/[pcre]/code/trunk/sljit/sljitNativeARM_v5.c
ViewVC logotype

Contents of /code/trunk/sljit/sljitNativeARM_v5.c

Parent Directory Parent Directory | Revision Log Revision Log


Revision 884 - (show annotations)
Tue Jan 17 11:52:43 2012 UTC (7 years, 10 months ago) by zherczeg
File MIME type: text/plain
File size: 73776 byte(s)
JIT test prints cpu info
1 /*
2 * Stack-less Just-In-Time compiler
3 *
4 * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without modification, are
7 * permitted provided that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright notice, this list of
10 * conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13 * of conditions and the following disclaimer in the documentation and/or other materials
14 * provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name()
28 {
29 #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
30 return "ARMv7" SLJIT_CPUINFO;
31 #elif (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
32 return "ARMv5" SLJIT_CPUINFO;
33 #else
34 #error "Internal error: Unknown ARM architecture"
35 #endif
36 }
37
38 /* Last register + 1. */
39 #define TMP_REG1 (SLJIT_NO_REGISTERS + 1)
40 #define TMP_REG2 (SLJIT_NO_REGISTERS + 2)
41 #define TMP_REG3 (SLJIT_NO_REGISTERS + 3)
42 #define TMP_PC (SLJIT_NO_REGISTERS + 4)
43
44 #define TMP_FREG1 (SLJIT_FLOAT_REG4 + 1)
45 #define TMP_FREG2 (SLJIT_FLOAT_REG4 + 2)
46
47 /* In ARM instruction words.
48 Cache lines are usually 32 byte aligned. */
49 #define CONST_POOL_ALIGNMENT 8
50 #define CONST_POOL_EMPTY 0xffffffff
51
52 #define ALIGN_INSTRUCTION(ptr) \
53 (sljit_uw*)(((sljit_uw)(ptr) + (CONST_POOL_ALIGNMENT * sizeof(sljit_uw)) - 1) & ~((CONST_POOL_ALIGNMENT * sizeof(sljit_uw)) - 1))
54 #define MAX_DIFFERENCE(max_diff) \
55 (((max_diff) / (int)sizeof(sljit_uw)) - (CONST_POOL_ALIGNMENT - 1))
56
57 /* See sljit_emit_enter and sljit_emit_op0 if you want to change them. */
58 static SLJIT_CONST sljit_ub reg_map[SLJIT_NO_REGISTERS + 5] = {
59 0, 0, 1, 2, 10, 11, 4, 5, 6, 7, 8, 13, 3, 12, 14, 15
60 };
61
62 #define RM(rm) (reg_map[rm])
63 #define RD(rd) (reg_map[rd] << 12)
64 #define RN(rn) (reg_map[rn] << 16)
65
66 /* --------------------------------------------------------------------- */
67 /* Instrucion forms */
68 /* --------------------------------------------------------------------- */
69
70 /* The instruction includes the AL condition.
71 INST_NAME - CONDITIONAL remove this flag. */
72 #define COND_MASK 0xf0000000
73 #define CONDITIONAL 0xe0000000
74 #define PUSH_POOL 0xff000000
75
76 /* DP - Data Processing instruction (use with EMIT_DATA_PROCESS_INS). */
77 #define ADC_DP 0x5
78 #define ADD_DP 0x4
79 #define AND_DP 0x0
80 #define B 0xea000000
81 #define BIC_DP 0xe
82 #define BL 0xeb000000
83 #define BLX 0xe12fff30
84 #define BX 0xe12fff10
85 #define CLZ 0xe16f0f10
86 #define CMP_DP 0xa
87 #define BKPT 0xe1200070
88 #define EOR_DP 0x1
89 #define MOV_DP 0xd
90 #define MUL 0xe0000090
91 #define MVN_DP 0xf
92 #define NOP 0xe1a00000
93 #define ORR_DP 0xc
94 #define PUSH 0xe92d0000
95 #define POP 0xe8bd0000
96 #define RSB_DP 0x3
97 #define RSC_DP 0x7
98 #define SBC_DP 0x6
99 #define SMULL 0xe0c00090
100 #define SUB_DP 0x2
101 #define UMULL 0xe0800090
102 #define VABS_F64 0xeeb00bc0
103 #define VADD_F64 0xee300b00
104 #define VCMP_F64 0xeeb40b40
105 #define VDIV_F64 0xee800b00
106 #define VMOV_F64 0xeeb00b40
107 #define VMRS 0xeef1fa10
108 #define VMUL_F64 0xee200b00
109 #define VNEG_F64 0xeeb10b40
110 #define VSTR 0xed000b00
111 #define VSUB_F64 0xee300b40
112
113 #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
114 /* Arm v7 specific instructions. */
115 #define MOVW 0xe3000000
116 #define MOVT 0xe3400000
117 #define SXTB 0xe6af0070
118 #define SXTH 0xe6bf0070
119 #define UXTB 0xe6ef0070
120 #define UXTH 0xe6ff0070
121 #endif
122
123 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
124
125 static int push_cpool(struct sljit_compiler *compiler)
126 {
127 /* Pushing the constant pool into the instruction stream. */
128 sljit_uw* inst;
129 sljit_uw* cpool_ptr;
130 sljit_uw* cpool_end;
131 int i;
132
133 /* The label could point the address after the constant pool. */
134 if (compiler->last_label && compiler->last_label->size == compiler->size)
135 compiler->last_label->size += compiler->cpool_fill + (CONST_POOL_ALIGNMENT - 1) + 1;
136
137 SLJIT_ASSERT(compiler->cpool_fill > 0 && compiler->cpool_fill <= CPOOL_SIZE);
138 inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
139 FAIL_IF(!inst);
140 compiler->size++;
141 *inst = 0xff000000 | compiler->cpool_fill;
142
143 for (i = 0; i < CONST_POOL_ALIGNMENT - 1; i++) {
144 inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
145 FAIL_IF(!inst);
146 compiler->size++;
147 *inst = 0;
148 }
149
150 cpool_ptr = compiler->cpool;
151 cpool_end = cpool_ptr + compiler->cpool_fill;
152 while (cpool_ptr < cpool_end) {
153 inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
154 FAIL_IF(!inst);
155 compiler->size++;
156 *inst = *cpool_ptr++;
157 }
158 compiler->cpool_diff = CONST_POOL_EMPTY;
159 compiler->cpool_fill = 0;
160 return SLJIT_SUCCESS;
161 }
162
163 static int push_inst(struct sljit_compiler *compiler, sljit_uw inst)
164 {
165 sljit_uw* ptr;
166
167 if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)))
168 FAIL_IF(push_cpool(compiler));
169
170 ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
171 FAIL_IF(!ptr);
172 compiler->size++;
173 *ptr = inst;
174 return SLJIT_SUCCESS;
175 }
176
177 static int push_inst_with_literal(struct sljit_compiler *compiler, sljit_uw inst, sljit_uw literal)
178 {
179 sljit_uw* ptr;
180 sljit_uw cpool_index = CPOOL_SIZE;
181 sljit_uw* cpool_ptr;
182 sljit_uw* cpool_end;
183 sljit_ub* cpool_unique_ptr;
184
185 if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)))
186 FAIL_IF(push_cpool(compiler));
187 else if (compiler->cpool_fill > 0) {
188 cpool_ptr = compiler->cpool;
189 cpool_end = cpool_ptr + compiler->cpool_fill;
190 cpool_unique_ptr = compiler->cpool_unique;
191 do {
192 if ((*cpool_ptr == literal) && !(*cpool_unique_ptr)) {
193 cpool_index = cpool_ptr - compiler->cpool;
194 break;
195 }
196 cpool_ptr++;
197 cpool_unique_ptr++;
198 } while (cpool_ptr < cpool_end);
199 }
200
201 if (cpool_index == CPOOL_SIZE) {
202 /* Must allocate a new entry in the literal pool. */
203 if (compiler->cpool_fill < CPOOL_SIZE) {
204 cpool_index = compiler->cpool_fill;
205 compiler->cpool_fill++;
206 }
207 else {
208 FAIL_IF(push_cpool(compiler));
209 cpool_index = 0;
210 compiler->cpool_fill = 1;
211 }
212 }
213
214 SLJIT_ASSERT((inst & 0xfff) == 0);
215 ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
216 FAIL_IF(!ptr);
217 compiler->size++;
218 *ptr = inst | cpool_index;
219
220 compiler->cpool[cpool_index] = literal;
221 compiler->cpool_unique[cpool_index] = 0;
222 if (compiler->cpool_diff == CONST_POOL_EMPTY)
223 compiler->cpool_diff = compiler->size;
224 return SLJIT_SUCCESS;
225 }
226
227 static int push_inst_with_unique_literal(struct sljit_compiler *compiler, sljit_uw inst, sljit_uw literal)
228 {
229 sljit_uw* ptr;
230 if (SLJIT_UNLIKELY((compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)) || compiler->cpool_fill >= CPOOL_SIZE))
231 FAIL_IF(push_cpool(compiler));
232
233 SLJIT_ASSERT(compiler->cpool_fill < CPOOL_SIZE && (inst & 0xfff) == 0);
234 ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
235 FAIL_IF(!ptr);
236 compiler->size++;
237 *ptr = inst | compiler->cpool_fill;
238
239 compiler->cpool[compiler->cpool_fill] = literal;
240 compiler->cpool_unique[compiler->cpool_fill] = 1;
241 compiler->cpool_fill++;
242 if (compiler->cpool_diff == CONST_POOL_EMPTY)
243 compiler->cpool_diff = compiler->size;
244 return SLJIT_SUCCESS;
245 }
246
247 static SLJIT_INLINE int prepare_blx(struct sljit_compiler *compiler)
248 {
249 /* Place for at least two instruction (doesn't matter whether the first has a literal). */
250 if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4088)))
251 return push_cpool(compiler);
252 return SLJIT_SUCCESS;
253 }
254
255 static SLJIT_INLINE int emit_blx(struct sljit_compiler *compiler)
256 {
257 /* Must follow tightly the previous instruction (to be able to convert it to bl instruction). */
258 SLJIT_ASSERT(compiler->cpool_diff == CONST_POOL_EMPTY || compiler->size - compiler->cpool_diff < MAX_DIFFERENCE(4092));
259 return push_inst(compiler, BLX | RM(TMP_REG1));
260 }
261
262 static sljit_uw patch_pc_relative_loads(sljit_uw *last_pc_patch, sljit_uw *code_ptr, sljit_uw* const_pool, sljit_uw cpool_size)
263 {
264 sljit_uw diff;
265 sljit_uw ind;
266 sljit_uw counter = 0;
267 sljit_uw* clear_const_pool = const_pool;
268 sljit_uw* clear_const_pool_end = const_pool + cpool_size;
269
270 SLJIT_ASSERT(const_pool - code_ptr <= CONST_POOL_ALIGNMENT);
271 /* Set unused flag for all literals in the constant pool.
