, sljit_w src1w,
1879 int src2, sljit_w src2w)
1880 {
1881 CHECK_ERROR();
1882 check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
1883
1884 switch (GET_OPCODE(op)) {
1885 case SLJIT_ADD:
1886 case SLJIT_ADDC:
1887 case SLJIT_SUB:
1888 case SLJIT_SUBC:
1889 case SLJIT_OR:
1890 case SLJIT_XOR:
1891 return emit_op(compiler, op, ALLOW_IMM, dst, dstw, src1, src1w, src2, src2w);
1892
1893 case SLJIT_MUL:
1894 return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w);
1895
1896 case SLJIT_AND:
1897 return emit_op(compiler, op, ALLOW_ANY_IMM, dst, dstw, src1, src1w, src2, src2w);
1898
1899 case SLJIT_SHL:
1900 case SLJIT_LSHR:
1901 case SLJIT_ASHR:
1902 if (src2 & SLJIT_IMM) {
1903 compiler->shift_imm = src2w & 0x1f;
1904 return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src1, src1w);
1905 }
1906 else {
1907 compiler->shift_imm = 0x20;
1908 return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w);
1909 }
1910 }
1911
1912 return SLJIT_SUCCESS;
1913 }
1914
1915 SLJIT_API_FUNC_ATTRIBUTE int sljit_get_register_index(int reg)
1916 {
1917 check_sljit_get_register_index(reg);
1918 return reg_map[reg];
1919 }
1920
1921 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op_custom(struct sljit_compiler *compiler,
1922 void *instruction, int size)
1923 {
1924 CHECK_ERROR();
1925 check_sljit_emit_op_custom(compiler, instruction, size);
1926 SLJIT_ASSERT(size == 4);
1927
1928 return push_inst(compiler, *(sljit_uw*)instruction);
1929 }
1930
1931 /* --------------------------------------------------------------------- */
1932 /* Floating point operators */
1933 /* --------------------------------------------------------------------- */
1934
1935 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
1936
1937 /* 0 - no fpu
1938 1 - vfp */
1939 static int arm_fpu_type = -1;
1940
1941 static void init_compiler()
1942 {
1943 if (arm_fpu_type != -1)
1944 return;
1945
1946 /* TODO: Only the OS can help to determine the correct fpu type. */
1947 arm_fpu_type = 1;
1948 }
1949
1950 SLJIT_API_FUNC_ATTRIBUTE int sljit_is_fpu_available(void)
1951 {
1952 if (arm_fpu_type == -1)
1953 init_compiler();
1954 return arm_fpu_type;
1955 }
1956
1957 #else
1958
1959 #define arm_fpu_type 1
1960
1961 SLJIT_API_FUNC_ATTRIBUTE int sljit_is_fpu_available(void)
1962 {
1963 /* Always available. */
1964 return 1;
1965 }
1966
1967 #endif
1968
1969 #define EMIT_FPU_DATA_TRANSFER(add, load, base, freg, offs) \
1970 (VSTR | ((add) << 23) | ((load) << 20) | (reg_map[base] << 16) | (freg << 12) | (offs))
1971 #define EMIT_FPU_OPERATION(opcode, dst, src1, src2) \
1972 ((opcode) | ((dst) << 12) | (src1) | ((src2) << 16))
1973
1974 static int emit_fpu_data_transfer(struct sljit_compiler *compiler, int fpu_reg, int load, int arg, sljit_w argw)
1975 {
1976 SLJIT_ASSERT(arg & SLJIT_MEM);
1977
1978 /* Fast loads and stores. */
1979 if ((arg & 0xf) && !(arg & 0xf0) && (argw & 0x3) == 0) {
1980 if (argw >= 0 && argw <= 0x3ff) {
1981 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, arg & 0xf, fpu_reg, argw >> 2));
1982 return SLJIT_SUCCESS;
1983 }
1984 if (argw < 0 && argw >= -0x3ff) {
1985 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(0, load, arg & 0xf, fpu_reg, (-argw) >> 2));
1986 return SLJIT_SUCCESS;
1987 }
1988 if (argw >= 0 && argw <= 0x3ffff) {
1989 SLJIT_ASSERT(get_immediate(argw & 0x3fc00));
1990 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG1, arg & 0xf, get_immediate(argw & 0x3fc00)));
1991 argw &= 0x3ff;
1992 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG1, fpu_reg, argw >> 2));
1993 return SLJIT_SUCCESS;