272 I.e.: unused literals can belong to branches, which can be encoded as B or BL.
273 We can "compress" the constant pool by discarding these literals. */
274 while (clear_const_pool < clear_const_pool_end)
275 *clear_const_pool++ = (sljit_uw)(-1);
276
277 while (last_pc_patch < code_ptr) {
278 /* Data transfer instruction with Rn == r15. */
279 if ((*last_pc_patch & 0x0c0f0000) == 0x040f0000) {
280 diff = const_pool - last_pc_patch;
281 ind = (*last_pc_patch) & 0xfff;
282
283 /* Must be a load instruction with immediate offset. */
284 SLJIT_ASSERT(ind < cpool_size && !(*last_pc_patch & (1 << 25)) && (*last_pc_patch & (1 << 20)));
285 if ((int)const_pool[ind] < 0) {
286 const_pool[ind] = counter;
287 ind = counter;
288 counter++;
289 }
290 else
291 ind = const_pool[ind];
292
293 SLJIT_ASSERT(diff >= 1);
294 if (diff >= 2 || ind > 0) {
295 diff = (diff + ind - 2) << 2;
296 SLJIT_ASSERT(diff <= 0xfff);
297 *last_pc_patch = (*last_pc_patch & ~0xfff) | diff;
298 }
299 else
300 *last_pc_patch = (*last_pc_patch & ~(0xfff | (1 << 23))) | 0x004;
301 }
302 last_pc_patch++;
303 }
304 return counter;
305 }
306
307 /* In some rare ocasions we may need future patches. The probability is close to 0 in practice. */
308 struct future_patch {
309 struct future_patch* next;
310 int index;
311 int value;
312 };
313
314 static SLJIT_INLINE int resolve_const_pool_index(struct future_patch **first_patch, sljit_uw cpool_current_index, sljit_uw *cpool_start_address, sljit_uw *buf_ptr)
315 {
316 int value;
317 struct future_patch *curr_patch, *prev_patch;
318
319 /* Using the values generated by patch_pc_relative_loads. */
320 if (!*first_patch)
321 value = (int)cpool_start_address[cpool_current_index];
322 else {
323 curr_patch = *first_patch;
324 prev_patch = 0;
325 while (1) {
326 if (!curr_patch) {
327 value = (int)cpool_start_address[cpool_current_index];
328 break;
329 }
330 if ((sljit_uw)curr_patch->index == cpool_current_index) {
331 value = curr_patch->value;
332 if (prev_patch)
333 prev_patch->next = curr_patch->next;
334 else
335 *first_patch = curr_patch->next;
336 SLJIT_FREE(curr_patch);
337 break;
338 }
339 prev_patch = curr_patch;
340 curr_patch = curr_patch->next;
341 }
342 }
343
344 if (value >= 0) {
345 if ((sljit_uw)value > cpool_current_index) {
346 curr_patch = (struct future_patch*)SLJIT_MALLOC(sizeof(struct future_patch));
347 if (!curr_patch) {
348 while (*first_patch) {
349 curr_patch = *first_patch;
350 *first_patch = (*first_patch)->next;
351 SLJIT_FREE(curr_patch);
352 }
353 return SLJIT_ERR_ALLOC_FAILED;
354 }
355 curr_patch->next = *first_patch;
356 curr_patch->index = value;
357 curr_patch->value = cpool_start_address[value];
358 *first_patch = curr_patch;
359 }
360 cpool_start_address[value] = *buf_ptr;
361 }
362 return SLJIT_SUCCESS;
363 }
364
365 #else
366
367 static int push_inst(struct sljit_compiler *compiler, sljit_uw inst)
368 {
369 sljit_uw* ptr;
370
371 ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw));
372 FAIL_IF(!ptr);
373 compiler->size++;
374 *ptr = inst;
375 return SLJIT_SUCCESS;
376 }
377
378 static SLJIT_INLINE int emit_imm(struct sljit_compiler *compiler, int reg, sljit_w imm)
379 {
380 FAIL_IF(push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff)));
381 return push_inst(compiler, MOVT | RD(reg) | ((imm >> 12) & 0xf0000) | ((imm >> 16) & 0xfff));
382 }
383
384 #endif
385
386 static SLJIT_INLINE int detect_jump_type(struct sljit_jump *jump, sljit_uw *code_ptr, sljit_uw *code)
387 {
388 sljit_w diff;
389
390 if (jump->flags & SLJIT_REWRITABLE_JUMP)
391 return 0;
392
393 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
394 if (jump->flags & IS_BL)
395 code_ptr--;
396
397 if (jump->flags & JUMP_ADDR)
398 diff = ((sljit_w)jump->u.target - (sljit_w)(code_ptr + 2));
399 else {
400 SLJIT_ASSERT(jump->flags & JUMP_LABEL);
401 diff = ((sljit_w)(code + jump->u.label->size) - (sljit_w)(code_ptr + 2));
402 }
403
404 /* Branch to Thumb code has not been optimized yet. */
405 if (diff & 0x3)
406 return 0;
407
408 diff >>= 2;
409 if (jump->flags & IS_BL) {
410 if (diff <= 0x01ffffff && diff >= -0x02000000) {
411 *code_ptr = (BL - CONDITIONAL) | (*(code_ptr + 1) & COND_MASK);
412 jump->flags |= PATCH_B;
413 return 1;
414 }
415 }
416 else {
417 if (diff <= 0x01ffffff && diff >= -0x02000000) {
418 *code_ptr = (B - CONDITIONAL) | (*code_ptr & COND_MASK);
419 jump->flags |= PATCH_B;
420 }
421 }
422 #else
423 if (jump->flags & JUMP_ADDR)
424 diff = ((sljit_w)jump->u.target - (sljit_w)code_ptr);
425 else {
426 SLJIT_ASSERT(jump->flags & JUMP_LABEL);
427 diff = ((sljit_w)(code + jump->u.label->size) - (sljit_w)code_ptr);
428 }
429
430 /* Branch to Thumb code has not been optimized yet. */
431 if (diff & 0x3)
432 return 0;
433
434 diff >>= 2;
435 if (diff <= 0x01ffffff && diff >= -0x02000000) {
436 code_ptr -= 2;
437 *code_ptr = ((jump->flags & IS_BL) ? (BL - CONDITIONAL) : (B - CONDITIONAL)) | (code_ptr[2] & COND_MASK);
438 jump->flags |= PATCH_B;
439 return 1;
440 }
441 #endif
442 return 0;
443 }
444
445 static SLJIT_INLINE void inline_set_jump_addr(sljit_uw addr, sljit_uw new_addr, int flush)
446 {
447 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
448 sljit_uw *ptr = (sljit_uw*)addr;
449 sljit_uw *inst = (sljit_uw*)ptr[0];
450 sljit_uw mov_pc = ptr[1];
451 int bl = (mov_pc & 0x0000f000) != RD(TMP_PC);
452 sljit_w diff = (sljit_w)(((sljit_w)new_addr - (sljit_w)(inst + 2)) >> 2);
453
454 if (diff <= 0x7fffff && diff >= -0x800000) {
455 /* Turn to branch. */
456 if (!bl) {
457 inst[0] = (mov_pc & COND_MASK) | (B - CONDITIONAL) | (diff & 0xffffff);
458 if (flush) {
459 SLJIT_CACHE_FLUSH(inst, inst + 1);
460 }
461 } else {
462 inst[0] = (mov_pc & COND_MASK) | (BL - CONDITIONAL) | (diff & 0xffffff);
463 inst[1] = NOP;
464 if (flush) {
465 SLJIT_CACHE_FLUSH(inst, inst + 2);
466 }
467 }
468 } else {
469 /* Get the position of the constant. */
470 if (mov_pc & (1 << 23))
471 ptr = inst + ((mov_pc & 0xfff) >> 2) + 2;
472 else
473 ptr = inst + 1;
474
475 if (*inst != mov_pc) {
476 inst[0] = mov_pc;
477 if (!bl) {
478 if (flush) {
479 SLJIT_CACHE_FLUSH(inst, inst + 1);
480 }
481 } else {
482 inst[1] = BLX | RM(TMP_REG1);
483 if (flush) {
484 SLJIT_CACHE_FLUSH(inst, inst + 2);
485 }
486 }
487 }
488 *ptr = new_addr;
489 }
490 #else
491 sljit_uw *inst = (sljit_uw*)addr;
492 SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT);
493 inst[0] = MOVW | (inst[0] & 0xf000) | ((new_addr << 4) & 0xf0000) | (new_addr & 0xfff);
494 inst[1] = MOVT | (inst[1] & 0xf000) | ((new_addr >> 12) & 0xf0000) | ((new_addr >> 16) & 0xfff);
495 if (flush) {
496 SLJIT_CACHE_FLUSH(inst, inst + 2);
497 }
498 #endif
499 }
500
501 static sljit_uw get_immediate(sljit_uw imm);
502
503 static SLJIT_INLINE void inline_set_const(sljit_uw addr, sljit_w new_constant, int flush)
504 {
505 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
506 sljit_uw *ptr = (sljit_uw*)addr;
507 sljit_uw *inst = (sljit_uw*)ptr[0];
508 sljit_uw ldr_literal = ptr[1];
509 sljit_uw src2;
510
511 src2 = get_immediate(new_constant);
512 if (src2) {
513 *inst = 0xe3a00000 | (ldr_literal & 0xf000) | src2;
514 if (flush) {
515 SLJIT_CACHE_FLUSH(inst, inst + 1);
516 }
517 return;
518 }
519
520 src2 = get_immediate(~new_constant);
521 if (src2) {
522 *inst = 0xe3e00000 | (ldr_literal & 0xf000) | src2;
523 if (flush) {
524 SLJIT_CACHE_FLUSH(inst, inst + 1);
525 }
526 return;
527 }
528
529 if (ldr_literal & (1 << 23))
530 ptr = inst + ((ldr_literal & 0xfff) >> 2) + 2;
531 else
532 ptr = inst + 1;
533
534 if (*inst != ldr_literal) {
535 *inst = ldr_literal;
536 if (flush) {
537 SLJIT_CACHE_FLUSH(inst, inst + 1);
538 }
539 }
540 *ptr = new_constant;
541 #else
542 sljit_uw *inst = (sljit_uw*)addr;
543 SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT);
544 inst[0] = MOVW | (inst[0] & 0xf000) | ((new_constant << 4) & 0xf0000) | (new_constant & 0xfff);
545 inst[1] = MOVT | (inst[1] & 0xf000) | ((new_constant >> 12) & 0xf0000) | ((new_constant >> 16) & 0xfff);
546 if (flush) {
547 SLJIT_CACHE_FLUSH(inst, inst + 2);
548 }
549 #endif
550 }
551
552 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
553 {
554 struct sljit_memory_fragment *buf;
555 sljit_uw *code;
556 sljit_uw *code_ptr;
557 sljit_uw *buf_ptr;
558 sljit_uw *buf_end;
559 sljit_uw size;
560 sljit_uw word_count;
561 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
562 sljit_uw cpool_size;
563 sljit_uw cpool_skip_alignment;
564 sljit_uw cpool_current_index;
565 sljit_uw *cpool_start_address;
566 sljit_uw *last_pc_patch;
567 struct future_patch *first_patch;
568 #endif
569
570 struct sljit_label *label;
571 struct sljit_jump *jump;
572 struct sljit_const *const_;
573
574 CHECK_ERROR_PTR();
575 check_sljit_generate_code(compiler);
576 reverse_buf(compiler);
577
578 /* Second code generation pass. */
579 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
580 size = compiler->size + (compiler->patches << 1);
581 if (compiler->cpool_fill > 0)
582 size += compiler->cpool_fill + CONST_POOL_ALIGNMENT - 1;
583 #else
584 size = compiler->size;
585 #endif
586 code = (sljit_uw*)SLJIT_MALLOC_EXEC(size * sizeof(sljit_uw));
587 PTR_FAIL_WITH_EXEC_IF(code);
588 buf = compiler->buf;
589
590 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
591 cpool_size = 0;
592 cpool_skip_alignment = 0;
593 cpool_current_index = 0;
594 cpool_start_address = NULL;
595 first_patch = NULL;
596 last_pc_patch = code;
597 #endif
598
599 code_ptr = code;
600 word_count = 0;
601
602 label = compiler->labels;
603 jump = compiler->jumps;
604 const_ = compiler->consts;
605
606 if (label && label->size == 0) {
607 label->addr = (sljit_uw)code;
608 label->size = 0;
609 label = label->next;
610 }
611
612 do {
613 buf_ptr = (sljit_uw*)buf->memory;
614 buf_end = buf_ptr + (buf->used_size >> 2);
615 do {
616 word_count++;
617 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
618 if (cpool_size > 0) {
619 if (cpool_skip_alignment > 0) {
620 buf_ptr++;
621 cpool_skip_alignment--;
622 }
623 else {
624 if (SLJIT_UNLIKELY(resolve_const_pool_index(&first_patch, cpool_current_index, cpool_start_address, buf_ptr))) {
625 SLJIT_FREE_EXEC(code);
626 compiler->error = SLJIT_ERR_ALLOC_FAILED;
627 return NULL;
628 }
629 buf_ptr++;
630 if (++cpool_current_index >= cpool_size) {
631 SLJIT_ASSERT(!first_patch);
632 cpool_size = 0;
633 if (label && label->size == word_count) {
634 /* Points after the current instruction. */
635 label->addr = (sljit_uw)code_ptr;
636 label->size = code_ptr - code;
637 label = label->next;
638 }
639 }
640 }
641 }
642 else if ((*buf_ptr & 0xff000000) != PUSH_POOL) {
643 #endif
644 *code_ptr = *buf_ptr++;