1994 }
1995 if (argw < 0 && argw >= -0x3ffff) {
1996 argw = -argw;
1997 SLJIT_ASSERT(get_immediate(argw & 0x3fc00));
1998 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(SUB_DP, 0, TMP_REG1, arg & 0xf, get_immediate(argw & 0x3fc00)));
1999 argw &= 0x3ff;
2000 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(0, load, TMP_REG1, fpu_reg, argw >> 2));
2001 return SLJIT_SUCCESS;
2002 }
2003 }
2004
2005 if (arg & 0xf0) {
2006 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG1, arg & 0xf, RM((arg >> 4) & 0xf) | ((argw & 0x3) << 7)));
2007 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG1, fpu_reg, 0));
2008 return SLJIT_SUCCESS;
2009 }
2010
2011 if (compiler->cache_arg == arg && ((argw - compiler->cache_argw) & 0x3) == 0) {
2012 if (((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= 0x3ff) {
2013 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG3, fpu_reg, (argw - compiler->cache_argw) >> 2));
2014 return SLJIT_SUCCESS;
2015 }
2016 if (((sljit_uw)compiler->cache_argw - (sljit_uw)argw) <= 0x3ff) {
2017 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(0, load, TMP_REG3, fpu_reg, (compiler->cache_argw - argw) >> 2));
2018 return SLJIT_SUCCESS;
2019 }
2020 }
2021
2022 compiler->cache_arg = arg;
2023 compiler->cache_argw = argw;
2024 if (arg & 0xf) {
2025 FAIL_IF(load_immediate(compiler, TMP_REG1, argw));
2026 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG3, arg & 0xf, reg_map[TMP_REG1]));
2027 }
2028 else
2029 FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
2030
2031 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG3, fpu_reg, 0));
2032 return SLJIT_SUCCESS;
2033 }
2034
2035 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop1(struct sljit_compiler *compiler, int op,
2036 int dst, sljit_w dstw,
2037 int src, sljit_w srcw)
2038 {
2039 int dst_freg;
2040
2041 CHECK_ERROR();
2042 check_sljit_emit_fop1(compiler, op, dst, dstw, src, srcw);
2043
2044 compiler->cache_arg = 0;
2045 compiler->cache_argw = 0;
2046
2047 if (GET_OPCODE(op) == SLJIT_FCMP) {
2048 if (dst > SLJIT_FLOAT_REG4) {
2049 FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 1, dst, dstw));
2050 dst = TMP_FREG1;
2051 }
2052 if (src > SLJIT_FLOAT_REG4) {
2053 FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG2, 1, src, srcw));
2054 src = TMP_FREG2;
2055 }
2056 EMIT_INSTRUCTION(VCMP_F64 | (dst << 12) | src);
2057 EMIT_INSTRUCTION(VMRS);
2058 return SLJIT_SUCCESS;
2059 }
2060
2061 dst_freg = (dst > SLJIT_FLOAT_REG4) ? TMP_FREG1 : dst;
2062
2063 if (src > SLJIT_FLOAT_REG4) {
2064 FAIL_IF(emit_fpu_data_transfer(compiler, dst_freg, 1, src, srcw));
2065 src = dst_freg;
2066 }
2067
2068 switch (op) {
2069 case SLJIT_FMOV:
2070 if (src != dst_freg && dst_freg != TMP_FREG1)
2071 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VMOV_F64, dst_freg, src, 0));
2072 break;
2073 case SLJIT_FNEG:
2074 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VNEG_F64, dst_freg, src, 0));
2075 break;
2076 case SLJIT_FABS:
2077 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VABS_F64, dst_freg, src, 0));
2078 break;
2079 }
2080
2081 if (dst_freg == TMP_FREG1)
2082 FAIL_IF(emit_fpu_data_transfer(compiler, src, 0, dst, dstw));
2083
2084 return SLJIT_SUCCESS;
2085 }
2086
2087 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop2(struct sljit_compiler *compiler, int op,
2088 int dst, sljit_w dstw,
2089 int src1, sljit_w src1w,
2090 int src2, sljit_w src2w)
2091 {
2092 int dst_freg;
2093
2094 CHECK_ERROR();
2095 check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
2096
2097 compiler->cache_arg = 0;