645 /* These structures are ordered by their address. */
646 SLJIT_ASSERT(!label || label->size >= word_count);
647 SLJIT_ASSERT(!jump || jump->addr >= word_count);
648 SLJIT_ASSERT(!const_ || const_->addr >= word_count);
649 if (jump && jump->addr == word_count) {
650 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
651 if (detect_jump_type(jump, code_ptr, code))
652 code_ptr--;
653 jump->addr = (sljit_uw)code_ptr;
654 #else
655 jump->addr = (sljit_uw)(code_ptr - 2);
656 if (detect_jump_type(jump, code_ptr, code))
657 code_ptr -= 2;
658 #endif
659 jump = jump->next;
660 }
661 if (label && label->size == word_count) {
662 /* code_ptr can be affected above. */
663 label->addr = (sljit_uw)(code_ptr + 1);
664 label->size = (code_ptr + 1) - code;
665 label = label->next;
666 }
667 if (const_ && const_->addr == word_count) {
668 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
669 const_->addr = (sljit_uw)code_ptr;
670 #else
671 const_->addr = (sljit_uw)(code_ptr - 1);
672 #endif
673 const_ = const_->next;
674 }
675 code_ptr++;
676 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
677 }
678 else {
679 /* Fortunately, no need to shift. */
680 cpool_size = *buf_ptr++ & ~PUSH_POOL;
681 SLJIT_ASSERT(cpool_size > 0);
682 cpool_start_address = ALIGN_INSTRUCTION(code_ptr + 1);
683 cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, cpool_size);
684 if (cpool_current_index > 0) {
685 /* Unconditional branch. */
686 *code_ptr = B | (((cpool_start_address - code_ptr) + cpool_current_index - 2) & ~PUSH_POOL);
687 code_ptr = cpool_start_address + cpool_current_index;
688 }
689 cpool_skip_alignment = CONST_POOL_ALIGNMENT - 1;
690 cpool_current_index = 0;
691 last_pc_patch = code_ptr;
692 }
693 #endif
694 } while (buf_ptr < buf_end);
695 buf = buf->next;
696 } while (buf);
697
698 SLJIT_ASSERT(!label);
699 SLJIT_ASSERT(!jump);
700 SLJIT_ASSERT(!const_);
701
702 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
703 SLJIT_ASSERT(cpool_size == 0);
704 if (compiler->cpool_fill > 0) {
705 cpool_start_address = ALIGN_INSTRUCTION(code_ptr);
706 cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, compiler->cpool_fill);
707 if (cpool_current_index > 0)
708 code_ptr = cpool_start_address + cpool_current_index;
709
710 buf_ptr = compiler->cpool;
711 buf_end = buf_ptr + compiler->cpool_fill;
712 cpool_current_index = 0;
713 while (buf_ptr < buf_end) {
714 if (SLJIT_UNLIKELY(resolve_const_pool_index(&first_patch, cpool_current_index, cpool_start_address, buf_ptr))) {
715 SLJIT_FREE_EXEC(code);
716 compiler->error = SLJIT_ERR_ALLOC_FAILED;
717 return NULL;
718 }
719 buf_ptr++;
720 cpool_current_index++;
721 }
722 SLJIT_ASSERT(!first_patch);
723 }
724 #endif
725
726 jump = compiler->jumps;
727 while (jump) {
728 buf_ptr = (sljit_uw*)jump->addr;
729
730 if (jump->flags & PATCH_B) {
731 if (!(jump->flags & JUMP_ADDR)) {
732 SLJIT_ASSERT(jump->flags & JUMP_LABEL);
733 SLJIT_ASSERT(((sljit_w)jump->u.label->addr - (sljit_w)(buf_ptr + 2)) <= 0x01ffffff && ((sljit_w)jump->u.label->addr - (sljit_w)(buf_ptr + 2)) >= -0x02000000);
734 *buf_ptr |= (((sljit_w)jump->u.label->addr - (sljit_w)(buf_ptr + 2)) >> 2) & 0x00ffffff;
735 }
736 else {
737 SLJIT_ASSERT(((sljit_w)jump->u.target - (sljit_w)(buf_ptr + 2)) <= 0x01ffffff && ((sljit_w)jump->u.target - (sljit_w)(buf_ptr + 2)) >= -0x02000000);
738 *buf_ptr |= (((sljit_w)jump->u.target - (sljit_w)(buf_ptr + 2)) >> 2) & 0x00ffffff;
739 }
740 }
741 else if (jump->flags & SLJIT_REWRITABLE_JUMP) {
742 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
743 jump->addr = (sljit_uw)code_ptr;
744 code_ptr[0] = (sljit_uw)buf_ptr;
745 code_ptr[1] = *buf_ptr;
746 inline_set_jump_addr((sljit_uw)code_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
747 code_ptr += 2;
748 #else
749 inline_set_jump_addr((sljit_uw)buf_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
750 #endif
751 }
752 else {
753 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
754 if (jump->flags & IS_BL)
755 buf_ptr--;
756 if (*buf_ptr & (1 << 23))
757 buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2;
758 else
759 buf_ptr += 1;
760 *buf_ptr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
761 #else
762 inline_set_jump_addr((sljit_uw)buf_ptr, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0);
763 #endif
764 }
765 jump = jump->next;
766 }
767
768 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
769 const_ = compiler->consts;
770 while (const_) {
771 buf_ptr = (sljit_uw*)const_->addr;
772 const_->addr = (sljit_uw)code_ptr;
773
774 code_ptr[0] = (sljit_uw)buf_ptr;
775 code_ptr[1] = *buf_ptr;
776 if (*buf_ptr & (1 << 23))
777 buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2;
778 else
779 buf_ptr += 1;
780 /* Set the value again (can be a simple constant). */
781 inline_set_const((sljit_uw)code_ptr, *buf_ptr, 0);
782 code_ptr += 2;
783
784 const_ = const_->next;
785 }
786 #endif
787
788 SLJIT_ASSERT(code_ptr - code <= (int)size);
789
790 SLJIT_CACHE_FLUSH(code, code_ptr);
791 compiler->error = SLJIT_ERR_COMPILED;
792 compiler->executable_size = size * sizeof(sljit_uw);
793 return code;
794 }
795
796 /* emit_op inp_flags.
797 WRITE_BACK must be the first, since it is a flag. */
798 #define WRITE_BACK 0x01
799 #define ALLOW_IMM 0x02
800 #define ALLOW_INV_IMM 0x04
801 #define ALLOW_ANY_IMM (ALLOW_IMM | ALLOW_INV_IMM)
802 #define ARG_TEST 0x08
803
804 /* Creates an index in data_transfer_insts array. */
805 #define WORD_DATA 0x00
806 #define BYTE_DATA 0x10
807 #define HALF_DATA 0x20
808 #define SIGNED_DATA 0x40
809 #define LOAD_DATA 0x80
810
811 #define EMIT_INSTRUCTION(inst) \
812 FAIL_IF(push_inst(compiler, (inst)))
813
814 /* Condition: AL. */
815 #define EMIT_DATA_PROCESS_INS(opcode, set_flags, dst, src1, src2) \
816 (0xe0000000 | ((opcode) << 21) | (set_flags) | RD(dst) | RN(src1) | (src2))
817
818 static int emit_op(struct sljit_compiler *compiler, int op, int inp_flags,
819 int dst, sljit_w dstw,
820 int src1, sljit_w src1w,
821 int src2, sljit_w src2w);
822
823 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_enter(struct sljit_compiler *compiler, int args, int temporaries, int saveds, int local_size)
824 {
825 int size;
826 sljit_uw push;
827
828 CHECK_ERROR();
829 check_sljit_emit_enter(compiler, args, temporaries, saveds, local_size);
830
831 compiler->temporaries = temporaries;
832 compiler->saveds = saveds;
833
834 /* Push saved registers, temporary registers
835 stmdb sp!, {..., lr} */
836 push = PUSH | (1 << 14);
837 if (temporaries >= 5)
838 push |= 1 << 11;
839 if (temporaries >= 4)
840 push |= 1 << 10;
841 if (saveds >= 5)
842 push |= 1 << 8;
843 if (saveds >= 4)
844 push |= 1 << 7;
845 if (saveds >= 3)
846 push |= 1 << 6;
847 if (saveds >= 2)
848 push |= 1 << 5;
849 if (saveds >= 1)
850 push |= 1 << 4;
851 EMIT_INSTRUCTION(push);
852
853 /* Stack must be aligned to 8 bytes: */
854 size = (1 + saveds) * sizeof(sljit_uw);
855 if (temporaries >= 4)
856 size += (temporaries - 3) * sizeof(sljit_uw);
857 local_size += size;
858 local_size = (local_size + 7) & ~7;
859 local_size -= size;
860 compiler->local_size = local_size;
861 if (local_size > 0)
862 FAIL_IF(emit_op(compiler, SLJIT_SUB, ALLOW_IMM, SLJIT_LOCALS_REG, 0, SLJIT_LOCALS_REG, 0, SLJIT_IMM, local_size));
863
864 if (args >= 1)
865 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_SAVED_REG1, SLJIT_UNUSED, RM(SLJIT_TEMPORARY_REG1)));
866 if (args >= 2)
867 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_SAVED_REG2, SLJIT_UNUSED, RM(SLJIT_TEMPORARY_REG2)));
868 if (args >= 3)
869 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, SLJIT_SAVED_REG3, SLJIT_UNUSED, RM(SLJIT_TEMPORARY_REG3)));
870
871 return SLJIT_SUCCESS;
872 }
873
874 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_context(struct sljit_compiler *compiler, int args, int temporaries, int saveds, int local_size)
875 {
876 int size;
877
878 CHECK_ERROR_VOID();
879 check_sljit_set_context(compiler, args, temporaries, saveds, local_size);
880
881 compiler->temporaries = temporaries;
882 compiler->saveds = saveds;
883
884 size = (1 + saveds) * sizeof(sljit_uw);
885 if (temporaries >= 4)
886 size += (temporaries - 3) * sizeof(sljit_uw);
887 local_size += size;
888 local_size = (local_size + 7) & ~7;
889 local_size -= size;
890 compiler->local_size = local_size;
891 }
892
893 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_return(struct sljit_compiler *compiler, int op, int src, sljit_w srcw)
894 {
895 sljit_uw pop;
896
897 CHECK_ERROR();
898 check_sljit_emit_return(compiler, op, src, srcw);
899
900 FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
901
902 if (compiler->local_size > 0)
903 FAIL_IF(emit_op(compiler, SLJIT_ADD, ALLOW_IMM, SLJIT_LOCALS_REG, 0, SLJIT_LOCALS_REG, 0, SLJIT_IMM, compiler->local_size));
904
905 pop = POP | (1 << 15);
906 /* Push saved registers, temporary registers
907 ldmia sp!, {..., pc} */
908 if (compiler->temporaries >= 5)
909 pop |= 1 << 11;
910 if (compiler->temporaries >= 4)
911 pop |= 1 << 10;
912 if (compiler->saveds >= 5)
913 pop |= 1 << 8;
914 if (compiler->saveds >= 4)
915 pop |= 1 << 7;
916 if (compiler->saveds >= 3)
917 pop |= 1 << 6;
918 if (compiler->saveds >= 2)
919 pop |= 1 << 5;
920 if (compiler->saveds >= 1)
921 pop |= 1 << 4;
922
923 return push_inst(compiler, pop);
924 }
925
926 /* --------------------------------------------------------------------- */
927 /* Operators */
928 /* --------------------------------------------------------------------- */
929
930 /* s/l - store/load (1 bit)
931 u/s - signed/unsigned (1 bit)
932 w/b/h/N - word/byte/half/NOT allowed (2 bit)
933 It contans 16 items, but not all are different. */
934
935 static sljit_w data_transfer_insts[16] = {
936 /* s u w */ 0xe5000000 /* str */,
937 /* s u b */ 0xe5400000 /* strb */,
938 /* s u h */ 0xe10000b0 /* strh */,
939 /* s u N */ 0x00000000 /* not allowed */,
940 /* s s w */ 0xe5000000 /* str */,
941 /* s s b */ 0xe5400000 /* strb */,
942 /* s s h */ 0xe10000b0 /* strh */,
943 /* s s N */ 0x00000000 /* not allowed */,
944
945 /* l u w */ 0xe5100000 /* ldr */,
946 /* l u b */ 0xe5500000 /* ldrb */,
947 /* l u h */ 0xe11000b0 /* ldrh */,
948 /* l u N */ 0x00000000 /* not allowed */,
949 /* l s w */ 0xe5100000 /* ldr */,
950 /* l s b */ 0xe11000d0 /* ldrsb */,
951 /* l s h */ 0xe11000f0 /* ldrsh */,
952 /* l s N */ 0x00000000 /* not allowed */,
953 };
954
955 #define EMIT_DATA_TRANSFER(type, add, wb, target, base1, base2) \
956 (data_transfer_insts[(type) >> 4] | ((add) << 23) | ((wb) << 21) | (reg_map[target] << 12) | (reg_map[base1] << 16) | (base2))
957 /* Normal ldr/str instruction.
958 Type2: ldrsb, ldrh, ldrsh */
959 #define IS_TYPE1_TRANSFER(type) \
960 (data_transfer_insts[(type) >> 4] & 0x04000000)
961 #define TYPE2_TRANSFER_IMM(imm) \
962 (((imm) & 0xf) | (((imm) & 0xf0) << 4) | (1 << 22))
963
964 /* flags: */
965 /* Arguments are swapped. */
966 #define ARGS_SWAPPED 0x01
967 /* Inverted immediate. */
968 #define INV_IMM 0x02
969 /* Source and destination is register. */
970 #define REG_DEST 0x04
971 #define REG_SOURCE 0x08
972 /* One instruction is enough. */
973 #define FAST_DEST 0x10
974 /* Multiple instructions are required. */
975 #define SLOW_DEST 0x20
976 /* SET_FLAGS must be (1 << 20) as it is also the value of S bit (can be used for optimization). */
977 #define SET_FLAGS (1 << 20)
978 /* dst: reg
979 src1: reg
980 src2: reg or imm (if allowed)
981 SRC2_IMM must be (1 << 25) as it is also the value of I bit (can be used for optimization). */
982 #define SRC2_IMM (1 << 25)
983
984 #define EMIT_DATA_PROCESS_INS_AND_RETURN(opcode) \
985 return push_inst(compiler, EMIT_DATA_PROCESS_INS(opcode, flags & SET_FLAGS, dst, src1, (src2 & SRC2_IMM) ? src2 : RM(src2)))
986
987 #define EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(opcode, dst, src1, src2) \
988 return push_inst(compiler, EMIT_DATA_PROCESS_INS(opcode, flags & SET_FLAGS, dst, src1, src2))
989
990 #define EMIT_SHIFT_INS_AND_RETURN(opcode) \
991 SLJIT_ASSERT(!(flags & INV_IMM) && !(src2 & SRC2_IMM)); \
992 if (compiler->shift_imm != 0x20) { \
993 SLJIT_ASSERT(src1 == TMP_REG1); \
994 SLJIT_ASSERT(!(flags & ARGS_SWAPPED)); \
995 if (compiler->shift_imm != 0) \
996 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, flags & SET_FLAGS, dst, SLJIT_UNUSED, (compiler->shift_imm << 7) | (opcode << 5) | reg_map[src2])); \
997 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, flags & SET_FLAGS, dst, SLJIT_UNUSED, reg_map[src2])); \
998 } \
999 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, flags & SET_FLAGS, dst, SLJIT_UNUSED, (reg_map[(flags & ARGS_SWAPPED) ? src1 : src2] << 8) | (opcode << 5) | 0x10 | ((flags & ARGS_SWAPPED) ? reg_map[src2] : reg_map[src1])));
1000
1001 static SLJIT_INLINE int emit_single_op(struct sljit_compiler *compiler, int op, int flags,
1002 int dst, int src1, int src2)
1003 {
1004 sljit_w mul_inst;
1005
1006 switch (GET_OPCODE(op)) {
1007 case SLJIT_ADD:
1008 SLJIT_ASSERT(!(flags & INV_IMM));
1009 EMIT_DATA_PROCESS_INS_AND_RETURN(ADD_DP);
1010
1011 case SLJIT_ADDC:
1012 SLJIT_ASSERT(!(flags & INV_IMM));
1013 EMIT_DATA_PROCESS_INS_AND_RETURN(ADC_DP);
1014
1015 case SLJIT_SUB:
1016 SLJIT_ASSERT(!(flags & INV_IMM));
1017 if (!(flags & ARGS_SWAPPED))
1018 EMIT_DATA_PROCESS_INS_AND_RETURN(SUB_DP);
1019 EMIT_DATA_PROCESS_INS_AND_RETURN(RSB_DP);
1020
1021 case SLJIT_SUBC:
1022 SLJIT_ASSERT(!(flags & INV_IMM));
1023 if (!(flags & ARGS_SWAPPED))
1024 EMIT_DATA_PROCESS_INS_AND_RETURN(SBC_DP);
1025 EMIT_DATA_PROCESS_INS_AND_RETURN(RSC_DP);
1026
1027 case SLJIT_MUL:
1028 SLJIT_ASSERT(!(flags & INV_IMM));
1029 SLJIT_ASSERT(!(src2 & SRC2_IMM));
1030 if (SLJIT_UNLIKELY(op & SLJIT_SET_O))
1031 mul_inst = SMULL | (reg_map[TMP_REG3] << 16) | (reg_map[dst] << 12);
1032 else
1033 mul_inst = MUL | (reg_map[dst] << 16);
1034
1035 if (dst != src2)
1036 FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src1] << 8) | reg_map[src2]));
1037 else if (dst != src1)
1038 FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src2] << 8) | reg_map[src1]));
1039 else {
1040 /* Rm and Rd must not be the same register. */
1041 SLJIT_ASSERT(dst != TMP_REG1);
1042 FAIL_IF(push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, reg_map[src2])));
1043 FAIL_IF(push_inst(compiler, mul_inst | (reg_map[src2] << 8) | reg_map[TMP_REG1]));
1044 }
1045
1046 if (!(op & SLJIT_SET_O))
1047 return SLJIT_SUCCESS;
1048
1049 /* We need to use TMP_REG3. */
1050 compiler->cache_arg = 0;
1051 compiler->cache_argw = 0;
1052 /* cmp TMP_REG2, dst asr #31. */
1053 return push_inst(compiler, EMIT_DATA_PROCESS_INS(CMP_DP, SET_FLAGS, SLJIT_UNUSED, TMP_REG3, RM(dst) | 0xfc0));
1054
1055 case SLJIT_AND:
1056 if (!(flags & INV_IMM))
1057 EMIT_DATA_PROCESS_INS_AND_RETURN(AND_DP);
1058 EMIT_DATA_PROCESS_INS_AND_RETURN(BIC_DP);
1059
1060 case SLJIT_OR:
1061 SLJIT_ASSERT(!(flags & INV_IMM));
1062 EMIT_DATA_PROCESS_INS_AND_RETURN(ORR_DP);
1063
1064 case SLJIT_XOR:
1065 SLJIT_ASSERT(!(flags & INV_IMM));
1066 EMIT_DATA_PROCESS_INS_AND_RETURN(EOR_DP);
1067
1068 case SLJIT_SHL:
1069 EMIT_SHIFT_INS_AND_RETURN(0);
1070
1071 case SLJIT_LSHR:
1072 EMIT_SHIFT_INS_AND_RETURN(1);
1073
1074 case SLJIT_ASHR:
1075 EMIT_SHIFT_INS_AND_RETURN(2);
1076
1077 case SLJIT_MOV:
1078 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
1079 if (dst != src2) {
1080 if (src2 & SRC2_IMM) {
1081 if (flags & INV_IMM)
1082 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
1083 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
1084 }
1085 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, reg_map[src2]);
1086 }
1087 return SLJIT_SUCCESS;
1088
1089 case SLJIT_MOV_UB:
1090 case SLJIT_MOV_SB:
1091 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
1092 if ((flags & (REG_DEST | REG_SOURCE)) == (REG_DEST | REG_SOURCE)) {
1093 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
1094 if (op == SLJIT_MOV_UB)
1095 return push_inst(compiler, EMIT_DATA_PROCESS_INS(AND_DP, 0, dst, src2, SRC2_IMM | 0xff));
1096 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (24 << 7) | reg_map[src2]));
1097 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (24 << 7) | (op == SLJIT_MOV_UB ? 0x20 : 0x40) | reg_map[dst]));
1098 #else
1099 return push_inst(compiler, (op == SLJIT_MOV_UB ? UXTB : SXTB) | RD(dst) | RM(src2));
1100 #endif
1101 }
1102 else if (dst != src2) {
1103 SLJIT_ASSERT(src2 & SRC2_IMM);
1104 if (flags & INV_IMM)
1105 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
1106 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
1107 }
1108 return SLJIT_SUCCESS;
1109
1110 case SLJIT_MOV_UH:
1111 case SLJIT_MOV_SH:
1112 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED));
1113 if ((flags & (REG_DEST | REG_SOURCE)) == (REG_DEST | REG_SOURCE)) {
1114 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
1115 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (16 << 7) | reg_map[src2]));
1116 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, (16 << 7) | (op == SLJIT_MOV_UH ? 0x20 : 0x40) | reg_map[dst]));
1117 #else
1118 return push_inst(compiler, (op == SLJIT_MOV_UH ? UXTH : SXTH) | RD(dst) | RM(src2));
1119 #endif
1120 }
1121 else if (dst != src2) {
1122 SLJIT_ASSERT(src2 & SRC2_IMM);
1123 if (flags & INV_IMM)
1124 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
1125 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
1126 }
1127 return SLJIT_SUCCESS;
1128
1129 case SLJIT_NOT:
1130 if (src2 & SRC2_IMM) {
1131 if (flags & INV_IMM)
1132 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MOV_DP, dst, SLJIT_UNUSED, src2);
1133 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, src2);
1134 }
1135 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(MVN_DP, dst, SLJIT_UNUSED, RM(src2));
1136
1137 case SLJIT_CLZ:
1138 SLJIT_ASSERT(!(flags & INV_IMM));
1139 SLJIT_ASSERT(!(src2 & SRC2_IMM));
1140 FAIL_IF(push_inst(compiler, CLZ | RD(dst) | RM(src2)));
1141 if (flags & SET_FLAGS)
1142 EMIT_FULL_DATA_PROCESS_INS_AND_RETURN(CMP_DP, SLJIT_UNUSED, dst, SRC2_IMM);
1143 return SLJIT_SUCCESS;
1144 }
1145 SLJIT_ASSERT_STOP();
1146 return SLJIT_SUCCESS;
1147 }
1148
1149 #undef EMIT_DATA_PROCESS_INS_AND_RETURN
1150 #undef EMIT_FULL_DATA_PROCESS_INS_AND_RETURN
1151 #undef EMIT_SHIFT_INS_AND_RETURN
1152
1153 /* Tests whether the immediate can be stored in the 12 bit imm field.