2098 compiler->cache_argw = 0;
2099
2100 dst_freg = (dst > SLJIT_FLOAT_REG4) ? TMP_FREG1 : dst;
2101
2102 if (src2 > SLJIT_FLOAT_REG4) {
2103 FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG2, 1, src2, src2w));
2104 src2 = TMP_FREG2;
2105 }
2106
2107 if (src1 > SLJIT_FLOAT_REG4) {
2108 FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 1, src1, src1w));
2109 src1 = TMP_FREG1;
2110 }
2111
2112 switch (op) {
2113 case SLJIT_FADD:
2114 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VADD_F64, dst_freg, src2, src1));
2115 break;
2116
2117 case SLJIT_FSUB:
2118 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VSUB_F64, dst_freg, src2, src1));
2119 break;
2120
2121 case SLJIT_FMUL:
2122 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VMUL_F64, dst_freg, src2, src1));
2123 break;
2124
2125 case SLJIT_FDIV:
2126 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VDIV_F64, dst_freg, src2, src1));
2127 break;
2128 }
2129
2130 if (dst_freg == TMP_FREG1)
2131 FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 0, dst, dstw));
2132
2133 return SLJIT_SUCCESS;
2134 }
2135
2136 /* --------------------------------------------------------------------- */
2137 /* Other instructions */
2138 /* --------------------------------------------------------------------- */
2139
2140 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fast_enter(struct sljit_compiler *compiler, int dst, sljit_w dstw, int args, int temporaries, int generals, int local_size)
2141 {
2142 int size;
2143
2144 CHECK_ERROR();
2145 check_sljit_emit_fast_enter(compiler, dst, dstw, args, temporaries, generals, local_size);
2146
2147 compiler->temporaries = temporaries;
2148 compiler->generals = generals;
2149
2150 size = (1 + generals) * sizeof(sljit_uw);
2151 if (temporaries >= 4)
2152 size += (temporaries - 3) * sizeof(sljit_uw);
2153 local_size += size;
2154 local_size = (local_size + 7) & ~7;
2155 local_size -= size;
2156 compiler->local_size = local_size;
2157
2158 if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS)
2159 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, RM(TMP_REG3)));
2160 else if (dst & SLJIT_MEM) {
2161 if (getput_arg_fast(compiler, WORD_DATA, TMP_REG3, dst, dstw))
2162 return compiler->error;
2163 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG2, SLJIT_UNUSED, RM(TMP_REG3)));
2164 compiler->cache_arg = 0;
2165 compiler->cache_argw = 0;
2166 return getput_arg(compiler, WORD_DATA, TMP_REG2, dst, dstw, 0, 0);
2167 }
2168
2169 return SLJIT_SUCCESS;
2170 }
2171
2172 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fast_return(struct sljit_compiler *compiler, int src, sljit_w srcw)
2173 {
2174 CHECK_ERROR();
2175 check_sljit_emit_fast_return(compiler, src, srcw);
2176
2177 if (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS)
2178 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(src)));
2179 else if (src & SLJIT_MEM) {
2180 if (getput_arg_fast(compiler, WORD_DATA | LOAD_DATA, TMP_REG3, src, srcw))
2181 FAIL_IF(compiler->error);
2182 else {
2183 compiler->cache_arg = 0;
2184 compiler->cache_argw = 0;
2185 FAIL_IF(getput_arg(compiler, WORD_DATA | LOAD_DATA, TMP_REG2, src, srcw, 0, 0));
2186 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(TMP_REG2)));
2187 }
2188 }
2189 else if (src & SLJIT_IMM)
2190 FAIL_IF(load_immediate(compiler, TMP_REG3, srcw));
2191 return push_inst(compiler, BLX | RM(TMP_REG3));
2192 }
2193
2194 /* --------------------------------------------------------------------- */
2195 /* Conditional instructions */
2196 /* --------------------------------------------------------------------- */
2197
2198 static sljit_uw get_cc(int type)
2199 {
2200 switch (type) {
2201 case SLJIT_C_EQUAL:
2202 case SLJIT_C_MUL_NOT_OVERFLOW:
2203 case SLJIT_C_FLOAT_EQUAL:
2204 return 0x00000000;
2205
2206 case SLJIT_C_NOT_EQUAL:
2207 case SLJIT_C_MUL_OVERFLOW:
2208 case SLJIT_C_FLOAT_NOT_EQUAL:
2209 return 0x10000000;
2210
2211 case SLJIT_C_LESS:
2212 case SLJIT_C_FLOAT_LESS:
2213 return 0x30000000;
2214
2215 case SLJIT_C_GREATER_EQUAL:
2216 case SLJIT_C_FLOAT_GREATER_EQUAL:
2217 return 0x20000000;
2218
2219 case SLJIT_C_GREATER:
2220 case SLJIT_C_FLOAT_GREATER:
2221 return 0x80000000;
2222
2223 case SLJIT_C_LESS_EQUAL:
2224 case SLJIT_C_FLOAT_LESS_EQUAL:
2225 return 0x90000000;
2226
2227 case SLJIT_C_SIG_LESS:
2228 return 0xb0000000;
2229
2230 case SLJIT_C_SIG_GREATER_EQUAL:
2231 return 0xa0000000;
2232
2233 case SLJIT_C_SIG_GREATER:
2234 return 0xc0000000;
2235
2236 case SLJIT_C_SIG_LESS_EQUAL:
2237 return 0xd0000000;
2238
2239 case SLJIT_C_OVERFLOW:
2240 case SLJIT_C_FLOAT_NAN:
2241 return 0x60000000;
2242
2243 case SLJIT_C_NOT_OVERFLOW:
2244 case SLJIT_C_FLOAT_NOT_NAN:
2245 return 0x70000000;
2246
2247 default: /* SLJIT_JUMP */
2248 return 0xe0000000;
2249 }
2250 }
2251
2252 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
2253 {
2254 struct sljit_label *label;
2255
2256 CHECK_ERROR_PTR();
2257 check_sljit_emit_label(compiler);
2258
2259 if (compiler->last_label && compiler->last_label->size == compiler->size)
2260 return compiler->last_label;
2261
2262 label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
2263 PTR_FAIL_IF(!label);
2264 set_label(label, compiler);
2265 return label;
2266 }
2267
2268 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, int type)
2269 {
2270 struct sljit_jump *jump;
2271
2272 CHECK_ERROR_PTR();
2273 check_sljit_emit_jump(compiler, type);
2274
2275 jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
2276 PTR_FAIL_IF(!jump);
2277 set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
2278 type &= 0xff;
2279
2280 /* In ARM, we don't need to touch the arguments. */
2281 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
2282 if (type >= SLJIT_FAST_CALL)
2283 PTR_FAIL_IF(prepare_blx(compiler));
2284 PTR_FAIL_IF(push_inst_with_unique_literal(compiler, ((EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0,
2285 type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0)) & ~COND_MASK) | get_cc(type), 0));
2286
2287 if (jump->flags & SLJIT_REWRITABLE_JUMP) {
2288 jump->addr = compiler->size;
2289 compiler->patches++;
2290 }
2291
2292 if (type >= SLJIT_FAST_CALL) {
2293 jump->flags |= IS_BL;
2294 PTR_FAIL_IF(emit_blx(compiler));
2295 }
2296
2297 if (!(jump->flags & SLJIT_REWRITABLE_JUMP))
2298 jump->addr = compiler->size;
2299 #else
2300 if (type >= SLJIT_FAST_CALL)
2301 jump->flags |= IS_BL;
2302 PTR_FAIL_IF(emit_imm(compiler, TMP_REG1, 0));
2303 PTR_FAIL_IF(push_inst(compiler, (((type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1)) & ~COND_MASK) | get_cc(type)));
2304 jump->addr = compiler->size;
2305 #endif
2306 return jump;
2307 }
2308
2309 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_ijump(struct sljit_compiler *compiler, int type, int src, sljit_w srcw)
2310 {
2311 struct sljit_jump *jump;
2312
2313 CHECK_ERROR();
2314 check_sljit_emit_ijump(compiler, type, src, srcw);
2315
2316 /* In ARM, we don't need to touch the arguments. */
2317 if (src & SLJIT_IMM) {
2318 jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
2319 FAIL_IF(!jump);
2320 set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_BL : 0));