1154 Returns with 0 if not possible. */
1155 static sljit_uw get_immediate(sljit_uw imm)
1156 {
1157 int rol;
1158
1159 if (imm <= 0xff)
1160 return SRC2_IMM | imm;
1161
1162 if (!(imm & 0xff000000)) {
1163 imm <<= 8;
1164 rol = 8;
1165 }
1166 else {
1167 imm = (imm << 24) | (imm >> 8);
1168 rol = 0;
1169 }
1170
1171 if (!(imm & 0xff000000)) {
1172 imm <<= 8;
1173 rol += 4;
1174 }
1175
1176 if (!(imm & 0xf0000000)) {
1177 imm <<= 4;
1178 rol += 2;
1179 }
1180
1181 if (!(imm & 0xc0000000)) {
1182 imm <<= 2;
1183 rol += 1;
1184 }
1185
1186 if (!(imm & 0x00ffffff))
1187 return SRC2_IMM | (imm >> 24) | (rol << 8);
1188 else
1189 return 0;
1190 }
1191
1192 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
1193 static int generate_int(struct sljit_compiler *compiler, int reg, sljit_uw imm, int positive)
1194 {
1195 sljit_uw mask;
1196 sljit_uw imm1;
1197 sljit_uw imm2;
1198 int rol;
1199
1200 /* Step1: Search a zero byte (8 continous zero bit). */
1201 mask = 0xff000000;
1202 rol = 8;
1203 while(1) {
1204 if (!(imm & mask)) {
1205 /* Rol imm by rol. */
1206 imm = (imm << rol) | (imm >> (32 - rol));
1207 /* Calculate arm rol. */
1208 rol = 4 + (rol >> 1);
1209 break;
1210 }
1211 rol += 2;
1212 mask >>= 2;
1213 if (mask & 0x3) {
1214 /* rol by 8. */
1215 imm = (imm << 8) | (imm >> 24);
1216 mask = 0xff00;
1217 rol = 24;
1218 while (1) {
1219 if (!(imm & mask)) {
1220 /* Rol imm by rol. */
1221 imm = (imm << rol) | (imm >> (32 - rol));
1222 /* Calculate arm rol. */
1223 rol = (rol >> 1) - 8;
1224 break;
1225 }
1226 rol += 2;
1227 mask >>= 2;
1228 if (mask & 0x3)
1229 return 0;
1230 }
1231 break;
1232 }
1233 }
1234
1235 /* The low 8 bit must be zero. */
1236 SLJIT_ASSERT(!(imm & 0xff));
1237
1238 if (!(imm & 0xff000000)) {
1239 imm1 = SRC2_IMM | ((imm >> 16) & 0xff) | (((rol + 4) & 0xf) << 8);
1240 imm2 = SRC2_IMM | ((imm >> 8) & 0xff) | (((rol + 8) & 0xf) << 8);
1241 }
1242 else if (imm & 0xc0000000) {
1243 imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8);
1244 imm <<= 8;
1245 rol += 4;
1246
1247 if (!(imm & 0xff000000)) {
1248 imm <<= 8;
1249 rol += 4;
1250 }
1251
1252 if (!(imm & 0xf0000000)) {
1253 imm <<= 4;
1254 rol += 2;
1255 }
1256
1257 if (!(imm & 0xc0000000)) {
1258 imm <<= 2;
1259 rol += 1;
1260 }
1261
1262 if (!(imm & 0x00ffffff))
1263 imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8);
1264 else
1265 return 0;
1266 }
1267 else {
1268 if (!(imm & 0xf0000000)) {
1269 imm <<= 4;
1270 rol += 2;
1271 }
1272
1273 if (!(imm & 0xc0000000)) {
1274 imm <<= 2;
1275 rol += 1;
1276 }
1277
1278 imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8);
1279 imm <<= 8;
1280 rol += 4;
1281
1282 if (!(imm & 0xf0000000)) {
1283 imm <<= 4;
1284 rol += 2;
1285 }
1286
1287 if (!(imm & 0xc0000000)) {
1288 imm <<= 2;
1289 rol += 1;
1290 }
1291
1292 if (!(imm & 0x00ffffff))
1293 imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8);
1294 else
1295 return 0;
1296 }
1297
1298 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(positive ? MOV_DP : MVN_DP, 0, reg, SLJIT_UNUSED, imm1));
1299 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(positive ? ORR_DP : BIC_DP, 0, reg, reg, imm2));
1300 return 1;
1301 }
1302 #endif
1303
1304 static int load_immediate(struct sljit_compiler *compiler, int reg, sljit_uw imm)
1305 {
1306 sljit_uw tmp;
1307
1308 #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
1309 if (!(imm & ~0xffff))
1310 return push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff));
1311 #endif
1312
1313 /* Create imm by 1 inst. */
1314 tmp = get_immediate(imm);
1315 if (tmp) {
1316 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, tmp));
1317 return SLJIT_SUCCESS;
1318 }
1319
1320 tmp = get_immediate(~imm);
1321 if (tmp) {
1322 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MVN_DP, 0, reg, SLJIT_UNUSED, tmp));
1323 return SLJIT_SUCCESS;
1324 }
1325
1326 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
1327 /* Create imm by 2 inst. */
1328 FAIL_IF(generate_int(compiler, reg, imm, 1));
1329 FAIL_IF(generate_int(compiler, reg, ~imm, 0));
1330
1331 /* Load integer. */
1332 return push_inst_with_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, reg, TMP_PC, 0), imm);
1333 #else
1334 return emit_imm(compiler, reg, imm);
1335 #endif
1336 }
1337
1338 /* Can perform an operation using at most 1 instruction. */
1339 static int getput_arg_fast(struct sljit_compiler *compiler, int inp_flags, int reg, int arg, sljit_w argw)
1340 {
1341 sljit_uw imm;
1342
1343 if (arg & SLJIT_IMM) {
1344 imm = get_immediate(argw);
1345 if (imm) {
1346 if (inp_flags & ARG_TEST)
1347 return 1;
1348 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, imm));
1349 return -1;
1350 }
1351 imm = get_immediate(~argw);
1352 if (imm) {
1353 if (inp_flags & ARG_TEST)
1354 return 1;
1355 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MVN_DP, 0, reg, SLJIT_UNUSED, imm));
1356 return -1;
1357 }
1358 return (inp_flags & ARG_TEST) ? SLJIT_SUCCESS : 0;
1359 }
1360
1361 SLJIT_ASSERT(arg & SLJIT_MEM);
1362
1363 /* Fast loads/stores. */
1364 if (arg & 0xf) {
1365 if (!(arg & 0xf0)) {
1366 if (IS_TYPE1_TRANSFER(inp_flags)) {
1367 if (argw >= 0 && argw <= 0xfff) {
1368 if (inp_flags & ARG_TEST)
1369 return 1;
1370 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, argw));
1371 return -1;
1372 }
1373 if (argw < 0 && argw >= -0xfff) {
1374 if (inp_flags & ARG_TEST)
1375 return 1;
1376 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 0, inp_flags & WRITE_BACK, reg, arg & 0xf, -argw));
1377 return -1;
1378 }
1379 }
1380 else {
1381 if (argw >= 0 && argw <= 0xff) {
1382 if (inp_flags & ARG_TEST)
1383 return 1;
1384 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, TYPE2_TRANSFER_IMM(argw)));
1385 return -1;
1386 }
1387 if (argw < 0 && argw >= -0xff) {
1388 if (inp_flags & ARG_TEST)
1389 return 1;
1390 argw = -argw;
1391 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 0, inp_flags & WRITE_BACK, reg, arg & 0xf, TYPE2_TRANSFER_IMM(argw)));
1392 return -1;
1393 }
1394 }
1395 }
1396 else if ((argw & 0x3) == 0 || IS_TYPE1_TRANSFER(inp_flags)) {
1397 if (inp_flags & ARG_TEST)
1398 return 1;
1399 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf,
1400 RM((arg >> 4) & 0xf) | (IS_TYPE1_TRANSFER(inp_flags) ? SRC2_IMM : 0) | ((argw & 0x3) << 7)));
1401 return -1;
1402 }
1403 }
1404
1405 return (inp_flags & ARG_TEST) ? SLJIT_SUCCESS : 0;
1406 }
1407
1408 /* See getput_arg below.
1409 Note: can_cache is called only for binary operators. Those
1410 operators always uses word arguments without write back. */
1411 static int can_cache(int arg, sljit_w argw, int next_arg, sljit_w next_argw)
1412 {
1413 /* Immediate caching is not supported as it would be an operation on constant arguments. */
1414 if (arg & SLJIT_IMM)
1415 return 0;
1416
1417 /* Always a simple operation. */
1418 if (arg & 0xf0)
1419 return 0;
1420
1421 if (!(arg & 0xf)) {
1422 /* Immediate access. */
1423 if ((next_arg & SLJIT_MEM) && ((sljit_uw)argw - (sljit_uw)next_argw <= 0xfff || (sljit_uw)next_argw - (sljit_uw)argw <= 0xfff))
1424 return 1;
1425 return 0;
1426 }
1427
1428 if (argw <= 0xfffff && argw >= -0xfffff)
1429 return 0;
1430
1431 if (argw == next_argw && (next_arg & SLJIT_MEM))
1432 return 1;
1433
1434 if (arg == next_arg && ((sljit_uw)argw - (sljit_uw)next_argw <= 0xfff || (sljit_uw)next_argw - (sljit_uw)argw <= 0xfff))
1435 return 1;
1436
1437 return 0;
1438 }
1439
1440 #define GETPUT_ARG_DATA_TRANSFER(add, wb, target, base, imm) \
1441 if (max_delta & 0xf00) \
1442 FAIL_IF(push_inst(compiler, EMIT_DATA_TRANSFER(inp_flags, add, wb, target, base, imm))); \
1443 else \
1444 FAIL_IF(push_inst(compiler, EMIT_DATA_TRANSFER(inp_flags, add, wb, target, base, TYPE2_TRANSFER_IMM(imm))));
1445
1446 #define TEST_WRITE_BACK() \
1447 if (inp_flags & WRITE_BACK) { \
1448 tmp_r = arg & 0xf; \
1449 if (reg == tmp_r) { \
1450 /* This can only happen for stores */ \
1451 /* since ldr reg, [reg, ...]! has no meaning */ \
1452 SLJIT_ASSERT(!(inp_flags & LOAD_DATA)); \
1453 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(reg))); \
1454 reg = TMP_REG3; \
1455 } \
1456 }
1457
1458 /* Emit the necessary instructions. See can_cache above. */
1459 static int getput_arg(struct sljit_compiler *compiler, int inp_flags, int reg, int arg, sljit_w argw, int next_arg, sljit_w next_argw)
1460 {
1461 int tmp_r;
1462 sljit_w max_delta;
1463 sljit_w sign;
1464
1465 if (arg & SLJIT_IMM) {
1466 SLJIT_ASSERT(inp_flags & LOAD_DATA);
1467 return load_immediate(compiler, reg, argw);
1468 }
1469
1470 SLJIT_ASSERT(arg & SLJIT_MEM);
1471
1472 tmp_r = (inp_flags & LOAD_DATA) ? reg : TMP_REG3;
1473 max_delta = IS_TYPE1_TRANSFER(inp_flags) ? 0xfff : 0xff;
1474
1475 if ((arg & 0xf) == SLJIT_UNUSED) {
1476 /* Write back is not used. */
1477 if ((compiler->cache_arg & SLJIT_IMM) && (((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= (sljit_uw)max_delta || ((sljit_uw)compiler->cache_argw - (sljit_uw)argw) <= (sljit_uw)max_delta)) {
1478 if (((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= (sljit_uw)max_delta) {
1479 sign = 1;
1480 argw = argw - compiler->cache_argw;
1481 }
1482 else {
1483 sign = 0;
1484 argw = compiler->cache_argw - argw;
1485 }
1486
1487 if (max_delta & 0xf00) {
1488 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, sign, 0, reg, TMP_REG3, argw));
1489 }
1490 else {
1491 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, sign, 0, reg, TMP_REG3, TYPE2_TRANSFER_IMM(argw)));
1492 }
1493 return SLJIT_SUCCESS;
1494 }
1495
1496 /* With write back, we can create some sophisticated loads, but
1497 it is hard to decide whether we should convert downward (0s) or upward (1s). */
1498 if ((next_arg & SLJIT_MEM) && ((sljit_uw)argw - (sljit_uw)next_argw <= (sljit_uw)max_delta || (sljit_uw)next_argw - (sljit_uw)argw <= (sljit_uw)max_delta)) {
1499 SLJIT_ASSERT(inp_flags & LOAD_DATA);
1500
1501 compiler->cache_arg = SLJIT_IMM;
1502 compiler->cache_argw = argw;
1503 tmp_r = TMP_REG3;
1504 }
1505
1506 FAIL_IF(load_immediate(compiler, tmp_r, argw));
1507 GETPUT_ARG_DATA_TRANSFER(1, 0, reg, tmp_r, 0);
1508 return SLJIT_SUCCESS;
1509 }
1510
1511 /* Extended imm addressing for [reg+imm] format. */
1512 sign = (max_delta << 8) | 0xff;
1513 if (!(arg & 0xf0) && argw <= sign && argw >= -sign) {
1514 TEST_WRITE_BACK();
1515 if (argw >= 0) {
1516 sign = 1;
1517 }
1518 else {
1519 sign = 0;
1520 argw = -argw;
1521 }
1522
1523 /* Optimization: add is 0x4, sub is 0x2. Sign is 1 for add and 0 for sub. */
1524 if (max_delta & 0xf00)
1525 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(SUB_DP << sign, 0, tmp_r, arg & 0xf, SRC2_IMM | (argw >> 12) | 0xa00));
1526 else
1527 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(SUB_DP << sign, 0, tmp_r, arg & 0xf, SRC2_IMM | (argw >> 8) | 0xc00));
1528
1529 argw &= max_delta;
1530 GETPUT_ARG_DATA_TRANSFER(sign, inp_flags & WRITE_BACK, reg, tmp_r, argw);
1531 return SLJIT_SUCCESS;
1532 }
1533
1534 if (arg & 0xf0) {
1535 SLJIT_ASSERT((argw & 0x3) && !(max_delta & 0xf00));
1536 if (inp_flags & WRITE_BACK)
1537 tmp_r = arg & 0xf;
1538 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, tmp_r, arg & 0xf, RM((arg >> 4) & 0xf) | ((argw & 0x3) << 7)));
1539 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, 0, reg, tmp_r, TYPE2_TRANSFER_IMM(0)));
1540 return SLJIT_SUCCESS;
1541 }
1542
1543 if (compiler->cache_arg == arg && ((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= (sljit_uw)max_delta) {
1544 SLJIT_ASSERT(!(inp_flags & WRITE_BACK));
1545 argw = argw - compiler->cache_argw;
1546 GETPUT_ARG_DATA_TRANSFER(1, 0, reg, TMP_REG3, argw);
1547 return SLJIT_SUCCESS;
1548 }
1549
1550 if (compiler->cache_arg == arg && ((sljit_uw)compiler->cache_argw - (sljit_uw)argw) <= (sljit_uw)max_delta) {
1551 SLJIT_ASSERT(!(inp_flags & WRITE_BACK));
1552 argw = compiler->cache_argw - argw;
1553 GETPUT_ARG_DATA_TRANSFER(0, 0, reg, TMP_REG3, argw);
1554 return SLJIT_SUCCESS;
1555 }
1556
1557 if ((compiler->cache_arg & SLJIT_IMM) && compiler->cache_argw == argw) {
1558 TEST_WRITE_BACK();
1559 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, RM(TMP_REG3) | (max_delta & 0xf00 ? SRC2_IMM : 0)));
1560 return SLJIT_SUCCESS;
1561 }
1562
1563 if (argw == next_argw && (next_arg & SLJIT_MEM)) {
1564 SLJIT_ASSERT(inp_flags & LOAD_DATA);
1565 FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
1566
1567 compiler->cache_arg = SLJIT_IMM;
1568 compiler->cache_argw = argw;
1569
1570 TEST_WRITE_BACK();
1571 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, RM(TMP_REG3) | (max_delta & 0xf00 ? SRC2_IMM : 0)));
1572 return SLJIT_SUCCESS;
1573 }
1574
1575 if (arg == next_arg && !(inp_flags & WRITE_BACK) && ((sljit_uw)argw - (sljit_uw)next_argw <= (sljit_uw)max_delta || (sljit_uw)next_argw - (sljit_uw)argw <= (sljit_uw)max_delta)) {
1576 SLJIT_ASSERT(inp_flags & LOAD_DATA);
1577 FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
1578 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG3, TMP_REG3, reg_map[arg & 0xf]));
1579
1580 compiler->cache_arg = arg;
1581 compiler->cache_argw = argw;
1582
1583 GETPUT_ARG_DATA_TRANSFER(1, 0, reg, TMP_REG3, 0);
1584 return SLJIT_SUCCESS;
1585 }
1586
1587 if ((arg & 0xf) == tmp_r) {
1588 compiler->cache_arg = SLJIT_IMM;
1589 compiler->cache_argw = argw;
1590 tmp_r = TMP_REG3;
1591 }
1592
1593 FAIL_IF(load_immediate(compiler, tmp_r, argw));
1594 EMIT_INSTRUCTION(EMIT_DATA_TRANSFER(inp_flags, 1, inp_flags & WRITE_BACK, reg, arg & 0xf, reg_map[tmp_r] | (max_delta & 0xf00 ? SRC2_IMM : 0)));
1595 return SLJIT_SUCCESS;
1596 }
1597
1598 static int emit_op(struct sljit_compiler *compiler, int op, int inp_flags,
1599 int dst, sljit_w dstw,
1600 int src1, sljit_w src1w,
1601 int src2, sljit_w src2w)
1602 {
1603 /* arg1 goes to TMP_REG1 or src reg
1604 arg2 goes to TMP_REG2, imm or src reg
1605 TMP_REG3 can be used for caching
1606 result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
1607
1608 /* We prefers register and simple consts. */
1609 int dst_r;
1610 int src1_r;
1611 int src2_r = 0;
1612 int sugg_src2_r = TMP_REG2;
1613 int flags = GET_FLAGS(op) ? SET_FLAGS : 0;
1614
1615 compiler->cache_arg = 0;
1616 compiler->cache_argw = 0;
1617
1618 /* Destination check. */
1619 if (dst >= SLJIT_TEMPORARY_REG1 && dst <= TMP_REG3) {
1620 dst_r = dst;
1621 flags |= REG_DEST;
1622 if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
1623 sugg_src2_r = dst_r;
1624 }
1625 else if (dst == SLJIT_UNUSED) {
1626 if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
1627 return SLJIT_SUCCESS;
1628 dst_r = TMP_REG2;
1629 }
1630 else {
1631 SLJIT_ASSERT(dst & SLJIT_MEM);
1632 if (getput_arg_fast(compiler, inp_flags | ARG_TEST, TMP_REG2, dst, dstw)) {
1633 flags |= FAST_DEST;
1634 dst_r = TMP_REG2;
1635 }
1636 else {
1637 flags |= SLOW_DEST;
1638 dst_r = 0;
1639 }
1640 }
1641
1642 /* Source 1. */
1643 if (src1 >= SLJIT_TEMPORARY_REG1 && src1 <= TMP_REG3)
1644 src1_r = src1;
1645 else if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= TMP_REG3) {
1646 flags |= ARGS_SWAPPED;
1647 src1_r = src2;
1648 src2 = src1;
1649 src2w = src1w;
1650 }
1651 else {
1652 if ((inp_flags & ALLOW_ANY_IMM) && (src1 & SLJIT_IMM)) {
1653 /* The second check will generate a hit. */
1654 src2_r = get_immediate(src1w);
1655 if (src2_r) {
1656 flags |= ARGS_SWAPPED;
1657 src1 = src2;
1658 src1w = src2w;
1659 }
1660 if (inp_flags & ALLOW_INV_IMM) {
1661 src2_r = get_immediate(~src1w);
1662 if (src2_r) {
1663 flags |= ARGS_SWAPPED | INV_IMM;
1664 src1 = src2;
1665 src1w = src2w;
1666 }
1667 }
1668 }
1669
1670 src1_r = 0;
1671 if (getput_arg_fast(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w)) {
1672 FAIL_IF(compiler->error);
1673 src1_r = TMP_REG1;
1674 }
1675 }
1676
1677 /* Source 2. */
1678 if (src2_r == 0) {
1679 if (src2 >= SLJIT_TEMPORARY_REG1 && src2 <= TMP_REG3) {
1680 src2_r = src2;
1681 flags |= REG_SOURCE;
1682 if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
1683 dst_r = src2_r;
1684 }
1685 else do { /* do { } while(0) is used because of breaks. */
1686 if ((inp_flags & ALLOW_ANY_IMM) && (src2 & SLJIT_IMM)) {
1687 src2_r = get_immediate(src2w);
1688 if (src2_r)
1689 break;
1690 if (inp_flags & ALLOW_INV_IMM) {
1691 src2_r = get_immediate(~src2w);
1692 if (src2_r) {
1693 flags |= INV_IMM;
1694 break;
1695 }
1696 }
1697 }
1698
1699 /* src2_r is 0. */
1700 if (getput_arg_fast(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w)) {
1701 FAIL_IF(compiler->error);
1702 src2_r = sugg_src2_r;
1703 }
1704 } while (0);
1705 }
1706
1707 /* src1_r, src2_r and dst_r can be zero (=unprocessed) or non-zero.
1708 If they are zero, they must not be registers. */
1709 if (src1_r == 0 && src2_r == 0 && dst_r == 0) {
1710 if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
1711 SLJIT_ASSERT(!(flags & ARGS_SWAPPED));
1712 flags |= ARGS_SWAPPED;
1713 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src2, src2w, src1, src1w));
1714 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG2, src1, src1w, dst, dstw));
1715 }
1716 else {
1717 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
1718 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG2, src2, src2w, dst, dstw));
1719 }
1720 src1_r = TMP_REG1;
1721 src2_r = TMP_REG2;
1722 }
1723 else if (src1_r == 0 && src2_r == 0) {
1724 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
1725 src1_r = TMP_REG1;
1726 }
1727 else if (src1_r == 0 && dst_r == 0) {
1728 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
1729 src1_r = TMP_REG1;
1730 }
1731 else if (src2_r == 0 && dst_r == 0) {
1732 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w, dst, dstw));
1733 src2_r = sugg_src2_r;
1734 }
1735
1736 if (dst_r == 0)
1737 dst_r = TMP_REG2;
1738
1739 if (src1_r == 0) {
1740 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, 0, 0));
1741 src1_r = TMP_REG1;
1742 }
1743
1744 if (src2_r == 0) {
1745 FAIL_IF(getput_arg(compiler, inp_flags | LOAD_DATA, sugg_src2_r, src2, src2w, 0, 0));
1746 src2_r = sugg_src2_r;
1747 }
1748
1749 FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
1750
1751 if (flags & (FAST_DEST | SLOW_DEST)) {
1752 if (flags & FAST_DEST)
1753 FAIL_IF(getput_arg_fast(compiler, inp_flags, dst_r, dst, dstw));
1754 else
1755 FAIL_IF(getput_arg(compiler, inp_flags, dst_r, dst, dstw, 0, 0));
1756 }
1757 return SLJIT_SUCCESS;
1758 }
1759
1760 #ifdef __cplusplus
1761 extern "C" {
1762 #endif
1763
1764 #if defined(__GNUC__)
1765 extern unsigned int __aeabi_uidivmod(unsigned numerator, unsigned denominator);
1766 extern unsigned int __aeabi_idivmod(unsigned numerator, unsigned denominator);
1767 #else
1768 #error "Software divmod functions are needed"
1769 #endif
1770
1771 #ifdef __cplusplus
1772 }
1773 #endif
1774
1775 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op0(struct sljit_compiler *compiler, int op)
1776 {
1777 CHECK_ERROR();
1778 check_sljit_emit_op0(compiler, op);
1779
1780 op = GET_OPCODE(op);
1781 switch (op) {
1782 case SLJIT_BREAKPOINT:
1783 EMIT_INSTRUCTION(BKPT);
1784 break;
1785 case SLJIT_NOP:
1786 EMIT_INSTRUCTION(NOP);
1787 break;
1788 case SLJIT_UMUL:
1789 case SLJIT_SMUL:
1790 #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
1791 return push_inst(compiler, (op == SLJIT_UMUL ? UMULL : SMULL)
1792 | (reg_map[SLJIT_TEMPORARY_REG2] << 16)
1793 | (reg_map[SLJIT_TEMPORARY_REG1] << 12)
1794 | (reg_map[SLJIT_TEMPORARY_REG1] << 8)
1795 | reg_map[SLJIT_TEMPORARY_REG2]);
1796 #else
1797 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, RM(SLJIT_TEMPORARY_REG2)));
1798 return push_inst(compiler, (op == SLJIT_UMUL ? UMULL : SMULL)
1799 | (reg_map[SLJIT_TEMPORARY_REG2] << 16)
1800 | (reg_map[SLJIT_TEMPORARY_REG1] << 12)
1801 | (reg_map[SLJIT_TEMPORARY_REG1] << 8)
1802 | reg_map[TMP_REG1]);
1803 #endif
1804 case SLJIT_UDIV:
1805 case SLJIT_SDIV:
1806 if (compiler->temporaries >= 3)
1807 EMIT_INSTRUCTION(0xe52d2008 /* str r2, [sp, #-8]! */);
1808 #if defined(__GNUC__)
1809 FAIL_IF(sljit_emit_ijump(compiler, SLJIT_FAST_CALL, SLJIT_IMM,
1810 (op == SLJIT_UDIV ? SLJIT_FUNC_OFFSET(__aeabi_uidivmod) : SLJIT_FUNC_OFFSET(__aeabi_idivmod))));
1811 #else
1812 #error "Software divmod functions are needed"
1813 #endif
1814 if (compiler->temporaries >= 3)
1815 return push_inst(compiler, 0xe49d2008 /* ldr r2, [sp], #8 */);
1816 return SLJIT_SUCCESS;
1817 }
1818
1819 return SLJIT_SUCCESS;
1820 }
1821
1822 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op1(struct sljit_compiler *compiler, int op,
1823 int dst, sljit_w dstw,
1824 int src, sljit_w srcw)
1825 {
1826 CHECK_ERROR();