2321 jump->u.target = srcw;
2322
2323 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
2324 if (type >= SLJIT_FAST_CALL)
2325 FAIL_IF(prepare_blx(compiler));
2326 FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0), 0));
2327 if (type >= SLJIT_FAST_CALL)
2328 FAIL_IF(emit_blx(compiler));
2329 #else
2330 FAIL_IF(emit_imm(compiler, TMP_REG1, 0));
2331 FAIL_IF(push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1)));
2332 #endif
2333 jump->addr = compiler->size;
2334 }
2335 else {
2336 if (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS)
2337 return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(src));
2338
2339 SLJIT_ASSERT(src & SLJIT_MEM);
2340 FAIL_IF(emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
2341 return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG2));
2342 }
2343
2344 return SLJIT_SUCCESS;
2345 }
2346
2347 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_cond_value(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int type)
2348 {
2349 int reg;
2350 sljit_uw cc;
2351
2352 CHECK_ERROR();
2353 check_sljit_emit_cond_value(compiler, op, dst, dstw, type);
2354
2355 if (dst == SLJIT_UNUSED)
2356 return SLJIT_SUCCESS;
2357
2358 cc = get_cc(type);
2359 if (GET_OPCODE(op) == SLJIT_OR) {
2360 if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) {
2361 EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(ORR_DP, 0, dst, dst, SRC2_IMM | 1) & ~COND_MASK) | cc);
2362 if (op & SLJIT_SET_E)
2363 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, SET_FLAGS, TMP_REG1, SLJIT_UNUSED, RM(dst)));
2364 return SLJIT_SUCCESS;
2365 }
2366
2367 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, SRC2_IMM | 0));
2368 EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, SRC2_IMM | 1) & ~COND_MASK) | cc);
2369 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG)
2370 compiler->skip_checks = 1;
2371 #endif
2372 return emit_op(compiler, op, ALLOW_IMM, dst, dstw, TMP_REG1, 0, dst, dstw);
2373 }
2374
2375 reg = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REG2;
2376
2377 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, SRC2_IMM | 0));
2378 EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, SRC2_IMM | 1) & ~COND_MASK) | cc);
2379
2380 if (reg == TMP_REG2)
2381 return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, TMP_REG2, 0);
2382 return SLJIT_SUCCESS;
2383 }
2384
2385 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, int dst, sljit_w dstw, sljit_w init_value)
2386 {
2387 struct sljit_const *const_;
2388 int reg;
2389
2390 CHECK_ERROR_PTR();
2391 check_sljit_emit_const(compiler, dst, dstw, init_value);
2392
2393 const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
2394 PTR_FAIL_IF(!const_);
2395
2396 reg = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REG2;
2397
2398 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
2399 PTR_FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, reg, TMP_PC, 0), init_value));
2400 compiler->patches++;
2401 #else
2402 PTR_FAIL_IF(emit_imm(compiler, reg, init_value));
2403 #endif
2404 set_const(const_, compiler);
2405
2406 if (reg == TMP_REG2 && dst != SLJIT_UNUSED)
2407 if (emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, TMP_REG2, 0))
2408 return NULL;
2409 return const_;
2410 }
2411
2412 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
2413 {
2414 inline_set_jump_addr(addr, new_addr, 1);
2415 }
2416
2417 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_w new_constant)
2418 {
2419 inline_set_const(addr, new_constant, 1);
2420 }

  ViewVC Help
Powered by ViewVC 1.1.5