1827 check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw);
1828
1829 switch (GET_OPCODE(op)) {
1830 case SLJIT_MOV:
1831 case SLJIT_MOV_UI:
1832 case SLJIT_MOV_SI:
1833 return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, src, srcw);
1834
1835 case SLJIT_MOV_UB:
1836 return emit_op(compiler, SLJIT_MOV_UB, ALLOW_ANY_IMM | BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned char)srcw : srcw);
1837
1838 case SLJIT_MOV_SB:
1839 return emit_op(compiler, SLJIT_MOV_SB, ALLOW_ANY_IMM | SIGNED_DATA | BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed char)srcw : srcw);
1840
1841 case SLJIT_MOV_UH:
1842 return emit_op(compiler, SLJIT_MOV_UH, ALLOW_ANY_IMM | HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned short)srcw : srcw);
1843
1844 case SLJIT_MOV_SH:
1845 return emit_op(compiler, SLJIT_MOV_SH, ALLOW_ANY_IMM | SIGNED_DATA | HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed short)srcw : srcw);
1846
1847 case SLJIT_MOVU:
1848 case SLJIT_MOVU_UI:
1849 case SLJIT_MOVU_SI:
1850 return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
1851
1852 case SLJIT_MOVU_UB:
1853 return emit_op(compiler, SLJIT_MOV_UB, ALLOW_ANY_IMM | BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned char)srcw : srcw);
1854
1855 case SLJIT_MOVU_SB:
1856 return emit_op(compiler, SLJIT_MOV_SB, ALLOW_ANY_IMM | SIGNED_DATA | BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed char)srcw : srcw);
1857
1858 case SLJIT_MOVU_UH:
1859 return emit_op(compiler, SLJIT_MOV_UH, ALLOW_ANY_IMM | HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (unsigned short)srcw : srcw);
1860
1861 case SLJIT_MOVU_SH:
1862 return emit_op(compiler, SLJIT_MOV_SH, ALLOW_ANY_IMM | SIGNED_DATA | HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (signed short)srcw : srcw);
1863
1864 case SLJIT_NOT:
1865 return emit_op(compiler, op, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, src, srcw);
1866
1867 case SLJIT_NEG:
1868 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG)
1869 compiler->skip_checks = 1;
1870 #endif
1871 return sljit_emit_op2(compiler, SLJIT_SUB | GET_FLAGS(op), dst, dstw, SLJIT_IMM, 0, src, srcw);
1872
1873 case SLJIT_CLZ:
1874 return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
1875 }
1876
1877 return SLJIT_SUCCESS;
1878 }
1879
1880 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op2(struct sljit_compiler *compiler, int op,
1881 int dst, sljit_w dstw,
1882 int src1, sljit_w src1w,
1883 int src2, sljit_w src2w)
1884 {
1885 CHECK_ERROR();
1886 check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
1887
1888 switch (GET_OPCODE(op)) {
1889 case SLJIT_ADD:
1890 case SLJIT_ADDC:
1891 case SLJIT_SUB:
1892 case SLJIT_SUBC:
1893 case SLJIT_OR:
1894 case SLJIT_XOR:
1895 return emit_op(compiler, op, ALLOW_IMM, dst, dstw, src1, src1w, src2, src2w);
1896
1897 case SLJIT_MUL:
1898 return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w);
1899
1900 case SLJIT_AND:
1901 return emit_op(compiler, op, ALLOW_ANY_IMM, dst, dstw, src1, src1w, src2, src2w);
1902
1903 case SLJIT_SHL:
1904 case SLJIT_LSHR:
1905 case SLJIT_ASHR:
1906 if (src2 & SLJIT_IMM) {
1907 compiler->shift_imm = src2w & 0x1f;
1908 return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src1, src1w);
1909 }
1910 else {
1911 compiler->shift_imm = 0x20;
1912 return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w);
1913 }
1914 }
1915
1916 return SLJIT_SUCCESS;
1917 }
1918
1919 SLJIT_API_FUNC_ATTRIBUTE int sljit_get_register_index(int reg)
1920 {
1921 check_sljit_get_register_index(reg);
1922 return reg_map[reg];
1923 }
1924
1925 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_op_custom(struct sljit_compiler *compiler,
1926 void *instruction, int size)
1927 {
1928 CHECK_ERROR();
1929 check_sljit_emit_op_custom(compiler, instruction, size);
1930 SLJIT_ASSERT(size == 4);
1931
1932 return push_inst(compiler, *(sljit_uw*)instruction);
1933 }
1934
1935 /* --------------------------------------------------------------------- */
1936 /* Floating point operators */
1937 /* --------------------------------------------------------------------- */
1938
1939 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
1940
1941 /* 0 - no fpu
1942 1 - vfp */
1943 static int arm_fpu_type = -1;
1944
1945 static void init_compiler()
1946 {
1947 if (arm_fpu_type != -1)
1948 return;
1949
1950 /* TODO: Only the OS can help to determine the correct fpu type. */
1951 arm_fpu_type = 1;
1952 }
1953
1954 SLJIT_API_FUNC_ATTRIBUTE int sljit_is_fpu_available(void)
1955 {
1956 if (arm_fpu_type == -1)
1957 init_compiler();
1958 return arm_fpu_type;
1959 }
1960
1961 #else
1962
1963 #define arm_fpu_type 1
1964
1965 SLJIT_API_FUNC_ATTRIBUTE int sljit_is_fpu_available(void)
1966 {
1967 /* Always available. */
1968 return 1;
1969 }
1970
1971 #endif
1972
1973 #define EMIT_FPU_DATA_TRANSFER(add, load, base, freg, offs) \
1974 (VSTR | ((add) << 23) | ((load) << 20) | (reg_map[base] << 16) | (freg << 12) | (offs))
1975 #define EMIT_FPU_OPERATION(opcode, dst, src1, src2) \
1976 ((opcode) | ((dst) << 12) | (src1) | ((src2) << 16))
1977
1978 static int emit_fpu_data_transfer(struct sljit_compiler *compiler, int fpu_reg, int load, int arg, sljit_w argw)
1979 {
1980 SLJIT_ASSERT(arg & SLJIT_MEM);
1981
1982 /* Fast loads and stores. */
1983 if ((arg & 0xf) && !(arg & 0xf0) && (argw & 0x3) == 0) {
1984 if (argw >= 0 && argw <= 0x3ff) {
1985 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, arg & 0xf, fpu_reg, argw >> 2));
1986 return SLJIT_SUCCESS;
1987 }
1988 if (argw < 0 && argw >= -0x3ff) {
1989 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(0, load, arg & 0xf, fpu_reg, (-argw) >> 2));
1990 return SLJIT_SUCCESS;
1991 }
1992 if (argw >= 0 && argw <= 0x3ffff) {
1993 SLJIT_ASSERT(get_immediate(argw & 0x3fc00));
1994 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG1, arg & 0xf, get_immediate(argw & 0x3fc00)));
1995 argw &= 0x3ff;
1996 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG1, fpu_reg, argw >> 2));
1997 return SLJIT_SUCCESS;
1998 }
1999 if (argw < 0 && argw >= -0x3ffff) {
2000 argw = -argw;
2001 SLJIT_ASSERT(get_immediate(argw & 0x3fc00));
2002 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(SUB_DP, 0, TMP_REG1, arg & 0xf, get_immediate(argw & 0x3fc00)));
2003 argw &= 0x3ff;
2004 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(0, load, TMP_REG1, fpu_reg, argw >> 2));
2005 return SLJIT_SUCCESS;
2006 }
2007 }
2008
2009 if (arg & 0xf0) {
2010 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG1, arg & 0xf, RM((arg >> 4) & 0xf) | ((argw & 0x3) << 7)));
2011 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG1, fpu_reg, 0));
2012 return SLJIT_SUCCESS;
2013 }
2014
2015 if (compiler->cache_arg == arg && ((argw - compiler->cache_argw) & 0x3) == 0) {
2016 if (((sljit_uw)argw - (sljit_uw)compiler->cache_argw) <= 0x3ff) {
2017 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG3, fpu_reg, (argw - compiler->cache_argw) >> 2));
2018 return SLJIT_SUCCESS;
2019 }
2020 if (((sljit_uw)compiler->cache_argw - (sljit_uw)argw) <= 0x3ff) {
2021 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(0, load, TMP_REG3, fpu_reg, (compiler->cache_argw - argw) >> 2));
2022 return SLJIT_SUCCESS;
2023 }
2024 }
2025
2026 compiler->cache_arg = arg;
2027 compiler->cache_argw = argw;
2028 if (arg & 0xf) {
2029 FAIL_IF(load_immediate(compiler, TMP_REG1, argw));
2030 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(ADD_DP, 0, TMP_REG3, arg & 0xf, reg_map[TMP_REG1]));
2031 }
2032 else
2033 FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
2034
2035 EMIT_INSTRUCTION(EMIT_FPU_DATA_TRANSFER(1, load, TMP_REG3, fpu_reg, 0));
2036 return SLJIT_SUCCESS;
2037 }
2038
2039 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop1(struct sljit_compiler *compiler, int op,
2040 int dst, sljit_w dstw,
2041 int src, sljit_w srcw)
2042 {
2043 int dst_freg;
2044
2045 CHECK_ERROR();
2046 check_sljit_emit_fop1(compiler, op, dst, dstw, src, srcw);
2047
2048 compiler->cache_arg = 0;
2049 compiler->cache_argw = 0;
2050
2051 if (GET_OPCODE(op) == SLJIT_FCMP) {
2052 if (dst > SLJIT_FLOAT_REG4) {
2053 FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 1, dst, dstw));
2054 dst = TMP_FREG1;
2055 }
2056 if (src > SLJIT_FLOAT_REG4) {
2057 FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG2, 1, src, srcw));
2058 src = TMP_FREG2;
2059 }
2060 EMIT_INSTRUCTION(VCMP_F64 | (dst << 12) | src);
2061 EMIT_INSTRUCTION(VMRS);
2062 return SLJIT_SUCCESS;
2063 }
2064
2065 dst_freg = (dst > SLJIT_FLOAT_REG4) ? TMP_FREG1 : dst;
2066
2067 if (src > SLJIT_FLOAT_REG4) {
2068 FAIL_IF(emit_fpu_data_transfer(compiler, dst_freg, 1, src, srcw));
2069 src = dst_freg;
2070 }
2071
2072 switch (op) {
2073 case SLJIT_FMOV:
2074 if (src != dst_freg && dst_freg != TMP_FREG1)
2075 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VMOV_F64, dst_freg, src, 0));
2076 break;
2077 case SLJIT_FNEG:
2078 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VNEG_F64, dst_freg, src, 0));
2079 break;
2080 case SLJIT_FABS:
2081 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VABS_F64, dst_freg, src, 0));
2082 break;
2083 }
2084
2085 if (dst_freg == TMP_FREG1)
2086 FAIL_IF(emit_fpu_data_transfer(compiler, src, 0, dst, dstw));
2087
2088 return SLJIT_SUCCESS;
2089 }
2090
2091 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fop2(struct sljit_compiler *compiler, int op,
2092 int dst, sljit_w dstw,
2093 int src1, sljit_w src1w,
2094 int src2, sljit_w src2w)
2095 {
2096 int dst_freg;
2097
2098 CHECK_ERROR();
2099 check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w);
2100
2101 compiler->cache_arg = 0;
2102 compiler->cache_argw = 0;
2103
2104 dst_freg = (dst > SLJIT_FLOAT_REG4) ? TMP_FREG1 : dst;
2105
2106 if (src2 > SLJIT_FLOAT_REG4) {
2107 FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG2, 1, src2, src2w));
2108 src2 = TMP_FREG2;
2109 }
2110
2111 if (src1 > SLJIT_FLOAT_REG4) {
2112 FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 1, src1, src1w));
2113 src1 = TMP_FREG1;
2114 }
2115
2116 switch (op) {
2117 case SLJIT_FADD:
2118 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VADD_F64, dst_freg, src2, src1));
2119 break;
2120
2121 case SLJIT_FSUB:
2122 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VSUB_F64, dst_freg, src2, src1));
2123 break;
2124
2125 case SLJIT_FMUL:
2126 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VMUL_F64, dst_freg, src2, src1));
2127 break;
2128
2129 case SLJIT_FDIV:
2130 EMIT_INSTRUCTION(EMIT_FPU_OPERATION(VDIV_F64, dst_freg, src2, src1));
2131 break;
2132 }
2133
2134 if (dst_freg == TMP_FREG1)
2135 FAIL_IF(emit_fpu_data_transfer(compiler, TMP_FREG1, 0, dst, dstw));
2136
2137 return SLJIT_SUCCESS;
2138 }
2139
2140 /* --------------------------------------------------------------------- */
2141 /* Other instructions */
2142 /* --------------------------------------------------------------------- */
2143
2144 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fast_enter(struct sljit_compiler *compiler, int dst, sljit_w dstw, int args, int temporaries, int saveds, int local_size)
2145 {
2146 int size;
2147
2148 CHECK_ERROR();
2149 check_sljit_emit_fast_enter(compiler, dst, dstw, args, temporaries, saveds, local_size);
2150
2151 compiler->temporaries = temporaries;
2152 compiler->saveds = saveds;
2153
2154 size = (1 + saveds) * sizeof(sljit_uw);
2155 if (temporaries >= 4)
2156 size += (temporaries - 3) * sizeof(sljit_uw);
2157 local_size += size;
2158 local_size = (local_size + 7) & ~7;
2159 local_size -= size;
2160 compiler->local_size = local_size;
2161
2162 if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS)
2163 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, 0, dst, SLJIT_UNUSED, RM(TMP_REG3)));
2164 else if (dst & SLJIT_MEM) {
2165 if (getput_arg_fast(compiler, WORD_DATA, TMP_REG3, dst, dstw))
2166 return compiler->error;
2167 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG2, SLJIT_UNUSED, RM(TMP_REG3)));
2168 compiler->cache_arg = 0;
2169 compiler->cache_argw = 0;
2170 return getput_arg(compiler, WORD_DATA, TMP_REG2, dst, dstw, 0, 0);
2171 }
2172
2173 return SLJIT_SUCCESS;
2174 }
2175
2176 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_fast_return(struct sljit_compiler *compiler, int src, sljit_w srcw)
2177 {
2178 CHECK_ERROR();
2179 check_sljit_emit_fast_return(compiler, src, srcw);
2180
2181 if (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS)
2182 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(src)));
2183 else if (src & SLJIT_MEM) {
2184 if (getput_arg_fast(compiler, WORD_DATA | LOAD_DATA, TMP_REG3, src, srcw))
2185 FAIL_IF(compiler->error);
2186 else {
2187 compiler->cache_arg = 0;
2188 compiler->cache_argw = 0;
2189 FAIL_IF(getput_arg(compiler, WORD_DATA | LOAD_DATA, TMP_REG2, src, srcw, 0, 0));
2190 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG3, SLJIT_UNUSED, RM(TMP_REG2)));
2191 }
2192 }
2193 else if (src & SLJIT_IMM)
2194 FAIL_IF(load_immediate(compiler, TMP_REG3, srcw));
2195 return push_inst(compiler, BLX | RM(TMP_REG3));
2196 }
2197
2198 /* --------------------------------------------------------------------- */
2199 /* Conditional instructions */
2200 /* --------------------------------------------------------------------- */
2201
2202 static sljit_uw get_cc(int type)
2203 {
2204 switch (type) {
2205 case SLJIT_C_EQUAL:
2206 case SLJIT_C_MUL_NOT_OVERFLOW:
2207 case SLJIT_C_FLOAT_EQUAL:
2208 return 0x00000000;
2209
2210 case SLJIT_C_NOT_EQUAL:
2211 case SLJIT_C_MUL_OVERFLOW:
2212 case SLJIT_C_FLOAT_NOT_EQUAL:
2213 return 0x10000000;
2214
2215 case SLJIT_C_LESS:
2216 case SLJIT_C_FLOAT_LESS:
2217 return 0x30000000;
2218
2219 case SLJIT_C_GREATER_EQUAL:
2220 case SLJIT_C_FLOAT_GREATER_EQUAL:
2221 return 0x20000000;
2222
2223 case SLJIT_C_GREATER:
2224 case SLJIT_C_FLOAT_GREATER:
2225 return 0x80000000;
2226
2227 case SLJIT_C_LESS_EQUAL:
2228 case SLJIT_C_FLOAT_LESS_EQUAL:
2229 return 0x90000000;
2230
2231 case SLJIT_C_SIG_LESS:
2232 return 0xb0000000;
2233
2234 case SLJIT_C_SIG_GREATER_EQUAL:
2235 return 0xa0000000;
2236
2237 case SLJIT_C_SIG_GREATER:
2238 return 0xc0000000;
2239
2240 case SLJIT_C_SIG_LESS_EQUAL:
2241 return 0xd0000000;
2242
2243 case SLJIT_C_OVERFLOW:
2244 case SLJIT_C_FLOAT_NAN:
2245 return 0x60000000;
2246
2247 case SLJIT_C_NOT_OVERFLOW:
2248 case SLJIT_C_FLOAT_NOT_NAN:
2249 return 0x70000000;
2250
2251 default: /* SLJIT_JUMP */
2252 return 0xe0000000;
2253 }
2254 }
2255
2256 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
2257 {
2258 struct sljit_label *label;
2259
2260 CHECK_ERROR_PTR();
2261 check_sljit_emit_label(compiler);
2262
2263 if (compiler->last_label && compiler->last_label->size == compiler->size)
2264 return compiler->last_label;
2265
2266 label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
2267 PTR_FAIL_IF(!label);
2268 set_label(label, compiler);
2269 return label;
2270 }
2271
2272 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, int type)
2273 {
2274 struct sljit_jump *jump;
2275
2276 CHECK_ERROR_PTR();
2277 check_sljit_emit_jump(compiler, type);
2278
2279 jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
2280 PTR_FAIL_IF(!jump);
2281 set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
2282 type &= 0xff;
2283
2284 /* In ARM, we don't need to touch the arguments. */
2285 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
2286 if (type >= SLJIT_FAST_CALL)
2287 PTR_FAIL_IF(prepare_blx(compiler));
2288 PTR_FAIL_IF(push_inst_with_unique_literal(compiler, ((EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0,
2289 type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0)) & ~COND_MASK) | get_cc(type), 0));
2290
2291 if (jump->flags & SLJIT_REWRITABLE_JUMP) {
2292 jump->addr = compiler->size;
2293 compiler->patches++;
2294 }
2295
2296 if (type >= SLJIT_FAST_CALL) {
2297 jump->flags |= IS_BL;
2298 PTR_FAIL_IF(emit_blx(compiler));
2299 }
2300
2301 if (!(jump->flags & SLJIT_REWRITABLE_JUMP))
2302 jump->addr = compiler->size;
2303 #else
2304 if (type >= SLJIT_FAST_CALL)
2305 jump->flags |= IS_BL;
2306 PTR_FAIL_IF(emit_imm(compiler, TMP_REG1, 0));
2307 PTR_FAIL_IF(push_inst(compiler, (((type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1)) & ~COND_MASK) | get_cc(type)));
2308 jump->addr = compiler->size;
2309 #endif
2310 return jump;
2311 }
2312
2313 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_ijump(struct sljit_compiler *compiler, int type, int src, sljit_w srcw)
2314 {
2315 struct sljit_jump *jump;
2316
2317 CHECK_ERROR();
2318 check_sljit_emit_ijump(compiler, type, src, srcw);
2319
2320 /* In ARM, we don't need to touch the arguments. */
2321 if (src & SLJIT_IMM) {
2322 jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
2323 FAIL_IF(!jump);
2324 set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_BL : 0));
2325 jump->u.target = srcw;
2326
2327 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
2328 if (type >= SLJIT_FAST_CALL)
2329 FAIL_IF(prepare_blx(compiler));
2330 FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0), 0));
2331 if (type >= SLJIT_FAST_CALL)
2332 FAIL_IF(emit_blx(compiler));
2333 #else
2334 FAIL_IF(emit_imm(compiler, TMP_REG1, 0));
2335 FAIL_IF(push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1)));
2336 #endif
2337 jump->addr = compiler->size;
2338 }
2339 else {
2340 if (src >= SLJIT_TEMPORARY_REG1 && src <= SLJIT_NO_REGISTERS)
2341 return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(src));
2342
2343 SLJIT_ASSERT(src & SLJIT_MEM);
2344 FAIL_IF(emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
2345 return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG2));
2346 }
2347
2348 return SLJIT_SUCCESS;
2349 }
2350
2351 SLJIT_API_FUNC_ATTRIBUTE int sljit_emit_cond_value(struct sljit_compiler *compiler, int op, int dst, sljit_w dstw, int type)
2352 {
2353 int reg;
2354 sljit_uw cc;
2355
2356 CHECK_ERROR();
2357 check_sljit_emit_cond_value(compiler, op, dst, dstw, type);
2358
2359 if (dst == SLJIT_UNUSED)
2360 return SLJIT_SUCCESS;
2361
2362 cc = get_cc(type);
2363 if (GET_OPCODE(op) == SLJIT_OR) {
2364 if (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) {
2365 EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(ORR_DP, 0, dst, dst, SRC2_IMM | 1) & ~COND_MASK) | cc);
2366 if (op & SLJIT_SET_E)
2367 return push_inst(compiler, EMIT_DATA_PROCESS_INS(MOV_DP, SET_FLAGS, TMP_REG1, SLJIT_UNUSED, RM(dst)));
2368 return SLJIT_SUCCESS;
2369 }
2370
2371 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, SRC2_IMM | 0));
2372 EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(MOV_DP, 0, TMP_REG1, SLJIT_UNUSED, SRC2_IMM | 1) & ~COND_MASK) | cc);
2373 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) || (defined SLJIT_DEBUG && SLJIT_DEBUG)
2374 compiler->skip_checks = 1;
2375 #endif
2376 return emit_op(compiler, op, ALLOW_IMM, dst, dstw, TMP_REG1, 0, dst, dstw);
2377 }
2378
2379 reg = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REG2;
2380
2381 EMIT_INSTRUCTION(EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, SRC2_IMM | 0));
2382 EMIT_INSTRUCTION((EMIT_DATA_PROCESS_INS(MOV_DP, 0, reg, SLJIT_UNUSED, SRC2_IMM | 1) & ~COND_MASK) | cc);
2383
2384 if (reg == TMP_REG2)
2385 return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, TMP_REG2, 0);
2386 return SLJIT_SUCCESS;
2387 }
2388
2389 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, int dst, sljit_w dstw, sljit_w init_value)
2390 {
2391 struct sljit_const *const_;
2392 int reg;
2393
2394 CHECK_ERROR_PTR();
2395 check_sljit_emit_const(compiler, dst, dstw, init_value);
2396
2397 const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
2398 PTR_FAIL_IF(!const_);
2399
2400 reg = (dst >= SLJIT_TEMPORARY_REG1 && dst <= SLJIT_NO_REGISTERS) ? dst : TMP_REG2;
2401
2402 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
2403 PTR_FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_DATA | LOAD_DATA, 1, 0, reg, TMP_PC, 0), init_value));
2404 compiler->patches++;
2405 #else
2406 PTR_FAIL_IF(emit_imm(compiler, reg, init_value));
2407 #endif
2408 set_const(const_, compiler);
2409
2410 if (reg == TMP_REG2 && dst != SLJIT_UNUSED)
2411 if (emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, TMP_REG2, 0))
2412 return NULL;
2413 return const_;
2414 }
2415
2416 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
2417 {
2418 inline_set_jump_addr(addr, new_addr, 1);
2419 }
2420
2421 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_w new_constant)
2422 {
2423 inline_set_const(addr, new_constant, 1);
2424 }

  ViewVC Help
Powered by ViewVC 1.1.5